WO2020132971A1 - 时域资源分配方法、数据发送方法、基站及终端 - Google Patents

时域资源分配方法、数据发送方法、基站及终端 Download PDF

Info

Publication number
WO2020132971A1
WO2020132971A1 PCT/CN2018/124004 CN2018124004W WO2020132971A1 WO 2020132971 A1 WO2020132971 A1 WO 2020132971A1 CN 2018124004 W CN2018124004 W CN 2018124004W WO 2020132971 A1 WO2020132971 A1 WO 2020132971A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
symbol
time slot
domain resource
time
Prior art date
Application number
PCT/CN2018/124004
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020217021735A priority Critical patent/KR20210099132A/ko
Priority to CN201880002614.XA priority patent/CN109792746B/zh
Priority to JP2021531782A priority patent/JP2022515033A/ja
Priority to PCT/CN2018/124004 priority patent/WO2020132971A1/zh
Priority to CN202111555358.7A priority patent/CN114245464A/zh
Priority to RU2021120456A priority patent/RU2771189C1/ru
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP18944206.4A priority patent/EP3905762A4/en
Priority to BR112021012333-4A priority patent/BR112021012333A2/pt
Priority to SG11202106885QA priority patent/SG11202106885QA/en
Priority to US17/417,065 priority patent/US20220053528A1/en
Publication of WO2020132971A1 publication Critical patent/WO2020132971A1/zh
Priority to JP2023075191A priority patent/JP2023099137A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a time domain resource allocation method, data transmission method, base station, and terminal.
  • the unlicensed frequency band refers to a frequency band that can be used free of charge without authorization, and common WiFi runs in the unlicensed frequency band. Since the unlicensed frequency band is not regulated by the operator's deployment network, in order to avoid interference from neighboring base stations, the base station needs to allocate time-domain resources to the terminal. Based on the allocated time-domain resources, the terminal uses LBT (Listen Before Talk, listen first, then speak) The mechanism monitors the PUSCH (Physical Physical Uplink Shared Channel). If it is detected that the PUSCH is idle in any time domain resource, the PUSCH is transmitted in the time domain resource.
  • LBT Listen Before Talk, listen first, then speak
  • the LAA (Licensed-Assisted Access) defines the time-domain resources.
  • the subframe length is 1ms (millisecond), each subframe includes two time slots, and each time slot includes 7 symbols.
  • the LAA's uplink scheduling method can schedule multiple subframes.
  • the UE can send PUSCH in each scheduled subframe, and the RV (Redundancy Version) of the data sent in each subframe is independent. Configuration.
  • NR-unlicensed (NR-U) spectrum access based on NR how to allocate time domain resources based on time slots and small time slots in NR is a problem that needs to be solved. Therefore, how to allocate time-domain resources in the NR-U scenario has become a problem that is more concerned by those skilled in the art.
  • the present disclosure provides a time domain resource allocation method, data transmission method, base station, and terminal.
  • a method for time domain resource allocation is provided.
  • the method is applied to a base station, and the method includes:
  • the base station sends DCI (Downlink Control Information) signaling, where the DCI signaling is used to indicate a time domain resource used by the terminal to send a physical uplink shared channel PUSCH, and the time domain resource includes at least one time slot and /Or at least one small time slot.
  • DCI Downlink Control Information
  • the DCI signaling is also used to indicate the start symbol and/or the end symbol of the time domain resource
  • the start symbol is used to indicate the start symbol sent by the terminal PUSCH
  • the end symbol is used to indicate the end symbol sent by the terminal PUSCH.
  • the time domain resource is at least one time slot
  • the scheduling method of the time domain resource is scheduling based on each time slot.
  • the start symbol of the time domain resource is for the first time slot in the at least one time slot or each time slot in the at least one time slot; and/or,
  • the end symbol of the time domain resource is for the last slot in at least one slot or each slot in at least one slot.
  • the DCI signaling is also used to instruct N RVs and each time slot of the terminal in the time domain resource to use their corresponding RVs for PUSCH transmission;
  • N is the number of time slots in the time domain resource indicated by the DCI signaling.
  • the time domain resource is at least one small time slot, and the scheduling method of the time domain resource is scheduling based on each small time slot; or,
  • the starting symbol of the time domain resource is for the first hour slot or each small time slot, and the DCI signaling is also used to indicate the number of symbols included in each small time slot.
  • the start symbol of the time domain resource is for each small time slot, and the adjacent symbol before the start symbol of the S hour slot is the end symbol of the S-1 hour slot .
  • the DCI signaling is also used to instruct M redundant version RVs and each small time slot in the time domain resource of the terminal to use their corresponding RVs for PUSCH transmission;
  • M is the number of small time slots in the time domain resource indicated by the DCI signaling.
  • the time domain resource is at least one time slot and at least one small time slot
  • the scheduling method of the time domain resource includes scheduling for at least one time slot based on each time slot and for at least one time slot.
  • a small time slot is scheduled based on each small time slot.
  • the starting symbol of the time domain resource is for each time slot or first time slot in at least one time slot, and/or the first hour in at least one small time slot Or every hour; and/or,
  • the end symbol of the time domain resource is for each time slot or last time slot in at least one time slot, and/or every hour slot in at least one small time slot.
  • the DCI signaling is also used to instruct K redundant version RVs and each time slot and mini-slot in the time domain resource of the terminal to use their corresponding RVs for PUSCH transmission;
  • K is the number of time slots and mini-slots in the time domain resource indicated by the DCI signaling.
  • the position near the starting symbol of PUSCH transmission in each time slot or mini-slot is the transmission starting position of PUSCH.
  • the position near the starting symbol of PUSCH transmission in each time slot or mini-slot is the transmission starting position of PUSCH, including:
  • the starting symbol of PUSCH transmission in each time slot or mini-slot is the starting position of PUSCH transmission
  • the position of the preset duration after the starting symbol of PUSCH transmission in each time slot or mini-slot is the starting position of PUSCH transmission;
  • the position of the preset duration plus TA is the starting position of PUSCH transmission.
  • the starting position of the adjacent symbol after the starting symbol of PUSCH transmission in each slot or mini-slot is the starting position of PUSCH transmission.
  • the method further includes:
  • the base station sends control signaling, the control signaling is used to instruct the terminal to listen to and then talk about the cut-off position of LBT monitoring, and the control signaling includes radio resource control RRC signaling and media access control MAC signaling And one or more combinations of DCI signaling.
  • each time slot includes 14 symbols, and the starting symbol is any one of the 14 symbols.
  • each time slot has at least one start symbol.
  • a data transmission method is provided, the method is applied to a terminal, and the method includes:
  • the terminal receives DCI signaling sent by the base station, and the DCI signaling is used to indicate a time domain resource used by the terminal for PUSCH transmission, where the time domain resource includes at least one time slot and/or at least one small time slot;
  • the terminal performs PUSCH transmission according to the DCI signaling.
  • the DCI signaling is also used to indicate the start symbol and/or the end symbol of the time domain resource
  • the terminal performs PUSCH transmission according to the DCI signaling, including:
  • the terminal determines the start symbol sent by the PUSCH according to the start symbol, and/or determines the end symbol sent by the PUSCH according to the end symbol.
  • the time domain resource is at least one time slot
  • the scheduling method of the time domain resource is scheduling based on each time slot.
  • the start symbol of the time domain resource is for the first time slot in the at least one time slot or each time slot in the at least one time slot; and/or,
  • the end symbol of the time domain resource is for the last slot in at least one slot or each slot in at least one slot.
  • the DCI signaling is also used to indicate N redundancy versions RV;
  • the terminal performs PUSCH transmission according to the DCI signaling, including:
  • Each time slot of the terminal in the time domain resource uses its corresponding RV for PUSCH transmission
  • N is the number of time slots in the time domain resource indicated by the DCI signaling.
  • the time domain resource is at least one small time slot
  • the scheduling method of the time domain resource is scheduling based on each small time slot.
  • the starting symbol of the time domain resource is for the first hour slot or each small time slot, and the DCI signaling is also used to indicate the number of symbols included in each small time slot; or,
  • the start symbol of the time domain resource is for each small time slot, and the adjacent symbol before the start symbol of the S-th hour slot is the end symbol of the S-1-th hour slot.
  • the DCI signaling is also used to indicate M redundant versions RV;
  • the terminal performs PUSCH transmission according to the DCI signaling, including:
  • Each small time slot of the terminal in the time domain resource uses its corresponding RV for PUSCH transmission
  • M is the number of small time slots in the time domain resource indicated by the DCI signaling.
  • the time domain resource is at least one time slot and at least one small time slot
  • the scheduling method of the time domain resource includes scheduling for at least one time slot based on each time slot and for at least one time slot.
  • One small time slot is scheduled based on each small time slot; and/or,
  • the starting symbol of the time domain resource is for each time slot or first time slot in at least one time slot, and/or the first hour slot or every hour slot in at least one small time slot.
  • the end symbol of the time domain resource is for each time slot or last time slot in at least one time slot, and/or each hour slot in at least one small time slot.
  • the DCI signaling is also used to indicate K redundancy versions RV;
  • the terminal performs PUSCH transmission according to the DCI signaling, including:
  • Each time slot and mini-slot in the time domain resource of the terminal use their corresponding RVs for PUSCH transmission;
  • K is the number of time slots and mini-slots in the time domain resource indicated by the DCI signaling.
  • the position near the starting symbol of PUSCH transmission in each time slot or mini-slot is the transmission starting position of PUSCH.
  • the terminal sending the PUSCH according to the DCI signaling includes:
  • the terminal performs PUSCH transmission using the starting symbol transmitted by the PUSCH in each time slot or mini-slot as the transmission starting position of the PUSCH; or,
  • the terminal performs PUSCH transmission using the position of the preset duration after the start symbol sent by the PUSCH in each time slot or mini-slot as the transmission start position of the PUSCH; or,
  • the terminal performs PUSCH transmission using the preset duration after the start symbol sent by the PUSCH in each time slot or mini-slot plus the position of the TA as the transmission start position of the PUSCH; or,
  • the terminal performs PUSCH transmission using the starting position of the adjacent symbol after the starting symbol transmitted by the PUSCH in each time slot or mini-slot as the transmission starting position of the PUSCH.
  • the method further includes:
  • the terminal receives control signaling sent by the base station, the control signaling is used to instruct the terminal to listen to and then talk about the cut-off position of LBT monitoring, and the control signaling includes radio resource control RRC signaling and media access.
  • RRC radio resource control
  • the terminal obtains the cut-off position for LBT monitoring from the chip.
  • each time slot includes 14 symbols, and the starting symbol is any one of the 14 symbols.
  • a base station for time domain resource allocation includes:
  • a sending module configured to send DCI signaling of downlink control information, and the DCI signaling is used to indicate a time domain resource used by a terminal for sending a physical uplink shared channel PUSCH, where the time domain resource includes at least one time slot and/or At least one small time slot.
  • the DCI signaling is also used to indicate the start symbol and/or the end symbol of the time domain resource
  • the start symbol is used to indicate the start symbol sent by the terminal PUSCH
  • the end symbol is used to indicate the end symbol sent by the terminal PUSCH.
  • the time domain resource is at least one time slot
  • the scheduling method of the time domain resource is scheduling based on each time slot.
  • the start symbol of the time domain resource is for the first time slot in the at least one time slot or each time slot in the at least one time slot; and/or,
  • the end symbol of the time domain resource is for the last slot in at least one slot or each slot in at least one slot.
  • the DCI signaling is also used to instruct N redundant version RVs and each time slot in the time domain resource of the terminal to use its corresponding RV for PUSCH transmission;
  • N is the number of time slots in the time domain resource indicated by the DCI signaling.
  • the time domain resource is at least one small time slot
  • the scheduling method of the time domain resource is scheduling based on each small time slot.
  • the starting symbol of the time domain resource is for the first hour slot or each small time slot, and the DCI signaling is also used to indicate the number of symbols included in each small time slot; or,
  • the start symbol of the time domain resource is for each small time slot, and the adjacent symbol before the start symbol of the S-th hour slot is the end symbol of the S-1-th hour slot.
  • the DCI signaling is also used to instruct M redundant version RVs and each small time slot in the time domain resource of the terminal to use their corresponding RVs for PUSCH transmission;
  • M is the number of small time slots in the time domain resource indicated by the DCI signaling.
  • the time domain resource is at least one time slot and at least one small time slot
  • the scheduling method of the time domain resource includes scheduling for at least one time slot based on each time slot and for at least one time slot.
  • a small time slot is scheduled based on each small time slot.
  • the starting symbol of the time domain resource is for each time slot or first time slot in at least one time slot, and/or each hour slot in at least one small time slot ;and / or,
  • the end symbol of the time domain resource is for each time slot or last time slot in at least one time slot, and/or the first hour slot or every hour slot in at least one small time slot.
  • the DCI signaling is also used to instruct K redundant version RVs and each time slot and mini-slot in the time domain resource of the terminal to use their corresponding RVs for PUSCH transmission;
  • K is the number of time slots and mini-slots in the time domain resource indicated by the DCI signaling.
  • the position near the starting symbol of PUSCH transmission in each time slot or mini-slot is the transmission starting position of PUSCH.
  • the position near the starting symbol of PUSCH transmission in each time slot or mini-slot is the transmission starting position of PUSCH, including:
  • the starting symbol of PUSCH transmission in each time slot or mini-slot is the starting position of PUSCH transmission
  • the position of the preset duration after the starting symbol of PUSCH transmission in each time slot or mini-slot is the starting position of PUSCH transmission;
  • the position of the preset duration plus the timing advance TA after the start symbol of the PUSCH transmission in each time slot or mini-slot is the start position of the PUSCH transmission; or,
  • the starting position of the adjacent symbol after the starting symbol of PUSCH transmission in each slot or mini-slot is the starting position of PUSCH transmission.
  • the sending module is further configured to send control signaling, the control signaling is used to instruct the terminal to perform a listening-after-talk LBT monitoring cutoff position, the control signaling It includes one or a combination of radio resource control RRC signaling, media access control MAC signaling, and DCI signaling.
  • each time slot includes 14 symbols, and the starting symbol is any one of the 14 symbols.
  • each time slot has at least one start symbol.
  • a terminal for data transmission includes:
  • a receiving module configured to receive DCI signaling sent by a base station, where the DCI signaling is used to indicate a time domain resource used by the terminal for PUSCH transmission, and the time domain resource includes at least one time slot and/or at least one small time slot;
  • the sending module is configured to send PUSCH according to the DCI signaling.
  • the DCI signaling is also used to indicate the start symbol and/or the end symbol of the time domain resource
  • the sending module is configured to determine a start symbol sent by the PUSCH according to the start symbol, and/or determine an end symbol sent by the PUSCH according to the end symbol.
  • the time domain resource is at least one time slot
  • the scheduling method of the time domain resource is scheduling based on each time slot.
  • the start symbol of the time domain resource is for the first time slot in the at least one time slot or each time slot in the at least one time slot; and/or,
  • the end symbol of the time domain resource is for the last slot in at least one slot or each slot in at least one slot.
  • the DCI signaling is also used to indicate N redundancy versions RV;
  • the sending module is configured to use respective RVs for PUSCH transmission in each time slot in the time domain resource;
  • N is the number of time slots in the time domain resource indicated by the DCI signaling.
  • the time domain resource is at least one small time slot
  • the scheduling method of the time domain resource is scheduling based on each small time slot.
  • the starting symbol of the time domain resource is for the first hour slot or each small time slot, and the DCI signaling is also used to indicate the number of symbols included in each small time slot; or,
  • the start symbol of the time domain resource is for each small time slot, and the adjacent symbol before the start symbol of the S-th hour slot is the end symbol of the S-1-th hour slot.
  • the DCI signaling is also used to indicate M redundant versions RV;
  • the sending module is used for PUSCH transmission using the RV corresponding to each small time slot in the time domain resource;
  • M is the number of small time slots in the time domain resource indicated by the DCI signaling.
  • the time domain resource is at least one time slot and at least one small time slot
  • the scheduling method of the time domain resource includes scheduling for at least one time slot based on each time slot and for at least one time slot.
  • a small time slot is scheduled based on each small time slot.
  • the starting symbol of the time domain resource is for each time slot or first time slot in at least one time slot, and/or the first hour in at least one small time slot Or every hour; and/or,
  • the end symbol of the time domain resource is for each time slot or last time slot in at least one time slot, and/or every hour slot in at least one small time slot.
  • the DCI signaling is also used to indicate K redundancy versions RV;
  • the sending module is configured to use respective RVs for PUSCH transmission in each time slot and mini-slot in the time domain resource;
  • K is the number of time slots and mini-slots in the time domain resource indicated by the DCI signaling.
  • the position near the starting symbol of PUSCH transmission in each time slot or mini-slot is the transmission starting position of PUSCH.
  • the sending module is configured to send the PUSCH using the starting symbol sent by the PUSCH in each time slot or mini-slot as the sending start position of the PUSCH; or,
  • the sending module is configured to send the PUSCH using the position of the preset duration after the start symbol sent by the PUSCH in each time slot or mini-slot as the start position of the PUSCH transmission; or,
  • the sending module is configured to send a PUSCH using the preset time after the start symbol sent by the PUSCH in each time slot or mini-slot plus the position of the TA as the sending start position of the PUSCH; or,
  • the sending module is configured to perform PUSCH transmission using the starting position of the adjacent symbol after the starting symbol sent by the PUSCH in each time slot or mini-slot as the transmission starting position of the PUSCH.
  • the terminal further includes:
  • the receiving module is used to receive control signaling sent by the base station, the control signaling is used to instruct the terminal to listen to and then speak the cut-off position of LBT monitoring, and the control signaling includes a radio resource control RRC message One or more combinations of MAC signaling and DCI signaling, media access control; or,
  • the acquisition module is used to acquire the cut-off position for LBT monitoring from the chip.
  • each time slot includes 14 symbols, and the starting symbol is any one of the 14 symbols.
  • a time domain resource allocation apparatus including:
  • Memory for storing instructions executable by the processor
  • the processor is configured to:
  • DCI signaling of downlink control information is sent, and the DCI signaling is used to indicate a time domain resource used by the terminal for physical uplink shared channel PUSCH transmission, where the time domain resource includes at least one time slot and/or at least one small time slot.
  • a data sending apparatus including:
  • Memory for storing instructions executable by the processor
  • the processor is configured to:
  • DCI signaling sent by a base station, where the DCI signaling is used to indicate a time domain resource used by the terminal for PUSCH transmission, where the time domain resource includes at least one time slot and/or at least one small time slot;
  • PUSCH transmission is performed according to the DCI signaling.
  • the base station sends DCI signaling and instructs the terminal to perform PUSCH transmission time domain resources in the DCI signaling, thereby proposing a method for allocating time domain resources in the NR-U scenario, which improves the uplink transmission success rate and spectrum effectiveness.
  • Fig. 1 is an architectural diagram of a communication system according to an exemplary embodiment.
  • Fig. 2 is a flow chart showing a method for time-domain resource allocation according to an exemplary embodiment.
  • Fig. 3 is a flow chart showing a method for sending data according to an exemplary embodiment.
  • Fig. 4 is a flow chart showing another method for time-domain resource allocation and a method for data transmission according to an exemplary embodiment.
  • Fig. 5 is a schematic diagram of a time slot according to an exemplary embodiment.
  • Fig. 6 is a schematic diagram of another time slot according to an exemplary embodiment.
  • Fig. 7 is a schematic diagram of another time slot according to an exemplary embodiment.
  • Fig. 8 is a structural block diagram of a base station according to an exemplary embodiment.
  • Fig. 9 is a structural block diagram of a terminal according to an exemplary embodiment.
  • Fig. 10 is a block diagram of a device for data transmission according to an exemplary embodiment.
  • FIG. 1 shows an architectural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system includes a base station 101 and a terminal 102.
  • the base station 101 is used to provide various communication services to the terminal 101, and is also used to control the terminal 101 to perform corresponding operations.
  • the terminal 102 may be a smart phone, a PDA (Personal Digital Assistant), etc., which mainly obtains various communication services from the base station 101 and performs corresponding operations according to the control instructions of the base station.
  • PDA Personal Digital Assistant
  • Fig. 2 is a flow chart of a method for time domain resource allocation according to an exemplary embodiment. As shown in Fig. 2, the method for time domain resource allocation is used in a base station and includes the following steps.
  • step S201 the base station transmits downlink control information DCI signaling.
  • the DCI signaling is used to indicate the time domain resource used by the terminal to transmit the physical uplink shared channel PUSCH, and the time domain resource includes at least one time slot and/or at least one small time slot. That is, the time domain resource may include at least one time slot, may also include at least one small time slot, and may also include at least one time slot and at least one small time slot.
  • the base station sends DCI signaling and instructs the terminal to perform PUSCH time domain resource transmission in the DCI signaling, thereby proposing a method for allocating time domain resources in the NR-U scenario, which improves The success rate and spectrum efficiency of uplink transmission are shown.
  • DCI signaling is also used to indicate the start symbol and/or end symbol of the time domain resource
  • the start symbol is used to indicate the start symbol sent by the terminal PUSCH
  • the end symbol is used to indicate the end symbol sent by the terminal PUSCH.
  • the time domain resource is at least one time slot, and the time domain resource is scheduled based on each time slot.
  • the start symbol of the time domain resource is for the first time slot in the at least one time slot or each time slot in the at least one time slot.
  • the start symbol can be one value or multiple values.
  • the end symbol of the time domain resource is for the last slot in the at least one slot or each slot in the at least one slot.
  • the end symbol can be a value.
  • DCI signaling is also used to instruct N redundant versions of RV and each time slot in the time domain resource of the terminal to use its corresponding RV for PUSCH transmission; that is, the transmission of each time slot
