WO2020034124A1 - 传输过程中的退避方法、装置、设备、系统及存储介质 - Google Patents

传输过程中的退避方法、装置、设备、系统及存储介质 Download PDF

Info

Publication number
WO2020034124A1
WO2020034124A1 PCT/CN2018/100706 CN2018100706W WO2020034124A1 WO 2020034124 A1 WO2020034124 A1 WO 2020034124A1 CN 2018100706 W CN2018100706 W CN 2018100706W WO 2020034124 A1 WO2020034124 A1 WO 2020034124A1
Authority
WO
WIPO (PCT)
Prior art keywords
cts
time
backoff
rts
backoff period
Prior art date
Application number
PCT/CN2018/100706
Other languages
English (en)
French (fr)
Inventor
朱亚军
洪伟
沙桐
李勇
Original Assignee
北京小米移动软件有限公司
北京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司, 北京邮电大学 filed Critical 北京小米移动软件有限公司
Priority to CN201880001045.7A priority Critical patent/CN109196946B/zh
Priority to EP18929898.7A priority patent/EP3840516A4/en
Priority to PCT/CN2018/100706 priority patent/WO2020034124A1/zh
Priority to US17/267,707 priority patent/US11871449B2/en
Publication of WO2020034124A1 publication Critical patent/WO2020034124A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance

