WO2020034166A1 - 一种信号传输方法及装置、终端、网络设备 - Google Patents

一种信号传输方法及装置、终端、网络设备 Download PDF

Info

Publication number
WO2020034166A1
WO2020034166A1 PCT/CN2018/100900 CN2018100900W WO2020034166A1 WO 2020034166 A1 WO2020034166 A1 WO 2020034166A1 CN 2018100900 W CN2018100900 W CN 2018100900W WO 2020034166 A1 WO2020034166 A1 WO 2020034166A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission
resource
specific symbol
layer signaling
Prior art date
Application number
PCT/CN2018/100900
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201880095860.4A priority Critical patent/CN112470440A/zh
Priority to AU2018436541A priority patent/AU2018436541A1/en
Priority to KR1020217007765A priority patent/KR20210043657A/ko
Priority to EP18929858.1A priority patent/EP3823233B1/en
Priority to CN202110402610.4A priority patent/CN113207161B/zh
Priority to PCT/CN2018/100900 priority patent/WO2020034166A1/zh
Priority to JP2021507080A priority patent/JP2022502883A/ja
Priority to TW108129381A priority patent/TW202013920A/zh
Publication of WO2020034166A1 publication Critical patent/WO2020034166A1/zh
Priority to US17/169,279 priority patent/US11974306B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular, to a signal transmission method and device, a terminal, and a network device.
  • NR New Radio
  • URLLC Ultra Reliable Low Latency Communication
  • eMBB Enhance Mobile Broadband
  • a preemption indicator is introduced.
  • the preemption indicator is used to tell the terminal which resources are occupied by URLLC data.
  • the preemption indicator uses a bitmap to indicate the preemption of time-frequency domain resources. .
  • the preemption indication lags behind the occurrence of preemption. In order to reduce the signaling overhead, the frequency of sending the preemption indication can be lower.
  • the terminal stops the uplink transmission of eMBB data in time according to the stop transmission signal on the network side. To this end, the terminal needs to detect the stop transmission signal in time, and frequent detection of the stop transmission signal will necessarily bring the Increased power consumption and complexity.
  • the embodiments of the present application provide a signal transmission method and device, a terminal, and a network device.
  • the terminal determines a first transmission resource, and receives a first signal on the first transmission resource, where the first signal is used to instruct to stop uplink transmission.
  • the base station sends a first signal on the first transmission resource, and the first signal is used to instruct the terminal to stop uplink transmission.
  • a determining unit configured to determine a first transmission resource
  • the receiving unit is configured to receive a first signal on the first transmission resource, and the first signal is used to instruct to stop uplink transmission.
  • the sending unit is configured to send a first signal on the first transmission resource, and the first signal is used to instruct the terminal to stop uplink transmission.
  • the terminal provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned signal transmission method.
  • the network device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned signal transmission method.
  • the chip provided in the embodiment of the present application is used to implement the foregoing signal transmission method.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the foregoing signal transmission method.
  • the computer-readable storage medium provided in the embodiment of the present application is used to store a computer program, and the computer program causes a computer to execute the foregoing signal transmission method.
  • the computer program product provided in the embodiment of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the foregoing signal transmission method.
  • the computer program provided in the embodiment of the present application when run on a computer, causes the computer to execute the foregoing signal transmission method.
  • the terminal receives the first signal for instructing to stop uplink transmission on the determined first transmission resource, avoiding blind detection of the first signal by the terminal, and reducing the terminal caused by blind detection of the first signal Power and complexity.
  • FIG. 1 is a schematic diagram of a communication system architecture according to an embodiment of the present application.
  • FIG. 2 is a first schematic flowchart of a signal transmission method according to an embodiment of the present application
  • FIG. 3 is a second schematic flowchart of a signal transmission method according to an embodiment of the present application.
  • FIG. 4 (a) is a first schematic diagram for indicating resource preemption by using a sequence according to an embodiment of the present application
  • FIG. 4 (b) is a second schematic diagram for indicating resource preemption by using a sequence according to an embodiment of the present application.
  • FIG. 4 (c) is a third schematic diagram for indicating resource preemption through a sequence according to an embodiment of the present application.
  • FIG. 5 (a) is a first schematic diagram of a configuration of a first transmission resource provided by an embodiment of the present application.
  • FIG. 5 (b) is a second schematic diagram of a configuration of a first transmission resource provided by an embodiment of the present application.
  • FIG. 6 is a first schematic structural diagram of a signal transmission device according to an embodiment of the present application.
  • FIG. 7 is a second schematic diagram of the structure and composition of a signal transmission device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System for Mobile
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with the terminal 120 (or a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located within the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the network device may be a mobile switching center, relay station, access point, vehicle equipment, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in public land mobile networks (PLMN) that will evolve in the future.
  • PLMN public land mobile networks
  • the communication system 100 further includes at least one terminal 120 located within a coverage area of the network device 110.
  • terminal used herein includes, but is not limited to, connection via a wired line, such as via a Public Switched Telephone Network (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connection; And / or another data connection / network; and / or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and / or another terminal device configured to receive / transmit communication signals; and / or an Internet of Things (IoT) device.
  • PSTN Public Switched Telephone Network
  • DSL Digital Subscriber Line
  • WLAN wireless local area networks
  • DVB-H networks digital television networks
  • satellite networks satellite networks
  • AM-FM A broadcast transmitter AM-FM A broadcast transmitter
  • IoT Internet of Things
  • a terminal configured to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal”, or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communications systems (PCS) terminals that can combine cellular radiotelephones with data processing, facsimile, and data communications capabilities; can include radiotelephones, pagers, Internet / internal PDA with network access, web browser, notepad, calendar, and / or Global Positioning System (GPS) receiver; and conventional laptop and / or palm-type receivers or others including radiotelephone transceivers Electronic device.
  • PCS personal communications systems
  • GPS Global Positioning System
  • a terminal may refer to an access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user Device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (PDA), and wireless communication.
  • the terminals 120 may perform terminal direct connection (Device to Device, D2D) communication.
  • D2D Terminal to Device
  • the 5G system or the 5G network may also be referred to as a New Radio (NR) system or an NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminals within its coverage area. Embodiments of the present application This is not limited.
  • the communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • a communication device may include a network device 110 and a terminal 120 having a communication function, and the network device 110 and the terminal 120 may be specific devices described above, and are not described herein again; communication
  • the device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobile management entity, which are not limited in the embodiments of the present application.
  • FIG. 2 is a first flowchart of a signal transmission method according to an embodiment of the present application. As shown in FIG. 2, the signal transmission method includes the following steps:
  • Step 201 The terminal determines a first transmission resource, and receives a first signal on the first transmission resource, where the first signal is used to instruct to stop uplink transmission.
  • the terminal may be any device capable of communicating with a network, such as a mobile phone, a tablet computer, a vehicle-mounted terminal, and a notebook.
  • the first transmission resource is a certain transmission resource
  • the terminal receives the first signal on the certain transmission resource, thereby stopping the uplink transmission.
  • the terminal receives the first signal only on the determined transmission resource, the blind detection of the first signal by the terminal is avoided, and the complexity of the terminal is reduced.
  • the terminal receives the first signal sent by a base station on the first transmission resource.
  • the base station may be, but is not limited to, gNB in 5G.
  • the terminal before the terminal receives the first signal on the first transmission resource, the terminal receives a second signal, and the second signal is used to indicate the first transmission resource.
  • the first transmission resource includes at least one of the following: a time domain resource, a frequency domain resource, and a code domain resource.
  • the first transmission resource has a periodic characteristic in a time domain.
  • the first transmission resource satisfies a period characteristic in a time domain, and a period of the first transmission resource may be 0 or infinite or an arbitrary value.
  • the period of the first transmission resource is infinite, which means that the first transmission resource appears only once in the time domain, and the period of the first transmission resource is 0, which means that the first transmission resource always appears in the time domain.
  • the period of the first transmission resource is an arbitrary value, for example, T, which means that the time interval between two adjacent first transmission resources is T.
  • the first transmission resource is configurable on the network side, the flexibility of system configuration is improved, it is beneficial to flexibly configure the first transmission resource according to service requirements, and it is beneficial to the realization of inter-cell interference coordination.
  • the first transmission resource may be configured by high-level signaling; or, the first transmission resource may be configured by high-level signaling and controlled by a Media Access Control (MAC, Media Access Control) layer signaling or physical Layer signaling trigger / shutdown.
  • MAC Media Access Control
  • MAC Media Access Control
  • the terminal before the terminal receives the first signal on the first transmission resource, the terminal receives a third signal, and the third signal is used to indicate a transmission parameter of the first signal.
  • the transmission parameters of the first signal include at least one of the following: a transmission format, a sequence resource, and an encoding method.
  • the transmission format includes at least one of the following: a sequence, a modulation symbol, and a modulated sequence.
  • the sequence resource includes at least one of the following: a root sequence generation parameter, and a sequence cyclic shift.
  • the encoding method uses a polar code.
  • the network side provides the terminal with the transmission parameters of the first signal, and the terminal side receives the first signal according to the transmission parameters of the first signal, which reduces the complexity of signal detection.
  • the sequence in the transmission format is suitable for the transmission of the first signal of a small payload, and has the characteristics of low detection complexity and high detection accuracy.
  • the modulation symbol in the transmission format is suitable for transmission of a first signal of a moderate / large payload.
  • the modulated sequence in the transmission format is suitable for the transmission of the first signal of a small payload, and has the characteristics of low detection complexity and high detection accuracy.
  • the coding method uses a polar code, which can avoid adding a new coding method, thereby avoiding increasing the complexity of the terminal.
  • the first part of the transmission parameters of the first signal is configured by the network, and the second part of the transmission parameters of the first signal is agreed by the protocol; or, the transmission of the first signal is All parameters in the parameters are configured by the network; or, all parameters in the transmission parameters of the first signal are agreed by the protocol.
  • determining the transmission parameters of the first signal in a manner agreed by the protocol can reduce signaling overhead and reduce terminal implementation complexity.
