WO2019208081A1 - Motor unit and vehicle drive device - Google Patents

Motor unit and vehicle drive device Download PDF

Info

Publication number
WO2019208081A1
WO2019208081A1 PCT/JP2019/013508 JP2019013508W WO2019208081A1 WO 2019208081 A1 WO2019208081 A1 WO 2019208081A1 JP 2019013508 W JP2019013508 W JP 2019013508W WO 2019208081 A1 WO2019208081 A1 WO 2019208081A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
motor
oil passage
motor unit
housing
Prior art date
Application number
PCT/JP2019/013508
Other languages
French (fr)
Japanese (ja)
Inventor
山口 康夫
久嗣 藤原
中村 圭吾
隆宏 檜皮
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201980028271.9A priority Critical patent/CN112088262A/en
Publication of WO2019208081A1 publication Critical patent/WO2019208081A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/025Support of gearboxes, e.g. torque arms, or attachment to other devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a motor unit and a vehicle drive device.
  • This application is based on US Provisional Application No. 62 / 663,324 filed on Apr. 27, 2018 and Japanese Patent Application No. 2018-150702 filed on Aug. 9, 2018. This application claims the benefit of priority to that application. The entire contents of which are hereby incorporated by reference.
  • a motor unit that rotates the axle of a vehicle is known.
  • the vehicle cooling device of Patent Document 1 is mounted on a vehicle including an electric motor, an inverter, and a power transmission mechanism, and cools oil in an oil circulation circuit.
  • the motor unit When installing a motor unit in a vehicle, the motor unit is often installed in a subframe. For this reason, it may be difficult to connect a motor unit and another apparatus by piping, a hose, etc.
  • an object of the present invention is to provide a motor unit and a vehicle drive device that can be easily connected to another device provided in a vehicle.
  • One aspect of the present invention is a motor unit that rotates an axle of a vehicle, the motor having a motor shaft that rotates about the motor shaft, and the motor shaft that is connected to the motor shaft, and transmits the power of the motor to the output shaft.
  • a transmission mechanism a housing that houses the motor and the transmission mechanism, an oil passage provided inside the housing, an electric oil pump that circulates oil through the oil passage, and a part of the oil passage.
  • An oil cooler that cools the oil, and the oil cooler is disposed in an upper portion of the housing opposite to a road surface in a vertical direction.
  • the motor unit described above a subframe that supports the motor unit and is attached to the vehicle, an inverter electrically connected to the motor unit, and the inverter are accommodated.
  • An inverter case wherein the sub-frame has a portion facing the motor unit from an axial direction and a front-rear direction of the vehicle, and the inverter case is disposed above the sub-frame.
  • the oil cooler is disposed at least partially above the subframe, and can receive the coolant flowing through the inverter case.
  • the motor unit and the vehicle drive device of one aspect of the present invention it is easy to connect to another device provided in the vehicle.
  • FIG. 1 is a schematic diagram showing a motor unit and a vehicle drive device of an embodiment mounted on a vehicle.
  • FIG. 2 is a perspective view showing the motor unit and the vehicle drive device.
  • FIG. 3 is a side view showing the motor unit and the vehicle drive device.
  • FIG. 4 is a perspective view showing the motor unit.
  • FIG. 5 is a cross-sectional view showing the motor unit.
  • FIG. 6 is a diagram schematically showing the direction of oil flowing through the oil passage of the motor unit.
  • FIG. 7 is a schematic view showing an oil passage of the motor unit.
  • FIG. 8 is a schematic view showing the direction of oil flowing through the oil passage.
  • FIG. 9 is a schematic view showing the direction of oil flowing through the oil passage.
  • FIG. 10 is a schematic diagram illustrating an oil passage of a motor unit according to a modification of the embodiment.
  • the vertical direction is defined and described based on the positional relationship when the motor unit 1 of the present embodiment shown in each drawing is mounted on a vehicle 100 located on a horizontal road surface.
  • an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system.
  • the Z-axis direction is the vertical direction.
  • the + Z side is the upper side in the vertical direction
  • the ⁇ Z side is the lower side in the vertical direction.
  • the upper side in the vertical direction is simply referred to as “upper side”
  • the lower side in the vertical direction is simply referred to as “lower side”.
  • the X-axis direction is a direction orthogonal to the Z-axis direction and is the front-rear direction of the vehicle 100 on which the motor unit 1 is mounted.
  • the + X side is the front side of the vehicle 100
  • the ⁇ X side is the rear side of the vehicle 100.
  • the Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction, and is the left-right direction (vehicle width direction) of the vehicle 100.
  • the + Y side is the left side of the vehicle 100
  • the ⁇ Y side is the right side of the vehicle 100.
  • the positional relationship in the front-rear direction is not limited to the positional relationship of the present embodiment, and the + X side may be the rear side of the vehicle 100 and the ⁇ X side may be the front side of the vehicle 100.
  • the + Y side is the right side of the vehicle 100
  • the ⁇ Y side is the left side of the vehicle 100.
  • the motor shaft J2 shown as appropriate in each drawing extends in the Y-axis direction, that is, the left-right direction of the vehicle.
  • a direction parallel to the motor shaft J2 is simply referred to as “axial direction”.
  • a direction from the motor 20 to the transmission mechanism 30 (to be described later) of the motor unit 1 is referred to as one axial direction
  • a direction from the transmission mechanism 30 to the motor 20 is referred to as the other axial direction.
  • one axial side is the + Y side and the other axial side is -Y side.
  • one axial side is the ⁇ Y side
  • the other axial side is the + Y side.
  • the radial direction around the motor shaft J2 is simply referred to as “radial direction”.
  • a direction approaching the motor shaft J2 is referred to as a radially inner side
  • a direction away from the motor shaft J2 is referred to as a radially outer side.
  • the circumferential direction around the motor axis J2, that is, the circumference of the motor axis J2 is simply referred to as “circumferential direction”.
  • the “parallel direction” includes a substantially parallel direction
  • the “perpendicular direction” includes a substantially orthogonal direction.
  • the vehicle 100 includes two vehicle drive devices 10 and 101 as power generation means for rotating the axle. That is, the vehicle 100 has a power train, and the power train includes two vehicle drive devices 10 and 101 and a battery (not shown).
  • the vehicle 100 of the present embodiment is an electric vehicle (EV) that uses a motor as power generation means.
  • the vehicle 100 includes a front vehicle drive device 101 and a rear vehicle drive device 10.
  • the front vehicle drive device 101 drives the front left wheel and the front right wheel.
  • the rear vehicle drive device 10 includes a pair of rear motor units 1. Of the pair of rear motor units 1, one motor unit 1 drives the rear left wheel, and the other motor unit 1 drives the rear right wheel.
  • the rear vehicle drive device 10 is disposed at a substantially central portion of the vehicle 100 in the vehicle width direction.
  • the two motor units 1 of the vehicle drive device 10 face each other in the vehicle width direction and are arranged side by side in the vehicle width direction.
  • the two motor units 1 have a symmetrical structure with respect to each other about a virtual vertical plane that includes the central axis J1 in the vehicle width direction of the vehicle 100 and is perpendicular to the motor axis J2.
  • the vehicle drive device 10 of this embodiment includes a motor unit 1, a subframe 2, an inverter 3, and an inverter case 4.
  • the subframe 2 is attached to the vehicle 100.
  • the sub frame 2 supports the motor unit 1.
  • the subframe 2 also supports the inverter case 4.
  • the subframe 2 includes a front frame portion 2a, a rear frame portion 2b, and a pair of horizontal frame portions 2c.
  • the front frame portion 2a extends in the axial direction (vehicle width direction) and faces the motor unit 1 from the front side.
  • the front frame portion 2a comes into contact with a housing 11 (described later) of the motor unit 1 from the front side.
  • the rear frame portion 2b extends in the axial direction and faces the motor unit 1 from the rear side.
  • the rear frame portion 2b contacts the housing 11 of the motor unit 1 from the rear side.
  • the motor unit 1 is sandwiched between the front frame part 2a and the rear frame part 2b from the front-rear direction.
  • a pair of horizontal frame part 2c is arrange
  • the pair of horizontal frame portions 2c extend in the front-rear direction and face the motor unit 1 from the axial direction.
  • the horizontal frame portion 2 c faces the housing 11 of the motor unit 1 with a gap in the axial direction.
  • the present invention is not limited thereto, and the horizontal frame portion 2c may contact the housing 11 of the motor unit 1 from the axial direction.
  • the pair of motor units 1 are disposed between the pair of horizontal frame portions 2c in the axial direction.
  • the subframe 2 has a portion facing the motor unit 1 from the axial direction and the front-rear direction.
  • the inverter 3 is electrically connected to the motor unit 1. In the present embodiment, the inverter 3 is electrically connected to the pair of motor units 1. The inverter 3 is electrically connected to a stator 26 of the motor 20 described later of the motor unit 1. The inverter 3 can adjust the power supplied to the stator 26. The inverter 3 is controlled by an electronic control device (not shown).
  • the inverter case 4 accommodates the inverter 3. That is, the inverter 3 is disposed inside the inverter case 4.
  • the inverter case 4 has a container shape that can accommodate the inverter 3. In the example of the present embodiment, the inverter case 4 has a rectangular parallelepiped shape. However, the present invention is not limited to this, and the inverter case 4 may have a shape other than a rectangular parallelepiped shape.
  • the inverter case 4 is disposed on the upper part of the subframe 2.
  • the inverter case 4 is disposed at a substantially central portion in the axial direction of the subframe 2 and is supported by the subframe 2.
  • the inverter case 4 has a water channel (not shown) through which the coolant flows.