Definitions

  • Embodiments of the present application relate to the field of communications technologies, and in particular, to a backoff method, device, device, system, and storage medium during transmission.
  • the embodiments of the present application provide a backoff method, device, device, system, and storage medium during transmission, which can solve the overprotection of backoff based on the backoff time period in RTS and NAV after the CTS fails to send in the related technology.
  • the problem. The technical solution is as follows:
  • a backoff method during transmission includes:
  • the sending device performs LBT on the unlicensed band
  • the sending device sends a Request Send Frame (Request, Send, RTS) to the receiving device when the LBT is successful.
  • RTS includes the first backoff period.
  • the start time of the first backoff period is no later than the time when other devices listen to the RTS.
  • the end time of a back-off period is the estimated transmission time of the channel clear confirmation frame (Confirmation, Clear, Send, C-CTS);
  • the C-CTS is an acknowledgment frame sent by the sending device after receiving the channel clear frame (CTS) sent by the receiving device.
  • CTS channel clear frame
  • the method further includes:
  • the sending device receives the CTS sent by the receiving device
  • the sending device sends a C-CTS to the receiving device.
  • the C-CTS includes a second backoff period.
  • the start time of the second backoff period is no later than the time when other devices listen to the C-CTS. This is the completion time of this data transmission.
  • the sending device sends the C-CTS to the receiving device, including:
  • the sending device After receiving the CTS, the sending device waits for the first delay time to send the C-CTS to the receiving device.
  • the first delay time is a short inter-frame interval of 16us.
  • the RTS further includes: data transmission time;
  • the data transmission time is used by the receiving device to determine the third backoff period in the CTS.
  • the start of the third backoff period is no later than the time when other devices listen to the CTS.
  • the end of the third backoff period is the data.
  • the completion time of the transfer is used by the receiving device to determine the third backoff period in the CTS.
  • the first backoff period is carried in an RTS Network Allocation Vector (NAV) of the RTS.
  • NAV Network Allocation Vector
  • the first backoff period and the data transmission time are carried in a time field of the RTS.
  • the second backoff period is carried in the C-CTS NAV of the C-CTS.
  • the third backoff period is carried in the CTS NAV of the CTS.
  • a backoff method during transmission includes:
  • the receiving device receives the RTS sent by the sending device.
  • the RTS includes a first backoff period.
  • the start time of the first backoff period is no later than the time when other devices listen to the RTS.
  • the end of the first backoff period is C-CTS. Expected delivery time
  • the C-CTS is an acknowledgment frame sent by the sending device after receiving the CTS sent by the receiving device.
  • the method further includes:
  • the receiving device sends a CTS to the sending device
  • the receiving device receives the C-CTS sent by the sending device.
  • the C-CTS includes a second backoff period.
  • the start time of the second backoff period is no later than the time when other devices listen to the C-CTS, and the end of the second backoff period.
  • the time is the completion time of this data transmission.
  • the receiving device sends the CTS to the sending device, including:
  • the receiving device After the receiving device successfully decodes the RTS within the first preset time period, it waits for the second delay time to send the CTS to the sending device; wherein the first preset time period is a time period counted from the transmission time of the RTS.
  • the receiving device sends the CTS to the sending device, including:
  • the receiving device successfully decodes the RTS after the first preset duration, and then performs LBT on the unlicensed band;
  • the receiving device sends a CTS to the sending device when the LBT is successful.
  • the second delay time is a short inter-frame interval of 16us.
  • the method further includes:
  • the receiving device obtains the data transmission time from the RTS
  • the receiving device determines the third backoff period according to the data transmission time.
  • the start time of the third backoff period is no later than the time when other devices listen to the CTS.
  • the end time of the third backoff period is the completion time of this data transmission.
  • the receiving device generates a CTS carrying a third backoff period.
  • the first backoff period is carried in the RTS NAV of the RTS.
  • the first backoff period and the data transmission time are carried in a time field of the RTS.
  • the second backoff period is carried in the C-CTS NAV of the C-CTS.
  • the third backoff period is carried in the CTS NAV of the CTS.
  • a back-off device during transmission includes:
  • a first processing module configured to perform LBT on an unlicensed frequency band
  • the first sending module is configured to send an RTS to the receiving device when the LBT is successful.
  • the RTS includes a first backoff period.
  • the start time of the first backoff period is no later than the time when other devices listen to the RTS.
  • the end time of the segment is the expected transmission time of the C-CTS;
  • the C-CTS is an acknowledgment frame sent by the sending device after receiving the CTS sent by the receiving device.
  • the apparatus further includes:
  • a first receiving module configured to receive a CTS sent by a receiving device
  • the first sending module is configured to send a C-CTS to the receiving device.
  • the C-CTS includes a second backoff period.
  • the start time of the second backoff period is no later than the time when other devices listen to the C-CTS.
  • the second The end time of the backoff period is the completion time of this data transmission.
  • the first sending module is configured to send the C-CTS to the receiving device after waiting for the first delay time after receiving the CTS.
  • the first delay time is a short inter-frame interval of 16us.
  • the RTS further includes: data transmission time;
  • the data transmission time is used by the receiving device to determine the third backoff period in the CTS.
  • the start of the third backoff period is no later than the time when other devices listen to the CTS.
  • the end of the third backoff period is the data.
  • the completion time of the transfer is used by the receiving device to determine the third backoff period in the CTS.
  • the first backoff period is carried in the RTS NAV of the RTS.
  • the first backoff period and the data transmission time are carried in a time field of the RTS.
  • the second backoff period is carried in the C-CTS NAV of the C-CTS.
  • the third backoff period is carried in the CTS NAV of the CTS.
  • a back-off device during transmission includes:
  • the second receiving module is configured to receive the RTS sent by the sending device.
  • the RTS includes a first backoff period.
  • the start time of the first backoff period is no later than the time when other devices listen to the RTS and the end of the first backoff period.
  • the time is the estimated sending time of the C-CTS;
  • the C-CTS is an acknowledgment frame sent by the sending device after receiving the CTS sent by the receiving device.
  • the apparatus further includes:
  • a second sending module configured to send a CTS to a sending device
  • the second receiving module is configured to receive the C-CTS sent by the sending device.
  • the C-CTS includes a second backoff period.
  • the start time of the second backoff period is no later than the time when other devices listen to the C-CTS.
  • the end time of the second backoff period is the completion time of this data transmission.
  • the second sending module is configured to send the CTS to the sending device after waiting for the second delay time after successfully decoding the RTS within the first preset duration; wherein the first preset duration is from the RTS transmission Duration of the time.
  • the second processing module is configured to successfully decode the RTS after the first preset time period, and then performs LBT on the unlicensed frequency band; the second sending module is configured to send the sending device to the sending device when the LBT is successful Send CTS.
  • the second delay time is a short inter-frame interval of 16us.
  • the apparatus further includes:
  • the second processing module is configured to obtain the data transmission time from the RTS; determine the third backoff period according to the data transmission time, the start time of the third backoff period is no later than the time when other devices listen to the CTS, and the third backoff The end time of the time period is the completion time of this data transmission; a CTS carrying a third back-off time period is generated.
  • the first backoff period is carried in the RTS NAV of the RTS.
  • the first backoff period and the data transmission time are carried in a time field of the RTS.
  • the second backoff period is carried in the C-CTS NAV of the C-CTS.
  • the third backoff period is carried in the CTS NAV of the CTS.
  • a terminal includes a processor and a memory, and the memory stores at least one instruction, at least one program, a code set, or an instruction set.
  • the at least one piece of program, the code set, or the instruction set is loaded and executed by the processor to implement the back-off method in the transmission process according to any of the first aspect of the present application and its optional embodiments.
  • a computer-readable storage medium stores at least one instruction, at least one program, code set, or instruction set, and the at least one instruction, the At least one program, the code set, or the instruction set is loaded and executed by the processor to implement the back-off method in the transmission process according to any one of the first aspect of the present application and its optional embodiments.
  • the transmitting device performs LBT on an unlicensed frequency band, and sends an RTS to the receiving device when the LBT is successful.
  • the RTS includes a first backoff period.
  • the start time of the first backoff period is no later than the time when other sending devices listen to the RTS.
  • the end time of the first backoff period is the estimated transmission time of the C-CTS.
  • the first backoff period does not include the data transmission time. Data transmission The time is carried by the second backoff period, so that other sending devices perform backoff by period according to the first and second backoff periods; when the CTS of the receiving device fails to send, other sending devices do not need to backoff by the second backoff period.
  • FIG. 1 is a schematic diagram of a mobile communication system provided by a related technology
  • FIG. 2 is a schematic diagram of a back-off method in a transmission process provided by a related technology
  • FIG. 3 is a schematic diagram of a back-off method in a transmission process provided by the related art
  • FIG. 4 is a schematic diagram of an implementation environment of a back-off method in a transmission process according to an exemplary embodiment of the present application
  • FIG. 5 is a flowchart of a back-off method in a transmission process according to an exemplary embodiment of the present application
  • FIG. 6 is a flowchart of a back-off method in a transmission process according to another exemplary embodiment of the present application.
  • FIG. 7 is a flowchart of a back-off method in a transmission process according to another exemplary embodiment of the present application.
  • FIG. 8 is a block diagram of a back-off device in a transmission process according to an exemplary embodiment of the present application.
  • FIG. 9 is a block diagram of a back-off device in a transmission process according to another exemplary embodiment of the present application.
  • FIG. 10 is a block diagram of a back-off device in a transmission process according to another exemplary embodiment of the present application.
  • FIG. 11 is a block diagram of a back-off device during transmission according to another exemplary embodiment of the present application.
  • FIG. 12 is a block diagram of a back-off device during transmission according to another exemplary embodiment of the present application.
  • LBT is a carrier sensing technology used for unlicensed spectrum. Before the sending device and the receiving device have a conversation, they use the LBT technology to monitor whether the channel is idle. If the channel is idle, after the LBT succeeds, they send RTS to the receiving device. If RTS sent by other devices is monitored on the channel, then Perform backoff according to the backoff time indicated by the RTS sent by other devices. The technology aims to achieve fair sharing of unlicensed spectrum.
  • NAV is the network allocation vector. NAV indicates a duration. In this application, NAV indicates a backoff period. Other devices perform backoff according to the backoff period indicated by the NAV.
  • RTS is a request to send a frame.
  • the sending device When transmitting data between the sending device and the receiving device, the sending device first sends RTS to the sending device.
  • This frame includes the NAV of the RTS and the data transmission time.
  • other surrounding devices monitor the RTS, and will perform backoff according to the backoff time indicated by the NAV to prevent other transmitting devices from occupying the channel and causing data transmission failure.
  • the data transmission time is used by the receiving device to generate the NAV in the CTS.
  • CTS channel clear frame. After the receiving device receives the RTS, it generates a CTS based on the data transmission time and sends the CTS to the sending device.
  • the CTS includes CTS and NAV. When the CTS is sent successfully, other devices around it will listen to the CTS, and will back off according to the back-off time indicated by the CTS NAV to avoid other devices occupying the channel and causing data transmission failure.
  • C-CTS It is a channel clear confirmation frame.
  • C-CTS is an acknowledgment frame sent to the receiving device after the transmitting device receives the CTS.
  • C-CTS includes C-CTS NAV.
  • the time period that other devices indicated by C-CTS NAV need to back off is data transmission time.
  • NR-U Unauthorized access based on the new air interface.
  • NR-U is a global 5G standard based on a new air interface design based on Orthogonal Frequency Division Multiplexing (OFDM) and is the basis of cellular mobile technology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DIFS Distributed Inter-Frame Spacing
  • DCF Distributed Coordination Function
  • Short Inter-Frame Spacing The device occupies the channel for subsequent data line transmission or interaction is the interval time between frames, which is the minimum inter-frame interval. Due to the short time interval, after SIFS, the device still has the right to use the channel. It is mainly used for the interval of immediate interaction frames between the transmitting device and the receiving device during the transmission time, such as the interaction interval of ACK frames, CTS frames, etc.
  • Acknowledgement When the data transmission is successful, the receiving device sends an acknowledgment frame to the sending device.
  • Transmission Opportunity A complete data transmission opportunity.
  • LBT technology is introduced in related technologies. Because LBT technology can monitor the channel conditions around the transmitting device, but cannot monitor the channel conditions around the receiving device, it will cause hidden node problems.
  • the base station 2 is transmitting data to the user equipment 2; at the same time, because the base station 1 cannot monitor the channel conditions around the base station 2 (located on the peripheral side of the user equipment 2).
  • the base station 1 performs LBT on the unlicensed frequency band near itself, and transmits data to the user equipment 1 when the LBT is successful. At this time, the transmission of the base station 2 will cause interference to the transmission of the base station 1.
  • the RTS / CTS mechanism in the Wireless Regional Network Standard (Electrical and Electronic Engineers 1002.11, IEEE 1002.11) announced by the Institute of Electrical and Electronics Engineers in 1997 was introduced into the related technology.
  • the sending device 21 performs LBT on an unlicensed frequency band.
  • the receiving device 22 When monitoring that the channel is idle, it sends an RTS to the receiving device 22 after a DIFS, and other devices around the sending device.
  • the start time of the RTS and NAV is the time when other devices monitor the RTS, and the end time of the NAV is the end time of the current data transmission.
