WO2020034201A1 - 电子设备及弯曲角度计算方法 - Google Patents

电子设备及弯曲角度计算方法 Download PDF

Info

Publication number
WO2020034201A1
WO2020034201A1 PCT/CN2018/101098 CN2018101098W WO2020034201A1 WO 2020034201 A1 WO2020034201 A1 WO 2020034201A1 CN 2018101098 W CN2018101098 W CN 2018101098W WO 2020034201 A1 WO2020034201 A1 WO 2020034201A1
Authority
WO
WIPO (PCT)
Prior art keywords
accelerometer
electronic device
axis direction
detected
acceleration
Prior art date
Application number
PCT/CN2018/101098
Other languages
English (en)
French (fr)
Inventor
谢俊
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to EP18930504.8A priority Critical patent/EP3839423A4/en
Priority to PCT/CN2018/101098 priority patent/WO2020034201A1/zh
Priority to CN201880094121.3A priority patent/CN112639398A/zh
Priority to US17/267,281 priority patent/US20210310785A1/en
Publication of WO2020034201A1 publication Critical patent/WO2020034201A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1652Details related to the display arrangement, including those related to the mounting of the display in the housing the display being flexible, e.g. mimicking a sheet of paper, or rollable
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1675Miscellaneous details related to the relative movement between the different enclosures or enclosure parts
    • G06F1/1677Miscellaneous details related to the relative movement between the different enclosures or enclosure parts for detecting open or closed state or particular intermediate positions assumed by movable parts of the enclosure, e.g. detection of display lid position with respect to main body in a laptop, detection of opening of the cover of battery compartment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/1694Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being a single or a set of motion sensors for pointer control or gesture input obtained by sensing movements of the portable computer