  • the water channel of the inverter case 4 is connected to a radiator (not shown) provided in the vehicle 100.
  • the coolant cooled by the radiator is supplied to the water channel of the inverter case 4.
  • the inverter 3 is cooled.
  • the motor unit 1 rotates the axle of the vehicle 100. 4 to 7, the motor unit 1 includes a housing 11, a plurality of bearings 14, 15, 16, a motor 20, a transmission mechanism 30, an oil passage 40, oil pumps 61, 62, An oil cooler 65, a first temperature sensor 70, a second temperature sensor (not shown), and a rotation sensor 80 are provided.
  • the bearings 14, 15, and 16 are, for example, ball bearings.
  • the housing 11 houses the motor 20 and the transmission mechanism 30.
  • the housing 11 includes a motor housing portion 12, a gear housing portion 13, and a partition wall portion 17.
  • the motor housing portion 12 and the gear housing portion 13 face each other in the axial direction and are arranged side by side in the axial direction.
  • the motor housing portion 12 is a portion of the housing 11 that houses the motor 20.
  • the motor housing portion 12 has a cylindrical shape extending in the axial direction.
  • the motor accommodating part 12 is a bottomed cylindrical shape.
  • the motor housing portion 12 opens on one side in the axial direction.
  • the motor housing part 12 has a peripheral wall part 12a and a bottom wall part 12b.
  • the bottom wall portion 12 b holds the bearing 14.
  • the bottom wall portion 12b supports the motor shaft 22 through the bearing 14 so as to be rotatable around the motor axis J2. That is, the housing 11 rotatably supports the motor shaft 22 via the bearing 14.
  • the gear housing portion 13 is a portion of the housing 11 that houses the transmission mechanism 30.
  • the gear accommodating part 13 is a cylinder shape extended in an axial direction.
  • the gear accommodating part 13 has the surrounding wall part 13a.
  • the peripheral wall portion 13a holds the bearing 15 therein.
  • the peripheral wall portion 13a supports the output shaft 38 via the bearing 15 so as to be rotatable around the motor axis J2. That is, the housing 11 rotatably supports the output shaft 38 via the bearing 15.
  • the partition wall 17 has a plate shape that extends in a direction perpendicular to the motor shaft J2.
  • the plate surface of the partition wall portion 17 faces the axial direction.
  • the partition wall portion 17 has an annular plate shape centered on the motor shaft J2.
  • the partition wall portion 17 is disposed in the gear housing portion 13.
  • the partition wall portion 17 is located on the other side in the axial direction from the bearing 15.
  • the outer peripheral part of the partition wall part 17 is fixed to the inner peripheral surface of the peripheral wall part 13a.
  • An inner peripheral portion of the partition wall portion 17 is connected to an outer peripheral portion of an internal gear 34 described later of the transmission mechanism 30.
  • the partition wall part 17 has an oil circulation hole 17a that penetrates the partition wall part 17 in the axial direction.
  • the oil circulation hole 17 a is disposed in at least the lower part of the partition wall portion 17. Only one oil circulation hole 17a may be provided in the partition wall 17 or a plurality of oil circulation holes 17a may be provided.
  • the motor 20 outputs torque that rotates the axle of the vehicle 100. Torque of the motor 20 is transmitted to the axle via the transmission mechanism 30.
  • the motor 20 includes a rotor 21 and a stator 26.
  • the rotor 21 includes a motor shaft 22, a rotor holder 23, a rotor core 24, and a rotor magnet 25.
  • the motor shaft 22 extends in the axial direction around the motor shaft J2.
  • the motor shaft 22 is cylindrical.
  • the motor shaft 22 is a hollow shaft that opens on both sides in the axial direction.
  • the motor shaft 22 rotates about the motor shaft J2.
  • the motor shaft 22 is supported by a pair of bearings 14 and 16 so as to be rotatable around the motor axis J2.
  • the bearing 14 supports an end portion on the other axial side of the motor shaft 22.
  • the bearing 16 supports a portion on one side of the motor shaft 22 in the axial direction.
  • the bearing 16 is held by a bearing holder 35 described later of the transmission mechanism 30.
  • the motor shaft 22 has a recess 22a.
  • the recess 22a opens to an end surface on one axial side of the motor shaft 22, and is recessed from the end surface to the other axial side.
  • the recess 22a has a hole shape extending in the axial direction.
  • a connecting shaft 31 (described later) of the transmission mechanism 30 is fitted into the recess 22a.
  • the inner diameter of the portion located on the other axial side of the recess 22a is smaller than the inner diameter of the recess 22a.
  • the largest inner diameter portion of the inner peripheral surface of the motor shaft 22 is the recess 22a. According to the present embodiment, it is possible to ensure a large thickness of the motor shaft 22 in a portion other than the recess 22 a of the motor shaft 22. Therefore, the rigidity of the motor shaft 22 can be increased.
  • the rotor holder 23 is fixed to the motor shaft 22.
  • the rotor holder 23 has a portion located on the radially outer side of the motor shaft 22.
  • the rotor holder 23 holds the rotor core 24 and the rotor magnet 25.
  • the rotor holder 23 has a bottomed cylindrical shape.
  • the rotor holder 23 opens to one side in the axial direction.
  • the rotor holder 23 includes a bottom portion 23a, a cylinder portion 23b, and a sensor support portion 23c.
  • the bottom 23a is a ring extending in the circumferential direction around the motor shaft J2.
  • the bottom portion 23a has a plate shape extending perpendicularly to the motor shaft J2, and the plate surface faces the axial direction.
  • the bottom portion 23a has an annular plate shape.
  • the inner peripheral portion of the bottom portion 23 a is fixed to the outer peripheral portion of the motor shaft 22.
  • the axial position of the bottom 23 a is on one side in the axial direction with respect to the axial position of the bearing 14, and on the other side in the axial direction with respect to the axial position of the bearing 16.
  • the cylinder portion 23b extends in the axial direction.
  • the cylinder portion 23b has a cylindrical shape centered on the motor shaft J2.
  • a space is provided between the inner peripheral surface of the cylindrical portion 23 b and the outer peripheral surface of the motor shaft 22.
  • the end portion on the other side in the axial direction is connected to the outer peripheral portion of the bottom portion 23a.
  • the inner diameter of the cylindrical portion 23b increases as it goes from the portion connected to the bottom portion 23a toward one side in the axial direction.
  • the inner peripheral surface of the cylindrical portion 23b has a tapered surface-shaped portion whose inner diameter increases as it goes toward one side in the axial direction.
  • the end portion on one side in the axial direction of the cylindrical portion 23b and the bearing 16 are disposed so as to overlap each other.
  • the end of the cylindrical portion 23b on the other side in the axial direction and the bearing 14 are disposed so as to overlap each other.
  • the sensor support portion 23c protrudes from the plate surface facing the other side in the axial direction of the bottom portion 23a to the other side in the axial direction.
  • the sensor support 23c has a cylindrical shape that extends in the axial direction about the motor shaft J2.
  • the sensor support portion 23c has a portion that protrudes to the other side in the axial direction than the end portion on the other side in the axial direction of the cylindrical portion 23b.
  • a resolver rotor 80a, which will be described later, of the rotation sensor 80 is fixed to the other end of the sensor support 23c in the axial direction. In the illustrated example, the resolver rotor 80a is fixed to the outer peripheral surface of the sensor support portion 23c.
  • the rotor core 24 is fixed to the outer peripheral surface of the cylindrical portion 23b.
  • the rotor core 24 has an annular shape that extends in the circumferential direction about the motor shaft J2.
  • the rotor core 24 has a cylindrical shape extending in the axial direction.
  • the rotor core 24 is, for example, a laminated steel plate configured by laminating a plurality of electromagnetic steel plates in the axial direction.
  • the rotor core 24 has a holding hole 24 a that penetrates the rotor core 24 in the axial direction at the radially outer end of the rotor core 24.
  • a plurality of holding holes 24 a are disposed at the radially outer end of the rotor core 24 at intervals in the circumferential direction.
  • the rotor magnets 25 are respectively held in the plurality of holding holes 24a.
  • the plurality of rotor magnets 25 are arranged in the circumferential direction at the radially outer end of the rotor core 24.
  • the rotor magnet 25 is fixed to the radially outer end of the rotor core 24.
  • the rotor magnet 25 may be comprised from the annular ring magnet.
  • the stator 26 faces the rotor 21 with a gap in the radial direction.
  • the stator 26 is located on the radially outer side of the rotor 21.
  • the stator 26 includes a stator core 27, an insulator (not shown), and a plurality of coils 28.
  • the stator core 27 has an annular shape that extends in the circumferential direction about the motor shaft J2. In the present embodiment, the stator core 27 has a cylindrical shape extending in the axial direction.
  • the stator core 27 is fixed to the inner peripheral surface of the motor housing portion 12.
  • the inner peripheral portion of the stator core 27 faces the outer peripheral portion of the rotor core 24 with a gap in the radial direction.
  • the stator core 27 is, for example, a laminated steel plate configured by laminating a plurality of electromagnetic steel plates in the axial direction.
  • the insulator material is, for example, an insulating material such as resin.
  • the plurality of coils 28 are attached to the stator core 27 via insulators.
  • the lower end portion of the stator 26 is disposed in an oil storage portion 50 (described later) of the oil passage 40.
  • the transmission mechanism 30 is connected to the motor shaft 22 and transmits the power of the motor 20 to the output shaft 38.
  • the transmission mechanism 30 is connected to an end portion on one side in the axial direction of the motor shaft 22.
  • the transmission mechanism 30 decelerates the rotation of the motor 20 to increase the torque, and outputs the rotation as a rotation around the output shaft J4 of the output shaft 38.