  • the receiving device receives the RTS sent by the sending device, and sends CTS to the sending device after 16us of SIFS. Other devices around the receiving device back off according to the CTS and NAV of the monitored CTS. Data transmission is performed after SIFS. After the data transmission is successful, the receiving device sends an ACK to the transmitting device after 16u of SIFS. The data transmission is successful.
  • the sending device sends an RTS to the receiving device
  • the receiving device cannot send a CTS to the sending device due to channel access failure, and the handshake between the devices fails.
  • the RTS sent by the sending device still causes other devices listening around the sending device to back off, leading to the problem of over-protection and reducing the access efficiency of unlicensed frequency bands.
  • the sending device performs LBT on an unlicensed band, and sends RTS to the receiving device when the LBT is successful.
  • the RTS includes the first backoff period.
  • the receiving device feeds back CTS and CTS to the sending device.
  • the sending device feeds back the C-CTS to the receiving device and transmits data, and the C-CTS includes the second backoff time.
  • the sending device 31 monitors whether the target channel on the unlicensed frequency band is idle through the LBT technology; when the target channel is idle, the sending device 31 sends an RTS to the receiving device 32; other devices 33 listen to RTS, backoff according to the first backoff period in RTS RNA NAV, where the start time of the first backoff period is no later than the time when other devices 33 listen to RTS, and the end time is the sending device 31 sending C-CTS
  • the receiving device 32 decodes the RTS, determines a third backoff period based on the data transmission time carried by the RTS, and generates a CTS carrying the third backoff period; the receiving device 32 waits for a second delay time of 16us to send
  • the device 31 sends a CTS; the other device 33 listens to the CTS, and performs backoff according to the third backoff period in the CTS and NAV of the CTS.
  • the start time of the third backoff period is no later than the time when the other device 33 listens to the CTS.
  • the end time is the data transmission completion time; the sending device 31 sends a C-CTS to the receiving device 32 after the first delay time of 16us; other devices 33 listen to the CC TS, based on the second back-off time period in the C-CTS and NAV of C-CTS, where the start time of the second back-off time period is no later than the time when other devices 33 listen to the C-CTS, and the end time is data Transmission completion time; the handshake process between the sending device 31 and the receiving device 32 is successfully completed, and the sending device 31 obtains a data transmission opportunity on an unlicensed frequency band. Comparing with FIG. 2, in FIG.
  • the back-off time period of other devices 33 around the transmitting device 31 is divided into two back-off time periods indicated by RTS NAV and C-CTS NAV. If the receiving device 32 reports a CTS failure, other The device 33 does not perform the back-off within the back-off time period indicated by the C-CTS and NAV, and solves the over-protection problem in FIG. 2 where if the receiving device 22 fails to feed back the CTS, other devices 23 around the sending device 21 still back off.
  • FIG. 4 is a schematic diagram of an implementation environment of a back-off method in a transmission process according to an exemplary embodiment of the present application.
  • the implementation environment may include user equipment 440 and at least one base station 420 (only one base station is shown in FIG. 4).
  • the at least one base station 420 may be a macro base station or a micro base station.
  • the user equipment 440 sends RTS to at least one base station 420; the at least one base station 420 receives the RTS sent by the user equipment 440 and feeds back the CTS to the user equipment 440; the user equipment 440 sends back C to the at least one base station 420 after receiving the CTS -CTS.
  • At least one base station 420 sends RTS to user equipment 440; user equipment 440 receives RTS sent by at least one base station 420 and feeds back CTS to at least one base station 420; at least one base station 420 sends feedback to user equipment 440 after receiving CTS C-CTS.
  • the user equipment 440 may be a mobile terminal, such as a mobile phone (or a “cellular” phone) and a device with mobile communication capabilities.
  • the user equipment 440 may be a portable, compact, handheld, built-in computer, or vehicle-mounted mobile terminal.
  • the user equipment 440 may have different names in different mobile communication networks. For example: Mobile Station (Mobile Station), Mobile Station (Mobile), Access Terminal (Access Terminal), User Device (User Terminal), User Agent (User Agent), User Terminal (User Equipment).
  • FIG. 5 is a flowchart of a back-off method during transmission provided by an exemplary embodiment of the present application. This embodiment is exemplified by applying the method to the implementation environment shown in FIG. 4. The method includes:
  • Step 501 The sending device performs LBT on an unlicensed frequency band.
  • the sending device Before the sending device talks to the receiving device, it first monitors the status of the target channel, and monitors whether the target channel is idle. If the target channel is idle, it proceeds to step 201; if the target channel is not idle, it continues to check LBT of the target channel.
  • the target channel belongs to an unlicensed frequency band.
  • multiple communication systems of different standards can compete for frequency-domain resources.
  • WiFi Wireless Fidelity
  • LTE Long Term Evolution
  • NR-U-based communication systems NR-U-based communication systems
  • 5G-based next-generation mobile communication systems can compete for frequency on unlicensed spectrum Domain resources.
  • the sending device in this embodiment is a sender in a certain TXOP process, or a sender in a certain period of time or a certain data transmission process, but it does not mean that the sending device only has a sending function.
  • the same device can be used as a sending device or a receiving device, respectively.
  • Step 502 The sending device sends an RTS to the receiving device when the LBT is successful.
  • the transmitting device determines that the target channel is in an idle state through the LBT technology, and sends an RTS to the receiving device.
  • the sending device monitors the target channel. If the target channel is idle in the first period of time, it is determined that the target channel is in the idle state, that is, the LBT is successful, and the RTS is sent to the receiving device; if the data is monitored within the first period of time When transmitting letter energy, LBT fails.
  • the first duration is a preset monitoring duration.
  • RTS is a request-to-send frame.
  • the first back-off period is carried in the RTS NAV of the RTS; where the RTS NAV is a network allocation vector indicated by the RTS.
  • the start time of the first backoff period is no later than the time when other devices listen to the RTS, and the end time of the first backoff period is the estimated sending time of the C-CTS; where C-CTS is the receiving time of the sending device. Acknowledgment frame sent after the CTS sent by the receiving device.
  • other devices around the sending device monitor the RTS sent by the sending device through LBT technology, and perform backoff according to the first backoff period carried in the RTS NAV.
  • the receiving device in this embodiment is a receiver in a certain TXOP process, or a receiver in a certain period of time or a certain data transmission process, but it does not mean that the receiving device has only a receiving function.
  • the same device can be used as a sending device or a receiving device, respectively.
  • Step 503 The receiving device receives the RTS sent by the sending device.
  • Step 504 The receiving device sends a CTS to the sending device.
  • the receiving device After receiving the RTS sent by the sending device, the receiving device feeds back the CTS to the sending device.
  • Step 505 The sending device receives the CTS sent by the receiving device.
  • Step 506 The sending device sends a C-CTS to the receiving device.
  • the sending device waits for the first delay time to send the C-CTS to the receiving device.
  • C-CTS is an acknowledgement frame sent by the sending device after receiving the CTS from the receiving device.
  • the second backoff period is carried in the C-CTS NAV of the C-CTS; where C-CTS NAV is C-CTS Indicated network allocation vector.
  • the start time of the second backoff period is no later than the time when other devices listen to the C-CTS, and the end time of the second backoff period is the completion time of this data transmission.
  • Step 507 The receiving device receives the C-CTS sent by the sending device.
  • the receiving device receives the C-CTS sent by the sending device, and determines that the handshake between the sending device and the receiving device is successfully completed.
  • the sending device performs LBT on an unlicensed band; the sending device sends an RTS to the receiving device when the LBT is successful, and the RTS includes the first backoff period; the receiving device is in After receiving the RTS sent by the sending device, send the CTS to the sending device; after receiving the CTS sent by the receiving device, the sending device sends a C-CTS to the receiving device.
  • the C-CTS includes the second backoff period, which completes the interval between the sending device and the receiving device Handshake.
  • FIG. 6 is a flowchart of a back-off method in a transmission process provided by another exemplary embodiment of the present application.
  • the method is applied to the implementation environment shown in FIG. 4 as an example. It should be noted that the comparison In Fig. 5, steps 504 to 507 are replaced by steps 601 to 602. When the CTS feedback from the receiving device fails, the sending device stops data transmission.
  • the specific steps are as follows:
  • Step 601 The receiving device fails to send the CTS to the sending device.
  • the receiving device reports the CTS failure to the transmitting device after receiving the RTS from the transmitting device.
  • Step 602 The sending device does not receive the CTS within the second preset time period, and stops data transmission.
  • the sending device waits to receive the CTS feedback from the receiving device.
  • the sending device fails to receive the CTS feedback from the receiving device within the second preset time period, it determines that the session with the receiving device has failed and stops continuing data transmission. In the above case, the sending device does not send the C-CTS to the receiving device, and other sending devices do not need to continue to back off according to the second back-off time in the C-CTS of the C-CTS.
  • the second time period is set in advance, and the second time period starts from the RTS being monitored by other receiving devices; the second time period is used to determine whether the CTS sent by the receiving device is successfully sent.
  • the sending device performs LBT on an unlicensed band; the sending device sends an RTS to the receiving device when the LBT is successful, and the RTS includes the first backoff period; the receiving device is in After receiving the RTS sent by the sending device, the CTS is sent to the sending device. If the sending of the CTS returned by the receiving device fails, the other receiving devices do not perform the backoff indicated by the second backoff period. Other devices in the surroundings still perform over-protection problems caused by avoidance based on the NAV of the monitored RTS, which improves the access efficiency of NR-U.
  • the decoding time of the RTS is limited in the exemplary embodiment shown in FIG. 7, which is a further explanation of the back-off method in the transmission process.
  • This embodiment is exemplified by applying the method to the implementation environment shown in FIG. 4. The method includes:
  • Step 701 The sending device performs LBT on an unlicensed frequency band.
  • step 501 details are not described herein again.
  • Step 702 The sending device sends an RTS to the receiving device when the LBT is successful.
  • the transmitting device determines that the target channel is in an idle state through the LBT technology, and sends an RTS to the receiving device.
  • the sending device monitors the target channel. If the target channel is idle in the first period of time, it is determined that the target channel is in the idle state, that is, the LBT is successful, and the RTS is sent to the receiving device; if the data is monitored within the first period of time When transmitting letter energy, LBT fails.
  • the first duration is a preset monitoring duration.
  • the RTS is a request-to-send frame.
  • the RTS includes a first backoff period and a data transmission time; the first backoff period and the data transmission time are carried in a time field of the RTS.
  • the first backoff period is carried in the RTS NAV of the RTS; wherein the RTS NAV is a network allocation vector indicated by the RTS.
  • the start time of the first backoff period is no later than the time when other devices listen to the RTS, and the end time of the first backoff period is the estimated sending time of the C-CTS; where C-CTS is the receiving time of the sending device. Acknowledgment frame sent after the CTS sent by the receiving device.
  • other devices around the sending device monitor the RTS sent by the sending device through LBT technology, and perform backoff according to the first backoff period carried in the RTS NAV.
  • the receiving device in this embodiment is a receiver in a certain TXOP process, or a receiver in a certain period of time or a certain data transmission process, but it does not mean that the receiving device has only a receiving function.
  • the same device can be used as a sending device or a receiving device, respectively.
  • Step 703 The receiving device receives the RTS sent by the sending device.
  • the receiving device receives the RTS sent by the sending device.
  • the receiving device decodes the RTS to obtain the data transmission time.
  • Step 704 Determine whether the receiving device successfully decodes the RTS within the first preset time period.
  • the receiving device After receiving the RTS sent by the sending device, the receiving device decodes the RTS. Optionally, determine whether the receiving device successfully decodes the RTS within the first preset time period, and if the receiving device successfully decodes the RTS within the first preset time period, proceed to step 705; if the receiving device does not successfully decode the first preset time period If yes, go to step 706.
  • the first preset duration may be set in advance; wherein, the first preset duration is a duration counted from a transmission time of the RTS.
  • Step 705 Send the CTS to the sending device after waiting for the second delay time.
  • the receiving device successfully decodes the RTS within the first preset time period to obtain the data transmission time; the receiving device determines a third backoff period based on the data transmission time, and then generates a CTS carrying the third backoff period. After the decoding is successful, the CTS is sent to the sending device after waiting for the second delay time.
  • the second delay time is a short inter-frame interval of 16us.
  • the third backoff period is carried in the CTS NAV of the CTS.
  • the start time of the third backoff period is no later than the time when other devices listen to the CTS, and the end time of the third backoff period is the completion time of this data transmission.
  • other receiving devices monitor the CTS and perform backoff according to the third backoff period in the CTS and NAV.
  • Step 706 Perform LBT on the unlicensed frequency band.
  • the receiving device After the receiving device successfully decodes the RTS after the first preset duration, it performs LBT on the target channel on the unlicensed frequency band. Optionally, the receiving device monitors the target channel by using LBT technology on an unlicensed band, and the monitoring duration is a second duration. When the target channel is idle during the second duration, it is determined that the target channel is idle and the process proceeds to step 707. If the target channel is in a non-idle state within the second duration, the data transmission fails.
  • the second duration may be a preset monitoring duration; the second duration starts from the end of the first preset duration.
  • Step 707 When the LBT is successful, the receiving device sends a CTS to the sending device.
  • the receiving device successfully decodes the RTS after the first preset duration to obtain the data transmission time; the receiving device determines a third backoff period based on the data transmission time, and then generates a CTS carrying the third backoff period.