  • the network configuration is used to determine the transmission parameters of the first signal (either partial transmission parameters or all transmission parameters), which can increase the flexibility of system design.
  • the terminal before the terminal receives the first signal on the first transmission resource, the terminal receives a fourth signal, and the fourth signal is used to indicate a time domain resource of the first signal. And the timing relationship between time domain resources that stop uplink transmission.
  • the fourth signal is used to indicate the time domain offset (Offset) of the time domain resource that stops uplink transmission relative to the time domain resource of the first signal. If the terminal receives the first signal at time t1, the terminal will t1 + Offset stops uplink transmission at any time.
  • Offset the time domain offset
  • the fourth signal is used to indicate that the time domain resource for stopping uplink transmission is the Nth candidate time domain resource after the first signal, where N is a positive integer.
  • the candidate time domain resource is capable of stopping uplink transmission. Time domain resources.
  • the payload of the fourth signal can be reduced.
  • the terminal before the terminal receives the first signal on the first transmission resource, the terminal receives a fifth signal, and the fifth signal is used to instruct to stop time-frequency resources or stop the uplink transmission.
  • the fifth signal is used to instruct to stop time-frequency resources or stop the uplink transmission.
  • the time-frequency resource for stopping uplink transmission is one of the following:
  • the entire system bandwidth of a specific symbol the entire bandwidth part (BWP) of a specific symbol, the entire system bandwidth starting from a specific symbol, the entire BWP starting from a specific symbol, part of the system bandwidth of a specific symbol, Partial BWP, partial system bandwidth starting from a specific symbol, and partial BWP starting from a specific symbol.
  • BWP bandwidth part
  • the specific symbol refers to a specific time-domain symbol, for example, an Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the time-frequency resource for stopping uplink transmission is the entire system bandwidth or a part of the system bandwidth corresponding to symbol 2.
  • the time-frequency resource that stops uplink transmission is the entire system bandwidth or a part of the system bandwidth starting from symbol 4.
  • the first transmission resource is further used to transmit a downlink signal other than the first signal.
  • the content of the first transmission resource transmission depends on the scheduling of the base station.
  • the second signal, the third signal, the fourth signal, and the fifth signal include at least one of the following: high-layer signaling, physical layer signaling, and MAC signaling. That is, the second signal, the third signal, the fourth signal, and the fifth signal may be high-layer signaling, or physical layer signaling, or MAC signaling, or any combination of these signalings.
  • the terminal receiving the first signal on the first transmission resource needs to satisfy at least one of the following conditions:
  • the terminal is capable of detecting the first signal
  • the terminal reports a capability of detecting the first signal.
  • FIG. 3 is a second flowchart of a signal transmission method according to an embodiment of the present application. As shown in FIG. 3, the signal transmission method includes the following steps:
  • Step 301 The base station sends a first signal on the first transmission resource, and the first signal is used to instruct the terminal to stop uplink transmission.
  • the base station may be, but is not limited to, a gNB in 5G.
  • the base station sends a first signal to a terminal on a first transmission resource.
  • the terminal may be any device capable of communicating with a network, such as a mobile phone, a tablet computer, a vehicle-mounted terminal, and a notebook.
  • the first transmission resource is a certain transmission resource
  • the base station sends a first signal on the certain transmission resource, so that the terminal stops uplink transmission based on the first signal.
  • the terminal receives the first signal only on the determined transmission resource, the blind detection of the first signal by the terminal is avoided, and the complexity of the terminal is reduced.
  • the base station before the base station sends the first signal on the first transmission resource, the base station sends a second signal, and the second signal is used to indicate the first transmission resource.
  • the first transmission resource includes at least one of the following: a time domain resource, a frequency domain resource, and a code domain resource.
  • the first transmission resource has a periodic characteristic in a time domain.
  • the first transmission resource satisfies a period characteristic in a time domain, and a period of the first transmission resource may be 0 or infinite or an arbitrary value.
  • the period of the first transmission resource is infinite, which means that the first transmission resource appears only once in the time domain, and the period of the first transmission resource is 0, which means that the first transmission resource always appears in the time domain.
  • the period of the first transmission resource is an arbitrary value, for example, T, which means that the time interval between two adjacent first transmission resources is T.
  • the first transmission resource is configurable on the network side, the flexibility of system configuration is improved, it is beneficial to flexibly configure the first transmission resource according to service requirements, and it is beneficial to the realization of inter-cell interference coordination.
  • the first transmission resource may be configured by high-level signaling; or, the first transmission resource may be configured by high-level signaling and triggered / closed by MAC layer signaling or physical layer signaling.
  • the base station before the base station sends the first signal on the first transmission resource, the base station sends a third signal, and the third signal is used to indicate a transmission parameter of the first signal.
  • the transmission parameters of the first signal include at least one of the following: a transmission format, a sequence resource, and an encoding method.
  • the transmission format includes at least one of the following: a sequence, a modulation symbol, and a modulated sequence.
  • the sequence resource includes at least one of the following: a root sequence generation parameter, and a sequence cyclic shift.
  • the encoding method uses a polar code.
  • the network side provides the terminal with the transmission parameters of the first signal, and the terminal side receives the first signal according to the transmission parameters of the first signal, which reduces the complexity of signal detection.
  • the sequence in the transmission format is suitable for the transmission of the first signal of the small payload, and has the characteristics of low detection complexity and high detection accuracy.
  • the modulation symbol in the transmission format is suitable for transmission of a first signal of a moderate / large payload.
  • the modulated sequence in the transmission format is suitable for the transmission of the first signal of a small payload, and has the characteristics of low detection complexity and high detection accuracy.
  • the encoding method uses a polar code, which can avoid adding a new encoding method, thereby avoiding increasing the complexity of the terminal.
  • the first part of the transmission parameters of the first signal is configured by the network, and the second part of the transmission parameters of the first signal is agreed by the protocol; or, the transmission of the first signal is All parameters in the parameters are configured by the network; or, all parameters in the transmission parameters of the first signal are agreed by the protocol.
  • determining the transmission parameters of the first signal in a manner agreed by the protocol can reduce signaling overhead and reduce terminal implementation complexity.
  • the network configuration is used to determine the transmission parameters of the first signal (either partial transmission parameters or all transmission parameters), which can increase the flexibility of system design.
  • the base station before the base station sends the first signal on the first transmission resource, the base station sends a fourth signal, and the fourth signal is used to indicate a time domain resource of the first signal. And the timing relationship between time domain resources that stop uplink transmission.
  • the fourth signal is used to indicate the time domain offset (Offset) of the time domain resource that stops uplink transmission relative to the time domain resource of the first signal. If the terminal receives the first signal at time t1, the terminal will t1 + Offset stops uplink transmission at any time.
  • Offset the time domain offset
  • the fourth signal is used to indicate that the time domain resource for stopping uplink transmission is the Nth candidate time domain resource after the first signal, where N is a positive integer.
  • the candidate time domain resource is capable of stopping uplink transmission. Time domain resources.
  • the payload of the fourth signal can be reduced.
  • the base station before the base station sends the first signal on the first transmission resource, the base station sends a fifth signal, where the fifth signal is used to instruct to stop time-frequency resources or stop the uplink transmission.
  • the fifth signal is used to instruct to stop time-frequency resources or stop the uplink transmission.
  • the time-frequency resource for stopping uplink transmission is one of the following:
  • the specific symbol refers to a specific time-domain symbol, such as an OFDM symbol.
  • the time-frequency resource for stopping uplink transmission is the entire system bandwidth or a part of the system bandwidth corresponding to symbol 2.
  • the time-frequency resource that stops uplink transmission is the entire system bandwidth or a part of the system bandwidth starting from symbol 4.
  • the first transmission resource is further used to transmit a downlink signal other than the first signal.
  • the content of the first transmission resource transmission depends on the scheduling of the base station.
  • the second signal, the third signal, the fourth signal, and the fifth signal include at least one of the following: high-layer signaling, physical layer signaling, and MAC signaling. That is, the second signal, the third signal, the fourth signal, and the fifth signal may be high-layer signaling, or physical layer signaling, or MAC signaling, or any combination of these signalings.
  • the terminal determines a first transmission resource and receives a first signal on the first transmission resource, where the first signal uses a first sequence, and the first sequence is used to instruct to stop uplink transmission.
  • the first sequence may be an existing sequence of 5GNR, such as a ZC sequence, a random sequence, or an orthogonal sequence.
  • the ZC sequence is a preferred sequence.
  • the sequence generation method is the same as that in the 5G NR protocol. Further, the generation of the root sequence is related to a cell ID, a UE packet ID, or a high-level configuration value.
  • the cyclic shift value is determined by a protocol or configured by a high layer (preferably a high layer configuration).
  • the base station configures u, v and the cyclic shift value a required by the root sequence of the ZC sequence through high-level signaling.
  • the terminal detects the configured sequence on the determined transmission resource (that is, the first transmission resource). If detected, the uplink transmission is stopped. Stop uplink transmission mapping on specific time-frequency resources.
  • the starting point of the time domain resource is determined by a timing relationship between a pre-configured sequence and a starting point (a starting point at which uplink transmission is stopped), and the timing relationship between the pre-configured sequence and the starting point may be a protocol agreement or high-level signaling. Configuration.
  • the length of the time domain resource is agreed by high-level signaling or protocol, such as 2 symbols. The agreed value of the protocol can also be related to the subcarrier interval.
  • the time domain resource length is 2 symbols
  • the subcarrier interval is 30Khz
  • the time domain resource length is 4 symbols.
  • the protocol can also stipulate that the length of the time domain resource is related to the sequence sending cycle. For example, the length of the time domain resource is equal to the sequence sending cycle. Both are 2 symbols, and any symbol can be indicated.
  • the frequency domain resources are agreed by the protocol, for example, the entire bandwidth part (BWP, Band Width Part), or n physical resource blocks (PRB), or 1 / N PRB, or n1-n2PRB.
  • this example uses a set of sequences to indicate the stop of uplink transmission.
  • a set of sequences respectively corresponds to different time-frequency resources, or time-domain resources, or frequency-domain resources. Sequences are used to distinguish resources in one dimension (such as the frequency domain dimension or time domain dimension), and resources in the other dimension (such as the time domain dimension or the frequency domain dimension) are adopted in a high-level configuration or protocol.
  • the frequency domain resources are sub-band or 1 / N BWP as the granularity.
  • Time domain resources are in symbols.