  • the transmission mechanism 30 is a speed reduction mechanism, and is a planetary gear mechanism in the present embodiment.
  • the output shaft J4 of the output shaft 38 is disposed coaxially with the motor shaft J2. According to this embodiment, the motor unit 1 can be reduced in size.
  • the transmission mechanism 30 includes a connecting shaft 31, a sun gear 32, a planetary gear 33, an internal gear 34, a bearing holder 35, a carrier pin 36, a carrier 37, an output shaft 38, and a plurality of bearings 39a and 39b.
  • the bearings 39a and 39b are, for example, needle roller bearings.
  • the connecting shaft 31 has a cylindrical shape extending in the axial direction.
  • the connection shaft 31 is a hollow shaft that opens on both sides in the axial direction.
  • One end of the coupling shaft 31 in the axial direction is rotatably supported around the motor axis J2 by the output shaft 38 via the bearing 39a. That is, the connecting shaft 31 and the output shaft 38 are rotatable in the circumferential direction via the bearing 39a.
  • the connecting shaft 31 is inserted into the recess 22a at the other end in the axial direction.
  • the connecting shaft 31 is fitted in the recess 22a at the other end in the axial direction.
  • a portion located on one axial side of the end portion on the other axial side of the outer peripheral surface of the connecting shaft 31 and a portion located on one axial side of the inner peripheral surface of the recess 22a are: They fit in the circumferential direction so as not to rotate with each other. That is, the connecting shaft 31 and the motor shaft 22 are not mutually rotatable in the circumferential direction.
  • the inner diameter of the recess 22a is large as described above. As the inner diameter of the recess 22a is larger, the outer diameter of the connecting shaft 31 fitted into the recess 22a can be increased. Therefore, the rigidity of the connecting shaft 31 can be increased while increasing the rigidity of the motor shaft 22 as described above.
  • the connecting shaft 31 is fitted such that the other end in the axial direction is movably movable in the axial direction with respect to the recess 22a.
  • the other axial end of the connecting shaft 31 is splined into the recess 22a.
  • the connecting shaft 31 is movable in the axial direction with respect to the motor shaft 22.
  • the end surface of the coupling shaft 31 facing the other side in the axial direction is in contact with the bottom surface of the recess 22a facing the one side in the axial direction or is opposed with a gap.
  • the inner diameter of the inner peripheral surface of the motor shaft 22 and the inner diameter of the inner peripheral surface of the connecting shaft 31 are substantially the same.
  • a second orifice 58 described later is provided between the inside of the motor shaft 22 and the inside of the connecting shaft 31.
  • the sun gear 32 is provided on the connecting shaft 31.
  • the sun gear 32 is an external gear whose central axis is the motor shaft J2.
  • the sun gear 32 is positioned on one side in the axial direction from the recess 22a.
  • the sun gear 32 is disposed in an intermediate portion located between the end portion on one side in the axial direction and the end portion on the other side in the axial direction in the outer peripheral portion of the connecting shaft 31.
  • the connecting shaft 31 and the sun gear 32 are part of a single member.
  • the sun gear 32 is a helical gear.
  • the gear teeth of the sun gear 32 extend around the motor shaft J2 in the axial direction. When viewed from the radial direction, the gear teeth of the sun gear 32 extend while being inclined with respect to the motor shaft J2.
  • the planetary gear 33 is disposed radially outside the sun gear 32 and meshes with the sun gear 32.
  • a plurality of planetary gears 33 are provided on the outer side in the radial direction of the sun gear 32 at intervals in the circumferential direction. That is, the transmission mechanism 30 has a plurality of planetary gears 33.
  • the transmission mechanism 30 includes three planetary gears 33 that are arranged at equal intervals in the circumferential direction.
  • the number of planetary gears 33 included in the transmission mechanism 30 is not limited to three.
  • the planetary gear 33 has an annular shape around the rotation axis J3.
  • the planetary gear 33 is an external gear whose central axis is the rotation axis J3.
  • the rotating shaft J3 is located radially outside the motor shaft J2 and extends in parallel with the motor shaft J2.
  • the rotation axis J3 is also the center axis of the carrier pin 36.
  • the planetary gear 33 has a cylindrical shape extending in the axial direction.
  • the planetary gear 33 rotates about the rotation axis J3. That is, the planetary gear 33 rotates around the rotation axis J3.
  • the planetary gear 33 rotates about the motor shaft J2. That is, the planetary gear 33 revolves around the motor shaft J2.
  • the planetary gear 33 revolves while rotating around the sun gear 32.
  • the planetary gear 33 has a first gear portion 33a and a second gear portion 33b.
  • the diameter (outer diameter) of the first gear portion 33a is larger than the diameter of the second gear portion 33b. That is, in this embodiment, the planetary gear 33 is a stepped pinion type. Therefore, the transmission mechanism 30 further increases the reduction ratio of the rotation of the motor 20.
  • the first gear portion 33 a has a portion located on the radially outer side than the internal gear 34.
  • the first gear portion 33 a has a portion facing the inner peripheral surface of the peripheral wall portion 13 a of the gear housing portion 13 with a gap from the radially inner side. When viewed from the axial direction, the first gear portion 33a and the partition wall portion 17 are arranged to overlap each other.
  • the first gear portion 33a has a cylindrical shape centered on the rotation axis J3. When viewed from the radial direction, the first gear portion 33a and the sun gear 32 are arranged to overlap each other. The first gear portion 33 a meshes with the sun gear 32. The diameter of the first gear portion 33 a is larger than the diameter of the sun gear 32.
  • the first gear portion 33a is a helical gear. That is, the gear teeth of the first gear portion 33a extend around the rotation axis J3 in the axial direction. When viewed from the direction perpendicular to the rotation axis J3, the gear teeth of the first gear portion 33a extend while being inclined with respect to the rotation axis J3.
  • the second gear portion 33b is cylindrical with the rotation axis J3 as the center.
  • the second gear portion 33 b meshes with the internal gear 34.
  • the second gear portion 33b is a helical gear. That is, the gear teeth of the second gear portion 33b extend around the rotation axis J3 in the axial direction. When viewed from a direction orthogonal to the rotation axis J3, the gear teeth of the second gear portion 33b extend while being inclined with respect to the rotation axis J3.
  • the second gear portion 33b has a meshing portion 33c and a fitting portion 33d.
  • the meshing portion 33c and the fitting portion 33d are arranged side by side in the axial direction.
  • the meshing portion 33c and the internal gear 34 are arranged to overlap each other.
  • the meshing portion 33c is a portion that meshes with the internal gear 34 in the second gear portion 33b. That is, the gear of the 2nd gear part 33b is provided in the outer periphery of the meshing part 33c.
  • the meshing part 33c is located on the other side in the axial direction from the fitting part 33d.
  • the diameter of the meshing part 33c is smaller than the diameter of the first gear part 33a.
  • the axial length of the meshing portion 33c is larger than the axial length of the first gear portion 33a.
  • the meshing portion 33 c is disposed so as to overlap with the end portion on the one axial side of the motor shaft 22, the end portion on the other axial side of the concave portion 22 a and the connecting shaft 31.
  • the fitting portion 33d is a portion that fits with the first gear portion 33a in the second gear portion 33b.
  • the inner peripheral portion of the first gear portion 33a is fitted to the outer peripheral portion of the fitting portion 33d so as to be movable in the axial direction. That is, the first gear portion 33a has a portion that is movably fitted in the axial direction with respect to the second gear portion 33b.
  • the inner peripheral portion of the first gear portion 33a is spline-fitted to the outer peripheral portion of the fitting portion 33d. For this reason, the first gear portion 33a is movable in the axial direction with respect to the second gear portion 33b.
  • the other axial end of the connecting shaft 31 is spline-fitted into the recess 22a.
  • the first gear portion 33a of the planetary gear 33 is spline-fitted with the second gear portion 33b. Therefore, when the motor unit 1 is manufactured, the assembly is assembled with the first gear portion 33a of the planetary gear 33 and the sun gear 32 of the connecting shaft 31 engaged with each other, and this assembly is assembled with the motor shaft 22 and the second gear portion. 33b can be attached. Therefore, assembly of the motor 20 and the transmission mechanism 30 is easy.
  • the sun gear 32 and the first gear portion 33a are helical gears, the above configuration makes assembly easier.
  • the internal gear 34 has an annular shape centered on the motor shaft J2.
  • the internal gear 34 is an internal gear whose central axis is the motor shaft J2.
  • the internal gear 34 has a cylindrical shape extending in the axial direction.
  • the internal gear 34 is disposed on the outer side in the radial direction of the planetary gear 33 and meshes with the planetary gear 33.
  • the internal gear 34 is arrange
  • the internal gear 34 is a helical gear. That is, the gear teeth of the internal gear 34 extend around the motor shaft J2 in the axial direction. When viewed from the radial direction, the gear teeth of the internal gear 34 are inclined and extend with respect to the motor shaft J2.
  • the internal gear 34 is fixed to the housing 11.
  • the internal gear 34 is connected to the partition wall portion 17. Specifically, the end on the one axial side of the outer peripheral portion of the internal gear 34 is connected to the inner peripheral portion of the partition wall portion 17.
  • the internal gear 34 and the partition wall portion 17 are part of a single member.
  • the bearing holder 35 has a flange portion 35a and a holder tube portion 35b.
  • the flange portion 35a has a plate shape extending in a direction perpendicular to the motor shaft J2.
  • the plate surface of the flange portion 35a faces the axial direction.
  • the flange portion 35a has an annular plate shape centered on the motor shaft J2.