  • the receiving device succeeds in LBT, it sends a CTS to the sending device.
  • the third backoff period is carried in the CTS NAV of the CTS.
  • the start time of the third backoff period is no later than the time when other devices listen to the CTS, and the end time of the third backoff period is the completion time of this data transmission.
  • other receiving devices monitor the CTS and perform backoff according to the third backoff period in the CTS and NAV.
  • Step 708 The sending device receives the CTS sent by the receiving device.
  • Step 709 After receiving the CTS, the sending device waits for the first delay time to send the C-CTS to the receiving device.
  • the sending device waits for the first delay time to send the C-CTS to the receiving device; where C-CTS is an acknowledgement frame sent after the sending device receives the CTS sent by the receiving device.
  • the first delay time is a short inter-frame interval of 16us.
  • the C-CTS includes a second backoff period
  • the start time of the second backoff period is no later than the time when other devices listen to the C-CTS
  • the end time of the second backoff period is for this data transmission.
  • the second backoff period is carried in the C-CTS NAV of the C-CTS.
  • other devices listen to the C-CTS and perform backoff according to the second backoff period in the C-CTS and NAV.
  • Step 710 The receiving device receives the C-CTS sent by the sending device.
  • the receiving device receives the C-CTS sent by the sending device, determines that the handshake between the sending device and the receiving device is successfully completed, and has a data transmission opportunity.
  • the sending device performs LBT on an unlicensed band; the sending device sends an RTS to the receiving device when the LBT is successful, and the RTS includes the first backoff period; the receiving device is in After receiving the RTS sent by the sending device, send the CTS to the sending device.
  • the CTS includes the third backoff period.
  • the sending device sends the C-CTS to the receiving device after receiving the CTS sent by the receiving device.
  • the C-CTS includes the second backoff period. Complete the handshake between the sending device and the receiving device.
  • This technical solution uses the first backoff time period and the second backoff time period to make other receiving devices back off in time periods.
  • the receiving device detects whether the RTS is successfully decoded within the first preset time period and sends the CTS in two ways to ensure the successful transmission of the CTS, which also improves the access efficiency of the NR-U.
  • FIG. 8 is a block diagram of a back-off device in a transmission process according to an exemplary embodiment of the present application.
  • the device may implement a part or all of the back-off method in a transmission process through software, hardware, or a combination of both.
  • the device include:
  • a first processing module 820 configured to perform LBT on an unlicensed frequency band
  • the first sending module 840 is configured to send an RTS to the receiving device when the LBT succeeds.
  • the RTS includes a first backoff period.
  • the start time of the first backoff period is no later than the time when other devices listen to the RTS.
  • the end of the time period is the estimated sending time of the C-CTS;
  • the C-CTS is an acknowledgment frame sent by the sending device after receiving the CTS sent by the receiving device.
  • the apparatus further includes:
  • a first receiving module 860 configured to receive a CTS sent by a receiving device
  • the first sending module 840 is configured to send a C-CTS to the receiving device.
  • the C-CTS includes a second backoff period.
  • the start time of the second backoff period is no later than the time when other devices listen to the C-CTS.
  • the end time of the second backoff period is the completion time of this data transmission.
  • the first sending module 840 is configured to send the C-CTS to the receiving device after waiting for the first delay time after receiving the CTS.
  • the first delay time is a short inter-frame interval of 16us.
  • the RTS further includes: data transmission time;
  • the data transmission time is used by the receiving device to determine the third backoff period in the CTS.
  • the start of the third backoff period is no later than the time when other devices listen to the CTS.
  • the end of the third backoff period is the data.
  • the completion time of the transfer is used by the receiving device to determine the third backoff period in the CTS.
  • the first backoff period is carried in the RTS NAV of the RTS.
  • the first backoff period and the data transmission time are carried in a time field of the RTS.
  • the second backoff period is carried in the C-CTS NAV of the C-CTS.
  • the third backoff period is carried in the CTS NAV of the CTS.
  • the transmitting device performs LBT on an unlicensed frequency band; when the LBT succeeds, the transmitting device sends an RTS to the receiving device, and the RTS includes the first backoff period; the receiving device is in After receiving the RTS sent by the sending device, send the CTS to the sending device; after receiving the CTS sent by the receiving device, the sending device sends a C-CTS to the receiving device.
  • the C-CTS includes the second backoff period, which completes the transmission between the sending device and the receiving device. Handshake.
  • This technical solution uses the first backoff time period and the second backoff time period to make other receiving devices back off in time periods.
  • FIG. 9 is a block diagram of a back-off device in a transmission process according to another exemplary embodiment of the present application.
  • the device may implement a part or all of the back-off method in the transmission process through software, hardware, or a combination of both.
  • the device includes:
  • the second receiving module 960 is configured to receive the RTS sent by the sending device.
  • the RTS includes a first backoff period.
  • the start time of the first backoff period is no later than the time when other devices listen to the RTS.
  • the end time is the expected transmission time of the C-CTS;
  • the C-CTS is an acknowledgment frame sent by the sending device after receiving the CTS sent by the receiving device.
  • the apparatus further includes:
  • a second sending module 940 configured to send a CTS to a sending device
  • the second receiving module 960 is configured to receive the C-CTS sent by the sending device.
  • the C-CTS includes a second backoff period, and the start time of the second backoff period is no later than the time when other devices listen to the C-CTS.
  • the end time of the second backoff period is the completion time of this data transmission.
  • the second sending module 940 is configured to send the CTS to the sending device after waiting for the second delay time after successfully decoding the RTS within the first preset duration; wherein the first preset duration is from the RTS Duration of sending time.
  • the second processing module 920 is configured to successfully decode RTS after the first preset duration, and perform LBT on an unlicensed frequency band;
  • the second sending module 940 is configured to send a CTS to the sending device when the LBT is successful.
  • the second delay time is a short inter-frame interval of 16us.
  • the apparatus further includes:
  • the second processing module 920 is configured to obtain a data transmission time from the RTS; determine a third backoff period based on the data transmission time, and the start time of the third backoff period is no later than the time when other devices listen to the CTS; the third The end time of the backoff period is the completion time of this data transmission; a CTS carrying a third backoff period is generated.
  • the first backoff period is carried in the RTS NAV of the RTS.
  • the first backoff period and the data transmission time are carried in a time field of the RTS.
  • the second backoff period is carried in the C-CTS NAV of the C-CTS.
  • the third backoff period is carried in the CTS NAV of the CTS.
  • the receiving device receives the RTS sent by the sending device, and the RTS includes the first back-off period; the receiving device receives the C-CTS sent by the sending device, and the C-CTS includes the first Second backoff period.
  • This technical solution uses the first backoff time period and the second backoff time period to make other receiving devices back off in time periods. If the CTS feedback sent by the receiving device fails, other receiving devices do not perform the backoff indicated in the second backoff time period. After the CTS of the receiving device in the related art fails to be transmitted, other devices around the transmitting device still perform overprotection problems caused by the avoidance of the NAV of the monitored RTS, thereby improving the access efficiency of the NR-U.
  • FIG. 10 is a block diagram of a back-off device 1000 during a transmission process according to an exemplary embodiment of the present application.
  • the device can be used as a transmitting device or a transmitting device.
  • the device 1000 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness equipment, a personal digital assistant, and the like.
  • the device 1000 may include one or more of the following components: a processing component 1002, a memory 1004, a power supply component 1006, a multimedia component 1008, an audio component 1010, an input / output (I / O) interface 1012, a sensor component 1014, And communication component 1016.
  • the processing component 1002 generally controls overall operations of the device 1000, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 1002 may include one or more processors 1018 to execute instructions to complete all or part of the steps performed by the UE 20 in the foregoing method embodiments.
  • the processing component 1002 may include one or more modules to facilitate interaction between the processing component 1002 and other components.
  • the processing component 1002 may include a multimedia module to facilitate the interaction between the multimedia component 1008 and the processing component 1002.
  • the memory 1004 is configured to store various types of data to support operation at the device 1000. Examples of such data include instructions for any application or method operating on the device 1000, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 1004 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), Programming read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM Programming read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply assembly 1006 provides power to various components of the apparatus 1000.
  • the power component 1006 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for the device 1000.
  • the multimedia component 1008 includes a screen that provides an output interface between the device 1000 and a user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive an input signal from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect duration and pressure related to the touch or slide operation.
  • the multimedia component 1008 includes a front camera and / or a rear camera. When the device 1000 is in an operation mode, such as a shooting mode or a video mode, the front camera and / or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1010 is configured to output and / or input audio signals.
  • the audio component 1010 includes a microphone (MIC) that is configured to receive an external audio signal when the device 1000 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in the memory 1004 or transmitted via the communication component 1016.
  • the audio component 1010 further includes a speaker for outputting audio signals.
  • the I / O interface 1012 provides an interface between the processing component 1002 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor assembly 1014 includes one or more sensors for providing status assessment of various aspects of the device 1000.
  • the sensor component 1014 can detect the on / off state of the device 1000 and the relative positioning of the components.
  • the component is the display and keypad of the device 1000.
  • the sensor component 1014 can also detect changes in the position of the device 1000 or a component of the device 1000 , The presence or absence of the user's contact with the device 1000, the orientation or acceleration / deceleration of the device 1000, and the temperature change of the device 1000.
  • the sensor assembly 1014 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 1014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 1014 may further include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 1016 is configured to facilitate wired or wireless communication between the device 1000 and other devices.
  • the device 1000 may access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication section 1016 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 1016 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra wideband
  • Bluetooth Bluetooth
  • the device 1000 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable It is implemented by a gate array (FPGA), a controller, a microcontroller, a microprocessor, or other electronic components, and is used to execute the back-off method in the transmission process in the foregoing method embodiments.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable It is implemented by a gate array (FPGA), a controller, a microcontroller, a microprocessor, or other electronic components, and is used to execute the back-off method in the transmission process in the foregoing method embodiments.
  • a non-transitory computer-readable storage medium including instructions such as a memory 1004 including instructions, may be provided.
  • the foregoing instructions may be executed by the processor 1018 of the device 1000 to complete the transmission process in the foregoing method embodiment.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.
  • FIG. 11 is a block diagram of a back-off device 1100 during a transmission process according to another exemplary embodiment of the present application.
  • the device can be used as a transmitting device or a transmitting device.
  • the back-off device 1100 in the transmission process may be a base station.
  • the back-off device 1100 in the transmission process may include a processor 1101, a receiver 1102, a transmitter 1103, and a memory 1104.
  • the receiver 1102, the transmitter 1103, and the memory 1104 are connected to the processor 1101 through a bus, respectively.
  • the processor 1101 includes one or more processing cores.
  • the processor 1101 runs a software program and a module to execute a method performed by a sending device in a backoff method in a transmission process provided by an embodiment of the present disclosure.
  • the memory 1104 may be used to store software programs and modules. Specifically, the memory 1104 may store an operating system 11041 and an application program module 11042 required for at least one function.
  • the receiver 1102 is configured to receive communication data sent by other devices, and the transmitter 1103 is configured to send communication data to other devices.
  • Fig. 12 is a block diagram of a back-off system 1200 during transmission according to an exemplary embodiment. As shown in Fig. 12, the back-off system 1200 during transmission includes a base station 1201 and a user equipment 1202.
  • the base station 1201 is configured to perform a back-off method in a transmission process performed by the base station in the embodiment shown in FIG. 4.
  • the user equipment 1202 is configured to perform a back-off method in a transmission process performed by the user equipment in the embodiment shown in FIG. 4.
  • a computer-readable storage medium is also provided.
  • the computer-readable storage medium is a non-volatile computer-readable storage medium, and the computer-readable storage medium stores a computer program therein.
  • the computer program is executed by the processing component, the back-off method in the transmission process provided by the above embodiments of the present disclosure can be implemented.
  • An embodiment of the present disclosure also provides a computer program product.
  • the computer program product stores instructions that, when run on a computer, enable the computer to execute the backoff method in the transmission process provided by the embodiments of the present disclosure.
  • An embodiment of the present disclosure further provides a chip, which includes a programmable logic circuit and / or program instructions. When the chip runs, the chip can execute a backoff method in a transmission process provided by the embodiment of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输过程中的退避方法、装置、设备、系统及存储介质,涉及通信技术领域。该方法包括:发送设备在非授权频段上进行LBT;发送设备在LBT成功时向接收设备发送RTS,RTS包括第一退避时间段;发送设备在接收到接收设备发送的CTS之后向接收设备发送C-CTS,C-CTS包括第二退避时间段。该技术方案通过使周围监听的其它设备根据第一退避时间段和第二退避时间段进行分时段退避,当CTS发送失败时,仅需要根据第一退避时间段进行退避即可,从而解决了相关技术中的接收设备CTS发送失败之后,发送设备周围的其它设备仍会根据监听到的RTS的NAV进行长时间避让导致的过保护问题。