Definitions

  • the invention relates to the field of electronic technology, in particular to an electronic device and a method for calculating a bending angle.
  • Folding electronic devices are popular with consumers because of their portability and powerful functionality and entertainment.
  • the angle between two parts of an electronic device that can be relatively rotated is usually measured by a photoelectric encoder, that is, the bending angle of the electronic device is measured.
  • the mechanical mechanism of the photoelectric encoder is large, which is not conducive to the thinning of electronic equipment.
  • an embodiment of the present invention discloses an electronic device and a method for calculating a bending angle.
  • An electronic device includes at least two detection components and a processor.
  • the at least two detection components are provided on different parts of the electronic device that can be relatively bent.
  • Each detection component includes an accelerometer and a magnetometer.
  • the accelerometer is used to detect the acceleration of the electronic device
  • the magnetometer is used to detect the magnetic induction intensity
  • the processor is used to detect the acceleration detected by the accelerometer of the at least two detection components or the at least two
  • the magnetic induction intensity detected by the magnetometer of each detection component calculates a bending angle of the electronic device.
  • a bending angle calculation method At least two detection components are provided on different parts of an electronic device. Each detection component includes an accelerometer and a magnetometer.
  • the bending angle calculation method includes: obtaining the at least two detection components. The acceleration detected by the accelerometer or the magnetic induction intensity detected by the magnetometer of the at least two detection components; and the acceleration detected by the accelerometer of the at least two detection components or the magnetic force of the at least two detection components The magnetic induction detected by the meter calculates a bending angle of the electronic device.
  • the electronic device and the bending angle calculation method provided by the present invention by setting detection components in different parts of the electronic device, calculate the bending angle based on the acceleration detected by the accelerometer of the detection component or the magnetic induction intensity detected by the magnetometer of the detection component, which is beneficial to simplify Structure of electronic equipment, and reduction of thickness of electronic equipment.
  • FIG. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a detection component provided on a flexible screen of an electronic device according to an embodiment of the present invention.
  • FIG. 3 is a schematic side view of a flexible screen according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a bending angle calculation method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a bending angle calculation method according to another embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an electronic device 100 according to an embodiment of the present invention.
  • the electronic device 100 is a foldable electronic device.
  • the electronic device 100 includes at least two detection components 12 and a processor 17.
  • the at least two detection components 12 are disposed in different parts of the electronic device 100.
  • Each detection component 12 includes an accelerometer 123 and a magnetometer 125.
  • the accelerometer 123 is used to detect the acceleration of the electronic device 100
  • the magnetometer 125 is used to detect the magnetic induction strength
  • the processor 17 is used to detect the acceleration detected by the accelerometer 123 of the at least two detection components 12 or the at least two detection components
  • the magnetic induction intensity detected by the magnetometer 125 of 12 calculates the bending angle of the electronic device 100.
  • the accelerometer 123 is used to detect acceleration, and the acceleration detected by the accelerometer 123 is a vector having a magnitude and a direction.
  • the working principle of the accelerometer 123 is that a three-dimensional coordinate system is established in the accelerometer 123 in advance, and the three-dimensional coordinate system includes three mutually specified directions.
  • the acceleration components of the acceleration applied to the accelerometer 123 in three specified directions can be detected in a three-dimensional coordinate system, and the acceleration can be obtained by the vector sum of the acceleration components in the three specified directions.
  • the electronic device 100 is usually in a stationary state and the acceleration is approximately a gravitational acceleration g, even if the electronic device 100 is in a moving state, it usually performs uniform motion instead of more severe motion. Is the acceleration of gravity g.
  • the vector sum of the acceleration components detected by the accelerometer 123 in the three specified directions is the acceleration of gravity.
  • the three specified directions are not absolute directions, but directions determined using the accelerometer 123 as a reference.
  • the XYZ coordinate system includes three specified directions: the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the X-axis direction and the Y-axis direction refer to two mutually perpendicular directions on the initial plane where the accelerometer 123 is located, and the Z axis
  • the direction refers to a direction perpendicular to the initial plane where the accelerometer 123 is located.
  • the initial plane may be a horizontal plane. For example, when the electronic device 100 is placed horizontally and the electronic device 100 faces upward, the plane on which the accelerometer 123 is located.
  • the accelerometer 123 is disposed on the electronic device 100, and the acceleration detected by the accelerometer 123 is the acceleration of the electronic device 100. Moreover, at least two detection components 12 are provided on the electronic device 100, and the accelerometers 123 of the at least two detection components 12 are located in different parts of the electronic device 100. When the electronic device 100 is folded / bent, the processor 17 The acceleration component detected by at least the accelerometer 123 of the detection component 12 calculates a bending angle of the electronic device 100.
  • the magnetometer 125 is provided on the electronic device 100.
  • the magnetometer 125 is used to detect the magnetic induction intensity of the position of the electronic device 100, so that when the accelerometer 13 of the detection component 12 fails, the processor 17 calculates the bending angle of the flexible screen 11 according to the detected magnetic induction intensity.
  • Magnetic induction is a vector with magnitude and direction.
  • the magnetic induction intensity detected by the magnetometer 125 is the magnetic induction intensity of the geomagnetic field where the magnetometer 125 is located, and the direction of the geomagnetic field is substantially parallel to the horizontal plane. Similar to the accelerometer 123, the magnetometer 125 establishes a three-dimensional coordinate system.
  • the designated direction of the coordinate system of the magnetometer 125 is the same as the designated direction of the accelerometer 123. Furthermore, the magnetometers 125 of the at least two detection components 12 are located in two different parts of the electronic device 100. When the electronic device 100 is folded / bent, the magnetometers 125 detected by the at least two detection components 12 are The at least two magnetic induction intensity components calculate a bending angle of the electronic device 100.
  • the electronic device 100 includes a folding shaft 200.
  • the electronic device 100 further includes a flexible screen 11.
  • the flexible screen 11 includes a first portion 113 and a second portion 115 that are rotatable relative to the folding axis 200 to realize bending or folding of the electronic device 100.
  • the Y axis is parallel to the folding axis 200.
  • the X axis and the Z axis are perpendicular to the folding axis 200.
  • the at least two detection components 12 include a first detection component 121 and a second detection component 122.
  • the first detection component 121 is disposed on the first portion 113 and the second detection component 122 is disposed on the second portion 115.
  • the first detection component 121 includes a first accelerometer 1233 and a first magnetometer 1253
  • the second detection component 122 includes a second accelerometer 1235 and a second magnetometer 1255.
  • the bending angle of the electronic device 100 is a bending angle of the flexible screen 11, and the bending angle of the electronic device 100 is an included angle between the first portion 113 and the second portion 115.
  • the first accelerometer 1233, the second accelerometer 1235, the first magnetometer 1253, and the second magnetometer 1255 move as the flexible screen 11 is folded
  • the first acceleration The meter 1233, the second accelerometer 1235, the first magnetometer 1253, and the second magnetometer 1255 are fixed at different positions on the inside of the flexible screen 11 so as not to block the screen and ensure the accuracy of detection.
  • the first accelerometer 1233 sends the detected acceleration component of the first portion 113 and the second accelerometer 1235 sends the detected acceleration component of the second portion 115 to the processor 17.
  • the processor 17 determines whether the first accelerometer 1233 and the second accelerometer 1235 have failed according to the acceleration components detected by the first accelerometer 1233 and the second accelerometer 1235. The failure is that when the folding axis 200 of the electronic device 100 is perpendicular to the horizontal plane, the accelerations detected by the first accelerometer 1233 and the second accelerometer 1235 cannot be used to calculate the bending angle of the electronic device 100.
  • the acceleration components on the Y axis detected by the first accelerometer 1233 and the second accelerometer 1235 tend to be gravitational acceleration, and the processor 17 cannot An acceleration component detected by an accelerometer 1233 and a second accelerometer 1235 calculates an included angle between the first part 113 and the second part 115, and the processor 17 determines that the first accelerometer 1233 and the second accelerometer 1235 are invalid.
  • the processor 17 can calculate the angle between the first part 113 and the second part 115 according to the acceleration components detected by the first accelerometer 1233 and the second accelerometer 1235, and the processor 17 determines that the first accelerometer 1233 and the first The two accelerometers 1235 have not failed.
  • the processor 17 controls the first magnetometer 1253 and the second magnetometer 1255 to detect the magnetic induction intensity.
  • the first magnetometer 1253 and the second magnetometer 1255 send the detected magnetic induction intensity components to the processor 17 respectively.
  • the processor 17 calculates an included angle between the first portion 113 and the second portion 115 according to the magnetic induction intensity components detected by the first magnetometer 1253 and the second magnetometer 1255, thereby obtaining a bending angle of the flexible screen 11.
  • the processor 17 determines that the first accelerometer 1233 and the second accelerometer 1235 have not failed, that is, when the folding axis 200 of the electronic device 100 is not perpendicular to the horizontal plane, the processor 17 is based on the first acceleration
  • the acceleration components in the X-axis direction, the Y-axis direction, and the Z-axis direction detected by the meter 1233 and the acceleration components in the X-axis direction, the Y-axis direction, and the Z-axis direction detected by the second accelerometer 1235 calculate the bending of the flexible screen 11 angle.
  • the acceleration of the first part 113 detected by the first accelerometer 1233 be the first acceleration a