  • the outer peripheral portion of the flange portion 35 a is fixed to the end portion on the other axial side of the internal gear 34. That is, the bearing holder 35 is fixed to the internal gear 34.
  • the holder cylinder portion 35b has a cylindrical shape extending in the axial direction around the motor shaft J2. One end of the holder tube portion 35b in the axial direction is connected to the inner peripheral portion of the flange portion 35a. A space is provided between the inner peripheral surface of the holder cylinder portion 35 b and the outer peripheral surface of the motor shaft 22.
  • the holder cylinder portion 35b holds the bearing 16 therein. That is, the bearing holder 35 holds the bearing 16.
  • the holder cylinder portion 35 b holds the motor shaft 22 via the bearing 16.
  • the bearing holder 35 supports the motor shaft 22 through the bearing 16 so as to be rotatable around the motor axis J2.
  • the carrier pin 36 is disposed on the radially outer side of the sun gear 32 and the connecting shaft 31.
  • a plurality of carrier pins 36 are provided on the outer side in the radial direction of the sun gear 32 at intervals in the circumferential direction. That is, the transmission mechanism 30 has a plurality of carrier pins 36.
  • the transmission mechanism 30 includes three carrier pins 36 that are arranged at equal intervals in the circumferential direction.
  • the carrier pin 36 has a cylindrical shape extending in the axial direction around the rotation axis J3.
  • the carrier pin 36 is a hollow pin that opens on both sides in the axial direction.
  • the carrier pin 36 is inserted into the planetary gear 33.
  • the carrier pin 36 extends in the planetary gear 33 in the axial direction.
  • the carrier pin 36 rotatably supports the planetary gear 33 via a bearing 39b. That is, the planetary gear 33 is rotatable about the rotation axis J3 with respect to the carrier pin 36.
  • the carrier pin 36 rotatably supports the second gear portion 33b via the bearing 39b.
  • a plurality of bearings 39b are arranged in the axial direction between the carrier pin 36 and the second gear portion 33b.
  • the carrier 37 supports the carrier pin 36.
  • the carrier 37 is fixed to the carrier pin 36.
  • the carrier 37 rotates around the motor shaft J2 as the planetary gear 33 and the carrier pin 36 rotate (revolve) around the motor shaft J2.
  • the carrier 37 includes a first wall portion 37a, a second wall portion 37b, and a connecting portion 37c.
  • the first wall portion 37a has a plate shape extending in a direction perpendicular to the motor shaft J2.
  • the plate surface of the first wall portion 37a faces the axial direction.
  • the first wall portion 37a has an annular plate shape centered on the motor shaft J2.
  • the first wall portion 37 a supports the end portion on the other axial side of the carrier pin 36.
  • the ends on the other axial side of the plurality of carrier pins 36 are fixed to the first wall portion 37a.
  • the first wall portion 37a faces the flange portion 35a of the bearing holder 35 from one side in the axial direction.
  • a space is provided between the first wall portion 37a and the flange portion 35a.
  • the first wall portion 37a has a hole 37d that is located on the motor shaft J2 and penetrates the first wall portion 37a in the axial direction. An end on one axial side of the motor shaft 22 and an end on the other axial side of the connecting shaft 31 are inserted into the hole 37d. When viewed from the radial direction, the first wall portion 37 a is disposed so as to overlap with the end portion on one axial side of the motor shaft 22 and the end portion on the other axial side of the connecting shaft 31.
  • the second wall portion 37b is disposed on one side in the axial direction from the first wall portion 37a.
  • the first wall portion 37a and the second wall portion 37b are arranged with a space therebetween in the axial direction.
  • the planetary gear 33 is disposed between the first wall portion 37a and the second wall portion 37b in the axial direction.
  • the second wall portion 37b has a plate shape that extends in a direction perpendicular to the motor shaft J2.
  • the plate surface of the second wall portion 37b faces the axial direction.
  • the second wall portion 37b has an annular plate shape centered on the motor shaft J2.
  • the second wall portion 37 b supports the end portion on one side of the carrier pin 36 in the axial direction.
  • End portions on one axial side of the plurality of carrier pins 36 are fixed to the second wall portion 37b. That is, the first wall portion 37a and the second wall portion 37b support both end portions of the carrier pin 36 in the axial direction.
  • the second wall portion 37b is located on one axial side of the sun gear 32.
  • the connecting portion 37c extends in the axial direction and connects the first wall portion 37a and the second wall portion 37b.
  • the connection part 37c is plate shape extended in an axial direction.
  • the present invention is not limited thereto, and the connecting portion 37c may have an axial shape that extends in the axial direction.
  • the plate surface of the connecting portion 37c faces the radial direction.
  • the end portion on the other axial side of the connecting portion 37c is connected to the outer peripheral portion of the first wall portion 37a.
  • One end of the connecting portion 37c in the axial direction is connected to the outer peripheral portion of the second wall portion 37b.
  • the connection part 37c and the 1st wall part 37a are parts of a single member.
  • a plurality of connecting portions 37c are provided at intervals in the circumferential direction.
  • the carrier 37 has three connecting portions 37c.
  • the connecting portion 37c is disposed adjacent to the planetary gear 33 in the circumferential direction.
  • the plurality of connecting portions 37c and the plurality of planetary gears 33 are alternately arranged in the circumferential direction.
  • the connecting portion 37 c is disposed on the radially inner side of the planetary gear 33 with respect to the most radially outer portion. That is, the planetary gear 33 has a portion that protrudes radially outward from the connecting portion 37c.
  • at least the first gear portion 33a of the first gear portion 33a and the second gear portion 33b protrudes radially outward from the connecting portion 37c.
  • the output shaft 38 is arranged coaxially with the motor shaft J2.
  • the output shaft 38 has a cylindrical shape extending in the axial direction.
  • the output shaft 38 is disposed on one side of the carrier 37 in the axial direction.
  • the output shaft 38 is connected to the carrier 37.
  • the output shaft 38 is connected to the second wall portion 37 b of the carrier 37 at the other axial end.
  • the output shaft 38 and the second wall portion 37b are part of a single member and are integrally provided. That is, the output shaft 38 and a part of the carrier 37 are part of a single member.
  • the output shaft 38 rotates about the motor axis J2 as the carrier 37 rotates about the motor axis J2.
  • a space is provided between the outer peripheral surface of the output shaft 38 and the inner peripheral surface of the peripheral wall portion 13 a of the gear housing portion 13.
  • the output shaft 38 is supported by the peripheral wall portion 13 a via the bearing 15.
  • the end portion on one side in the axial direction of the output shaft 38 projects from the peripheral wall portion 13a toward the one side in the axial direction.
  • the present invention is not limited to this, and the output shaft 38 may not protrude from the peripheral wall portion 13a to the one side in the axial direction.
  • the output shaft 38 is directly or indirectly connected to the axle of the vehicle 100.
  • the circulation structure of the oil O includes an oil passage 40 and oil pumps 61 and 62.
  • the oil passage 40 is provided inside the housing 11.
  • the oil pumps 61 and 62 circulate the oil O through the oil passage 40.
  • the motor unit 1 includes the first oil pump 61 and the second oil pump 62 that circulate the oil O through the oil passage 40.
  • the motor unit 1 includes a plurality of oil pumps 61 and 62.
  • the first oil pump 61 and the second oil pump 62 can supply the oil O to the transmission mechanism 30.
  • the first oil pump 61 and the second oil pump 62 can supply the oil O to the transmission mechanism 30 through the inside of the motor shaft 22.
  • the first oil pump 61 and the second oil pump 62 will be described later separately.
  • the oil passage 40 includes an oil passage portion 41 in the motor shaft, an oil passage portion 42 in the connecting shaft, an annular oil passage portion 43, a first radial oil passage portion 44, a second radial oil passage portion 45,
  • the carrier pin internal oil passage portion 46, the connecting oil passage portion 47, the third radial oil passage portion 48, the fourth radial oil passage portion 49, and the oil storage portion 50 are provided.
  • the oil passage portion 41 in the motor shaft extends in the axial direction inside the motor shaft 22.
  • the oil passage portion 41 in the motor shaft is located on the motor shaft J2.
  • the oil passage portion 41 in the motor shaft is configured by a through hole that penetrates the motor shaft 22 in the axial direction.
  • the motor shaft oil passage 41 opens at the bottom of the recess 22a. That is, the end portion on one side in the axial direction of the oil passage portion 41 in the motor shaft opens to the bottom surface facing the one side in the axial direction of the recess 22a.
  • connection shaft oil passage portion 42 extends in the axial direction inside the connection shaft 31.
  • the connecting shaft oil passage portion 42 is located on the motor shaft J2.
  • the connecting shaft internal oil passage portion 42 is configured by a through-hole penetrating the connecting shaft 31 in the axial direction.
  • the connecting shaft oil passage portion 42 is connected to the motor shaft oil passage portion 41.
  • the end portion on the other side in the axial direction of the coupling shaft oil passage portion 42 is connected to the end portion on the one side in the axial direction of the oil passage portion 41 in the motor shaft.
  • the inner diameter of the connecting shaft oil passage portion 42 and the inner diameter of the motor shaft oil passage portion 41 are substantially the same.
  • the outer diameter of the connecting shaft 31 can be increased, so that the inner diameter of the connecting shaft 31 and the inner diameter of the motor shaft 22 can be made substantially the same. . Therefore, the pressure loss of the oil O flowing from the inside of the motor shaft 22 into the inside of the connecting shaft 31 can be reduced.
  • the annular oil passage portion 43 is disposed between the outer peripheral surface of the end portion on the other axial side of the connecting shaft 31 and the inner peripheral surface of the recess 22a.