Description

传输过程中的退避方法、装置、设备、系统及存储介质 技术领域
本申请实施例涉及通信技术领域,特别涉及一种传输过程中的退避方法、装置、设备、系统及存储介质。
背景技术
移动设备和移动互联网已经深入到用户的日常生活中,移动互联网的飞速发展带来了数据爆炸式的增长,用户对流量密度、网络容量、传输速率、时延等提出了更高的要求,第五代移动通信(Fifth-Generation,5G)应运而生。5G网络面向新场景和新频段进行了新的空中接口的设计。另外,由于用户需求的不断增大,频谱资源短缺的问题愈发严峻,授权频段已经无法满足市场需求,所以资源丰富的非授权频段成为企业探索的目标。为了保证非授权频段的不同无线接入技术之间的公平共存,辅助授权接入技术中引入了基于空闲信道检测的载波侦听(Listen Before Talk,LBT)技术。
相关技术中,发送设备在非授权频段上进行LBT成功后,会指示发送设备周围的其它设备退避较长的一段时间,但若接收设备周围的信道状况较差时,本次数据传输过程可能是未成功进行的,也即其它设备的退避是无效退避,从而导致过保护问题。
发明内容
本申请实施例提供了一种传输过程中的退避方法、装置、设备、系统及存储介质,可以解决相关技术中CTS发送失败后,其它设备仍根据RTS NAV中的退避时间段进行退避的过保护的问题。所述技术方案如下:
根据本申请的第一方面,提供了一种传输过程中的退避方法,该方法包括:
发送设备在非授权频段上进行LBT;
发送设备在LBT成功时向接收设备发送请求发送帧(Request To Send,RTS),RTS包括第一退避时间段,第一退避时间段的开始时刻为不晚于其它设备监听到RTS的时刻,第一退避时间段的结束时刻为信道清除确认帧 (Confirmation on Clear To Send,C-CTS)的预计发送时刻;
其中,C-CTS是发送设备接收到接收设备发送的信道清除帧(Clear To Send,CTS)后发送的确认帧。
在一些实施例中,该方法还包括:
发送设备接收接收设备发送的CTS;
发送设备向接收设备发送C-CTS,C-CTS包括第二退避时间段,第二退避时间段的开始时刻为不晚于其它设备监听到C-CTS的时刻,第二退避时间段的结束时刻为本次数据传输的完成时刻。
在一些实施例中,发送设备向接收设备发送C-CTS,包括:
发送设备在接收到CTS后,等待第一延迟时间后向接收设备发送C-CTS。
在一些实施例中,第一延迟时间为16us的短帧间间隔。
在一些实施例中,RTS还包括:数据传输时间;
数据传输时间用于供接收设备确定CTS中的第三退避时间段,第三退避时间段的开始时刻为不晚于其它设备监听到CTS的时刻,第三退避时间段的结束时刻为本次数据传输的完成时刻。
在一些实施例中,第一退避时间段承载在RTS的RTS网络分配矢量(Network Allocation Vector,NAV)中。
在一些实施例中,第一退避时间段和数据传输时间承载在RTS的时间字段中。
在一些实施例中,第二退避时间段承载在C-CTS的C-CTS NAV中。
在一些实施例中,第三退避时间段承载在CTS的CTS NAV中。
根据本申请的第二方面,提供了一种传输过程中的退避方法,该方法包括:
接收设备接收发送设备发送的RTS,RTS包括第一退避时间段,第一退避时间段的开始时刻为不晚于其它设备监听到RTS的时刻,第一退避时间段的结束时刻为C-CTS的预计发送时刻;
其中,C-CTS是发送设备接收到接收设备发送的CTS后发送的确认帧。
在一些实施例中,该方法还包括:
接收设备向发送设备发送CTS;
接收设备接收发送设备发送的C-CTS,C-CTS包括第二退避时间段,第二退避时间段的开始时刻为不晚于其它设备监听到C-CTS的时刻,第二退避时间段的结束时刻为本次数据传输的完成时刻。
在一些实施例中,接收设备向发送设备发送CTS,包括:
接收设备在第一预设时长内成功解码RTS后,等待第二延迟时间后向发送设备发送CTS;其中,第一预设时长是从RTS的发送时刻计时的时长。
在一些实施例中,接收设备向发送设备发送CTS,包括:
接收设备在第一预设时长后成功解码RTS,则在非授权频段上进行LBT;
接收设备在LBT成功时,向发送设备发送CTS。
在一些实施例中,第二延迟时间为16us的短帧间间隔。
在一些实施例中,该方法还包括:
接收设备从RTS中获取数据传输时间;
接收设备根据数据传输时间确定第三退避时间段,第三退避时间段的开始时刻为不晚于其它设备监听到CTS的时刻,第三退避时间段的结束时刻为本次数据传输的完成时刻;
接收设备生成携带有第三退避时间段的CTS。
在一些实施例中,第一退避时间段承载在RTS的RTS NAV中。
在一些实施例中,第一退避时间段和数据传输时间承载在RTS的时间字段中。
在一些实施例中,第二退避时间段承载在C-CTS的C-CTS NAV中。
在一些实施例中,第三退避时间段承载在CTS的CTS NAV中。
根据本申请的第三方面,提供了一种传输过程中的退避装置,该装置包括:
第一处理模块,被配置为在非授权频段上进行LBT;
第一发送模块,被配置为在LBT成功时向接收设备发送RTS,RTS包括第一退避时间段,第一退避时间段的开始时刻为不晚于其它设备监听到RTS的时刻,第一退避时间段的结束时刻为C-CTS的预计发送时刻;
其中,C-CTS是发送设备接收到接收设备发送的CTS后发送的确认帧。
在一些实施例中,该装置还包括:
第一接收模块,被配置为接收接收设备发送的CTS;
第一发送模块,被配置为向接收设备发送C-CTS,C-CTS包括第二退避时间段,第二退避时间段的开始时刻为不晚于其它设备监听到C-CTS的时刻,第二退避时间段的结束时刻为本次数据传输的完成时刻。
在一些实施例中,第一发送模块,被配置为在接收到CTS后,等待第一延迟时间后向接收设备发送C-CTS。
在一些实施例中,第一延迟时间为16us的短帧间间隔。
在一些实施例中,RTS还包括:数据传输时间;
数据传输时间用于供接收设备确定CTS中的第三退避时间段,第三退避时间段的开始时刻为不晚于其它设备监听到CTS的时刻,第三退避时间段的结束时刻为本次数据传输的完成时刻。
在一些实施例中,第一退避时间段承载在RTS的RTS NAV中。
在一些实施例中,第一退避时间段和数据传输时间承载在RTS的时间字段中。
在一些实施例中,第二退避时间段承载在C-CTS的C-CTS NAV中。
在一些实施例中,第三退避时间段承载在CTS的CTS NAV中。
根据本申请的第四方面,提供了一种传输过程中的退避装置,该装置包括:
第二接收模块,被配置为接收发送设备发送的RTS,RTS包括第一退避时间段,第一退避时间段的开始时刻为不晚于其它设备监听到RTS的时刻,第一退避时间段的结束时刻为C-CTS的预计发送时刻;
其中,C-CTS是发送设备接收到接收设备发送的CTS后发送的确认帧。
在一些实施例中,该装置还包括:
第二发送模块,被配置为向发送设备发送CTS;
第二接收模块,被配置为接收发送设备发送的C-CTS,C-CTS包括第二退避时间段,第二退避时间段的开始时刻为不晚于其它设备监听到C-CTS的时刻,第二退避时间段的结束时刻为本次数据传输的完成时刻。
在一些实施例中,第二发送模块,被配置为在第一预设时长内成功解码RTS后,等待第二延迟时间后向发送设备发送CTS;其中,第一预设时长是从RTS的发送时刻计时的时长。
在一些实施例中,第二处理模块,被配置为在第一预设时长后成功解码RTS,则在非授权频段上进行LBT;第二发送模块,被配置为在LBT成功时,向发送设备发送CTS。
在一些实施例中,第二延迟时间为16us的短帧间间隔。
在一些实施例中,该装置还包括:
第二处理模块,被配置为从RTS中获取数据传输时间;根据数据传输时间确定第三退避时间段,第三退避时间段的开始时刻为不晚于其它设备监听到CTS的时刻,第三退避时间段的结束时刻为本次数据传输的完成时刻;生成携 带有第三退避时间段的CTS。
在一些实施例中,第一退避时间段承载在RTS的RTS NAV中。
在一些实施例中,第一退避时间段和数据传输时间承载在RTS的时间字段中。
在一些实施例中,第二退避时间段承载在C-CTS的C-CTS NAV中。
在一些实施例中,第三退避时间段承载在CTS的CTS NAV中。
根据本申请的第五方面,提供了一种终端,所述终端包括处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如上述本申请的第一方面及其可选的实施例中任一所述的传输过程中的退避方法。
根据本申请的第六方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如上述本申请第一方面及其可选的实施例中任一所述的传输过程中的退避方法。
本申请实施例提供的技术方案带来的有益效果至少包括:
发送设备在非授权频段上进行LBT,在LBT成功时向接收设备发送RTS,RTS包括第一退避时间段。第一退避时间段的开始时刻为不晚于其它发送设备监听到RTS的时刻,第一退避时间的结束时刻为C-CTS的预计发送时刻,第一退避时间段不包括数据传输时间,数据传输时间由第二退避时间段承载,由此其它发送设备根据第一、二退避时间段进行分时段退避;而当接收设备CTS发送失败时,其它发送设备则不需要根据第二退避时间段进行退避,避免了发送设备周围的其它设备在接收设备发送CTS失败后仍需执行针对数据传输时间的退避,避免了数据传输过程中的过保护问题,提高了基于新空中接口的非授权接入(New Radio Based Unlicensed Access,NR-U)的接入效率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其它的附图。
图1是相关技术提供的移动通信系统的示意图;
图2是相关技术提供的传输过程中的退避方法的示意图;
图3是相关技术提供的传输过程中的退避方法的示意图;
图4是本申请一个示例性实施例提供的传输过程中的退避方法的实施环境示意图;
图5本申请一个示例性实施例提供的传输过程中的退避方法的流程图;
图6本申请另一个示例性实施例提供的传输过程中的退避方法的流程图;
图7本申请另一个示例性实施例提供的传输过程中的退避方法的流程图;
图8是本申请一个示例性实施例提供的传输过程中的退避装置的框图;
图9是本申请另一个示例性实施例提供的传输过程中的退避装置的框图;
图10是本申请另一个示例性实施例提供的传输过程中的退避装置的框图;
图11是本申请另一个示例性实施例提供的传输过程中的退避装置的框图;
图12是本申请另一个示例性实施例提供的传输过程中的退避装置的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
首先,对本申请实施例涉及的若干个名词进行解释:
LBT:是针对非授权频谱使用的载波侦听技术。发送设备与接收设备进行会话之前,通过LBT技术监听信道是否处于空闲状态,若信道处于空闲状态,则在LBT成功之后,向接收设备发送RTS;若在信道上监听到其它设备发送的RTS,则根据其它设备发送的RTS指示的退避时间进行退避。该技术旨在实现对非授权频谱的公平共享。
NAV:是网络分配矢量。NAV指示一个时长。在本申请中,NAV指示退避时间段。其它设备根据NAV指示的退避时间段进行退避。
RTS:是请求发送帧。当发送设备与接收设备之间进行数据传输时,发送设备首先向发送设备发送RTS,这个帧包括了RTS的NAV以及数据传输时间。当RTS发送成功,周围其它设备监听到该RTS,会根据NAV指示的退避时间进行退避,避免其它发送设备占用信道导致数据传输失败。数据传输时间用于 接收设备生成CTS中的NAV。
CTS:是信道清除帧。当接收设备接收到RTS之后,根据数据传输时间生成CTS,且向发送设备发送设备发送CTS,CTS包括了CTS NAV。当CTS发送成功,周围其它设备监听到该CTS,会根据CTS NAV指示的退避时间进行退避,避免其它设备占用信道导致数据传输失败。
C-CTS:是信道清除确认帧。C-CTS是在发送设备接收到CTS后向接收设备发送的确认帧。C-CTS中包括C-CTS NAV,本申请中,C-CTS NAV指示的其它设备需要退避的时间段是数据传输时间。
NR-U:是基于新空中接口的非授权接入。NR-U是基于正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)的全新空中接口设计的全球性5G标准,是蜂窝移动技术基础。
分布式帧间间隔(Distributed Inter-Frame Spacing,DIFS):在分布式协调功能(Distributed Coordination Function,DCF)协议中,发送设备在开始发送数据之前需要监听信道是否空闲,如果信道空闲,则发送设备仍需等待一段时间才开始发送数据,上述等待的一段时间即为DIFS。
短帧间间隔(Short Inter-Frame Spacing,SIFS):设备占用信道后进数据行传输或者交互是各帧之间的间隔时间,是最小的帧间间隔。由于时间间隔短,在SIFS之后,设备仍保持有信道的使用权。主要用于传输时间内发送设备与接收设备之间的立即交互帧的时间间隔,如ACK帧、CTS帧等的交互间隔。
确认反馈帧(Acknowledgement,ACK):数据传输成功时,接收设备向发送设备反馈的确认帧。
传输机会(Transmission Opportunity,TXOP):一次完整的数据传输机会。
为了基于5G的非授权频段的多种无线接入技术之间的公平共存,相关技术中引入了LBT技术。由于LBT技术能够监听发送设备周围的信道状况,但无法监听接收设备周围的信道状况,所以会造成隐藏节点问题。示意性的,如图1所示,基站2正在向用户设备2传输数据;同时,由于基站1不能监听到基站2(位于用户设备2的周侧)周围的信道状况。基站1在自身附近对非授权频段进行LBT,在LBT成功时向用户设备1传输数据,此时,基站2的传输会对基站1的传输造成干扰。
为了解决上述隐藏节点问题,相关技术中引入了电气和电子工程师协会于 1997年公告的无线区域网络标准(the Institute of Electrical and Electronics Engineers 1002.11,IEEE 1002.11)中的RTS/CTS机制。示意性的,参考图2,该技术方案中,发送设备21在非授权频段上进行LBT,在监听到信道处于空闲状态时,在一个DIFS之后向接收设备22发送RTS,发送设备周围的其它设备根据监听到的RTS指示的RTS NAV进行退避,该RTS NAV的开始时刻是其它设备监听到RTS的时刻,该NAV的结束时刻是本次数据传输的结束时刻。接收设备接收到发送设备发送的RTS,在16us的SIFS之后向发送设备发送CTS,接收设备周围的其它设备根据监听到的CTS的CTS NAV进行退避,发送设备接收接收设备发送的CTS,在16u的SIFS之后进行数据传输,接收设备在数据传输成功后在16u的SIFS之后向发送设备发送ACK,数据传输成功。该技术方案解决了非授权频谱上隐藏节点问题。
然而,上述技术方案中,发送设备向接收设备发送RTS,接收设备由于信道接入失败,无法向发送设备发送CTS,设备之间握手失败。但是,发送设备发送的RTS仍会使发送设备周围进行监听的其它设备进行退避,导致过保护的问题,降低了非授权频段的接入效率。
本申请提供了下述技术方案:发送设备在非授权频段上进行LBT,在LBT成功时向接收设备发送RTS,RTS包括第一退避时间段;接收设备在接收RTS之后向发送设备反馈CTS,CTS包括第三退避时间;发送设备在接收CTS之后向接收设备反馈C-CTS并传输数据,C-CTS包括第二退避时间。这一技术方案用于解决过保护问题。示意性的,参考图3,发送设备31通过LBT技术监听非授权频段上的目标信道是否处于空闲状态;当目标信道处于空闲状态时,发送设备31向接收设备32发送RTS;其它设备33监听到RTS,根据RTS的RTS NAV中的第一退避时间段进行退避,其中,第一退避时间段的开始时刻是不晚于其它设备33监听到RTS的时刻,结束时刻是发送设备31发送C-CTS的预计时刻;而接收设备32解码RTS,根据RTS携带的数据传输时间确定第三退避时间段,且生成携带第三退避时间段的CTS;接收设备32在等待第二延迟时间16us后,向发送设备31发送CTS;其它设备33监听到CTS,根据CTS的CTS NAV中的第三退避时间段进行退避,其中,第三退避时间段的开始时刻是不晚于其它设备33监听到CTS的时刻,结束时刻是数据传输完成时刻;发送设备31在第一延迟时间16us之后向接收设备32发送C-CTS; 其它设备33监听到C-CTS,根据C-CTS的C-CTS NAV中的第二退避时间段进行退避,其中,第二退避时间段的开始时刻是不晚于其它设备33监听到C-CTS的时刻,结束时刻是数据传输完成时刻;发送设备31与接收设备32的握手过程成功完成,发送设备31获得一次非授权频段上的数据传输机会。对比图2,图3中将发送设备31周围的其它设备33的退避时间段分成了RTS NAV与C-CTS NAV指示的两个退避时间段进行退避,若接收设备32反馈CTS失败后,则其它设备33不执行C-CTS NAV指示的退避时间段内的退避,解决了图2中若接收设备22反馈CTS失败,发送设备21周围其它设备23仍退避的过保护问题。
图4是本申请一个示例性实施例提供的传输过程中的退避方法的实施环境示意图。该实施环境可以包括用户设备440和至少一个基站420(图4中仅示出一个基站)。可选的,至少一个基站420可以是宏基站或者微基站。
在上行场景下,用户设备440向至少一个基站420发送RTS;至少一个基站420接收用户设备440发送的RTS,并向用户设备440反馈CTS;用户设备440接收到CTS之后向至少一个基站420反馈C-CTS。
在下行场景下,至少一个基站420向用户设备440发送RTS;用户设备440接收至少一个基站420发送的RTS,并向至少一个基站420反馈CTS;至少一个基站420接收到CTS之后向用户设备440反馈C-CTS。
用户设备440可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动通信能力的设备,例如,用户设备440可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动终端。在不同的移动通信网络中,用户设备440可以具有不同的名称。比如:移动站(Mobile Station)、移动台(Mobile)、接入终端(Access Terminal)、用户装置(User Terminal)、用户代理(User Agent)、用户终端(User Equipment)。
图5是本申请一个示例性的实施例提供的传输过程中的退避方法的流程图,本实施例以该方法应用于图4所示的实施环境中来举例说明,该方法包括:
步骤501,发送设备在非授权频段上进行LBT。
发送设备在与接收设备会话之前,首先对目标信道的状态进行监听,监听目标信道是否处于空闲状态,若目标信道处于空闲状态,则进入步骤201;若 目标信道处于非空闲状态,则继续进行对目标信道的LBT。
可选的,目标信道属于非授权频段。非授权频段上,多个不同制式的通信系统可以竞争使用频域资源。比如,无线保真(Wireless Fidelity,WiFi)系统和长期演进(Long Term Evolution,LTE)系统、基于NR-U的通信系统及基于5G的更下一代移动通信系统可以竞争使用非授权频谱上的频域资源。
可选的,本实施例中的发送设备是某一次TXOP过程中的发送方,或者,某一段时间或某次数据传输过程中的发送方,但是不代表发送设备仅仅具有发送功能。在不同的时间段、不同状态或不同数据传输过程中,同一设备可以分别作为发送设备或接收设备。
步骤502,发送设备在LBT成功时向接收设备发送RTS。
发送设备通过LBT技术确定目标信道处于空闲状态,向接收设备发送RTS。
可选的,发送设备对目标信道进行监听,在第一时长内目标信道处于空闲状态,则确定目标信道处于空闲状态,即LBT成功,向接收设备发送RTS;若在第一时长内监听到数据传输信能量,则LBT失败。可选的,第一时长是预设的监听时长。
RTS是请求发送帧,可选的,第一退避时间段承载在RTS的RTS NAV中;其中,RTS NAV为RTS指示的网络分配矢量。
可选的,第一退避时间段的开始时刻为不晚于其它设备监听到RTS的时刻,第一退避时间段的结束时刻为C-CTS的预计发送时刻;其中,C-CTS是发送设备接收到接收设备发送的CTS后发送的确认帧。
