WO2020031999A1 - Motor - Google Patents

Motor Download PDF

Info

Publication number
WO2020031999A1
WO2020031999A1 PCT/JP2019/030835 JP2019030835W WO2020031999A1 WO 2020031999 A1 WO2020031999 A1 WO 2020031999A1 JP 2019030835 W JP2019030835 W JP 2019030835W WO 2020031999 A1 WO2020031999 A1 WO 2020031999A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
housing
stator
axial direction
motor shaft
Prior art date
Application number
PCT/JP2019/030835
Other languages
French (fr)
Japanese (ja)
Inventor
中村 圭吾
山口 康夫
久嗣 藤原
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2020535776A priority Critical patent/JP7452423B2/en
Priority to CN201980052163.5A priority patent/CN112534690A/en
Publication of WO2020031999A1 publication Critical patent/WO2020031999A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium

Definitions

  • the present invention relates to a motor.
  • This application claims priority based on Japanese Patent Application No. 2018-148692 filed on Aug. 07, 2018 and Japanese Patent Application No. 2018-148693 filed on Aug. 07, 2018, The contents are incorporated herein.
  • Patent Literature 1 describes a rotating electric machine mounted on a vehicle.
  • the lubricating fluid as described above is led out of the case and cooled, for example.
  • it is necessary to provide a flow path for leading the lubricating fluid from the case to the outside and there is a problem that the structure of the rotating electric machine is complicated.
  • it is necessary to accurately seal the connection between the case and the flow path for leading the lubricating fluid to the outside which may increase the man-hour and cost of manufacturing the rotating electric machine. there were.
  • One aspect of a motor according to the present invention includes a rotor having a motor shaft arranged along a central axis extending in one direction, a stator facing the rotor with a gap in a radial direction, and a rotor and a stator are housed. And a housing having an accommodating portion capable of storing oil.
  • the housing has a cylindrical portion that supports the stator from the radial outside.
  • the cylinder has a cooling channel through which the refrigerant flows.
  • the housing has a fin that projects into the housing.
  • oil stored in a stator and a housing can be suitably cooled with a simple structure.
  • FIG. 1 is a perspective view showing the motor of the present embodiment.
  • FIG. 2 is a diagram showing the motor of the present embodiment, and is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a view of the pump section of the present embodiment viewed from the other side in the axial direction.
  • FIG. 4 is a view of the water jacket of the present embodiment viewed from one side in the axial direction.
  • FIG. 5 is a perspective view showing a part of the water jacket of the present embodiment.
  • FIG. 6 is a diagram showing a part of the motor of the present embodiment, and is a partially enlarged view of FIG.
  • FIG. 7 is a perspective view illustrating a cooling channel according to the present embodiment.
  • FIG. 8 is a schematic configuration diagram schematically showing a driving device on which the motor of the present embodiment is mounted.
  • the Z-axis direction shown in each figure is a vertical direction Z in which the positive side is the upper side and the negative side is the lower side.
  • the vertical direction Z is a vertical direction in each drawing.
  • the upper side in the vertical direction is simply called “upper side”
  • the lower side in the vertical direction is simply called “lower side”.
  • the motor 1 of the present embodiment includes a housing 10, a rotor 20 having a motor shaft 20 a disposed along a central axis J1 extending in one direction, a rotation detection unit 80, It includes a stator 30, a pump section 40, and bearings 70 and 71.
  • the center axis J1 extends in the left-right direction of FIG. That is, in the present embodiment, the left-right direction in FIG. 2 corresponds to one direction.
  • the Y-axis direction shown in each drawing is a direction parallel to the central axis J1.
  • a direction parallel to the axial direction of the central axis J1 is simply referred to as “axial direction Y”
  • a radial direction about the central axis J1 is simply referred to as “radial direction”
  • the central axis J1 is defined as a center.
  • the circumferential direction is simply referred to as “circumferential direction R”.
  • the axial direction Y is a direction orthogonal to the vertical direction Z.
  • the left side of FIG. 2 in the axial direction Y that is, the positive side in the Y-axis direction is called “one side in the axial direction”
  • the right side of the axial direction Y in FIG. "The other side in the axial direction”.
  • the X-axis direction shown in each drawing is a direction orthogonal to both the axial direction Y and the vertical direction Z. In the following description, a direction parallel to the X-axis direction is referred to as “width direction X”.
  • the housing 10 includes a main body 11, a lid 13, a water jacket 60, and a plate member 12.
  • the main body 11, the lid 13, the water jacket 60, and the plate member 12 are separate members.
  • the main body 11 has a bottomed cylindrical shape that opens on one side in the axial direction.
  • the main body 11 has a bottom part 11a, a second cylindrical part 11b, a bearing holding part 11c, and a wiring housing part 11e.
  • the bottom portion 11a is in the shape of an annular plate that expands in the radial direction.
  • the second cylindrical portion 11b has a cylindrical shape extending from the radially outer edge of the bottom portion 11a to one side in the axial direction.
  • the second cylindrical portion 11b has a cylindrical shape centered on the central axis J1.
  • the second cylindrical portion 11b has a flow path component 11d.
  • the channel forming portion 11d is a portion of the radially inner side surface of the second cylindrical portion 11b facing the inside of a cooling channel 90 described later.
  • the bearing holding portion 11c has a cylindrical shape protruding from the radial inner edge of the bottom portion 11a to one side in the axial direction.
  • the bearing holding part 11c holds the bearing 71 on the inner peripheral surface.
  • the wiring housing 11e is provided on the upper part of the second cylindrical part 11b.
  • the wiring housing portion 11e protrudes upward from a radially outer surface of the second cylindrical portion 11b.
  • the wiring accommodating portion 11e has a box shape that opens on one side in the axial direction.
  • the wiring housing 11e has a trapezoidal shape when viewed in the axial direction.
  • the opening on one side in the axial direction of the main body 11 is constituted by an opening on one side in the axial direction of the second cylindrical portion 11b and an opening on one side in the axial direction of the wiring housing portion 11e.
  • the wiring housing 11e has a connector wall 11f and a top wall 11g.
  • the connector wall portion 11f is a wall portion located on the other side in the axial direction among the wall portions constituting the box-shaped wiring housing portion 11e.
  • a plurality of connectors 100 are provided on the connector wall 11f. As shown in FIG. 1, the plurality of connectors 100 protrude from the connector wall 11f to the other axial side. The plurality of connectors 100 are arranged side by side along the width direction X. For example, three connectors 100 are provided.
  • the top wall portion 11g is a wall portion located on the upper side among the wall portions constituting the box-shaped wiring accommodating portion 11e. As shown in FIG. 2, the through-hole 11h which penetrates the top wall 11g in the vertical direction Z is provided in the top wall 11g. The through hole 11h is closed by fixing the plate member 12 to the top wall portion 11g with a screw or the like.
  • the lid 13 is attached to one axial side of the main body 11.
  • the lid 13 closes an opening on one axial side of the main body 11.
  • a housing 17 surrounded by the main body 11 and the lid 13 is configured. That is, the housing 10 has the housing 17.
  • the housing 17 houses the rotor 20 and the stator 30 and can store the oil O.
  • the oil O is stored in a vertically lower region inside the housing portion 17.
  • the “vertical lower side region inside the housing portion” includes a portion located inside the housing portion 17 below the center in the vertical direction Z.
  • the liquid level OS of the oil O stored in the storage portion 17 fluctuates when the oil O is sucked up by the pump portion 40, but is arranged at least below the rotor 20 when the rotor 20 rotates. Thereby, when the rotor 20 rotates, it is possible to suppress the oil O from becoming a rotational resistance of the rotor 20.
  • an oil equivalent to an automatic transmission fluid (ATF: Automatic Transmission Fluid) having a relatively low viscosity in order to exhibit functions of a lubricating oil and a cooling oil.
  • ATF Automatic Transmission Fluid
  • the lid portion 13 has a side wall portion 13d, an outer cylindrical portion 13e, a bearing holding portion 13g, and a plug body portion 14.
  • the side wall portion 13d is located on one side in the axial direction of the stator 30, and expands in the radial direction.
  • the side wall portion 13d covers one axial side of the stator 30. That is, the lid 13 covers one side of the stator 30 in the axial direction.
  • the side wall portion 13d is provided with a concave portion 13i that is recessed from one axial side surface of the side wall portion 13d toward the other axial side.
  • a first through hole 13j penetrating the bottom of the recess 13i in the axial direction Y is provided at the bottom of the recess 13i.
  • the first through-hole 13j connects the inside of a pump chamber 46 to be described later and the inside of the housing 10.
  • the outer cylindrical portion 13e has a cylindrical shape extending from the radial outer edge of the side wall portion 13d to the other
  • a pump chamber 46 is provided in the lid 13.
  • the pump chamber 46 is configured such that the recess 13i provided in the side wall 13d is closed by the plug 14 from one side in the axial direction.
  • the plug body 14 is fixed to a surface on one axial side of the side wall 13d with, for example, a screw.
  • An annular seal 14a is arranged between the side wall 13d and the plug 14 in the axial direction.
  • the seal 14a surrounds the recess 13i when viewed in the axial direction. Thereby, it is possible to suppress the oil O in the pump chamber 46 from leaking outside the housing 10.
  • the center axis J1 passes through the pump chamber 46.
  • the outer shape of the pump chamber 46 is circular.
  • the pump chamber 46 houses an internal gear 43 and an external gear 42 described later.
  • the pump chamber 46 is provided with a suction port 44 from which the oil O can be sucked into the pump chamber 46 from inside the housing section 17 and a discharge port 45 from which the oil O can be discharged from inside the pump chamber 46.
  • the suction port 44 and the discharge port 45 are, for example, circular.
  • the suction port 44 is arranged below the discharge port 45.
  • the suction port 44 is arranged below the central axis J1.
  • Discharge port 45 is arranged above central axis J1.
  • the plug portion 14 has a portion to be inserted into the recess 13i.
  • a connection oil passage 13 n into which oil O from the discharge port 45 flows is provided in a portion of the plug portion 14 inserted into the recess 13 i.
  • the connection oil passage 13n is connected to a second oil passage 20b described later via the connection port 13p.
  • the connection port 13p is, for example, circular.
  • the lid 13 has a first oil passage 13a.
  • the first oil passage 13a is provided on the side wall 13d. More specifically, the first oil passage 13a is It is provided in the lower part of d.
  • the first oil passage 13a has a vertically extending portion 13k and an axially extending portion 13m.
  • the vertical extension 13k is a portion extending upward from the lower end of the side wall 13d.
  • the upper end of the vertically extending portion 13k is connected to the pump chamber 46 on the other axial side of the pump chamber 46.
  • the portion of the pump chamber 46 to which the vertically extending portion 13k is connected is the suction port 44.
  • a seal bolt 13c is provided at a lower end of the vertically extending portion 13k. The seal bolt 13c closes and seals the lower end of the vertically extending portion 13k. Thereby, it is possible to suppress the oil O in the housing portion 17 from leaking outside the housing 10.
  • the axially extending portion 13m extends from the surface on the other side in the axial direction of the side wall portion 13d to one side in the axial direction, and is connected to the vertically extending portion 13k.
  • the other end in the axial direction of the axially extending portion 13m is an opening 13h that opens into the housing portion 17. That is, the first oil passage 13a has the opening 13h. As a result, the first oil passage 13a is exposed and opened to the housing portion 17, and connects the inside of the housing portion 17 and the suction port 44.
  • the opening 13h is located below the liquid level OS of the oil O stored in the storage portion 17. Thereby, the opening 13 h is exposed to the oil O stored in the storage 17.
  • the oil O in the storage unit 17 flows into the first oil passage 13a from the opening 13h.
  • the oil O flowing into the first oil passage 13a is sent to the rotor 20 and the stator 30 via the pump chamber 46, the connection oil passage 13n, and a second oil passage 20b described later.
  • a strainer 13b is provided in the first oil passage 13a.
  • the strainer 13b is provided inside a portion of the vertically extending portion 13k located above the axially extending portion 13m.
  • the oil O sent from the accommodation section 17 to the pump chamber 46 through the first oil passage 13a passes through the strainer 13b.
  • the strainer 13b can remove foreign matter contained in the oil O sent from the storage section 17 to the pump chamber 46. Therefore, it is possible to prevent foreign matter from entering the pump chamber 46.
  • the bearing holding portion 13g is provided at a radially central portion of the side wall portion 13d.
  • the bearing holding portion 13g holds the bearing 70 inside. That is, the lid 13 holds the bearing 70.
  • a pump chamber 46 is provided on one axial side of the bearing holding portion 13g.
  • the water jacket 60 is a cylindrical member that entirely surrounds the central axis J1.
  • the water jacket 60 is a part of the housing 10.
  • the outer peripheral surface of the water jacket 60 is in contact with the inner peripheral surface of the second cylindrical portion 11b of the main body 11.
  • the stator 30 is fixed to the inner peripheral surface of the water jacket 60.
  • the water jacket 60 has a first cylindrical portion 61, a mounting portion 62, and a fin portion 63. That is, the housing 10 includes the first cylindrical portion 61, the mounting portion 62, and the fin portion 63. As shown in FIG. 2, the first cylindrical portion 61 supports the stator 30 from the outside in the radial direction. In the present embodiment, the first cylindrical portion 61 has a cylindrical shape that opens on both sides in the axial direction Y about the central axis J1. The first cylindrical portion 61 is located radially inside the second cylindrical portion 11b. The outer peripheral surface of the first cylindrical portion 61 is the outer peripheral surface of the water jacket 60. A groove 61 a extending in the circumferential direction R is provided on the outer peripheral surface of the first cylindrical portion 61. Although not shown, the groove 61a has a C-shape when viewed in the axial direction. The groove 61a forms a cooling channel 90 described later.
  • the first tubular portion 61 of the water jacket 60 and the second tubular portion 11b of the main body portion 11 are overlapped in the radial direction to form a tubular portion 10a that supports the stator 30 from the outside in the radial direction.
  • the housing 10 has a first cylindrical portion 61 and a cylindrical portion 10a having a second cylindrical portion 11b located radially outside the first cylindrical portion 61.
  • the tubular portion 10a is a tubular shape that opens on one side in the axial direction. The opening on one side in the axial direction of the cylindrical portion 10 a is closed by the lid 13.
  • the cylindrical part 10a forms a part of the housing part 17.
  • the mounting portion 62 has a flange shape that extends radially outward from one axial end of the first cylindrical portion 61. As shown in FIG. 4, the mounting portion 62 surrounds the central axis J1.
  • the mounting portion 62 has a protrusion 62a that protrudes in a trapezoidal shape on the upper side.
  • the protruding part 62a is a part located on the upper side of the mounting part 62.
  • the protrusion 62a is provided with a hole 62c that penetrates the protrusion 62a in the axial direction Y. As shown in FIG. 2, the hole 62c faces the opening on one axial side of the wiring housing 11e.
  • the mounting portion 62 is sandwiched between the opening edge of the main body 11 and the opening edge of the lid 13 in the axial direction Y.
  • the mounting portion 62 is provided with a plurality of mounting holes 62b at intervals in the circumferential direction R.
  • the mounting hole 62b penetrates the mounting portion 62 in the axial direction Y.
  • a screw is passed through each of the mounting holes 62b from one axial side.
  • the screw passed through the mounting hole 62b penetrates the flange provided on the lid 13 and is fastened to the opening edge of the main body 11. As a result, the water jacket 60 and the lid 13 are fixed to the main body 11 together with the screw together.
  • the fin portion 63 protrudes from the one axial end of the first cylindrical portion 61 to one axial side. As shown in FIG. 2, the fin portion 63 protrudes toward one side in the axial direction toward the lid portion 13 and faces the lid portion 13 in the axial direction Y. As shown in FIG. 5, in the present embodiment, a plurality of fin portions 63 are provided along a circumferential direction R centered on the central axis J1.
  • the fin portion 63 has, for example, a substantially rectangular plate shape whose plate surface faces the circumferential direction R.
  • the plurality of fin portions 63 are provided in a lower portion of the first cylindrical portion 61.
  • the plurality of fin portions 63 are located below the central axis J1.
  • the plurality of fin portions 63 are arranged, for example, at equal intervals along an arc shape passing through the lowermost end of the cylindrical first tubular portion 61.
  • the fin portion 63 located on one side in the circumferential direction and the fin portion 63 located on the other side in the circumferential direction are arranged at the same position in the vertical direction Z, for example.
  • the fin portion 63 protrudes into the housing portion 17.
  • the fin portion 63 is located below the liquid level OS of the oil O stored in the storage portion 17. That is, the fin portion 63 is immersed in the oil O stored in the storage portion 17.
  • the fin portion 63 protrudes to one axial side from a coil end 32a of the stator 30 described later.
  • the distance in the axial direction Y between one end of the fin portion 63 in the axial direction and the lid 13 is shorter than the distance in the axial direction Y between the coil end 32a and the lid 13.
  • At least a part of the fin portion 63 faces the opening 13h.
  • “at least a part of the fin portion faces the opening” means that at least a part of at least one fin portion faces the opening.
  • some of the fin portions 63 provided at the lower end of the first cylindrical portion 61 face the opening 13h.
  • the rotor 20 includes a motor shaft 20a, a rotor core 22, a magnet 23, a first end plate 24, and a second end plate 25.
  • the motor shaft 20a has a motor shaft main body 21 and a mounting member 50.
  • the rotor core 22 is attached to the motor shaft main body 21.
  • the portion of the motor shaft main body 21 to which the rotor core 22 is attached is a large diameter portion 21a.
  • One end in the axial direction of the motor shaft main body 21 is rotatably supported by the bearing 70. Further, a portion of the motor shaft main body 21 located on the other axial side than the rotor core 22 is rotatably supported by the bearing 71. Therefore, the bearings 70 and 71 rotatably support the motor shaft 20a.
  • the bearings 70 and 71 are, for example, ball bearings.
  • the other end in the axial direction of the motor shaft main body 21 is an output shaft portion 21b that penetrates the bottom portion 11a in the axial direction Y and projects outside the housing 10. The outer diameter of the output shaft portion 21b is smaller than the outer diameter of the large diameter portion 21a.
  • the motor shaft main body 21 has a flange portion 21f.
  • the flange portion 21f is provided on a portion of the motor shaft main body 21 that is located on the other axial side than the rotor core 22.
  • the flange portion 21f protrudes radially outward from the large diameter portion 21a of the motor shaft main body 21 to which the rotor core 22 is fixed.
  • the flange portion 21f has an annular plate shape.
  • the motor shaft main body 21 has a hole 21g extending from one axial end of the motor shaft main body 21 to the other axial side.
  • the hole 21g is a bottomed hole that opens on one side in the axial direction. That is, the other axial end of the hole 21g is closed.
  • the mounting member 50 is fixed to one axial side of the motor shaft main body 21.
  • the mounting member 50 is fitted and fixed in the hole 21g.
  • the attachment member 50 has a tubular shape that opens on both sides in the axial direction.
  • the mounting member 50 has a cylindrical shape centered on the central axis J1. The mounting member 50 extends to one side in the axial direction from the motor shaft main body 21 and is passed through the first through hole 13j.
  • the mounting member 50 has a fitting portion 51 and a fixing portion 52.
  • the fitting portion 51 is a portion fitted into the hole 21g.
  • the fitting portion 51 is fixed to the inner peripheral surface of one end of the hole 21g in the axial direction, and extends from the inside of the hole 21g to one axial side of the motor shaft main body 21.
  • One end in the axial direction of the fitting portion 51 is inserted into the first through hole 13j. That is, at least a part of the fitting portion 51 is inserted into the first through hole 13j. Therefore, the radial gap between the outer peripheral surface of the mounting member 50 and the inner peripheral surface of the first through hole 13j can be increased. Thereby, even when the position of the mounting member 50 is shifted in the radial direction due to vibration or the like, it is possible to suppress the mounting member 50 from contacting the inner peripheral surface of the first through hole 13j.
  • the fixing portion 52 is located on one axial side of the fitting portion 51.
  • the fixing portion 52 is connected to an end of the fitting portion 51 on one side in the axial direction.
  • the outer diameter of the fixing part 52 is larger than the outer diameter of the fitting part 51 and smaller than the inner diameter of the first through hole 13j.
  • the fixing part 52 is inserted into the pump chamber 46.
  • the inner diameter of the fitting part 51 and the inner diameter of the fixed part 52 are, for example, the same.
  • An external gear 42 described below is fixed to the mounting member 50.
  • the external gear 42 is fixed to a radially outer surface of the fixing portion 52. More specifically, as shown in FIG. 3, the fixing portion 52 is fitted and fixed to a fixing hole 42 b penetrating the external gear 42 in the axial direction Y.
  • the fitting part 51 having an outer diameter smaller than the fixing part 52 is fitted into the hole 21g, and the external gear 42 is fitted to the fixing part 52 having the outer diameter larger than the fitting part 51. Fix it. Therefore, the inner diameter of the hole 21g can be smaller than the inner diameter of the fixing hole 42b of the external gear 42. Accordingly, the inner diameter of the hole 21g can be relatively easily reduced, and a decrease in the rigidity of the motor shaft 20a can be suppressed.
  • the motor shaft 20a has a second oil passage 20b provided inside the motor shaft 20a.
  • the second oil passage 20b is a bottomed hole extending from one end in the axial direction of the motor shaft 20a to the other axial side.
  • the second oil passage 20b opens on one side in the axial direction.
  • the second oil passage 20b is provided to extend from one axial end of the mounting member 50 to the other axial end.
  • the second oil passage 20b is configured by connecting the inside of the mounting member 50 and the hole 21g in the axial direction Y. That is, the radial inner surface of the mounting member 50 forms a part of the radial inner surface of the second oil passage 20b.
  • the inner edge of the second oil passage 20b has a circular shape centered on the central axis J1 in a cross section orthogonal to the axial direction Y.
  • the inside diameter of the portion provided on the mounting member 50 in the second oil passage 20b is smaller than the inside diameter of the portion provided on the motor shaft 20a in the second oil passage 20b. That is, the inner diameter of the mounting member 50 is smaller than the inner diameter of the hole 21g.
  • the second oil passage 20b is connected to the connection oil passage 13n by connecting the opening on one axial side of the attachment member 50 to the connection opening 13p. That is, the second oil passage 20b opens to the connection oil passage 13n at one axial end of the motor shaft 20a.
  • the second oil passage 20b is connected to the discharge port 45 via the connection oil passage 13n.
  • the motor shaft 20a has second through holes 26a to 26d connecting the second oil passage 20b and the outer peripheral surface of the motor shaft 20a.
  • the second through holes 26a to 26d extend in the radial direction.
  • the second through holes 26a and 26b are provided in the large diameter portion 21a.
  • the second through holes 26a and 26b are arranged between the nut 27 for fixing the first end plate 24 and the second end plate 25 and the flange 21f in the axial direction Y.
  • the radially outer end of the second through-hole 26a opens in a gap in the axial direction Y between the first end plate 24 and the rotor core 22.
  • a radially outer end of the second through-hole 26b opens in a gap in the axial direction Y between the second end plate 25 and the rotor core 22.
  • a radially outer end portion of the second through hole 26c is opened on a radially outer surface of a portion of the motor shaft 20a located between the bearing 70 and a later-described detection portion 81 in the axial direction Y.
  • a radially outer end of the second through hole 26d opens radially inward of the bearing holding portion 11c on the other axial side of the bearing 71.
  • a plurality of second through holes 26a to 26d are provided along the circumferential direction R, respectively.
  • the second through-hole 26c may be opened radially inside the bearing holding portion 13g on one axial side of the bearing 70.
  • the rotor core 22 has, for example, an annular shape centered on the central axis J1.
  • the rotor core 22 has a magnet insertion hole 22a penetrating the rotor core 22 in the axial direction Y.
  • the plurality of magnet insertion holes 22a are provided, for example, along the circumferential direction R.
  • the magnets 23 are respectively inserted into the plurality of magnet insertion holes 22a.
  • the magnet 23 is bonded to the rotor core 22 by, for example, an adhesive. Note that the method of fixing the magnet 23 is not limited to bonding.
  • the first end plate 24 and the second end plate 25 are ring-shaped plates that expand in the radial direction.
  • the motor shaft 20a is passed through the first end plate 24 and the second end plate 25.
  • the first end plate 24 and the second end plate 25 sandwich the rotor core 22 in the axial direction Y while being in contact with the rotor core 22.
  • the first end plate 24 is arranged on one axial side of the rotor core 22.
  • the first end plate 24 has an ejection groove (not shown).
  • the second end plate 25 is arranged on the other axial side of the rotor core 22.
  • the second end plate 25 has an ejection groove.
  • the ejection grooves provided in the first end plate 24 and the second end plate 25 respectively extend in the radial direction.
  • the first end plate 24, the rotor core 22, and the second end plate 25 are held in the axial direction Y by the nut 27 and the flange 21f.
  • the nut 27 presses the first end plate 24, the rotor core 22, and the second end plate 25 against the flange portion 21f by being screwed into a male screw portion provided on the outer peripheral surface of the motor shaft 20a. Thereby, the first end plate 24, the rotor core 22, and the second end plate 25 It is fixed to the motor shaft 20a.
  • the stator 30 faces the rotor 20 with a gap in the radial direction.
  • the stator 30 has a stator core 31 and a plurality of coils 32 mounted on the stator core 31.
  • Stator core 31 has an annular shape centered on central axis J1. A radially outer surface of the stator core 31 is fixed to an inner peripheral surface of the water jacket 60.
  • the stator core 31 faces radially outside the rotor core 22 via a gap.
  • the radial outer surface of the stator 30 corresponds to the radial outer surface of the stator core 31.
  • the radial outer surface of the stator core 31 contacts the inner peripheral surface of the first cylindrical portion 61 of the water jacket 60. More specifically, stator core 31 is fixed to water jacket 60 by, for example, press fitting or shrink fitting.
  • the coil 32 is wound around the stator core 31.
  • One end of the coil 32 on one side in the axial direction is a coil end 32a, and projects to one side in the axial direction from the one end of the stator core 31 on one side in the axial direction. That is, the coil 32 has a coil end 32a that projects to one side in the axial direction from the stator core 31.