  • the content contains complete PUSCH data information. Due to the relationship of LBT, the terminal may not necessarily detect the channel idle in which time slot. For example, if the channel is only detected before the last time slot, it only needs to be performed in the last time slot. PUSCH transmission, and the base station can correctly decode the data information by receiving the content of this time slot. If the channel is detected to be idle before the last three time slots, PUSCH transmission can be performed in the last three time slots, and then the base station can merge and decode the received PUSCH data information of the three time slots to improve the reception accuracy.
  • N is the number of time slots in the time domain resource indicated by DCI signaling.
  • the time domain resource is at least one small time slot
  • the scheduling method of the time domain resource is scheduling based on each small time slot.
  • the starting symbol of the time domain resource is for the first hour slot or each small slot, and DCI signaling is also used to indicate the number of symbols included in each small slot.
  • the start symbol of the time domain resource is for each small time slot, and the adjacent symbol before the start symbol of the S hour slot is the end symbol of the S-1 hour slot.
  • DCI signaling is also used to instruct M redundant versions of RV and each small time slot of the terminal in the time domain resource to use its corresponding RV for PUSCH transmission; that is, each small time slot is sent
  • the content contains complete PUSCH data information. Due to the relationship of LBT, the terminal may not detect the channel idle in which small time slot. For example, the channel idle is only detected before the last hour slot, and only need to be performed in the last small time slot. PUSCH transmission, and the base station can correctly receive the decoded data information by receiving the content of this hour slot.
  • PUSCH transmission can be performed in the last three mini-slots, then the base station can merge and decode the received PUSCH data information of the three mini-slots to improve the reception accuracy.
  • M is the number of small time slots in the time domain resource indicated by DCI signaling.
  • the time domain resource is at least one time slot and at least one small time slot.
  • the scheduling method of the time domain resource includes scheduling for at least one time slot based on each time slot and based on at least one small time slot. Each small time slot is scheduled.
  • the start symbol of the time domain resource is for each time slot or first time slot in at least one time slot, and/or the first small time slot or each time slot in at least one small time slot A small time slot.
  • the end symbol of the time domain resource is for each time slot or last time slot in at least one time slot, and/or each hour slot in at least one small time slot.
  • DCI signaling is also used to instruct K redundant versions of RV and each slot and mini-slot of the terminal in the time domain resource to use their corresponding RVs for PUSCH transmission; considering each The transmission content of a time slot or a small time slot contains the complete PUSCH data information, and due to the relationship of LBT, the terminal may not monitor the time slot or the small time slot in which the channel is idle, for example, the channel is only heard before the last time slot Idle, you only need to send PUSCH in the last time slot, and the base station can correctly decode the data information by receiving the content of this time slot.
  • the base station can send the received PUSCH data information of one small time slot and four time slots Combine decoding to improve reception accuracy.
  • K is the number of time slots and mini-slots in the time domain resource indicated by DCI signaling.
  • the position near the starting symbol of PUSCH transmission in each slot or mini-slot is the starting position of PUSCH transmission.
  • the position near the starting symbol of PUSCH transmission in each time slot or mini-slot is the starting position of PUSCH transmission, including:
  • the starting symbol of PUSCH transmission in each time slot or mini-slot is the starting position of PUSCH transmission
  • the position of the preset duration after the starting symbol of PUSCH transmission in each time slot or mini-slot is the starting position of PUSCH transmission;
  • the position of the preset duration plus the timing advance TA after the start symbol of the PUSCH transmission in each time slot or mini-slot is the start position of the PUSCH transmission; or,
  • the starting position of the adjacent symbol after the starting symbol of PUSCH transmission in each slot or mini-slot is the starting position of PUSCH transmission.
  • the method further includes:
  • the base station sends control signaling, which is used to instruct the terminal to listen to and then talk about the cut-off position of LBT monitoring.
  • the control signaling includes one or a combination of RRC signaling, MAC signaling, and DCI signaling.
  • each slot includes 14 symbols, and the starting symbol is any one of the 14 symbols.
  • each time slot has at least one start symbol.
  • Fig. 3 is a flowchart of a data transmission method according to an exemplary embodiment. As shown in Fig. 3, the data transmission method is used in a base station and includes the following steps.
  • step S301 the terminal receives the DCI signaling sent by the base station.
  • the DCI signaling is used to indicate the time domain resource used by the terminal for PUSCH transmission, and the time domain resource includes at least one time slot and/or at least one small time slot.
  • step S302 the terminal performs PUSCH transmission according to DCI signaling.
  • the terminal receives DCI signaling and transmits PUSCH based on the DCI signaling, thereby realizing the allocation of time domain resources in the NR-U scenario, and at the same time improving the success rate and spectral efficiency of uplink transmission .
  • DCI signaling is also used to indicate the start symbol and/or end symbol of the time domain resource
  • the terminal sends PUSCH according to DCI signaling, including:
  • the terminal determines the start symbol for PUSCH transmission according to the start symbol, and/or determines the end symbol for PUSCH transmission based on the end symbol.
  • the time domain resource is at least one time slot, and the time domain resource is scheduled based on each time slot.
  • the start symbol of the time domain resource is for the first time slot in the at least one time slot or each time slot in the at least one time slot.
  • the end symbol of the time domain resource is for the last slot in the at least one slot or each slot in the at least one slot.
  • DCI signaling is also used to indicate N redundant versions RV;
  • the terminal sends PUSCH according to DCI signaling, including:
  • Each time slot of the terminal in the time domain resource uses its corresponding RV for PUSCH transmission
  • N is the number of time slots in the time domain resource indicated by the DCI signaling.
  • the time domain resource is at least one small time slot
  • the scheduling method of the time domain resource is scheduling based on each small time slot.
  • the starting symbol of the time domain resource is for the first hour slot or each small slot, and DCI signaling is also used to indicate the number of symbols included in each small slot.
  • the start symbol of the time domain resource is for each small time slot, and the adjacent symbol before the start symbol of the S hour slot is the end symbol of the S-1 hour slot.
  • DCI signaling is also used to indicate M redundant versions RV;
  • the terminal sends PUSCH according to DCI signaling, including:
  • Each small time slot of the terminal in the time domain resource uses its corresponding RV for PUSCH transmission
  • M is the number of small time slots in the time domain resource indicated by DCI signaling.
  • the time domain resource is at least one time slot and at least one small time slot.
  • the scheduling method of the time domain resource includes scheduling for at least one time slot based on each time slot and based on at least one small time slot. Each small time slot is scheduled.
  • the starting symbol of the time domain resource is for each time slot or first time slot in at least one time slot, and/or the first hour slot or at least one small time slot or Every small time slot.
  • the end symbol of the time domain resource is for each time slot or last time slot in at least one time slot, and/or each hour slot in at least one small time slot.
  • DCI signaling is also used to indicate K redundant versions RV;
  • the terminal sends PUSCH according to DCI signaling, including:
  • Each time slot and mini-slot of the terminal in the time domain resource use their corresponding RVs for PUSCH transmission;
  • K is the number of time slots and mini-slots in the time domain resource indicated by DCI signaling.
  • the position near the starting symbol of PUSCH transmission in each slot or mini-slot is the starting position of PUSCH transmission.
  • the terminal performs PUSCH transmission according to DCI signaling, including:
  • the terminal performs PUSCH transmission using the starting symbol of PUSCH transmission in each time slot or mini-slot as the transmission starting position of PUSCH; or,
  • the terminal performs PUSCH transmission using the position of the preset duration after the start symbol sent by the PUSCH in each time slot or mini-slot as the transmission start position of the PUSCH; or,
  • the terminal performs PUSCH transmission with the preset duration after the start symbol sent by the PUSCH in each time slot or mini-slot plus the position of the TA as the transmission start position of the PUSCH; or,
  • the terminal performs PUSCH transmission using the starting position of the adjacent symbol after the starting symbol transmitted by the PUSCH in each time slot or mini-slot as the transmission starting position of the PUSCH.
  • the method further includes:
  • the terminal receives control signaling sent by the base station.
  • the control signaling is used to instruct the terminal to listen to and then talk about the cut-off position of LBT monitoring.
  • the control signaling includes radio resource control RRC signaling, media access control MAC signaling, and DCI signaling.
  • RRC signaling radio resource control RRC signaling, media access control MAC signaling, and DCI signaling.
  • the terminal obtains the cut-off position for LBT monitoring from the chip.
  • each slot includes 14 symbols, and the starting symbol is any one of the 14 symbols.
  • Fig. 4 is a flowchart of a time domain resource allocation method and a data transmission method according to an exemplary embodiment. As shown in Fig. 4, the time domain resource allocation method and the data transmission method are used in a terminal and include the following steps.
  • step S401 the base station sends DCI signaling.
  • the DCI signaling is used to indicate a time domain resource used by the terminal for PUSCH transmission.
  • the time domain resource may include at least one time slot or at least one small time slot, and may also include at least one time slot and at least one small time slot.
  • Each time slot includes 14 symbols, and 14 symbols can be represented by 0-13.
  • Each time slot may include at least two small time slots, and the length of each small time slot may be the same or different. Referring to FIG. 5, the time slot includes two small time slots, each small time slot is 7 symbols in length, the first hour slot includes symbol #0 ⁇ symbol #6, and the second hour slot includes symbol #7 ⁇ symbol #13 ; Refer to FIG.
  • the time slot includes four small time slots, the length of the first hour slot is 2 symbols, including symbol #0 ⁇ symbol #1, the length of the second hour slot is 4 symbols, including symbol #2 ⁇ Symbol #5, the length of the third hour slot is 4 symbols, including symbol #6 ⁇ symbol #9, and the length of the fourth hour slot is 4 symbols, including symbol #10 ⁇ symbol #13.
  • the scheduling method of time-domain resources is scheduling based on each slot and scheduling based on each small slot Or schedule based on each time slot and each small time slot.
  • DCI signaling is also used to indicate the start symbol, end symbol, or start symbol and end symbol of the time domain resource.
  • the start symbol is used to indicate the start symbol sent by the terminal PUSCH, the start symbol is any one of the 14 symbols, and the end symbol is used to indicate the end symbol sent by the terminal PUSCH.
  • the start symbol, the end symbol, or the start symbol and the end symbol indicated in the DCI signaling have different definitions. It includes the following situations:
  • the time domain resource is at least one time slot
  • the scheduling method of the time domain resource is scheduling based on each time slot.
  • the starting symbol of the time domain resource is for the first slot in at least one slot or each slot in at least one slot.
  • the end symbol of the time domain resource is for the last slot in at least one slot or each slot in at least one slot. That is, the start symbol of the time domain resource may be for the first slot in at least one slot, and the end symbol may be for the last slot in the at least one slot, and the start symbol for the time domain resource may be for at least one
  • the first time slot and the end symbol in the time slot are for each time slot in at least one time slot, and the start symbol of the time domain resource may also be for each time slot and end symbol in at least one time slot.
  • the start symbol of the time domain resource may also be for each time slot in at least one time slot, and the end symbol for the last time slot in at least one time slot.
  • the time domain resource includes four time slots, the start symbol is symbol #7 and only for the first time slot, and the end symbol is symbol #8 and only for the fourth time slot, then from the first time slot
  • All time-domain resources from symbol #7 to symbol #8 of the fourth time slot are time-domain resources allocated to the terminal for PUSCH transmission, and specifically include symbols #7 to symbol #13 of the first time slot and the first The symbols #0 to symbol #13 of the two time slots, the symbols #0 to symbol #13 of the third time slot, and the symbols #0 to symbol #8 of the fourth time slot.
  • the time domain resource includes four time slots, the start symbol is symbol 0 and is for each time slot, and the end symbol is symbol 6 and for each time slot, then each time slot is from symbol #0 to symbol #6
  • the time domain resource includes four time slots, the start symbol is symbol #7 and only for the first time slot, the end symbol is symbol #12 and for each time slot, then the first time slot symbol # 7 ⁇ symbol #12, symbol #0 ⁇ symbol #12 of the second time slot, symbol #0 ⁇ symbol #12 of the third time slot, symbol #0 ⁇ symbol #12 of the fourth time slot are terminals Time domain resources allocated for PUSCH transmission.
  • the time domain resource includes four time slots, the start symbol is symbol #7 and for each time slot, the end symbol is symbol #12 and only for the last time slot, then the first time slot symbol #7 ⁇ Symbol #13, symbol #7 to symbol #13 of the second time slot, symbol #7 to symbol #13 of the third time slot, and symbol #7 to symbol #12 of the fourth time slot are allocated to the terminal Time domain resource for PUSCH transmission.
  • there may also be multiple start symbols of the time domain resource and the multiple start symbols may be multiple start symbols for the first time slot, or may be for each Multiple starting symbols for time slots.
  • a slot has 14 symbols, and two starting symbols are given as symbol #0 and symbol #7: when multiple starting symbols are only for the first slot, only the first slot has two The starting symbols are symbol #0 and symbol #7, and the starting symbols of other time slots are symbol #0; when multiple starting symbols are for each time slot, there are two starting The starting symbols are symbol #0 and symbol #7.
  • the terminal For a time slot with two starting symbols such as symbol #0 and symbol #7, when the terminal detects that the channel is idle before symbol #0, the terminal sends complete PUSCH data information; and if the terminal does not precede symbol #0 If the channel is detected to be idle and the channel is detected to be idle before symbol #7, the terminal will only be able to send data mapped from symbol #7 to the end symbol such as symbol #13, and the data mapped to symbols #0 to #6 due to the channel If it cannot be used, the puncture can only be removed. In this case, DCI signaling is also used to instruct the N RVs and the respective time slots in the time-domain resources of the terminal to use their corresponding RVs for PUSCH transmission.
  • N is the number of time slots in the time domain resource indicated by DCI signaling. That is, when PUSCHs are transmitted in multiple time slots, the number of PUSCHs is the same as the number of time slots, and the N time slots in the time domain resources of the terminal use the corresponding RVs for PUSCH transmission.
  • the terminal does not necessarily detect in which time slot When the channel is idle, for example, only when the channel is idle before the last time slot is detected, only PUSCH transmission is needed in the last time slot, and the base station can correctly decode the data information by receiving the content of this time slot. If the channel is detected to be idle before the last three time slots, PUSCH transmission can be performed in the last three time slots, and then the base station can merge and decode the received PUSCH data information of the three time slots to improve the reception accuracy.
  • the time domain resource is at least one small time slot
  • the scheduling method of the time domain resource is scheduling based on each small time slot.
  • the starting symbol of the time domain resource may be for the first hour slot or each small time slot
  • DCI signaling is also used to indicate the number of symbols included in each small time slot, each indicated by DCI signaling
  • the number of symbols included in the small slot may be the same or different.
  • the starting symbol of the time domain resource is for the first hour slot
  • the DCI indicates a symbol number value for each small slot.
  • the time domain resource includes N consecutive small slots with the same number of symbols.
  • the starting symbol of the first hour slot is the symbol 0, and the number of symbols included in each small slot is indicated in the DCI signaling All numbers are 3, which means that the first mini-slot contains symbols #0 ⁇ #2, the second mini-slot contains symbols #3 ⁇ #5, the third mini-slot contains symbols #6 ⁇ #8, and the fourth mini-slot contains symbol ## 9 ⁇ #11.
  • the start symbol of the time domain resource is for the first hour slot
  • the DCI indicates multiple symbol values and for each small slot.
  • the time-domain resource includes N consecutive small slots with different symbol numbers.
  • the starting symbol of the first hour slot is the symbol 0, and the symbols included in each small slot are indicated in the DCI signaling
  • the numbers are 2, 4, 4, and 4, respectively, which means that the first small time slot contains symbols #0 to #1, the second small time slot contains symbols #2 to #5, and the third small time slot contains symbols #6 to #9.
  • the fourth mini-slot contains symbols #10 to #13.
  • the starting symbol of the time domain resource is for each small slot, and the DCI indicates a symbol number value for each small slot.
  • the time domain resource may include N discontinuous mini-slots with the same number of symbols.
  • the starting symbols of each mini-slot are symbol #0, symbol #3, symbol #7, symbol #10, and
  • the DCI signaling indicates that the number of symbols included in each mini-slot is 3, which means that the first mini-slot contains symbols #0 ⁇ #2, the second mini-slot contains symbols #3 ⁇ #5, and the third mini-slot Symbols #7 to #9 are included, and the fourth small time slot includes symbols #10 to #12.
  • the second hour slot and the third hour slot are not continuous, that is, the symbol #6 is separated.
  • the start symbol of the time domain resource is for each small slot, and DCI indicates a number of symbols and values for each small slot.
  • the time-domain resource can include N small slots that are not continuous and the number of symbols can be different.
  • the starting symbols of each small slot are symbol #0, symbol #3, symbol #7, symbol #10 , And indicates in DCI signaling that the number of symbols included in each mini-slot is 2, 3, 3, 4 respectively, which means that the first mini-slot contains symbols #0 ⁇ #1, and the second mini-slot contains symbols #3 ⁇ #5.
  • the third mini-slot contains symbols #7 to #9, and the fourth mini-slot contains symbols #10 to #13.
  • the start symbol of the time domain resource may also be for each small time slot, and at this time, the adjacent symbol before the start symbol of the S-hour slot is the end symbol of the S-1 hour slot.
  • the value of S may be 1 to M, and M is the number of small time slots in the time domain resource.
  • the time domain resource includes a time slot, and the time slot includes 4 hour slots. At this time, only four small time slot start symbols need to be given, and the adjacent symbol before the start symbol of the second hour slot is The end symbol of the first small time slot, the adjacent symbol before the start symbol of the third hour slot is the end symbol of the second hour slot, and the adjacent symbol before the start symbol of the fourth hour slot is the third End symbol of hour slot.
  • the time domain resource only provides multiple start symbols, for example, four start symbols are given as symbol #0, symbol #3, symbol #7, symbol #10, indicating that the first mini-slot contains symbol #0 ⁇ #2, the second small time slot contains symbols #3 to #6, the third small time slot contains symbols #7 to #9, and the fourth small time slot contains symbols #10 to #13.
  • multiple small time slots are continuous.
  • the DCI signaling is also used to instruct the M RVs and each small time slot in the time domain resource of the terminal to use the corresponding RV for PUSCH transmission.
  • M is the number of small time slots in the time domain resource indicated by DCI signaling. That is, when multiple mini-slots transmit multiple PUSCHs, each mini-slot transmits one PUSCH.
  • the number of PUSCHs is the same as the number of mini-slots and corresponds one-to-one.
  • the terminal uses each mini-slot in the time domain resource to correspond to each other.
  • the RV performs PUSCH transmission.
  • each small time slot contains the complete PUSCH data information, but the data version corresponding to each small time slot uses a different redundancy version RV. Due to the relationship of LBT, the terminal may not detect in which small time slot the channel is idle For example, only when the channel is idle before the last mini-slot is detected, only the corresponding RV needs to be used for PUSCH transmission in the last mini-slot, and the base station can correctly decode the data information by receiving the content of this hour slot. If the channel idle is detected before the last three small time slots, the corresponding RV can be used for PUSCH transmission in the last three small time slots, then the base station can merge and decode the received PUSCH data information of the three small time slots to improve the reception accuracy .
  • the time domain resource is at least one time slot and at least one small time slot.
  • the scheduling method of the time domain resource includes scheduling based on each time slot for at least one time slot and performing based on each small time slot for at least one small time slot. Scheduling.
  • the starting symbol of the time domain resource is for each time slot or first time slot in at least one time slot, and/or the first hour slot or every hour slot in at least one small time slot.
  • the end symbol of the time domain resource is for each time slot or last time slot in at least one time slot, and/or every hour slot in at least one small time slot. That is, for at least one time slot, the start symbol of the time domain resource may be for the first time slot in the at least one time slot, and the end symbol for the last time slot in the at least one time slot.
  • the start symbol may be for the first slot in at least one slot, the end symbol may be for each slot in the at least one slot, and the start symbol for the time domain resource may also be for each slot in the at least one slot.
  • the end symbol is for the last time slot in at least one time slot, the start symbol for the time domain resource can also be for each time slot in at least one time slot, and the end symbol is for each time slot in at least one time slot;
  • the start symbol of the time domain resource may be for each small time slot in at least one small time slot, and the end symbol for each small time slot in at least one small time slot, and the start symbol of the time domain resource may also be
  • the first hour slot and the end symbol in at least one mini-slot are for each mini-slot in the at least one mini-slot.
  • the time domain resource includes four small time slots and four time slots, of which four small time slots are located in time slot #0, and the four time slots are time slot #1, time slot #2, time slot #3 and Time slot #4.
  • the starting symbol of the time domain resource may be for the first hour slot or each small time slot, and DCI signaling is also used to indicate the number of symbols included in each small time slot, DCI The number of symbols included in each mini-slot indicated by the signaling may be the same or different.
  • the starting symbol of the time domain resource is for the first hour slot
  • the DCI indicates a symbol number value for each small slot.
  • the time domain resource includes N consecutive small slots with the same number of symbols.
  • the starting symbol of the first hour slot is the symbol 0, and the number of symbols included in each small slot is indicated in the DCI signaling All numbers are 3, which means that the first mini-slot contains symbols #0 ⁇ #2, the second mini-slot contains symbols #3 ⁇ #5, the third mini-slot contains symbols #6 ⁇ #8, and the fourth mini-slot contains symbol ## 9 ⁇ #11.
  • the start symbol of the time domain resource is for the first hour slot
  • the DCI indicates multiple symbol values and for each small slot.
  • the time-domain resource includes N consecutive small slots with different symbol numbers.
  • the starting symbol of the first hour slot is the symbol 0, and the symbols included in each small slot are indicated in the DCI signaling
  • the numbers are 2, 4, 4, and 4, respectively, which means that the first small time slot contains symbols #0 to #1, the second small time slot contains symbols #2 to #5, and the third small time slot contains symbols #6 to #9.
  • the fourth mini-slot contains symbols #10 to #13.
  • the starting symbol of the time domain resource is for each small slot, and the DCI indicates a symbol number value for each small slot.
  • the time domain resource may include N discontinuous mini-slots with the same number of symbols.
  • the starting symbols of each mini-slot are symbol #0, symbol #3, symbol #7, symbol #10, and