  • the annular oil passage 43 is a ring extending in the circumferential direction.
  • the annular oil passage 43 is a cylindrical space centered on the motor shaft J2, and is provided in the recess 22a.
  • the annular oil passage portion 43 is located on the other side in the axial direction from a portion where the end portion on the other side in the axial direction of the connecting shaft 31 and the recess 22a are fitted.
  • the first radial oil passage portion 44 is disposed at the other axial end of the connecting shaft 31 and extends in the radial direction, and opens to the connecting shaft inner oil passage portion 42 and the annular oil passage portion 43.
  • the first radial oil passage 44 is a through hole that extends radially inside the connecting shaft 31 at the other axial end of the connecting shaft 31 and opens to the inner and outer peripheral surfaces of the connecting shaft 31. Consists of. In the present embodiment, a plurality of first radial oil passage portions 44 are provided at intervals in the circumferential direction.
  • the second radial oil passage portion 45 is disposed at the end portion on the one axial side of the motor shaft 22 and extends in the radial direction, and opens to the outer peripheral surface of the annular oil passage portion 43 and the motor shaft 22.
  • the second radial oil passage 45 extends radially inside the motor shaft 22 at one end in the axial direction of the motor shaft 22, and opens to the inner peripheral surface of the recess 22 a and the outer peripheral surface of the motor shaft 22. It is constituted by a through-hole.
  • the radially outer end of the second radial oil passage portion 45 opens toward the space between the first wall portion 37a along the axial direction, the flange portion 35a, and the bearing 16.
  • a plurality of second radial oil passage portions 45 are provided at intervals in the circumferential direction.
  • the carrier pin oil passage 46 is provided inside the carrier pin 36 and opens to the end surface of the carrier pin 36 in the axial direction and the outer peripheral surface of the carrier pin 36.
  • the carrier pin oil passage 46 has a pin axial oil passage 46a and a pin radial oil passage 46b.
  • the pin axial oil passage 46a extends in the axial direction inside the carrier pin 36.
  • the pin axial direction oil passage 46a is located on the rotation axis J3.
  • the pin axial oil passage 46a is formed by a through hole that penetrates the carrier pin 36 in the axial direction.
  • the pin axial oil passage portion 46a opens on an end surface of the carrier pin 36 facing the one side in the axial direction and an end surface facing the other side of the axial direction.
  • the pin radial direction oil passage 46b extends inside the carrier pin 36 in a direction perpendicular to the rotation axis J3.
  • the pin radial direction oil passage 46 b opens on the outer peripheral surfaces of the pin axial direction oil passage 46 a and the carrier pin 36.
  • the pin radial direction oil passage portion 46 b extends through the inside of the carrier pin 36 in a direction orthogonal to the rotation axis J ⁇ b> 3, and is configured by a through hole that opens to the inner peripheral surface and outer peripheral surface of the carrier pin 36.
  • the pin radial direction oil passage portion 46b is disposed in the carrier pin 36 inside in the radial direction from the rotation axis J3, that is, in the direction away from the motor shaft J2 along the radial direction from the rotation axis J3. That is, the pin radial oil passage 46b extends from the portion connected to the pin axial oil passage 46a in a direction away from the motor shaft J2 along the radial direction.
  • the carrier pin oil passage 46 has a plurality of pin radial oil passages 46b that are spaced apart from each other in the axial direction.
  • the plurality of pin radial direction oil passage portions 46 b open toward the plurality of bearings 39 b provided on the outer peripheral portion of the carrier pin 36. According to the present embodiment, the oil O flowing inside the carrier pin 36 is stably supplied to the bearing 39b by the action of centrifugal force when the carrier pin 36 rotates (revolves) around the motor shaft J2.
  • the connecting oil passage portion 47 connects a portion of the carrier pin inner oil passage portion 46 that opens to the end face in the axial direction of the carrier pin 36 and the second radial oil passage portion 45.
  • the connecting oil passage portion 47 connects the end portion on the other axial side of the pin axial oil passage portion 46 a and the radially outer end portion of the second radial oil passage portion 45.
  • the connecting oil passage portion 47 is disposed between the first wall portion 37 a along the axial direction, the flange portion 35 a and the bearing 16.
  • the connecting oil passage portion 47 is an annular space (chamber) centered on the motor shaft J2. That is, the connecting oil passage portion 47 is configured by an annular chamber provided between the first wall portion 37 a along the axial direction, the flange portion 35 a and the bearing 16.
  • the oil O flowing through the motor shaft oil passage portion 41 is connected to the connecting shaft oil passage portion 42, the first radial oil passage portion 44, the annular oil passage portion 43, the second radial oil passage portion 45, and The oil flows into the carrier pin oil passage 46 through the connection oil passage 47.
  • the oil O flowing into the carrier pin internal oil passage 46 flows out to the outer peripheral surface of the carrier pin 36 and lubricates and cools the bearing 39b located between the carrier pin 36 and the planetary gear 33.
  • the oil passage 40 has the annular oil passage portion 43 disposed in the recess 22a.
  • the motor unit 1 when the end portion on the other axial side of the connecting shaft 31 is fitted into the recess 22a of the motor shaft 22, the first radial oil passage 44 and the second radial direction are fitted.
  • the work of aligning the oil passage 45 can be reduced. That is, since the first radial oil passage portion 44 and the second radial oil passage portion 45 are connected through the annular oil passage portion 43, the circumferential position of the first radial oil passage portion 44 and the second radial oil passage portion.
  • the oil O is stably supplied from the connecting shaft inner oil passage portion 42 inside the connecting shaft 31 to the carrier pin inner oil passage portion 46 without matching the circumferential position of 45.
  • the oil O can be stably supplied from the connection shaft 31 to the members of the transmission mechanism 30.
  • the third radial oil passage portion 48 is disposed at a portion located on the other side in the axial direction from the concave portion 22a of the motor shaft 22, and extends in the radial direction. That is, the third radial oil passage portion 48 is disposed in a portion of the motor shaft 22 that is located on the other axial side than the end on the one axial side.
  • the third radial oil passage portion 48 opens on the outer peripheral surfaces of the motor shaft oil passage portion 41 and the motor shaft 22.
  • the third radial oil passage portion 48 extends through the inside of the motor shaft 22 in the radial direction, and includes a through hole that opens to the inner peripheral surface and the outer peripheral surface of the motor shaft 22.
  • the third radial oil passage portion 48 is located between the pair of bearings 14 and 16 that are arranged with a space therebetween in the axial direction.
  • the third radial oil passage portion 48 is disposed in an intermediate portion located between both end portions in the axial direction of the motor shaft 22.
  • the radially outer end of the third radial oil passage portion 48 opens toward the inner peripheral surface of the cylindrical portion 23 b of the rotor holder 23.
  • the rotor holder 23, the rotor core 24, the rotor magnet 25, the stator core 27, and the third radial oil passage portion 48 are arranged to overlap each other.
  • a plurality of third radial oil passage portions 48 are provided at intervals in the circumferential direction.
  • the oil O flowing through the oil passage portion 41 in the motor shaft is supplied to each member of the motor 20 such as the rotor 21 and the stator 26 through the third radial oil passage portion 48.
  • each member of the motor 20 can be stably cooled and lubricated.
  • the fourth radial oil passage portion 49 is disposed in a portion of the connecting shaft 31 that is located on one side in the axial direction with respect to the recess 22a, and extends in the radial direction. That is, the fourth radial oil passage portion 49 is disposed in a portion of the connecting shaft 31 that is located on the one axial side relative to the end portion on the other axial side.
  • the fourth radial oil passage portion 49 opens in the outer peripheral surface of the connection shaft oil passage portion 42 and the connection shaft 31.
  • the fourth radial oil passage portion 49 is configured by a through hole that extends radially inside the connecting shaft 31 and opens to the inner peripheral surface and the outer peripheral surface of the connecting shaft 31.
  • the fourth radial oil passage portion 49 is located between the pair of bearings 15 and 16 that are arranged with a space therebetween in the axial direction.
  • the fourth radial oil passage portion 49 is disposed in an intermediate portion located between both end portions in the axial direction of the connecting shaft 31.
  • the radially outer end of the fourth radial oil passage portion 49 opens toward the planetary gear 33.
  • the fourth radial oil passage portion 49 opens toward the outer peripheral portion of the meshing portion 33c of the second gear portion 33b.
  • the internal gear 34 and the planetary gear 33 and the fourth radial oil passage portion 49 are disposed so as to overlap each other.
  • a plurality of fourth radial oil passage portions 49 are provided at intervals in the circumferential direction.
  • the oil O flowing through the connecting shaft oil passage portion 42 passes through the fourth radial oil passage portion 49, and each member of the transmission mechanism 30 such as the planetary gear 33, the internal gear 34, and the sun gear 32. To be supplied. Thereby, each member of the transmission mechanism 30 can be stably lubricated and cooled.
  • the oil O flowing inside the motor shaft 22 is supplied to the motor 20 and the transmission mechanism 30.
  • the oil O can be stably supplied to the motor 20 and the transmission mechanism 30 through the motor shaft 22. That is, the oil O is distributed over a wide range by circulating in the motor shaft 22, and the oil O can be easily distributed to each member in the housing 11.
  • the oil storage part 50 is arranged at the lower part (bottom part) of the housing 11.
  • the oil storage part 50 is located in the lower part of the housing 11.
  • Oil O is stored in the oil storage unit 50.
  • the oil reservoir 50 includes a motor oil reservoir 50a and a gear oil reservoir 50b.
  • the motor oil storage part 50 a is a part of the oil storage part 50 that is located on the other side in the axial direction from the partition wall part 17.