  • the other end of the coil 32 on the other side in the axial direction is a coil end 32b, which protrudes from the other end of the stator core 31 on the other side in the axial direction.
  • a conductive bus bar 101 and a bus bar holder 33 are arranged at positions adjacent to the coil end 32a.
  • the bus bar 101 is held by the bus bar holder 33 and is provided from a position adjacent to the coil end 32a to a position adjacent to the cable connection portion 102.
  • an end of the coil 32 is connected to one end of the bus bar 101, and a cable connection unit 102 is connected to the other end of the bus bar 101, thereby conducting the coil 32 and the cable connection unit 102.
  • the cable connection unit 102 is disposed in the wiring housing 11e. Although not shown, the cable connection unit 102 is connected to the connector 100. Power is supplied to the connector 100 from a power supply (not shown). Thereby, electric power is supplied from the connector 100 to the coil 32 via the cable connection unit 102 and the bus bar 101.
  • the rotation detecting section 80 shown in FIG. 2 detects the rotation of the rotor 20.
  • the rotation detection unit 80 is, for example, a VR (Variable Reluctance) type resolver.
  • the rotation detecting section 80 is arranged radially inside the outer cylindrical section 13e.
  • the rotation detecting section 80 has a detected section 81 and a sensor section 82.
  • the detected part 81 is an annular shape extending in the circumferential direction R.
  • the detected part 81 is fitted and fixed to the motor shaft 20a.
  • the detected part 81 is made of a magnetic material.
  • the sensor unit 82 is disposed between the rotor core 22 and the lid 13 in the axial direction Y.
  • the sensor section 82 has an annular shape surrounding the detected section 81 in the radial direction.
  • the sensor unit 82 has a plurality of coils along the circumferential direction R.
  • the sensor unit 82 detects the rotation of the detected unit 81 by detecting the induced voltage.
  • the rotation detecting section 80 detects the rotation of the motor shaft 20a and detects the rotation of the rotor 20.
  • the pump section 40 is provided at the center of the lid section 13.
  • the pump section 40 is disposed on one axial side of the motor shaft 20a.
  • the pump section 40 in the present embodiment is a so-called mechanical oil pump.
  • the pump section 40 has an external gear 42, an internal gear 43, the above-described pump chamber 46, a suction port 44, a discharge port 45, and a storage section 48.
  • the external gear 42 is a gear that can rotate around the central axis J1.
  • the external gear 42 is fixed to one axial end of the motor shaft 20a.
  • the external gear 42 is housed in a pump chamber 46. As shown in FIG. 3, the external gear 42 has a plurality of teeth 42a on the outer peripheral surface.
  • the tooth shape of the tooth portion 42a of the external gear 42 is a trochoid tooth shape.
  • the internal gear 43 is an annular gear rotatable around a rotation axis J2 that is eccentric with respect to the center axis J1.
  • the internal gear 43 is housed in a pump chamber 46.
  • the internal gear 43 surrounds the outside of the external gear 42 in the radial direction, and meshes with the external gear 42.
  • the internal gear 43 has a plurality of teeth 43a on the inner peripheral surface.
  • the tooth shape of the tooth portion 43a of the internal gear 43 is a trochoid tooth shape. As described above, since the tooth profile of the tooth portion 42a of the external gear 42 and the tooth profile of the tooth portion 43a of the internal gear 43 are trochoid tooth shapes, a trochoid pump can be configured. Therefore, noise generated from the pump unit 40 can be reduced, and the pressure and amount of the oil O discharged from the pump unit 40 can be easily stabilized.
  • the plug 14 closes the opening on the one side in the axial direction of the recess 13i.
  • the chamber 46 can be configured, and the internal gear 43 and the external gear 42 can be housed in the pump chamber 46. Therefore, assembly of the pump section 40 can be facilitated.
  • the suction port 44 is connected to the first oil passage 13a. As shown in FIG. 6, the suction port 44 opens on the other axial side of the pump chamber 46. The suction port 44 is connected to a gap between the external gear 42 and the internal gear 43. The suction port 44 is used to supply the oil O stored in the housing 17 from the opening 13h through the first oil passage 13a to the inside of the pump chamber 46, more specifically, the gap between the external gear 42 and the internal gear 43. Can be inhaled. As shown in FIG. 3, the suction port 44 is disposed above the lower end of the storage section 48 and above the lower end of the external gear 42.
  • the discharge port 45 is connected to the second oil passage 20b via the connection oil passage 13n. As shown in FIG. 6, the discharge port 45 opens on one axial side of the pump chamber 46. The discharge port 45 is connected to a gap between the external gear 42 and the internal gear 43. The discharge port 45 can discharge the oil O from the inside of the pump chamber 46, more specifically, from the gap between the external gear 42 and the internal gear 43.
  • the storage part 48 is connected to the pump chamber 46 on one axial side of a vertically lower region of the pump chamber 46. As shown in FIG. 3, the shape of the storage portion 48 is a bow shape that is convex downward when viewed in the axial direction. Part of the oil O sucked into the pump chamber 46 from the suction port 44 flows into the storage section 48.
  • the suction port 44 is disposed above the lower end of the storage section 48, at least a portion of the oil O flowing into the storage section 48 is discharged from the suction port 44 even when the pump section 40 is stopped. It is stored in the storage part 48 without returning to the storage part 17. Thus, when the pump unit 40 is stopped, the lower part of the external gear 42 and the lower part of the internal gear 43 in the pump chamber 46 are in contact with the oil O in the storage part 48.
  • the second through holes 26a and 26b open toward the gap between the first end plate 24 and the rotor core 22 and the gap between the second end plate 25 and the rotor core 22, respectively.
  • the oil O flowing out of the holes 26a and 26b is jetted radially outward from jet slots (not shown) provided in each end plate.
  • the oil O spouted radially outward from the spout groove is sprayed onto the coil 32. Thereby, the coil 32 can be cooled by the oil O.
  • the second oil passage 20b is provided inside the motor shaft 20a, the rotor 20 can be cooled by the oil O before being ejected from the ejection groove. As described above, the oil O discharged from the discharge port 45 in the present embodiment is guided to the rotor 20 and the stator 30.
  • the oil O flowing out of the second through holes 26c and 26d is supplied to the bearings 70 and 71, respectively.
  • the oil O can be used as a lubricant for the bearings 70 and 71.
  • the pump section 40 can be driven by the rotation of the motor shaft 20a, and the pump section 40 sucks up the oil O stored in the housing 10 and supplies it to the rotor 20, the stator 30, and the bearings 70 and 71. be able to. That is, the pump unit 40 sends the oil O stored in the storage unit 17 to at least one of the stator 30 and the rotor 20.
  • the rotor 20 and the stator 30 can be cooled using the oil O stored in the housing 10, and the lubricity between the bearings 70, 71 and the motor shaft main body 21 can be improved.
  • connection oil passage 13n and the second oil passage 20b can provide the oil O discharged from the discharge port 45 to the inside of the motor shaft 20a. Further, since the second through holes 26a to 26d are provided, the oil O flowing into the second oil passage 20b can be supplied to the stator 30 and the bearings 70 and 71.
  • the second oil passage 20b provided in the motor shaft 20a opens to the connection oil passage 13n connected to the discharge port 45 at one axial end of the motor shaft 20a. Since the external gear 42 is fixed to one axial end of the motor shaft 20a, one axial end of the motor shaft 20a is disposed relatively close to the discharge port 45. Therefore, the length of the connection oil passage 13n connecting the discharge port 45 and the second oil passage 20b can be shortened. Therefore, according to the present embodiment, it is easy to shorten the entire length of the oil passage from the opening 13h to the second oil passage 20b. Thereby, the oil O is easily sent to the second oil passage 20b provided inside the motor shaft 20a. Further, the structure of the motor 1 can be easily simplified, and the manufacture of the motor 1 can be facilitated.
  • the oil O supplied to the stator 30 and the bearings 70 and 71 falls in the housing 17 and is again stored in the lower region of the housing 17. Thereby, the oil O in the storage section 17 can be circulated by the pump section 40.
  • the motor 1 is further provided with a cooling channel 90 through which the refrigerant flows.
  • the cooling channel 90 is provided in the cylindrical portion 10a. That is, the cylindrical portion 10a that supports the stator 30 from the outside in the radial direction has the cooling passage 90 through which the refrigerant flows.
  • the oil O is stored in the housing portion 17 in which the stator 30 is housed. Therefore, the oil O stored in the storage portion 17 can be cooled by flowing the refrigerant through the cooling channel 90 provided in the cylindrical portion 10a. Thereby, the oil O can be cooled without being led out of the housing 10. Therefore, it is not necessary to provide an oil passage or the like for leading the oil O to the outside of the housing 10, so that the structure of the motor 1 can be prevented from becoming complicated. Further, since it is not necessary to lead the oil O to the outside of the housing 10, the housing 10 is easily sealed.
  • the motor 1 that can suitably cool the oil O stored in the housing 10 with a simple structure is obtained.
  • the stator 30 and the rotor 20 and the like By supplying oil O to the stator 30 and the rotor 20 and the like by the pump section 40 as described above, the stator 30 and the rotor 20 and the like can be suitably cooled by the suitably cooled oil O.
  • the refrigerant flowing through the cooling channel 90 is not particularly limited as long as it is a fluid that can cool the oil O.
  • the refrigerant may be water, a liquid other than water, or a gas.
  • the cooling channel 90 is provided in the cylindrical portion 10a that supports the stator 30 from the radial outside. Therefore, the stator 30 can be directly cooled by the refrigerant flowing through the cooling channel 90. Further, since the oil O is stored in the housing 10, the rotor 20 is easily cooled by circulating the oil O in the housing 10. Further, as shown in FIG. 2, a part of the stator 30 can be immersed in the stored oil O, so that the stator 30 can be cooled more easily. In particular, since a part of the coil 32 serving as a heating element can be cooled by being immersed in the stored oil O, the stator 30 can be suitably cooled.
  • the axial direction Y is orthogonal to the vertical direction Z. Therefore, for example, as compared with the case where the axial direction Y is parallel to the vertical direction Z, the portion of the stator 30 immersed in the stored oil O is easily enlarged, and the stator 30 is easily cooled. Further, it is easy to arrange the liquid level OS of the oil O below the rotor 20 at least when the rotor 20 is rotating, so that when the rotor 20 rotates, the oil O prevents the rotation resistance of the rotor 20 from becoming a resistance. it can.
  • the housing 10 has the fin portion 63 protruding into the housing portion 17. Therefore, the fin portion 63 can be brought into contact with the oil O stored in the housing portion 17. Thereby, the contact area between the housing 10 and the oil O can be increased. Therefore, the heat of the oil O is easily transferred to the housing 10 via the fin portion 63, and the oil O is easily cooled.
  • the cooling channel 90 is provided in the cylindrical portion 10 a of the housing 10, heat transferred from the oil O to the housing 10 via the fin portion 63 can be easily transferred to the refrigerant flowing through the cooling channel 90. . Therefore, the oil O can be cooled more efficiently.
  • the fin portion 63 is provided on the first tubular portion 61 constituting the tubular portion 10a. Therefore, the heat transferred to the housing 10 via the fin portion 63 can be easily transferred to the refrigerant flowing through the cooling channel 90 provided in the cylindrical portion 10a. Thereby, the oil O can be cooled more efficiently through the fin portion 63.
  • the plurality of fin portions 63 are provided in a lower portion of the cylindrical portion 10a. Therefore, the fin portion 63 is easily arranged below the liquid surface OS of the oil O, and the fin portion 63 is easily brought into contact with the oil O. Thereby, the oil O can be more appropriately cooled through the fin portion 63.
  • the fin portion 63 protrudes toward one side in the axial direction toward the lid portion 13 and faces the lid portion 13 in the axial direction. For this reason, the oil O in the housing portion 17 heading toward the first oil passage 13 a provided in the lid portion 13 is easily brought into contact with the fin portion 63. Thereby, the oil O heading to the first oil passage 13a can be suitably cooled. Therefore, the temperature of the oil O ejected into the housing 10 through the first oil passage 13a can be appropriately lowered, and the entire motor 1 can be efficiently cooled.
  • the fin portion 63 faces the opening 13h of the first oil passage 13a. Therefore, the oil O heading toward the first oil passage 13a can be more appropriately brought into contact with the fin portion 63. Thus, the oil O flowing into the first oil passage 13a from the opening 13h can be cooled more efficiently. Therefore, the temperature of the oil O ejected into the housing 10 through the first oil passage 13a can be appropriately lowered, and the entire motor 1 can be cooled more efficiently.
  • the fin portion 63 protrudes from the cylindrical portion 10a to one side in the axial direction beyond the coil end 32a of the stator 30. Therefore, the length of the fin portion 63 in the axial direction Y is easily increased, and the contact area between the fin portion 63 and the oil O is easily increased. Thereby, the heat of the oil O can be efficiently transferred to the housing 10.
  • the distance in the axial direction Y between the one end in the axial direction of the fin portion 63 and the lid 13 is equal to the distance in the axial direction Y between the coil end 32 a and the lid 13. Shorter than the distance.
  • the cooling channel 90 is disposed between the first cylindrical portion 61 and the second cylindrical portion 11b in the radial direction. Therefore, by combining the two cylindrical members, the cooling channel 90 can be easily configured.
  • the cooling flow channel 90 is configured such that the radially outer opening of the groove 61a provided on the outer peripheral surface of the first cylindrical portion 61 is closed by the flow channel forming portion 11d of the second cylindrical portion 11b. You.
  • the cooling channel 90 extends in the circumferential direction R. Therefore, it is easy to surround the periphery of the stator 30 by the cooling channel 90, and the stator 30 can be more appropriately cooled by the refrigerant flowing through the cooling channel 90.
  • the cooling channel 90 extends in a wavy shape in the circumferential direction R. Thereby, the refrigerant flowing through the cooling flow path 90 can be caused to flow in the circumferential direction R while moving in the axial direction Y, and the stator 30 and the oil O can be more appropriately cooled.
  • At least a part of the cooling channel 90 is located above the liquid level OS of the oil O contained in the containing part 17. Therefore, the portion of the stator 30 that is not immersed in the oil O in the housing portion 17 can be cooled by the refrigerant flowing through the cooling channel 90.
  • the cooling passage 90 includes a plurality of first passages 91a, 91b, 91c, 91d, 91e, and 91f extending in the axial direction Y, and a plurality of second passages 92a, 92b, extending in the circumferential direction R of the stator 30. 92c, 92d, and 92e.
  • the plurality of first flow path portions 91a to 91f are arranged side by side along the circumferential direction R.
  • the plurality of first flow passage portions 91a, 91b, 91c, 91d, 91e, 91f are arranged in this order from one circumferential side starting from the first flow passage portion 91a to the other circumferential side.
  • One end in the axial direction of the first flow path portion 91a is disposed on one axial side with respect to one end in the axial direction of the first flow path portions 91b to 91f.
  • the other axial ends of the first flow passage portions 91a to 91f are arranged at the same position in the axial direction Y.
  • the second flow path portion 92a connects an end on the other axial side of the first flow path portion 91a to an end on the other axial side of the first flow path portion 91b.
  • the second flow path portion 92b connects one end in the axial direction of the first flow path portion 91b to one end in the axial direction of the first flow path portion 91c.
  • the second flow path portion 92c connects the other end in the axial direction of the first flow path portion 91c to the other end in the axial direction of the first flow path portion 91d.
  • the second flow path portion 92d connects an axial end of the first flow path portion 91d to an axial end of the first flow path portion 91e.
  • the second flow passage portion 92e connects the other axial end of the first flow passage portion 91e to the other axial end of the first flow passage portion 91f.
  • the cooling flow path 90 can be formed in a wave shape while the refrigerant flows in the axial direction Y inside the first flow path portions 91a to 91f.
  • the plurality of second flow paths 92a to 92e extend in the circumferential direction R along the radially outer side of the stator 30. Thereby, the stator 30 and the oil O can be more appropriately cooled by the refrigerant flowing through the cooling passage 90.
  • the directions of the refrigerant flowing inside are opposite to each other.
  • the cooling flow path 90 overlaps the stator 30 and the rotor 20 when viewed along the vertical direction Z.
  • One end in the axial direction of the cooling flow path 90 and the other end in the axial direction of the cooling flow path 90 overlap the stator core 31 when viewed along the vertical direction Z.
  • the cooling flow channel 90 extends along the circumferential direction R outside the stator core 31 of the stator 30 in the radial direction. Further, substantially the entire outer circumference in the radial direction of the stator core 31 contacts the water jacket 60. Thereby, the stator core 31 can be more efficiently cooled by the refrigerant flowing through the cooling passage 90. Further, for example, as compared with the case where the cooling flow path is formed inside the stator core, the manufacturing of the cooling flow path 90 is easier.
  • the cooling channel 90 has an inflow channel 93a and an outflow channel 93b.
  • the inflow channel 93a extends in the width direction X from the surface on the other side in the width direction of the second cylindrical portion 11b to an end on one side in the axial direction of the first channel portion 91a.
  • the opening on the other side in the width direction of the inflow channel 93a is an inflow port 93c into which the refrigerant flows. That is, the cooling channel 90 has the inflow port 93c.
  • the inflow port 93c opens on the other surface in the width direction of the second cylindrical portion 11b.
  • the inflow nozzle portion 15 is provided at the inflow port 93c so as to project from the second cylindrical portion 11b to the other side in the width direction.
  • the outflow channel 93b extends in the width direction X from the other surface in the width direction of the second cylindrical portion 11b to one axial end of the first channel portion 91f.
  • the opening on the other side in the width direction of the outflow channel 93b is an outflow port 93d through which the refrigerant flows out. That is, the cooling channel 90 has an outlet 93d.
  • the outlet 93d opens on the other surface in the width direction of the second cylindrical portion 11b.
  • the outlet 93d is provided with an outflow nozzle portion 16 protruding from the second cylindrical portion 11b to the other side in the width direction.
  • the inflow port 93c and the outflow port 93d open in the width direction X. Therefore, the inflow port 93c and the outflow port 93d are more easily provided than when the inflow port and the outflow port open in the axial direction Y or the vertical direction Z.
  • the inflow port 93c and the outflow port 93d are provided on the same side of the housing 10 in the width direction X, so that the refrigerant can easily flow into and out of the cooling flow path 90.
  • the inflow port 93c and the outflow port 93d are arranged side by side in the vertical direction Z.
  • the inflow port 93c is located above the outflow port 93d.
  • the vertical position of the inflow port 93c and the vertical position of the outflow port 93d may be the same.
  • the refrigerant that has flowed into the inflow channel 93a from the inflow nozzle portion 15 via the inflow port 93c passes through the first flow channel portion 91a and the first flow channel portion and the second flow channel portion, respectively.
  • the part 91f flows into the outflow channel 93b.
  • the refrigerant flowing into the outflow channel 93b flows out of the cooling channel 90 from the outflow nozzle portion 16 through the outflow port 93d. In this way, the refrigerant circulates through the cooling channel 90.
  • the above-described motor 1 of the present embodiment is mounted on, for example, a driving device 2 shown in FIG.
  • the drive device 2 is mounted on a vehicle and rotates wheels of the vehicle.
  • the drive device 2 includes a motor 1, a speed reduction device 3, a differential device 4, and a gear housing 6.
  • the gear housing 6 houses the reduction gear 3 and the differential 4 therein.
  • the gear housing 6 is fixed to the housing 10 of the motor 1. Oil O is stored inside the gear housing 6.
  • the reduction gear 3 is connected to the motor 1.
  • the reduction gear transmission 3 is connected to the output shaft 21b of the motor shaft 20a.
  • the reduction gear 3 reduces the rotation speed of the motor 1 and increases the torque output from the motor 1 according to the reduction ratio.
  • the reduction gear transmission 3 transmits the torque output from the motor 1 to the differential gear 4.
  • the reduction gear transmission 3 has a first gear 3a, a second gear 3b, a third gear 3c, and an intermediate shaft 3d.
  • the first gear 3a is fixed to the outer peripheral surface of the output shaft 21b.
  • the intermediate shaft 3d is arranged at a position radially outwardly away from the central axis J1 and extends in the axial direction Y.
  • the second gear 3b and the third gear 3c are fixed to the outer peripheral surface of the intermediate shaft 3d.
  • the second gear 3b and the third gear 3c are connected via an intermediate shaft 3d.
  • the second gear 3b and the third gear 3c rotate around the central axis of the intermediate shaft 3d.
  • the second gear 3b meshes with the first gear 3a.
  • the third gear 3c meshes with a ring gear 4a described later of the differential device 4.
  • the torque output from the motor 1 is transmitted to the differential 4 via the reduction gear 3. More specifically, the torque output from the motor 1 is transmitted through the motor shaft 20a, the first gear 3a, the second gear 3b, the intermediate shaft 3d, and the third gear 3c in this order. 4a.
  • the gear ratio of each gear and the number of gears can be variously changed according to the required reduction ratio.
  • the reduction gear 3 is a parallel shaft gear type reduction gear in which the axes of the respective gears are arranged in parallel.
  • the differential 4 is connected to the speed reducer 3.
  • the differential 4 is connected to the motor 1 via the speed reducer 3.
  • the differential device 4 is a device that transmits torque output from the motor 1 to wheels of a vehicle.
  • the differential device 4 transmits the same torque to the axles 5 of the left and right wheels while absorbing the speed difference between the left and right wheels when the vehicle turns. Thereby, the differential 4 rotates the axle 5.
  • the differential 4 has a ring gear 4a, a gear housing (not shown), a pair of pinion gears (not shown), a pinion shaft (not shown), and a pair of side gears (not shown).
  • the ring gear 4a meshes with the third gear 3c.
  • the lower end of the ring gear 4 a is immersed in the oil O stored in the gear housing 6. Accordingly, the oil O is scraped up by the rotation of the ring gear 4a.
  • the scraped-up oil O is supplied to, for example, the reduction gear 3 and the differential 4 as lubricating oil.
  • the present invention is not limited to the above embodiment, and other configurations can be adopted.
  • the number of fin portions is not particularly limited as long as it is one or more.
  • the fin portion may be provided on the housing.
  • the fin portion may be provided on the second tubular portion, or may be provided on both the first tubular portion and the second tubular portion.
  • the fin portion may be provided on an upper portion of the tubular portion.
  • the fin portion may be provided in a portion other than the cylindrical portion. In this case, for example, the fin portion may be provided on the lid portion 13 of the above-described embodiment, or may be provided on the bottom portion 11a.
  • the shape of the fin is not particularly limited.
  • the fin portion may be cylindrical or polygonal.
  • the plurality of fin portions may have different shapes from each other.
  • the plurality of fin portions may include fin portions that project in different directions.
  • the shape of the cooling channel 90 is not particularly limited.
  • the cooling channel 90 may not be wavy, for example, may be a wide channel linearly extending in the width direction X, or a wide channel linearly extending in the axial direction Y. Is also good. Further, a plurality of cooling channels 90 may be provided.
  • the flow path cross sections of the first flow path portions 91a to 91f may have the same dimensions and the same shape.
  • the passage cross-sectional area of the cooling passage 90 may be uniform throughout or may be partially different.
  • the inflow port 93c and the outflow port 93d may be opened on opposite sides in the width direction X.
  • a configuration can be adopted in which each of the inflow port 93c and the outflow port 93d is provided on one of the main body of the housing and the water jacket, and is provided separately from the other of the main body and the water jacket. That is, for example, the inflow port 93c and the outflow port 93d may be provided on the main body of the housing so as to be separated from the water jacket. In this case, the inflow port 93c and the outflow port 93d may be provided in a portion other than the second cylindrical portion in the main body.
  • the cooling channel 90 is configured by providing the groove 61 a on the outer peripheral surface of the water jacket 60, but is not limited thereto.
  • a cooling channel may be formed by providing a groove on the inner peripheral surface of the second cylindrical portion 11b and closing the groove with the outer peripheral surface of the water jacket 60.
  • a groove may not be provided on the outer peripheral surface of the water jacket 60, or a groove facing the groove provided on the inner peripheral surface of the second cylindrical portion 11b may be provided. It is only necessary that the member constituting the cooling channel is in contact with the stator core.
  • One direction in which the central axis extends is not particularly limited, and may intersect the vertical direction Z without being orthogonal, or may be parallel to the vertical direction Z.
  • the rotor core 22 may be fixed to the outer peripheral surface of the motor shaft main body 21 by press fitting or the like. In this case, the first end plate 24 and the second end plate 25 need not be provided.
  • the oil O flowing out of the second through holes 26a, 26b may be directly supplied to the coil 32, or a hole connected to the second through holes 26a, 26b is provided in the rotor core 22, and the rotor core 22
  • the oil O may be supplied to the coil 32 through the hole. Further, the oil O spouted from the motor shaft 20a may be supplied to the stator core 31.
  • the location where the oil O discharged from the discharge port 45 is supplied is not particularly limited.
  • the oil O may be supplied to only one or two of the rotor 20, the stator 30, and the bearings 70 and 71. However, it may not be supplied to any of them.
  • the oil O discharged from the discharge port 45 may be supplied to, for example, the inner surface of the vertically upper region of the housing 17.
  • the stator 30 can be indirectly cooled by cooling the housing 10.
  • any one or more of the second through holes 26a to 26d may not be provided.
  • the tooth shape of the tooth portion 42a of the external gear 42 and the tooth shape of the tooth portion 43a of the internal gear 43 may be a cycloid tooth shape or an involute tooth shape.
  • the pump section 40 may be configured to send the oil O to one of the stator 30 and the rotor 20. Further, the pump section 40 may not be provided.
  • the application of the motor according to the above-described embodiment is not particularly limited.
  • the motor of the above-described embodiment is mounted on, for example, a vehicle. Further, it may be used not as a motor but as a generator.
  • the above-described configurations can be appropriately combined as long as they do not conflict with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