可选的,发送设备周围的其它设备通过LBT技术监听到发送设备发送的RTS,根据RTS NAV中承载的第一退避时间段进行退避。
可选的,本实施例中的接收设备是某一次TXOP过程中的接收方,或者,某一段时间或某次数据传输过程中的接收方,但是不代表接收设备仅仅具有接收功能。在不同的时间段、不同状态或不同数据传输过程中,同一设备可以分别作为发送设备或接收设备。
步骤503,接收设备接收发送设备发送的RTS。
步骤504,接收设备向发送设备发送CTS。
接收设备在接收到发送设备发送的RTS之后,向发送设备反馈CTS。
步骤505,发送设备接收接收设备发送的CTS。
步骤506,发送设备向接收设备发送C-CTS。
可选的,发送设备在接收到CTS后,等待第一延迟时间后向接收设备发送C-CTS。
C-CTS是发送设备接收到接收设备发送的CTS后发送的确认帧,可选的,第二退避时间段承载在C-CTS的C-CTS NAV中;其中,C-CTS NAV为C-CTS指示的网络分配矢量。
可选的,第二退避时间段的开始时刻为不晚于其它设备监听到C-CTS的时刻,第二退避时间段的结束时刻为本次数据传输的完成时刻。
可选的,其它设备监听到C-CTS之后,根据C-CTS NAV中的第二退避时间段进行退避。
步骤507,接收设备接收发送设备发送的C-CTS。
接收设备接收发送设备发送设备发送的C-CTS,确定发送设备与接收设备本次握手成功完成。
综上所述,本实施例提供的传输过程中的退避方法,发送设备在非授权频段上进行LBT;发送设备在LBT成功时向接收设备发送RTS,RTS包括第一退避时间段;接收设备在接收发送设备发送的RTS之后向发送设备发送CTS;发送设备在接收到接收设备发送的CTS之后向接收设备发送C-CTS,C-CTS包括第二退避时间段,完成发送设备与接收设备之间的握手。该技术方案通过第一退避时间段与第二退避时间段使其它接收设备分时间段进行退避,若接收设备反馈的CTS发送失败,则其它接收设备不执行第二退避时间段指示的退避,解决了相关技术中接收设备CTS发送失败之后,发送设备周围的其它设备仍会根据监听到的RTS的NAV进行避让导致的过保护问题,提高了NR-U的接入效率。
图6是本申请另一个示例性的实施例提供的传输过程中的退避方法的流程图,本实施例以该方法应用于图4所示的实施环境中来举例说明,需要说明的是,对比图5,将步骤504至步骤507替换为步骤601至步骤602,当接收设备反馈的CTS发送失败,则发送设备停止数据传输,具体步骤如下:
步骤601,接收设备向发送设备发送CTS失败。
接收设备在接收到发送设备发生的RTS之后向发送设备反馈CTS失败。
步骤602,发送设备在第二预设时长内未收到CTS,停止数据传输。
发送设备等待接收接收设备反馈的CTS,当发送设备在第二预设时长内未能接收到接收设备反馈的CTS,则确定与接收设备的会话失败,停止继续数据传输。在上述情况下,发送设备不会向接收设备发送C-CTS,其它发送设备则不需要根据C-CTS的C-CTS中的第二退避时间继续退避。
可选的,第二时长是预先设置的,第二时长是从其它接收设备监听到RTS开始的;第二时长是用于判断接收设备发送的CTS是否发送成功。
综上所述,本实施例提供的传输过程中的退避方法,发送设备在非授权频段上进行LBT;发送设备在LBT成功时向接收设备发送RTS,RTS包括第一退避时间段;接收设备在接收发送设备发送的RTS之后向发送设备发送CTS,接收设备反馈的CTS发送失败,则其它接收设备不执行第二退避时间段指示的退避,解决了相关技术中接收设备CTS发送失败之后,发送设备周围的其它设备仍会根据监听到的RTS的NAV进行避让导致的过保护问题,提高了NR-U的接入效率。
基于图5,图7所示的示例性实施例中对RTS的解码时间进行了限制,是对传输过程中的退避方法的进一步阐释说明。本实施例以该方法应用于图4所示的实施环境中来举例说明,该方法包括:
步骤701,发送设备在非授权频段上进行LBT。
参考步骤501,此处不再加以赘述。
步骤702,发送设备在LBT成功时向接收设备发送RTS。
发送设备通过LBT技术确定目标信道处于空闲状态,向接收设备发送RTS。
可选的,发送设备对目标信道进行监听,在第一时长内目标信道处于空闲状态,则确定目标信道处于空闲状态,即LBT成功,向接收设备发送RTS;若在第一时长内监听到数据传输信能量,则LBT失败。可选的,第一时长是预设的监听时长。
RTS是请求发送帧,可选的,RTS包括第一退避时间段和数据传输时间;第一退避时间段和数据传输时间承载在RTS的时间字段段中。
可选的,第一退避时间段承载在RTS的RTS NAV中;其中,RTS NAV为RTS指示的网络分配矢量。
可选的,第一退避时间段的开始时刻为不晚于其它设备监听到RTS的时 刻,第一退避时间段的结束时刻为C-CTS的预计发送时刻;其中,C-CTS是发送设备接收到接收设备发送的CTS后发送的确认帧。
可选的,发送设备周围的其它设备通过LBT技术监听到发送设备发送的RTS,根据RTS NAV中承载的第一退避时间段进行退避。
可选的,本实施例中的接收设备是某一次TXOP过程中的接收方,或者,某一段时间或某次数据传输过程中的接收方,但是不代表接收设备仅仅具有接收功能。在不同的时间段、不同状态或不同数据传输过程中,同一设备可以分别作为发送设备或接收设备。
步骤703,接收设备接收发送设备发送的RTS。
接收设备接收发送设备发送的RTS,可选的,接收设备对RTS进行解码得到数据传输时间。
步骤704,判断接收设备是否在第一预设时长内成功解码RTS。
接收设备在接收到发送设备发送的RTS之后,对RTS进行解码。可选的,判断接收设备是否在第一预设时长内成功解码RTS,若接收设备在第一预设时长内成功解码,则进入步骤705;若接收设备在第一预设时长后未成功解码,则进入步骤706。
可选的,第一预设时长可以是预先设置的;其中,第一预设时长是从RTS的发送时刻计时的时长。
步骤705,等待第二延迟时间后向发送设备发送CTS。
接收设备在第一预设时长内成功解码RTS,得到数据传输时间;接收设备根据数据传输时间确定第三退避时间段,再生成携带有第三退避时间段的CTS。在解码成功后等待第二延迟时间后向发送设备发送CTS。可选的,第二延迟时间为16us的短帧间间隔。
可选的,第三退避时间段承载在所述CTS的CTS NAV中。
可选的,第三退避时间段的开始时刻为不晚于其它设备监听到CTS的时刻,第三退避时间段的结束时刻为本次数据传输的完成时刻。
可选的,其它接收设备监听到CTS,根据CTS NAV中的第三退避时间段进行退避。
步骤706,在非授权频段上进行LBT。
接收设备在第一预设时长后成功解码RTS,则针对非授权频段上的目标信 道进行LBT。可选的,接收设备在非授权频段上通过LBT技术对目标信道进行监听,监听时长为第二时长,当第二时长内目标信道处于空闲状态时,确定目标信道处于空闲状态进入步骤707,当第二时长内目标信道处于非空闲状态,则数据传输失败。
可选的,第二时长可以是预先设置的监听时长;第二时长是从第一预设时长结束时刻开始的。
步骤707,接收设备在LBT成功时,向发送设备发送CTS。
接收设备在第一预设时长后成功解码RTS,得到数据传输时间;接收设备根据数据传输时间确定第三退避时间段,再生成携带有第三退避时间段的CTS。当接收设备在LBT成功时,向发送设备发送CTS。
可选的,第三退避时间段承载在CTS的CTS NAV中。
可选的,第三退避时间段的开始时刻为不晚于其它设备监听到CTS的时刻,第三退避时间段的结束时刻为本次数据传输的完成时刻。
可选的,其它接收设备监听到CTS,根据CTS NAV中的第三退避时间段进行退避。
步骤708,发送设备接收接收设备发送的CTS。
步骤709,发送设备在接收到CTS后,等待第一延迟时间后向接收设备发送C-CTS。
发送设备在接收到CTS后,等待第一延迟时间后向接收设备发送C-CTS;其中,C-CTS是发送设备接收到接收设备发送的CTS后发送的确认帧。
可选的,第一延迟时间为16us的短帧间间隔。
可选的,C-CTS包括第二退避时间段,第二退避时间段的开始时刻为不晚于其它设备监听到C-CTS的时刻,第二退避时间段的结束时刻为本次数据传输的完成时刻。
可选的,第二退避时间段承载在C-CTS的C-CTS NAV中。
可选的,其它设备监听到C-CTS,根据C-CTS NAV中第二退避时间段进行退避。
步骤710,接收设备接收发送设备发送的C-CTS。
接收设备接收发送设备发送的C-CTS,确定发送设备与接收设备握手成功完成,拥有一次数据传输机会。
综上所述,本实施例提供的传输过程中的退避方法,发送设备在非授权频 段上进行LBT;发送设备在LBT成功时向接收设备发送RTS,RTS包括第一退避时间段;接收设备在接收发送设备发送的RTS之后向发送设备发送CTS,CTS包括第三退避时间段;发送设备在接收到接收设备发送的CTS之后向接收设备发送C-CTS,C-CTS包括第二退避时间段,完成发送设备与接收设备之间的握手。该技术方案通过第一退避时间段与第二退避时间段使其它接收设备分时间段进行退避,若接收设备反馈的CTS发送失败,则其它接收设备不执行第二退避时间段指示的退避,解决了相关技术中接收设备CTS发送失败之后,发送设备周围的其它设备仍会根据监听到的RTS的NAV进行避让导致的过保护问题,提高了NR-U的接入效率。
另外,接收设备通过检测是否在第一预设时长内成功解码RTS,使用两种途径发送CTS,确保CTS的成功发送,也提高了NR-U的接入效率。
图8是本申请一个示例性实施例提供的传输过程中的退避装置的框图,该装置可以通过软件、硬件、或者两者的结合实现其传输过程中的退避方法的一部分或者全部内容,该装置包括:
第一处理模块820,被配置为在非授权频段上进行LBT;
第一发送模块840,被配置为在LBT成功时向接收设备发送RTS,RTS包括第一退避时间段,第一退避时间段的开始时刻为不晚于其它设备监听到RTS的时刻,第一退避时间段的结束时刻为C-CTS的预计发送时刻;
其中,C-CTS是发送设备接收到接收设备发送的CTS后发送的确认帧。
在一些实施例中,该装置还包括:
第一接收模块860,被配置为接收接收设备发送的CTS;
第一发送模块840,被配置为向接收设备发送C-CTS,C-CTS包括第二退避时间段,第二退避时间段的开始时刻为不晚于其它设备监听到C-CTS的时刻,第二退避时间段的结束时刻为本次数据传输的完成时刻。
在一些实施例中,第一发送模块840,被配置为在接收到CTS后,等待第一延迟时间后向接收设备发送C-CTS。
在一些实施例中,第一延迟时间为16us的短帧间间隔。
在一些实施例中,RTS还包括:数据传输时间;
数据传输时间用于供接收设备确定CTS中的第三退避时间段,第三退避时间段的开始时刻为不晚于其它设备监听到CTS的时刻,第三退避时间段的 结束时刻为本次数据传输的完成时刻。
在一些实施例中,第一退避时间段承载在RTS的RTS NAV中。
在一些实施例中,第一退避时间段和数据传输时间承载在RTS的时间字段中。
在一些实施例中,第二退避时间段承载在C-CTS的C-CTS NAV中。
在一些实施例中,第三退避时间段承载在CTS的CTS NAV中。
综上所述,本实施例提供的传输过程中的退避装置,发送设备在非授权频段上进行LBT;发送设备在LBT成功时向接收设备发送RTS,RTS包括第一退避时间段;接收设备在接收发送设备发送的RTS之后向发送设备发送CTS;发送设备在接收到接收设备发送的CTS之后向接收设备发送C-CTS,C-CTS包括第二退避时间段,完成发送设备与接收设备之间的握手。该技术方案通过第一退避时间段与第二退避时间段使其它接收设备分时间段进行退避,若接收设备反馈的CTS发送失败,则其它接收设备不执行第二退避时间段指示的退避,解决了相关技术中接收设备CTS发送失败之后,发送设备周围的其它设备仍会根据监听到的RTS的NAV进行避让导致的过保护问题,提高了NR-U的接入效率。
图9是本申请另一个示例性实施例提供的传输过程中的退避装置的框图,该装置可以通过软件、硬件、或者两者的结合实现其传输过程中的退避方法的一部分或者全部内容,该装置包括:
第二接收模块960,被配置为接收发送设备发送的RTS,RTS包括第一退避时间段,第一退避时间段的开始时刻为不晚于其它设备监听到RTS的时刻,第一退避时间段的结束时刻为C-CTS的预计发送时刻;
其中,C-CTS是发送设备接收到接收设备发送的CTS后发送的确认帧。
在一些实施例中,该装置还包括:
第二发送模块940,被配置为向发送设备发送CTS;
第二接收模块960,被配置为接收发送设备发送的C-CTS,C-CTS包括第二退避时间段,第二退避时间段的开始时刻为不晚于其它设备监听到C-CTS的时刻,第二退避时间段的结束时刻为本次数据传输的完成时刻。
在一些实施例中,第二发送模块940,被配置为在第一预设时长内成功解码RTS后,等待第二延迟时间后向发送设备发送CTS;其中,第一预设时长 是从RTS的发送时刻计时的时长。
在一些实施例中,
第二处理模块920,被配置为在第一预设时长后成功解码RTS,则在非授权频段上进行LBT;
第二发送模块940,被配置为在LBT成功时,向发送设备发送CTS。
在一些实施例中,第二延迟时间为16us的短帧间间隔。
在一些实施例中,该装置还包括:
第二处理模块920,被配置为从RTS中获取数据传输时间;根据数据传输时间确定第三退避时间段,第三退避时间段的开始时刻为不晚于其它设备监听到CTS的时刻,第三退避时间段的结束时刻为本次数据传输的完成时刻;生成携带有第三退避时间段的CTS。
在一些实施例中,第一退避时间段承载在RTS的RTS NAV中。
在一些实施例中,第一退避时间段和数据传输时间承载在RTS的时间字段中。
在一些实施例中,第二退避时间段承载在C-CTS的C-CTS NAV中。
在一些实施例中,第三退避时间段承载在CTS的CTS NAV中。
综上所述,本实施例提供的传输过程中的退避装置,接收设备接收发送设备发送的RTS,RTS包括第一退避时间段;接收设备接收发送设备发送的C-CTS,C-CTS包括第二退避时间段。该技术方案通过第一退避时间段与第二退避时间段使其它接收设备分时间段进行退避,若接收设备反馈的CTS发送失败,则其它接收设备不执行第二退避时间段指示的退避,解决了相关技术中接收设备CTS发送失败之后,发送设备周围的其它设备仍会根据监听到的RTS的NAV进行避让导致的过保护问题,提高了NR-U的接入效率。
图10是本申请一示例性实施例示出的一种传输过程中的退避装置1000的框图。该装置可以作为发送设备或者发送设备。例如,装置1000可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图10,装置1000可以包括以下一个或多个组件:处理组件1002,存储器1004,电源组件1006,多媒体组件1008,音频组件1010,输入/输出(I/O)的接口1012,传感器组件1014,以及通信组件1016。
处理组件1002通常控制装置1000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1002可以包括一个或多个处理器1018来执行指令,以完成上述的方法实施例中UE20所执行的全部或部分步骤。此外,处理组件1002可以包括一个或多个模块,便于处理组件1002和其它组件之间的交互。例如,处理组件1002可以包括多媒体模块,以方便多媒体组件1008和处理组件1002之间的交互。
存储器1004被配置为存储各种类型的数据以支持在装置1000的操作。这些数据的示例包括用于在装置1000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1006为装置1000的各种组件提供电力。电源组件1006可以包括电源管理系统,一个或多个电源,及其它与为装置1000生成、管理和分配电力相关联的组件。
多媒体组件1008包括在所述装置1000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1008包括一个前置摄像头和/或后置摄像头。当装置1000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1010被配置为输出和/或输入音频信号。例如,音频组件1010包括一个麦克风(MIC),当装置1000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1004或经由通信组件1016发送。在一些实施例中,音频组件1010还包括一个扬声器,用于输出音频信号。
I/O接口1012为处理组件1002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1014包括一个或多个传感器,用于为装置1000提供各个方面的状态评估。例如,传感器组件1014可以检测到装置1000的打开/关闭状态,组件的相对定位,例如所述组件为装置1000的显示器和小键盘,传感器组件1014还可以检测装置1000或装置1000一个组件的位置改变,用户与装置1000接触的存在或不存在,装置1000方位或加速/减速和装置1000的温度变化。传感器组件1014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1016被配置为便于装置1000和其它设备之间有线或无线方式的通信。装置1000可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信部件1016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信部件1016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其它技术来实现。
在示例性实施例中,装置1000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其它电子元件实现,用于执行上述方法实施例中传输过程中的退避方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1004,上述指令可由装置1000的处理器1018执行以完成上述方法实施例中传输过程中的退避方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图11是本申请另一示例性实施例示出的一种传输过程中的退避装置1100 的框图。该装置可以作为发送设备或者发送设备。例如,传输过程中的退避装置1100可以是基站。如图11所示,传输过程中的退避装置1100可以包括:处理器1101、接收机1102、发射机1103和存储器1104。接收机1102、发射机1103和存储器1104分别通过总线与处理器1101连接。
其中,处理器1101包括一个或者一个以上处理核心,处理器1101通过运行软件程序以及模块以执行本公开实施例提供的传输过程中的退避方法中发送设备所执行的方法。存储器1104可用于存储软件程序以及模块。具体的,存储器1104可存储操作系统11041、至少一个功能所需的应用程序模块11042。接收机1102用于接收其它设备发送的通信数据,发射机1103用于向其它设备发送通信数据。
图12是根据一示例性实施例示出的一种传输过程中的退避系统1200的框图,如图12所示,该传输过程中的退避系统1200包括基站1201和用户设备1202。
其中,基站1201用于执行图4所示实施例中基站所执行的传输过程中的退避方法。
用户设备1202用于执行图4所示实施例中用户设备所执行的传输过程中的退避方法。
在示例性实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质为非易失性的计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,存储的计算机程序被处理组件执行时能够实现本公开上述实施例提供的传输过程中的退避方法。
本公开实施例还提供了一种计算机程序产品,该计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机能够执行本公开实施例提供的传输过程中的退避方法。
本公开实施例还提供了一种芯片,该芯片包括可编程逻辑电路和/或程序指令,当该芯片运行时能够执行本公开实施例提供的传输过程中的退避方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (40)