  • the lower part of the stator 26 is arrange
  • the gear oil storage part 50 b is a part of the oil storage part 50 that is located on one side in the axial direction from the partition wall part 17.
  • a rotation locus (not shown) around the motor shaft J2 of the planetary gear 33 is disposed in the gear oil storage unit 50b.
  • the rotation locus centering on the motor shaft J2 of the first gear portion 33a passes through the gear oil storage portion 50b. That is, the rotation locus centering on the motor shaft J ⁇ b> 2 of the planetary gear 33 passes through the oil storage unit 50.
  • the oil O of the oil storage unit 50 is lifted up, and the oil O is also supplied to the upper portion of the housing 11. Thereby, lubrication and cooling of each member such as the transmission mechanism 30 can be stably performed.
  • OF1 indicates the flow of oil O supplied from the oil cooler 65.
  • the flow OF1 cools, for example, the stator 26 and the like.
  • OF2 indicates the flow of the oil O supplied from the first oil pump 61.
  • the flow OF2 cools, for example, the rotor 21 and the stator 26, and lubricates the sun gear 32, the planetary gear 33, the internal gear 34, and the bearings 14, 15, 16, 39a, 39b, and the like.
  • OF3 indicates the flow of the oil O supplied by the oil pumping action by the revolution of the planetary gear 33 around the motor shaft J2.
  • the flow OF3 lubricates, for example, the sun gear 32, the planetary gear 33, the internal gear 34, the bearings 15, 16, 39a, and 39b.
  • the oil passage 40 further includes a first oil passage portion 51, a second oil passage portion 52, an oil chamber 53, a third oil passage portion 54, a first orifice 55, and a catch tank. 56, a fourth oil passage portion 57, a second orifice 58, a pump housing portion 59, and a strainer 60. That is, the motor unit 1 of the present embodiment includes the first orifice 55, the catch tank 56, the second orifice 58, and the strainer 60. The first orifice 55, the catch tank 56, the second orifice 58 and the strainer 60 are provided inside the housing 11.
  • the first oil passage portion 51 connects the first oil pump 61 and the inside of the motor shaft 22.
  • the first oil passage portion 51 includes a check valve 51 a between the first oil pump 61 and the inside of the motor shaft 22. That is, the motor unit 1 includes a check valve 51 a inside the housing 11.
  • the check valve 51a has a structure that allows the oil O to pass only in one direction by suppressing the back flow of the valve body by the back pressure of the fluid. Specifically, the check valve 51 a allows the flow of oil O from the first oil pump 61 toward the motor shaft 22 in the first oil passage 51, but from the motor shaft 22 to the first oil pump 61. The directed oil O flow is not allowed.
  • the first oil pump 61 is an electric oil pump. According to the present embodiment, the oil O can be stably supplied into the motor shaft 22 through the first oil passage portion 51 by the first oil pump 61 which is an electric oil pump. For example, unlike the present embodiment, when the first oil pump 61 is a mechanical oil pump coupled to the motor shaft 22, the oil O is not supplied into the motor shaft 22 when the rotation of the motor 20 is stopped. . Further, when the rotational speed of the motor 20 is low, oil is not easily supplied into the motor shaft 22. On the other hand, according to the present embodiment, even when the rotation of the motor 20 is stopped, for example, the first oil pump 61 is operated at the timing when the ignition of the vehicle 100 is turned on, and the oil is put into the motor shaft 22. O can be supplied.
  • the first oil pump 61 is disposed on the upper portion of the housing 11. According to the present embodiment, since the first oil pump 61 is disposed on the upper portion of the housing 11, it is easy to electrically connect the first oil pump 61 to the inverter 3. That is, the wiring (not shown) for connecting the inverter 3 and the first oil pump 61 can be easily routed, and the wiring length can be shortened.
  • the first oil pump 61 is provided inside the housing 11. That is, since the first oil pump 61 is a built-in type, the entire first oil pump 61 and the oil passage 40 can be disposed in the housing 11. Therefore, for example, in accordance with this embodiment, it is possible to suppress a problem that oil leakage occurs from the oil passage or the electric oil pump outside the housing.
  • the second oil passage portion 52 connects the second oil pump 62 and the inside of the motor shaft 22.
  • the oil O can be supplied more stably in the motor shaft 22 by the second oil pump 62.
  • the second oil pump 62 is a mechanical oil pump connected to the motor shaft 22.
  • the second oil pump 62 is disposed on the bottom wall portion 12 b of the motor housing portion 12.
  • the second oil pump 62 is disposed coaxially with the motor shaft 22 on the other axial side of the motor shaft 22.
  • the second oil pump 62 is, for example, a trochoid pump.
  • the first oil pump 61 that is an electric oil pump can be selectively used according to the rotation state, temperature, and the like of the motor 20.
  • the operation of the first oil pump (electric oil pump) 61 is performed when the rotational speed of the motor 20 is stable at a low speed when the vehicle 100 is traveling, or when the temperature of the motor 20 and the oil O is low.
  • the oil O may be supplied into the motor shaft 22 only by the second oil pump (mechanical oil pump) 62.
  • the amount of oil O discharged from the first oil pump 61 is smaller than the amount of oil O discharged from the second oil pump 62.
  • the discharge amount of oil O discharged from the second oil pump 62 is larger than the discharge amount of oil O discharged from the first oil pump 61.
  • the cross-sectional area of the oil passage at the discharge port of the second oil pump 62 is larger than the cross-sectional area of the oil passage at the discharge port of the first oil pump 61.
  • the second oil pump 62 can be used as a main pump, and the first oil pump 61 can be selectively used as a sub pump.
  • the first oil pump 61 can supply oil O to the second oil pump 62.
  • the first oil pump 61 can supply the oil O to the second oil pump 62 through the oil chamber 53.
  • the oil O is supplied to the second oil pump 62 by the first oil pump 61 when the motor 20 is started.
  • the second oil pump (mechanical oil pump) 61 is used by the first oil pump (electric oil pump) 61 when the motor 20 is started.
  • Oil O can be supplied to the (type oil pump) 62.
  • the oil O can be supplied to the second oil pump 62 by the first oil pump 61 at the timing when the ignition of the vehicle 100 is turned on. Accordingly, it is possible to reduce the load applied to the second oil pump 62 when starting the motor.
  • the oil chamber 53 is disposed on the bottom wall portion 12b of the motor housing portion 12 and extends in the axial direction.
  • the oil chamber 53 is located on the motor shaft J2.
  • the oil chamber 53 is a space located between the oil passage portion 41 in the motor shaft and the second oil pump 62 in the axial direction.
  • the oil chamber 53 faces the discharge port of the second oil pump 62.
  • the oil chamber 53 is disposed at a portion where the first oil passage portion 51 and the second oil passage portion 52 are connected.
  • the first oil passage portion 51 and the second oil passage portion 52 are merged in the oil chamber 53. Therefore, for example, compared with a configuration in which the oil passage portions 51 and 52 are connected to the motor shaft 22, respectively.
  • the structure of the oil passage 40 can be simplified.
  • the first oil passage 51 has the check valve 51a as described above, when the oil O is supplied into the motor shaft 22 by the second oil pump 62, the first oil passage 51 The oil O can be prevented from flowing back to the first oil pump 61 through the first oil pump 61.
  • the first oil passage 51 is connected to the oil chamber 53 facing the discharge port instead of the suction port of the second oil pump 62, the oil O flowing through the first oil passage 51 is transferred to the second oil pump. Backflow to the upstream side of 62 can be suppressed.
  • the third oil passage portion 54 connects the first oil pump 61 and the oil cooler 65. That is, in the present embodiment, the oil path branches from the first oil pump 61 toward the downstream side. Specifically, the oil O discharged from the first oil pump 61 flows into the first oil passage portion 51 connected to the motor shaft 22 and the third oil passage portion 54 connected to the oil cooler 65.
  • the third oil passage portion 54 is disposed on the upper portion of the housing 11. That is, the oil passage 40 has a portion that is disposed at the upper portion of the housing 11 by connecting the first oil pump 61 and the oil cooler 65.
  • the first oil pump 61 is disposed on the upper portion of the housing 11, and a portion of the oil passage 40 that connects the first oil pump 61 and the oil cooler 65 (that is, the third oil passage).
  • the part 54) is also arranged at the top of the housing 11. Therefore, the length of the third oil passage portion 54 can be kept short, and the oil O can be efficiently cooled and circulated to the oil passage 40.
  • the first orifice 55 is provided in the third oil passage portion 54.
  • the first orifice 55 narrows the oil passage of the third oil passage portion 54.
  • the inner diameter of the portion of the oil passage 40 located on the downstream side of the first orifice 55 is smaller than the inner diameter of the portion of the oil passage 40 located on the upstream side of the first orifice 55.
  • the pressure loss in the third oil passage portion 54 is increased by the first orifice 55, so that the oil O discharged from the first oil pump 61 flows preferentially to the first oil passage portion 51. It is.
  • the catch tank 56 is disposed at the top of the motor 20.
  • the catch tank 56 can temporarily store the oil O.
  • a plurality of holes are provided in the bottom wall of the catch tank 56.
  • the catch tank 56 stores the oil O and can be dropped onto the motor 20.
  • the fourth oil passage portion 57 connects the oil cooler 65 and the catch tank 56. According to the present embodiment, the oil O cooled by the oil cooler 65 is supplied to the catch tank 56 through the fourth oil passage portion 57. By dripping the cooled oil O from the catch tank 56, the motor 20 can be efficiently cooled.
  • the second orifice 58 narrows the oil passage at the portion connecting the inside of the motor shaft 22 and the transmission mechanism 30.