  • the acceleration of the second part 115 detected by the second accelerometer 1235 be the second acceleration a2.
  • the acceleration component of the first acceleration a1 in the X-axis direction is x1
  • the acceleration component of the first acceleration a1 in the Y-axis direction is y1
  • the acceleration component of the first acceleration a1 in the Z-axis direction is z1
  • the acceleration component of the second acceleration a2 in the X-axis direction is x2
  • the acceleration component of the second acceleration a2 in the Y-axis direction is y2
  • the acceleration component of the second acceleration a2 in the Z-axis direction is z2
  • the angle between the first accelerometer 1233 and the second accelerometer 1235 can represent the bending angle ⁇ of the flexible screen 11.
  • the processor 17 may apply the formula (1) to calculate the bending angle of the flexible screen 11.
  • the processor 17 does not need to calculate the acceleration of each accelerometer, and the acceleration of the accelerometer may be g by default. That is, when the processor 17 determines that the accelerometers 123 of the at least two detection components 12 have not failed, the processor 17 is based on the acceleration component in the Z-axis direction detected by the first accelerometer 1233 and the Z detected by the second accelerometer 1235. The acceleration component in the axial direction calculates the bending angle of the flexible screen 11.
  • the first accelerometer 1233 and the second accelerometer 1235 only need to send the detected acceleration component in the Z-axis direction to the processor 17, and the processor 17 according to the first accelerometer 1233 and the second accelerometer 1235.
  • the bending angle ⁇ of the flexible screen 11 can be obtained by formula (2).
  • the processor 17 cannot calculate the included angle ⁇ based on the acceleration detected by the first accelerometer 1233 and the second accelerometer 1235, and the processor 17 determines that the first The accelerometer 1233 and the second accelerometer 1235 are disabled.
  • the processor 17 compares the absolute value of the acceleration component in the Y-axis direction detected by the first accelerometer 1233 and the second accelerometer 1235 with a preset threshold.
  • the preset threshold is set to 9.8.
  • the preset threshold is a parameter that can be adjusted. Generally, the preset threshold is slightly smaller than the acceleration g of gravity.
  • the processor 17 determines that the horizontal plane of the folding axis 200 is vertical, that is, It is determined that the first accelerometer 1233 and the second accelerometer 1235 are invalid.
  • the processor 17 calculates the bending angle of the flexible screen 11 by using the magnetic induction intensity components detected by the first magnetometer 1253 and the second magnetometer 1255.
  • the first magnetometer 1253 detects the first magnetic induction intensity as b1, where the acceleration component in the X-axis direction Is x3, the acceleration component in the Y-axis direction is y3, and the acceleration component in the Z-axis direction is z3.
  • the second magnetometer 1255 detects a second magnetic induction intensity of b2, where the acceleration component in the X-axis direction is x3, the acceleration component in the Y-axis direction is y3, and the acceleration component in the Z-axis direction is z3.
  • the angle between the first magnetometer 1253 and the second magnetometer 1255 can represent the bending angle ⁇ of the flexible screen 11:
  • the processor 17 may apply formula (3) to calculate a bending angle ⁇ when the folding axis 200 is perpendicular to the horizontal plane.
  • the processor 17 is used for performing calculations, and may be a central processor of the electronic device 100, or a Sensor Hub configured for the electronic device 100, or may be other control units with computing capabilities. Examples do not limit this.
  • the processor 17 calculates the bending angle, it can perform some control operations according to the current bending angle of the flexible screen 11, such as controlling the opening and closing of the flexible screen 11, or controlling the flexible screen 11 to display specific content, etc.
  • the present invention The embodiment does not limit the control operation.
  • the first magnetometer 1253 and the second magnetometer 1255 are initially turned off.
  • the processor 17 determines that the first accelerometer 1233 and the second accelerometer 1235 have failed, the processor 17 controls to start the first The magnetometer 1253 and the second magnetometer 1255 are activated to detect magnetic induction.
  • This embodiment provides a way to calculate the bending angle of the electronic device 100.
  • the acceleration component detected by the accelerometer 123 of the detection component 12 or the magnetometer 125 according to the detection component 12 Calculating the bending angle of the detected magnetic induction component is beneficial to simplifying the structure of the electronic device 100 and reducing the thickness of the electronic device 100.
  • the acceleration is detected by the accelerometer 123 of at least two detection components 12, and the processor 17 calculates the bending angle of the flexible screen 11 according to the detected acceleration, so as to control according to the degree of bending
  • the operation is simple and convenient; when the accelerometer 123 has not failed, the magnetic induction intensity is detected by at least the magnetometer 125 of the detection component 12, thereby conveniently determining the degree of bending of the flexible screen 11.
  • the electronic device 100 uses the accelerometer 123 as the main detection means, and the magnetometer 125 as the auxiliary means when the accelerometer 123 fails, to obtain the bending angle of the flexible screen 11.
  • the processor 17 is further configured to adjust the color temperature, brightness, and color of the flexible screen 11 according to the bending angle control after calculating the bending angle of the flexible screen 11 to provide the best display effect and improve the user's Use experience.
  • the processor 17 is further configured to adjust the operating mode of the electronic device 100 according to the bending angle control. For example, when the bending angle is 0 degrees, that is, when the first portion 113 and the second portion 115 of the electronic device 100 are folded together, The processor 17 controls the electronic device 100 to switch from the first mode to the second mode, the first mode is a normal working mode, and the second mode is a sleep mode. It can be understood that the first mode is not limited to the normal working mode, and the second mode is not limited to the sleep mode, and can be set as required.
  • the acceleration components detected by the accelerometers 123 of the at least two detection components 12 in a specified direction are also different, and the flexibility can be calculated according to the detected acceleration components.
  • the magnetic induction intensity components detected by the magnetometers 125 of the at least two detection components 12 in a specified direction are also different, and the bending angle of the flexible screen 11 can be calculated based on the detected magnetic induction intensity components.
  • the accelerometer 123 of the at least two detection components 12 detects the acceleration component of the flexible screen 11 in any one or more specified directions, and the processor 17 calculates the flexibility based on the acceleration components detected by the accelerometer 123 of the at least two detection components 12.
  • the magnetometer 125 of the at least two detection components 12 detects the magnetic induction intensity component of the flexible screen 11 in any one or more specified directions, and the processor 17 calculates the bending of the flexible screen 11 based on the magnetic induction intensity components detected by the at least two magnetometers 125. angle.
  • the above example is only based on the case where the electronic device 100 includes two detection components 12. In fact, when the electronic device 10 includes two or more detection components 12, the calculation method of the bending angle is similar. For example, the processor 17 calculates The angle between each two adjacent parts of the electronic device 100 is calculated as an average value.
  • the processor 17 can obtain multiple bending angles at different times, and then can calculate the bending speed of the flexible screen according to the obtained change in the bending angle.
  • the electronic device 100 provided in the foregoing embodiment is described by taking only the division of the above functional modules as an example.
  • the above functions may be allocated by different functional modules according to needs, that is, the internal of the electronic device
  • the structure is divided into different functional modules to complete all or part of the functions described above.
  • the electronic device and the bending angle calculation method embodiments provided in the foregoing embodiments belong to the same concept. For specific implementation processes, refer to the method embodiments, and details are not described herein again.
  • the electronic device 100 may also include other necessary or non-essential structures or modules, such as one or more of the following components: processing component, memory, sensor component, communication component, power supply component, multimedia component, audio component, input / output ( I / O) interface.
  • the processing component generally controls the overall operation of the electronic device 100, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component may include one or more processors to execute instructions to complete all or part of the steps of the method described above.
  • the memory is configured to store various types of data to support operation at the electronic device 100. Examples of such data include instructions for any application or method for operating on the electronic device 100, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory may be implemented by any type of volatile or non-volatile memory device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the communication component is configured to facilitate wired or wireless communication between the electronic device 100 and other devices.
  • the electronic device 10 can access a wireless network based on a communication standard, such as WiFi, 2G, 3G, 4G, 5G, or a combination thereof.
  • structural or functional modules such as sensor components and power components are not described in detail here
  • an embodiment of the present invention further provides a method for calculating a bending angle.
  • At least two detection components 12 are disposed on different parts of the electronic device 100.
  • Each detection component 12 includes an accelerometer 123 and a magnetometer 125.
  • the bending angle calculation method includes the following steps:
  • Step 401 Obtain the acceleration detected by the accelerometer 123 of the at least two detection components 12 or the magnetic induction intensity detected by the magnetometer 125 of the at least two detection components 12.
  • Step 403 Calculate the bending angle of the electronic device 100 according to the acceleration detected by the accelerometer 123 of the at least two detection components 12 or the magnetic induction intensity detected by the magnetometer 125 of the at least two detection components 12.
  • At least two detection components 12 include a first detection component 121 and a second detection component 122.
  • the first detection component 121 includes a first accelerometer 1233 and a first magnetometer 1253
  • the second detection component 122 includes a second accelerometer. 1235 and second magnetometer 1255
  • the electronic device 100 has a folding shaft 200
  • the electronic device 100 further includes a first portion 113 and a second portion 115
  • the first portion 113 and the second portion 115 can rotate relative to the folding shaft 200
  • the first magnetometer 1253 is provided in the first section 113