  • the subcarrier interval is different, and the number of symbols corresponding to the basic unit of the time domain resource is different.
  • the terminal when the terminal detects the sequence S1, it stops uplink transmission in the time-frequency domain corresponding to S1. Further, if some resources of a TB are in the time-frequency domain corresponding to S1, all transmissions of the TB are suspended, or transmissions after S1 corresponding to the start of the time domain are suspended.
  • Application example 3 indication of stopping uplink transmission / indication of stopping uplink transmission resources based on modulation symbols
  • DCI Downlink Control Information
  • group DCI common DCI
  • Method 1 When a modulation symbol is used to indicate a resource that stops uplink transmission, before the terminal receives the first signal,
  • mapping relationship between DCI signaling and resources can be configured through high-level signaling, as shown in Table 1:
  • Time-frequency domain resources 00 Seize the first resource in the resource set 01 Seize the second resource in the resource set 10 Seize the third resource in the resource set 11 Seize the fourth resource in the resource set
  • the DCI includes at least time-frequency resource indication information, similar to an uplink grant resource (UL grant) / downlink grant resource (DL grant) scheduling indication in 5G NR.
  • UL grant uplink grant resource
  • DL grant downlink grant resource
  • Method 1 The terminal receives high-level signaling, and indicates the determined first transmission resource. Referring to FIG. 5 (a) and FIG. 5 (b), it includes at least one of the following information: time period, time domain starting point, time of signaling Domain width, frequency domain resources.
  • Method 2 The terminal receives high-level signaling, which indicates the area detected by the preemption indicator.
  • the aggregation level is 8.
  • Application example 5 Timing relationship between the time domain resource of the first signal and the time domain resource that stops uplink transmission
  • the timing relationship between the time domain resources of the first signal and the time domain resources that stop uplink transmission is configured by a high-level layer. This configuration mainly considers the base station scheduling and the processing time for the terminal to prepare data / stop the uplink transmission. For example, if the base station refers to the terminal processing capability K2, the time interval between the time domain resource of the first signal and the time domain resource that stops uplink transmission needs to be greater than K2.
  • FIG. 6 is a first schematic structural diagram of a signal transmission device according to an embodiment of the present application. As shown in FIG. 6, the signal transmission device includes:
  • a determining unit 601, configured to determine a first transmission resource
  • the receiving unit 602 is configured to receive a first signal on the first transmission resource, where the first signal is used to instruct to stop uplink transmission.
  • the receiving unit 602 before the receiving unit 602 receives the first signal on the first transmission resource, the receiving unit 602 receives a second signal, and the second signal is used to indicate the first transmission. Resources.
  • the first transmission resource includes at least one of the following: a time domain resource, a frequency domain resource, and a code domain resource.
  • the first transmission resource has periodic characteristics in the time domain.
  • the second signal includes at least one of the following: high-layer signaling, physical layer signaling, and MAC signaling.
  • the receiving unit 602 before the receiving unit 602 receives the first signal on the first transmission resource, the receiving unit 602 receives a third signal, and the third signal is used to indicate the first signal. Transmission parameters.
  • the transmission parameters of the first signal include at least one of the following: a transmission format, a sequence resource, and an encoding method.
  • the transmission format includes at least one of the following: a sequence, a modulation symbol, and a modulated sequence.
  • the sequence resource includes at least one of the following: a root sequence generation parameter, and a sequence cyclic shift.
  • the encoding method uses a polar code.
  • a first part of the transmission parameters of the first signal is configured by the network, and a second part of the transmission parameters of the first signal is agreed by the protocol; or,
  • All parameters in the transmission parameters of the first signal are configured by the network.
  • the third signal includes at least one of the following: high-layer signaling, physical layer signaling, and MAC signaling.
  • the receiving unit 602 before the receiving unit 602 receives the first signal on the first transmission resource, the receiving unit 602 receives a fourth signal, and the fourth signal is used to indicate the first signal.
  • the fourth signal includes at least one of the following: high-layer signaling, physical layer signaling, and MAC signaling.
  • the receiving unit 602 before the receiving unit 602 receives the first signal on the first transmission resource, the receiving unit 602 receives a fifth signal, and the fifth signal is used to indicate when the uplink transmission is stopped. Frequency resources or a set of time-frequency resources that stop uplink transmission.
  • the fifth signal includes at least one of the following: high-layer signaling, physical layer signaling, and MAC signaling.
  • the time-frequency resource for stopping uplink transmission is one of the following:
  • the first transmission resource is further used to transmit a downlink signal other than the first signal.
  • the receiving unit 602 needs to satisfy at least one of the following conditions to receive the first signal on the first transmission resource:
  • the terminal is capable of detecting the first signal
  • the terminal reports the ability to detect the first signal.
  • FIG. 7 is a second schematic diagram of the structure and composition of a signal transmission device according to an embodiment of the present application. As shown in FIG. 7, the signal transmission device includes:
  • the sending unit 701 is configured to send a first signal on a first transmission resource, where the first signal is used to instruct a terminal to stop uplink transmission.
  • the sending unit 701 before the sending unit 701 sends the first signal on the first transmission resource, the sending unit 701 sends a second signal, and the second signal is used to indicate the first transmission. Resources.
  • the first transmission resource includes at least one of the following: a time domain resource, a frequency domain resource, and a code domain resource.
  • the first transmission resource has periodic characteristics in the time domain.
  • the second signal includes at least one of the following: high-layer signaling, physical layer signaling, and MAC signaling.
  • the sending unit 701 before the sending unit 701 sends the first signal on the first transmission resource, the sending unit 701 sends a third signal, and the third signal is used to indicate the first signal. Transmission parameters.
  • the transmission parameters of the first signal include at least one of the following: a transmission format, a sequence resource, and an encoding method.
  • the transmission format includes at least one of the following: a sequence, a modulation symbol, and a modulated sequence.
  • the sequence resource includes at least one of the following: a root sequence generation parameter, and a sequence cyclic shift.
  • the encoding method uses a polar code.
  • a first part of the transmission parameters of the first signal is configured by the network, and a second part of the transmission parameters of the first signal is agreed by the protocol; or,
  • All parameters in the transmission parameters of the first signal are configured by the network.
  • the third signal includes at least one of the following: high-layer signaling, physical layer signaling, and MAC signaling.
  • the sending unit 701 before the sending unit 701 sends the first signal on the first transmission resource, the sending unit 701 sends a fourth signal, and the fourth signal is used to indicate the first signal.
  • the fourth signal includes at least one of the following: high-layer signaling, physical layer signaling, and MAC signaling.
  • the sending unit 701 before the sending unit 701 sends the first signal on the first transmission resource, the sending unit 701 sends a fifth signal, where the fifth signal is used to indicate when the uplink transmission is stopped. Frequency resources or a set of time-frequency resources that stop uplink transmission.
  • the fifth signal includes at least one of the following: high-layer signaling, physical layer signaling, and MAC signaling.
  • the time-frequency resource for stopping uplink transmission is one of the following:
  • the first transmission resource is further used to transmit a downlink signal other than the first signal.
  • FIG. 8 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device may be a terminal or a network device (such as a base station).
  • the communication device 600 shown in FIG. 8 includes a processor 610, and the processor 610 may call and run a computer program from a memory to implement the embodiment in this application. Methods.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device according to the embodiment of the present application, and the communication device 600 may implement a corresponding process implemented by the network device in each method of the embodiment of the present application. For brevity, details are not described herein again. .
  • the communication device 600 may specifically be a mobile terminal / terminal of the embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the mobile terminal / terminal in each method of the embodiment of the present application. For simplicity, in This will not be repeated here.
  • FIG. 9 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 9 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips. Specifically, the processor 710 may obtain information or data sent by the other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 may control the output interface 740 to communicate with other devices or chips. Specifically, the processor 710 may output information or data to the other devices or chips.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal / terminal in the embodiments of the present application, and the chip can implement the corresponding process implemented by the mobile terminal / terminal in each method of the embodiments of the present application. To repeat.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip.
  • FIG. 10 is a schematic block diagram of a communication system 900 according to an embodiment of the present application. As shown in FIG. 10, the communication system 900 includes a terminal 910 and a network device 920.
  • the terminal 910 may be used to implement the corresponding functions implemented by the terminal in the foregoing method
  • the network device 920 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • details are not described herein again.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field, Programmable Gate Array, FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchronous DRAM Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Synchrobus RAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (Double SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on. That is, the memories in the embodiments of the present application are intended to include, but not limited to, these and any other suitable types of memories.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application. For simplicity, here No longer.
  • the computer-readable storage medium may be applied to a mobile terminal / terminal in the embodiments of the present application, and the computer program causes a computer to execute a corresponding process implemented by the mobile terminal / terminal in each method of the embodiments of the present application in order Concise, I won't repeat them here.
  • An embodiment of the present application further provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instruction causes the computer to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. More details.
  • the computer program product can be applied to a mobile terminal / terminal in the embodiments of the present application, and the computer program instructions cause the computer to execute a corresponding process implemented by the mobile terminal / terminal in each method of the embodiments of the present application for the sake of brevity , Will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to a network device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. , Will not repeat them here.
  • the computer program may be applied to a mobile terminal / terminal in the embodiment of the present application, and when the computer program is run on a computer, the computer is caused to execute a corresponding method implemented by the mobile terminal / terminal in each method of the embodiment of the present application.
  • the computer program may be applied to a mobile terminal / terminal in the embodiment of the present application, and when the computer program is run on a computer, the computer is caused to execute a corresponding method implemented by the mobile terminal / terminal in each method of the embodiment of the present application.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信号传输方法及装置、终端、网络设备,包括:终端确定第一传输资源,并在所述第一传输资源上接收第一信号,所述第一信号用于指示停止上行传输。