  • the DCI signaling indicates that the number of symbols included in each mini-slot is 3, which means that the first mini-slot contains symbols #0 ⁇ #2, the second mini-slot contains symbols #3 ⁇ #5, and the third mini-slot Symbols #7 to #9 are included, and the fourth small time slot includes symbols #10 to #12.
  • the second hour slot and the third hour slot are not continuous, that is, the symbol #6 is separated.
  • the start symbol of the time domain resource is for each small slot, and DCI indicates a number of symbols and values for each small slot.
  • the time-domain resource can include N small slots that are not continuous and the number of symbols can be different.
  • the starting symbols of each small slot are symbol #0, symbol #3, symbol #7, symbol #10 , And indicates in DCI signaling that the number of symbols included in each mini-slot is 2, 3, 3, 4 respectively, which means that the first mini-slot contains symbols #0 ⁇ #1, and the second mini-slot contains symbols #3 ⁇ #5.
  • the third mini-slot contains symbols #7 to #9, and the fourth mini-slot contains symbols #10 to #13.
  • the start symbol of the time domain resource may also be for each small time slot, and at this time, the adjacent symbol before the start symbol of the S hour slot is the S-1th End symbol for small time slots.
  • the value of S may be 1 to M, and M is the number of small time slots in the time domain resource.
  • the time domain resource includes a time slot, and the time slot includes 4 hour slots. At this time, only four small time slot start symbols need to be given, and the adjacent symbol before the start symbol of the second hour slot is The end symbol of the first small time slot, the adjacent symbol before the start symbol of the third hour slot is the end symbol of the second hour slot, and the adjacent symbol before the start symbol of the fourth hour slot is the third End symbol of hour slot.
  • the time domain resource only provides multiple start symbols, for example, four start symbols are given as symbol #0, symbol #3, symbol #7, symbol #10, indicating that the first mini-slot contains symbol #0 ⁇ #2, the second small time slot contains symbols #3 to #6, the third small time slot contains symbols #7 to #9, and the fourth small time slot contains symbols #10 to #13.
  • multiple small time slots are continuous.
  • the start symbol of the time domain resource may be for each small time slot, and the end symbol of the time domain resource may be for each small time slot.
  • the time-domain resource may include N small slots that are not continuous and the number of symbols may be different.
  • the starting symbols of each small time slot are symbol #0, symbol #3, symbol #7, and symbol #10
  • the ending symbols of each small time slot are symbol #1, symbol #5, symbol #9, symbol #13 .
  • the first mini-slot contains symbols #0 to #1
  • the second mini-slot contains symbols #3 to #5
  • the third mini-slot contains symbols #7 to #9
  • the fourth mini-slot contains symbols #10 to #13 .
  • the time domain resource includes four time slots, the start symbol is symbol #7 and only for the first time slot, and the end symbol is symbol #8 and only for the fourth time slot, then from the first time slot
  • All time-domain resources from symbol #7 to symbol #8 of the fourth time slot are time-domain resources allocated to the terminal for PUSCH transmission, and specifically include symbols #7 to symbol #13 of the first time slot and the first The symbols #0 to symbol #13 of the two time slots, the symbols #0 to symbol #13 of the third time slot, and the symbols #0 to symbol #8 of the fourth time slot.
  • the time domain resource includes four time slots, the start symbol is symbol 0 and is for each time slot, and the end symbol is symbol 6 and for each time slot, then each time slot is from symbol #0 to symbol #6
  • the time domain resource includes four time slots, the start symbol is symbol #7 and only for the first time slot, the end symbol is symbol #12 and for each time slot, then the first time slot symbol # 7 ⁇ symbol #12, symbol #0 ⁇ symbol #12 of the second time slot, symbol #0 ⁇ symbol #12 of the third time slot, symbol #0 ⁇ symbol #12 of the fourth time slot are terminals Time domain resources allocated for PUSCH transmission.
  • the time domain resource includes four time slots, the start symbol is symbol #7 and for each time slot, the end symbol is symbol #12 and only for the last time slot, then the first time slot symbol #7 ⁇ Symbol #13, symbol #7 to symbol #13 of the second time slot, symbol #7 to symbol #13 of the third time slot, and symbol #7 to symbol #12 of the fourth time slot are allocated to the terminal Time domain resource for PUSCH transmission.
  • a slot has 14 symbols, and two starting symbols are given as symbol #0 and symbol #7: when multiple starting symbols are only for the first slot, only the first slot has two The starting symbols are symbol #0 and symbol #7, and the starting symbols of other time slots are symbol #0; when multiple starting symbols are for each time slot, there are two starting The starting symbols are symbol #0 and symbol #7.
  • the terminal For a time slot with two starting symbols such as symbol #0 and symbol #7, when the terminal detects that the channel is idle before symbol #0, the terminal sends complete PUSCH data information; and if the terminal does not precede symbol #0 If the channel is detected to be idle and the channel is detected to be idle before symbol #7, the terminal will only be able to send data mapped from symbol #7 to the end symbol such as symbol #13, and the data mapped to symbols #0 to #6 due to the channel If it cannot be used, the puncture can only be removed.
  • the DCI signaling is also used to instruct the K RVs and the respective time slots and mini-slots of the terminal in the time domain resource to use their corresponding RVs for PUSCH transmission.
  • K is the number of time slots and mini-slots in the time domain resource indicated by DCI signaling. That is, one PUSCH is transmitted in each time slot or mini-slot, the number of time slots and mini-slots is the same as the number of PUSCH, and each time slot and mini-slot in the time domain resource of the terminal use their corresponding RV for PUSCH transmission.
  • the terminal may not monitor the time slot or small time slot in which the channel is idle, for example, only in the last time slot Before monitoring that the channel is idle, you only need to send PUSCH in the last time slot, and the base station can correctly decode the data information by receiving the content of this time slot. If the channel is detected before the last small time slot and four time slots are idle, you can send PUSCH in the last time slot and four time slots, then the base station can send the received PUSCH data information of one small time slot and four time slots Combine decoding to improve reception accuracy.
  • the position near the starting symbol of PUSCH transmission in each slot or mini-slot is the starting position of PUSCH transmission.
  • the starting position of PUSCH transmission can be the following:
  • the starting symbol of PUSCH transmission in each time slot or mini-slot is the starting position of PUSCH transmission.
  • the position of the preset duration after the start symbol of the PUSCH transmission in each time slot or mini-slot is the transmission start position of the PUSCH.
  • the preset duration is set by the base station, and can be 25 ⁇ s, 30 ⁇ s, and so on.
  • the preset duration after the start symbol of PUSCH transmission in each time slot or mini-slot plus the position of TA is the start position of PUSCH transmission.
  • the starting position of the adjacent symbol after the starting symbol sent by the PUSCH in each slot or mini-slot is the starting position of PUSCH transmission.
  • the starting position of PUSCH transmission can be:
  • the base station can set different identifiers for each transmission start position, so that the terminal can determine the PUSCH transmission start position according to different identifiers, specifically, the PUSCH transmission position
  • the start symbol is set to 00, and the position is set to 01 for the position of the preset duration after the start symbol sent by PUSCH, and the position is set to 10 for the position of the preset duration after the start symbol sent by PUSCH, and is the start of PUSCH transmission.
  • the start position of the adjacent symbol after the symbol is set with a mark 11.
  • the starting position of PUSCH transmission may be as shown in Table 2:
  • the symbol of the starting symbol can be any one of 0 to 13
  • the number of starting symbols to be sent is relatively large.
  • the symbol of the starting symbol can be limited, for example, the Limited to symbol 0, symbol 2, symbol 4, symbol 7, symbol 8, symbol 9 or symbol 11, etc.
  • the symbol of the end symbol can be a maximum of 13.
  • step S402 the terminal receives DCI signaling sent by the base station.
  • step S403 the terminal performs PUSCH transmission according to DCI signaling.
  • the terminal Before the terminal transmits PUSCH according to DCI signaling, it also needs to determine the cut-off position of LBT monitoring, which is the position where the terminal last conducted LBT monitoring, and this position is the start symbol of the last time slot or mini-slot Before, when the channel was not monitored before the start symbol of the last slot or mini-slot, that is, the channel was always in the busy green state, there was no need to continue LBT monitoring, because even if the channel was subsequently monitored, it was idle. At this time, there is not a complete transmission time unit, and PUSCH transmission cannot be performed.
  • the terminal can obtain it in the following two ways:
  • the terminal may receive control signaling sent by the base station.
  • the control signaling is used to instruct the terminal to listen to and then speak the cut-off position of LBT monitoring.
  • the control signaling includes RRC (Radio Resource Control, wireless Resource control) signaling, MAC signaling (Media Access Control, media access control) and one or more combinations of DCI signaling.
  • the cut-off position of LBT monitoring is pre-stored in the chip of the terminal, so the terminal can also obtain the cut-off position of LBT monitoring from the chip.
  • the manner in which the terminal performs LBT monitoring is also different.
  • the cut-off position for LBT monitoring is before the start symbol of the last time slot.
  • the terminal starts LBT monitoring before the start symbol of the first time slot (how long before it is not limited), until the start symbol of the last time slot, if it is at the beginning of the last time slot Before the symbol detects that the channel is in the idle state, the terminal uses the corresponding RV for PUSCH transmission in the last slot; if the channel has been busy until the start symbol of the last slot, LBT monitoring is no longer performed.
  • the cut-off position of LBT monitoring is the start symbol of the last small time slot. For this situation, the terminal starts LBT monitoring before the start symbol of the first hour slot until the start symbol of the last small slot. If the channel is idle before the start symbol of the last small slot , The terminal uses the corresponding RV for PUSCH transmission in the last mini-slot; if the channel is always busy green until the start symbol of the last mini-slot, it will no longer perform LBT monitoring.
  • the symbol of the start symbol may be any one of 0 to 13
  • the number of the start symbol to be sent is relatively large.
  • the symbol of the initial symbol is limited, for example, it is limited to symbol #0, symbol 2, symbol #4, symbol #7, symbol #8, symbol #9 or symbol #11, and so on.
  • the symbol of the end symbol can be a maximum of symbol #13.
  • the base station sends DCI signaling and instructs the terminal to perform PUSCH time domain resource transmission in the DCI signaling, thereby proposing a method for allocating time domain resources in the NR-U scenario, which improves The success rate and spectrum efficiency of uplink transmission are shown.
  • Fig. 8 is a schematic structural diagram of a base station for time domain resource allocation according to an exemplary embodiment.
  • the base station is the base station in FIG. 1 and includes a sending module 801.
  • the sending module 801 is configured to send DCI signaling of downlink control information.
  • the DCI signaling is used to indicate a time domain resource used by the terminal for physical uplink shared channel PUSCH transmission.
  • the time domain resource includes at least one time slot and/or at least one Small time slot.
  • DCI signaling is also used to indicate the start symbol and/or end symbol of the time domain resource
  • the start symbol is used to indicate the start symbol sent by the terminal PUSCH
  • the end symbol is used to indicate the end symbol sent by the terminal PUSCH.
  • the time domain resource is at least one time slot, and the time domain resource is scheduled based on each time slot.
  • the start symbol of the time domain resource is for the first time slot in the at least one time slot or each time slot in the at least one time slot; and/or,
  • the end symbol of the time domain resource is for the last slot in at least one slot or each slot in at least one slot.
  • the DCI signaling is also used to instruct N redundant versions of RV and each time slot in the time domain resource of the terminal to use its corresponding RV for PUSCH transmission;
  • N is the number of time slots in the time domain resource indicated by DCI signaling.
  • the time domain resource is at least one small time slot
  • the scheduling method of the time domain resource is scheduling based on each small time slot.
  • the starting symbol of the time domain resource is for the first hour slot or each small slot, and DCI signaling is also used to indicate the number of symbols included in each small slot; or,
  • the start symbol of the time domain resource is for each small time slot, and the adjacent symbol before the start symbol of the S-th hour slot is the end symbol of the S-1 hour slot.
  • the DCI signaling is also used to instruct the M redundant versions of RV and each small time slot in the time domain resource of the terminal to use its corresponding RV for PUSCH transmission;
  • M is the number of small time slots in the time domain resource indicated by DCI signaling.
  • the time domain resource is at least one time slot and at least one small time slot.
  • the scheduling method of the time domain resource includes scheduling for at least one time slot based on each time slot and based on at least one small time slot. Each small time slot is scheduled.
  • the starting symbol of the time domain resource is for each time slot or first time slot in at least one time slot, and/or the first hour slot or at least one small time slot or Every small time slot; and/or,
  • the end symbol of the time domain resource is for each time slot or last time slot in at least one time slot, and/or every hour slot in at least one small time slot.
  • DCI signaling is also used to instruct K redundant versions of RV and each time slot and mini-slot in the time domain resource of the terminal to use their corresponding RVs for PUSCH transmission;
  • K is the number of time slots and mini-slots in the time domain resource indicated by DCI signaling.
  • the position near the starting symbol of PUSCH transmission in each slot or mini-slot is the starting position of PUSCH transmission.
  • the position near the starting symbol of PUSCH transmission in each time slot or mini-slot is the starting position of PUSCH transmission, including:
  • the starting symbol of PUSCH transmission in each time slot or mini-slot is the starting position of PUSCH transmission
  • the position of the preset duration after the starting symbol of PUSCH transmission in each time slot or mini-slot is the starting position of PUSCH transmission;
  • the position of the preset duration plus the timing advance TA after the start symbol of the PUSCH transmission in each time slot or mini-slot is the start position of the PUSCH transmission; or,
  • the starting position of the adjacent symbol after the starting symbol of PUSCH transmission in each slot or mini-slot is the starting position of PUSCH transmission.
  • the sending module 801 is configured to send control signaling, the control signaling is used to instruct the terminal to listen to and then speak the cut-off position of LBT monitoring, and the control signaling includes radio resource control RRC A combination of one or more of signaling, media access control MAC signaling, and DCI signaling.
  • each slot includes 14 symbols, and the starting symbol is any one of the 14 symbols.
  • each time slot has at least one start symbol.
  • the base station sends DCI signaling and instructs the terminal to perform time domain resource transmission of PUSCH in the signaling, thereby proposing a method for time domain resource allocation in the NR-U scenario, which improves uplink Transmission success rate and spectrum efficiency.
  • Fig. 9 is a schematic structural diagram of a terminal for data transmission according to an exemplary embodiment.
  • the terminal is the terminal in FIG. 1 and includes a receiving module 901 and a sending module 902.
  • the receiving module 901 is configured to receive DCI signaling sent by the base station, and the DCI signaling is used to indicate a time domain resource used by the terminal for PUSCH transmission, and the time domain resource includes at least one time slot and/or at least one small time slot;
  • the sending module 902 is configured to send PUSCH according to DCI signaling.
  • DCI signaling is also used to indicate the start symbol and/or end symbol of the time domain resource
  • the sending module 902 is configured to determine the start symbol for PUSCH transmission according to the start symbol, and/or determine the end symbol for PUSCH transmission according to the end symbol.
  • the time domain resource is at least one time slot, and the time domain resource is scheduled based on each time slot.
  • the start symbol of the time domain resource is for the first time slot in the at least one time slot or each time slot in the at least one time slot; and/or,
  • the end symbol of the time domain resource is for the last slot in at least one slot or each slot in at least one slot.
  • DCI signaling is also used to indicate N redundant versions RV;
  • the sending module 902 is configured to use respective corresponding RVs for PUSCH transmission in each time slot in the time domain resource;
  • N is the number of time slots in the time domain resource indicated by the DCI signaling.
  • the time domain resource is at least one small time slot
  • the scheduling method of the time domain resource is scheduling based on each small time slot.
  • the starting symbol of the time domain resource is for the first hour slot or each small slot, and DCI signaling is also used to indicate the number of symbols included in each small slot; or,
  • the start symbol of the time domain resource is for each small time slot, and the adjacent symbol before the start symbol of the S-th hour slot is the end symbol of the S-1 hour slot.
  • DCI signaling is also used to indicate M redundant versions RV;
  • the sending module 902 is configured to use respective corresponding RVs for PUSCH transmission in each small time slot in the time domain resource;
  • M is the number of small time slots in the time domain resource indicated by DCI signaling.
  • the time domain resource is at least one time slot and at least one small time slot.
  • the scheduling method of the time domain resource includes scheduling for at least one time slot based on each time slot and based on at least one small time slot. Each small time slot is scheduled.
  • the starting symbol of the time domain resource is for each time slot or first time slot in at least one time slot, and/or the first hour slot or at least one small time slot or Every small time slot; and/or,
  • the end symbol of the time domain resource is for each time slot or last time slot in at least one time slot, and/or every hour slot in at least one small time slot.
  • DCI signaling is also used to indicate K redundant versions RV;
  • the sending module 902 is configured to use respective corresponding RVs for PUSCH transmission in each time slot and mini-slot in the time domain resource;
  • K is the number of time slots and mini-slots in the time domain resource indicated by DCI signaling.
  • the position near the starting symbol of PUSCH transmission in each slot or mini-slot is the starting position of PUSCH transmission.
  • the sending module 902 is configured to perform PUSCH transmission using the starting symbol of the PUSCH transmission in each time slot or mini-slot as the transmission start position of the PUSCH; or,
  • the sending module 902 is configured to perform PUSCH transmission using the position of the preset duration after the start symbol sent by the PUSCH in each time slot or mini-slot as the starting position of the PUSCH transmission; or,
  • the sending module 902 is configured to perform PUSCH transmission with a preset duration after the start symbol sent by the PUSCH in each time slot or mini-slot plus the position of the TA as the transmission start position of the PUSCH; or,
  • the sending module 902 is configured to perform PUSCH transmission using the starting position of the adjacent symbol after the starting symbol transmitted by the PUSCH in each time slot or mini-slot as the transmission starting position of the PUSCH.
  • the terminal further includes: an acquisition module.
  • the receiving module 901 is configured to receive the control signaling sent by the base station.
  • the control signaling is used to instruct the terminal to listen to and then speak the cut-off position of LBT monitoring.
  • the control signaling includes radio resource control RRC signaling and media access control MAC signaling.
  • RRC signaling radio resource control RRC signaling
  • media access control MAC signaling One or more combinations of order and DCI signaling; or,
  • the acquisition module is configured to acquire the cut-off position for LBT monitoring from the chip.
  • each slot includes 14 symbols, and the starting symbol is any one of the 14 symbols.
  • the terminal receives DCI signaling and transmits PUSCH based on the DCI signaling, thereby realizing the allocation of time domain resources in the NR-U scenario, and at the same time improving the success rate and spectrum of uplink transmission effectiveness.
  • Fig. 10 is a block diagram of a device 1000 for sending data according to an exemplary embodiment.
  • the device 1000 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • the device 1000 may include one or more of the following components: a processing component 1002, a memory 1004, a power component 1006, a multimedia component 1008, an audio component 1010, an input/output (I/O) interface 1012, a sensor component 1014, and Communication component 1016.
  • the processing component 1002 generally controls the overall operations of the device 1000, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 1002 may include one or more processors 1020 to execute instructions to complete all or part of the steps in the above method.
  • the processing component 1002 may include one or more modules to facilitate interaction between the processing component 1002 and other components.
  • the processing component 1002 may include a multimedia module to facilitate interaction between the multimedia component 1008 and the processing component 1002.
  • the memory 1004 is configured to store various types of data to support operation at the device 1000. Examples of these data include instructions for any application or method operating on the device 1000, contact data, phone book data, messages, pictures, videos, and so on.
  • the memory 1004 may be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable and removable Programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable and removable Programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply component 1006 provides power to various components of the device 1000.
  • the power supply component 1006 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 1000.
  • the multimedia component 1008 includes a screen between the device 1000 and the user that provides an output interface.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundary of the touch or sliding action, but also detect the duration and pressure related to the touch or sliding operation.
  • the multimedia component 1008 includes a front camera and/or a rear camera. When the device 1000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1010 is configured to output and/or input audio signals.
  • the audio component 1010 includes a microphone (MIC).
  • the microphone When the device 1000 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal may be further stored in the memory 1004 or sent via the communication component 1016.
  • the audio component 1010 further includes a speaker for outputting audio signals.
  • the I/O interface 1012 provides an interface between the processing component 1002 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, or a button. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor assembly 1014 includes one or more sensors for providing the device 1000 with status assessments in various aspects.
  • the sensor assembly 1014 can detect the opening/closing state of the device 1000, and the relative positioning of the components.
  • the components are the display and the keypad of the device 1000.
  • the sensor assembly 1014 can also detect the position change of the device 1000 or a component of the device 1000 The presence or absence of user contact with the device 1000, the orientation or acceleration/deceleration of the device 1000, and the temperature change of the device 1000.
  • the sensor assembly 1014 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor assembly 1014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 1014 may further include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 1016 is configured to facilitate wired or wireless communication between the device 1000 and other devices.
  • the device 1000 may access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 1016 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1016 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the apparatus 1000 may be one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component is implemented to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component is implemented to perform the above method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 1004 including instructions.
  • the above instructions can be executed by the processor 1020 of the device 1000 to complete the above method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, or the like.
  • a non-transitory computer-readable storage medium when instructions in the storage medium are executed by a processor of a mobile terminal, enable the mobile terminal to perform a data transmission method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种时域资源分配方法、数据发送方法、基站及终端,属于通信技术领域。所述方法包括:基站发送下行链路控制信息DCI信令,所述DCI信令用于指示终端用于物理上行共享信道PUSCH发送的时域资源,所述时域资源包括至少一个时隙和/或至少一个小时隙。本公开中基站通过发送DCI信令,并在该DCI信令中指示终端进行PUSCH发送的时域资源,从而提出了一种NR-U场景下时域资源的分配方法,提高了上行发送的成功率及频谱效率。