  • the second accelerometer 1235 and the second magnetometer 1255 are provided in the second section 115.
  • the electronic device 100 includes a flexible screen 11, and the flexible screen 11 includes a first portion 113 and a second portion 115. It can be understood that the electronic device 100 may be other foldable electronic devices, such as a notebook computer.
  • Step 401 that is, acquiring the acceleration detected by the accelerometer 123 of the at least two detection components 12 or the magnetic induction intensity detected by the magnetometer 125 of the at least two detection components 12 includes: acquiring the first acceleration The acceleration detected by the meter 1233 and the second accelerometer 1235, or acquiring the magnetic induction strengths detected by the first magnetometer 1253 and the second magnetometer 1255.
  • Step 403 calculating the bending angle of the electronic device 100 according to the acceleration detected by the accelerometer 123 of the at least two detection components 12 or the magnetic induction intensity detected by the magnetometer 125 of the at least two detection components 12. Including: calculating the bending angle of the electronic device 100 based on the acceleration detected by the first accelerometer 1233 and the second accelerometer 1235, or the magnetic induction intensity detected by the first magnetometer 1253 and the second magnetometer 1255.
  • Step 403 specifically includes: judging whether the first accelerometer 1233 and the second accelerometer 1235 have failed according to the acceleration detected by the first accelerometer 1233 and the second accelerometer 1235, and the failure is the folding axis 200 and the horizontal plane of the electronic device 100 It is perpendicular to each other. If the first accelerometer 1233 and the second accelerometer 1235 have not failed, the bending angle of the electronic device 100 is calculated based on the acceleration detected by the first accelerometer 1233 and the second accelerometer 1235. The second accelerometer 1235 fails, and the bending angle of the electronic device 100 is calculated based on the magnetic induction intensity detected by the first magnetometer 1253 and the second magnetometer 1255.
  • the obtaining the acceleration detected by the first accelerometer 1233 and the second accelerometer 1235 includes: detecting the acceleration component of the electronic device 100 in a specified direction through the first accelerometer 1233 and the second accelerometer 1235.
  • the specified direction includes an X-axis direction, a Y-axis direction, and a Z-axis direction.
  • the X-axis direction and the Z-axis direction are perpendicular to the folding axis 200, and the Y-axis direction is parallel to the folding axis 200.
  • Determining whether the first accelerometer 1233 and the second accelerometer 1235 are disabled by the acceleration detected by the first accelerometer 1233 and the second accelerometer 1235 includes: comparing the Y detected by the first accelerometer 1233 and the second accelerometer 1235.
  • the absolute value of the acceleration component in the axis direction and the preset threshold value if the absolute value of each acceleration component in the Y-axis direction detected by the first accelerometer 1233 and the second accelerometer 1235 is greater than the preset value If it is a threshold, it is determined that the folding axis 200 and the horizontal plane are perpendicular to each other, thereby determining that the first accelerometer 1233 and the second accelerometer 1235 are invalid.
  • calculating the bending angle of the electronic device 100 based on the acceleration detected by the first accelerometer 1233 and the second accelerometer 1235 includes: The acceleration components detected by the first accelerometer 1233 and the second accelerometer 1235 apply the following formula to calculate the bending angle of the electronic device 100:
  • represents the bending angle of the electronic device 100
  • x1, y1, and z1 respectively represent the acceleration components in the X-axis direction, the Y-axis direction, and the Z-axis direction detected by the first accelerometer 1233
  • x2, y2, and z2 respectively represent the second The acceleration components detected by the accelerometer 1235 in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • calculating the bending angle of the electronic device 100 based on the acceleration detected by the first accelerometer 1233 and the second accelerometer 1235 includes: The acceleration components detected by the first accelerometer 1233 and the second accelerometer 1235 apply the following formula to calculate the bending angle of the electronic device 100:
  • represents the bending angle of the electronic device 100
  • z1 represents the acceleration component in the Z-axis direction detected by the first accelerometer 1233
  • z2 represents the acceleration component in the Z-axis direction detected by the second accelerometer 1235
  • g is the acceleration of gravity.
  • calculating the bending angle of the electronic device 100 based on the magnetic induction intensity detected by the first magnetometer 1253 and the second magnetometer 1255 includes: a first The magnetometer 1253 and the second magnetometer 1255 are used to detect magnetic induction intensity components in a specified direction, the specified direction includes an X-axis direction, a Y-axis direction, and a Z-axis direction. The first accelerometer 1233 and the second accelerometer are determined.
  • the strength component is used to calculate the bending angle of the electronic device 100.
  • the following formula is used to calculate the bending angle of the electronic device 100:
  • represents the bending angle of the electronic device 100
  • x3, y3, and z3 represent the magnetic induction intensity components of the X-axis direction, Y-axis direction, and Z-axis direction detected by the first magnetometer 1253, respectively
  • x4, y4, and z4 indicate the first X-axis direction, Y-axis direction, and Z-axis direction magnetic component detected by two magnetometers 1255.
  • step 403 specifically includes: detecting the acceleration of the electronic device 100 through the accelerometer 123 of the at least two detection components 12; judging whether the accelerometer 123 of the at least two detection components 12 has failed according to the detected acceleration; If the accelerometer 123 of the at least two detection components 12 has not failed, the bending angle of the electronic device 100 is calculated according to the acceleration detected by the accelerometer 123 of the at least two detection components 12; if the at least two detection components The accelerometer 123 of 12 fails, and the bending angle of the electronic device 100 is calculated based on the detected magnetic induction intensity.
  • FIG. 5 is a bending angle calculation method applied to an electronic device 100 according to another embodiment of the present invention.
  • the electronic device 100 includes a folding shaft 200.
  • the electronic device 100 includes a first portion 113 and a second portion 115. A portion 113 and a second portion 115 can be rotated relative to the folding axis 200.
  • the first detection component 121 is disposed on the first portion 113 of the electronic device 100
  • the second detection component 122 is disposed on the second portion 115
  • the first detection component 121 includes a first acceleration.
  • the meter 1233 and the first magnetometer 1253, and the second detection component 122 includes a second accelerometer 1235 and a second magnetometer 1255.
  • the bending angle calculation method is applied to an electronic device.
  • the bending angle calculation method includes:
  • Step 501 Obtain the acceleration of the electronic device 100 detected by the first accelerometer 1233 and the second accelerometer 1235.
  • the acceleration of the electronic device 100 detected by the first accelerometer 1233 and the second accelerometer 1235 includes: detecting an acceleration component of the electronic device 100 in a specified direction through the first accelerometer 1233 and the second accelerometer 1235,
  • the specified directions include an X-axis direction, a Y-axis direction, and a Z-axis direction.
  • the X-axis direction and the Z-axis direction are both perpendicular to the folding axis 200, and the Y-axis direction is parallel to the folding axis 200.
  • Step 502 Determine whether the first accelerometer 1233 and the second accelerometer 1235 have failed based on the detected acceleration. If not, that is, if the first accelerometer 1233 and the second accelerometer 1235 have not failed, go to step 503; if it is If yes, if the first accelerometer 1233 and the second accelerometer 1235 fail, go to step 504. The failure is that the folding axis 200 of the electronic device 100 and the horizontal plane are perpendicular to each other.
  • determining whether the first accelerometer 1233 and the second accelerometer 1235 have failed based on the detected acceleration includes comparing the acceleration component in the Y-axis direction detected by the first accelerometer 1233 and the second accelerometer 1235. If the absolute value of each acceleration component in the Y-axis direction detected by the first accelerometer 1233 and the second accelerometer 1235 is greater than the preset threshold, it is determined to be folded. The axis 200 and the horizontal plane are perpendicular to each other, so that it is determined that the first accelerometer 1233 and the second accelerometer 1235 are invalid.
  • Step 503 Calculate a bending angle of the electronic device 100 according to the acceleration components detected by the first accelerometer 1233 and the second accelerometer 1235.
  • the following formula is applied to calculate the bending angle of the electronic device 100:
  • represents the bending angle of the electronic device 100
  • x1, y1, and z1 respectively represent the acceleration components of the X-axis direction, the Y-axis direction, and the Z-axis direction detected by the first acceleration 1233 meter
  • x2, y2, and z2 respectively represent the second The acceleration components detected by the accelerometer 1235 in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the following formula is applied to calculate the bending angle of the electronic device:
  • represents a bending angle of the electronic device
  • z1 represents an acceleration component in the Z-axis direction detected by the first accelerometer 1233
  • z2 represents an acceleration component in the Z-axis direction detected by the second accelerometer 1235.
  • Step 504 Start the first magnetometer 1253 and the second magnetometer 1255 to detect the magnetic induction intensity.
  • Step 505 Calculate the bending angle of the electronic device 100 based on the magnetic induction intensity detected by the first magnetometer 1253 and the second magnetometer 1255.
  • the calculating the bending angle of the electronic device 100 based on the magnetic induction intensity detected by the first magnetometer 1253 and the second magnetometer 1255 includes: the first magnetometer 1253 and the second magnetometer 1255 are used for detecting the The magnetic induction intensity component in a specified direction, which includes the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the first accelerometer 1233 and the second accelerometer 1235 according to the first magnetometer 1253 and the second The magnetic induction intensity component detected by the magnetometer 1255 applies the following formula to calculate the bending angle of the electronic device 100:
  • represents the bending angle of the electronic device 100
  • x3, y3, and z3 represent the magnetic induction intensity components of the X-axis direction, Y-axis direction, and Z-axis direction detected by the first magnetometer 1253, respectively
  • x4, y4, and z4 indicate the first X-axis direction, Y-axis direction, and Z-axis direction magnetic component detected by two magnetometers 1255.
  • step 504 may be omitted.
  • step 403 in FIG. 4 and steps 501 to 505 in FIG. 5 have a certain correlation, and the related steps can be referred to each other.