Description

一种信号传输方法及装置、终端、网络设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种信号传输方法及装置、终端、网络设备。
背景技术
目前,第五代(5G,5 thGeneration)移动通信系统的新空口(NR,New Radio)引入了超可靠低时延(URLLC,Ultra Reliable Low Latency Communication)业务,该业务的特征是在极端的时延内(例如1ms)实现超高可靠性(例如99.999%)的传输。为了实现这个目标,下行引入了抢占(preemption)机制,即在增强移动宽带(eMBB,Enhance Mobile Broadband)业务传输的过程中,插入URLLC业务,如图1所示。因为eMBB UE(传输eMBB业务的终端)不知道插入了URLLC业务,就会把URLLC数据当作eMBB数据解调,从而严重影响了eMBB数据的解调性能。为了降低URLLC数据对eMBB数据的影响,引入了抢占指示(preemption indicator),抢占指示用于告诉终端哪些资源被URLLC数据占用了,抢占指示采用比特图(bitmap)方式指示时频域资源的抢占情况。抢占指示滞后于preemption发生,为了减少信令开销,抢占指示的发送频次可以低一些。
对于终端侧的上行传输而言,终端根据网络侧的停止传输信号来及时停止eMBB数据的上行传输,为此,终端需要及时检测停止传输信号,而频繁地检测停止传输信号必然会带来终端的功耗和复杂度的增加。
发明内容
本申请实施例提供一种信号传输方法及装置、终端、网络设备。
本申请实施例提供的信号传输方法,包括:
终端确定第一传输资源,并在所述第一传输资源上接收第一信号,所述第一信号用于指示停止上行传输。
本申请实施例提供的信号传输方法,包括:
基站在第一传输资源上发送第一信号,所述第一信号用于向终端指示停止上行传输。
本申请实施例提供的信号传输装置,包括:
确定单元,用于确定第一传输资源;
接收单元,用于在所述第一传输资源上接收第一信号,所述第一信号用于指示停止上行传输。
本申请实施例提供的信号传输装置,包括:
发送单元,用于在第一传输资源上发送第一信号,所述第一信号用于向终端指示停止上行传输。
本申请实施例提供的终端,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的信号传输方法。
本申请实施例提供的网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的信号传输方法。
本申请实施例提供的芯片,用于实现上述的信号传输方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的信号传输方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的信号传输方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的信号传输方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的信号传输方法。
通过上述技术方案,终端在确定的第一传输资源上接收用于指示停止上行传输的第一信号,避免了终端对第一信号的盲检测,降低了终端因盲检第一信号而带来的功耗和复杂度。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2是本申请实施例提供的信号传输方法的流程示意图一;
图3是本申请实施例提供的信号传输方法的流程示意图二;
图4(a)是本申请实施例提供的通过序列指示抢占资源的示意图一;
图4(b)是本申请实施例提供的通过序列指示抢占资源的示意图二
图4(c)是本申请实施例提供的通过序列指示抢占资源的示意图三;
图5(a)是本申请实施例提供的第一传输资源的配置示意图一;
图5(b)是本申请实施例提供的第一传输资源的配置示意图二;
图6是本申请实施例提供的信号传输装置的结构组成示意图一;
图7是本申请实施例提供的信号传输装置的结构组成示意图二;
图8是本申请实施例提供的一种通信设备示意性结构图;
图9是本申请实施例的芯片的示意性结构图;
图10是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”, 一般表示前后关联对象是一种“或”的关系。
图2为本申请实施例提供的信号传输方法的流程示意图一,如图2所示,所述信号传输方法包括以下步骤:
步骤201:终端确定第一传输资源,并在所述第一传输资源上接收第一信号,所述第一信号用于指示停止上行传输。
本申请实施例中,所述终端可以是手机、平板电脑、车载终端、笔记本等任意能够与网络进行通信的设备。
本申请实施例中,第一传输资源为一个确定的传输资源,终端在该确定的传输资源上接收第一信号,从而停止上行传输。这里,由于终端只在确定的传输资源上接收第一信号,因而避免了终端对第一信号的盲检测,减少了终端复杂度。
本申请实施例中,所述终端在所述第一传输资源上接收基站发送的所述第一信号,这里,基站可以但不局限于是5G中的gNB。
在一实施方式中,所述终端在所述第一传输资源上接收所述第一信号之前,所述终端接收第二信号,所述第二信号用于指示所述第一传输资源。
进一步,所述第一传输资源包括以下至少之一:时域资源、频域资源、码域资源。
进一步,所述第一传输资源在时域上具备周期特性。这里,所述第一传输资源在时域上满足周期特性,所述第一传输资源的周期可以为0或无限大或任意值。所述第一传输资源的周期为无限大代表第一传输资源在时域上仅出现一次,所述第一传输资源的周期为0代表第一传输资源在时域上总是出现。所述第一传输资源的周期为任意值,例如T,代表相邻两个第一传输资源之间的时间间隔为T。
上述方案中,由于第一传输资源在网络侧可配置,因而提高了系统配置的灵活性,有利于根据业务需求灵活配置第一传输资源,有利于小区间干扰协调的实现。
上述方案中,所述第一传输资源可以由高层信令配置;或者,所述第一传输资源可以由高层信令配置,并且由媒体接入控制(MAC,Media Access Control)层信令或物理层信令触发/关闭。
在一实施方式中,所述终端在所述第一传输资源上接收所述第一信号之前,所述终端接收第三信号,所述第三信号用于指示所述第一信号的传输参数。
进一步,所述第一信号的传输参数包括以下至少之一:传输格式、序列资源、编码方式。
在一个例子中,所述传输格式包括以下至少之一:序列、调制符号、经过调制的序列。
在一个例子中,所述序列资源包括以下至少之一:根序列生成参数、序列循环移位。
在一个例子中,所述编码方式采用极化码。
上述方案中,网络侧给终端提供第一信号的传输参数,终端侧按照第一信号的传输参数对第一信号进行接收,减少了信号检测的复杂度。
上述方案中,所述传输格式中的序列适用于小有效载荷(small payload)的第一信号的传输,具有检测复杂度低以及检测精度高的特点。
上述方案中,所述传输格式中的调制符号适用于中等/大有效载荷(moderate/large payload)的第一信号的传输。
上述方案中,所述传输格式中的经过调制的序列适用于小有效载荷(small payload)的第一信号的传输,具有检测复杂度低以及检测精度高的特点。
上述方案中,所述编码方式采用极化码(polar码),可以避免增加新的编码方式,从而避免增加终端的复杂度。
上述方案中,所述第一信号的传输参数中的第一部分参数为网络配置的,所述第 一信号的传输参数中的第二部分参数为协议约定的;或者,所述第一信号的传输参数中的全部参数为网络配置的;或者,所述第一信号的传输参数中的全部参数为协议约定的。
这里,采用协议约定的方式来确定所述第一信号的传输参数(可以是部分传输参数,也可以是全部传输参数),可以减少信令开销,减少终端实现复杂度。采用网络配置的方式来确定所述第一信号的传输参数(可以是部分传输参数,也可以是全部传输参数),可以增加系统设计的灵活性。
在一实施方式中,所述终端在所述第一传输资源上接收所述第一信号之前,所述终端接收第四信号,所述第四信号用于指示所述第一信号的时域资源和停止上行传输的时域资源之间的时序关系。
举个例子:第四信号用于指示停止上行传输的时域资源相对于第一信号的时域资源的时域偏移量(Offset),终端在t1时刻接收到第一信号,那么终端将在t1+Offset时刻停止上行传输。
再举个例子:第四信号用于指示停止上行传输的时域资源为第一信号之后的第N个候选时域资源,N为正整数,这里,候选时域资源为能够实现停止上行传输的时域资源。
这里,由于第四信号承载的内容仅仅是时序关系,而不是具体地时频资源信息,因而可以减少第四信号的有效载荷(payload)。
在一实施方式中,所述终端在所述第一传输资源上接收所述第一信号之前,所述终端接收第五信号,所述第五信号用于指示停止上行传输的时频资源或停止上行传输的时频资源集合。