Description

时域资源分配方法、数据发送方法、基站及终端 技术领域
本发明涉及通信技术领域,特别涉及一种时域资源分配方法、数据发送方法、基站及终端。
背景技术
5G(5th-Generation,第五代移动通信技术)NR(New Radio,新无线电通信)作为5G领域的一个重要的应用场景,可采用非授权频段传输数据。其中,非授权频段是指无需授权即可免费使用的频段,常见的WiFi即运行在非授权频段中。由于非授权频段不受运营商部署网络的管制,为避免邻近基站的干扰,基站需要为终端分配时域资源,基于所分配的时域资源,终端采用LBT(Listen Before Talk,先听后说)机制对PUSCH(Physical Uplink Shared Channel,物理上行共享信道)进行监听,如果监听到PUSCH在任一时域资源内处于空闲状态,则在该时域资源内进行PUSCH发送。
LAA(Licensed-Assisted Access,授权辅助接入)中对时域资源进行了定义,规定子帧长度为1ms(毫秒),每个子帧包括两个时隙,每个时隙包括7个符号。基于上述定义,LAA的上行调度方式能够调度多个子帧,UE可在每个被调度的子帧内进行PUSCH发送,且在每个子帧内所发送数据的RV(Redundancy Version,冗余版本)独立配置。
当前,NR中提出了多个子载波间隔及小时隙的概念,并对时隙及其长度进行重新定义。而基于NR的非授权(NR-unlicensed,NR-U)频谱接入,如何基于NR中的时隙和小时隙,进行时域资源的分配是需要解决的问题。因此,在NR-U场景下如何进行时域资源的分配,成为本领域技术人员较为关注的问题。
发明内容
为克服相关技术中存在的问题,本公开提供一种时域资源分配方法、数据发送方法、基站及终端。
根据本公开实施例的第一方面,提供一种时域资源分配方法,所述方法应用于基站,所述方法包括:
基站发送DCI(Downlink Control Information,下行链路控制信息)信令,所述DCI信令用于指示终端用于物理上行共享信道PUSCH发送的时域资源,所述时域资源包括至少一个时隙和/或至少一个小时隙。
在另一种可能的实现方式中,所述DCI信令还用于指示所述时域资源的起始符号和/或结束符号;
其中,所述起始符号用于指示所述终端PUSCH发送的起始符号,所述结束符号用于指示所述终端PUSCH发送的结束符号。
在另一种可能的实现方式中,所述时域资源为至少一个时隙,所述时域资源的调度方式为基于每个时隙进行调度。
在另一种可能的实现方式中,所述时域资源的起始符号针对至少一个时隙中的第一个时隙或至少一个时隙中的每一个时隙;和/或,
所述时域资源的结束符号针对至少一个时隙中的最后一个时隙或至少一个时隙中的每一个时隙。
在另一种可能的实现方式中,所述DCI信令还用于指示N个RV及所述终端在所述时域资源中的各个时隙使用各自对应的RV进行PUSCH发送;
其中,N为所述DCI信令指示的时域资源中时隙的个数。
在另一种可能的实现方式中,所述时域资源为至少一个小时隙,所述时域资源的调度方式为基于每个小时隙进行调度;或,
所述时域资源的起始符号针对第一个小时隙或每个小时隙,所述DCI信令还用于指示每个小时隙包括的符号个数。
在另一种可能的实现方式中,所述时域资源的起始符号针对每个小时隙,第S个小时隙的起始符号之前的相邻符号为第S-1个小时隙的结束符号。
在另一种可能的实现方式中,所述DCI信令还用于指示M个冗余版本RV及所述终端在时域资源中的各个小时隙使用各自对应的RV进行PUSCH发送;
其中,M为所述DCI信令指示时域资源中小时隙的个数。
在另一种可能的实现方式中,所述时域资源为至少一个时隙和至少一小时隙,所述时域资源的调度方式包括针对至少一个时隙基于每个时隙进行调度及 针对至少一个小时隙基于每个小时隙进行调度。
在另一种可能的实现方式中,所述时域资源的起始符号针对至少一个时隙中的每一个时隙或第一个时隙,和/或至少一个小时隙中的第一个小时隙或每一个小时隙;和/或,
所述时域资源的结束符号针对至少一个时隙中的每一个时隙或最后一个时隙,和/或至少一个小时隙中的每一个小时隙。
在另一种可能的实现方式中,所述DCI信令还用于指示K个冗余版本RV及所述终端在时域资源中的各个时隙和小时隙使用各自对应的RV进行PUSCH发送;
其中,K为所述DCI信令指示时域资源中时隙及小时隙的个数。
在另一种可能的实现方式中,所述每个时隙或小时隙内的PUSCH发送的起始符号附近的位置为PUSCH的发送起始位置。
在另一种可能的实现方式中,所述每个时隙或小时隙内的PUSCH发送的起始符号附近的位置为PUSCH的发送起始位置,包括:
每个时隙或小时隙内的PUSCH发送的起始符号为PUSCH的发送起始位置;或,
每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长的位置为PUSCH的发送起始位置;或,
每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长加上TA(Timing Advance,定时提前量)的位置为PUSCH的发送起始位置;或,
每个时隙或小时隙内的PUSCH发送的起始符号之后的相邻符号的起始位置为PUSCH的发送起始位置。
在另一种可能的实现方式中,所述方法还包括:
所述基站发送控制信令,所述控制信令用于指示所述终端进行先听后说LBT监听的截止位置,所述控制信令包括无线资源控制RRC信令、媒体接入控制MAC信令和DCI信令中的一种或多种的组合。
在另一种可能的实现方式中,每个时隙包括14个符号,所述起始符号为14个符号中的任一个符号。
在另一种可能的实现方式中,当所述时域资源的调度方式为基于每个时隙进行调度时,每个时隙具有至少一个起始符号。
根据本公开实施例的第二方面,提供一种数据发送方法,所述方法应用于终端,所述方法包括:
终端接收基站发送DCI信令,所述DCI信令用于指示所述终端用于PUSCH发送的时域资源,所述时域资源包括至少一个时隙和/或至少一个小时隙;
所述终端根据所述DCI信令进行PUSCH发送。
在另一种可能的实现方式中,所述DCI信令还用于指示所述时域资源的起始符号和/或结束符号;
所述终端根据所述DCI信令进行PUSCH发送,包括:
所述终端根据所述起始符号确定PUSCH发送的起始符号,和/或根据所述结束符号确定PUSCH发送的结束符号。
在另一种可能的实现方式中,所述时域资源为至少一个时隙,所述时域资源的调度方式为基于每个时隙进行调度。
在另一种可能的实现方式中,所述时域资源的起始符号针对至少一个时隙中的第一个时隙或至少一个时隙中的每一个时隙;和/或,
所述时域资源的结束符号针对至少一个时隙中的最后一个时隙或至少一个时隙中的每一个时隙。
在另一种可能的实现方式中,所述DCI信令还用于指示N个冗余版本RV;
所述终端根据所述DCI信令进行PUSCH发送,包括:
所述终端在时域资源中的各个时隙使用各自对应的RV进行PUSCH发送;
其中,N为所述DCI信令指示时域资源中时隙的个数。
在另一种可能的实现方式中,所述时域资源为至少一个小时隙,所述时域资源的调度方式为基于每个小时隙进行调度。
在另一种可能的实现方式中,所述时域资源的起始符号针对第一个小时隙或每个小时隙,所述DCI信令还用于指示每个小时隙包括的符号个数;或,
所述时域资源的起始符号针对每个小时隙,第S个小时隙的起始符号之前的相邻符号为第S-1个小时隙的结束符号。
在另一种可能的实现方式中,所述DCI信令还用于指示M个冗余版本RV;
所述终端根据所述DCI信令进行PUSCH发送,包括:
所述终端在时域资源中的各个小时隙使用各自对应的RV进行PUSCH发送;
其中,M为所述DCI信令指示时域资源中小时隙的个数。
在另一种可能的实现方式中,所述时域资源为至少一个时隙和至少一小时隙,所述时域资源的调度方式包括针对至少一个时隙基于每个时隙进行调度及针对至少一个小时隙基于每个小时隙进行调度;和/或,
所述时域资源的起始符号针对至少一个时隙中的每一个时隙或第一个时隙,和/或至少一个小时隙中的第一个小时隙或每一个小时隙。
在另一种可能的实现方式中,所述时域资源的结束符号针对至少一个时隙中的每一个时隙或最后一个时隙,和/或至少一个小时隙中的每一个小时隙。
在另一种可能的实现方式中,所述DCI信令还用于指示K个冗余版本RV;
所述终端根据所述DCI信令进行PUSCH发送,包括:
所述终端在时域资源中的各个时隙和小时隙使用各自对应的RV进行PUSCH发送;
其中,K为所述DCI信令指示时域资源中时隙及小时隙的个数。
在另一种可能的实现方式中,所述每个时隙或小时隙内的PUSCH发送的起始符号附近的位置为PUSCH的发送起始位置。
在另一种可能的实现方式中,所述终端根据所述DCI信令进行PUSCH发送,包括:
所述终端以每个时隙或小时隙内的PUSCH发送的起始符号为PUSCH的发送起始位置进行PUSCH发送;或,
所述终端以每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长的位置为PUSCH的发送起始位置进行PUSCH发送;或,
所述终端以每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长加上TA的位置为PUSCH的发送起始位置进行PUSCH发送;或,
所述终端以每个时隙或小时隙内的PUSCH发送的起始符号之后的相邻符号的起始位置为PUSCH的发送起始位置进行PUSCH发送。
在另一种可能的实现方式中,所述方法还包括:
所述终端接收所述基站发送的控制信令,所述控制信令用于指示所述终端进行先听后说LBT监听的截止位置,所述控制信令包括无线资源控制RRC信令、媒体接入控制MAC信令和DCI信令中的一种或多种的组合;或,
所述终端从芯片中获取进行LBT监听的截止位置。
在另一种可能的实现方式中,每个时隙包括14个符号,所述起始符号为14个符号中的任一个符号。
根据本公开实施例的第三方面,提供一种用于时域资源分配的基站,所述基站包括:
发送模块,用于发送下行链路控制信息DCI信令,所述DCI信令用于指示终端用于物理上行共享信道PUSCH发送的时域资源,所述时域资源包括至少一个时隙和/或至少一个小时隙。
在另一种可能的实现方式中,所述DCI信令还用于指示所述时域资源的起始符号和/或结束符号;
其中,所述起始符号用于指示所述终端PUSCH发送的起始符号,所述结束符号用于指示所述终端PUSCH发送的结束符号。
在另一种可能的实现方式中,所述时域资源为至少一个时隙,所述时域资源的调度方式为基于每个时隙进行调度。
在另一种可能的实现方式中,所述时域资源的起始符号针对至少一个时隙中的第一个时隙或至少一个时隙中的每一个时隙;和/或,
所述时域资源的结束符号针对至少一个时隙中的最后一个时隙或至少一个时隙中的每一个时隙。
在另一种可能的实现方式中,所述DCI信令还用于指示N个冗余版本RV及所述终端在所述时域资源中的各个时隙使用各自对应的RV进行PUSCH发送;
其中,N为所述DCI信令指示的时域资源中时隙的个数。
在另一种可能的实现方式中,所述时域资源为至少一个小时隙,所述时域资源的调度方式为基于每个小时隙进行调度。
在另一种可能的实现方式中,所述时域资源的起始符号针对第一个小时隙或每个小时隙,所述DCI信令还用于指示每个小时隙包括的符号个数;或,
所述时域资源的起始符号针对每个小时隙,第S个小时隙的起始符号之前的相邻符号为第S-1个小时隙的结束符号。
在另一种可能的实现方式中,所述DCI信令还用于指示M个冗余版本RV及所述终端在时域资源中的各个小时隙使用各自对应的RV进行PUSCH发送;
其中,M为所述DCI信令指示时域资源中小时隙的个数。
在另一种可能的实现方式中,所述时域资源为至少一个时隙和至少一小时隙,所述时域资源的调度方式包括针对至少一个时隙基于每个时隙进行调度及 针对至少一个小时隙基于每个小时隙进行调度。
在另一种可能的实现方式中,所述时域资源的起始符号针对至少一个时隙中的每一个时隙或第一个时隙,和/或至少一个小时隙中的每一个小时隙;和/或,
所述时域资源的结束符号针对至少一个时隙中的每一个时隙或最后一个时隙,和/或至少一个小时隙中的第一个小时隙或每一个小时隙。
在另一种可能的实现方式中,所述DCI信令还用于指示K个冗余版本RV及所述终端在时域资源中的各个时隙和小时隙使用各自对应的RV进行PUSCH发送;
其中,K为所述DCI信令指示时域资源中时隙及小时隙的个数。
在另一种可能的实现方式中,所述每个时隙或小时隙内的PUSCH发送的起始符号附近的位置为PUSCH的发送起始位置。
在另一种可能的实现方式中,所述每个时隙或小时隙内的PUSCH发送的起始符号附近的位置为PUSCH的发送起始位置,包括:
每个时隙或小时隙内的PUSCH发送的起始符号为PUSCH的发送起始位置;或,
每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长的位置为PUSCH的发送起始位置;或,
每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长加上定时提前量TA的位置为PUSCH的发送起始位置;或,
每个时隙或小时隙内的PUSCH发送的起始符号之后的相邻符号的起始位置为PUSCH的发送起始位置。
在另一种可能的实现方式中,所述发送模块,还用于发送控制信令,所述控制信令用于指示所述终端进行先听后说LBT监听的截止位置,所述控制信令包括无线资源控制RRC信令、媒体接入控制MAC信令和DCI信令中的一种或多种的组合。
在另一种可能的实现方式中,每个时隙包括14个符号,所述起始符号为14个符号中的任一个符号。
在另一种可能的实现方式中,当所述时域资源的调度方式为基于每个时隙进行调度时,每个时隙具有至少一个起始符号。
根据本公开实施例的第四方面,提供一种用于数据发送的终端,所述终端包括:
接收模块,用于接收基站发送DCI信令,所述DCI信令用于指示所述终端用于PUSCH发送的时域资源,所述时域资源包括至少一个时隙和/或至少一个小时隙;
发送模块,用于根据所述DCI信令进行PUSCH发送。
在另一种可能的实现方式中,所述DCI信令还用于指示所述时域资源的起始符号和/或结束符号;
所述发送模块,用于根据所述起始符号确定PUSCH发送的起始符号,和/或根据所述结束符号确定PUSCH发送的结束符号。
在另一种可能的实现方式中,所述时域资源为至少一个时隙,所述时域资源的调度方式为基于每个时隙进行调度。
在另一种可能的实现方式中,所述时域资源的起始符号针对至少一个时隙中的第一个时隙或至少一个时隙中的每一个时隙;和/或,
所述时域资源的结束符号针对至少一个时隙中的最后一个时隙或至少一个时隙中的每一个时隙。
在另一种可能的实现方式中,所述DCI信令还用于指示N个冗余版本RV;
所述发送模块,用于在时域资源中的各个时隙使用各自对应的RV进行PUSCH发送;
其中,N为所述DCI信令指示时域资源中时隙的个数。
在另一种可能的实现方式中,所述时域资源为至少一个小时隙,所述时域资源的调度方式为基于每个小时隙进行调度。
在另一种可能的实现方式中,所述时域资源的起始符号针对第一个小时隙或每个小时隙,所述DCI信令还用于指示每个小时隙包括的符号个数;或,
所述时域资源的起始符号针对每个小时隙,第S个小时隙的起始符号之前的相邻符号为第S-1个小时隙的结束符号。
在另一种可能的实现方式中,所述DCI信令还用于指示M个冗余版本RV;
所述发送模块,用于在时域资源中的各个小时隙使用各自对应的RV进行PUSCH发送;
其中,M为所述DCI信令指示时域资源中小时隙的个数。
在另一种可能的实现方式中,所述时域资源为至少一个时隙和至少一小时 隙,所述时域资源的调度方式包括针对至少一个时隙基于每个时隙进行调度及针对至少一个小时隙基于每个小时隙进行调度。
在另一种可能的实现方式中,所述时域资源的起始符号针对至少一个时隙中的每一个时隙或第一个时隙,和/或至少一个小时隙中的第一个小时隙或每一个小时隙;和/或,
所述时域资源的结束符号针对至少一个时隙中的每一个时隙或最后一个时隙,和/或至少一个小时隙中的每一个小时隙。
在另一种可能的实现方式中,所述DCI信令还用于指示K个冗余版本RV;
所述发送模块,用于在时域资源中的各个时隙和小时隙使用各自对应的RV进行PUSCH发送;
其中,K为所述DCI信令指示时域资源中时隙及小时隙的个数。
在另一种可能的实现方式中,所述每个时隙或小时隙内的PUSCH发送的起始符号附近的位置为PUSCH的发送起始位置。
在另一种可能的实现方式中,所述发送模块,用于以每个时隙或小时隙内的PUSCH发送的起始符号为PUSCH的发送起始位置进行PUSCH发送;或,
所述发送模块,用于以每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长的位置为PUSCH的发送起始位置进行PUSCH发送;或,
所述发送模块,用于以每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长加上TA的位置为PUSCH的发送起始位置进行PUSCH发送;或,
所述发送模块,用于以每个时隙或小时隙内的PUSCH发送的起始符号之后的相邻符号的起始位置为PUSCH的发送起始位置进行PUSCH发送。
在另一种可能的实现方式中,所述终端还包括:
所述接收模块,用于接收所述基站发送的控制信令,所述控制信令用于指示所述终端进行先听后说LBT监听的截止位置,所述控制信令包括无线资源控制RRC信令、媒体接入控制MAC信令和DCI信令中的一种或多种的组合;或,
获取模块,用于从芯片中获取进行LBT监听的截止位置。
在另一种可能的实现方式中,每个时隙包括14个符号,所述起始符号为14个符号中的任一个符号。
根据本公开实施例的第五方面,提供一种时域资源分配装置,包括:
处理器;
用于存储处理器可执行的指令的存储器;
其中,所述处理器被配置为:
发送下行链路控制信息DCI信令,所述DCI信令用于指示终端用于物理上行共享信道PUSCH发送的时域资源,所述时域资源包括至少一个时隙和/或至少一个小时隙。
根据本公开实施例的第六方面,提供一种数据发送装置,包括:
处理器;
用于存储处理器可执行的指令的存储器;
其中,所述处理器被配置为:
接收基站发送DCI信令,所述DCI信令用于指示所述终端用于PUSCH发送的时域资源,所述时域资源包括至少一个时隙和/或至少一个小时隙;
根据所述DCI信令进行PUSCH发送。
本公开的实施例提供的技术方案可以包括以下有益效果:
基站通过发送DCI信令,并在该DCI信令中指示终端进行PUSCH发送的时域资源,从而提出了一种NR-U场景下时域资源的分配方法,提高了上行发送的成功率及频谱效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种通信系统的架构图。
图2是根据一示例性实施例示出的一种时域资源分配方法的流程图。
图3是根据一示例性实施例示出的一种数据发送方法的流程图。
图4是根据一示例性实施例示出的另一种时域资源分配方法及数据发送方法的流程图。
图5是根据一示例性实施例示出的一种时隙的示意图。
图6是根据一示例性实施例示出的另一种时隙的示意图。
图7是根据一示例性实施例示出的另一种时隙的示意图。
图8是根据一示例性实施例示出的一种基站的结构框图。
图9是根据一示例性实施例示出的一种终端的结构框图。
图10是根据一示例性实施例示出的一种用于数据发送的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
请参考图1,其示出了本公开实施例提供的通信系统的架构图,参见图1,该通信系统包括基站101和终端102。
其中,基站101用于向终端101提供各种通信服务,还用于控制终端101执行相应操作。
终端102可以为智能手机、PDA(Personal Digital Assistant,掌上电脑)等,主要从基站101中获取各种通信服务,根据基站的控制指令执行相应操作。
图2是根据一示例性实施例示出的一种时域资源分配方法的流程图,如图2所示,时域资源分配方法用于基站中,包括以下步骤。
在步骤S201中,基站发送下行链路控制信息DCI信令。
其中,DCI信令用于指示终端用于物理上行共享信道PUSCH发送的时域资源,时域资源包括至少一个时隙和/或至少一个小时隙。也即是,时域资源可以包括至少一个时隙,也可以包括至少一个小时隙,还可以包括至少一个时隙和至少一个小时隙。
本公开实施例提供的方法,基站通过发送DCI信令,并在该DCI信令中指示终端进行PUSCH发送的时域资源,从而提出了一种NR-U场景下时域资源的分配方法,提高了上行发送的成功率及频谱效率。
在另一种可能的实现方式中,DCI信令还用于指示时域资源的起始符号和/或结束符号;
其中,起始符号用于指示终端PUSCH发送的起始符号,结束符号用于指 示终端PUSCH发送的结束符号。
在另一种可能的实现方式中,时域资源为至少一个时隙,时域资源的调度方式为基于每个时隙进行调度。
在另一种可能的实现方式中,时域资源的起始符号针对至少一个时隙中的第一个时隙或至少一个时隙中的每一个时隙。这种情况下,起始符号可以是一个值或多个值。
在另一种可能的实现方式中,时域资源的结束符号针对至少一个时隙中的最后一个时隙或至少一个时隙中的每一个时隙。这种情况下,结束符号可以是一个值。
在另一种可能的实现方式中,DCI信令还用于指示N个冗余版本RV及终端在时域资源中的各个时隙使用各自对应的RV进行PUSCH发送;即每个时隙的发送内容都包含了完整的PUSCH的数据信息,由于LBT的关系,终端不一定在哪个时隙检测到信道空闲,比如只在最后1个时隙之前检测信道空闲,则只需在最后一个时隙进行PUSCH发送,而基站通过接收这一个时隙的内容也能正确解码到数据信息。如果最后三个时隙之前检测信道空闲,则可以在最后三个时隙进行PUSCH发送,那么基站可以将接收到的三个时隙的PUSCH数据信息合并解码,提高接收准确性。