  1. 一种传输过程中的退避方法,其特征在于,所述方法包括:
    发送设备在非授权频段上进行载波侦听LBT;
    所述发送设备在所述LBT成功时向接收设备发送请求发送帧RTS,所述RTS包括第一退避时间段,所述第一退避时间段的开始时刻为不晚于其它设备监听到所述RTS的时刻,所述第一退避时间段的结束时刻为信道清除确认帧C-CTS的预计发送时刻;
    其中,所述C-CTS是所述发送设备接收到所述接收设备发送的信道清除帧CTS后发送的确认帧。
  2. 根据权利要求1所述的退避方法,其特征在于,所述方法还包括:
    所述发送设备接收所述接收设备发送的所述CTS;
    所述发送设备向所述接收设备发送所述C-CTS,所述C-CTS包括第二退避时间段,所述第二退避时间段的开始时刻为不晚于所述其它设备监听到所述C-CTS的时刻,所述第二退避时间段的结束时刻为本次数据传输的完成时刻。
  3. 根据权利要求2所述的退避方法,其特征在于,所述发送设备向所述接收设备发送所述C-CTS,包括:
    所述发送设备在接收到所述CTS后,等待第一延迟时间后向所述接收设备发送所述C-CTS。
  4. 根据权利要求3所述的退避方法,其特征在于,所述第一延迟时间为16us的短帧间间隔。
  5. 根据权利要求1至4任一所述的退避方法,其特征在于,所述RTS还包括:数据传输时间;
    所述数据传输时间用于供所述接收设备确定所述CTS中的第三退避时间段,所述第三退避时间段的开始时刻为不晚于其它设备监听到所述CTS的时刻,所述第三退避时间段的结束时刻为本次数据传输的完成时刻。
  6. 根据权利要求5所述的退避方法,其特征在于,所述第一退避时间段承载在所述RTS的RTS网络分配矢量RTS NAV中。
  7. 根据权利要求5所述的退避方法,其特征在于,所述第一退避时间段和所述数据传输时间承载在所述RTS的时间字段中。
  8. 根据权利要求5所述的退避方法,其特征在于,所述第二退避时间段承载在所述C-CTS的C-CTS网络分配矢量C-CTS NAV中。
  9. 根据权利要求5所述的退避方法,其特征在于,所述第三退避时间段承载在所述CTS的CTS网络分配矢量CTS NAV中。
  10. 一种传输过程中的退避方法,其特征在于,所述方法包括:
    接收设备接收发送设备发送的RTS,所述RTS包括第一退避时间段,所述第一退避时间段的开始时刻为不晚于其它设备监听到所述RTS的时刻,所述第一退避时间段的结束时刻为C-CTS的预计发送时刻;
    其中,所述C-CTS是所述发送设备接收到所述接收设备发送的CTS后发送的确认帧。
  11. 根据权利要求10所述的退避方法,其特征在于,所述方法还包括:
    所述接收设备向所述发送设备发送所述CTS;
    所述接收设备接收所述发送设备发送的所述C-CTS,所述C-CTS包括第二退避时间段,所述第二退避时间段的开始时刻为所述不晚于其它设备监听到所述C-CTS的时刻,所述第二退避时间段的结束时刻为本次数据传输的完成时刻。
  12. 根据权利要求10所述的退避方法,其特征在于,所述接收设备向所述发送设备发送所述CTS,包括:
    所述接收设备在第一预设时长内成功解码所述RTS后,等待第二延迟时间后向所述发送设备发送所述CTS;
    其中,所述第一预设时长是从所述RTS的发送时刻计时的时长。
  13. 根据权利要求10所述的退避方法,其特征在于,所述接收设备向所述发送设备发送所述CTS,包括:
    所述接收设备在第一预设时长后成功解码所述RTS,则在非授权频段上进行LBT;
    所述接收设备在所述LBT成功时,向所述发送设备发送所述CTS。
  14. 根据权利要求12或13所述的退避方法,其特征在于,所述第二延迟时间为16us的短帧间间隔。
  15. 根据权利要求12或13所述的退避方法,其特征在于,所述方法还包括:
    所述接收设备从所述RTS中获取数据传输时间;
    所述接收设备根据所述数据传输时间确定第三退避时间段,所述第三退避时间段的开始时刻为不晚于其它设备监听到所述CTS的时刻,所述第三退避时间段的结束时刻为本次数据传输的完成时刻;
    所述接收设备生成携带有所述第三退避时间段的所述CTS。
  16. 根据权利要求15所述的退避方法,其特征在于,所述第一退避时间段承载在所述RTS的RTS NAV中。
  17. 根据权利要求15所述的退避方法,其特征在于,所述第一退避时间段和所述数据传输时间承载在所述RTS的时间字段中。
  18. 根据权利要求15所述的退避方法,其特征在于,所述第二退避时间段承载在所述C-CTS的C-CTS NAV中。
  19. 根据权利要求15所述的退避方法,其特征在于,所述第三退避时间段承载在所述CTS的CTS NAV中。
  20. 一种传输过程中的退避装置,其特征在于,所述装置包括:
    第一处理模块,被配置为在非授权频段上进行LBT;
    第一发送模块,被配置为在所述LBT成功时向接收设备发送RTS,所述RTS包括第一退避时间段,所述第一退避时间段的开始时刻为不晚于其它设备监听到所述RTS的时刻,所述第一退避时间段的结束时刻为C-CTS的预计发送时刻;
    其中,所述C-CTS是所述发送设备接收到所述接收设备发送的CTS后发送的确认帧。
  21. 根据权利要求20所述的退避装置,其特征在于,所述装置还包括:
    第一接收模块,被配置为接收所述接收设备发送的所述CTS;
    第一发送模块,被配置为向所述接收设备发送所述C-CTS,所述C-CTS包括第二退避时间段,所述第二退避时间段的开始时刻为所述不晚于其它设备监听到所述C-CTS的时刻,所述第二退避时间段的结束时刻为本次数据传输的完成时刻。
  22. 根据权利要求21所述的退避装置,其特征在于,
    所述第一发送模块,被配置为在接收到所述CTS后,等待第一延迟时间后向所述接收设备发送所述C-CTS。
  23. 根据权利要求22所述的退避装置,其特征在于,所述第一延迟时间为16us的短帧间间隔。
  24. 根据权利要求20至23任一所述的退避装置,其特征在于,所述RTS还包括:数据传输时间;
    所述数据传输时间用于供所述接收设备确定所述CTS中的第三退避时间段,所述第三退避时间段的开始时刻为不晚于其它设备监听到所述CTS的时刻,所述第三退避时间段的结束时刻为本次数据传输的完成时刻。
  25. 根据权利要求24所述的退避装置,其特征在于,所述第一退避时间段承载在所述RTS的RTS NAV中。
  26. 根据权利要求24所述的退避装置,其特征在于,所述第一退避时间段和所述数据传输时间承载在所述RTS的时间字段中。
  27. 根据权利要求24所述的退避装置,其特征在于,所述第二退避时间段承载在所述C-CTS的C-CTS NAV中。
  28. 根据权利要求24所述的退避装置,其特征在于,所述第三退避时间段承载在所述CTS的CTS NAV中。
  29. 一种传输过程中的退避装置,其特征在于,所述装置包括:
    第二接收模块,被配置为接收发送设备发送的RTS,所述RTS包括第一退避时间段,所述第一退避时间段的开始时刻为不晚于其它设备监听到所述RTS的时刻,所述第一退避时间段的结束时刻为C-CTS的预计发送时刻;
    其中,所述C-CTS是所述发送设备接收到所述接收设备发送的CTS后发送的确认帧。
  30. 根据权利要求29所述的退避装置,其特征在于,所述装置还包括:
    第二发送模块,被配置为向所述发送设备发送所述CTS;
    第二接收模块,被配置为接收所述发送设备发送的所述C-CTS,所述C-CTS包括第二退避时间段,所述第二退避时间段的开始时刻为所述不晚于其它设备监听到所述C-CTS的时刻,所述第二退避时间段的结束时刻为本次数据传输的完成时刻。
  31. 根据权利要求29所述的退避装置,其特征在于,
    所述第二发送模块,被配置为在第一预设时长内成功解码所述RTS后,等待第二延迟时间后向所述发送设备发送所述CTS;
    其中,所述第一预设时长是从所述RTS的发送时刻计时的时长。
  32. 根据权利要求29所述的退避装置,其特征在于,
    第二处理模块,被配置为在第一预设时长后成功解码所述RTS,则在非授权频段上进行LBT;
    所述第二发送模块,被配置为在所述LBT成功时,向所述发送设备发送所述CTS。
  33. 根据权利要求31或32所述的退避装置,其特征在于,所述第二延迟时间为16us的短帧间间隔。
  34. 根据权利要求31或32所述的退避装置,其特征在于,所述装置还包括:
    所述第二处理模块,被配置为从所述RTS中获取数据传输时间;根据所述数据传输时间确定第三退避时间段,所述第三退避时间段的开始时刻为不晚于其它设备监听到所述CTS的时刻,所述第三退避时间段的结束时刻为本次数据传输的完成时刻;生成携带有所述第三退避时间段的所述CTS。
  35. 根据权利要求34所述的退避装置,其特征在于,所述第一退避时间段承载在所述RTS的RTS NAV中。
  36. 根据权利要求34所述的退避装置,其特征在于,所述第一退避时间段和所述数据传输时间承载在所述RTS的时间字段中。
  37. 根据权利要求34所述的退避装置,其特征在于,所述第二退避时间段承载在所述C-CTS的C-CTS NAV中。
  38. 根据权利要求34所述的退避装置,其特征在于,所述第三退避时间段承载在所述CTS的CTS NAV中。
  39. 一种终端,其特征在于,所述终端包括处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如权利要求1至9任一所述的传输过程中的退避方法。
  40. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如权利要求1 至9任一所述的传输过程中的退避方法。
PCT/CN2018/100706 2018-08-15 2018-08-15 传输过程中的退避方法、装置、设备、系统及存储介质 WO2020034124A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880001045.7A CN109196946B (zh) 2018-08-15 2018-08-15 传输过程中的退避方法、装置、设备、系统及存储介质
EP18929898.7A EP3840516A4 (en) 2018-08-15 2018-08-15 METHOD AND DEVICE FOR BACKOFF IN A TRANSMISSION METHOD, DEVICE, SYSTEM AND STORAGE MEDIUM
PCT/CN2018/100706 WO2020034124A1 (zh) 2018-08-15 2018-08-15 传输过程中的退避方法、装置、设备、系统及存储介质
US17/267,707 US11871449B2 (en) 2018-08-15 2018-08-15 Backoff method and apparatus in transmission process, device, system, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/100706 WO2020034124A1 (zh) 2018-08-15 2018-08-15 传输过程中的退避方法、装置、设备、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2020034124A1 true WO2020034124A1 (zh) 2020-02-20