A motor according to an embodiment of the present invention is provided with: a rotor having a motor shaft disposed along a center axis extending in one direction; a stator facing the rotor in the radial direction, with a gap therebetween; and a housing having an accommodation part that can accommodate the rotor and the stator while storing oil. The housing has a cylindrical section that supports the stator from the outside in the radial direction. The cylindrical section has a cooling flow passage through which a coolant flows. The housing has a fin part protruding inside the accommodation part.

Description

モータmotor
 本発明は、モータに関する。本願は、2018年08月07日に出願された日本国特許出願第2018-148692号および2018年08月07日に出願された日本国特許出願第2018-148693号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a motor. This application claims priority based on Japanese Patent Application No. 2018-148692 filed on Aug. 07, 2018 and Japanese Patent Application No. 2018-148693 filed on Aug. 07, 2018, The contents are incorporated herein.
 ステータおよびロータ等の潤滑および冷却のための潤滑用流体を貯留するケースを備える回転電機が知られる。例えば、特許文献1では、車両に搭載される回転電機が記載される。 There is known a rotary electric machine including a case for storing a lubricating fluid for lubrication and cooling of a stator and a rotor. For example, Patent Literature 1 describes a rotating electric machine mounted on a vehicle.
特開2013-055728号公報JP 2013-055728 A
 上記のような潤滑用流体は、例えば、ケースの外部に導出されて冷却される。しかし、この場合、ケースから外部に潤滑用流体を導出するための流路を設ける必要があり、回転電機の構造が複雑化する問題があった。また、ケースの気密性を確保するために、潤滑用流体を外部に導出する流路とケースとの接続部分を精度よく密封する必要があり、回転電機を製造する工数およびコストが増大する場合があった。 潤滑 The lubricating fluid as described above is led out of the case and cooled, for example. However, in this case, it is necessary to provide a flow path for leading the lubricating fluid from the case to the outside, and there is a problem that the structure of the rotating electric machine is complicated. In addition, in order to ensure the airtightness of the case, it is necessary to accurately seal the connection between the case and the flow path for leading the lubricating fluid to the outside, which may increase the man-hour and cost of manufacturing the rotating electric machine. there were.
 本発明は、上記事情に鑑みて、簡単な構造で、ステータ、および、ハウジングに貯留されるオイルを好適に冷却できるモータを提供することを目的の一つとする。 In view of the above circumstances, it is an object of the present invention to provide a motor that can appropriately cool a stator and oil stored in a housing with a simple structure.
 本発明のモータの一つの態様は、一方向に延びる中心軸に沿って配置されるモータシャフトを有するロータと、前記ロータと径方向に隙間を介して対向するステータと、ロータおよびステータを収容するとともにオイルを貯留可能な収容部を有するハウジングと、を備える。ハウジングは、ステータを径方向外側から支持する筒部を有する。筒部は、冷媒が流れる冷却流路を有する。ハウジングは、収容部内に突出するフィン部を有する。 One aspect of a motor according to the present invention includes a rotor having a motor shaft arranged along a central axis extending in one direction, a stator facing the rotor with a gap in a radial direction, and a rotor and a stator are housed. And a housing having an accommodating portion capable of storing oil. The housing has a cylindrical portion that supports the stator from the radial outside. The cylinder has a cooling channel through which the refrigerant flows. The housing has a fin that projects into the housing.
 本発明の一つの態様によれば、モータにおいて、簡単な構造で、ステータ、および、ハウジングに貯留されるオイルを好適に冷却できる。 According to one aspect of the present invention, in a motor, oil stored in a stator and a housing can be suitably cooled with a simple structure.
図1は、本実施形態のモータを示す斜視図である。FIG. 1 is a perspective view showing the motor of the present embodiment. 図2は、本実施形態のモータを示す図であって、図1におけるII-II断面図である。FIG. 2 is a diagram showing the motor of the present embodiment, and is a cross-sectional view taken along the line II-II in FIG. 図3は、本実施形態のポンプ部を軸方向他方側から視た図である。FIG. 3 is a view of the pump section of the present embodiment viewed from the other side in the axial direction. 図4は、本実施形態のウォータジャケットを軸方向一方側から視た図である。FIG. 4 is a view of the water jacket of the present embodiment viewed from one side in the axial direction. 図5は、本実施形態のウォータジャケットの一部を示す斜視図である。FIG. 5 is a perspective view showing a part of the water jacket of the present embodiment. 図6は、本実施形態のモータの一部を示す図であって、図2における部分拡大図である。FIG. 6 is a diagram showing a part of the motor of the present embodiment, and is a partially enlarged view of FIG. 図7は、本実施形態の冷却流路を示す斜視図である。FIG. 7 is a perspective view illustrating a cooling channel according to the present embodiment. 図8は、本実施形態のモータが搭載された駆動装置を模式的に示す概略構成図である。FIG. 8 is a schematic configuration diagram schematically showing a driving device on which the motor of the present embodiment is mounted.
 各図に示すZ軸方向は、正の側を上側とし、負の側を下側とする鉛直方向Zである。本実施形態では、鉛直方向Zは、各図の上下方向である。以下の説明においては、鉛直方向上側を単に「上側」と呼び、鉛直方向下側を単に「下側」と呼ぶ。 Z The Z-axis direction shown in each figure is a vertical direction Z in which the positive side is the upper side and the negative side is the lower side. In the present embodiment, the vertical direction Z is a vertical direction in each drawing. In the following description, the upper side in the vertical direction is simply called “upper side”, and the lower side in the vertical direction is simply called “lower side”.
 図1および図2に示すように、本実施形態のモータ1は、ハウジング10と、一方向に延びる中心軸J1に沿って配置されるモータシャフト20aを有するロータ20と、回転検出部80と、ステータ30と、ポンプ部40と、ベアリング70,71と、を備える。 As shown in FIGS. 1 and 2, the motor 1 of the present embodiment includes a housing 10, a rotor 20 having a motor shaft 20 a disposed along a central axis J1 extending in one direction, a rotation detection unit 80, It includes a stator 30, a pump section 40, and bearings 70 and 71.
 図2に示すように、中心軸J1は、図2の左右方向に延びる。すなわち、本実施形態においては、図2の左右方向が一方向に相当する。各図に示すY軸方向は、中心軸J1と平行な方向である。以下の説明においては、中心軸J1の軸方向と平行な方向を単に「軸方向Y」と呼び、中心軸J1を中心とする径方向を単に「径方向」と呼び、中心軸J1を中心とする周方向を単に「周方向R」と呼ぶ。軸方向Yは、鉛直方向Zと直交する方向である。また、軸方向Yのうち図2の左側、すなわちY軸方向の正の側を、「軸方向一方側」と呼び、軸方向Yのうち図2の右側、すなわちY軸方向の負の側を、「軸方向他方側」と呼ぶ。また、各図に示すX軸方向は、軸方向Yおよび鉛直方向Zの両方と直交する方向である。以下の説明においては、X軸方向と平行な方向を「幅方向X」と呼ぶ。 中心 As shown in FIG. 2, the center axis J1 extends in the left-right direction of FIG. That is, in the present embodiment, the left-right direction in FIG. 2 corresponds to one direction. The Y-axis direction shown in each drawing is a direction parallel to the central axis J1. In the following description, a direction parallel to the axial direction of the central axis J1 is simply referred to as “axial direction Y”, a radial direction about the central axis J1 is simply referred to as “radial direction”, and the central axis J1 is defined as a center. The circumferential direction is simply referred to as “circumferential direction R”. The axial direction Y is a direction orthogonal to the vertical direction Z. In addition, the left side of FIG. 2 in the axial direction Y, that is, the positive side in the Y-axis direction is called “one side in the axial direction”, and the right side of the axial direction Y in FIG. , "The other side in the axial direction". The X-axis direction shown in each drawing is a direction orthogonal to both the axial direction Y and the vertical direction Z. In the following description, a direction parallel to the X-axis direction is referred to as “width direction X”.
 ハウジング10は、本体部11と、蓋部13と、ウォータジャケット60と、板部材12と、を有する。本実施形態において本体部11と蓋部13とウォータジャケット60と板部材12とは、互いに別部材である。本体部11は、軸方向一方側に開口する有底の筒状である。本体部11は、底部11aと、第2筒部11bと、ベアリング保持部11cと、配線収容部11eと、を有する。底部11aは、径方向に拡がる円環板状である。 The housing 10 includes a main body 11, a lid 13, a water jacket 60, and a plate member 12. In the present embodiment, the main body 11, the lid 13, the water jacket 60, and the plate member 12 are separate members. The main body 11 has a bottomed cylindrical shape that opens on one side in the axial direction. The main body 11 has a bottom part 11a, a second cylindrical part 11b, a bearing holding part 11c, and a wiring housing part 11e. The bottom portion 11a is in the shape of an annular plate that expands in the radial direction.
 第2筒部11bは、底部11aの径方向外縁部から軸方向一方側に延びる筒状である。本実施形態において第2筒部11bは、中心軸J1を中心とする円筒状である。第2筒部11bは、流路構成部11dを有する。流路構成部11dは、第2筒部11bの径方向内側面のうち後述する冷却流路90の内部に面する部分である。ベアリング保持部11cは、底部11aの径方向内縁部から軸方向一方側に突出する円筒状である。ベアリング保持部11cは、内周面にベアリング71を保持する。 The second cylindrical portion 11b has a cylindrical shape extending from the radially outer edge of the bottom portion 11a to one side in the axial direction. In the present embodiment, the second cylindrical portion 11b has a cylindrical shape centered on the central axis J1. The second cylindrical portion 11b has a flow path component 11d. The channel forming portion 11d is a portion of the radially inner side surface of the second cylindrical portion 11b facing the inside of a cooling channel 90 described later. The bearing holding portion 11c has a cylindrical shape protruding from the radial inner edge of the bottom portion 11a to one side in the axial direction. The bearing holding part 11c holds the bearing 71 on the inner peripheral surface.
 配線収容部11eは、第2筒部11bの上側部分に設けられる。配線収容部11eは、第2筒部11bの径方向外側面から上側に突出する。本実施形態において配線収容部11eは、軸方向一方側に開口する箱状である。配線収容部11eは、軸方向視において台形状である。本実施形態において本体部11の軸方向一方側の開口は、第2筒部11bの軸方向一方側の開口と、配線収容部11eの軸方向一方側の開口とによって構成される。配線収容部11eは、コネクタ壁部11fと、天壁部11gと、を有する。 The wiring housing 11e is provided on the upper part of the second cylindrical part 11b. The wiring housing portion 11e protrudes upward from a radially outer surface of the second cylindrical portion 11b. In this embodiment, the wiring accommodating portion 11e has a box shape that opens on one side in the axial direction. The wiring housing 11e has a trapezoidal shape when viewed in the axial direction. In the present embodiment, the opening on one side in the axial direction of the main body 11 is constituted by an opening on one side in the axial direction of the second cylindrical portion 11b and an opening on one side in the axial direction of the wiring housing portion 11e. The wiring housing 11e has a connector wall 11f and a top wall 11g.
 コネクタ壁部11fは、箱状の配線収容部11eを構成する壁部のうち軸方向他方側に位置する壁部である。コネクタ壁部11fには、複数のコネクタ100が設けられる。図1に示すように、複数のコネクタ100は、コネクタ壁部11fから軸方向他方側に突出する。複数のコネクタ100は、幅方向Xに沿って並んで配置される。コネクタ100は、例えば、3つ設けられる。天壁部11gは、箱状の配線収容部11eを構成する壁部のうち上側に位置する壁部である。図2に示すように、天壁部11gには、天壁部11gを鉛直方向Zに貫通する貫通孔11hが設けられる。貫通孔11hは、板部材12が天壁部11gにネジ等で固定されることで閉塞される。 The connector wall portion 11f is a wall portion located on the other side in the axial direction among the wall portions constituting the box-shaped wiring housing portion 11e. A plurality of connectors 100 are provided on the connector wall 11f. As shown in FIG. 1, the plurality of connectors 100 protrude from the connector wall 11f to the other axial side. The plurality of connectors 100 are arranged side by side along the width direction X. For example, three connectors 100 are provided. The top wall portion 11g is a wall portion located on the upper side among the wall portions constituting the box-shaped wiring accommodating portion 11e. As shown in FIG. 2, the through-hole 11h which penetrates the top wall 11g in the vertical direction Z is provided in the top wall 11g. The through hole 11h is closed by fixing the plate member 12 to the top wall portion 11g with a screw or the like.
 図2に示すように、蓋部13は、本体部11の軸方向一方側に取り付けられる。蓋部13は、本体部11の軸方向一方側の開口を塞ぐ。本体部11と蓋部13とが互いに固定されることで、本体部11と蓋部13とによって囲まれた収容部17が構成される。すなわち、ハウジング10は、収容部17を有する。収容部17は、ロータ20およびステータ30を収容するとともにオイルOを貯留可能である。オイルOは、収容部17の内部における鉛直方向下側領域に貯留される。本明細書において「収容部の内部における鉛直方向下側領域」とは、収容部17の内部における鉛直方向Zの中心よりも下側に位置する部分を含む。 蓋 As shown in FIG. 2, the lid 13 is attached to one axial side of the main body 11. The lid 13 closes an opening on one axial side of the main body 11. When the main body 11 and the lid 13 are fixed to each other, a housing 17 surrounded by the main body 11 and the lid 13 is configured. That is, the housing 10 has the housing 17. The housing 17 houses the rotor 20 and the stator 30 and can store the oil O. The oil O is stored in a vertically lower region inside the housing portion 17. In this specification, the “vertical lower side region inside the housing portion” includes a portion located inside the housing portion 17 below the center in the vertical direction Z.
 収容部17に貯留されるオイルOの液面OSは、ポンプ部40によってオイルOが吸い上げられることで変動するが、少なくともロータ20の回転時において、ロータ20よりも下側に配置される。これにより、ロータ20が回転する際に、オイルOがロータ20の回転抵抗となることを抑制できる。 (4) The liquid level OS of the oil O stored in the storage portion 17 fluctuates when the oil O is sucked up by the pump portion 40, but is arranged at least below the rotor 20 when the rotor 20 rotates. Thereby, when the rotor 20 rotates, it is possible to suppress the oil O from becoming a rotational resistance of the rotor 20.
 オイルOとしては、潤滑油および冷却油の機能を奏するために、比較的粘度の低いオートマチックトランスミッション用潤滑油(ATF:Automatic Transmission Fluid)と同等のオイルを用いることが好ましい。 As the oil O, it is preferable to use an oil equivalent to an automatic transmission fluid (ATF: Automatic Transmission Fluid) having a relatively low viscosity in order to exhibit functions of a lubricating oil and a cooling oil.
 蓋部13は、側壁部13dと、外筒部13eと、ベアリング保持部13gと、栓体部14と、を有する。側壁部13dは、ステータ30の軸方向一方側に位置し、径方向に拡がる。側壁部13dは、ステータ30の軸方向一方側を覆う。すなわち、蓋部13は、ステータ30の軸方向一方側を覆う。側壁部13dには、側壁部13dの軸方向一方側の面から軸方向他方側に窪む凹部13iが設けられる。凹部13iの底部には、凹部13iの底部を軸方向Yに貫通する第1貫通孔13jが設けられる。第1貫通孔13jは、後述するポンプ室46の内部とハウジング10の内部とを繋ぐ。外筒部13eは、側壁部13dの径方向外縁部から軸方向他方側に延びる筒状である。 The lid portion 13 has a side wall portion 13d, an outer cylindrical portion 13e, a bearing holding portion 13g, and a plug body portion 14. The side wall portion 13d is located on one side in the axial direction of the stator 30, and expands in the radial direction. The side wall portion 13d covers one axial side of the stator 30. That is, the lid 13 covers one side of the stator 30 in the axial direction. The side wall portion 13d is provided with a concave portion 13i that is recessed from one axial side surface of the side wall portion 13d toward the other axial side. A first through hole 13j penetrating the bottom of the recess 13i in the axial direction Y is provided at the bottom of the recess 13i. The first through-hole 13j connects the inside of a pump chamber 46 to be described later and the inside of the housing 10. The outer cylindrical portion 13e has a cylindrical shape extending from the radial outer edge of the side wall portion 13d to the other axial side.
 蓋部13には、ポンプ室46が設けられる。ポンプ室46は、側壁部13dに設けられた凹部13iが軸方向一方側から栓体部14によって塞がれることで構成される。栓体部14は、側壁部13dの軸方向一方側の面に、例えばネジで固定される。側壁部13dと栓体部14との軸方向の間には、円環状のシール14aが配置される。図示は省略するが、シール14aは、軸方向視において、凹部13iを囲む。これにより、ポンプ室46内のオイルOがハウジング10の外部に漏れることを抑制できる。ポンプ室46には、中心軸J1が通る。図3に示すように、軸方向視において、ポンプ室46の外形は、円形状である。ポンプ室46は、後述する内歯歯車43および外歯歯車42を収容する。 ポ ン プ A pump chamber 46 is provided in the lid 13. The pump chamber 46 is configured such that the recess 13i provided in the side wall 13d is closed by the plug 14 from one side in the axial direction. The plug body 14 is fixed to a surface on one axial side of the side wall 13d with, for example, a screw. An annular seal 14a is arranged between the side wall 13d and the plug 14 in the axial direction. Although not shown, the seal 14a surrounds the recess 13i when viewed in the axial direction. Thereby, it is possible to suppress the oil O in the pump chamber 46 from leaking outside the housing 10. The center axis J1 passes through the pump chamber 46. As shown in FIG. 3, when viewed in the axial direction, the outer shape of the pump chamber 46 is circular. The pump chamber 46 houses an internal gear 43 and an external gear 42 described later.
 ポンプ室46には、収容部17内からポンプ室46内にオイルO吸入可能な吸入口44と、ポンプ室46内からオイルOを吐出可能な吐出口45と、が設けられる。吸入口44および吐出口45は、例えば、円形状である。吸入口44は、吐出口45よりも下側に配置される。吸入口44は、中心軸J1よりも下側に配置される。吐出口45は、中心軸J1よりも上側に配置される。 The pump chamber 46 is provided with a suction port 44 from which the oil O can be sucked into the pump chamber 46 from inside the housing section 17 and a discharge port 45 from which the oil O can be discharged from inside the pump chamber 46. The suction port 44 and the discharge port 45 are, for example, circular. The suction port 44 is arranged below the discharge port 45. The suction port 44 is arranged below the central axis J1. Discharge port 45 is arranged above central axis J1.
 図示は省略するが、栓体部14は、凹部13i内に挿入される部分を有する。図3に示すように、栓体部14のうち凹部13i内に挿入された部分には、吐出口45からのオイルOが流入する接続油路13nが設けられる。接続油路13nは、接続口13pを介して後述する第2油路20bに接続される。接続口13pは、例えば、円形状である。 省略 す る Although not shown, the plug portion 14 has a portion to be inserted into the recess 13i. As shown in FIG. 3, a connection oil passage 13 n into which oil O from the discharge port 45 flows is provided in a portion of the plug portion 14 inserted into the recess 13 i. The connection oil passage 13n is connected to a second oil passage 20b described later via the connection port 13p. The connection port 13p is, for example, circular.
 図2に示すように、蓋部13は、第1油路13aを有する。本実施形態において第1油路13aは、側壁部13dに設けられる。より詳細には、第1油路13aは、側壁部13
dのうち下側部分に設けられる。第1油路13aは、鉛直方向延伸部13kと、軸方向延伸部13mと、を有する。
As shown in FIG. 2, the lid 13 has a first oil passage 13a. In the present embodiment, the first oil passage 13a is provided on the side wall 13d. More specifically, the first oil passage 13a is
It is provided in the lower part of d. The first oil passage 13a has a vertically extending portion 13k and an axially extending portion 13m.
 鉛直方向延伸部13kは、側壁部13dの下側の端部から上側に延びる部分である。鉛直方向延伸部13kの上側の端部は、ポンプ室46の軸方向他方側において、ポンプ室46と繋がる。ポンプ室46における鉛直方向延伸部13kが繋がる部分は、吸入口44である。鉛直方向延伸部13kの下側の端部には、シールボルト13cが設けられる。シールボルト13cは、鉛直方向延伸部13kの下側の端部を閉塞し、シールする。これにより、収容部17内のオイルOがハウジング10の外部に漏れることを抑制できる。 The vertical extension 13k is a portion extending upward from the lower end of the side wall 13d. The upper end of the vertically extending portion 13k is connected to the pump chamber 46 on the other axial side of the pump chamber 46. The portion of the pump chamber 46 to which the vertically extending portion 13k is connected is the suction port 44. A seal bolt 13c is provided at a lower end of the vertically extending portion 13k. The seal bolt 13c closes and seals the lower end of the vertically extending portion 13k. Thereby, it is possible to suppress the oil O in the housing portion 17 from leaking outside the housing 10.