其中,N为DCI信令指示的时域资源中时隙的个数。
在另一种可能的实现方式中,时域资源为至少一个小时隙,时域资源的调度方式为基于每个小时隙进行调度。
在另一种可能的实现方式中,时域资源的起始符号针对第一个小时隙或每个小时隙,DCI信令还用于指示每个小时隙包括的符号个数。
在另一种可能的实现方式中,时域资源的起始符号针对每个小时隙,第S个小时隙的起始符号之前的相邻符号为第S-1个小时隙的结束符号。
需要说明的是,一个小时隙内的所有符号都在同一个时隙内。
在另一种可能的实现方式中,DCI信令还用于指示M个冗余版本RV及终端在时域资源中的各个小时隙使用各自对应的RV进行PUSCH发送;即每个小时隙的发送内容都包含了完整的PUSCH的数据信息,由于LBT的关系,终端不一定在哪个小时隙检测到信道空闲,比如只在最后1个小时隙之前检测信道空闲,则只需在最后一个小时隙进行PUSCH发送,而基站通过接收这一个小时隙的内容也能正确接收解码到数据信息。如果最后三个小时隙之前检测信 道空闲,则可以在最后三个小时隙进行PUSCH发送,那么基站可以将接收到的三个小时隙的PUSCH数据信息合并解码,提高接收准确性。
其中,M为DCI信令指示时域资源中小时隙的个数。
在另一种可能的实现方式中,时域资源为至少一个时隙和至少一小时隙,时域资源的调度方式包括针对至少一个时隙基于每个时隙进行调度及针对至少一个小时隙基于每个小时隙进行调度。
在另一种可能的实现方式中,时域资源的起始符号针对至少一个时隙中的每一个时隙或第一个时隙,和/或至少一个小时隙中的第一小时隙或每一个小时隙。
在另一种可能的实现方式中,时域资源的结束符号针对至少一个时隙中的每一个时隙或最后一个时隙,和/或至少一个小时隙中的每一个小时隙。
在另一种可能的实现方式中,DCI信令还用于指示K个冗余版本RV及终端在时域资源中的各个时隙和小时隙使用各自对应的RV进行PUSCH发送;考虑到每个时隙或小时隙的发送内容都包含了完整的PUSCH的数据信息,而由于LBT的关系,终端不一定在哪个时隙或小时隙监听到信道空闲,比如只在最后一个时隙之前监听到信道空闲,则只需在最后一个时隙进行PUSCH发送,而基站通过接收这一个时隙的内容也能正确解码到数据信息。如果最后一个小时隙和四个时隙之前检测信道空闲,则可以在最后一个小时隙和四个时隙进行PUSCH发送,那么基站可以将接收到的一个小时隙和四个时隙的PUSCH数据信息合并解码,提高接收准确性。
其中,K为DCI信令指示时域资源中时隙及小时隙的个数。
在另一种可能的实现方式中,每个时隙或小时隙内的PUSCH发送的起始符号附近的位置为PUSCH的发送起始位置。
在另一种可能的实现方式中,每个时隙或小时隙内的PUSCH发送的起始符号附近的位置为PUSCH的发送起始位置,包括:
每个时隙或小时隙内的PUSCH发送的起始符号为PUSCH的发送起始位置;或,
每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长的位置为PUSCH的发送起始位置;或,
每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长加上定时提前量TA的位置为PUSCH的发送起始位置;或,
每个时隙或小时隙内的PUSCH发送的起始符号之后的相邻符号的起始位置为PUSCH的发送起始位置。
在另一种可能的实现方式中,该方法还包括:
基站发送控制信令,该控制信令用于指示终端进行先听后说LBT监听的截止位置,控制信令包括RRC信令、MAC信令和DCI信令中的一种或多种的组合。
在另一种可能的实现方式中,每个时隙包括14个符号,起始符号为14个符号中的任一个符号。
在另一种可能的实现方式中,当时域资源的调度方式为基于每个时隙进行调度时,每个时隙具有至少一个起始符号。
上述所有可选技术方案,可以采用任意结合形成本公开的可选实施例,在此不再一一赘述。
图3是根据一示例性实施例示出的一种数据发送方法的流程图,如图3所示,数据发送方法用于基站中,包括以下步骤。
在步骤S301中,终端接收基站发送DCI信令。
其中,DCI信令用于指示终端用于PUSCH发送的时域资源,时域资源包括至少一个时隙和/或至少一个小时隙。
在步骤S302中,终端根据DCI信令进行PUSCH发送。
本公开实施提供的方法,终端通过接收DCI信令,并基于该DCI信令进行PUSCH发送,从而实现了在NR-U场景下时域资源的分配,同时提高了上行发送的成功率及频谱效率。
在另一种可能的实现方式中,DCI信令还用于指示时域资源的起始符号和/或结束符号;
终端根据DCI信令进行PUSCH发送,包括:
终端根据起始符号确定PUSCH发送的起始符号,和/或根据结束符号确定PUSCH发送的结束符号。
在另一种可能的实现方式中,时域资源为至少一个时隙,时域资源的调度方式为基于每个时隙进行调度。
在另一种可能的实现方式中,时域资源的起始符号针对至少一个时隙中的第一个时隙或至少一个时隙中的每一个时隙。
在另一种可能的实现方式中,时域资源的结束符号针对至少一个时隙中的最后一个时隙或至少一个时隙中的每一个时隙。
在另一种可能的实现方式中,DCI信令还用于指示N个冗余版本RV;
终端根据DCI信令进行PUSCH发送,包括:
终端在时域资源中的各个时隙使用各自对应的RV进行PUSCH发送;
其中,N为DCI信令指示时域资源中时隙的个数。
在另一种可能的实现方式中,时域资源为至少一个小时隙,时域资源的调度方式为基于每个小时隙进行调度。
在另一种可能的实现方式中,时域资源的起始符号针对第一个小时隙或每个小时隙,DCI信令还用于指示每个小时隙包括的符号个数。
在另一种可能的实现方式中,时域资源的起始符号针对每个小时隙,第S个小时隙的起始符号之前的相邻符号为第S-1个小时隙的结束符号。
在另一种可能的实现方式中,DCI信令还用于指示M个冗余版本RV;
终端根据DCI信令进行PUSCH发送,包括:
终端在时域资源中的各个小时隙使用各自对应的RV进行PUSCH发送;
其中,M为DCI信令指示时域资源中小时隙的个数。
在另一种可能的实现方式中,时域资源为至少一个时隙和至少一小时隙,时域资源的调度方式包括针对至少一个时隙基于每个时隙进行调度及针对至少一个小时隙基于每个小时隙进行调度。
在另一种可能的实现方式中,时域资源的起始符号针对至少一个时隙中的每一个时隙或第一个时隙,和/或至少一个小时隙中的第一个小时隙或每一个小时隙。
在另一种可能的实现方式中,时域资源的结束符号针对至少一个时隙中的每一个时隙或最后一个时隙,和/或至少一个小时隙中的每一个小时隙。
在另一种可能的实现方式中,DCI信令还用于指示K个冗余版本RV;
终端根据DCI信令进行PUSCH发送,包括:
终端在时域资源中的各个时隙和小时隙使用各自对应的RV进行PUSCH发送;
其中,K为DCI信令指示时域资源中时隙及小时隙的个数。
在另一种可能的实现方式中,每个时隙或小时隙内的PUSCH发送的起始符号附近的位置为PUSCH的发送起始位置。
在另一种可能的实现方式中,终端根据DCI信令进行PUSCH发送,包括:
终端以每个时隙或小时隙内的PUSCH发送的起始符号为PUSCH的发送起始位置进行PUSCH发送;或,
终端以每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长的位置为PUSCH的发送起始位置进行PUSCH发送;或,
终端以每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长加上TA的位置为PUSCH的发送起始位置进行PUSCH发送;或,
终端以每个时隙或小时隙内的PUSCH发送的起始符号之后的相邻符号的起始位置为PUSCH的发送起始位置进行PUSCH发送。
在另一种可能的实现方式中,该方法还包括:
终端接收基站发送的控制信令,控制信令用于指示终端进行先听后说LBT监听的截止位置,控制信令包括无线资源控制RRC信令、媒体接入控制MAC信令和DCI信令中的一种或多种的组合;或,
终端从芯片中获取进行LBT监听的截止位置。
在另一种可能的实现方式中,每个时隙包括14个符号,起始符号为14个符号中的任一个符号。
上述所有可选技术方案,可以采用任意结合形成本公开的可选实施例,在此不再一一赘述。
图4是根据一示例性实施例示出的一种时域资源分配方法与数据发送方法的流程图,如图4所示,时域资源分配方法与数据发送方法用于终端中,包括以下步骤。
在步骤S401中,基站发送DCI信令。
其中,DCI信令用于指示终端用于PUSCH发送的时域资源,该时域资源可以包括至少一个时隙,也可以包括至少一个小时隙,还可以包括至少一个时隙和至少一个小时隙。每个时隙包括14个符号,14个符号可以用0~13表示。每个时隙可以包括至少两个小时隙,每个小时隙的长度可以相同,也可以不同。参见图5,时隙包括两个小时隙,每个小时隙的长度为7个符号,第一个小时隙包括符号#0~符号#6,第二个小时隙包括符号#7~符号#13;参见图6,时隙包括四个小时隙,第一个小时隙的长度为2个符号,包括符号#0~符号#1,第二个小时隙的长度为4个符号,包括符号#2~符号#5,第三个小时隙的长度为4 个符号,包括符号#6~符号#9,第四个小时隙的长度为4个符号,包括符号#10~符号#13。在进行数据发送时,NR-U的PUSCH同时支持基于时隙的数据传输和基于小时隙的传输,因此,时域资源的调度方式为基于每个时隙进行调度、基于每个小时隙进行调度或基于每个时隙和每个小时隙进行调度。
在另一种可能的实现方式中,DCI信令还用于指示时域资源的起始符号、结束符号或起始符号和结束符号。其中,起始符号用于指示终端PUSCH发送的起始符号,该起始符号为14个符号中的任一个符号,结束符号用于指示终端PUSCH发送的结束符号。
根据时域资源不同及时域资源的调度方式的不同,DCI信令中所指示的起始符号、结束符号或起始符号和结束符号具有不同定义。具体包括以下几种情况:
第一种情况、时域资源为至少一个时隙,时域资源的调度方式为基于每个时隙进行调度。
针对第一种情况,时域资源的起始符号针对至少一个时隙中的第一个时隙或至少一个时隙中的每一个时隙。时域资源的结束符号针对至少一个时隙中的最后一个时隙或至少一个时隙中的每一个时隙。也即是,时域资源的起始符号可以针对至少一个时隙中的第一个时隙、结束符号针对至少一个时隙中的最后一个时隙,时域资源的起始符号可以针对至少一个时隙中的第一个时隙、结束符号针对至少一个时隙中的每一个时隙,时域资源的起始符号也可以针对至少一个时隙中的每一个时隙、结束符号针对至少一个时隙中的每一个时隙,时域资源的起始符号还可以针对至少一个时隙中的每一个时隙、结束符号针对至少一个时隙中的最后一个时隙。
在一种可能的实现方式中,时域资源的起始符号可以只有一个。
例如,时域资源包括四个时隙,起始符号为符号#7且只针对第一个时隙,结束符号为符号#8且只针对第四个时隙,则从第一个时隙的符号#7至第四个时隙的符号#8之间的全部时域资源为为终端分配的进行PUSCH发送的时域资源,具体包括第一个时隙的符号#7~符号#13、第二个时隙的符号#0~符号#13、第三个时隙的符号#0~符号#13、第四个时隙的符号#0~符号#8。
又例如,时域资源包括四个时隙,起始符号为符号0且针对每个时隙,结束符号为符号6且针对每个时隙,则每个时隙从符号#0~符号#6为为终端分配的进行PUSCH发送的时域资源,具体包括第一个时隙的符号#0~符号#6、第二 个时隙的符号#0~符号#6、第三个时隙的符号#0~符号#6及第四个时隙的符号#0~符号#6。
又例如,时域资源包括四个时隙,起始符号为符号#7且只针对第一个时隙,结束符号为符号#12且针对每个时隙,则第一个时隙的符号#7~符号#12、第二个时隙的符号#0~符号#12、第三个时隙的符号#0~符号#12、第四个时隙的符号#0~符号#12为为终端分配的进行PUSCH发送的时域资源。
又例如,时域资源包括四个时隙,起始符号为符号#7且针对每个时隙,结束符号为符号#12且只针对最后一个时隙,则第一个时隙的符号#7~符号#13、第二个时隙的符号#7~符号#13、第三个时隙的符号#7~符号#13、第四个时隙的符号#7~符号#12为为终端分配的进行PUSCH发送的时域资源。
在另一种可能的实现方式中,时域资源的起始符号也可以有多个,这多个起始符号可以为针对第一个时隙的多个起始符号,也可以为针对每个时隙的多个起始符号。比如一个时隙有14个符号,给出了两个起始符号为符号#0和符号#7:当多个起始符号为只针对第一个时隙时,只有第一个时隙有两个起始符号为符号#0和符号#7,而其它的时隙的起始符号都为符号#0;当多个起始符号为针对每个时隙时,每个时隙有两个起始符号为符号#0和符号#7。对于有两个起始符号如符号#0和符号#7的时隙,当终端在符号#0之前就检测到信道空闲时,终端发送完整的PUSCH数据信息;而如果终端在符号#0之前未检测到信道空闲,且在符号#7之前检测到了信道空闲,则终端将只能发送映射到符号#7到结束符号比如符号#13的数据,而映射到符号#0~#6的数据由于信道不能使用,则只能挖除puncture掉。在该种情况下,DCI信令还用于指示N个RV及终端在时域资源中的各个时隙使用各自对应的RV进行PUSCH发送。其中,N为DCI信令指示的时域资源中时隙的个数。也即是,多个时隙传输PUSCH时,PUSCH的个数与时隙的个数相同,终端在时域资源中的N个时隙使用各自对应的RV进行PUSCH发送。
考虑到每个时隙的发送内容都包含了完整的PUSCH的数据信息,但每个时隙对应的数据信息采用的冗余版本RV不同,而由于LBT的关系,终端不一定在哪个时隙检测到信道空闲,比如只在最后1个时隙之前检测信道空闲,则只需在最后一个时隙进行PUSCH发送,而基站通过接收这一个时隙的内容也能正确解码到数据信息。如果最后三个时隙之前检测信道空闲,则可以在最后三个时隙进行PUSCH发送,那么基站可以将接收到的三个时隙的PUSCH数 据信息合并解码,提高接收准确性。
第二种情况、时域资源为至少一个小时隙,时域资源的调度方式为基于每个小时隙进行调度。
针对该种情况,时域资源的起始符号可以针对第一个小时隙或每个小时隙,DCI信令还用于指示每个小时隙包括的符号个数,DCI信令所指示的每个小时隙包括的符号个数可以相同,也可以不同。
例如,时域资源的起始符号针对第一个小时隙,DCI指示一个符号个数值且针对每个小时隙。这种情况下表示时域资源包括N个连续且符号数相同的小时隙,比如第一个小时隙的起始符号为符号0,并在DCI信令中指示每个小时隙中包括的符号个数都为3,即表示第一小时隙包含符号#0~#2、第二小时隙包含符号#3~#5、第三小时隙包含符号#6~#8、第四小时隙包含符号#9~#11。
又例如,时域资源的起始符号针对第一个小时隙,DCI指示多个符号个数值且针对各个小时隙。这种情况下表示时域资源包括N个连续但符号数可以不相同的小时隙,比如第一个小时隙的起始符号为符号0,并在DCI信令中指示各个小时隙中包括的符号个数分别为2、4、4、4,即表示第一小时隙包含符号#0~#1、第二小时隙包含符号#2~#5、第三小时隙包含符号#6~#9、第四小时隙包含符号#10~#13。
又例如,时域资源的起始符号针对每个小时隙,DCI指示一个符号个数值且针对每个小时隙。这种情况下表示时域资源可以包括N个不连续但符号数相同的小时隙,比如每个小时隙的起始符号分别为符号#0、符号#3、符号#7、符号#10,并在DCI信令中指示每个小时隙中包括的符号个数都为3,即表示第一小时隙包含符号#0~#2、第二小时隙包含符号#3~#5、第三小时隙包含符号#7~#9、第四小时隙包含符号#10~#12。这种情况下,第二个小时隙和第三个小时隙之间就不连续了,即间隔了符号#6。
又例如,时域资源的起始符号针对每个小时隙,DCI指示多个符号个数值且针对各个小时隙。这种情况下表示时域资源可以包括N个不连续且符号数可以不相同的小时隙,比如每个小时隙的起始符号分别为符号#0、符号#3、符号#7、符号#10,并在DCI信令中指示各个小时隙中包括的符号个数分别为2、3、3、4,即表示第一小时隙包含符号#0~#1、第二小时隙包含符号#3~#5、第三小时隙包含符号#7~#9、第四小时隙包含符号#10~#13。
时域资源的起始符号还可以针对每个小时隙,此时第S个小时隙的起始符 号之前的相邻符号为第S-1个小时隙的结束符号。其中,S的取值可以为1~M,M为时域资源中小时隙的个数。例如,时域资源包括一个时隙,该时隙包括4个小时隙,此时只需要给出四个小时隙的起始符号,而第二个小时隙的起始符号之前的相邻符号为第一个小时隙的结束符号,第三个小时隙的起始符号之前的相邻符号为第二个小时隙的结束符号,第四个小时隙的起始符号之前的相邻符号为第三个小时隙的结束符号。
例如,时域资源仅给出多个起始符号,比如给出4个起始符号分别为符号#0、符号#3、符号#7、符号#10,表示第一小时隙包含符号#0~#2、第二小时隙包含符号#3~#6、第三小时隙包含符号#7~#9、第四小时隙包含符号#10~#13。这种情况下,多个小时隙之间连续。
在该种情况下,DCI信令还用于指示M个RV及终端在时域资源中的各个小时隙使用各自对应的RV进行PUSCH发送。其中,M为DCI信令指示时域资源中小时隙的个数。也即是,多个小时隙传输多个PUSCH时,每个小时隙传输一个PUSCH,PUSCH的数量与小时隙的数量相同且一一对应,终端在时域资源中的每个小时隙使用各自对应的RV进行PUSCH发送。
每个小时隙的发送内容都包含了完整的PUSCH的数据信息,但每个小时隙对应的数据信息采用的冗余版本RV不同,由于LBT的关系,终端不一定在哪个小时隙检测到信道空闲,比如只在最后一个小时隙之前检测信道空闲,则只需在最后一个小时隙使用对应的RV进行PUSCH发送,而基站通过接收这一个小时隙的内容也能正确解码到数据信息。如果最后三个小时隙之前检测信道空闲,则可以在最后三个小时隙使用对应的RV进行PUSCH发送,那么基站可以将接收到的三个小时隙的PUSCH的数据信息合并解码,提高接收准确性。
第三种情况、时域资源为至少一个时隙和至少一小时隙,时域资源的调度方式包括针对至少一个时隙基于每个时隙进行调度及针对至少一个小时隙基于每个小时隙进行调度。
针对该种情况,时域资源的起始符号针对至少一个时隙中的每一个时隙或第一个时隙,和/或至少一个小时隙中的第一个小时隙或每一个小时隙。时域资源的结束符号针对至少一个时隙中的每一个时隙或最后一个时隙,和/或至少一个小时隙中的每一个小时隙。也即是,针对至少一个时隙,时域资源的起始符号可以针对至少一个时隙中的第一个时隙、结束符号针对至少一个时隙中的最 后一个时隙,时域资源的起始符号可以针对至少一个时隙中的第一个时隙、结束符号针对至少一个时隙中的每一个时隙,时域资源的起始符号也可以针对至少一个时隙中的每个时隙、结束符号针对至少一个时隙中的最后一个时隙,时域资源的起始符号还可以针对至少一个时隙中的每个时隙、结束符号针对至少一个时隙中的每个时隙;针对至少一个小时隙,时域资源的起始符号可以针对至少一个小时隙中的每个小时隙、结束符号针对至少一个小时隙中的每个小时隙,时域资源的起始符号还可以针对至少一个小时隙中的第一个小时隙、结束符号针对至少一个小时隙中的每个小时隙。
例如,时域资源包括四个小时隙和四个时隙,其中四个小时隙都位于时隙#0中,四个时隙分别为时隙#1、时隙#2、时隙#3和时隙#4。
对于四个小时隙,一种实施方式中,时域资源的起始符号可以针对第一个小时隙或每个小时隙,DCI信令还用于指示每个小时隙包括的符号个数,DCI信令所指示的每个小时隙包括的符号个数可以相同,也可以不同。
例如,时域资源的起始符号针对第一个小时隙,DCI指示一个符号个数值且针对每个小时隙。这种情况下表示时域资源包括N个连续且符号数相同的小时隙,比如第一个小时隙的起始符号为符号0,并在DCI信令中指示每个小时隙中包括的符号个数都为3,即表示第一小时隙包含符号#0~#2、第二小时隙包含符号#3~#5、第三小时隙包含符号#6~#8、第四小时隙包含符号#9~#11。
又例如,时域资源的起始符号针对第一个小时隙,DCI指示多个符号个数值且针对各个小时隙。这种情况下表示时域资源包括N个连续但符号数可以不相同的小时隙,比如第一个小时隙的起始符号为符号0,并在DCI信令中指示各个小时隙中包括的符号个数分别为2、4、4、4,即表示第一小时隙包含符号#0~#1、第二小时隙包含符号#2~#5、第三小时隙包含符号#6~#9、第四小时隙包含符号#10~#13。
又例如,时域资源的起始符号针对每个小时隙,DCI指示一个符号个数值且针对每个小时隙。这种情况下表示时域资源可以包括N个不连续但符号数相同的小时隙,比如每个小时隙的起始符号分别为符号#0、符号#3、符号#7、符号#10,并在DCI信令中指示每个小时隙中包括的符号个数都为3,即表示第一小时隙包含符号#0~#2、第二小时隙包含符号#3~#5、第三小时隙包含符号#7~#9、第四小时隙包含符号#10~#12。这种情况下,第二个小时隙和第三个小时隙之间就不连续了,即间隔了符号#6。
又例如,时域资源的起始符号针对每个小时隙,DCI指示多个符号个数值且针对各个小时隙。这种情况下表示时域资源可以包括N个不连续且符号数可以不相同的小时隙,比如每个小时隙的起始符号分别为符号#0、符号#3、符号#7、符号#10,并在DCI信令中指示各个小时隙中包括的符号个数分别为2、3、3、4,即表示第一小时隙包含符号#0~#1、第二小时隙包含符号#3~#5、第三小时隙包含符号#7~#9、第四小时隙包含符号#10~#13。