Abstract

一种电子设备(100)及其弯曲角度的计算方法,所述电子设备(100)包括至少两个检测组件(12)及处理器(17),所述至少两个检测组件(12)设于所述电子设备(100)的不同部分,每个检测组件(12)包括一个加速度计(123)及一个磁力计(125),所述加速度计(123)用于检测所述电子设备(100)的加速度,所述磁力计(125)用于检测磁感应强度,所述处理器(17)用于依据加速度计(123)检测的加速度或磁力计(125)检测的磁感应强度计算所述电子设备(100)的弯曲角度。

Description

电子设备及弯曲角度计算方法 技术领域
本发明涉及电子技术领域,特别涉及一种电子设备及弯曲角度计算方法。
背景技术
折叠式电子设备由于其方便携带以及强大的功能性与娱乐性,受到广大消费者的喜爱。通常通过光电编码器测量电子设备能够相对转动的两个部分之间夹角,即测量所述电子设备的弯曲角度。然而,光电编码器机械机构较大,不利于电子设备的轻薄化。
发明内容
为解决上述问题,本发明实施例公开一种电子设备及弯曲角度的计算方法
一种电子设备,包括至少两个检测组件及处理器,所述至少两个检测组件设于所述电子设备上能够相对弯曲的不同部分,每个检测组件包括一个加速度计及一个磁力计,所述加速度计用于检测所述电子设备的加速度,所述磁力计用于检测磁感应强度,所述处理器用于根据所述至少两个检测组件的所述加速度计检测到的加速度或所述至少两个检测组件的所述磁力计检测的磁感应强度计算所述电子设备的弯曲角度。
一种弯曲角度计算方法,至少两个检测组件设于电子设备的不同部分上,每个检测组件包括一个加速度计及一个磁力计,所述弯曲角度计算方法包括:获取所述至少两个检测组件的加速度计检测到的加速度或所述至少两个检测组件的磁力计检测到的磁感应强度;以及依据所述至少两个检测组件的加速度计检测到的加速度或所述至少两个检测组件的磁力计检测到的磁感应强度计算所述电子设备的弯曲角度。
本发明提供的电子设备及弯曲角度计算方法,通过在电子设备的不同部分设置检测组件,依据检测组件的加速度计检测的加速度或依据检测组件的磁力计检测的磁感应强度计算弯曲角度,有利于简化电子设备的结构,以及减小电子设备的厚度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以依据这些附图获得其他的附图。
图1为本发明实施方式提供的电子设备的结构示意图。
图2为本发明实施方式提供的电子设备的柔性屏上设检测组件的示意图。
图3为本发明实施方式提供的柔性屏的侧面示意图。
图4为本发明一实施方式提供的弯曲角度计算方法的流程图。
图5为本发明另一实施方式提供的弯曲角度计算方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明实施方式提供一种电子设备100的结构示意图。电子设备100为可折叠式电子设备。电子设备100包括至少两个检测组件12及处理器17,所述至少两个检测组件12设于电子设备100的不同部分,每个检测组件12包括一个加速度计123及一个磁力计125。加速度计123用于检测电子设备100的加速度,磁力计125用于检测磁感应强度,处理器17用于依据所述至少两个检测组件12的加速度计123检测的加速度或所述至少两个检测组件12的磁力计125检测的磁感应强度计算电子设备100的弯曲角度。
本实施例中,加速度计123用于检测加速度,其中,加速度计123检测的所述加速度是一个矢量,具有大小和方向。加速度计123的工作原理为:加速度计123中预先建立有三维坐标系,该三维坐标系包括三个相互垂直的指定方 向。当加速度计123工作时,能够在三维坐标系内检测到施加于加速度计123的加速度在三个指定方向的加速度分量,通过三个指定方向上的加速度分量的矢量和可得出该加速度。实际应用中,考虑到电子设备100通常处于静止状态,加速度近似为重力加速度g,即使电子设备100处于运动状态,其通常也是进行匀速运动,而不会进行较为剧烈的运动,则可以认为加速度仍为重力加速度g。加速度计123在所述三个指定方向上检测到的加速度分量的矢量和为重力加速度。其中,三个指定方向不是绝对方向,而是以加速度计123为基准确定的方向。如X-Y-Z坐标系包括X轴方向、Y轴方向和Z轴方向这三个指定方向,X轴方向和Y轴方向是指加速度计123所在的初始平面上的两个相互垂直的方向,而Z轴方向是指与加速度计123所在初始平面垂直的方向,当加速度计123的姿态发生变化时,加速度计123的X轴方向、Y轴方向和Z轴方向也相应发生变化。其中,所述初始平面可为水平面,例如电子设备100处于水平放置且电子设备100朝上的状态时,加速度计123所处的平面。
加速度计123设置在电子设备100上,加速度计123检测到的加速度即为电子设备100的加速度。而且,在电子设备100上设置至少两个检测组件12,所述至少两个检测组件12的加速度计123位于电子设备100的不同部分,当电子设备100发生折叠/弯曲时,处理器17依据所述至少检测组件12的加速度计123检测到的加速度分量计算出电子设备100的弯曲角度。
磁力计125设置在电子设备100上。磁力计125用于检测电子设备100所处位置的磁感应强度,以在检测组件12的加速计13失效时,处理器17依据检测到的磁感应强度计算出柔性屏11的弯曲角度。磁感应强度是矢量,具有大小和方向。本实施方式中,所述磁力计125检测到的磁感应强度为该磁力计125所处位置的地磁场的磁感应强度,所述地磁场方向与所述水平面大致平行。与加速度计123类似,磁力计125建立三维坐标系,本实施例中,为方便计算,磁力计125的坐标系的指定方向与加速度计123的指定方向相同。而且,所述至少两个检测组件12的磁力计125位于电子设备100的两个不同部分,当电子设备100发生折叠/弯曲时,依据所述至少两个检测组件12的磁力计125检测到的至少两个磁感应强度分量计算出电子设备100的弯曲角度。
具体的,请参见图2,电子设备100具折叠轴200。电子设备100还包括 柔性屏11。柔性屏11包括可相对折叠轴200转动的第一部分113及第二部分115以实现电子设备100的弯曲或折叠。所述Y轴与所述折叠轴200平行。所述X轴与所述Z轴与折叠轴200垂直。所述至少两个检测组件12包括第一检测组件121及第二检测组件122,第一检测组件121设于第一部分113,第二检测组件122设于第二部分115。其中,第一检测组件121包括第一加速度计1233及第一磁力计1253,第二检测组件122包括第二加速度计1235及第二磁力计1255。电子设备100的弯曲角度为柔性屏11的弯曲角度,电子设备100的弯曲角度为第一部分113与第二部分115之间的夹角。
本实施方式中,为了保证在柔性屏11折叠时,第一加速度计1233、第二加速度计1235、第一磁力计1253、第二磁力计1255随着柔性屏11的折叠而运动,第一加速度计1233、第二加速度计1235、第一磁力计1253、第二磁力计1255固定于柔性屏11内侧的不同位置处,以不遮挡屏幕,保证检测的准确性。
第一加速度计1233将检测到的第一部分113的加速度分量,及第二加速度计1235将检测到的第二部分115的加速度分量发送给处理器17。处理器17依据第一加速度计1233与第二加速度计1235检测到的加速度分量,判断第一加速度计1233与第二加速度计1235是否失效。所述失效为当电子设备100的折叠轴200与所述水平面垂直时,第一加速度计1233及第二加速度计1235检测到的加速度无法用以计算电子设备100的弯曲角度。进一步地,所述电子设备100的折叠轴200与所述水平面垂直时,第一加速度计1233与第二加速度计1235检测到的在Y轴的加速度分量趋于重力加速度,处理器17无法依据第一加速度计1233与第二加速度计1235检测到的加速度分量计算得出第一部分113与第二部分115之间的夹角,处理器17判定第一加速度计1233与第二加速度计1235失效。处理器17能够依据第一加速度计1233与第二加速度计1235检测到的加速度分量计算得出第一部分113与第二部分115之间的夹角,则处理器17判定第一加速度计1233与第二加速度计1235未失效。
在第一检测组件121的第一加速度计1233与第二检测组件122的第二加速度计1235失效的情况下,处理器17控制第一磁力计1253与第二磁力计1255检测磁感应强度。第一磁力计1253与第二磁力计1255将各自检测到的磁感应 强度分量发送给处理器17。处理器17依据第一磁力计1253与第二磁力计1255检测到的磁感应强度分量,计算第一部分113与第二部分115之间的夹角,从而获取柔性屏11的弯曲角度。
在处理器17判定第一加速度计1233与第二加速度计1235未失效的情况下,即所述电子设备100的折叠轴200不垂直所述水平面的情况下,处理器17依据所述第一加速度计1233检测到的X轴方向、Y轴方向和Z轴方向上的加速度分量以及第二加速度计1235检测到的X轴方向、Y轴方向和Z轴方向上的加速度分量计算柔性屏11的弯曲角度。
请参阅图3,设第一加速度计1233检测到的第一部分113的加速度为第一加速度a1,设第二加速度计1235检测到的第二部分115的加速度为第二加速度a2。其中,第一加速度a1在X轴方向上的加速度分量为x1,第一加速度a1在Y轴方向上的加速度分量为y1,第一加速度a1在Z轴方向上的加速度分量为z1,
Figure PCTCN2018101098-appb-000001
其中,第二加速度a2在X轴方向上的加速度分量为x2,第二加速度a2在Y轴方向上的加速度分量为y2,第二加速度a2在Z轴方向上的加速度分量为z2,
Figure PCTCN2018101098-appb-000002
则第一加速度计1233与第二加速度计1235之间的夹角即可表示柔性屏11的弯曲角度γ。
由于
Figure PCTCN2018101098-appb-000003
Figure PCTCN2018101098-appb-000004
Figure PCTCN2018101098-appb-000005
也即是,处理器17可以应用公式(1),计算柔性屏11的弯曲角度。
实际应用中,考虑到电子设备100通常处于静止状态,加速度近似为重力加速度g,即使电子设备100处于运动状态,其通常也是进行匀速运动,而不会进行较为剧烈的运动,则可以认为加速度仍为重力加速度g。因此为了减小计算量,处理器17无需计算每个加速度计的加速度,而默认加速度计的加速度为g即可。即在处理器17判定至少两个检测组件12的加速度计123未失效情况下,处理器17依据第一加速度计1233检测到的Z轴方向上的加速度分量 与第二加速度计1235检测到的Z轴方向上的加速度分量计算柔性屏11的弯曲角度。
因此,第一加速度计1233与第二加速度计1235只需将检测到的Z轴方向上的加速度分量发送给处理器17,处理器17依据第一加速度计1233与第二加速度计1235检测到的在Z轴方向上的加速度分量,则柔性屏11的弯曲角度γ可通过公式(2)求取。
γ=|arccos(z2/g)-arccos(z1/g)|     (2)。
然而,在折叠轴200与所述水平面垂直时,第一加速度与第二加速度在Y轴方向上的加速度分量的绝对值趋于重力加速度g,第一加速度与第二加速度在X与Z轴方向上的加速度分量的绝对值趋于零。换而言之,在折叠轴200与所述水平面垂直的情况下,处理器17无法依据第一加速度计1233与第二加速度计1235检测的加速度计算得出夹角γ,处理器17判定第一加速度计1233与第二加速度计1235失效。
处理器17将第一加速度计1233与第二加速度计1235检测的所述Y轴方向上的加速度分量的绝对值与预设阀值作比较。本实施方式中,所述预设阀值设为9.8。所述预设阀值为可以进行调整的参数。通常所述预设阀值略小于重力加速度g。
若所述第一加速度计1233与第二加速度计1235检测的所述Y轴方向上的加速度分量的绝对值均大于所述预设阀值,处理器17判定折叠轴200所述水平面垂直,即判定第一加速度计1233与第二加速度计1235失效。处理器17通过第一磁力计1253与第二磁力计1255检测到的磁感应强度分量计算柔性屏11的弯曲角度。
在处理器17判定所述第一加速度计1233及所述第二加速度计1235失效的情况下,设第一磁力计1253检测到第一磁感应强度为b1,其中,在X轴方向上的加速度分量为x3,在Y轴方向上的加速度分量为y3,在Z轴方向上的加速度分量为z3。第二磁力计1255检测到第二磁感应强度为b2,其中,在X轴方向上的加速度分量为x3,在Y轴方向上的加速度分量为y3,在Z轴方向上的加速度分量为z3。则第一磁力计1253与第二磁力计1255之间的夹角即可表示柔性屏11的弯曲角度γ:
Figure PCTCN2018101098-appb-000006
处理器17可以应用公式(3),计算折叠轴200与所述水平面垂直时的弯曲角度γ。
其中,处理器17用于进行计算,可以为电子设备100的中央处理器,或者也可以为电子设备100配置的Sensor Hub(传感器中枢),或者也可以为其他具备计算能力的控制单元,本实施例对此不做限定。
处理器17计算出该弯曲角度后,可以依据该柔性屏11当前的弯曲角度进行一些控制操作,如控制该柔性屏11的开启和关闭,或者控制该柔性屏11显示特定的内容等,本发明实施例对该控制操作不做限定。
在一实施方式中,第一磁力计1253及第二磁力计1255初始处于关闭状态,在处理器17判定第一加速度计1233及第二加速度计1235失效情况下时,处理器17控制启动第一磁力计1253及第二磁力计1255启动以检测磁感应强度。
本实施例提供了一种计算电子设备100弯曲角度的方式,通过在电子设备100的不同位置设置检测组件12,依据检测组件12的加速度计123检测的加速度分量或依据检测组件12的磁力计125检测的磁感应强度分量计算弯曲角度,有利于简化电子设备100的结构,以及减小电子设备100的厚度。
此外,在加速度计123未失效的情况下,由至少两个检测组件12的加速度计123检测加速度,由处理器17依据检测到的加速度计算柔性屏11的弯曲角度,以便依据该弯曲程度进行控制操作,操作简便;在加速度计123未失效的情况下,由至少检测组件12的磁力计125检测磁感应强度,从而方便地确定柔性屏11的弯曲程度。换而言之,电子设备100以加速度计123作为主要检测手段,而磁力计125作为加速度计123失效时的辅助手段,来获取柔性屏11的弯曲角度。