  • the second orifice 58 increases the pressure loss in the portion of the oil passage 40 that connects the inside of the motor shaft 22 and the transmission mechanism 30, so that the oil O in the motor shaft 22 is transferred to the transmission mechanism.
  • 30 is preferentially flowed to the motor 20. That is, since the amount of oil O required to cool the motor 20 is larger than the amount of oil O required to lubricate the transmission mechanism 30, the oil O flows preferentially to the motor 20. Thereby, each member of the motor 20 can be cooled and lubricated stably.
  • the first oil pump 61 is accommodated in the pump accommodating portion 59.
  • the pump housing portion 59 is a space (chamber) provided in the wall portion of the housing 11.
  • the first oil pump 61 has a substantially cylindrical shape
  • the pump housing portion 59 that houses the first oil pump 61 is a substantially cylindrical space.
  • the pump housing part 59 has a cylindrical hole shape extending in the axial direction.
  • the pump housing portion 59 may have a shape other than the cylindrical hole shape.
  • the pump housing portion 59 is disposed on the upper portion of the housing 11.
  • the pump housing part 59 houses at least a part of the first oil pump 61.
  • the inner diameter of the pump housing part 59 is larger than the outer diameter of the portion of the first oil pump 61 housed in the pump housing part 59.
  • Oil O is stored in the pump housing portion 59. According to the present embodiment, the oil O can be efficiently circulated through the oil passage 40 by the first oil pump 61 while the arrangement space of the oil passage 40 near the first oil pump 61 is kept small.
  • the strainer 60 collects impurities from the oil O.
  • the strainer 60 is at least partially disposed in the oil storage unit 50.
  • the strainer 60 is at least partially immersed in the oil O of the oil storage unit 50.
  • the present invention is not limited to this, and the strainer 60 may be provided in a portion of the oil passage 40 located between the first oil pump 61 and the second oil pump 62 and the oil storage unit 50, for example.
  • the first oil pump 61 sucks oil O from the oil storage section 50 through the strainer 60.
  • the second oil pump 62 also sucks the oil O from the oil storage unit 50 through the strainer 60.
  • the first oil pump 61 sends the oil O sucked from the oil storage section 50 through the strainer 60 to the oil cooler 65.
  • the strainer 60 can collect and remove impurities such as solid components in the oil O. Therefore, the motor 20 and the transmission mechanism 30 etc. operate stably. Since the first oil pump 61 pumps the oil O to the oil cooler 65, the cooling efficiency of the oil O is increased, and the motor 20 and the transmission mechanism 30 can be efficiently cooled and lubricated.
  • the oil cooler 65 has a water channel through which coolant flows.
  • the oil cooler 65 is connected to the inverter case 4 by piping or a hose.
  • the oil cooler 65 can receive the coolant flowing in the inverter case 4 inside.
  • a part of the oil passage 40 is disposed in the oil cooler 65.
  • the oil O is cooled by heat exchange between the coolant flowing through the water passage of the oil cooler 65 and the oil O flowing through a part of the oil passage 40. That is, the oil cooler 65 cools the oil O.
  • the temperature of the oil O circulating in the oil passage 40 can be lowered by the oil cooler 65. Accordingly, the motor 20 and the transmission mechanism 30 can be efficiently cooled by the cooled oil O.
  • the oil cooler 65 has a plurality of fin portions exposed to the outside of the oil cooler 65.
  • the oil O is cooled by heat exchange between the outside air and the oil O through the plurality of fin portions.
  • the oil cooler 65 is disposed in the upper portion of the housing 11 opposite to the road surface in the vertical direction. That is, the oil cooler 65 is disposed on the upper portion of the housing 11.
  • the road surface is an upper surface of a road or the like on which the vehicle 100 travels or stops, that is, an upper surface of a road or the like on which the vehicle 100 is located.
  • the inverter case 4 is arranged at the top of the subframe 2 in consideration of, for example, water intrusion from the road surface. Placed in.
  • the oil cooler 65 of the motor unit 1 is disposed on the top (top) of the housing 11, so that the oil cooler 65 can be easily connected to the inverter case 4. That is, it is easy to connect the oil cooler 65 and the inverter case 4 with pipes or hoses, and the coolant that has cooled the inverter 3 is easily drawn into the oil cooler 65. Further, the oil O cooled by the oil cooler 65 can be easily supplied to the motor 20 by dropping from the upper portion of the housing 11.
  • the first oil pump 61 is arranged in the front-rear direction of the oil cooler 65 and the vehicle 100.
  • the arrangement space for the members is reduced in the front-rear direction and the vehicle width direction (axial direction) of the vehicle 100 in the motor unit 1. Hard to secure. Specifically, since the motor unit 1 is sandwiched between the subframes 2 from the front-rear direction of the vehicle 100, a space for installing a member cannot be secured in a region adjacent to the motor unit 1 in the front-rear direction.
  • the first oil pump 61 and the oil cooler 65 are arranged at the top of the motor unit 1 and these members are arranged in the front-rear direction of the vehicle 100, the first oil pump 61 and the oil cooler It is easy to secure a space for disposing the cooler 65.
  • the vertical position of the oil cooler 65, the vertical position of the first oil pump 61, and the vertical position of the inverter case 4 are substantially the same.
  • a first oil pump 61 is disposed between the oil cooler 65 and the inverter case 4 in the front-rear direction of the vehicle 100.
  • the oil cooler 65 is disposed above the subframe 2. According to the present embodiment, since the oil cooler 65 is disposed so as to protrude above the subframe 2, the oil cooler 65 and the inverter case 4 can be more easily connected by piping. In the present embodiment, the entire oil cooler 65 is disposed above the subframe 2.
  • the first temperature sensor 70 is provided in the motor 20.
  • the first temperature sensor 70 detects the temperature of the stator 26. That is, the first temperature sensor 70 detects the temperature of the motor 20.
  • the first temperature sensor 70 is, for example, a thermistor.
  • the first temperature sensor 70 is electrically connected to, for example, the inverter 3. According to the present embodiment, when the temperature of the motor 20 becomes equal to or higher than a predetermined value, the first oil pump 61 can be operated to cool the motor 20 and the like with the oil O.
  • the second temperature sensor is disposed in a part of the oil passage 40.
  • the second temperature sensor is disposed in the oil storage unit 50, for example.
  • the second temperature sensor detects the temperature of the oil O.
  • the second temperature sensor is electrically connected to, for example, the inverter 3. According to the present embodiment, when the temperature of the oil O in the oil passage 40 becomes equal to or higher than a predetermined value, the oil O is circulated by operating the first oil pump 61 and circulating the oil O through the oil passage 40. By cooling, each member of the motor unit 1 can be cooled with the oil O.
  • the rotation sensor 80 is provided at the end of the motor 20 in the axial direction.
  • the rotation sensor 80 is disposed at the end on the other axial side of the motor 20.
  • the rotation sensor 80 and the bearing 14 are arranged to overlap each other.
  • the rotation sensor 80 detects the rotation of the motor 20.
  • the rotation sensor 80 is a resolver.
  • the rotation sensor 80 includes a resolver rotor 80a and a resolver stator 80b.
  • the resolver rotor 80 a is fixed to the rotor 21.
  • the resolver rotor 80 a is fixed to the sensor support portion 23 c of the rotor holder 23.
  • the resolver stator 80 b is fixed to the housing 11. In the present embodiment, the resolver stator 80 b is fixed to the bottom wall portion 12 b of the motor housing portion 12.
  • the rotation sensor 80 is electrically connected to the inverter 3. According to the present embodiment, when the rotation speed of the motor 20 becomes a predetermined value or more, the first oil pump 61 is operated to circulate the oil O through the oil passage 40, whereby each member is made of oil O. Can be cooled.
  • the inverter 3 operates the first oil pump 61.
  • the white arrow shown in FIG. 9 simply represents the flow of the oil O circulating through the oil passage 40 when the operation of the first oil pump 61 is stopped and the second oil pump 62 is operating. Yes.
  • the inverter 3 stops the operation of the first oil pump 61.
  • the motor unit 1 is a rear motor unit of the vehicle 100, but is not limited thereto.
  • the motor unit 1 may be a front motor unit of the vehicle 100.
  • the shape of the subframe 2 is not limited to the shape described in the above embodiment.
  • the second oil pump 62 may be an electric oil pump.
  • the first oil pump 61 and the second oil pump 62 which are electric oil pumps, can be selectively used as appropriate according to the rotational state and load of the motor 20, the temperature of the motor 20, the temperature of the oil O, and the like.
  • the second oil pump 62 may be used when the load on the motor 20 is larger than a predetermined value
  • the first oil pump 61 may be used when the load on the motor 20 is smaller than a predetermined value.
  • it is preferable that the second oil pump 62 is disposed on the upper portion of the housing 11.
  • FIG. 10 shows a modification of the motor unit 1 of the above-described embodiment.
  • the motor unit 1 may not include the second oil pump 62.
  • the check valve 51 a may not be provided in the first oil passage portion 51.
  • the structure of the motor unit 1 can be simplified while the operational effects described in the above-described embodiment are obtained.
  • the present invention is not limited thereto.
  • the motor unit 1 may not include any of the first temperature sensor 70 and the second temperature sensor.
  • a plurality of first temperature sensors 70 may be provided.
  • a plurality of second temperature sensors may be provided.
  • the motor unit 1 and the vehicle driving device 10 are mounted on an electric vehicle (EV)
  • EV electric vehicle
  • the motor unit 1 and the vehicle drive device 10 may be mounted on, for example, a plug-in hybrid vehicle (PHEV), a hybrid vehicle (HEV), or the like.