对于四个小时隙,又一种实施方式中,时域资源的起始符号还可以针对每个小时隙,此时第S个小时隙的起始符号之前的相邻符号为第S-1个小时隙的结束符号。其中,S的取值可以为1~M,M为时域资源中小时隙的个数。例如,时域资源包括一个时隙,该时隙包括4个小时隙,此时只需要给出四个小时隙的起始符号,而第二个小时隙的起始符号之前的相邻符号为第一个小时隙的结束符号,第三个小时隙的起始符号之前的相邻符号为第二个小时隙的结束符号,第四个小时隙的起始符号之前的相邻符号为第三个小时隙的结束符号。
例如,时域资源仅给出多个起始符号,比如给出4个起始符号分别为符号#0、符号#3、符号#7、符号#10,表示第一小时隙包含符号#0~#2、第二小时隙包含符号#3~#6、第三小时隙包含符号#7~#9、第四小时隙包含符号#10~#13。这种情况下,多个小时隙之间连续。
对于四个小时隙,又一种实施方式中,时域资源的起始符号可以针对每个小时隙,时域资源的结束符号可以针对每个小时隙。这种情况下表示时域资源可以包括N个不连续且符号数可以不相同的小时隙。比如每个小时隙的起始符号分别为符号#0、符号#3、符号#7、符号#10,每个小时隙结束符号分别为符号#1、符号#5、符号#9、符号#13,即表示第一小时隙包含符号#0~#1、第二小时隙包含符号#3~#5、第三小时隙包含符号#7~#9、第四小时隙包含符号#10~#13。
对于四个时隙,在一种可能的实现方式中,时域资源的起始符号可以只有一个。
例如,时域资源包括四个时隙,起始符号为符号#7且只针对第一个时隙,结束符号为符号#8且只针对第四个时隙,则从第一个时隙的符号#7至第四个时隙的符号#8之间的全部时域资源为为终端分配的进行PUSCH发送的时域资源,具体包括第一个时隙的符号#7~符号#13、第二个时隙的符号#0~符号#13、第三个时隙的符号#0~符号#13、第四个时隙的符号#0~符号#8。
又例如,时域资源包括四个时隙,起始符号为符号0且针对每个时隙,结束符号为符号6且针对每个时隙,则每个时隙从符号#0~符号#6为为终端分配的进行PUSCH发送的时域资源,具体包括第一个时隙的符号#0~符号#6、第二个时隙的符号#0~符号#6、第三个时隙的符号#0~符号#6及第四个时隙的符号#0~符号#6。
又例如,时域资源包括四个时隙,起始符号为符号#7且只针对第一个时隙,结束符号为符号#12且针对每个时隙,则第一个时隙的符号#7~符号#12、第二个时隙的符号#0~符号#12、第三个时隙的符号#0~符号#12、第四个时隙的符号#0~符号#12为为终端分配的进行PUSCH发送的时域资源。
又例如,时域资源包括四个时隙,起始符号为符号#7且针对每个时隙,结束符号为符号#12且只针对最后一个时隙,则第一个时隙的符号#7~符号#13、第二个时隙的符号#7~符号#13、第三个时隙的符号#7~符号#13、第四个时隙的符号#7~符号#12为为终端分配的进行PUSCH发送的时域资源。
对于四个时隙,在另一种可能的实现方式中,时域资源的起始符号也可以有多个,这多个起始符号可以为针对第一个时隙的多个起始符号,也可以为针对每个时隙的多个起始符号。比如一个时隙有14个符号,给出了两个起始符号为符号#0和符号#7:当多个起始符号为只针对第一个时隙时,只有第一个时隙有两个起始符号为符号#0和符号#7,而其它的时隙的起始符号都为符号#0;当多个起始符号为针对每个时隙时,每个时隙有两个起始符号为符号#0和符号#7。对于有两个起始符号如符号#0和符号#7的时隙,当终端在符号#0之前就检测到信道空闲时,终端发送完整的PUSCH数据信息;而如果终端在符号#0之前未检测到信道空闲,且在符号#7之前检测到了信道空闲,则终端将只能发送映射到符号#7到结束符号比如符号#13的数据,而映射到符号#0~#6的数据由于信道不能使用,则只能挖除puncture掉。
在该种情况下,DCI信令还用于指示K个RV及终端在时域资源中的各个时隙和小时隙使用各自对应的RV进行PUSCH发送。其中,K为DCI信令指示时域资源中时隙及小时隙的个数。也即是,每个时隙或小时隙传输一个PUSCH,时隙和小时隙的个数与PUSCH的个数相同,终端在时域资源中的每个时隙和小时隙使用各自对应的RV进行PUSCH发送。
考虑到每个时隙或小时隙的发送内容都包含了完整的PUSCH的数据信息,而由于LBT的关系,终端不一定在哪个时隙或小时隙监听到信道空闲, 比如只在最后一个时隙之前监听到信道空闲,则只需在最后一个时隙进行PUSCH发送,而基站通过接收这一个时隙的内容也能正确解码到数据信息。如果最后一个小时隙和四个时隙之前检测信道空闲,则可以在最后一个时隙和四个时隙进行PUSCH发送,那么基站可以将接收到的一个小时隙和四个时隙的PUSCH数据信息合并解码,提高接收准确性。
在另一种可能的实现方式中,每个时隙或小时隙内的PUSCH发送的起始符号附近的位置为PUSCH的发送起始位置。PUSCH的发送起始位置可以为以下几种:
第一种、每个时隙或小时隙内的PUSCH发送的起始符号为PUSCH的发送起始位置。
第二种、每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长的位置为PUSCH的发送起始位置。其中,预设时长由基站进行设置,可以为25μs、30μs等。
第三种、每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长加上TA的位置为PUSCH的发送起始位置。
第四种、每个时隙或小时隙内的PUSCH发送的起始符号之后的相邻符号的起始位置为PUSCH的发送起始位置。
设定起始符号为i,则PUSCH的发送起始位置可以为:
a)symbol i
b)25μs in symbol i
c)(25+TA)μs in symbol i
d)symbol i+1。
为了便于区分PUSCH的不同种发送起始位置,基站可为每种发送起始位置设置不同标识,从而使得终端能够根据不同的标识,确定PUSCH的发送起始位置,具体地,可为PUSCH发送的起始符号设置标识00,为PUSCH发送的起始符号之后预设时长的位置设置标识01,为PUSCH发送的起始符号之后预设时长加上TA的位置设置标识10,为PUSCH发送的起始符号之后的相邻符号的起始位置设置标识11。
例如,i为0,PUSCH的发送起始位置可以为表1:
表1
标识 PUSCH的起始发送位置
00 symbol 0
01 25μs in symbol 0
10 (25+TA)μs in symbol 0
11 symbol 1
又例如,i为7,PUSCH的发送起始位置可以为表2:
表2
标识 PUSCH的起始发送位置
00 symbol 7
01 25μs in symbol 7
10 (25+TA)μs in symbol 7
11 symbol 8
考虑到起始符号的符号可以为0~13中任一个符号,发送起始符号的个数较多,为了减少发送起始符号的个数,可对起始符号的符号进行限定,例如将其限定为符号0、符号2、符号4、符号7、符号8、符号9或符号11等。而结束符号的符号最大可以为符号13。
在步骤S402中,终端接收基站发送DCI信令。
在步骤S403中,终端根据DCI信令进行PUSCH发送。
终端在根据DCI信令进行PUSCH发送之前,还需要确定LBT监听的截止位置,该LBT监听的截止位置为终端最后一次进行LBT监听的位置,该位置为最后一个时隙或小时隙的起始符号之前,当在最后一个时隙或小时隙的起始符号之前未监听到信道处于空闲状态,即信道一直处于忙绿状态,则无需继续进行LBT监听,因为即便后续监听到信道处于空闲状态,由于此时不够一个完整的发送时间单元,也无法进行PUSCH发送。
对于LBT监听的截止位置,终端可采用如下两种方式获取:
在一种可能的实现方式中,终端可接收基站发送的控制信令,该控制信令用于指示终端进行先听后说LBT监听的截止位置,该控制信令包括RRC(Radio Resource Control,无线资源控制)信令、MAC信令(Media Access Control,媒体接入控制)和DCI信令中的一种或多种的组合。
在另一种可能的实现方式中,终端的芯片中预先存储有LBT监听的截止位置,因此,终端还可从芯片中获取进行LBT监听的截止位置。
基于所获取的LBT监听的截止位置,针对不同的时域资源的调度方式,终端进行LBT监听的方式也是不同的。
在一种可能的实现方式中,当时域资源为至少一个时隙,时域资源的调度方式基于每个时隙进行调度时,LBT监听的截止位置为最后一个时隙的起始符号之前。针对该种情况,终端从第一个时隙的起始符号之前(具体之前多久不做限制)开始进行LBT监听,直至最后一个时隙的起始符号之前,如果在最后一个时隙的起始符号之前监听到信道处于空闲状态,则终端在最后一个时隙内使用相应的RV进行PUSCH发送;如果直至最后一个时隙的起始符号之前信道一直处于忙碌状态,则不再进行LBT监听。
在另一种可能的实现方式中,当时域资源为至少一个小时隙,时域资源的调度方式基于每个小时隙进行调度时,LBT监听的截止位置为最后一个小时隙的起始符号。针对该种情况,终端从第一个小时隙的起始符号之前开始进行LBT监听,直至最后一个小时隙的起始符号之前,如果在最后一个小时隙的起始符号之前监听到信道处于空闲状态,则终端在最后一个小时隙内使用相应的RV进行PUSCH发送;如果直至最后一个小时隙的起始符号之前监听到信道一直处于忙绿状态,则不再进行LBT监听。
在另一种可能的实现方式中,考虑到起始符号的符号可以为0~13中任一个符号,发送起始符号的个数较多,为了减少发送起始符号的个数,可对起始符号的符号进行限定,例如将其限定为符号#0、符号2、符号#4、符号#7、符号#8、符号#9或符号#11等。而结束符号的符号最大可以为符号#13。
本公开实施例提供的方法,基站通过发送DCI信令,并在该DCI信令中指示终端进行PUSCH发送的时域资源,从而提出了一种NR-U场景下时域资源的分配方法,提高了上行发送的成功率及频谱效率。
图8是根据一示例性实施例示出的一种用于时域资源分配的基站的结构示意图。参照图8,该基站为图1中的基站,包括发送模块801。
该发送模块801被配置为发送下行链路控制信息DCI信令,DCI信令用于指示终端用于物理上行共享信道PUSCH发送的时域资源,时域资源包括至少一个时隙和/或至少一个小时隙。
在另一种可能的实现方式中,DCI信令还用于指示时域资源的起始符号和/或结束符号;
其中,起始符号用于指示终端PUSCH发送的起始符号,结束符号用于指示终端PUSCH发送的结束符号。
在另一种可能的实现方式中,时域资源为至少一个时隙,时域资源的调度方式为基于每个时隙进行调度。
在另一种可能的实现方式中,时域资源的起始符号针对至少一个时隙中的第一个时隙或至少一个时隙中的每一个时隙;和/或,
时域资源的结束符号针对至少一个时隙中的最后一个时隙或至少一个时隙中的每一个时隙。
在另一种可能的实现方式中,DCI信令还用于指示N个冗余版本RV及终端在时域资源中的各个时隙使用各自对应的RV进行PUSCH发送;
其中,N为DCI信令指示的时域资源中时隙的个数。
在另一种可能的实现方式中,时域资源为至少一个小时隙,时域资源的调度方式为基于每个小时隙进行调度。
在另一种可能的实现方式中,时域资源的起始符号针对第一个小时隙或每个小时隙,DCI信令还用于指示每个小时隙包括的符号个数;或,
时域资源的起始符号针对每个小时隙,第S个小时隙的起始符号之前的相邻符号为第S-1个小时隙的结束符号。
在另一种可能的实现方式中,DCI信令还用于指示M个冗余版本RV及终端在时域资源中的各个小时隙使用各自对应的RV进行PUSCH发送;
其中,M为DCI信令指示时域资源中小时隙的个数。
在另一种可能的实现方式中,时域资源为至少一个时隙和至少一小时隙,时域资源的调度方式包括针对至少一个时隙基于每个时隙进行调度及针对至少一个小时隙基于每个小时隙进行调度。
在另一种可能的实现方式中,时域资源的起始符号针对至少一个时隙中的每一个时隙或第一个时隙,和/或至少一个小时隙中的第一个小时隙或每一个小时隙;和/或,
时域资源的结束符号针对至少一个时隙中的每一个时隙或最后一个时隙,和/或至少一个小时隙中的每一个小时隙。
在另一种可能的实现方式中,DCI信令还用于指示K个冗余版本RV及终端在时域资源中的各个时隙和小时隙使用各自对应的RV进行PUSCH发送;
其中,K为DCI信令指示时域资源中时隙及小时隙的个数。
在另一种可能的实现方式中,每个时隙或小时隙内的PUSCH发送的起始符号附近的位置为PUSCH的发送起始位置。
在另一种可能的实现方式中,每个时隙或小时隙内的PUSCH发送的起始符号附近的位置为PUSCH的发送起始位置,包括:
每个时隙或小时隙内的PUSCH发送的起始符号为PUSCH的发送起始位置;或,
每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长的位置为PUSCH的发送起始位置;或,
每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长加上定时提前量TA的位置为PUSCH的发送起始位置;或,
每个时隙或小时隙内的PUSCH发送的起始符号之后的相邻符号的起始位置为PUSCH的发送起始位置。
在另一种可能的实现方式中,该发送模块801被配置为发送控制信令,控制信令用于指示所述终端进行先听后说LBT监听的截止位置,控制信令包括无线资源控制RRC信令、媒体接入控制MAC信令和DCI信令中的一种或多种的组合。
在另一种可能的实现方式中,每个时隙包括14个符号,起始符号为14个符号中的任一个符号。
在另一种可能的实现方式中,当时域资源的调度方式为基于每个时隙进行调度时,每个时隙具有至少一个起始符号。
本公开实施例提供的基站,基站通过发送DCI信令,并在信令中指示终端进行PUSCH发送的时域资源,从而提出了一种NR-U场景下时域资源的分配方法,提高了上行发送的成功率及频谱效率。
关于上述实施例中的基站,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图9是根据一示例性实施例示出的一种用于数据发送的终端的结构示意图。参照图9,该终端为图1中的终端,包括接收模块901和发送模块902。
该接收模块901被配置为接收基站发送DCI信令,DCI信令用于指示终端用于PUSCH发送的时域资源,时域资源包括至少一个时隙和/或至少一个小时隙;
该发送模块902被配置为根据DCI信令进行PUSCH发送。
在另一种可能的实现方式中,DCI信令还用于指示时域资源的起始符号和/或结束符号;
该发送模块902被配置为根据起始符号确定PUSCH发送的起始符号,和/或根据结束符号确定PUSCH发送的结束符号。
在另一种可能的实现方式中,时域资源为至少一个时隙,时域资源的调度方式为基于每个时隙进行调度。
在另一种可能的实现方式中,时域资源的起始符号针对至少一个时隙中的第一个时隙或至少一个时隙中的每一个时隙;和/或,
时域资源的结束符号针对至少一个时隙中的最后一个时隙或至少一个时隙中的每一个时隙。
在另一种可能的实现方式中,DCI信令还用于指示N个冗余版本RV;
该发送模块902被配置为在时域资源中的各个时隙使用各自对应的RV进行PUSCH发送;
其中,N为DCI信令指示时域资源中时隙的个数。
在另一种可能的实现方式中,时域资源为至少一个小时隙,时域资源的调度方式为基于每个小时隙进行调度。
在另一种可能的实现方式中,时域资源的起始符号针对第一个小时隙或每个小时隙,DCI信令还用于指示每个小时隙包括的符号个数;或,
时域资源的起始符号针对每个小时隙,第S个小时隙的起始符号之前的相邻符号为第S-1个小时隙的结束符号。
在另一种可能的实现方式中,DCI信令还用于指示M个冗余版本RV;
该发送模块902被配置为在时域资源中的各个小时隙使用各自对应的RV进行PUSCH发送;
其中,M为DCI信令指示时域资源中小时隙的个数。
在另一种可能的实现方式中,时域资源为至少一个时隙和至少一小时隙,时域资源的调度方式包括针对至少一个时隙基于每个时隙进行调度及针对至少一个小时隙基于每个小时隙进行调度。
在另一种可能的实现方式中,时域资源的起始符号针对至少一个时隙中的每一个时隙或第一个时隙,和/或至少一个小时隙中的第一个小时隙或每一个小时隙;和/或,
时域资源的结束符号针对至少一个时隙中的每一个时隙或最后一个时隙,和/或至少一个小时隙中的每一个小时隙。
在另一种可能的实现方式中,DCI信令还用于指示K个冗余版本RV;
该发送模块902被配置为在时域资源中的各个时隙和小时隙使用各自对应的RV进行PUSCH发送;
其中,K为DCI信令指示时域资源中时隙及小时隙的个数。
在另一种可能的实现方式中,每个时隙或小时隙内的PUSCH发送的起始符号附近的位置为PUSCH的发送起始位置。
在另一种可能的实现方式中,该发送模块902被配置为以每个时隙或小时隙内的PUSCH发送的起始符号为PUSCH的发送起始位置进行PUSCH发送;或,
该发送模块902被配置为以每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长的位置为PUSCH的发送起始位置进行PUSCH发送;或,
该发送模块902被配置为以每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长加上TA的位置为PUSCH的发送起始位置进行PUSCH发送;或,
该发送模块902被配置为以每个时隙或小时隙内的PUSCH发送的起始符号之后的相邻符号的起始位置为PUSCH的发送起始位置进行PUSCH发送。
在另一种可能的实现方式中,终端还包括:获取模块。
该接收模块901被配置为接收基站发送的控制信令,控制信令用于指示终端进行先听后说LBT监听的截止位置,控制信令包括无线资源控制RRC信令、媒体接入控制MAC信令和DCI信令中的一种或多种的组合;或,
该获取模块被配置为从芯片中获取进行LBT监听的截止位置。
在另一种可能的实现方式中,每个时隙包括14个符号,起始符号为14个符号中的任一个符号。
本公开实施例提供的终端,终端通过接收DCI信令,并基于该DCI信令进行PUSCH发送,从而实现了在NR-U场景下时域资源的分配,同时提高了上行发送的成功率及频谱效率。
图10是根据一示例性实施例示出的一种用于数据发送的装置1000的框图。例如,装置1000可以是移动电话,计算机,数字广播终端,消息收发设 备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图10,装置1000可以包括以下一个或多个组件:处理组件1002,存储器1004,电源组件1006,多媒体组件1008,音频组件1010,输入/输出(I/O)接口1012,传感器组件1014,以及通信组件1016。
处理组件1002通常控制装置1000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1002可以包括一个或多个处理器1020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1002可以包括一个或多个模块,便于处理组件1002和其他组件之间的交互。例如,处理组件1002可以包括多媒体模块,以方便多媒体组件1008和处理组件1002之间的交互。
存储器1004被配置为存储各种类型的数据以支持在装置1000的操作。这些数据的示例包括用于在装置1000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1006为装置1000的各种组件提供电力。电源组件1006可以包括电源管理系统,一个或多个电源,及其他与为装置1000生成、管理和分配电力相关联的组件。
多媒体组件1008包括在所述装置1000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1008包括一个前置摄像头和/或后置摄像头。当装置1000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1010被配置为输出和/或输入音频信号。例如,音频组件1010 包括一个麦克风(MIC),当装置1000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1004或经由通信组件1016发送。在一些实施例中,音频组件1010还包括一个扬声器,用于输出音频信号。
I/O接口1012为处理组件1002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1014包括一个或多个传感器,用于为装置1000提供各个方面的状态评估。例如,传感器组件1014可以检测到装置1000的打开/关闭状态,组件的相对定位,例如所述组件为装置1000的显示器和小键盘,传感器组件1014还可以检测装置1000或装置1000一个组件的位置改变,用户与装置1000接触的存在或不存在,装置1000方位或加速/减速和装置1000的温度变化。传感器组件1014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1016被配置为便于装置1000和其他设备之间有线或无线方式的通信。装置1000可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1004,上述指令可由装置1000的处理器1020执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随 机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端的处理器执行时,使得移动终端能够执行一种数据发送方法。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (42)