在一实施方式中,处理器17还用于在计算出柔性屏11的弯曲角度后,依据弯曲角度控制调节柔性屏11的色温、亮度及色彩等,以提供最佳显示效果,提高使用者的使用体验。
在一实施方式中,处理器17还用于依据弯曲角度控制调节电子设备100作业模式,例如,当弯曲角度为0度时,即电子设备100的第一部分113与第 二部分115折叠于一起时,处理器17控制电子设备100由第一模式切换为第二模式,所述第一模式为正常工作模式,所述第二模式为休眠模式。可以理解,所述第一模式不限定正常工作模式,所述第二模式不限定休眠模式,可以根据需要进行设置。
在另一实施例中,当柔性屏11发生弯曲时,所述至少两个检测组件12的加速度计123在指定方向上检测到的加速度分量也不同,则依据检测到的加速度分量可以计算出柔性屏11的弯曲角度。类似地,所述至少两个检测组件12的磁力计125在指定方向上检测到的磁感应强度分量也不同,则依据检测到的磁感应强度分量可以计算出柔性屏11的弯曲角度。
因此,至少两个检测组件12的加速度计123检测柔性屏11在任一个或多个指定方向上的加速度分量,处理器17依据至少两个检测组件12的加速度计123检测到的加速度分量,计算柔性屏11的弯曲角度。至少两个检测组件12的磁力计125检测柔性屏11在任一个或多个指定方向上的磁感应强度分量,处理器17依据至少两个磁力计125检测到的磁感应强度分量,计算柔性屏11的弯曲角度。
上述示例仅是以电子设备100包括两个检测组件12的情况为例,实际上,电子设备10包括两个以上的检测组件12时,计算弯曲角度的方式与此类似,例如,处理器17计算电子设备100的每相邻两部分的夹角,并作平均值计算。
应用过程中,处理器17可以获取到在不同时刻的多个弯曲角度,则依据获取到的弯曲角度的变化情况可以计算该柔性屏的弯曲速度。
需要说明的是:上述实施例提供的电子设备100,仅以上述各功能模块的划分进行举例说明,实际应用中,可以依据需要而将上述功能分配由不同的功能模块完成,即将电子设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的电子设备与弯曲角度计算方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
可以理解,电子设备100还可以包括其它必要或非必要结构或模块,例如以下一个或多个组件:处理组件、存储器、传感器组件、通信组件、电源组件、多媒体组件、音频组件、输入/输出(I/O)的接口。所述处理组件通常控制电子设备100的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操 作相关联的操作。所述处理组件可以包括一个或多个处理器来执行指令,以完成上述的方法的全部或部分步骤。所述存储器被配置为存储各种类型的数据以支持在电子设备100的操作。这些数据的示例包括用于在电子设备100上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。所述存储器可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。所述通信组件被配置为便于电子设备100和其他设备之间有线或无线方式的通信。电子设备10可以接入基于通信标准的无线网络,如WiFi,2G、3G、4G、5G,或它们的组合。为节省篇幅,对于传感器组件、电源组件等结构或功能模块,在此不作赘述。
请参阅图4,本发明实施方式还提供一种弯曲角度计算方法,至少两个检测组件12设于电子设备100的不同部分上,每个检测组件12包括一个加速度计123及一个磁力计125。所述弯曲角度计算方法包括以下步骤:
步骤401:获取所述至少两个检测组件12的加速度计123检测到的加速度或所述至少两个检测组件12的磁力计125检测到的磁感应强度。
步骤403:依据所述至少两个检测组件12的加速度计123检测到的加速度或所述至少两个检测组件12的磁力计125检测到的磁感应强度计算所述电子设备100的弯曲角度。
进一步地,至少两个检测组件12包括第一检测组件121及第二检测组件122,第一检测组件121包括第一加速度计1233及第一磁力计1253,第二检测组件122包括第二加速度计1235及第二磁力计1255,电子设备100具折叠轴200,电子设备100还包括第一部分113及第二部分115,第一部分113与第二部分115能够相对折叠轴200转动,第一加速度计1233与第一磁力计1253设于第一部分113,第二加速度计1235与第二磁力计1255设于第二部分115。本实施方式中,电子设备100包括柔性屏11,柔性屏11包括第一部分113及第二部分115。可以理解,电子设备100可以为其他折叠式电子设备,例如笔记本电脑。
步骤401,即所述获取所述至少两个检测组件12的加速度计123检测到的加速度或所述至少两个检测组件12的磁力计125检测到的磁感应强度,包括:获取所述第一加速度计1233及所述第二加速度计1235检测到的加速度,或获取所述第一磁力计1253与所述第二磁力计1255检测到的磁感应强度。
步骤403,即所述依据所述至少两个检测组件12的加速度计123检测到的加速度或所述至少两个检测组件12的磁力计125检测到的磁感应强度计算所述电子设备100的弯曲角度,包括:依据第一加速度计1233及第二加速度计1235检测到的加速度,或依据第一磁力计1253与第二磁力计1255检测到的磁感应强度,计算电子设备100的弯曲角度。
步骤403,具体包括:依据第一加速度计1233与第二加速度计1235检测到的加速度判断第一加速度计1233与第二加速度计1235是否失效,所述失效为电子设备100的折叠轴200与水平面相互垂直,若第一加速度计1233与第二加速度计1235未失效,则依据第一加速度计1233与第二加速度计1235检测到的加速度计算电子设备100的弯曲角度;若第一加速度计1233与第二加速度计1235失效,依据第一磁力计1253与第二磁力计1255检测到的磁感应强度计算电子设备100的弯曲角度。
在一实施方式中,所述获取第一加速度计1233及第二加速度计1235检测到的加速度,包括:通过第一加速度计1233与第二加速度计1235检测电子设备100在指定方向上的加速度分量,所述指定方向包括X轴方向、Y轴方向和Z轴方向,所述X轴方向和所述Z轴方向均垂直于折叠轴200,所述Y轴方向平行于折叠轴200,所述依据所述第一加速度计1233与第二加速度计1235检测到的加速度判断第一加速度计1233与第二加速度计1235是否失效包括:比较第一加速度计1233与第二加速度计1235检测的所述Y轴方向上的加速度分量的绝对值与预设阀值,若第一加速度计1233与第二加速度计1235检测到的各个在所述Y轴方向上的加速度分量的绝对值均大于所述预设阀值,则判定折叠轴200与所述水平面相互垂直,从而判定第一加速度计1233与第二加速度计1235失效。
在一实施方式中,所述若第一加速度计1233与第二加速度计1235未失效,则依据第一加速度计1233与第二加速度1235计检测到的加速度计算电子设备 100的弯曲角度包括:依据第一加速度计1233与第二加速度计1235检测到的所述加速度分量,应用以下公式,计算电子设备100的弯曲角度:
Figure PCTCN2018101098-appb-000007
其中,γ表示电子设备100的弯曲角度,x1、y1和z1分别表示第一加速度计1233检测到的X轴方向、Y轴方向和Z轴方向的加速度分量,x2、y2和z2分别表示第二加速度计1235检测到的X轴方向、Y轴方向和Z轴方向的加速度分量。
在一实施方式中,所述若第一加速度计1233与第二加速度计1235未失效,则依据第一加速度计1233与第二加速度计1235检测到的加速度计算电子设备100的弯曲角度包括:依据第一加速度计1233与第二加速度计1235检测到的所述加速度分量,应用以下公式,计算电子设备100的弯曲角度:
γ=|arccos(z2/g)-arccos(z1/g)|;
其中,γ表示电子设备100的弯曲角度,z1表示第一加速度计1233检测到的Z轴方向的加速度分量,z2表示第二加速度计1235检测到的Z轴方向的加速度分量,g为重力加速度。
在一实施方式中,所述若第一加速度计1233与第二加速度计1235失效,依据第一磁力计1253与第二磁力计1255检测到的磁感应强度计算电子设备100的弯曲角度包括:第一磁力计1253与第二磁力计1255用于检测在指定方向上的磁感应强度分量,所述指定方向包括X轴方向、Y轴方向和Z轴方向,在判定第一加速度计1233与第二加速度计1235失效的情况下,依据第一磁力计1253在X轴方向、Y轴方向和Z轴方向的磁感应强度分量与第二磁力计1255在X轴方向、Y轴方向和Z轴方向检测到的磁感应强度分量,计算电子设备100的弯曲角度,应用以下公式,计算电子设备100的弯曲角度:
Figure PCTCN2018101098-appb-000008
其中,γ表示电子设备100的弯曲角度,x3、y3和z3分别表示第一磁力计1253检测到的X轴方向、Y轴方向和Z轴方向的磁感应强度分量,x4、y4和z4分别表示第二磁力计1255检测到的X轴方向、Y轴方向和Z轴方向的 磁感应强度分量。
在一些实施例中,步骤403具体包括:通过至少两个检测组件12的加速度计123检测电子设备100的加速度;依据检测到的加速度判断所述至少两个检测组件12的加速度计123是否失效;若所述至少两个检测组件12的加速度计123未失效,则依据所述至少两个检测组件12的加速度计123检测到的加速度计算电子设备100的弯曲角度;若所述至少两个检测组件12的加速度计123失效,依据检测到的磁感应强度计算电子设备100的弯曲角度。
请参阅图5,为本发明另一实施方式中提供的应用于电子设备100的一种弯曲角度计算方法,电子设备100具折叠轴200,电子设备100包括第一部分113及第二部分115,第一部分113与第二部分115能够相对折叠轴200转动,第一检测组件121设于电子设备100的第一部分113,第二检测组件122设于第二部分115,第一检测组件121包括第一加速度计1233及第一磁力计1253,第二检测组件122包括第二加速度计1235及第二磁力计1255。本实施方式中,所述弯曲角度计算方法应用于电子设备上。所述弯曲角度计算方法包括:
步骤501,获取第一加速度计1233与第二加速度计1235检测的电子设备100的加速度。
具体的,所述第一加速度计1233与第二加速度计1235检测的电子设备100的加速度,包括:通过第一加速度计1233与第二加速度计1235检测电子设备100在指定方向上的加速度分量,所述指定方向包括X轴方向、Y轴方向和Z轴方向,所述X轴方向和所述Z轴方向均垂直于折叠轴200,所述Y轴方向平行于折叠轴200。
步骤502,依据检测到的加速度判断第一加速度计1233及第二加速度计1235是否失效,若为否,即第一加速度计1233及第二加速度计1235未失效的情况则执行步骤503;若为是,即第一加速度计1233及第二加速度计1235失效的情况则执行步骤504。所述失效为电子设备100的折叠轴200与水平面相互垂直。
具体的,所述依据检测到的加速度判断第一加速度计1233及第二加速度计1235是否失效,包括:比较第一加速度计1233与第二加速度计1235检测的所述Y轴方向上的加速度分量的绝对值与预设阀值,若第一加速度计1233 与第二加速度计1235检测到的各个在所述Y轴方向上的加速度分量的绝对值均大于所述预设阀值,则判定折叠轴200与所述水平面相互垂直,从而判定第一加速度计1233与第二加速度计1235失效。
步骤503,依据第一加速度计1233及第二加速度计1235检测到的加速度分量计算电子设备100的弯曲角度。
依据第一加速度计1233与第二加速度计1235检测到的所述加速度分量,应用以下公式,计算电子设备100的弯曲角度:
Figure PCTCN2018101098-appb-000009
其中,γ表示电子设备100的弯曲角度,x1、y1和z1分别表示第一加速度1233计检测到的X轴方向、Y轴方向和Z轴方向的加速度分量,x2、y2和z2分别表示第二加速度计1235检测到的X轴方向、Y轴方向和Z轴方向的加速度分量。
在一实施方式中,依据第一加速度计1233与第二加速度计检测到的所述加速度分量,应用以下公式,计算所述电子设备的弯曲角度:
γ=|arccos(z2/g)-arccos(z1/g)|;
其中,γ表示所述电子设备的弯曲角度,z1表示第一加速度计1233检测到的Z轴方向的加速度分量,z2表示第二加速度计1235检测到的Z轴方向的加速度分量。
步骤504,启动第一磁力计1253与第二磁力计1255检测磁感应强度。
步骤505,依据第一磁力计1253与第二磁力计1255检测到的磁感应强度计算电子设备100的弯曲角度。
具体的,步骤505,所述依据第一磁力计1253与第二磁力计1255检测到的磁感应强度计算电子设备100的弯曲角度,包括:第一磁力计1253与第二磁力计1255用于检测在指定方向上的磁感应强度分量,所述指定方向包括X轴方向、Y轴方向和Z轴方向,在判定第一加速度计1233与第二加速度计1235情况下,依据第一磁力计1253与第二磁力计1255检测到的所述磁感应强度分量,应用以下公式,计算电子设备100的弯曲角度:
Figure PCTCN2018101098-appb-000010
其中,γ表示电子设备100的弯曲角度,x3、y3和z3分别表示第一磁力计1253检测到的X轴方向、Y轴方向和Z轴方向的磁感应强度分量,x4、y4和z4分别表示第二磁力计1255检测到的X轴方向、Y轴方向和Z轴方向的磁感应强度分量。
若第一磁力计1253及第二磁力计1255在计算前就已在检测磁感应强度,可以省略步骤504。
其中,图4中的步骤403与图5中的步骤501-505有一定的相关性,其中的相关步骤可相互参照。
以上所述是本发明的优选实施例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (20)