Family

ID=64938505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100706 WO2020034124A1 (zh) 2018-08-15 2018-08-15 传输过程中的退避方法、装置、设备、系统及存储介质

Country Status (4)

Country Link
US (1) US11871449B2 (zh)
EP (1) EP3840516A4 (zh)
CN (1) CN109196946B (zh)
WO (1) WO2020034124A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113678559A (zh) * 2019-09-25 2021-11-19 Oppo广东移动通信有限公司 一种信息处理方法、终端设备
CN111183703B (zh) * 2019-11-29 2023-09-26 北京小米移动软件有限公司 帧传输方法及装置、通信端及存储介质
US11838957B2 (en) * 2021-03-26 2023-12-05 Sony Group Corporation NSTR MLD channel access with shared TXOP

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105636233A (zh) * 2015-12-11 2016-06-01 山东闻远通信技术有限公司 一种laa系统中同时考虑上下行链路的lbt机制
US20160353482A1 (en) * 2015-05-27 2016-12-01 Qualcomm Incorporated Reservation coordination in a shared communication medium
US20170311351A1 (en) * 2016-04-20 2017-10-26 Qualcomm Incorporated Collision deadlock resolution

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9596634B2 (en) 2008-12-19 2017-03-14 Telefonaktiebolaget Lm Ericsson (Publ) Assist reordering of downlink data at serving GW relocation
US20120044844A1 (en) * 2010-08-20 2012-02-23 Solomon Trainin Method of collision resolution in a wide channel
CN102045802A (zh) 2010-12-22 2011-05-04 华为技术有限公司 Sgw改变的切换过程中的数据发送方法、pgw及基站
CA2911038C (en) * 2013-05-02 2019-01-22 Lg Electronics Inc. Method for sensing channel dynamically in wireless lan system and apparatus therefor
US20170013596A1 (en) * 2014-01-28 2017-01-12 Nokia Solutions And Networks Oy Control of semi-persistent channel occupation for device-to device (d2d) wireless communications
CN104581979B (zh) * 2014-12-23 2018-05-15 江苏中兴微通信息科技有限公司 一种基于公平竞争的rts碰撞解决方法
US10454650B2 (en) * 2015-04-01 2019-10-22 Lg Electronics Inc. Method and apparatus for transmitting data in wireless communication system
GB2542818A (en) * 2015-09-30 2017-04-05 Canon Kk Methods and systems for reserving a transmission opportunity for a plurality of wireless communication devices belonging to a collaborative group
US10805954B2 (en) * 2016-06-22 2020-10-13 Telefonaktiebolaget Lm Ericsson (Publ) Multi-grant for listen-before-talk based uplink transmission attempts
CN106851768B (zh) * 2016-12-30 2020-03-27 北京航空航天大学 服务质量保证的自适应跨层多址接入方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160353482A1 (en) * 2015-05-27 2016-12-01 Qualcomm Incorporated Reservation coordination in a shared communication medium
CN105636233A (zh) * 2015-12-11 2016-06-01 山东闻远通信技术有限公司 一种laa系统中同时考虑上下行链路的lbt机制
US20170311351A1 (en) * 2016-04-20 2017-10-26 Qualcomm Incorporated Collision deadlock resolution

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Review of Existing Unlicensed Spectrum Regulatory Requirements Affecting Physical Layer Design", 3GPP TSG RAN WGI MEETING #78BIS R1-143724, 27 September 2014 (2014-09-27), pages 1 - 8, XP050869410 *
See also references of EP3840516A4 *

Also Published As

Publication number Publication date
EP3840516A4 (en) 2022-03-30
CN109196946B (zh) 2022-06-03
US11871449B2 (en) 2024-01-09
CN109196946A (zh) 2019-01-11
EP3840516A1 (en) 2021-06-23
US20210321455A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
WO2020087379A1 (zh) 传输随机接入指示信息的方法及装置
CN107223353B (zh) 用于请求系统消息的方法、装置、用户设备及基站
WO2022126338A1 (zh) 资源选择方法、资源选择装置及存储介质
WO2020132971A1 (zh) 时域资源分配方法、数据发送方法、基站及终端
WO2018129936A1 (zh) 信息反馈方法、装置、基站和用户设备
WO2021138914A1 (zh) 传输数据的指示方法、装置、通信设备及存储介质
WO2020258080A1 (zh) 随机接入方法、装置及存储介质
WO2020199073A1 (zh) 接入控制方法、装置、用户设备及基站
WO2020237681A1 (zh) 随机接入方法及装置、通信设备及存储介质
WO2020087380A1 (zh) 传输随机接入指示信息的方法及装置
WO2020034124A1 (zh) 传输过程中的退避方法、装置、设备、系统及存储介质
WO2020237443A1 (zh) 载波聚合方法、装置、通信设备及存储介质
WO2020237679A1 (zh) 随机接入方法及装置、通信设备及存储介质
WO2021056475A1 (zh) 竞争窗长度调整方法及装置、通信设备及存储介质
WO2021114050A1 (zh) 非连续接收drx的处理方法、装置及计算机存储介质
WO2019023885A1 (zh) 蜂窝网络中实现全双工传输的方法、装置、设备及基站
JP7309038B2 (ja) 基準時間領域ユニットを決定する方法及び装置
CN105163391B (zh) 数据传输方法、终端及无线访问接入点
WO2021243711A1 (zh) 信道接入方法、信道接入装置及存储介质
WO2021237624A1 (zh) 非授权信道的检测方法、装置、通信设备及存储介质
WO2020258273A1 (zh) 检测非授权频段的方法和检测非授权频段的装置
WO2020155109A1 (zh) 调度混合自动重传的方法及装置
WO2020019258A1 (zh) 下行控制信息发送方法、接收方法、装置及存储介质
WO2018120779A1 (zh) 下行链路数据的传输方法及装置
WO2021102960A1 (zh) 帧传输方法及装置、通信端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018929898

Country of ref document: EP

Effective date: 20210315