  1. 一种时域资源分配方法,所述方法应用于基站,其特征在于,所述方法包括:
    基站发送下行链路控制信息DCI信令,所述DCI信令用于指示终端用于物理上行共享信道PUSCH发送的时域资源,所述时域资源包括至少一个时隙和/或至少一个小时隙。
  2. 根据权利要求1所述的方法,其特征在于,所述DCI信令还用于指示所述时域资源的起始符号和/或结束符号;
    其中,所述起始符号用于指示所述终端PUSCH发送的起始符号,所述结束符号用于指示所述终端PUSCH发送的结束符号。
  3. 根据权利要求2所述的方法,其特征在于,
    所述时域资源为至少一个时隙,所述时域资源的调度方式为基于每个时隙进行调度。
  4. 根据权利要求3所述的方法,其特征在于,
    所述时域资源的起始符号针对至少一个时隙中的第一个时隙或至少一个时隙中的每一个时隙;和/或,
    所述时域资源的结束符号针对至少一个时隙中的最后一个时隙或至少一个时隙中的每一个时隙。
  5. 根据权利要求3所述的方法,其特征在于,所述DCI信令还用于指示N个冗余版本RV及所述终端在所述时域资源中的各个时隙使用各自对应的RV进行PUSCH发送;
    其中,N为所述DCI信令指示的时域资源中时隙的个数。
  6. 根据权利要求2所述的方法,其特征在于,所述时域资源为至少一个小时隙,所述时域资源的调度方式为基于每个小时隙进行调度。
  7. 根据权利要求6所述的方法,其特征在于,所述时域资源的起始符号针对第一个小时隙或每个小时隙,所述DCI信令还用于指示每个小时隙包括的符号个数;或,
    所述时域资源的起始符号针对每个小时隙,第S个小时隙的起始符号之前的相邻符号为第S-1个小时隙的结束符号。
  8. 根据权利要求6所述的方法,其特征在于,所述DCI信令还用于指示M个冗余版本RV及所述终端在时域资源中的各个小时隙使用各自对应的RV进行PUSCH发送;
    其中,M为所述DCI信令指示时域资源中小时隙的个数。
  9. 根据权利要求2所述的方法,其特征在于,所述时域资源为至少一个时隙和至少一小时隙,所述时域资源的调度方式包括针对至少一个时隙基于每个时隙进行调度及针对至少一个小时隙基于每个小时隙进行调度。
  10. 根据权利要求9所述的方法,其特征在于,所述时域资源的起始符号针对至少一个时隙中的每一个时隙或第一个时隙,和/或至少一个小时隙中的第一个小时隙或每一个小时隙;和/或,
    所述时域资源的结束符号针对至少一个时隙中的每一个时隙或最后一个时隙,和/或至少一个小时隙中的每一个小时隙。
  11. 根据权利要求9所述的方法,其特征在于,所述DCI信令还用于指示K个冗余版本RV及所述终端在时域资源中的各个时隙和小时隙使用各自对应的RV进行PUSCH发送;
    其中,K为所述DCI信令指示时域资源中时隙及小时隙的个数。
  12. 根据权利要求2所述的方法,其特征在于,所述每个时隙或小时隙内的PUSCH发送的起始符号附近的位置为PUSCH的发送起始位置。
  13. 根据权利要求12所述的方法,其特征在于,所述每个时隙或小时隙内 的PUSCH发送的起始符号附近的位置为PUSCH的发送起始位置,包括:
    每个时隙或小时隙内的PUSCH发送的起始符号为PUSCH的发送起始位置;或,
    每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长的位置为PUSCH的发送起始位置;或,
    每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长加上定时提前量TA的位置为PUSCH的发送起始位置;或,
    每个时隙或小时隙内的PUSCH发送的起始符号之后的相邻符号的起始位置为PUSCH的发送起始位置。
  14. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述基站发送控制信令,所述控制信令用于指示所述终端进行先听后说LBT监听的截止位置,所述控制信令包括无线资源控制RRC信令、媒体接入控制MAC信令和DCI信令中的一种或多种的组合。
  15. 根据权利要求2至14中任一项所述的方法,其特征在于,每个时隙包括14个符号,所述起始符号为14个符号中的任一个符号。
  16. 根据权利要求2至14中任一项所述的方法,其特征在于,当所述时域资源的调度方式为基于每个时隙进行调度时,每个时隙具有至少一个起始符号。
  17. 一种数据发送方法,所述方法应用于终端,其特征在于,所述方法包括:
    终端接收基站发送DCI信令,所述DCI信令用于指示所述终端用于PUSCH发送的时域资源,所述时域资源包括至少一个时隙和/或至少一个小时隙;
    所述终端根据所述DCI信令进行PUSCH发送。
  18. 根据权利要求17所述的方法,其特征在于,所述DCI信令还用于指示所述时域资源的起始符号和/或结束符号;
    所述终端根据所述DCI信令进行PUSCH发送,包括:
    所述终端根据所述起始符号确定PUSCH发送的起始符号,和/或根据所述 结束符号确定PUSCH发送的结束符号。
  19. 根据权利要求18所述的方法,其特征在于,所述每个时隙或小时隙内的PUSCH发送的起始符号附近的位置为PUSCH的发送起始位置。
  20. 根据权利要求19所述的方法,其特征在于,所述终端根据所述DCI信令进行PUSCH发送,包括:
    所述终端以每个时隙或小时隙内的PUSCH发送的起始符号为PUSCH的发送起始位置进行PUSCH发送;或,
    所述终端以每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长的位置为PUSCH的发送起始位置进行PUSCH发送;或,
    所述终端以每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长加上TA的位置为PUSCH的发送起始位置进行PUSCH发送;或,
    所述终端以每个时隙或小时隙内的PUSCH发送的起始符号之后的相邻符号的起始位置为PUSCH的发送起始位置进行PUSCH发送。
  21. 根据权利要求17至20中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端接收所述基站发送的控制信令,所述控制信令用于指示所述终端进行先听后说LBT监听的截止位置,所述控制信令包括无线资源控制RRC信令、媒体接入控制MAC信令和DCI信令中的一种或多种的组合;或,
    所述终端从芯片中获取进行LBT监听的截止位置。
  22. 一种用于时域资源分配的基站,其特征在于,所述基站包括:
    发送模块,用于发送下行链路控制信息DCI信令,所述DCI信令用于指示终端用于物理上行共享信道PUSCH发送的时域资源,所述时域资源包括至少一个时隙和/或至少一个小时隙。
  23. 根据权利要求22所述的基站,其特征在于,所述DCI信令还用于指示所述时域资源的起始符号和/或结束符号;
    其中,所述起始符号用于指示所述终端PUSCH发送的起始符号,所述结束 符号用于指示所述终端PUSCH发送的结束符号。
  24. 根据权利要求23所述的基站,其特征在于,
    所述时域资源为至少一个时隙,所述时域资源的调度方式为基于每个时隙进行调度。
  25. 根据权利要求24所述的基站,其特征在于,
    所述时域资源的起始符号针对至少一个时隙中的第一个时隙或至少一个时隙中的每一个时隙;和/或,
    所述时域资源的结束符号针对至少一个时隙中的最后一个时隙或至少一个时隙中的每一个时隙。
  26. 根据权利要求24所述的基站,其特征在于,所述DCI信令还用于指示N个冗余版本RV及所述终端在所述时域资源中的各个时隙使用各自对应的RV进行PUSCH发送;
    其中,N为所述DCI信令指示的时域资源中时隙的个数。
  27. 根据权利要求23所述的基站,其特征在于,所述时域资源为至少一个小时隙,所述时域资源的调度方式为基于每个小时隙进行调度。
  28. 根据权利要求27所述的基站,其特征在于,所述时域资源的起始符号针对第一个小时隙或每个小时隙,所述DCI信令还用于指示每个小时隙包括的符号个数;或,
    所述时域资源的起始符号针对每个小时隙,第S个小时隙的起始符号之前的相邻符号为第S-1个小时隙的结束符号。
  29. 根据权利要求27所述的基站,其特征在于,所述DCI信令还用于指示M个冗余版本RV及所述终端在时域资源中的各个小时隙使用各自对应的RV进行PUSCH发送;
    其中,M为所述DCI信令指示时域资源中小时隙的个数。
  30. 根据权利要求23所述的基站,其特征在于,所述时域资源为至少一个时隙和至少一小时隙,所述时域资源的调度方式包括针对至少一个时隙基于每个时隙进行调度及针对至少一个小时隙基于每个小时隙进行调度。
  31. 根据权利要求30所述的基站,其特征在于,所述时域资源的起始符号针对至少一个时隙中的每一个时隙或第一个时隙,和/或至少一个小时隙中的第一个小时隙或每一个小时隙;和/或,
    所述时域资源的结束符号针对至少一个时隙中的每一个时隙或最后一个时隙,和/或至少一个小时隙中的每一个小时隙。
  32. 根据权利要求30所述的基站,其特征在于,所述DCI信令还用于指示K个冗余版本RV及所述终端在时域资源中的各个时隙和小时隙使用各自对应的RV进行PUSCH发送;
    其中,K为所述DCI信令指示时域资源中时隙及小时隙的个数。
  33. 根据权利要求23所述的基站,其特征在于,所述每个时隙或小时隙内的PUSCH发送的起始符号附近的位置为PUSCH的发送起始位置。
  34. 根据权利要求33所述的基站,其特征在于,所述每个时隙或小时隙内的PUSCH发送的起始符号附近的位置为PUSCH的发送起始位置,包括:
    每个时隙或小时隙内的PUSCH发送的起始符号为PUSCH的发送起始位置;或,
    每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长的位置为PUSCH的发送起始位置;或,
    每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长加上定时提前量TA的位置为PUSCH的发送起始位置;或,
    每个时隙或小时隙内的PUSCH发送的起始符号之后的相邻符号的起始位置为PUSCH的发送起始位置。
  35. 根据权利要求23所述的基站,其特征在于,所述发送模块,还用于发送控制信令,所述控制信令用于指示所述终端进行先听后说LBT监听的截止位 置,所述控制信令包括无线资源控制RRC信令、媒体接入控制MAC信令和DCI信令中的一种或多种的组合。
  36. 根据权利要求23至35中任一项所述的基站,其特征在于,每个时隙包括14个符号,所述起始符号为14个符号中的任一个符号。
  37. 根据权利要求23至35中任一项所述的基站,其特征在于,当所述时域资源的调度方式为基于每个时隙进行调度时,每个时隙具有至少一个起始符号。
  38. 一种用于数据发送的终端,其特征在于,所述终端包括:
    接收模块,用于接收基站发送DCI信令,所述DCI信令用于指示所述终端用于PUSCH发送的时域资源,所述时域资源包括至少一个时隙和/或至少一个小时隙;
    发送模块,用于根据所述DCI信令进行PUSCH发送。
  39. 根据权利要求38所述的终端,其特征在于,所述DCI信令还用于指示所述时域资源的起始符号和/或结束符号;
    所述发送模块,用于根据所述起始符号确定PUSCH发送的起始符号,和/或根据所述结束符号确定PUSCH发送的结束符号。
  40. 根据权利要求39所述的终端,其特征在于,所述每个时隙或小时隙内的PUSCH发送的起始符号附近的位置为PUSCH的发送起始位置。
  41. 根据权利要求40所述的终端,其特征在于,所述发送模块,用于以每个时隙或小时隙内的PUSCH发送的起始符号为PUSCH的发送起始位置进行PUSCH发送;或,
    所述发送模块,用于以每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长的位置为PUSCH的发送起始位置进行PUSCH发送;或,
    所述发送模块,用于以每个时隙或小时隙内的PUSCH发送的起始符号之后预设时长加上TA的位置为PUSCH的发送起始位置进行PUSCH发送;或,
    所述发送模块,用于以每个时隙或小时隙内的PUSCH发送的起始符号之后的相邻符号的起始位置为PUSCH的发送起始位置进行PUSCH发送。
  42. 根据权利要求38至41中任一项所述的终端,其特征在于,所述终端还包括:
    所述接收模块,用于接收所述基站发送的控制信令,所述控制信令用于指示所述终端进行先听后说LBT监听的截止位置,所述控制信令包括无线资源控制RRC信令、媒体接入控制MAC信令和DCI信令中的一种或多种的组合;或,
    获取模块,用于从芯片中获取进行LBT监听的截止位置。
PCT/CN2018/124004 2018-12-26 2018-12-26 时域资源分配方法、数据发送方法、基站及终端 WO2020132971A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CN201880002614.XA CN109792746B (zh) 2018-12-26 2018-12-26 时域资源分配方法、数据发送方法、基站及终端
JP2021531782A JP2022515033A (ja) 2018-12-26 2018-12-26 時間領域リソースの割り当て方法、データ送信方法、基地局及び端末
PCT/CN2018/124004 WO2020132971A1 (zh) 2018-12-26 2018-12-26 时域资源分配方法、数据发送方法、基站及终端
CN202111555358.7A CN114245464A (zh) 2018-12-26 2018-12-26 时域资源分配方法、数据发送方法、基站及终端
RU2021120456A RU2771189C1 (ru) 2018-12-26 2018-12-26 Способ назначения ресурсов временной области, способ передачи данных, базовая станция и терминал
KR1020217021735A KR20210099132A (ko) 2018-12-26 2018-12-26 시간 영역 자원 할당 방법, 데이터 송신 방법, 기지국 및 단말
EP18944206.4A EP3905762A4 (en) 2018-12-26 2018-12-26 PROCEDURES FOR ALLOCATION OF TIME DOMAIN RESOURCES, DATA TRANSMISSION METHOD, BASE STATION AND TERMINAL EQUIPMENT
BR112021012333-4A BR112021012333A2 (pt) 2018-12-26 2018-12-26 Método e estação base para alocar recursos no domínio de tempo, e, método e terminal para transmitir dados
SG11202106885QA SG11202106885QA (en) 2018-12-26 2018-12-26 Method for allocating time domain resources, method for transmitting data, base station, and terminal
US17/417,065 US20220053528A1 (en) 2018-12-26 2018-12-26 Method for allocating time domain resources, data transmission method, base station, and terminal
JP2023075191A JP2023099137A (ja) 2018-12-26 2023-04-28 時間領域リソースの割り当て方法、データ送信方法、基地局及び端末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/124004 WO2020132971A1 (zh) 2018-12-26 2018-12-26 时域资源分配方法、数据发送方法、基站及终端