 軸方向延伸部13mは、側壁部13dの軸方向他方側の面から軸方向一方側に延びて、鉛直方向延伸部13kに繋がる。軸方向延伸部13mの軸方向他方側の端部は、収容部17内に開口する開口部13hである。すなわち、第1油路13aは、開口部13hを有する。これにより、第1油路13aは、収容部17に露出して開口し、収容部17内と吸入口44とを繋ぐ。 The axially extending portion 13m extends from the surface on the other side in the axial direction of the side wall portion 13d to one side in the axial direction, and is connected to the vertically extending portion 13k. The other end in the axial direction of the axially extending portion 13m is an opening 13h that opens into the housing portion 17. That is, the first oil passage 13a has the opening 13h. As a result, the first oil passage 13a is exposed and opened to the housing portion 17, and connects the inside of the housing portion 17 and the suction port 44.
 本実施形態において開口部13hは、収容部17内に貯留されるオイルOの液面OSよりも下側に位置する。これにより、開口部13hは、収容部17内に貯留されるオイルOに露出する。本実施形態では、ポンプ部40が駆動することで、収容部17内のオイルOが開口部13hから第1油路13a内に流入する。第1油路13a内に流入したオイルOは、ポンプ室46、接続油路13n、および後述する第2油路20bを介して、ロータ20およびステータ30に送られる。 に お い て In the present embodiment, the opening 13h is located below the liquid level OS of the oil O stored in the storage portion 17. Thereby, the opening 13 h is exposed to the oil O stored in the storage 17. In the present embodiment, when the pump unit 40 is driven, the oil O in the storage unit 17 flows into the first oil passage 13a from the opening 13h. The oil O flowing into the first oil passage 13a is sent to the rotor 20 and the stator 30 via the pump chamber 46, the connection oil passage 13n, and a second oil passage 20b described later.
 第1油路13a内には、ストレーナ13bが設けられる。本実施形態においてストレーナ13bは、鉛直方向延伸部13kのうち軸方向延伸部13mよりも上側に位置する部分の内部に設けられる。収容部17内から第1油路13aを通ってポンプ室46に送られるオイルOは、ストレーナ13bを通過する。ストレーナ13bによって、収容部17内からポンプ室46へと送られるオイルO内に含まれた異物を取り除くことができる。したがって、ポンプ室46に異物が侵入することを抑制できる。 ス A strainer 13b is provided in the first oil passage 13a. In the present embodiment, the strainer 13b is provided inside a portion of the vertically extending portion 13k located above the axially extending portion 13m. The oil O sent from the accommodation section 17 to the pump chamber 46 through the first oil passage 13a passes through the strainer 13b. The strainer 13b can remove foreign matter contained in the oil O sent from the storage section 17 to the pump chamber 46. Therefore, it is possible to prevent foreign matter from entering the pump chamber 46.
 ベアリング保持部13gは、側壁部13dの径方向の中央部分に設けられる。ベアリング保持部13gは、内側にベアリング70を保持する。すなわち、蓋部13は、ベアリング70を保持する。ベアリング保持部13gの軸方向一方側にはポンプ室46が設けられる。 The bearing holding portion 13g is provided at a radially central portion of the side wall portion 13d. The bearing holding portion 13g holds the bearing 70 inside. That is, the lid 13 holds the bearing 70. A pump chamber 46 is provided on one axial side of the bearing holding portion 13g.
 図2、図4、および図5に示すように、ウォータジャケット60は、全体として中心軸J1を囲む筒状の部材である。ウォータジャケット60は、ハウジング10の一部である。ウォータジャケット60の外周面は、本体部11の第2筒部11bの内周面と接する。ウォータジャケット60の内周面にはステータ30が固定される。 ウ ォ ー As shown in FIGS. 2, 4, and 5, the water jacket 60 is a cylindrical member that entirely surrounds the central axis J1. The water jacket 60 is a part of the housing 10. The outer peripheral surface of the water jacket 60 is in contact with the inner peripheral surface of the second cylindrical portion 11b of the main body 11. The stator 30 is fixed to the inner peripheral surface of the water jacket 60.
 ウォータジャケット60は、第1筒部61と、取付部62と、フィン部63と、を有する。すなわち、ハウジング10は、第1筒部61と、取付部62と、フィン部63と、を有する。図2に示すように、第1筒部61は、ステータ30を径方向外側から支持する。本実施形態において第1筒部61は、中心軸J1を中心とし、軸方向Yの両側に開口する円筒状である。第1筒部61は、第2筒部11bの径方向内側に位置する。第1筒部61の外周面は、ウォータジャケット60の外周面である。第1筒部61の外周面には、周方向Rに延びる溝61aが設けられる。図示は省略するが、溝61aは、軸方向視において、C字形状である。溝61aは、後述する冷却流路90を構成する。 The water jacket 60 has a first cylindrical portion 61, a mounting portion 62, and a fin portion 63. That is, the housing 10 includes the first cylindrical portion 61, the mounting portion 62, and the fin portion 63. As shown in FIG. 2, the first cylindrical portion 61 supports the stator 30 from the outside in the radial direction. In the present embodiment, the first cylindrical portion 61 has a cylindrical shape that opens on both sides in the axial direction Y about the central axis J1. The first cylindrical portion 61 is located radially inside the second cylindrical portion 11b. The outer peripheral surface of the first cylindrical portion 61 is the outer peripheral surface of the water jacket 60. A groove 61 a extending in the circumferential direction R is provided on the outer peripheral surface of the first cylindrical portion 61. Although not shown, the groove 61a has a C-shape when viewed in the axial direction. The groove 61a forms a cooling channel 90 described later.
 本実施形態においては、ウォータジャケット60の第1筒部61と本体部11の第2筒
部11bとが径方向に重ねられて、ステータ30を径方向外側から支持する筒部10aが構成される。すなわち、本実施形態においてハウジング10は、第1筒部61、および第1筒部61の径方向外側に位置する第2筒部11bを有する筒部10aを有する。筒部10aは、軸方向一方側に開口する筒状である。筒部10aの軸方向一方側の開口は、蓋部13によって塞がれる。筒部10aは、収容部17の一部を構成する。
In the present embodiment, the first tubular portion 61 of the water jacket 60 and the second tubular portion 11b of the main body portion 11 are overlapped in the radial direction to form a tubular portion 10a that supports the stator 30 from the outside in the radial direction. . That is, in the present embodiment, the housing 10 has a first cylindrical portion 61 and a cylindrical portion 10a having a second cylindrical portion 11b located radially outside the first cylindrical portion 61. The tubular portion 10a is a tubular shape that opens on one side in the axial direction. The opening on one side in the axial direction of the cylindrical portion 10 a is closed by the lid 13. The cylindrical part 10a forms a part of the housing part 17.
 取付部62は、第1筒部61の軸方向一方側の端部から径方向外側に広がるフランジ状である。図4に示すように、取付部62は、中心軸J1を囲む。取付部62は、上側に台形状に突出する突出部62aを有する。突出部62aは、取付部62のうち上側に位置する部分である。突出部62aには、突出部62aを軸方向Yに貫通する孔部62cが設けられる。図2に示すように、孔部62cは、配線収容部11eの軸方向一方側の開口と対向する。取付部62は、本体部11の開口縁部と蓋部13の開口縁部とに軸方向Yに挟まれる。 The mounting portion 62 has a flange shape that extends radially outward from one axial end of the first cylindrical portion 61. As shown in FIG. 4, the mounting portion 62 surrounds the central axis J1. The mounting portion 62 has a protrusion 62a that protrudes in a trapezoidal shape on the upper side. The protruding part 62a is a part located on the upper side of the mounting part 62. The protrusion 62a is provided with a hole 62c that penetrates the protrusion 62a in the axial direction Y. As shown in FIG. 2, the hole 62c faces the opening on one axial side of the wiring housing 11e. The mounting portion 62 is sandwiched between the opening edge of the main body 11 and the opening edge of the lid 13 in the axial direction Y.
 図4に示すように、取付部62には、周方向Rに間隔を置いて複数の取付孔62bが設けられる。取付孔62bは、取付部62を軸方向Yに貫通する。取付孔62bのそれぞれには、軸方向一方側からビスが通される。取付孔62bに通されるビスは、蓋部13に設けられたフランジ部を貫通し、本体部11の開口縁部に締め込まれる。これにより、ウォータジャケット60と蓋部13とが本体部11に対してビスで共締めされて固定される。 取 付 As shown in FIG. 4, the mounting portion 62 is provided with a plurality of mounting holes 62b at intervals in the circumferential direction R. The mounting hole 62b penetrates the mounting portion 62 in the axial direction Y. A screw is passed through each of the mounting holes 62b from one axial side. The screw passed through the mounting hole 62b penetrates the flange provided on the lid 13 and is fastened to the opening edge of the main body 11. As a result, the water jacket 60 and the lid 13 are fixed to the main body 11 together with the screw together.
 図5に示すように、フィン部63は、第1筒部61の軸方向一方側の端部から軸方向一方側に突出する。図2に示すように、フィン部63は、蓋部13に向かって軸方向一方側に突出し、蓋部13と軸方向Yに対向する。図5に示すように、本実施形態においてフィン部63は、中心軸J1を中心とする周方向Rに沿って複数設けられる。フィン部63は、例えば、板面が周方向Rを向く略矩形板状である。 フ ィ ン As shown in FIG. 5, the fin portion 63 protrudes from the one axial end of the first cylindrical portion 61 to one axial side. As shown in FIG. 2, the fin portion 63 protrudes toward one side in the axial direction toward the lid portion 13 and faces the lid portion 13 in the axial direction Y. As shown in FIG. 5, in the present embodiment, a plurality of fin portions 63 are provided along a circumferential direction R centered on the central axis J1. The fin portion 63 has, for example, a substantially rectangular plate shape whose plate surface faces the circumferential direction R.
 本実施形態において複数のフィン部63は、第1筒部61のうち下側の部分に設けられる。複数のフィン部63は、中心軸J1よりも下側に位置する。複数のフィン部63は、例えば、円筒状の第1筒部61の最下端を通る円弧状に沿って等間隔に並んで配置される。複数のフィン部63のうち最も周方向一方側に位置するフィン部63と最も周方向他方側に位置するフィン部63とは、例えば、鉛直方向Zにおいて同じ位置に配置される。 に お い て In the present embodiment, the plurality of fin portions 63 are provided in a lower portion of the first cylindrical portion 61. The plurality of fin portions 63 are located below the central axis J1. The plurality of fin portions 63 are arranged, for example, at equal intervals along an arc shape passing through the lowermost end of the cylindrical first tubular portion 61. Of the plurality of fin portions 63, the fin portion 63 located on one side in the circumferential direction and the fin portion 63 located on the other side in the circumferential direction are arranged at the same position in the vertical direction Z, for example.
 図2に示すように、フィン部63は、収容部17内に突出する。フィン部63は、収容部17内に貯留されるオイルOの液面OSよりも下側に位置する。すなわち、フィン部63は、収容部17内に貯留されるオイルOに浸漬される。フィン部63は、ステータ30の後述するコイルエンド32aよりも軸方向一方側に突出する。フィン部63の軸方向一方側の端部と蓋部13との間の軸方向Yの距離は、コイルエンド32aと蓋部13との間の軸方向Yの距離よりも短い。 フ ィ ン As shown in FIG. 2, the fin portion 63 protrudes into the housing portion 17. The fin portion 63 is located below the liquid level OS of the oil O stored in the storage portion 17. That is, the fin portion 63 is immersed in the oil O stored in the storage portion 17. The fin portion 63 protrudes to one axial side from a coil end 32a of the stator 30 described later. The distance in the axial direction Y between one end of the fin portion 63 in the axial direction and the lid 13 is shorter than the distance in the axial direction Y between the coil end 32a and the lid 13.
 本実施形態においてフィン部63の少なくとも一部は、開口部13hに臨む。なお、本明細書において「フィン部の少なくとも一部が開口部に臨む」とは、少なくとも1つのフィン部の少なくとも一部が開口部に臨んでいればよい。本実施形態では、複数のフィン部63のうち、第1筒部61の下側の端部に設けられた数本のフィン部63の一部が、開口部13hに臨む。 に お い て In the present embodiment, at least a part of the fin portion 63 faces the opening 13h. In this specification, “at least a part of the fin portion faces the opening” means that at least a part of at least one fin portion faces the opening. In the present embodiment, of the plurality of fin portions 63, some of the fin portions 63 provided at the lower end of the first cylindrical portion 61 face the opening 13h.
 ロータ20は、モータシャフト20aと、ロータコア22と、マグネット23と、第1エンドプレート24と、第2エンドプレート25と、を有する。モータシャフト20aは、モータシャフト本体21と、取付部材50と、を有する。モータシャフト本体21には、ロータコア22が取り付けられる。モータシャフト本体21のうちロータコア22が取り付けられる部分は、大径部21aである。 The rotor 20 includes a motor shaft 20a, a rotor core 22, a magnet 23, a first end plate 24, and a second end plate 25. The motor shaft 20a has a motor shaft main body 21 and a mounting member 50. The rotor core 22 is attached to the motor shaft main body 21. The portion of the motor shaft main body 21 to which the rotor core 22 is attached is a large diameter portion 21a.
 モータシャフト本体21の軸方向一方側の端部は、ベアリング70に回転可能に支持される。また、モータシャフト本体21のうちロータコア22よりも軸方向他方側に位置する部分は、ベアリング71に回転可能に支持される。したがって、ベアリング70,71は、モータシャフト20aを回転可能に支持する。ベアリング70,71は、例えば、ボールベアリングである。モータシャフト本体21の軸方向他方側の端部は、底部11aを軸方向Yに貫通してハウジング10の外部に突出する出力軸部21bである。出力軸部21bの外径は、大径部21aの外径よりも小さい。 端 One end in the axial direction of the motor shaft main body 21 is rotatably supported by the bearing 70. Further, a portion of the motor shaft main body 21 located on the other axial side than the rotor core 22 is rotatably supported by the bearing 71. Therefore, the bearings 70 and 71 rotatably support the motor shaft 20a. The bearings 70 and 71 are, for example, ball bearings. The other end in the axial direction of the motor shaft main body 21 is an output shaft portion 21b that penetrates the bottom portion 11a in the axial direction Y and projects outside the housing 10. The outer diameter of the output shaft portion 21b is smaller than the outer diameter of the large diameter portion 21a.
 モータシャフト本体21は、フランジ部21fを有する。フランジ部21fは、モータシャフト本体21のうちロータコア22よりも軸方向他方側に位置する部分に設けられる。フランジ部21fは、モータシャフト本体21のうちロータコア22が固定されている大径部21aよりも径方向外側に突出する。フランジ部21fは、円環板状である。モータシャフト本体21は、モータシャフト本体21の軸方向一方側の端部から軸方向他方側に延びる穴部21gを有する。穴部21gは、軸方向一方側に開口する有底の穴である。すなわち、穴部21gの軸方向他方側の端部は、閉塞される。 The motor shaft main body 21 has a flange portion 21f. The flange portion 21f is provided on a portion of the motor shaft main body 21 that is located on the other axial side than the rotor core 22. The flange portion 21f protrudes radially outward from the large diameter portion 21a of the motor shaft main body 21 to which the rotor core 22 is fixed. The flange portion 21f has an annular plate shape. The motor shaft main body 21 has a hole 21g extending from one axial end of the motor shaft main body 21 to the other axial side. The hole 21g is a bottomed hole that opens on one side in the axial direction. That is, the other axial end of the hole 21g is closed.
 取付部材50は、モータシャフト本体21の軸方向一方側に固定される。取付部材50は、穴部21gに嵌め合わされて固定される。取付部材50は、軸方向両側に開口する筒状である。本実施形態において取付部材50は、中心軸J1と中心とする円筒状である。取付部材50は、モータシャフト本体21よりも軸方向一方側に延びて、第1貫通孔13jに通される。 The mounting member 50 is fixed to one axial side of the motor shaft main body 21. The mounting member 50 is fitted and fixed in the hole 21g. The attachment member 50 has a tubular shape that opens on both sides in the axial direction. In the present embodiment, the mounting member 50 has a cylindrical shape centered on the central axis J1. The mounting member 50 extends to one side in the axial direction from the motor shaft main body 21 and is passed through the first through hole 13j.
 取付部材50は、嵌合部51と、固定部52と、を有する。嵌合部51は、穴部21gに嵌め合わされる部分である。嵌合部51は、穴部21gの軸方向一方側の端部の内周面に固定され、穴部21g内からモータシャフト本体21よりも軸方向一方側まで延びる。嵌合部51の軸方向一方側の端部は、第1貫通孔13jに挿入される。すなわち、嵌合部51の少なくとも一部は、第1貫通孔13jに挿入される。そのため、取付部材50の外周面と第1貫通孔13jの内周面との径方向の隙間を大きくできる。これにより、振動等によって取付部材50の位置が径方向にずれた場合であっても、取付部材50が第1貫通孔13jの内周面と接触することを抑制できる。 The mounting member 50 has a fitting portion 51 and a fixing portion 52. The fitting portion 51 is a portion fitted into the hole 21g. The fitting portion 51 is fixed to the inner peripheral surface of one end of the hole 21g in the axial direction, and extends from the inside of the hole 21g to one axial side of the motor shaft main body 21. One end in the axial direction of the fitting portion 51 is inserted into the first through hole 13j. That is, at least a part of the fitting portion 51 is inserted into the first through hole 13j. Therefore, the radial gap between the outer peripheral surface of the mounting member 50 and the inner peripheral surface of the first through hole 13j can be increased. Thereby, even when the position of the mounting member 50 is shifted in the radial direction due to vibration or the like, it is possible to suppress the mounting member 50 from contacting the inner peripheral surface of the first through hole 13j.
 固定部52は、嵌合部51の軸方向一方側に位置する。固定部52は、嵌合部51の軸方向一方側の端部に繋がる。固定部52の外径は、嵌合部51の外径よりも大きく、第1貫通孔13jの内径よりも小さい。固定部52は、ポンプ室46内に挿入される。嵌合部51の内径と固定部52の内径とは、例えば、同じである。 The fixing portion 52 is located on one axial side of the fitting portion 51. The fixing portion 52 is connected to an end of the fitting portion 51 on one side in the axial direction. The outer diameter of the fixing part 52 is larger than the outer diameter of the fitting part 51 and smaller than the inner diameter of the first through hole 13j. The fixing part 52 is inserted into the pump chamber 46. The inner diameter of the fitting part 51 and the inner diameter of the fixed part 52 are, for example, the same.
 取付部材50には、後述する外歯歯車42が固定される。本実施形態では、外歯歯車42は、固定部52の径方向外側面に固定される。より詳細には、図3に示すように、外歯歯車42を軸方向Yに貫通する固定孔部42bに、固定部52が嵌め合わされて固定される。このように、本実施形態によれば、固定部52より外径が小さい嵌合部51を穴部21gに嵌め合わせ、嵌合部51よりも外径が大きい固定部52に外歯歯車42を固定する。そのため、穴部21gの内径を外歯歯車42の固定孔部42bの内径よりも小さくできる。これにより、穴部21gの内径を比較的小さくしやすく、モータシャフト20aの剛性が低下することを抑制できる。 外 An external gear 42 described below is fixed to the mounting member 50. In the present embodiment, the external gear 42 is fixed to a radially outer surface of the fixing portion 52. More specifically, as shown in FIG. 3, the fixing portion 52 is fitted and fixed to a fixing hole 42 b penetrating the external gear 42 in the axial direction Y. As described above, according to the present embodiment, the fitting part 51 having an outer diameter smaller than the fixing part 52 is fitted into the hole 21g, and the external gear 42 is fitted to the fixing part 52 having the outer diameter larger than the fitting part 51. Fix it. Therefore, the inner diameter of the hole 21g can be smaller than the inner diameter of the fixing hole 42b of the external gear 42. Accordingly, the inner diameter of the hole 21g can be relatively easily reduced, and a decrease in the rigidity of the motor shaft 20a can be suppressed.
 図2に示すように、モータシャフト20aは、モータシャフト20aの内部に設けられる第2油路20bを有する。第2油路20bは、モータシャフト20aの軸方向一方側の端部から軸方向他方側に窪んで延びる有底の穴部である。第2油路20bは、軸方向一方側に開口する。第2油路20bは、取付部材50の軸方向一方側の端部から軸方向他方側
の端部側に延びて設けられる。第2油路20bは、取付部材50の内部と穴部21gとが軸方向Yに繋がって構成される。すなわち、取付部材50の径方向内側面は、第2油路20bの径方向内側面の一部を構成する。
As shown in FIG. 2, the motor shaft 20a has a second oil passage 20b provided inside the motor shaft 20a. The second oil passage 20b is a bottomed hole extending from one end in the axial direction of the motor shaft 20a to the other axial side. The second oil passage 20b opens on one side in the axial direction. The second oil passage 20b is provided to extend from one axial end of the mounting member 50 to the other axial end. The second oil passage 20b is configured by connecting the inside of the mounting member 50 and the hole 21g in the axial direction Y. That is, the radial inner surface of the mounting member 50 forms a part of the radial inner surface of the second oil passage 20b.