  1. 一种电子设备,其特征在于,所述电子设备包括至少两个检测组件及处理器,所述至少两个检测组件设于所述电子设备上能够相对弯曲的不同部分,每个检测组件包括一个加速度计及一个磁力计,所述加速度计用于检测所述电子设备的加速度,所述磁力计用于检测磁感应强度,所述处理器用于根据所述至少两个检测组件的所述加速度计检测到的加速度或所述至少两个检测组件的所述磁力计检测的磁感应强度计算所述电子设备的弯曲角度。
  2. 如权利要求1所述的电子设备,其特征在于,所述至少两个检测组件包括第一检测组件及第二检测组件,所述第一检测组件包括第一加速度计及第一磁力计,所述第二检测组件包括第二加速度计及第二磁力计,所述电子设备具折叠轴,所述电子设备还包括第一部分及第二部分,所述第一部分与所述第二部分能够相对所述折叠轴转动,所述第一加速度计与所述第一磁力计设于所述第一部分,所述第二加速度计与所述第二磁力计设于所述第二部分,所述弯曲角度为所述第一部分与所述第二部分之间的夹角。
  3. 如权利要求2所述的电子设备,其特征在于,所述“所述处理器用于根据所述至少两个检测组件的所述加速度计检测到的加速度或所述至少两个检测组件的所述磁力计检测的磁感应强度计算所述电子设备的弯曲角度”,包括:
    所述处理器检测所述第一加速度计及所述第二加速度计是否失效,所述失效为当所述电子设备的折叠轴与水平面相互垂直时,所述第一加速度计及所述第二加速度计检测到的加速度无法用以计算所述电子设备的弯曲角度;
    若所述第一加速度计及所述第二加速度计未失效,则所述处理器依据所述第一加速度计及所述第二加速度计检测到的加速度计算所述电子设备的弯曲角度;
    若所述第一加速度计及所述第二加速度计失效,则所述处理器依据所述第一磁力计及所述第二磁力计检测到的磁感应强度计算所述电子设备的弯曲角度。
  4. 如权利要求3所述的电子设备,其特征在于,所述第一加速度计及所 述第二加速度计用于检测所述电子设备在指定方向上的加速度分量,所述指定方向包括X轴方向、Y轴方向和Z轴方向,所述X轴方向和所述Z轴方向均垂直于所述折叠轴,所述Y轴方向平行于所述折叠轴;所述“所述处理器检测所述第一加速度计及所述第二加速度计是否失效”,包括:
    所述处理器将所述第一加速度计与所述第二加速度计检测的所述Y轴方向上的加速度分量的绝对值与预设阀值进行比较,若所述第一加速度计与所述第二加速度计检测到的所述Y轴方向上的加速度分量的绝对值均大于所述预设阀值,所述处理器判定所述折叠轴与水平面垂直,从而判定所述第一加速度计与第二加速度计失效。
  5. 如权利要求4所述的电子设备,其特征在于,在所述处理器判定所述第一加速度计及所述第二加速度计未失效的情况下,所述处理器依据所述第一加速度计检测到的X轴方向、Y轴方向和Z轴方向上的加速度分量以及所述第二加速度计检测到的X轴方向、Y轴方向和Z轴方向上的加速度分量计算所述电子设备的弯曲角度。
  6. 如权利要求5所述的电子设备,其特征在于,所述处理器应用以下公式,计算所述电子设备的弯曲角度:
    Figure PCTCN2018101098-appb-100001
    其中,γ表示所述电子设备的弯曲角度,x1、y1和z1分别表示该第一加速度计检测到的X轴方向、Y轴方向和Z轴方向的加速度分量,x2、y2和z2分别表示该第二加速度计检测到的X轴方向、Y轴方向和Z轴方向的加速度分量。
  7. 如权利要求4所述的电子设备,其特征在于,在所述处理器判定所述第一加速度计及所述第二加速度计未失效情况下,所述处理器依据所述第一加速度计检测到的Z轴方向上的加速度分量与所述第二加速度计检测到的Z轴方向上的加速度分量计算所述电子设备的弯曲角度。
  8. 如权利要求7所述的电子设备,其特征在于,所述处理器应用以下公式,计算所述电子设备的弯曲角度:
    γ=|arccos(z2/g)-arccos(z1/g)|;
    其中,γ表示所述电子设备的弯曲角度,z1表示该第一加速度计检测到的Z轴方向的加速度分量,z2表示该第二加速度计检测到的Z轴方向的加速度分量,g表示重力加速度。
  9. 如权利要求4所述的电子设备,其特征在于,所述第一磁力计与所述第二磁力计用于检测所述电子设备所处位置的磁场在指定方向上的磁感应强度分量,所述指定方向包括X轴方向、Y轴方向和Z轴方向,在所述处理器判定所述折叠轴与所述水平面垂直的情况下,所述处理器依据所述第一磁力计检测到的X轴方向、Y轴方向和Z轴方向上的磁感应强度分量以及与所述第二磁力计检测到的X轴方向、Y轴方向和Z轴方向上的所述磁感应强度分量计算所述电子设备的弯曲角度。
  10. 如权利要求9所述的电子设备,其特征在于,所述处理器应用以下公式,计算所述电子设备的弯曲角度:
    Figure PCTCN2018101098-appb-100002
    其中,γ表示所述电子设备的弯曲角度,x3、y3和z3分别表示该第一磁力计检测到的X轴方向、Y轴方向和Z轴方向的磁感应强度分量,x4、y4和z4分别表示该第二磁力计检测到的X轴方向、Y轴方向和Z轴方向的磁感应强度分量。
  11. 如权利要求1所述的电子设备,其特征在于,所述至少两个检测组件的磁力计初始处于关闭状态,在所述处理器判定所述至少两个检测组件的加速度计失效情况下时,所述处理器控制启动所述至少两个检测组件的磁力计以检测磁感应强度。
  12. 如权利要求1所述的电子设备,其特征在于,所述处理器还用于依据计算得到的弯曲角度控制调节所述电子设备的作业模式。
  13. 如权利要求1所述的电子设备,其特征在于,所述电子设备包括柔性屏,所述至少两个检测组件设于所述柔性屏的不同部分,所述电子设备的弯曲角度为所述柔性屏的弯曲角度。
  14. 一种弯曲角度计算方法,其特征在于,至少两个检测组件设于电子设备上能够相对弯曲的不同部分,每个检测组件包括一个加速度计及一个磁力 计,所述弯曲角度计算方法包括:
    获取所述至少两个检测组件的加速度计检测到的加速度或所述至少两个检测组件的磁力计检测到的磁感应强度;以及
    依据所述至少两个检测组件的加速度计检测到的加速度或所述至少两个检测组件的磁力计检测到的磁感应强度计算所述电子设备的弯曲角度。
  15. 如权利要求14所述的方法,其特征在于,所述至少两个检测组件包括第一检测组件及第二检测组件,所述第一检测组件包括第一加速度计及第一磁力计,所述第二检测组件包括第二加速度计及第二磁力计,所述电子设备具折叠轴,所述电子设备还包括第一部分及第二部分,所述第一部分与所述第二部分能够相对所述折叠轴转动,所述第一加速度计与所述第一磁力计设于所述第一部分,所述第二加速度计与所述第二磁力计设于所述第二部分,
    所述“获取所述至少两个检测组件的加速度计检测到的加速度或所述至少两个检测组件的磁力计检测到的磁感应强度”,包括:获取所述第一加速度计及所述第二加速度计检测到的加速度,或获取所述第一磁力计与所述第二磁力计检测到的磁感应强度;
    所述“依据所述至少两个检测组件的加速度计检测到的加速度或所述至少两个检测组件的磁力计检测到的磁感应强度计算所述电子设备的弯曲角度”,包括:依据所述第一加速度计及所述第二加速度计检测到的加速度,或依据所述第一磁力计与所述第二磁力计检测到的磁感应强度,计算所述电子设备的弯曲角度。
  16. 如权利要求15所述的方法,其特征在于,所述“依据所述至少两个检测组件的加速度计检测到的加速度或所述至少两个检测组件的磁力计检测到的磁感应强度计算所述电子设备的弯曲角度”,包括:
    依据所述第一加速度计与所述第二加速度计检测到的加速度判断所述第一加速度计与所述第二加速度计是否失效,所述失效为当所述电子设备的折叠轴与水平面相互垂直时,所述第一加速度计及所述第二加速度计检测到的加速度无法用以计算所述电子设备的弯曲角度,
    若所述第一加速度计与所述第二加速度计未失效,则依据所述第一加速度计与所述第二加速度计检测到的加速度计算所述电子设备的弯曲角度;
    若所述第一加速度计与所述第二加速度计失效,依据所述第一磁力计与所述第二磁力计检测到的磁感应强度计算所述电子设备的弯曲角度。
  17. 如权利要求16所述的方法,其特征在于,所述“获取所述第一加速度计及所述第二加速度计检测到的加速度”包括:通过所述第一加速度计与所述第二加速度计检测所述电子设备在指定方向上的加速度分量,所述指定方向包括X轴方向、Y轴方向和Z轴方向,所述X轴方向和所述Z轴方向均垂直于所述折叠轴,所述Y轴方向平行于所述折叠轴,
    所述“依据所述第一加速度计与所述第二加速度计检测到的加速度判断所述第一加速度计与所述第二加速度计是否失效”包括:比较所述第一加速度计与所述第二加速度计检测的所述Y轴方向上的加速度分量的绝对值与预设阀值,若所述第一加速度计与所述第二加速度计检测到的各个在所述Y轴方向上的加速度分量的绝对值均大于所述预设阀值,则判定所述折叠轴与所述水平面相互垂直,从而判定所述第一加速度计与所述第二加速度计失效。
  18. 如权利要求17所述的方法,其特征在于,所述“若所述第一加速度计与所述第二加速度计未失效,则依据所述第一加速度计与所述第二加速度计检测到的加速度计算所述电子设备的弯曲角度”包括:依据所述第一加速度计与所述第二加速度计检测到的所述加速度分量,应用以下公式,计算所述电子设备的弯曲角度:
    Figure PCTCN2018101098-appb-100003
    其中,γ表示所述电子设备的弯曲角度,x1、y1和z1分别表示该第一加速度计检测到的X轴方向、Y轴方向和Z轴方向的加速度分量,x2、y2和z2分别表示该第二加速度计检测到的X轴方向、Y轴方向和Z轴方向的加速度分量。
  19. 如权要求17所述的方法,其特征在于,所述“若所述第一加速度计与所述第二加速度计未失效,则依据所述第一加速度计与所述第二加速度计检测到的加速度计算所述电子设备的弯曲角度”包括:依据所述第一加速度计与所述第二加速度计检测到的所述加速度分量,应用以下公式,计算所述电子设备的弯曲角度:
    Y=|arccos(z2/g)-arccos(z1/g)|;
    其中,Y表示该电子设备的弯曲角度,z1表示该第一加速度计检测到的Z轴方向的加速度分量,z2表示该第二加速度计检测到的Z轴方向的加速度分量,g为重力加速度。
  20. 如权利要求17所述的方法,其特征在于,所述“若所述第一加速度计与所述第二加速度计失效,依据所述第一磁力计与所述第二磁力计检测到的磁感应强度计算所述电子设备的弯曲角度”包括:所述第一磁力计与所述第二磁力计用于检测在指定方向上的磁感应强度分量,所述指定向包括X轴方向、Y轴方向和Z轴方向,在判定所述第一加速度计与所述第二加速度计失效的情况下,依据所述第一磁力计在X轴方向、Y轴方向和Z轴方向的磁感应强度分量与所述第二磁力计在X轴方向、Y轴方向和Z轴方向检测到的磁感应强度分量,计算所述电子设备的弯曲角度,应用以下公式,计算所述电子设备的弯曲角度:
    Figure PCTCN2018101098-appb-100004
    其中,γ表示所述电子设备的弯曲角度,x3、y3和z3分别表示该第一磁力计检测到的X轴方向、Y轴方向和Z轴方向的磁感应强度分量,x4、y4和z4分别表示该第二磁力计检测到的X轴方向、Y轴方向和Z轴方向的磁感应强度分量。
PCT/CN2018/101098 2018-08-17 2018-08-17 电子设备及弯曲角度计算方法 WO2020034201A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18930504.8A EP3839423A4 (en) 2018-08-17 2018-08-17 ELECTRONIC DEVICE AND METHOD FOR CALCULATING THE TILT ANGLE
PCT/CN2018/101098 WO2020034201A1 (zh) 2018-08-17 2018-08-17 电子设备及弯曲角度计算方法
CN201880094121.3A CN112639398A (zh) 2018-08-17 2018-08-17 电子设备及弯曲角度计算方法
US17/267,281 US20210310785A1 (en) 2018-08-17 2018-08-17 Electronic device and method for calculating bending angle thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/101098 WO2020034201A1 (zh) 2018-08-17 2018-08-17 电子设备及弯曲角度计算方法