Publications (1)

Publication Number Publication Date
WO2020132971A1 true WO2020132971A1 (zh) 2020-07-02

Family

ID=66499447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124004 WO2020132971A1 (zh) 2018-12-26 2018-12-26 时域资源分配方法、数据发送方法、基站及终端

Country Status (9)

Country Link
US (1) US20220053528A1 (zh)
EP (1) EP3905762A4 (zh)
JP (2) JP2022515033A (zh)
KR (1) KR20210099132A (zh)
CN (2) CN114245464A (zh)
BR (1) BR112021012333A2 (zh)
RU (1) RU2771189C1 (zh)
SG (1) SG11202106885QA (zh)
WO (1) WO2020132971A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114124319A (zh) * 2020-08-10 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586854B (zh) * 2019-02-15 2024-03-08 大唐移动通信设备有限公司 物理上行共享信道的传输方法、终端及网络设备
US20220330239A1 (en) * 2019-08-07 2022-10-13 Ntt Docomo, Inc. Terminal
CN111836377B (zh) * 2019-08-12 2023-09-22 维沃移动通信有限公司 一种调度方法、网络设备及终端
CN111278131B (zh) * 2019-08-12 2023-12-05 维沃移动通信有限公司 一种调度方法、网络设备及终端
CN110519857B (zh) * 2019-08-16 2021-09-28 中国信息通信研究院 一种数据发送结构指示方法和设备
US11974331B2 (en) * 2020-10-16 2024-04-30 Samsung Electronics Co., Ltd. PUSCH and PRACH enhancements
US20240305413A1 (en) * 2021-01-14 2024-09-12 Mediatek Singapore Pte. Ltd. Procedures For PUSCH Scheduling In Mobile Communications
US20240224265A1 (en) * 2021-04-02 2024-07-04 Beijing Xiaomi Mobile Software Co., Ltd. Method, apparatus, ue, network device, and storage medium for determining time domain resource for uplink transmission
EP4351259A1 (en) 2022-08-18 2024-04-10 Quectel Wireless Solutions Co., Ltd Sidelink communication method and apparatus
CN115843115A (zh) * 2022-08-18 2023-03-24 合肥移瑞通信技术有限公司 侧行通信的方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282879A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 数据传输方法及装置
CN109089316A (zh) * 2017-06-14 2018-12-25 华为技术有限公司 调度方法及相关装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349460B (zh) * 2013-07-25 2019-09-24 中兴通讯股份有限公司 上下行配置信息通知、获取方法以及基站和用户设备
EP3226637B1 (en) * 2014-12-22 2019-06-12 Huawei Technologies Co., Ltd. Method and device for transmitting indication information
KR102521355B1 (ko) * 2015-04-09 2023-04-14 삼성전자주식회사 비면허 대역을 사용하는 통신시스템에서 주파수 재사용을 위한 lbt 기법
US20170332395A1 (en) * 2016-05-11 2017-11-16 Sharp Laboratories Of America, Inc. Systems and methods for physical uplink shared channel (pusch) format signaling and contention access
WO2018031066A1 (en) * 2016-08-10 2018-02-15 Intel IP Corporation Resource allocation indication for physical uplink control channel (pucch)
JP7187452B2 (ja) * 2016-10-19 2022-12-12 アイピーエルエー ホールディングス インコーポレイテッド 装置
DE112017004435T5 (de) * 2016-11-02 2019-06-27 Intel IP Corporation Benutzerausrüstung (ue), entwickelter knoten-b (enb) und verfahren zur signalisierung von new radio- (nr) zuordnungen auf dem physischen uplink-steuerkanal (pucch)
WO2018143316A1 (ja) * 2017-02-01 2018-08-09 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN108631969B (zh) * 2017-03-21 2021-01-15 中国移动通信有限公司研究院 一种指示信息的发送方法、接收方法、基站及终端
WO2018174550A1 (ko) * 2017-03-21 2018-09-27 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 단말의 상향링크 신호 전송 방법 및 이를 지원하는 장치
US10897753B2 (en) * 2017-05-04 2021-01-19 Sharp Kabushiki Kaisha Systems and methods for supporting multiple allocations in UL/DL grant for a 5G NR UE and gNB
US10512072B2 (en) * 2017-09-11 2019-12-17 Lg Electronics Inc. Method and apparatus for transmitting downlink control information in wireless communication system
CN108076525B (zh) * 2018-01-19 2022-03-18 宇龙计算机通信科技(深圳)有限公司 上行时域资源调度方法和网络设备
BR112020022835A2 (pt) * 2018-05-11 2021-02-02 Huawei Technologies Co., Ltd. método, sistema, e dispositivo de comunicação, e meio de armazenamento
WO2020032697A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 비면허 대역에서의 상향 링크 전송 방법 및 상기 방법을 이용하는 단말
ES2946883T3 (es) * 2018-08-10 2023-07-27 Ericsson Telefon Ab L M Concesión de programación de enlace ascendente para una pluralidad de canales físicos compartidos de enlace ascendente
EP3837786B1 (en) * 2018-09-27 2022-11-23 Sony Group Corporation Infrastructure equipment, communications device and methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282879A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 数据传输方法及装置
CN109089316A (zh) * 2017-06-14 2018-12-25 华为技术有限公司 调度方法及相关装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AT&T: "On DCI Contents and Formats", 3GPP DRAFT; R1-1719643, 1 December 2017 (2017-12-01), Reno, USA, pages 1 - 9, XP051369449 *
LG ELECTRONICS: "Discussion on Resource Allocation and TBS Determination", 3GPP DRAFT; R1-1719929, 1 December 2017 (2017-12-01), Reno, USA, pages 1 - 16, XP051369642 *
See also references of EP3905762A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114124319A (zh) * 2020-08-10 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114124319B (zh) * 2020-08-10 2023-06-09 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
EP3905762A1 (en) 2021-11-03
CN114245464A (zh) 2022-03-25
JP2023099137A (ja) 2023-07-11
BR112021012333A2 (pt) 2021-08-31
CN109792746A (zh) 2019-05-21
KR20210099132A (ko) 2021-08-11
SG11202106885QA (en) 2021-07-29
US20220053528A1 (en) 2022-02-17
EP3905762A4 (en) 2022-07-20
JP2022515033A (ja) 2022-02-17
CN109792746B (zh) 2022-01-04
RU2771189C1 (ru) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2020132971A1 (zh) 时域资源分配方法、数据发送方法、基站及终端
US20210144702A1 (en) Method for multiplexing transmission of information and apparatus, and information receiving method and apparatus
WO2020147043A1 (zh) 关于随机接入的方法及装置
CN109496400B (zh) 重传信息的方法、装置、基站及终端
WO2018195798A1 (zh) 寻呼方法及装置
WO2019191948A1 (zh) 下行控制信息格式大小的确定方法及装置
CN107223363B (zh) 一种分配调度请求sr资源的方法和装置
WO2020124499A1 (zh) 传输上行信息的方法、装置、基站及终端
WO2019227430A1 (zh) 信道监测方法、装置、系统及存储介质
US11722283B2 (en) Information transmission method, device, system, and storage medium
WO2020087380A1 (zh) 传输随机接入指示信息的方法及装置
WO2019237360A1 (zh) 确定上下行切换点的方法及装置
WO2018195864A1 (zh) 一种业务复用传输方法、装置及计算机可读存储介质
US12041620B2 (en) Method and apparatus for indicating occupation of semi-persistent scheduling unit, and base station
WO2020087466A1 (zh) 传输信息的方法、装置、基站及终端
WO2020029262A1 (zh) 监听方法、装置、设备及存储介质
WO2020258273A1 (zh) 检测非授权频段的方法和检测非授权频段的装置
US11291035B2 (en) Information transmitting method and apparatus, base station, and user equipment
WO2020155109A1 (zh) 调度混合自动重传的方法及装置
WO2020029268A1 (zh) 上行反馈方法、装置、终端和基站以及存储介质
WO2020258275A1 (zh) 信道占用时间的起始位置确定方法和装置
US12063630B2 (en) Method and device for indicating resource occupation state, and method and device for determining resource occupation state
WO2020014967A1 (zh) 随机接入的处理方法及装置
WO2019183939A1 (zh) 数据传输方法及装置
WO2020124425A1 (zh) 数据调度方法和装置、数据传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021531782

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217021735

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021012333

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018944206

Country of ref document: EP

Effective date: 20210726

ENP Entry into the national phase

Ref document number: 112021012333

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210622