 本実施形態において軸方向Yと直交する断面において第2油路20bの内縁は、中心軸J1を中心とする円形状である。第2油路20bにおける取付部材50に設けられる部分の内径は、第2油路20bにおけるモータシャフト20aに設けられる部分の内径よりも小さい。すなわち、取付部材50の内径は、穴部21gの内径よりも小さい。取付部材50の軸方向一方側の開口が接続口13pと繋がることで、第2油路20bは、接続油路13nと繋がる。すなわち、第2油路20bは、モータシャフト20aの軸方向一方側の端部において接続油路13nに開口する。第2油路20bは、接続油路13nを介して吐出口45と繋がる。 に お い て In the present embodiment, the inner edge of the second oil passage 20b has a circular shape centered on the central axis J1 in a cross section orthogonal to the axial direction Y. The inside diameter of the portion provided on the mounting member 50 in the second oil passage 20b is smaller than the inside diameter of the portion provided on the motor shaft 20a in the second oil passage 20b. That is, the inner diameter of the mounting member 50 is smaller than the inner diameter of the hole 21g. The second oil passage 20b is connected to the connection oil passage 13n by connecting the opening on one axial side of the attachment member 50 to the connection opening 13p. That is, the second oil passage 20b opens to the connection oil passage 13n at one axial end of the motor shaft 20a. The second oil passage 20b is connected to the discharge port 45 via the connection oil passage 13n.
 モータシャフト20aは、第2油路20bとモータシャフト20aの外周面とを繋ぐ第2貫通孔26a~26dを有する。第2貫通孔26a~26dは、径方向に延びる。第2貫通孔26a,26bは、大径部21aに設けられる。第2貫通孔26a,26bは、軸方向Yにおいて、第1エンドプレート24および第2エンドプレート25を固定するナット27とフランジ部21fとの間に配置される。第2貫通孔26aの径方向外側の端部は、第1エンドプレート24とロータコア22との軸方向Yの隙間に開口する。第2貫通孔26bの径方向外側の端部は、第2エンドプレート25とロータコア22との軸方向Yの隙間に開口する。 The motor shaft 20a has second through holes 26a to 26d connecting the second oil passage 20b and the outer peripheral surface of the motor shaft 20a. The second through holes 26a to 26d extend in the radial direction. The second through holes 26a and 26b are provided in the large diameter portion 21a. The second through holes 26a and 26b are arranged between the nut 27 for fixing the first end plate 24 and the second end plate 25 and the flange 21f in the axial direction Y. The radially outer end of the second through-hole 26a opens in a gap in the axial direction Y between the first end plate 24 and the rotor core 22. A radially outer end of the second through-hole 26b opens in a gap in the axial direction Y between the second end plate 25 and the rotor core 22.
 第2貫通孔26cの径方向外側の端部は、モータシャフト20aのうちベアリング70と後述する被検出部81との軸方向Yの間に位置する部分の径方向外側面に開口する。第2貫通孔26dの径方向外側の端部は、ベアリング71の軸方向他方側においてベアリング保持部11cの径方向内側に開口する。第2貫通孔26a~26dは、例えば、それぞれ周方向Rに沿って複数設けられる。なお、第2貫通孔26cは、ベアリング70の軸方向一方側においてベアリング保持部13gの径方向内側に開口してもよい。 径 A radially outer end portion of the second through hole 26c is opened on a radially outer surface of a portion of the motor shaft 20a located between the bearing 70 and a later-described detection portion 81 in the axial direction Y. A radially outer end of the second through hole 26d opens radially inward of the bearing holding portion 11c on the other axial side of the bearing 71. For example, a plurality of second through holes 26a to 26d are provided along the circumferential direction R, respectively. The second through-hole 26c may be opened radially inside the bearing holding portion 13g on one axial side of the bearing 70.
 ロータコア22は、例えば、中心軸J1を中心とする円環状である。ロータコア22は、ロータコア22を軸方向Yに貫通するマグネット挿入孔22aを有する。マグネット挿入孔22aは、例えば、周方向Rに沿って複数設けられる。複数のマグネット挿入孔22aには、マグネット23がそれぞれ挿入される。マグネット23は、例えば、接着剤等によりロータコア22に接着される。なお、マグネット23の固定方法は接着に限られない。 The rotor core 22 has, for example, an annular shape centered on the central axis J1. The rotor core 22 has a magnet insertion hole 22a penetrating the rotor core 22 in the axial direction Y. The plurality of magnet insertion holes 22a are provided, for example, along the circumferential direction R. The magnets 23 are respectively inserted into the plurality of magnet insertion holes 22a. The magnet 23 is bonded to the rotor core 22 by, for example, an adhesive. Note that the method of fixing the magnet 23 is not limited to bonding.
 第1エンドプレート24および第2エンドプレート25は、径方向に拡がる円環板状である。第1エンドプレート24および第2エンドプレート25には、モータシャフト20aが通される。第1エンドプレート24と第2エンドプレート25とは、ロータコア22と接触した状態で、ロータコア22を軸方向Yに挟む。第1エンドプレート24は、ロータコア22の軸方向一方側に配置される。第1エンドプレート24は、図示しない噴出溝を有する。第2エンドプレート25は、ロータコア22の軸方向他方側に配置される。第2エンドプレート25は、噴出溝を有する。第1エンドプレート24および第2エンドプレート25にそれぞれ設けられた噴出溝は、径方向に延びる。 The first end plate 24 and the second end plate 25 are ring-shaped plates that expand in the radial direction. The motor shaft 20a is passed through the first end plate 24 and the second end plate 25. The first end plate 24 and the second end plate 25 sandwich the rotor core 22 in the axial direction Y while being in contact with the rotor core 22. The first end plate 24 is arranged on one axial side of the rotor core 22. The first end plate 24 has an ejection groove (not shown). The second end plate 25 is arranged on the other axial side of the rotor core 22. The second end plate 25 has an ejection groove. The ejection grooves provided in the first end plate 24 and the second end plate 25 respectively extend in the radial direction.
 第1エンドプレート24とロータコア22と第2エンドプレート25とは、ナット27とフランジ部21fとによって軸方向Yに挟持される。ナット27がモータシャフト20aの外周面に設けられた雄ネジ部に締め込まれることで、ナット27が第1エンドプレート24とロータコア22と第2エンドプレート25とをフランジ部21fに押し付ける。これにより、第1エンドプレート24とロータコア22と第2エンドプレート25とは、
モータシャフト20aに固定される。
The first end plate 24, the rotor core 22, and the second end plate 25 are held in the axial direction Y by the nut 27 and the flange 21f. The nut 27 presses the first end plate 24, the rotor core 22, and the second end plate 25 against the flange portion 21f by being screwed into a male screw portion provided on the outer peripheral surface of the motor shaft 20a. Thereby, the first end plate 24, the rotor core 22, and the second end plate 25
It is fixed to the motor shaft 20a.
 ステータ30は、ロータ20と径方向に隙間を介して対向する。ステータ30は、ステータコア31と、ステータコア31に装着される複数のコイル32と、を有する。ステータコア31は、中心軸J1を中心とした円環状である。ステータコア31の径方向外側面は、ウォータジャケット60の内周面に固定される。ステータコア31は、ロータコア22の径方向外側に隙間を介して対向する。 The stator 30 faces the rotor 20 with a gap in the radial direction. The stator 30 has a stator core 31 and a plurality of coils 32 mounted on the stator core 31. Stator core 31 has an annular shape centered on central axis J1. A radially outer surface of the stator core 31 is fixed to an inner peripheral surface of the water jacket 60. The stator core 31 faces radially outside the rotor core 22 via a gap.
 本実施形態においてステータ30の径方向外側面は、ステータコア31の径方向外側面に相当する。ステータコア31の径方向外側面は、ウォータジャケット60の第1筒部61の内周面と接触する。より具体的には、ステータコア31は、ウォータジャケット60に対して、例えば、圧入または焼き嵌めにて固定される。 に お い て In the present embodiment, the radial outer surface of the stator 30 corresponds to the radial outer surface of the stator core 31. The radial outer surface of the stator core 31 contacts the inner peripheral surface of the first cylindrical portion 61 of the water jacket 60. More specifically, stator core 31 is fixed to water jacket 60 by, for example, press fitting or shrink fitting.
 コイル32は、ステータコア31に巻回される。コイル32の軸方向一方向側の端部は、コイルエンド32aであり、ステータコア31の軸方向一方側の端部よりも軸方向一方側に突出する。すなわち、コイル32は、ステータコア31よりも軸方向一方側に突出するコイルエンド32aを有する。また、コイル32の軸方向他方側の端部は、コイルエンド32bであり、ステータコア31の軸方向他方側の端部よりも軸方向他方側に突出する。 The coil 32 is wound around the stator core 31. One end of the coil 32 on one side in the axial direction is a coil end 32a, and projects to one side in the axial direction from the one end of the stator core 31 on one side in the axial direction. That is, the coil 32 has a coil end 32a that projects to one side in the axial direction from the stator core 31. The other end of the coil 32 on the other side in the axial direction is a coil end 32b, which protrudes from the other end of the stator core 31 on the other side in the axial direction.
 コイルエンド32aに隣接する位置には、導電性のバスバ101およびバスバホルダ33が配置される。バスバ101は、バスバホルダ33に保持され、コイルエンド32aに隣接する位置から、ケーブル接続部102に隣接する位置に亘って設けられる。バスバ101は、バスバ101の一端にコイル32の端部が接続され、バスバ101の他端にケーブル接続部102が接続されることにより、コイル32とケーブル接続部102とを導通する。ケーブル接続部102は、配線収容部11e内に配置される。図示は省略するが、ケーブル接続部102は、コネクタ100と接続される。コネクタ100には図示しない電源から電力が供給される。これにより、コネクタ100からケーブル接続部102およびバスバ101を介して、コイル32に電力が供給される。 導電 A conductive bus bar 101 and a bus bar holder 33 are arranged at positions adjacent to the coil end 32a. The bus bar 101 is held by the bus bar holder 33 and is provided from a position adjacent to the coil end 32a to a position adjacent to the cable connection portion 102. In the bus bar 101, an end of the coil 32 is connected to one end of the bus bar 101, and a cable connection unit 102 is connected to the other end of the bus bar 101, thereby conducting the coil 32 and the cable connection unit 102. The cable connection unit 102 is disposed in the wiring housing 11e. Although not shown, the cable connection unit 102 is connected to the connector 100. Power is supplied to the connector 100 from a power supply (not shown). Thereby, electric power is supplied from the connector 100 to the coil 32 via the cable connection unit 102 and the bus bar 101.
 図2に示す回転検出部80は、ロータ20の回転を検出する。本実施形態において回転検出部80は、例えば、VR(Variable Reluctance)型レゾルバである。回転検出部80は、外筒部13eの径方向内側に配置される。回転検出部80は、被検出部81と、センサ部82と、を有する。被検出部81は、周方向Rに延びる環状である。被検出部81は、モータシャフト20aに嵌め合わされて固定される。被検出部81は、磁性体製である。 回 転 The rotation detecting section 80 shown in FIG. 2 detects the rotation of the rotor 20. In the present embodiment, the rotation detection unit 80 is, for example, a VR (Variable Reluctance) type resolver. The rotation detecting section 80 is arranged radially inside the outer cylindrical section 13e. The rotation detecting section 80 has a detected section 81 and a sensor section 82. The detected part 81 is an annular shape extending in the circumferential direction R. The detected part 81 is fitted and fixed to the motor shaft 20a. The detected part 81 is made of a magnetic material.
 センサ部82は、ロータコア22と蓋部13との軸方向Yの間に配置される。センサ部82は、被検出部81の径方向外側を囲む環状である。センサ部82は、周方向Rに沿って複数のコイルを有する。モータシャフト20aとともに被検出部81が回転することによって、センサ部82のコイルには、被検出部81の周方向位置に応じた誘起電圧が生じる。センサ部82は、誘起電圧を検出することで、被検出部81の回転を検出する。これにより、回転検出部80は、モータシャフト20aの回転を検出して、ロータ20の回転を検出する。 The sensor unit 82 is disposed between the rotor core 22 and the lid 13 in the axial direction Y. The sensor section 82 has an annular shape surrounding the detected section 81 in the radial direction. The sensor unit 82 has a plurality of coils along the circumferential direction R. As the detected portion 81 rotates together with the motor shaft 20a, an induced voltage corresponding to the circumferential position of the detected portion 81 is generated in the coil of the sensor portion. The sensor unit 82 detects the rotation of the detected unit 81 by detecting the induced voltage. Thereby, the rotation detecting section 80 detects the rotation of the motor shaft 20a and detects the rotation of the rotor 20.
 ポンプ部40は、蓋部13の中央部に設けられる。ポンプ部40は、モータシャフト20aの軸方向一方側に配置される。本実施形態におけるポンプ部40は、いわゆる機械式オイルポンプである。ポンプ部40は、外歯歯車42と、内歯歯車43と、上述したポンプ室46と、吸入口44と、吐出口45と、貯留部48と、を有する。外歯歯車42は、中心軸J1周りに回転可能な歯車である。外歯歯車42は、モータシャフト20aの軸方
向一方側の端部に固定される。外歯歯車42は、ポンプ室46内に収容される。図3に示すように、外歯歯車42は、外周面に複数の歯部42aを有する。外歯歯車42の歯部42aの歯形は、トロコイド歯形である。
The pump section 40 is provided at the center of the lid section 13. The pump section 40 is disposed on one axial side of the motor shaft 20a. The pump section 40 in the present embodiment is a so-called mechanical oil pump. The pump section 40 has an external gear 42, an internal gear 43, the above-described pump chamber 46, a suction port 44, a discharge port 45, and a storage section 48. The external gear 42 is a gear that can rotate around the central axis J1. The external gear 42 is fixed to one axial end of the motor shaft 20a. The external gear 42 is housed in a pump chamber 46. As shown in FIG. 3, the external gear 42 has a plurality of teeth 42a on the outer peripheral surface. The tooth shape of the tooth portion 42a of the external gear 42 is a trochoid tooth shape.
 内歯歯車43は、中心軸J1に対して偏心する回転軸J2周りに回転可能な円環状の歯車である。内歯歯車43は、ポンプ室46内に収容される。内歯歯車43は、外歯歯車42の径方向外側を囲み、外歯歯車42と噛み合う。内歯歯車43は、内周面に複数の歯部43aを有する。内歯歯車43の歯部43aの歯形は、トロコイド歯形である。このように、外歯歯車42の歯部42aの歯形および内歯歯車43の歯部43aの歯形がトロコイド歯形であるため、トロコイドポンプを構成することができる。したがって、ポンプ部40から生じる騒音を低減でき、ポンプ部40から吐出されるオイルOの圧力および量を安定させやすい。 The internal gear 43 is an annular gear rotatable around a rotation axis J2 that is eccentric with respect to the center axis J1. The internal gear 43 is housed in a pump chamber 46. The internal gear 43 surrounds the outside of the external gear 42 in the radial direction, and meshes with the external gear 42. The internal gear 43 has a plurality of teeth 43a on the inner peripheral surface. The tooth shape of the tooth portion 43a of the internal gear 43 is a trochoid tooth shape. As described above, since the tooth profile of the tooth portion 42a of the external gear 42 and the tooth profile of the tooth portion 43a of the internal gear 43 are trochoid tooth shapes, a trochoid pump can be configured. Therefore, noise generated from the pump unit 40 can be reduced, and the pressure and amount of the oil O discharged from the pump unit 40 can be easily stabilized.
 本実施形態では、凹部13iの軸方向一方側の開口から内歯歯車43および外歯歯車42を挿入した後に、栓体部14によって凹部13iの軸方向一方側の開口を閉塞することで、ポンプ室46を構成することができるとともに、内歯歯車43および外歯歯車42をポンプ室46に収容できる。そのため、ポンプ部40の組み立てを容易にできる。 In the present embodiment, after inserting the internal gear 43 and the external gear 42 from the opening on the one side in the axial direction of the recess 13i, the plug 14 closes the opening on the one side in the axial direction of the recess 13i. The chamber 46 can be configured, and the internal gear 43 and the external gear 42 can be housed in the pump chamber 46. Therefore, assembly of the pump section 40 can be facilitated.
 上述したように吸入口44は、第1油路13aと繋がる。図6に示すように、吸入口44は、ポンプ室46の軸方向他方側に開口する。吸入口44は、外歯歯車42と内歯歯車43との隙間と繋がる。吸入口44は、開口部13hから第1油路13aを介して、収容部17に貯留されるオイルOを、ポンプ室46内、より詳細には外歯歯車42と内歯歯車43との隙間内に吸入可能である。図3に示すように、吸入口44は、貯留部48の下側の端部よりも上側、かつ、外歯歯車42の下側の端部よりも上側に配置される。 吸入 As described above, the suction port 44 is connected to the first oil passage 13a. As shown in FIG. 6, the suction port 44 opens on the other axial side of the pump chamber 46. The suction port 44 is connected to a gap between the external gear 42 and the internal gear 43. The suction port 44 is used to supply the oil O stored in the housing 17 from the opening 13h through the first oil passage 13a to the inside of the pump chamber 46, more specifically, the gap between the external gear 42 and the internal gear 43. Can be inhaled. As shown in FIG. 3, the suction port 44 is disposed above the lower end of the storage section 48 and above the lower end of the external gear 42.
 上述したように吐出口45は、接続油路13nを介して第2油路20bと繋がる。図6に示すように、吐出口45は、ポンプ室46の軸方向一方側に開口する。吐出口45は、外歯歯車42と内歯歯車43との隙間と繋がる。吐出口45は、ポンプ室46内、より詳細には外歯歯車42と内歯歯車43との隙間内からオイルOを吐出可能である。 吐出 As described above, the discharge port 45 is connected to the second oil passage 20b via the connection oil passage 13n. As shown in FIG. 6, the discharge port 45 opens on one axial side of the pump chamber 46. The discharge port 45 is connected to a gap between the external gear 42 and the internal gear 43. The discharge port 45 can discharge the oil O from the inside of the pump chamber 46, more specifically, from the gap between the external gear 42 and the internal gear 43.
 貯留部48は、ポンプ室46の鉛直方向下側領域の軸方向一方側においてポンプ室46と繋がる。図3に示すように、軸方向視において貯留部48の形状は、下側に凸となる弓形状である。貯留部48には、吸入口44からポンプ室46内に吸入されたオイルOの一部が流入する。 The storage part 48 is connected to the pump chamber 46 on one axial side of a vertically lower region of the pump chamber 46. As shown in FIG. 3, the shape of the storage portion 48 is a bow shape that is convex downward when viewed in the axial direction. Part of the oil O sucked into the pump chamber 46 from the suction port 44 flows into the storage section 48.
 吸入口44は、貯留部48の下側の端部よりも上側に配置されるため、ポンプ部40が停止しても、貯留部48に流入したオイルOの少なくとも一部は、吸入口44から収容部17内に戻らずに、貯留部48内に貯留される。これにより、ポンプ部40が停止している際に、ポンプ室46内の外歯歯車42の下側の部分および内歯歯車43の下側の部分を貯留部48内のオイルOと接触した状態にすることができる。したがって、ポンプ部40を再度駆動した際に、外歯歯車42の歯部42aと内歯歯車43の歯部43aとの間、およびポンプ室46の内周面と内歯歯車43の外周面との間にオイルOを介在させることができ、焼き付きが生じることを抑制できる。 Since the suction port 44 is disposed above the lower end of the storage section 48, at least a portion of the oil O flowing into the storage section 48 is discharged from the suction port 44 even when the pump section 40 is stopped. It is stored in the storage part 48 without returning to the storage part 17. Thus, when the pump unit 40 is stopped, the lower part of the external gear 42 and the lower part of the internal gear 43 in the pump chamber 46 are in contact with the oil O in the storage part 48. Can be Therefore, when the pump section 40 is driven again, the gap between the tooth section 42a of the external gear 42 and the tooth section 43a of the internal gear 43, and the inner peripheral surface of the pump chamber 46 and the outer peripheral surface of the internal gear 43 Oil O can be interposed therebetween, and the occurrence of seizure can be suppressed.
 ロータ20が回転してモータシャフト20aが回転すると、モータシャフト20aに固定された外歯歯車42が回転する。これにより、外歯歯車42と噛み合う内歯歯車43が回転して、吸入口44からポンプ室46内に吸入されるオイルOが、外歯歯車42と内歯歯車43との間を介して、吐出口45へと送られる。このようにして、ポンプ部40は、モータシャフト20aを介して駆動される。吐出口45から吐出されたオイルOは、接続油路13nに流入し、接続口13pから第2油路20bへと流入する。図6に矢印で示す
ように、第2油路20bに流入したオイルOは、回転するモータシャフト20aの遠心力によって、径方向外側に力を受け、第2貫通孔26a~26dを通ってモータシャフト20aの外部へと流出する。
When the rotor 20 rotates and the motor shaft 20a rotates, the external gear 42 fixed to the motor shaft 20a rotates. Thereby, the internal gear 43 meshing with the external gear 42 rotates, and the oil O sucked into the pump chamber 46 from the suction port 44 passes through between the external gear 42 and the internal gear 43, It is sent to the discharge port 45. Thus, the pump unit 40 is driven via the motor shaft 20a. The oil O discharged from the discharge port 45 flows into the connection oil passage 13n, and flows from the connection port 13p into the second oil passage 20b. As shown by the arrow in FIG. 6, the oil O flowing into the second oil passage 20b receives a radially outward force due to the centrifugal force of the rotating motor shaft 20a, passes through the second through holes 26a to 26d, and It flows out of the shaft 20a.
 本実施形態では、第2貫通孔26a,26bは第1エンドプレート24とロータコア22との隙間と、第2エンドプレート25とロータコア22との隙間とのそれぞれに向かって開口するため、第2貫通孔26a,26bから流出したオイルOはそれぞれ各エンドプレートに設けられた図示しない噴出溝から径方向外側に向けて噴出される。 In the present embodiment, the second through holes 26a and 26b open toward the gap between the first end plate 24 and the rotor core 22 and the gap between the second end plate 25 and the rotor core 22, respectively. The oil O flowing out of the holes 26a and 26b is jetted radially outward from jet slots (not shown) provided in each end plate.