本申请实施例的上述方案中,停止上行传输的时频资源为以下之一:
特定符号的整个系统带宽、特定符号的整个带宽部分(BWP,Band Width Part)、以特定符号为起点的整个系统带宽、以特定符号为起点的整个BWP、特定符号的部分系统带宽、特定符号的部分BWP、以特定符号为起点的部分系统带宽、以特定符号为起点的部分BWP。
这里,特定符号是指特定的时域符号,例如正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号。
举个例子:停止上行传输的时频资源为符号2对应的整个系统带宽或者部分系统带宽。
再举个例子:停止上行传输的时频资源为以符号4为起点的整个系统带宽或者部分系统带宽。
本申请实施例的上述方案中,所述第一传输资源还用于传输除所述第一信号以外的下行信号,具体地,所述第一传输资源传输的内容取决于基站的调度。
本申请实施例的上述方案中,所述第二信号、第三信号、第四信号、第五信号包括以下至少之一:高层信令、物理层信令、MAC信令。也即:所述第二信号、第三信号、第四信号、第五信号,可以是高层信令、或物理层信令、或MAC信令、或这些信令的任意组成。
本申请实施例的上述方案中,所述终端在所述第一传输资源上接收所述第一信号,需要满足以下至少一个条件:
停止上行传输的资源上有数据传输;
所述终端具备检测所述第一信号的能力;
所述终端上报了检测所述第一信号的能力。
图3为本申请实施例提供的信号传输方法的流程示意图二,如图3所示,所述信号传输方法包括以下步骤:
步骤301:基站在第一传输资源上发送第一信号,所述第一信号用于向终端指示停止上行传输。
本申请实施例中,所述基站可以但不局限于是5G中的gNB。
本申请实施例中,所述基站在第一传输资源上向终端发送第一信号。
本申请实施例中,所述终端可以是手机、平板电脑、车载终端、笔记本等任意能够与网络进行通信的设备。
本申请实施例中,第一传输资源为一个确定的传输资源,基站在该确定的传输资源上发送第一信号,从而终端基于所述第一信号停止上行传输。这里,由于终端只在确定的传输资源上接收第一信号,因而避免了终端对第一信号的盲检测,减少了终端复杂度。
在一实施方式中,所述基站在所述第一传输资源上发送所述第一信号之前,所述基站发送第二信号,所述第二信号用于指示所述第一传输资源。
进一步,所述第一传输资源包括以下至少之一:时域资源、频域资源、码域资源。
进一步,所述第一传输资源在时域上具备周期特性。这里,所述第一传输资源在时域上满足周期特性,所述第一传输资源的周期可以为0或无限大或任意值。所述第一传输资源的周期为无限大代表第一传输资源在时域上仅出现一次,所述第一传输资源的周期为0代表第一传输资源在时域上总是出现。所述第一传输资源的周期为任意值,例如T,代表相邻两个第一传输资源之间的时间间隔为T。
上述方案中,由于第一传输资源在网络侧可配置,因而提高了系统配置的灵活性,有利于根据业务需求灵活配置第一传输资源,有利于小区间干扰协调的实现。
上述方案中,所述第一传输资源可以由高层信令配置;或者,所述第一传输资源可以由高层信令配置,并且由MAC层信令或物理层信令触发/关闭。
在一实施方式中,所述基站在所述第一传输资源上发送所述第一信号之前,所述基站发送第三信号,所述第三信号用于指示所述第一信号的传输参数。
进一步,所述第一信号的传输参数包括以下至少之一:传输格式、序列资源、编码方式。
在一个例子中,所述传输格式包括以下至少之一:序列、调制符号、经过调制的序列。
在一个例子中,所述序列资源包括以下至少之一:根序列生成参数、序列循环移位。
在一个例子中,所述编码方式采用极化码。
上述方案中,网络侧给终端提供第一信号的传输参数,终端侧按照第一信号的传输参数对第一信号进行接收,减少了信号检测的复杂度。
上述方案中,所述传输格式中的序列适用于small payload的第一信号的传输,具有检测复杂度低以及检测精度高的特点。
上述方案中,所述传输格式中的调制符号适用于moderate/large payload的第一信号的传输。
上述方案中,所述传输格式中的经过调制的序列适用于small payload的第一信号的传输,具有检测复杂度低以及检测精度高的特点。
上述方案中,所述编码方式采用polar码,可以避免增加新的编码方式,从而避免增加终端的复杂度。
上述方案中,所述第一信号的传输参数中的第一部分参数为网络配置的,所述第一信号的传输参数中的第二部分参数为协议约定的;或者,所述第一信号的传输参数中的全部参数为网络配置的;或者,所述第一信号的传输参数中的全部参数为协议约定的。
这里,采用协议约定的方式来确定所述第一信号的传输参数(可以是部分传输参数, 也可以是全部传输参数),可以减少信令开销,减少终端实现复杂度。采用网络配置的方式来确定所述第一信号的传输参数(可以是部分传输参数,也可以是全部传输参数),可以增加系统设计的灵活性。
在一实施方式中,所述基站在所述第一传输资源上发送所述第一信号之前,所述基站发送第四信号,所述第四信号用于指示所述第一信号的时域资源和停止上行传输的时域资源之间的时序关系。
举个例子:第四信号用于指示停止上行传输的时域资源相对于第一信号的时域资源的时域偏移量(Offset),终端在t1时刻接收到第一信号,那么终端将在t1+Offset时刻停止上行传输。
再举个例子:第四信号用于指示停止上行传输的时域资源为第一信号之后的第N个候选时域资源,N为正整数,这里,候选时域资源为能够实现停止上行传输的时域资源。
这里,由于第四信号承载的内容仅仅是时序关系,而不是具体地时频资源信息,因而可以减少第四信号的payload。
在一实施方式中,所述基站在所述第一传输资源上发送所述第一信号之前,所述基站发送第五信号,所述第五信号用于指示停止上行传输的时频资源或停止上行传输的时频资源集合。
本申请实施例的上述方案中,停止上行传输的时频资源为以下之一:
特定符号的整个系统带宽、特定符号的整个BWP、以特定符号为起点的整个系统带宽、以特定符号为起点的整个BWP、特定符号的部分系统带宽、特定符号的部分BWP、以特定符号为起点的部分系统带宽、以特定符号为起点的部分BWP。
这里,特定符号是指特定的时域符号,例如OFDM符号。
举个例子:停止上行传输的时频资源为符号2对应的整个系统带宽或者部分系统带宽。
再举个例子:停止上行传输的时频资源为以符号4为起点的整个系统带宽或者部分系统带宽。
本申请实施例的上述方案中,所述第一传输资源还用于传输除所述第一信号以外的下行信号,具体地,所述第一传输资源传输的内容取决于基站的调度。
本申请实施例的上述方案中,所述第二信号、第三信号、第四信号、第五信号包括以下至少之一:高层信令、物理层信令、MAC信令。也即:所述第二信号、第三信号、第四信号、第五信号,可以是高层信令、或物理层信令、或MAC信令、或这些信令的任意组成。
以下结合具体应用示例对本申请实施例的技术方案做进一步解释说明。
应用示例一:基于序列的停止上行传输的指示
终端确定第一传输资源,并在所述第一传输资源上接收第一信号,所述第一信号采用第一序列,第一序列用于指示停止上行传输。
这里,第一序列可以采用5G NR已有的序列,例如ZC序列、或随机序列、或正交序列。其中,ZC序列是一种优选序列。序列的生成方式同5G NR协议中的约定。进一步,根序列的生成与小区ID、或者UE分组ID、或者高层配置值有关。循环移位值由协议约定、或者高层配置(优选高层配置)。
在一个例子中,基站通过高层信令配置ZC序列的根序列所需要的u,v和循环移位值a。
终端在确定的传输资源(也即第一传输资源)上检测该配置的序列。如果检测到,则停止上行传输。停止上行传输映射在特定的时频资源上。其中,时域资源的起点由预配置的序列与起点(停止上行传输映的起点)之间的时序关系确定,所述预配置的序列 与起点之间的时序关系可以是协议约定或高层信令配置。时域资源的长度由高层信令或协议约定,例如2个符号,协议约定值还可以与子载波间隔相关,例如子载波间隔为15KHz,则时域资源长度为2个符号,子载波间隔为30Khz,则时域资源长度为4符号。协议也可以约定时域资源长度和序列发送周期相关,例如时域资源长度等于序列发送周期,都为2个符号,则任何符号都可以被指示到。频域资源由协议约定,例如整个带宽部分(BWP,Band Width Part),或者高层配置n个物理资源块(PRB,Physical Resource Block),或者1/N PRB,或者n1-n2PRB。
应用示例二:基于序列的停止上行传输的资源的指示
与应用示例一不同的是,本示例采用一组序列用于指示停止上行传输。一组序列分别对应不同的时频资源、或者时域资源、或者频域资源。对于用序列区别一个维度(如频域维度或时域维度)的资源,另外一个维度(如时域维度或频域维度)的资源采用高层配置或者协议约定的方式。
在一个例子中,频域资源以子带或者1/N BWP为粒度。时域资源以符号为单位。子载波间隔不同,时域资源的基本单位对应的符号数不同。