Publications (1)

Publication Number Publication Date
WO2020034201A1 true WO2020034201A1 (zh) 2020-02-20

Family

ID=69524594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101098 WO2020034201A1 (zh) 2018-08-17 2018-08-17 电子设备及弯曲角度计算方法

Country Status (4)

Country Link
US (1) US20210310785A1 (zh)
EP (1) EP3839423A4 (zh)
CN (1) CN112639398A (zh)
WO (1) WO2020034201A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104685448A (zh) * 2012-07-30 2015-06-03 三星电子株式会社 柔性装置和用于控制其操作的方法
US20170016720A1 (en) * 2013-01-22 2017-01-19 Samsung Display Co., Ltd. Flexible display and method for measuring angle of the same
CN107656682A (zh) * 2016-07-26 2018-02-02 北京小米移动软件有限公司 移动终端及弯曲角度计算方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984327B (zh) * 2010-08-26 2014-02-26 中国人民解放军军事医学科学院卫生装备研究所 一种骨折模型复位检测装置及检测方法
KR102104588B1 (ko) * 2012-07-11 2020-04-24 삼성전자주식회사 플렉서블 디스플레이 장치 및 그 동작 방법
KR20140044227A (ko) * 2012-10-04 2014-04-14 삼성전자주식회사 플렉서블 디스플레이 장치 및 그의 제어 방법
KR102163740B1 (ko) * 2012-10-05 2020-10-12 삼성전자주식회사 플렉서블 디스플레이 장치 및 플렉서블 디스플레이 장치의 제어 방법
US20140297212A1 (en) * 2013-04-02 2014-10-02 Kionix, Inc. Systems and Methods for Compensating for a Misalignment Angle Between an Accelerometer and a Magnetometer
KR102243680B1 (ko) * 2014-04-07 2021-04-23 엘지전자 주식회사 투명 플렉서블 디스플레이 장치 및 그 장치의 제어 방법
KR101632008B1 (ko) * 2014-04-30 2016-07-01 엘지전자 주식회사 이동단말기 및 그 제어방법
EP3872599A1 (en) * 2014-05-23 2021-09-01 Samsung Electronics Co., Ltd. Foldable device and method of controlling the same
KR20150139214A (ko) * 2014-06-03 2015-12-11 삼성전자주식회사 이미지를 처리하기 위한 방법 및 장치
KR102423145B1 (ko) * 2016-04-12 2022-07-21 삼성전자주식회사 플렉서블 디바이스 및 플렉서블 디바이스의 동작 방법
CN112860018A (zh) * 2017-05-19 2021-05-28 伊英克公司 包含数字化及触控感测的可折叠电光显示器
EP3808063A4 (en) * 2018-09-11 2021-11-17 Samsung Electronics Co., Ltd. ELECTRONIC DEVICE AND SIGHT CAPTURE METHOD

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104685448A (zh) * 2012-07-30 2015-06-03 三星电子株式会社 柔性装置和用于控制其操作的方法
US20170016720A1 (en) * 2013-01-22 2017-01-19 Samsung Display Co., Ltd. Flexible display and method for measuring angle of the same
CN107656682A (zh) * 2016-07-26 2018-02-02 北京小米移动软件有限公司 移动终端及弯曲角度计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3839423A4 *

Also Published As

Publication number Publication date
US20210310785A1 (en) 2021-10-07
CN112639398A (zh) 2021-04-09
EP3839423A1 (en) 2021-06-23
EP3839423A4 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
KR102499110B1 (ko) 디스플레이 제어 방법 및 이를 사용하는 전자 장치
US20190108620A1 (en) Information processing apparatus, information processing method and computer program
TWI588682B (zh) 處理握持感測器之方法、通訊裝置及電腦可讀取儲存媒體
KR101598984B1 (ko) 휴대용 전자 디바이스의 스크린 배향을 관리하는 방법
US9348431B2 (en) Display device for controlling auto-rotation of content and method for controlling auto-rotation of content displayed on display device
WO2021043262A1 (zh) 一种具有折叠屏的设备的显示方法及折叠屏设备
KR102618376B1 (ko) 광학 이미지 안정화 기능을 제공하는 카메라 모듈 및 이를 포함하는 전자 장치
WO2020019504A1 (zh) 一种机器人屏幕解锁方法、装置、智能设备及存储介质
KR20150097260A (ko) 모션 센싱 방법 및 그 사용자 기기
CN110134744B (zh) 对地磁信息进行更新的方法、装置和系统
CN105718232A (zh) 一种任意角平面旋转显示方法及显示装置
KR20200122106A (ko) 화면의 빠른 전환을 수행하는 전자 장치 및 전자 장치의 동작 방법
KR20210064616A (ko) 전자 장치 및 폴더블 디스플레이를 제어 및 운영하는 방법
US11356607B2 (en) Electing camera modes for electronic devices having multiple display panels
CN114174954A (zh) 根据事件改变其形态的可折叠电子装置和改变可折叠电子装置形态的方法
CN110715597B (zh) 角度计算方法、装置、存储介质以及终端
US10706822B2 (en) Device configuration using orientation cues
CN108196701B (zh) 确定姿态的方法、装置及vr设备
WO2020034201A1 (zh) 电子设备及弯曲角度计算方法
US10554892B2 (en) Configuring image stabilization for still image generation
WO2023236663A9 (zh) 显示控制方法及装置
WO2018082183A1 (zh) 终端控制方法、保护壳及终端
US20140300640A1 (en) Method and apparatus for determining orientation relative to a user
EP3886408B1 (en) Display apparatus and control method thereof
US20220300234A1 (en) Manage Quickview Content for a Multi-Display Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018930504

Country of ref document: EP

Effective date: 20210317