 噴出溝から径方向外側に噴出されたオイルOは、コイル32に吹き付けられる。これにより、オイルOによってコイル32を冷却することができる。本実施形態では、第2油路20bは、モータシャフト20aの内部に設けられるため、噴出溝から噴出されるまでのオイルOによって、ロータ20を冷却することもできる。このように、本実施形態において吐出口45から吐出されるオイルOは、ロータ20とステータ30とに導かれる。 オ イ ル The oil O spouted radially outward from the spout groove is sprayed onto the coil 32. Thereby, the coil 32 can be cooled by the oil O. In the present embodiment, since the second oil passage 20b is provided inside the motor shaft 20a, the rotor 20 can be cooled by the oil O before being ejected from the ejection groove. As described above, the oil O discharged from the discharge port 45 in the present embodiment is guided to the rotor 20 and the stator 30.
 第2貫通孔26c,26dはそれぞれベアリング70,71の近傍において径方向内側に開口するため、第2貫通孔26c,26dから流出したオイルOは、ベアリング70,71にそれぞれ供給される。これにより、オイルOをベアリング70,71の潤滑剤として利用できる。 た め Since the second through holes 26c and 26d open radially inward near the bearings 70 and 71, respectively, the oil O flowing out of the second through holes 26c and 26d is supplied to the bearings 70 and 71, respectively. Thus, the oil O can be used as a lubricant for the bearings 70 and 71.
 以上のようにして、モータシャフト20aの回転によってポンプ部40を駆動することができ、ポンプ部40によってハウジング10に貯留されるオイルOを吸い上げてロータ20、ステータ30およびベアリング70,71に供給することができる。すなわち、ポンプ部40は、収容部17に収容されたオイルOをステータ30およびロータ20の少なくとも一方に送る。これにより、ハウジング10に貯留されるオイルOを利用して、ロータ20およびステータ30を冷却することができるとともに、ベアリング70,71とモータシャフト本体21との間の潤滑性を向上できる。 As described above, the pump section 40 can be driven by the rotation of the motor shaft 20a, and the pump section 40 sucks up the oil O stored in the housing 10 and supplies it to the rotor 20, the stator 30, and the bearings 70 and 71. be able to. That is, the pump unit 40 sends the oil O stored in the storage unit 17 to at least one of the stator 30 and the rotor 20. Thus, the rotor 20 and the stator 30 can be cooled using the oil O stored in the housing 10, and the lubricity between the bearings 70, 71 and the motor shaft main body 21 can be improved.
 このように本実施形態によれば、接続油路13nおよび第2油路20bが設けられることで、吐出口45から吐出されたオイルOをモータシャフト20aの内部に送ることができる。また、第2貫通孔26a~26dが設けられるため、第2油路20b内に流入したオイルOをステータ30およびベアリング70,71に供給することができる。 According to the present embodiment, the connection oil passage 13n and the second oil passage 20b can provide the oil O discharged from the discharge port 45 to the inside of the motor shaft 20a. Further, since the second through holes 26a to 26d are provided, the oil O flowing into the second oil passage 20b can be supplied to the stator 30 and the bearings 70 and 71.
 また、本実施形態によれば、モータシャフト20a内に設けられた第2油路20bは、モータシャフト20aの軸方向一方側の端部において、吐出口45と繋がる接続油路13nに開口する。モータシャフト20aの軸方向一方側の端部には、外歯歯車42が固定されるため、モータシャフト20aの軸方向一方側の端部は、吐出口45と比較的近い位置に配置される。したがって、吐出口45と第2油路20bとを繋ぐ接続油路13nの長さを短くできる。そのため、本実施形態によれば、開口部13hから第2油路20bまでの油路の全長を短くしやすい。これにより、モータシャフト20aの内部に設けられる第2油路20bへとオイルOを送りやすい。また、モータ1の構造を簡単化しやすく、モータ1の製造を容易にできる。 According to the present embodiment, the second oil passage 20b provided in the motor shaft 20a opens to the connection oil passage 13n connected to the discharge port 45 at one axial end of the motor shaft 20a. Since the external gear 42 is fixed to one axial end of the motor shaft 20a, one axial end of the motor shaft 20a is disposed relatively close to the discharge port 45. Therefore, the length of the connection oil passage 13n connecting the discharge port 45 and the second oil passage 20b can be shortened. Therefore, according to the present embodiment, it is easy to shorten the entire length of the oil passage from the opening 13h to the second oil passage 20b. Thereby, the oil O is easily sent to the second oil passage 20b provided inside the motor shaft 20a. Further, the structure of the motor 1 can be easily simplified, and the manufacture of the motor 1 can be facilitated.
 ステータ30およびベアリング70,71に供給されたオイルOは、収容部17内を落下して、再び収容部17の下側の領域に貯留される。これにより、ポンプ部40によって収容部17内のオイルOを循環させることができる。 The oil O supplied to the stator 30 and the bearings 70 and 71 falls in the housing 17 and is again stored in the lower region of the housing 17. Thereby, the oil O in the storage section 17 can be circulated by the pump section 40.
 モータ1には、冷媒が流れる冷却流路90がさらに設けられる。冷却流路90は、筒部10aに設けられる。すなわち、ステータ30を径方向外側から支持する筒部10aは、冷媒が流れる冷却流路90を有する。ここで、上述したように、ステータ30が収容され
る収容部17の内部には、オイルOが貯留される。そのため、筒部10aに設けられた冷却流路90に冷媒を流すことで、収容部17に貯留されたオイルOを冷却することができる。これにより、オイルOをハウジング10の外部に導出することなく冷却することができる。したがって、オイルOをハウジング10の外部に導出するための油路等をハウジング10に設ける必要がなく、モータ1の構造が複雑化することを抑制できる。また、ハウジング10の外部にオイルOを導出する必要がないため、ハウジング10を密封しやすい。
The motor 1 is further provided with a cooling channel 90 through which the refrigerant flows. The cooling channel 90 is provided in the cylindrical portion 10a. That is, the cylindrical portion 10a that supports the stator 30 from the outside in the radial direction has the cooling passage 90 through which the refrigerant flows. Here, as described above, the oil O is stored in the housing portion 17 in which the stator 30 is housed. Therefore, the oil O stored in the storage portion 17 can be cooled by flowing the refrigerant through the cooling channel 90 provided in the cylindrical portion 10a. Thereby, the oil O can be cooled without being led out of the housing 10. Therefore, it is not necessary to provide an oil passage or the like for leading the oil O to the outside of the housing 10, so that the structure of the motor 1 can be prevented from becoming complicated. Further, since it is not necessary to lead the oil O to the outside of the housing 10, the housing 10 is easily sealed.
 このように、本実施形態によれば、簡単な構造で、ハウジング10に貯留されるオイルOを好適に冷却できるモータ1が得られる。これにより、上述したようにポンプ部40によってオイルOをステータ30およびロータ20等に供給することで、好適に冷却されたオイルOによってステータ30およびロータ20等を好適に冷却することができる。冷却流路90を流れる冷媒は、オイルOを冷却できる流体ならば、特に限定されない。冷媒は、水であってもよいし、水以外の液体であってもよいし、気体であってもよい。 As described above, according to the present embodiment, the motor 1 that can suitably cool the oil O stored in the housing 10 with a simple structure is obtained. By supplying oil O to the stator 30 and the rotor 20 and the like by the pump section 40 as described above, the stator 30 and the rotor 20 and the like can be suitably cooled by the suitably cooled oil O. The refrigerant flowing through the cooling channel 90 is not particularly limited as long as it is a fluid that can cool the oil O. The refrigerant may be water, a liquid other than water, or a gas.
 また、本実施形態によれば、冷却流路90がステータ30を径方向外側から支持する筒部10aに設けられる。そのため、冷却流路90を流れる冷媒により、ステータ30を直接的に冷却できる。また、オイルOはハウジング10に貯留されるため、オイルOをハウジング10内において循環させることで、ロータ20も冷却しやすい。また、図2に示すように、貯留されるオイルOにステータ30の一部を浸けることができるため、ステータ30をより冷却しやすい。特に、貯留されるオイルOに、発熱体であるコイル32の一部を浸けて冷却できるため、ステータ30を好適に冷却できる。 According to the present embodiment, the cooling channel 90 is provided in the cylindrical portion 10a that supports the stator 30 from the radial outside. Therefore, the stator 30 can be directly cooled by the refrigerant flowing through the cooling channel 90. Further, since the oil O is stored in the housing 10, the rotor 20 is easily cooled by circulating the oil O in the housing 10. Further, as shown in FIG. 2, a part of the stator 30 can be immersed in the stored oil O, so that the stator 30 can be cooled more easily. In particular, since a part of the coil 32 serving as a heating element can be cooled by being immersed in the stored oil O, the stator 30 can be suitably cooled.
 また、本実施形態では、軸方向Yは、鉛直方向Zと直交する。そのため、例えば軸方向Yが鉛直方向Zと平行である場合に比べて、貯留されるオイルOに浸かるステータ30の部分を大きくしやすく、ステータ30を冷却しやすい。また、オイルOの液面OSを、少なくともロータ20の回転時において、ロータ20よりも下側に配置しやすく、ロータ20が回転する際に、オイルOがロータ20の回転抵抗となることを抑制できる。 In the present embodiment, the axial direction Y is orthogonal to the vertical direction Z. Therefore, for example, as compared with the case where the axial direction Y is parallel to the vertical direction Z, the portion of the stator 30 immersed in the stored oil O is easily enlarged, and the stator 30 is easily cooled. Further, it is easy to arrange the liquid level OS of the oil O below the rotor 20 at least when the rotor 20 is rotating, so that when the rotor 20 rotates, the oil O prevents the rotation resistance of the rotor 20 from becoming a resistance. it can.
 また、本実施形態によれば、ハウジング10は、収容部17内に突出するフィン部63を有する。そのため、フィン部63を収容部17内に貯留されるオイルOに接触させることが可能である。これにより、ハウジング10とオイルOとの接触面積を大きくすることができる。したがって、フィン部63を介して、オイルOの熱をハウジング10に移動させやすく、オイルOを冷却しやすい。特に本実施形態では、ハウジング10の筒部10aに冷却流路90が設けられるため、フィン部63を介してオイルOからハウジング10に移動した熱を、冷却流路90を流れる冷媒に移動させやすい。したがって、より効率的にオイルOを冷却できる。 According to the present embodiment, the housing 10 has the fin portion 63 protruding into the housing portion 17. Therefore, the fin portion 63 can be brought into contact with the oil O stored in the housing portion 17. Thereby, the contact area between the housing 10 and the oil O can be increased. Therefore, the heat of the oil O is easily transferred to the housing 10 via the fin portion 63, and the oil O is easily cooled. In particular, in the present embodiment, since the cooling channel 90 is provided in the cylindrical portion 10 a of the housing 10, heat transferred from the oil O to the housing 10 via the fin portion 63 can be easily transferred to the refrigerant flowing through the cooling channel 90. . Therefore, the oil O can be cooled more efficiently.
 また、本実施形態によれば、フィン部63は、筒部10aを構成する第1筒部61に設けられる。そのため、フィン部63を介してハウジング10に移動された熱を、筒部10aに設けられた冷却流路90を流れる冷媒に移動させやすい。これにより、フィン部63を介してオイルOをより効率的に冷却できる。 According to the present embodiment, the fin portion 63 is provided on the first tubular portion 61 constituting the tubular portion 10a. Therefore, the heat transferred to the housing 10 via the fin portion 63 can be easily transferred to the refrigerant flowing through the cooling channel 90 provided in the cylindrical portion 10a. Thereby, the oil O can be cooled more efficiently through the fin portion 63.
 また、本実施形態によれば、複数のフィン部63は、筒部10aのうち下側の部分に設けられる。そのため、フィン部63を、オイルOの液面OSよりも下側に配置しやすく、フィン部63をオイルOと接触させやすい。これにより、フィン部63を介して、オイルOをより好適に冷却できる。 According to the present embodiment, the plurality of fin portions 63 are provided in a lower portion of the cylindrical portion 10a. Therefore, the fin portion 63 is easily arranged below the liquid surface OS of the oil O, and the fin portion 63 is easily brought into contact with the oil O. Thereby, the oil O can be more appropriately cooled through the fin portion 63.
 また、本実施形態によれば、フィン部63は、蓋部13に向かって軸方向一方側に突出し、蓋部13と軸方向に対向する。そのため、蓋部13に設けられた第1油路13aに向
かう収容部17内のオイルOをフィン部63に接触させやすい。これにより、第1油路13aに向かうオイルOを好適に冷却することができる。したがって、第1油路13aを通ってハウジング10内に噴出されるオイルOの温度を好適に低くでき、モータ1全体を効率よく冷却することができる。
Further, according to the present embodiment, the fin portion 63 protrudes toward one side in the axial direction toward the lid portion 13 and faces the lid portion 13 in the axial direction. For this reason, the oil O in the housing portion 17 heading toward the first oil passage 13 a provided in the lid portion 13 is easily brought into contact with the fin portion 63. Thereby, the oil O heading to the first oil passage 13a can be suitably cooled. Therefore, the temperature of the oil O ejected into the housing 10 through the first oil passage 13a can be appropriately lowered, and the entire motor 1 can be efficiently cooled.
 また、本実施形態によれば、フィン部63の少なくとも一部は、第1油路13aの開口部13hに臨んでいる。そのため、第1油路13aに向かうオイルOをより好適にフィン部63に接触させることができる。これにより、開口部13hから第1油路13a内に流入されるオイルOをより効率よく冷却することができる。したがって、第1油路13aを通ってハウジング10内に噴出されるオイルOの温度を好適に低くでき、モータ1全体をより効率よく冷却することができる。 According to the present embodiment, at least a part of the fin portion 63 faces the opening 13h of the first oil passage 13a. Therefore, the oil O heading toward the first oil passage 13a can be more appropriately brought into contact with the fin portion 63. Thus, the oil O flowing into the first oil passage 13a from the opening 13h can be cooled more efficiently. Therefore, the temperature of the oil O ejected into the housing 10 through the first oil passage 13a can be appropriately lowered, and the entire motor 1 can be cooled more efficiently.
 また、本実施形態によれば、フィン部63は、筒部10aからステータ30のコイルエンド32aよりも軸方向一方側に突出する。そのため、フィン部63の軸方向Yの長さを大きくしやすく、フィン部63とオイルOとの接触面積を大きくしやすい。これにより、オイルOの熱をハウジング10に効率よく移動させることができる。 According to the present embodiment, the fin portion 63 protrudes from the cylindrical portion 10a to one side in the axial direction beyond the coil end 32a of the stator 30. Therefore, the length of the fin portion 63 in the axial direction Y is easily increased, and the contact area between the fin portion 63 and the oil O is easily increased. Thereby, the heat of the oil O can be efficiently transferred to the housing 10.
 また、本実施形態によれば、フィン部63の軸方向一方側の端部と蓋部13との間の軸方向Yの距離は、コイルエンド32aと蓋部13との間の軸方向Yの距離よりも短い。このように構成することで、フィン部63の軸方向Yの長さを大きくしやすく、フィン部63とオイルOとの接触面積を大きくしやすい。したがって、オイルOの熱をハウジング10に効率よく移動させることができる。 Further, according to the present embodiment, the distance in the axial direction Y between the one end in the axial direction of the fin portion 63 and the lid 13 is equal to the distance in the axial direction Y between the coil end 32 a and the lid 13. Shorter than the distance. With this configuration, the length of the fin portion 63 in the axial direction Y can be easily increased, and the contact area between the fin portion 63 and the oil O can be easily increased. Therefore, the heat of the oil O can be efficiently transferred to the housing 10.
 本実施形態において冷却流路90は、第1筒部61と第2筒部11bとの径方向の間に配置される。そのため、2つの筒状の部材を組み合わせることで、容易に冷却流路90を構成できる。本実施形態において冷却流路90は、第1筒部61の外周面に設けられた溝61aの径方向外側の開口が第2筒部11bの流路構成部11dによって塞がれることで構成される。 に お い て In the present embodiment, the cooling channel 90 is disposed between the first cylindrical portion 61 and the second cylindrical portion 11b in the radial direction. Therefore, by combining the two cylindrical members, the cooling channel 90 can be easily configured. In the present embodiment, the cooling flow channel 90 is configured such that the radially outer opening of the groove 61a provided on the outer peripheral surface of the first cylindrical portion 61 is closed by the flow channel forming portion 11d of the second cylindrical portion 11b. You.
 図7に示すように、冷却流路90は、周方向Rに延びる。そのため、冷却流路90によってステータ30の周りを囲みやすく、冷却流路90を流れる冷媒によってステータ30をより好適に冷却できる。本実施形態において冷却流路90は、周方向Rにおいて波形状に延びる。これにより、冷却流路90を流れる冷媒を軸方向Yに移動させつつ周方向Rに流すことができ、ステータ30およびオイルOをより好適に冷却することができる。また、冷却流路90の少なくとも一部は、収容部17内に収容されるオイルOの液面OSよりも上側に位置する。そのため、冷却流路90を流れる冷媒によって、ステータ30のうち収容部17内においてオイルOに浸漬していない部分を冷却することができる。 冷却 As shown in FIG. 7, the cooling channel 90 extends in the circumferential direction R. Therefore, it is easy to surround the periphery of the stator 30 by the cooling channel 90, and the stator 30 can be more appropriately cooled by the refrigerant flowing through the cooling channel 90. In the present embodiment, the cooling channel 90 extends in a wavy shape in the circumferential direction R. Thereby, the refrigerant flowing through the cooling flow path 90 can be caused to flow in the circumferential direction R while moving in the axial direction Y, and the stator 30 and the oil O can be more appropriately cooled. At least a part of the cooling channel 90 is located above the liquid level OS of the oil O contained in the containing part 17. Therefore, the portion of the stator 30 that is not immersed in the oil O in the housing portion 17 can be cooled by the refrigerant flowing through the cooling channel 90.
 冷却流路90は、軸方向Yに延びる複数の第1流路部91a,91b,91c,91d,91e,91fと、ステータ30の周方向Rに延びる複数の第2流路部92a,92b,92c,92d,92eと、を有する。複数の第1流路部91a~91fは、周方向Rに沿って並んで配置される。複数の第1流路部91a,91b,91c,91d,91e,91fは、第1流路部91aを起点とする周方向一方側から周方向他方側に向かってこの順に並ぶ。第1流路部91aの軸方向一方側の端部は、第1流路部91b~91fの軸方向一方側の端部よりも軸方向一方側に配置される。第1流路部91a~91fの軸方向他方側の端部は、軸方向Yにおいて同じ位置に配置される。 The cooling passage 90 includes a plurality of first passages 91a, 91b, 91c, 91d, 91e, and 91f extending in the axial direction Y, and a plurality of second passages 92a, 92b, extending in the circumferential direction R of the stator 30. 92c, 92d, and 92e. The plurality of first flow path portions 91a to 91f are arranged side by side along the circumferential direction R. The plurality of first flow passage portions 91a, 91b, 91c, 91d, 91e, 91f are arranged in this order from one circumferential side starting from the first flow passage portion 91a to the other circumferential side. One end in the axial direction of the first flow path portion 91a is disposed on one axial side with respect to one end in the axial direction of the first flow path portions 91b to 91f. The other axial ends of the first flow passage portions 91a to 91f are arranged at the same position in the axial direction Y.
 第2流路部92aは、第1流路部91aの軸方向他方側の端部と第1流路部91bの軸方向他方側の端部とを繋ぐ。第2流路部92bは、第1流路部91bの軸方向一方側の端部と第1流路部91cの軸方向一方側の端部とを繋ぐ。第2流路部92cは、第1流路部
91cの軸方向他方側の端部と第1流路部91dの軸方向他方側の端部とを繋ぐ。第2流路部92dは、第1流路部91dの軸方向一方側の端部と第1流路部91eの軸方向一方側の端部とを繋ぐ。第2流路部92eは、第1流路部91eの軸方向他方側の端部と第1流路部91fの軸方向他方側の端部とを繋ぐ。
The second flow path portion 92a connects an end on the other axial side of the first flow path portion 91a to an end on the other axial side of the first flow path portion 91b. The second flow path portion 92b connects one end in the axial direction of the first flow path portion 91b to one end in the axial direction of the first flow path portion 91c. The second flow path portion 92c connects the other end in the axial direction of the first flow path portion 91c to the other end in the axial direction of the first flow path portion 91d. The second flow path portion 92d connects an axial end of the first flow path portion 91d to an axial end of the first flow path portion 91e. The second flow passage portion 92e connects the other axial end of the first flow passage portion 91e to the other axial end of the first flow passage portion 91f.