以图4(a)、图4(b)、图4(c)为例,当终端检测到序列S1,则停止S1对应时频域内的上行传输。进一步,如果一个TB的部分资源在S1对应的时频域内,则TB的所有传输中止,或者S1对应时域起点以后的传输都中止。
应用示例三:基于调制符号的停止上行传输的指示/停止上行传输的资源的指示
利用下行控制信息(DCI,Downlink Control Information),例如group组公共DCI(common DCI)来指示停止上行传输。
方法1:采用调制符号来指示停止上行传输的资源时,终端在接收第一信号之前,
可以通过高层信令配置DCI信令和资源之间的映射关系,例如表1所示:
DCI信令 时频域资源
00 抢占资源集中的第一资源
01 抢占资源集中的第二资源
10 抢占资源集中的第三资源
11 抢占资源集中的第四资源
表1
其中,当采用group common DCI时,可以考虑重复编码,既能提高信令的可行性,同时不会造成有效信息位和循环冗余校验(CRC,Cyclic Redundancy Check)校验位的失调。例如,当指示抢占资源集(preemption resource set)中的第二资源时,采用0101010101指示。
方法2:DCI至少包含时频资源指示信息,类似5G NR中的上行授权资源(UL grant)/下行授权资源(DL grant)调度的指示。
应用示例四:确定的第一传输资源
方法1:终端收到高层信令,指示确定的第一传输资源,参照图5(a)和图5(b),包括如下信息的至少一种:时间周期、时域起点、信令的时域宽度、频域资源。
方法2:终端收到高层信令,该高层信令指示抢占指示(preemption indicator)检测的区域,聚合等级为8,公共搜索空间(Common search space)的第一个控制信道单元(CCE,Control Channel Element)起始,或者第N1个和第N2个CCE起始。
应用示例五:第一信号的时域资源和停止上行传输的时域资源之间的时序关系
第一信号的时域资源和停止上行传输的时域资源之间的时序关系由高层配置,该配置主要考虑基站调度,终端准备数据/停止上行传输的处理时间。例如,基站参考终端处理能力K2,则第一信号的时域资源和停止上行传输的时域资源之间的时间间隔需要大 于K2。
当第一信号的时域资源和停止上行传输的时域资源之间的时序关系为k个符号时,则当终端在第n个符号收到信令,则终止n+k以后的上行传输。
图6为本申请实施例提供的信号传输装置的结构组成示意图一,如图6所示,所述信号传输装置包括:
确定单元601,用于确定第一传输资源;
接收单元602,用于在所述第一传输资源上接收第一信号,所述第一信号用于指示停止上行传输。
在一实施方式中,所述接收单元602在所述第一传输资源上接收所述第一信号之前,所述接收单元602接收第二信号,所述第二信号用于指示所述第一传输资源。
在一实施方式中,所述第一传输资源包括以下至少之一:时域资源、频域资源、码域资源。
在一实施方式中,所述第一传输资源在时域上具备周期特性。
在一实施方式中,所述第二信号包括以下至少之一:高层信令、物理层信令、MAC信令。
在一实施方式中,所述接收单元602在所述第一传输资源上接收所述第一信号之前,所述接收单元602接收第三信号,所述第三信号用于指示所述第一信号的传输参数。
在一实施方式中,所述第一信号的传输参数包括以下至少之一:传输格式、序列资源、编码方式。
在一实施方式中,所述传输格式包括以下至少之一:序列、调制符号、经过调制的序列。
在一实施方式中,所述序列资源包括以下至少之一:根序列生成参数、序列循环移位。
在一实施方式中,所述编码方式采用极化码。
在一实施方式中,所述第一信号的传输参数中的第一部分参数为网络配置的,所述第一信号的传输参数中的第二部分参数为协议约定的;或者,
所述第一信号的传输参数中的全部参数为网络配置的;或者,
所述第一信号的传输参数中的全部参数为协议约定的。
在一实施方式中,所述第三信号包括以下至少之一:高层信令、物理层信令、MAC信令。
在一实施方式中,所述接收单元602在所述第一传输资源上接收所述第一信号之前,所述接收单元602接收第四信号,所述第四信号用于指示所述第一信号的时域资源和停止上行传输的时域资源之间的时序关系。
在一实施方式中,所述第四信号包括以下至少之一:高层信令、物理层信令、MAC信令。
在一实施方式中,所述接收单元602在所述第一传输资源上接收所述第一信号之前,所述接收单元602接收第五信号,所述第五信号用于指示停止上行传输的时频资源或停止上行传输的时频资源集合。
在一实施方式中,所述第五信号包括以下至少之一:高层信令、物理层信令、MAC信令。
在一实施方式中,停止上行传输的时频资源为以下之一:
特定符号的整个系统带宽、特定符号的整个BWP、以特定符号为起点的整个系统带宽、以特定符号为起点的整个BWP、特定符号的部分系统带宽、特定符号的部分BWP、以特定符号为起点的部分系统带宽、以特定符号为起点的部分BWP。
在一实施方式中,所述第一传输资源还用于传输除所述第一信号以外的下行信号。
在一实施方式中,所述接收单元602在所述第一传输资源上接收所述第一信号,需要满足以下至少一个条件:
停止上行传输的资源上有数据传输;
终端具备检测所述第一信号的能力;
终端上报了检测所述第一信号的能力。
本领域技术人员应当理解,本申请实施例的上述信号传输装置的相关描述可以参照本申请实施例的信号传输方法的相关描述进行理解。
图7为本申请实施例提供的信号传输装置的结构组成示意图二,如图7所示,所述信号传输装置包括:
发送单元701,用于在第一传输资源上发送第一信号,所述第一信号用于向终端指示停止上行传输。
在一实施方式中,所述发送单元701在所述第一传输资源上发送所述第一信号之前,所述发送单元701发送第二信号,所述第二信号用于指示所述第一传输资源。
在一实施方式中,所述第一传输资源包括以下至少之一:时域资源、频域资源、码域资源。
在一实施方式中,所述第一传输资源在时域上具备周期特性。
在一实施方式中,所述第二信号包括以下至少之一:高层信令、物理层信令、MAC信令。
在一实施方式中,所述发送单元701在所述第一传输资源上发送所述第一信号之前,所述发送单元701发送第三信号,所述第三信号用于指示所述第一信号的传输参数。
在一实施方式中,所述第一信号的传输参数包括以下至少之一:传输格式、序列资源、编码方式。
在一实施方式中,所述传输格式包括以下至少之一:序列、调制符号、经过调制的序列。
在一实施方式中,所述序列资源包括以下至少之一:根序列生成参数、序列循环移位。
在一实施方式中,所述编码方式采用极化码。
在一实施方式中,所述第一信号的传输参数中的第一部分参数为网络配置的,所述第一信号的传输参数中的第二部分参数为协议约定的;或者,
所述第一信号的传输参数中的全部参数为网络配置的;或者,
所述第一信号的传输参数中的全部参数为协议约定的。
在一实施方式中,所述第三信号包括以下至少之一:高层信令、物理层信令、MAC信令。
在一实施方式中,所述发送单元701在所述第一传输资源上发送所述第一信号之前,所述发送单元701发送第四信号,所述第四信号用于指示所述第一信号的时域资源和停止上行传输的时域资源之间的时序关系。
在一实施方式中,所述第四信号包括以下至少之一:高层信令、物理层信令、MAC信令。
在一实施方式中,所述发送单元701在所述第一传输资源上发送所述第一信号之前,所述发送单元701发送第五信号,所述第五信号用于指示停止上行传输的时频资源或停止上行传输的时频资源集合。
在一实施方式中,所述第五信号包括以下至少之一:高层信令、物理层信令、MAC信令。
在一实施方式中,停止上行传输的时频资源为以下之一:
特定符号的整个系统带宽、特定符号的整个BWP、以特定符号为起点的整个系统带宽、以特定符号为起点的整个BWP、特定符号的部分系统带宽、特定符号的部分BWP、以特定符号为起点的部分系统带宽、以特定符号为起点的部分BWP。
在一实施方式中,所述第一传输资源还用于传输除所述第一信号以外的下行信号。
本领域技术人员应当理解,本申请实施例的上述信号传输装置的相关描述可以参照本申请实施例的信号传输方法的相关描述进行理解。
图8是本申请实施例提供的一种通信设备600示意性结构图。该通信设备可以是终端,也可以是网络设备(如基站),图8所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图8所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
图9是本申请实施例的芯片的示意性结构图。图9所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图10是本申请实施例提供的一种通信系统900的示意性框图。如图10所示,该通信系统900包括终端910和网络设备920。
其中,该终端910可以用于实现上述方法中由终端实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (84)