 以上のように、複数の第1流路部91a~91fは、互いに繋がる。そのため、第1流路部91a~91fの内部において冷媒を軸方向Yに流しながら、冷却流路90を波形状に構成することができる。複数の第2流路部92a~92eはステータ30の径方向外側に沿って周方向Rに延びる。これにより、冷却流路90を流れる冷媒によって、ステータ30およびオイルOをより好適に冷却することができる。なお、周方向Rに隣り合う第1流路部91a~91f同士において、内部を流れる冷媒の向きは、互いに逆向きである。 As described above, the plurality of first flow path portions 91a to 91f are connected to each other. Therefore, the cooling flow path 90 can be formed in a wave shape while the refrigerant flows in the axial direction Y inside the first flow path portions 91a to 91f. The plurality of second flow paths 92a to 92e extend in the circumferential direction R along the radially outer side of the stator 30. Thereby, the stator 30 and the oil O can be more appropriately cooled by the refrigerant flowing through the cooling passage 90. In the first flow passage portions 91a to 91f adjacent to each other in the circumferential direction R, the directions of the refrigerant flowing inside are opposite to each other.
 図2に示すように、冷却流路90は、鉛直方向Zに沿って視て、ステータ30およびロータ20と重なる。冷却流路90の軸方向一方側の端部、および、冷却流路90の軸方向他方側の端部は、鉛直方向Zに沿って視て、ステータコア31と重なる。 冷却 As shown in FIG. 2, the cooling flow path 90 overlaps the stator 30 and the rotor 20 when viewed along the vertical direction Z. One end in the axial direction of the cooling flow path 90 and the other end in the axial direction of the cooling flow path 90 overlap the stator core 31 when viewed along the vertical direction Z.
 本実施形態において冷却流路90は、ステータ30のステータコア31の径方向外側において周方向Rに沿って延びる。また、ステータコア31の径方向外側の略全周がウォータジャケット60に接触する。これにより、冷却流路90を流れる冷媒によってステータコア31をより効率的に冷却することができる。また、例えばステータコアの内部に冷却流路を作る場合に比べて、冷却流路90の作製が容易である。 に お い て In the present embodiment, the cooling flow channel 90 extends along the circumferential direction R outside the stator core 31 of the stator 30 in the radial direction. Further, substantially the entire outer circumference in the radial direction of the stator core 31 contacts the water jacket 60. Thereby, the stator core 31 can be more efficiently cooled by the refrigerant flowing through the cooling passage 90. Further, for example, as compared with the case where the cooling flow path is formed inside the stator core, the manufacturing of the cooling flow path 90 is easier.
 図7に示すように、冷却流路90は、流入流路93aと、流出流路93bと、を有する。流入流路93aは、第2筒部11bの幅方向他方側の面から第1流路部91aの軸方向一方側の端部まで幅方向Xに延びる。流入流路93aの幅方向他方側の開口は、冷媒が流入される流入口93cである。すなわち、冷却流路90は、流入口93cを有する。流入口93cは、第2筒部11bの幅方向他方側の面に開口する。図1に示すように、流入口93cには、第2筒部11bから幅方向他方側に突出する流入ノズル部15が設けられる。 As shown in FIG. 7, the cooling channel 90 has an inflow channel 93a and an outflow channel 93b. The inflow channel 93a extends in the width direction X from the surface on the other side in the width direction of the second cylindrical portion 11b to an end on one side in the axial direction of the first channel portion 91a. The opening on the other side in the width direction of the inflow channel 93a is an inflow port 93c into which the refrigerant flows. That is, the cooling channel 90 has the inflow port 93c. The inflow port 93c opens on the other surface in the width direction of the second cylindrical portion 11b. As shown in FIG. 1, the inflow nozzle portion 15 is provided at the inflow port 93c so as to project from the second cylindrical portion 11b to the other side in the width direction.
 図7に示すように、流出流路93bは、第2筒部11bの幅方向他方側の面から第1流路部91fの軸方向一方側の端部まで幅方向Xに延びる。流出流路93bの幅方向他方側の開口は、冷媒が流出される流出口93dである。すなわち、冷却流路90は、流出口93dを有する。流出口93dは、第2筒部11bの幅方向他方側の面に開口する。図1に示すように、流出口93dには、第2筒部11bから幅方向他方側に突出する流出ノズル部16が設けられる。 As shown in FIG. 7, the outflow channel 93b extends in the width direction X from the other surface in the width direction of the second cylindrical portion 11b to one axial end of the first channel portion 91f. The opening on the other side in the width direction of the outflow channel 93b is an outflow port 93d through which the refrigerant flows out. That is, the cooling channel 90 has an outlet 93d. The outlet 93d opens on the other surface in the width direction of the second cylindrical portion 11b. As shown in FIG. 1, the outlet 93d is provided with an outflow nozzle portion 16 protruding from the second cylindrical portion 11b to the other side in the width direction.
 上述したように、流入口93cおよび流出口93dは、幅方向Xに開口する。そのため、流入口および流出口が軸方向Yあるいは鉛直方向Zに開口するような場合に比べて、流入口93cおよび流出口93dを設けやすい。本実施形態では、流入口93cおよび流出口93dは、ハウジング10における幅方向Xの同じ側に設けられるため、冷却流路90への冷媒の流入および流出を容易にできる。流入口93cと流出口93dとは、鉛直方向Zに並んで配置される。流入口93cは、流出口93dの上側に位置する。なお、流入口93cの鉛直方向位置と流出口93dの鉛直方向位置とは、同じであってもよい。 As described above, the inflow port 93c and the outflow port 93d open in the width direction X. Therefore, the inflow port 93c and the outflow port 93d are more easily provided than when the inflow port and the outflow port open in the axial direction Y or the vertical direction Z. In the present embodiment, the inflow port 93c and the outflow port 93d are provided on the same side of the housing 10 in the width direction X, so that the refrigerant can easily flow into and out of the cooling flow path 90. The inflow port 93c and the outflow port 93d are arranged side by side in the vertical direction Z. The inflow port 93c is located above the outflow port 93d. The vertical position of the inflow port 93c and the vertical position of the outflow port 93d may be the same.
 流入ノズル部15から流入口93cを介して流入流路93aに流入した冷媒は、第1流路部91aから各第1流路部および各第2流路部を順に介して、第1流路部91fから流出流路93bに流入する。そして、流出流路93bに流入した冷媒は、流出口93dを介して流出ノズル部16から冷却流路90の外部に流出する。このようにして、冷却流路90内を冷媒が循環する。 The refrigerant that has flowed into the inflow channel 93a from the inflow nozzle portion 15 via the inflow port 93c passes through the first flow channel portion 91a and the first flow channel portion and the second flow channel portion, respectively. The part 91f flows into the outflow channel 93b. Then, the refrigerant flowing into the outflow channel 93b flows out of the cooling channel 90 from the outflow nozzle portion 16 through the outflow port 93d. In this way, the refrigerant circulates through the cooling channel 90.
 上述した本実施形態のモータ1は、例えば、図8に示す駆動装置2に搭載される。駆動装置2は、車両に搭載され、車両の車輪を回転させる。駆動装置2は、モータ1と、減速装置3と、差動装置4と、ギヤハウジング6と、を備える。ギヤハウジング6は、減速装置3と差動装置4とを内部に収容する。ギヤハウジング6は、モータ1のハウジング10に固定される。ギヤハウジング6の内部には、オイルOが貯留される。 モ ー タ The above-described motor 1 of the present embodiment is mounted on, for example, a driving device 2 shown in FIG. The drive device 2 is mounted on a vehicle and rotates wheels of the vehicle. The drive device 2 includes a motor 1, a speed reduction device 3, a differential device 4, and a gear housing 6. The gear housing 6 houses the reduction gear 3 and the differential 4 therein. The gear housing 6 is fixed to the housing 10 of the motor 1. Oil O is stored inside the gear housing 6.
 減速装置3は、モータ1に接続される。減速装置3は、モータシャフト20aの出力軸部21bに接続される。減速装置3は、モータ1の回転速度を減じて、モータ1から出力されるトルクを減速比に応じて増大させる。減速装置3は、モータ1から出力されるトルクを差動装置4へ伝達する。減速装置3は、第1のギヤ3aと、第2のギヤ3bと、第3のギヤ3cと、中間シャフト3dと、を有する。 The reduction gear 3 is connected to the motor 1. The reduction gear transmission 3 is connected to the output shaft 21b of the motor shaft 20a. The reduction gear 3 reduces the rotation speed of the motor 1 and increases the torque output from the motor 1 according to the reduction ratio. The reduction gear transmission 3 transmits the torque output from the motor 1 to the differential gear 4. The reduction gear transmission 3 has a first gear 3a, a second gear 3b, a third gear 3c, and an intermediate shaft 3d.
 第1のギヤ3aは、出力軸部21bにおける外周面に固定される。中間シャフト3dは、中心軸J1から径方向外側に離れた位置に配置され、軸方向Yに延びる。第2のギヤ3bおよび第3のギヤ3cは、中間シャフト3dの外周面に固定される。第2のギヤ3bと第3のギヤ3cは、中間シャフト3dを介して接続される。第2のギヤ3bおよび第3のギヤ3cは、中間シャフト3dの中心軸を中心として回転する。第2のギヤ3bは、第1のギヤ3aに噛み合う。第3のギヤ3cは、差動装置4の後述するリングギヤ4aと噛み合う。 The first gear 3a is fixed to the outer peripheral surface of the output shaft 21b. The intermediate shaft 3d is arranged at a position radially outwardly away from the central axis J1 and extends in the axial direction Y. The second gear 3b and the third gear 3c are fixed to the outer peripheral surface of the intermediate shaft 3d. The second gear 3b and the third gear 3c are connected via an intermediate shaft 3d. The second gear 3b and the third gear 3c rotate around the central axis of the intermediate shaft 3d. The second gear 3b meshes with the first gear 3a. The third gear 3c meshes with a ring gear 4a described later of the differential device 4.
 モータ1から出力されるトルクは、減速装置3を介して差動装置4に伝達される。より詳細には、モータ1から出力されるトルクは、モータシャフト20a、第1のギヤ3a、第2のギヤ3b、中間シャフト3dおよび第3のギヤ3cをこの順に介して差動装置4のリングギヤ4aへ伝達される。各ギヤのギヤ比およびギヤの個数等は、必要とされる減速比に応じて種々変更可能である。本実施形態において減速装置3は、各ギヤの軸芯が平行に配置される平行軸歯車タイプの減速機である。 ト ル ク The torque output from the motor 1 is transmitted to the differential 4 via the reduction gear 3. More specifically, the torque output from the motor 1 is transmitted through the motor shaft 20a, the first gear 3a, the second gear 3b, the intermediate shaft 3d, and the third gear 3c in this order. 4a. The gear ratio of each gear and the number of gears can be variously changed according to the required reduction ratio. In the present embodiment, the reduction gear 3 is a parallel shaft gear type reduction gear in which the axes of the respective gears are arranged in parallel.
 差動装置4は、減速装置3に接続される。これにより、差動装置4は、減速装置3を介してモータ1に接続される。差動装置4は、モータ1から出力されるトルクを車両の車輪に伝達する装置である。差動装置4は、車両の旋回時に、左右の車輪の速度差を吸収しつつ、左右両輪の車軸5に同トルクを伝える。これにより、差動装置4は、車軸5を回転させる。 The differential 4 is connected to the speed reducer 3. Thus, the differential 4 is connected to the motor 1 via the speed reducer 3. The differential device 4 is a device that transmits torque output from the motor 1 to wheels of a vehicle. The differential device 4 transmits the same torque to the axles 5 of the left and right wheels while absorbing the speed difference between the left and right wheels when the vehicle turns. Thereby, the differential 4 rotates the axle 5.
 差動装置4は、リングギヤ4aと、図示しないギヤハウジングと、図示しない一対のピニオンギヤと、図示しないピニオンシャフトと、図示しない一対のサイドギヤと、を有する。リングギヤ4aは、第3のギヤ3cと噛み合う。これにより、リングギヤ4aには、モータ1から出力されるトルクが減速装置3を介して伝えられる。リングギヤ4aの下側の端部は、ギヤハウジング6に貯留されたオイルOに浸漬する。これにより、リングギヤ4aが回転することで、オイルOがかき上げられる。かき上げられたオイルOは、例えば、減速装置3および差動装置4に潤滑油として供給される。 The differential 4 has a ring gear 4a, a gear housing (not shown), a pair of pinion gears (not shown), a pinion shaft (not shown), and a pair of side gears (not shown). The ring gear 4a meshes with the third gear 3c. Thus, the torque output from the motor 1 is transmitted to the ring gear 4 a via the reduction gear 3. The lower end of the ring gear 4 a is immersed in the oil O stored in the gear housing 6. Accordingly, the oil O is scraped up by the rotation of the ring gear 4a. The scraped-up oil O is supplied to, for example, the reduction gear 3 and the differential 4 as lubricating oil.
 本発明は上述の実施形態に限られず、他の構成を採用することもできる。フィン部の数は、1つ以上であれば、特に限定されない。フィン部は、ハウジングに設けられればよい。例えば、フィン部は、第2筒部に設けられてもよいし、第1筒部と第2筒部との両方に設けられてもよい。フィン部は、筒部の上側部分に設けられてもよい。また、フィン部は、筒部以外の部分に設けられてもよい。この場合、例えば、フィン部は、上述した実施形態の蓋部13に設けられてもよいし、底部11aに設けられてもよい。フィン部の形状は、特に限定されない。フィン部は、円柱状であってもよいし、多角柱状であってもよい。複数のフィン部は、互いに形状が異なってもよい。複数のフィン部は、突出する方向が互
いに異なるフィン部を含んでもよい。
The present invention is not limited to the above embodiment, and other configurations can be adopted. The number of fin portions is not particularly limited as long as it is one or more. The fin portion may be provided on the housing. For example, the fin portion may be provided on the second tubular portion, or may be provided on both the first tubular portion and the second tubular portion. The fin portion may be provided on an upper portion of the tubular portion. Further, the fin portion may be provided in a portion other than the cylindrical portion. In this case, for example, the fin portion may be provided on the lid portion 13 of the above-described embodiment, or may be provided on the bottom portion 11a. The shape of the fin is not particularly limited. The fin portion may be cylindrical or polygonal. The plurality of fin portions may have different shapes from each other. The plurality of fin portions may include fin portions that project in different directions.
 冷却流路90の形状は、特に限定されない。冷却流路90は、波形状でなくてもよく、例えば、幅方向Xに直線的に延びる幅広の流路であってもよいし、軸方向Yに直線的に延びる幅広の流路であってもよい。また、冷却流路90は、複数設けられてもよい。第1流路部91a~91fの流路断面は、互いに同じ寸法および同じ形状であってもよい。冷却流路90の流路断面積は、全体に亘って均一であってもよいし、部分的に異なっていてもよい。 形状 The shape of the cooling channel 90 is not particularly limited. The cooling channel 90 may not be wavy, for example, may be a wide channel linearly extending in the width direction X, or a wide channel linearly extending in the axial direction Y. Is also good. Further, a plurality of cooling channels 90 may be provided. The flow path cross sections of the first flow path portions 91a to 91f may have the same dimensions and the same shape. The passage cross-sectional area of the cooling passage 90 may be uniform throughout or may be partially different.
 また、流入口93cと流出口93dとは、互いに幅方向Xの逆側に開口してもよい。また、流入口93cおよび流出口93dのそれぞれが、ハウジングの本体部とウォータジャケットとのうちの一方に、本体部とウォータジャケットとのうちの他方から離れて設けられる構成を採用できる。すなわち、例えば、流入口93cおよび流出口93dは、ハウジングの本体部に、ウォータジャケットから離れて設けられてもよい。この場合、流入口93cおよび流出口93dは、本体部のうち第2筒部以外の部分に設けられてもよい。 流 Furthermore, the inflow port 93c and the outflow port 93d may be opened on opposite sides in the width direction X. In addition, a configuration can be adopted in which each of the inflow port 93c and the outflow port 93d is provided on one of the main body of the housing and the water jacket, and is provided separately from the other of the main body and the water jacket. That is, for example, the inflow port 93c and the outflow port 93d may be provided on the main body of the housing so as to be separated from the water jacket. In this case, the inflow port 93c and the outflow port 93d may be provided in a portion other than the second cylindrical portion in the main body.
 また、上述した実施形態ではウォータジャケット60の外周面に溝61aが設けられて冷却流路90が構成されているが、これに限られない。例えば、第2筒部11bの内周面に溝が設けられ、その溝がウォータジャケット60の外周面によって塞がれることで冷却流路が構成されていてもよい。この場合、ウォータジャケット60の外周面には、溝が設けられていなくてもよいし、第2筒部11bの内周面に設けられた溝と対向する溝が設けられていてもよい。冷却流路を構成する部材が、ステータコアと接していればよい。 Further, in the above-described embodiment, the cooling channel 90 is configured by providing the groove 61 a on the outer peripheral surface of the water jacket 60, but is not limited thereto. For example, a cooling channel may be formed by providing a groove on the inner peripheral surface of the second cylindrical portion 11b and closing the groove with the outer peripheral surface of the water jacket 60. In this case, a groove may not be provided on the outer peripheral surface of the water jacket 60, or a groove facing the groove provided on the inner peripheral surface of the second cylindrical portion 11b may be provided. It is only necessary that the member constituting the cooling channel is in contact with the stator core.
 中心軸が延びる一方向、すなわちモータシャフト20aが延びる軸方向は、特に限定されず、鉛直方向Zと直交せずに交差してもよいし、鉛直方向Zと平行であってもよい。ロータコア22は、モータシャフト本体21の外周面に圧入等により固定されてもよい。この場合、第1エンドプレート24および第2エンドプレート25は設けられなくてもよい。また、この場合、第2貫通孔26a,26bから流出したオイルOが直接的にコイル32に供給されてもよいし、第2貫通孔26a,26bと繋がる孔がロータコア22に設けられ、ロータコア22の孔を介してオイルOがコイル32に供給されてもよい。また、モータシャフト20aから噴出されるオイルOは、ステータコア31に供給されてもよい。 一 One direction in which the central axis extends, that is, the axial direction in which the motor shaft 20a extends, is not particularly limited, and may intersect the vertical direction Z without being orthogonal, or may be parallel to the vertical direction Z. The rotor core 22 may be fixed to the outer peripheral surface of the motor shaft main body 21 by press fitting or the like. In this case, the first end plate 24 and the second end plate 25 need not be provided. In this case, the oil O flowing out of the second through holes 26a, 26b may be directly supplied to the coil 32, or a hole connected to the second through holes 26a, 26b is provided in the rotor core 22, and the rotor core 22 The oil O may be supplied to the coil 32 through the hole. Further, the oil O spouted from the motor shaft 20a may be supplied to the stator core 31.
 また、吐出口45から吐出されるオイルOが供給される箇所は、特に限定されず、例えば、ロータ20、ステータ30およびベアリング70,71のいずれか1つあるいは2つのみに供給されてもよいし、いずれにも供給されなくてもよい。吐出口45から吐出されるオイルOは、例えば、収容部17の鉛直方向上側領域の内側面に供給されてもよい。この場合、ハウジング10が冷却されることで、間接的にステータ30を冷却することができる。また、第2貫通孔26a~26dのうちのいずれか1つ以上が設けられなくてもよい。外歯歯車42の歯部42aの歯形および内歯歯車43の歯部43aの歯形は、サイクロイド歯形であってもよいし、インボリュート歯形であってもよい。また、ポンプ部40は、ステータ30およびロータ20のいずれか一方にオイルOを送る構成でもよい。また、ポンプ部40は、設けられなくてもよい。 The location where the oil O discharged from the discharge port 45 is supplied is not particularly limited. For example, the oil O may be supplied to only one or two of the rotor 20, the stator 30, and the bearings 70 and 71. However, it may not be supplied to any of them. The oil O discharged from the discharge port 45 may be supplied to, for example, the inner surface of the vertically upper region of the housing 17. In this case, the stator 30 can be indirectly cooled by cooling the housing 10. Further, any one or more of the second through holes 26a to 26d may not be provided. The tooth shape of the tooth portion 42a of the external gear 42 and the tooth shape of the tooth portion 43a of the internal gear 43 may be a cycloid tooth shape or an involute tooth shape. Further, the pump section 40 may be configured to send the oil O to one of the stator 30 and the rotor 20. Further, the pump section 40 may not be provided.
 なお、上述した実施形態のモータの用途は、特に限定されない。上述した実施形態のモータは、例えば、車両に搭載される。また、モータとしてではなく、発電機として用いられてもよい。また、上述した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 The application of the motor according to the above-described embodiment is not particularly limited. The motor of the above-described embodiment is mounted on, for example, a vehicle. Further, it may be used not as a motor but as a generator. In addition, the above-described configurations can be appropriately combined as long as they do not conflict with each other.
 1…モータ、10…ハウジング、10a…筒部、11b…第2筒部、13…蓋部、13
a…第1油路、13h…開口部、17…収容部、20…ロータ、20a…モータシャフト、20b…第2油路、26a,26b,26c,26d…第2貫通孔(貫通孔)、30…ステータ、31…ステータコア、32…コイル、32a,32b…コイルエンド、40…ポンプ部、45…吐出口、46…ポンプ室、61…第1筒部、63…フィン部、90…冷却流路、J1…中心軸、O…オイル、R…周方向、Y…軸方向、Z…鉛直方向
DESCRIPTION OF SYMBOLS 1 ... Motor, 10 ... Housing, 10a ... Cylinder part, 11b ... Second cylinder part, 13 ... Lid part, 13
a: first oil passage, 13h: opening, 17: housing, 20: rotor, 20a: motor shaft, 20b: second oil passage, 26a, 26b, 26c, 26d: second through hole (through hole), Reference Signs List 30: stator, 31: stator core, 32: coil, 32a, 32b: coil end, 40: pump unit, 45: discharge port, 46: pump chamber, 61: first cylindrical unit, 63: fin unit, 90: cooling flow Road, J1: central axis, O: oil, R: circumferential direction, Y: axial direction, Z: vertical direction

Claims (10)

  1.  一方向に延びる中心軸に沿って配置されるモータシャフトを有するロータと、
     前記ロータと径方向に隙間を介して対向するステータと、
     前記ロータおよび前記ステータを収容するとともにオイルを貯留可能な収容部を有する
    ハウジングと、
     を備え、
     前記ハウジングは、前記ステータを径方向外側から支持する筒部を有し、
     前記筒部は、冷媒が流れる冷却流路を有し、
     前記ハウジングは、前記収容部内に突出するフィン部を有する、モータ。
    A rotor having a motor shaft arranged along a central axis extending in one direction;
    A stator radially opposed to the rotor via a gap,
    A housing that houses the rotor and the stator and has a housing portion that can store oil;
    With
    The housing has a cylindrical portion that supports the stator from a radial outside,
    The cylindrical portion has a cooling channel through which a refrigerant flows,
    The motor, wherein the housing has a fin portion protruding into the housing portion.
  2.  前記筒部は、
      前記ステータを径方向外側から支持する筒状の第1筒部と、
      前記第1筒部の径方向外側に位置する筒状の第2筒部と、
     を有し、
     前記冷却流路は、前記第1筒部と前記第2筒部との径方向の間に配置される、請求項1に記載のモータ。
    The tubular portion is
    A first cylindrical portion that supports the stator from a radially outer side;
    A second cylindrical portion, which is located radially outside the first cylindrical portion,
    Has,
    2. The motor according to claim 1, wherein the cooling flow path is disposed between the first cylinder and the second cylinder in a radial direction. 3.
  3.  前記フィン部は、前記第1筒部および第2筒部の少なくとも一方に設けられる、請求項2に記載のモータ。 The motor according to claim 2, wherein the fin portion is provided on at least one of the first cylinder portion and the second cylinder portion.
  4.  前記フィン部は、前記筒部のうち鉛直方向下側の部分に設けられる、請求項1から3のいずれか一項に記載のモータ。 The motor according to any one of claims 1 to 3, wherein the fin portion is provided in a vertically lower portion of the cylindrical portion.
  5.  前記モータシャフトを介して駆動されるポンプ部を備え、
     前記ポンプ部は、
      ポンプ室と、
      前記収容部内から前記ポンプ室内にオイルを吸込可能な吸込口と、
      前記ポンプ室内からオイルを吐出可能な吐出口と、
      を有し、
     前記ハウジングは、前記筒部の軸方向一方側の端部を塞ぐ蓋部を有し、
     前記蓋部は、前記収容部内と前記吸込口とを繋ぐ第1油路を有し、
     前記モータシャフトは、
      前記モータシャフトの内部に設けられ、前記吐出口と繋がる第2油路と、
      前記第2油路と前記モータシャフトの外周面とを繋ぐ貫通孔と、
     を有し、
     前記フィン部は、前記蓋部に向かって軸方向一方側に突出し、前記蓋部と軸方向に対向する、請求項1から4のいずれか一項に記載のモータ。
    A pump unit driven via the motor shaft,
    The pump section,
    A pump room,
    An inlet capable of sucking oil into the pump chamber from within the housing,
    A discharge port capable of discharging oil from the pump chamber,
    Has,
    The housing has a lid that closes one axial end of the cylindrical portion,
    The lid has a first oil passage connecting the inside of the housing and the suction port,
    The motor shaft,
    A second oil passage provided inside the motor shaft and connected to the discharge port;
    A through-hole connecting the second oil passage and the outer peripheral surface of the motor shaft,
    Has,
    The motor according to any one of claims 1 to 4, wherein the fin portion protrudes toward one side in the axial direction toward the lid portion, and faces the lid portion in the axial direction.
  6.  前記第1油路は、前記収容部内に開口する開口部を有し、
     前記フィン部の少なくとも一部は、前記開口部に臨む、請求項5に記載のモータ。
    The first oil passage has an opening that opens into the housing section,
    The motor according to claim 5, wherein at least a part of the fin portion faces the opening.
  7.  前記ステータは、
      ステータコアと、
      ステータコアに装着されるコイルと、
     を有し、
     前記コイルは、前記ステータコアよりも軸方向一方側に突出するコイルエンドを有し、
     前記フィン部は、前記筒部から前記コイルエンドよりも軸方向一方側に突出する、請求項1から6のいずれか一項に記載のモータ。
    The stator is
    A stator core,
    A coil mounted on the stator core,
    Has,
    The coil has a coil end projecting to one side in the axial direction from the stator core,
    The motor according to any one of claims 1 to 6, wherein the fin portion protrudes from the cylindrical portion to one side in the axial direction from the coil end.
  8.  前記冷却流路は、周方向に延びる、請求項1から7のいずれか一項に記載のモータ。 The motor according to any one of claims 1 to 7, wherein the cooling flow path extends in a circumferential direction.
  9.  前記冷却流路は、周方向において波形状に延びる、請求項8に記載のモータ。 The motor according to claim 8, wherein the cooling flow path extends in a circumferential direction in a wave shape.
  10.  前記冷却流路の少なくとも一部は、前記収容部内に収容されるオイルの油面よりも鉛直
    方向上側に位置する、請求項8または9に記載のモータ。
    The motor according to claim 8, wherein at least a part of the cooling flow path is located vertically above an oil level of oil stored in the storage section.
PCT/JP2019/030835 2018-08-07 2019-08-06 Motor WO2020031999A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020535776A JP7452423B2 (en) 2018-08-07 2019-08-06 motor
CN201980052163.5A CN112534690A (en) 2018-08-07 2019-08-06 Motor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018148692 2018-08-07
JP2018-148692 2018-08-07
JP2018-148693 2018-08-07
JP2018148693 2018-08-07

Publications (1)

Publication Number Publication Date
WO2020031999A1 true WO2020031999A1 (en) 2020-02-13

Family

ID=69414898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030835 WO2020031999A1 (en) 2018-08-07 2019-08-06 Motor

Country Status (3)

Country Link
JP (1) JP7452423B2 (en)
CN (1) CN112534690A (en)
WO (1) WO2020031999A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762754A (en) * 1980-10-03 1982-04-15 Teikoku Denki Seisakusho:Kk Heat exchanger of canned motor with heat pipe
JP2001238406A (en) * 1999-04-27 2001-08-31 Aisin Aw Co Ltd Driver
JP2004215358A (en) * 2002-12-27 2004-07-29 Toyota Motor Corp Polyphase motor device
JP2004248402A (en) * 2003-02-13 2004-09-02 Toyota Motor Corp Driver for vehicle
JP2008186820A (en) * 2007-01-26 2008-08-14 Aisin Aw Co Ltd Heat generation body cooling structure and drive
JP2009038864A (en) * 2007-07-31 2009-02-19 Nissan Motor Co Ltd Cooler for motor and cooling method thereof
WO2015008390A1 (en) * 2013-07-19 2015-01-22 株式会社 東芝 Liquid-cooled electric motor
JP2017085830A (en) * 2015-10-30 2017-05-18 株式会社日立製作所 Rotary electric machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642821B2 (en) * 2013-02-26 2014-12-17 ファナック株式会社 Cooling jacket having grooves for allowing refrigerant to pass through, stator provided with cooling jacket, and rotating electrical machine provided with cooling jacket
CN114362448A (en) 2016-08-09 2022-04-15 日本电产株式会社 Drive device
WO2018030325A1 (en) * 2016-08-09 2018-02-15 日本電産株式会社 Drive device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762754A (en) * 1980-10-03 1982-04-15 Teikoku Denki Seisakusho:Kk Heat exchanger of canned motor with heat pipe
JP2001238406A (en) * 1999-04-27 2001-08-31 Aisin Aw Co Ltd Driver
JP2004215358A (en) * 2002-12-27 2004-07-29 Toyota Motor Corp Polyphase motor device
JP2004248402A (en) * 2003-02-13 2004-09-02 Toyota Motor Corp Driver for vehicle
JP2008186820A (en) * 2007-01-26 2008-08-14 Aisin Aw Co Ltd Heat generation body cooling structure and drive
JP2009038864A (en) * 2007-07-31 2009-02-19 Nissan Motor Co Ltd Cooler for motor and cooling method thereof
WO2015008390A1 (en) * 2013-07-19 2015-01-22 株式会社 東芝 Liquid-cooled electric motor
JP2017085830A (en) * 2015-10-30 2017-05-18 株式会社日立製作所 Rotary electric machine

Also Published As

Publication number Publication date
JPWO2020031999A1 (en) 2021-08-10
CN112534690A (en) 2021-03-19
JP7452423B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
US11434977B2 (en) Vehicle drive device
CN109563829B (en) Drive device
TWI786854B (en) Power transmission device and motor unit
EP3098382B1 (en) Pump device comprising a motor portion and a pump portion with a housing
US11781643B2 (en) Drive device
WO2013190999A1 (en) Rotating electrical machine
WO2019208081A1 (en) Motor unit and vehicle drive device
WO2019208083A1 (en) Motor unit
CN110915108B (en) Motor
JP2022136505A (en) Drive device
JP2018038099A (en) Electric motor
US20120293027A1 (en) Rotating electrical machine and housing for rotating electrical machine
JP7456382B2 (en) motor unit
JP2018014857A (en) Cooling structure of electric motor
WO2019208084A1 (en) Motor unit and method for controlling motor unit
JP2023042978A (en) Driving device
WO2018030345A1 (en) Drive device
WO2020031999A1 (en) Motor
CN111953139A (en) Rotating electrical machine
CN111033972B (en) Drive device
WO2019208082A1 (en) Motor unit
CN111033969B (en) Drive device
WO2020021759A1 (en) Electric motor
TWI792763B (en) Power transmission device, motor unit and vehicle
WO2024117186A1 (en) Vehicular drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846401

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535776

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846401

Country of ref document: EP

Kind code of ref document: A1