  1. 一种信号传输方法,所述方法包括:
    终端确定第一传输资源,并在所述第一传输资源上接收第一信号,所述第一信号用于指示停止上行传输。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端在所述第一传输资源上接收所述第一信号之前,所述终端接收第二信号,所述第二信号用于指示所述第一传输资源。
  3. 根据权利要求2所述的方法,其中,所述第一传输资源包括以下至少之一:时域资源、频域资源、码域资源。
  4. 根据权利要求2或3所述的方法,其中,所述第一传输资源在时域上具备周期特性。
  5. 根据权利要求2至4任一项所述的方法,其中,所述第二信号包括以下至少之一:高层信令、物理层信令、媒体接入控制MAC信令。
  6. 根据权利要求1至5任一项所述的方法,其中,所述方法还包括:
    所述终端在所述第一传输资源上接收所述第一信号之前,所述终端接收第三信号,所述第三信号用于指示所述第一信号的传输参数。
  7. 根据权利要求6所述的方法,其中,所述第一信号的传输参数包括以下至少之一:传输格式、序列资源、编码方式。
  8. 根据权利要求7所述的方法,其中,所述传输格式包括以下至少之一:序列、调制符号、经过调制的序列。
  9. 根据权利要求7或8所述的方法,其中,所述序列资源包括以下至少之一:根序列生成参数、序列循环移位。
  10. 根据权利要求7至9任一项所述的方法,其中,所述编码方式采用极化码。
  11. 根据权利要求6至10任一项所述的方法,其中,
    所述第一信号的传输参数中的第一部分参数为网络配置的,所述第一信号的传输参数中的第二部分参数为协议约定的;或者,
    所述第一信号的传输参数中的全部参数为网络配置的;或者,
    所述第一信号的传输参数中的全部参数为协议约定的。
  12. 根据权利要求6至11任一项所述的方法,其中,所述第三信号包括以下至少之一:高层信令、物理层信令、MAC信令。
  13. 根据权利要求1至12任一项所述的方法,其中,所述方法还包括:
    所述终端在所述第一传输资源上接收所述第一信号之前,所述终端接收第四信号,所述第四信号用于指示所述第一信号的时域资源和停止上行传输的时域资源之间的时序关系。
  14. 根据权利要求13所述的方法,其中,所述第四信号包括以下至少之一:高层信令、物理层信令、MAC信令。
  15. 根据权利要求1至14任一项所述的方法,其中,所述方法还包括:
    所述终端在所述第一传输资源上接收所述第一信号之前,所述终端接收第五信号,所述第五信号用于指示停止上行传输的时频资源或停止上行传输的时频资源集合。
  16. 根据权利要求15所述的方法,其中,所述第五信号包括以下至少之一:高层信令、物理层信令、MAC信令。
  17. 根据权利要求13至16任一项所述的方法,其中,停止上行传输的时频资源为以下之一:
    特定符号的整个系统带宽、特定符号的整个带宽部分BWP、以特定符号为起点的整个系统带宽、以特定符号为起点的整个BWP、特定符号的部分系统带宽、特定符号的部分BWP、以特定符号为起点的部分系统带宽、以特定符号为起点的部分BWP。
  18. 根据权利要求1至17任一项所述的方法,其中,所述第一传输资源还用于传输除所述第一信号以外的下行信号。
  19. 根据权利要求1至18任一项所述的方法,其中,所述终端在所述第一传输资源上接收所述第一信号,需要满足以下至少一个条件:
    停止上行传输的资源上有数据传输;
    所述终端具备检测所述第一信号的能力;
    所述终端上报了检测所述第一信号的能力。
  20. 一种信号传输方法,所述方法包括:
    基站在第一传输资源上发送第一信号,所述第一信号用于向终端指示停止上行传输。
  21. 根据权利要求20所述的方法,其中,所述方法还包括:
    所述基站在所述第一传输资源上发送所述第一信号之前,所述基站发送第二信号,所述第二信号用于指示所述第一传输资源。
  22. 根据权利要求21所述的方法,其中,所述第一传输资源包括以下至少之一:时域资源、频域资源、码域资源。
  23. 根据权利要求21或22所述的方法,其中,所述第一传输资源在时域上具备周期特性。
  24. 根据权利要求21至23任一项所述的方法,其中,所述第二信号包括以下至少之一:高层信令、物理层信令、MAC信令。
  25. 根据权利要求20至24任一项所述的方法,其中,所述方法还包括:
    所述基站在所述第一传输资源上发送所述第一信号之前,所述基站发送第三信号,所述第三信号用于指示所述第一信号的传输参数。
  26. 根据权利要求25所述的方法,其中,所述第一信号的传输参数包括以下至少之一:传输格式、序列资源、编码方式。
  27. 根据权利要求26所述的方法,其中,所述传输格式包括以下至少之一:序列、调制符号、经过调制的序列。
  28. 根据权利要求26或27所述的方法,其中,所述序列资源包括以下至少之一:根序列生成参数、序列循环移位。
  29. 根据权利要求26至28任一项所述的方法,其中,所述编码方式采用极化码。
  30. 根据权利要求25至29任一项所述的方法,其中,
    所述第一信号的传输参数中的第一部分参数为网络配置的,所述第一信号的传输参数中的第二部分参数为协议约定的;或者,
    所述第一信号的传输参数中的全部参数为网络配置的;或者,
    所述第一信号的传输参数中的全部参数为协议约定的。
  31. 根据权利要求25至30任一项所述的方法,其中,所述第三信号包括以下至少之一:高层信令、物理层信令、MAC信令。
  32. 根据权利要求20至31任一项所述的方法,其中,所述方法还包括:
    所述基站在所述第一传输资源上发送所述第一信号之前,所述基站发送第四信号,所述第四信号用于指示所述第一信号的时域资源和停止上行传输的时域资源之间 的时序关系。
  33. 根据权利要求32所述的方法,其中,所述第四信号包括以下至少之一:高层信令、物理层信令、MAC信令。
  34. 根据权利要求20至33任一项所述的方法,其中,所述方法还包括:
    所述基站在所述第一传输资源上发送所述第一信号之前,所述基站发送第五信号,所述第五信号用于指示停止上行传输的时频资源或停止上行传输的时频资源集合。
  35. 根据权利要求34所述的方法,其中,所述第五信号包括以下至少之一:高层信令、物理层信令、MAC信令。
  36. 根据权利要求32至35任一项所述的方法,其中,停止上行传输的时频资源为以下之一:
    特定符号的整个系统带宽、特定符号的整个BWP、以特定符号为起点的整个系统带宽、以特定符号为起点的整个BWP、特定符号的部分系统带宽、特定符号的部分BWP、以特定符号为起点的部分系统带宽、以特定符号为起点的部分BWP。
  37. 根据权利要求20至36任一项所述的方法,其中,所述第一传输资源还用于传输除所述第一信号以外的下行信号。
  38. 一种信号传输装置,所述装置包括:
    确定单元,用于确定第一传输资源;
    接收单元,用于在所述第一传输资源上接收第一信号,所述第一信号用于指示停止上行传输。
  39. 根据权利要求38所述的装置,其中,所述接收单元在所述第一传输资源上接收所述第一信号之前,所述接收单元接收第二信号,所述第二信号用于指示所述第一传输资源。
  40. 根据权利要求39所述的装置,其中,所述第一传输资源包括以下至少之一:时域资源、频域资源、码域资源。
  41. 根据权利要求39或40所述的装置,其中,所述第一传输资源在时域上具备周期特性。
  42. 根据权利要求39至41任一项所述的装置,其中,所述第二信号包括以下至少之一:高层信令、物理层信令、MAC信令。
  43. 根据权利要求38至42任一项所述的装置,其中,所述接收单元在所述第一传输资源上接收所述第一信号之前,所述接收单元接收第三信号,所述第三信号用于指示所述第一信号的传输参数。
  44. 根据权利要求43所述的装置,其中,所述第一信号的传输参数包括以下至少之一:传输格式、序列资源、编码方式。
  45. 根据权利要求44所述的装置,其中,所述传输格式包括以下至少之一:序列、调制符号、经过调制的序列。
  46. 根据权利要求44或45所述的装置,其中,所述序列资源包括以下至少之一:根序列生成参数、序列循环移位。
  47. 根据权利要求44至46任一项所述的装置,其中,所述编码方式采用极化码。
  48. 根据权利要求43至47任一项所述的装置,其中,
    所述第一信号的传输参数中的第一部分参数为网络配置的,所述第一信号的传输参数中的第二部分参数为协议约定的;或者,
    所述第一信号的传输参数中的全部参数为网络配置的;或者,
    所述第一信号的传输参数中的全部参数为协议约定的。
  49. 根据权利要求48所述的装置,其中,所述第三信号包括以下至少之一:高层信令、物理层信令、MAC信令。
  50. 根据权利要求38至49任一项所述的装置,其中,所述接收单元在所述第一传输资源上接收所述第一信号之前,所述接收单元接收第四信号,所述第四信号用于指示所述第一信号的时域资源和停止上行传输的时域资源之间的时序关系。
  51. 根据权利要求50所述的装置,其中,所述第四信号包括以下至少之一:高层信令、物理层信令、MAC信令。
  52. 根据权利要求38至51任一项所述的装置,其中,所述接收单元在所述第一传输资源上接收所述第一信号之前,所述接收单元接收第五信号,所述第五信号用于指示停止上行传输的时频资源或停止上行传输的时频资源集合。
  53. 根据权利要求52所述的装置,其中,所述第五信号包括以下至少之一:高层信令、物理层信令、MAC信令。
  54. 根据权利要求50至53任一项所述的装置,其中,停止上行传输的时频资源为以下之一:
    特定符号的整个系统带宽、特定符号的整个BWP、以特定符号为起点的整个系统带宽、以特定符号为起点的整个BWP、特定符号的部分系统带宽、特定符号的部分BWP、以特定符号为起点的部分系统带宽、以特定符号为起点的部分BWP。
  55. 根据权利要求38至54任一项所述的装置,其中,所述第一传输资源还用于传输除所述第一信号以外的下行信号。
  56. 根据权利要求38至55任一项所述的装置,其中,所述接收单元在所述第一传输资源上接收所述第一信号,需要满足以下至少一个条件:
    停止上行传输的资源上有数据传输;
    终端具备检测所述第一信号的能力;
    终端上报了检测所述第一信号的能力。
  57. 一种信号传输装置,所述装置包括:
    发送单元,用于在第一传输资源上发送第一信号,所述第一信号用于向终端指示停止上行传输。
  58. 根据权利要求57所述的装置,其中,所述发送单元在所述第一传输资源上发送所述第一信号之前,所述发送单元发送第二信号,所述第二信号用于指示所述第一传输资源。
  59. 根据权利要求58所述的装置,其中,所述第一传输资源包括以下至少之一:时域资源、频域资源、码域资源。
  60. 根据权利要求58或59所述的装置,其中,所述第一传输资源在时域上具备周期特性。
  61. 根据权利要求58至60任一项所述的装置,其中,所述第二信号包括以下至少之一:高层信令、物理层信令、MAC信令。
  62. 根据权利要求57至61任一项所述的装置,其中,所述发送单元在所述第一传输资源上发送所述第一信号之前,所述发送单元发送第三信号,所述第三信号用于指示所述第一信号的传输参数。
  63. 根据权利要求62所述的装置,其中,所述第一信号的传输参数包括以下至少之一:传输格式、序列资源、编码方式。
  64. 根据权利要求63所述的装置,其中,所述传输格式包括以下至少之一:序列、调制符号、经过调制的序列。
  65. 根据权利要求63或64所述的装置,其中,所述序列资源包括以下至少之一: 根序列生成参数、序列循环移位。
  66. 根据权利要求63至65任一项所述的装置,其中,所述编码方式采用极化码。
  67. 根据权利要求62至66任一项所述的装置,其中,
    所述第一信号的传输参数中的第一部分参数为网络配置的,所述第一信号的传输参数中的第二部分参数为协议约定的;或者,
    所述第一信号的传输参数中的全部参数为网络配置的;或者,
    所述第一信号的传输参数中的全部参数为协议约定的。
  68. 根据权利要求62至67任一项所述的装置,其中,所述第三信号包括以下至少之一:高层信令、物理层信令、MAC信令。
  69. 根据权利要求57至68任一项所述的装置,其中,所述发送单元在所述第一传输资源上发送所述第一信号之前,所述发送单元发送第四信号,所述第四信号用于指示所述第一信号的时域资源和停止上行传输的时域资源之间的时序关系。
  70. 根据权利要求69所述的装置,其中,所述第四信号包括以下至少之一:高层信令、物理层信令、MAC信令。
  71. 根据权利要求57至70任一项所述的装置,其中,所述发送单元在所述第一传输资源上发送所述第一信号之前,所述发送单元发送第五信号,所述第五信号用于指示停止上行传输的时频资源或停止上行传输的时频资源集合。
  72. 根据权利要求71所述的装置,其中,所述第五信号包括以下至少之一:高层信令、物理层信令、MAC信令。
  73. 根据权利要求69至72任一项所述的装置,其中,停止上行传输的时频资源为以下之一:
    特定符号的整个系统带宽、特定符号的整个BWP、以特定符号为起点的整个系统带宽、以特定符号为起点的整个BWP、特定符号的部分系统带宽、特定符号的部分BWP、以特定符号为起点的部分系统带宽、以特定符号为起点的部分BWP。
  74. 根据权利要求57至73任一项所述的装置,其中,所述第一传输资源还用于传输除所述第一信号以外的下行信号。
  75. 一种终端,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至19中任一项所述的方法。
  76. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求20至37中任一项所述的方法。
  77. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至19中任一项所述的方法。
  78. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求20至37中任一项所述的方法。
  79. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至19中任一项所述的方法。
  80. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求20至37中任一项所述的方法。
  81. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至19中任一项所述的方法。
  82. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求20至37中任一项所述的方法。
  83. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至19中任一项所述的方法。
  84. 一种计算机程序,所述计算机程序使得计算机执行如权利要求20至37中任一项所述的方法。
PCT/CN2018/100900 2018-08-16 2018-08-16 一种信号传输方法及装置、终端、网络设备 WO2020034166A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201880095860.4A CN112470440A (zh) 2018-08-16 2018-08-16 一种信号传输方法及装置、终端、网络设备
AU2018436541A AU2018436541A1 (en) 2018-08-16 2018-08-16 Signal transmission method and apparatus, terminal, and network device
KR1020217007765A KR20210043657A (ko) 2018-08-16 2018-08-16 신호 전송 방법 및 장치, 단말, 네트워크 기기
EP18929858.1A EP3823233B1 (en) 2018-08-16 2018-08-16 Signal transmission method and device
CN202110402610.4A CN113207161B (zh) 2018-08-16 2018-08-16 一种信号传输方法及装置、终端、网络设备
PCT/CN2018/100900 WO2020034166A1 (zh) 2018-08-16 2018-08-16 一种信号传输方法及装置、终端、网络设备
JP2021507080A JP2022502883A (ja) 2018-08-16 2018-08-16 信号伝送方法及び装置、端末、ネットワーク装置
TW108129381A TW202013920A (zh) 2018-08-16 2019-08-16 一種信號傳輸方法及裝置
US17/169,279 US11974306B2 (en) 2018-08-16 2021-02-05 Method and device for signal transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/100900 WO2020034166A1 (zh) 2018-08-16 2018-08-16 一种信号传输方法及装置、终端、网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/169,279 Continuation US11974306B2 (en) 2018-08-16 2021-02-05 Method and device for signal transmission

Publications (1)

Publication Number Publication Date
WO2020034166A1 true WO2020034166A1 (zh) 2020-02-20

Family

ID=69524983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100900 WO2020034166A1 (zh) 2018-08-16 2018-08-16 一种信号传输方法及装置、终端、网络设备

Country Status (8)

Country Link
US (1) US11974306B2 (zh)
EP (1) EP3823233B1 (zh)
JP (1) JP2022502883A (zh)
KR (1) KR20210043657A (zh)
CN (2) CN113207161B (zh)
AU (1) AU2018436541A1 (zh)
TW (1) TW202013920A (zh)
WO (1) WO2020034166A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113889A (zh) * 2015-01-19 2017-08-29 高通股份有限公司 针对共享或者未许可频谱的介质接入

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093642A2 (ko) 2010-01-26 2011-08-04 엘지전자 주식회사 Tv 화이트스페이스 내에서 스테이션의 동작 방법 및 이를 위한 장치
WO2015010248A1 (zh) 2013-07-23 2015-01-29 华为技术有限公司 频谱资源共享方法、装置及系统
WO2018021834A1 (en) * 2016-07-29 2018-02-01 Samsung Electronics Co., Ltd. Method and apparatus for handling collisions in next generation communication system
CN107959971A (zh) * 2016-10-18 2018-04-24 华为技术有限公司 上行跟踪信号的发送、接收方法和装置
CN108173633B (zh) * 2016-12-07 2020-04-28 华为技术有限公司 接收上行参考信号的方法和装置
US11546929B2 (en) * 2017-01-09 2023-01-03 Huawei Technologies Co., Ltd. Systems and methods for signaling for semi-static configuration in grant-free uplink transmissions
WO2018231621A1 (en) * 2017-06-14 2018-12-20 Idac Holdings, Inc. Group-common physical downlink control channels for wireless communication
CN109996341B (zh) * 2017-12-29 2023-03-24 华为技术有限公司 控制信息的传输方法
JP7064931B2 (ja) * 2018-04-05 2022-05-11 シャープ株式会社 基地局装置および端末装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113889A (zh) * 2015-01-19 2017-08-29 高通股份有限公司 针对共享或者未许可频谱的介质接入

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on indication method for impacted resources for downlink", 3GPP TSG RAN WG1 MEETING #88BIS RL-1704922, 7 April 2017 (2017-04-07), XP051251604 *
See also references of EP3823233A4 *
VIVO: "Multiplexing data with different transmission durations", 3GPP TSG RAN WG1 MEETING 90BIS RL-1717502, 13 October 2017 (2017-10-13), XP051352699 *

Also Published As

Publication number Publication date
US20210160883A1 (en) 2021-05-27
CN113207161B (zh) 2023-04-07
EP3823233A4 (en) 2021-07-28
KR20210043657A (ko) 2021-04-21
AU2018436541A1 (en) 2021-04-08
US11974306B2 (en) 2024-04-30
TW202013920A (zh) 2020-04-01
EP3823233B1 (en) 2023-05-10
JP2022502883A (ja) 2022-01-11
CN112470440A (zh) 2021-03-09
EP3823233A1 (en) 2021-05-19
CN113207161A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
WO2020143057A1 (zh) 信道接入方案的确定方法及装置、终端设备、网络设备
WO2020237594A1 (zh) 一种bwp的管理方法及装置、终端
WO2020051774A1 (zh) 通信方法、终端设备和网络设备
WO2020029256A1 (zh) 一种数据传输方法、终端设备及网络设备
WO2021087678A1 (zh) 一种小区状态管理方法及装置、终端设备、网络设备
WO2020001484A1 (zh) 一种上行信号的传输方法及终端设备、网络设备
WO2020062068A1 (zh) 无线通信方法、终端设备和网络设备
WO2020061948A1 (zh) 检测信道、发送信息的方法和设备
WO2020037626A1 (zh) 一种反馈信息传输方法及装置、通信设备
WO2020073623A1 (zh) 一种资源配置方法及装置、通信设备
WO2020087545A1 (zh) 一种上行控制信息确定方法和通信设备
WO2020001183A1 (zh) 一种上行信号的传输方法及终端设备、网络设备
TW202041072A (zh) 通訊方法和終端設備
WO2020061776A1 (zh) 一种反馈资源的复用方法、终端设备及网络设备
WO2020087854A1 (zh) 无线通信方法和设备
TW202015470A (zh) 無線通訊方法和通信設備
WO2020087310A1 (zh) 一种盲检次数的确定方法及装置、终端
WO2020061773A1 (zh) 一种反馈资源分配方法、终端设备及网络设备
WO2020087311A1 (zh) 一种数据传输方法及装置、网络设备、终端
WO2020034166A1 (zh) 一种信号传输方法及装置、终端、网络设备
WO2019237310A1 (zh) 一种信息传输方法及装置、终端设备、网络设备
WO2020087467A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020024250A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020042036A1 (zh) 无线通信方法和通信设备
WO2020019188A1 (zh) 一种信号传输方法及装置、网络设备、终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507080

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018929858

Country of ref document: EP

Effective date: 20210209

ENP Entry into the national phase

Ref document number: 20217007765

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018436541

Country of ref document: AU

Date of ref document: 20180816

Kind code of ref document: A