  • PHEV plug-in hybrid vehicle
  • HEV hybrid vehicle

Abstract

An embodiment of the present invention provides a motor unit which rotates an axle of a vehicle. The motor unit is provided with: a motor which has a motor shaft rotating about a motor axis; a transmitting mechanism which is connected to the motor shaft and which transmits the power of the motor to an output shaft; a housing which contains the motor and the transmitting mechanism; an oil passage provided within the housing; an electrically driven oil pump which circulates oil through the oil passage; and an oil cooler in which part of the oil passage is disposed and which cools the oil. The oil cooler is disposed on the upper part of the housing, which is on the side vertically opposite a road surface.

Description

モータユニットおよび車両駆動装置Motor unit and vehicle drive device
 本発明は、モータユニットおよび車両駆動装置に関する。本出願は、2018年4月27日に提出された米国仮出願第62/663,324号および2018年8月9日に提出された日本特許出願第2018-150702号に基づいている。本出願は、当該出願に対して優先権の利益を主張するものである。その内容全体は、参照されることによって本出願に援用される。 The present invention relates to a motor unit and a vehicle drive device. This application is based on US Provisional Application No. 62 / 663,324 filed on Apr. 27, 2018 and Japanese Patent Application No. 2018-150702 filed on Aug. 9, 2018. This application claims the benefit of priority to that application. The entire contents of which are hereby incorporated by reference.
 車両の車軸を回転させるモータユニットが知られる。特許文献1の車両用冷却装置は、電動機と、インバータと、動力伝達機構と、を備える車両に搭載されて、オイル循環回路のオイルを冷却する。 A motor unit that rotates the axle of a vehicle is known. The vehicle cooling device of Patent Document 1 is mounted on a vehicle including an electric motor, an inverter, and a power transmission mechanism, and cools oil in an oil circulation circuit.
特開2017-114477号公報JP 2017-114477 A
 モータユニットを車両に設ける場合、モータユニットはサブフレーム内に設置されることが多い。このため、モータユニットと別の装置とを配管やホース等により接続することが難しい場合がある。 When installing a motor unit in a vehicle, the motor unit is often installed in a subframe. For this reason, it may be difficult to connect a motor unit and another apparatus by piping, a hose, etc.
 本発明は、上記事情に鑑みて、車両に設けられる別の装置と接続しやすいモータユニットおよび車両駆動装置を提供することを目的の一つとする。 In view of the above circumstances, an object of the present invention is to provide a motor unit and a vehicle drive device that can be easily connected to another device provided in a vehicle.
 本発明の一つの態様は、車両の車軸を回転させるモータユニットであって、モータ軸を中心として回転するモータシャフトを有するモータと、前記モータシャフトに接続され、前記モータの動力を出力シャフトに伝達する伝達機構と、前記モータおよび前記伝達機構を収容するハウジングと、前記ハウジングの内部に設けられる油路と、前記油路にオイルを循環させる電動オイルポンプと、前記油路の一部が配置され前記オイルを冷却するオイルクーラと、を備え、前記オイルクーラは、前記ハウジングのうち鉛直方向の路面とは反対側の上部に配置される。 One aspect of the present invention is a motor unit that rotates an axle of a vehicle, the motor having a motor shaft that rotates about the motor shaft, and the motor shaft that is connected to the motor shaft, and transmits the power of the motor to the output shaft. A transmission mechanism, a housing that houses the motor and the transmission mechanism, an oil passage provided inside the housing, an electric oil pump that circulates oil through the oil passage, and a part of the oil passage. An oil cooler that cools the oil, and the oil cooler is disposed in an upper portion of the housing opposite to a road surface in a vertical direction.
 また、本発明の一つの態様は、上述のモータユニットと、前記モータユニットを支持し、前記車両に取り付けられるサブフレームと、前記モータユニットと電気的に接続されるインバータと、前記インバータが収容されるインバータケースと、を備える車両駆動装置であって、前記サブフレームは、前記モータユニットに軸方向および前記車両の前後方向から対向する部分を有し、前記インバータケースは、前記サブフレームの上部に配置され、前記オイルクーラは、少なくとも一部が前記サブフレームよりも上側に配置され、前記インバータケース内を流れる冷却液を内部に受け入れ可能である。 According to another aspect of the present invention, the motor unit described above, a subframe that supports the motor unit and is attached to the vehicle, an inverter electrically connected to the motor unit, and the inverter are accommodated. An inverter case, wherein the sub-frame has a portion facing the motor unit from an axial direction and a front-rear direction of the vehicle, and the inverter case is disposed above the sub-frame. The oil cooler is disposed at least partially above the subframe, and can receive the coolant flowing through the inverter case.
 本発明の一つの態様のモータユニットおよび車両駆動装置によれば、車両に設けられる別の装置と接続しやすい。 According to the motor unit and the vehicle drive device of one aspect of the present invention, it is easy to connect to another device provided in the vehicle.
図1は、車両に搭載される一実施形態のモータユニットおよび車両駆動装置を示す概略図である。FIG. 1 is a schematic diagram showing a motor unit and a vehicle drive device of an embodiment mounted on a vehicle. 図2は、モータユニットおよび車両駆動装置を示す斜視図である。FIG. 2 is a perspective view showing the motor unit and the vehicle drive device. 図3は、モータユニットおよび車両駆動装置を示す側面図である。FIG. 3 is a side view showing the motor unit and the vehicle drive device. 図4は、モータユニットを示す斜視図である。FIG. 4 is a perspective view showing the motor unit. 図5は、モータユニットを示す断面図である。FIG. 5 is a cross-sectional view showing the motor unit. 図6は、モータユニットの油路を流れるオイルの向きを模式的に示す図である。FIG. 6 is a diagram schematically showing the direction of oil flowing through the oil passage of the motor unit. 図7は、モータユニットの油路を示す概略図である。FIG. 7 is a schematic view showing an oil passage of the motor unit. 図8は、油路を流れるオイルの向きを示す概略図である。FIG. 8 is a schematic view showing the direction of oil flowing through the oil passage. 図9は、油路を流れるオイルの向きを示す概略図である。FIG. 9 is a schematic view showing the direction of oil flowing through the oil passage. 図10は、一実施形態の変形例のモータユニットの油路を示す概略図である。FIG. 10 is a schematic diagram illustrating an oil passage of a motor unit according to a modification of the embodiment.
 本実施形態のモータユニット1および車両駆動装置10について、図面を参照して説明する。以下の説明では、各図に示す本実施形態のモータユニット1が水平な路面上に位置する車両100に搭載された場合の位置関係を基に、鉛直方向を規定して説明する。また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、鉛直方向である。+Z側は、鉛直方向上側であり、-Z側は、鉛直方向下側である。本実施形態では、鉛直方向上側を単に「上側」と呼び、鉛直方向下側を単に「下側」と呼ぶ。X軸方向は、Z軸方向と直交する方向であって、モータユニット1が搭載される車両100の前後方向である。本実施形態において、+X側は、車両100の前側であり、-X側は、車両100の後側である。Y軸方向は、X軸方向とZ軸方向の両方と直交する方向であって、車両100の左右方向(車幅方向)である。本実施形態において、+Y側は、車両100の左側であり、-Y側は、車両100の右側である。なお、前後方向の位置関係は、本実施形態の位置関係に限らず、+X側が車両100の後側であり、-X側が車両100の前側であってもよい。この場合には、+Y側は、車両100の右側であり、-Y側は、車両100の左側である。 The motor unit 1 and the vehicle drive device 10 of the present embodiment will be described with reference to the drawings. In the following description, the vertical direction is defined and described based on the positional relationship when the motor unit 1 of the present embodiment shown in each drawing is mounted on a vehicle 100 located on a horizontal road surface. In the drawings, an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system. In the XYZ coordinate system, the Z-axis direction is the vertical direction. The + Z side is the upper side in the vertical direction, and the −Z side is the lower side in the vertical direction. In the present embodiment, the upper side in the vertical direction is simply referred to as “upper side”, and the lower side in the vertical direction is simply referred to as “lower side”. The X-axis direction is a direction orthogonal to the Z-axis direction and is the front-rear direction of the vehicle 100 on which the motor unit 1 is mounted. In the present embodiment, the + X side is the front side of the vehicle 100, and the −X side is the rear side of the vehicle 100. The Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction, and is the left-right direction (vehicle width direction) of the vehicle 100. In the present embodiment, the + Y side is the left side of the vehicle 100, and the −Y side is the right side of the vehicle 100. The positional relationship in the front-rear direction is not limited to the positional relationship of the present embodiment, and the + X side may be the rear side of the vehicle 100 and the −X side may be the front side of the vehicle 100. In this case, the + Y side is the right side of the vehicle 100, and the −Y side is the left side of the vehicle 100.
 各図に適宜示すモータ軸J2は、Y軸方向、すなわち車両の左右方向に延びる。以下の説明においては、特に断りのない限り、モータ軸J2に平行な方向を単に「軸方向」と呼ぶ。軸方向のうち、モータユニット1の後述するモータ20から伝達機構30へ向かう方向を軸方向一方側と呼び、伝達機構30からモータ20へ向かう方向を軸方向他方側と呼ぶ。具体的に本実施形態では、後述する一対のモータユニット1のうち、車両100の左側(+Y側)に位置する一方のモータユニット1においては、軸方向一方側が+Y側であり、軸方向他方側が-Y側である。車両100の右側(-Y側)に位置する他方のモータユニット1においては、軸方向一方側が-Y側であり、軸方向他方側が+Y側である。モータ軸J2を中心とする径方向を単に「径方向」と呼ぶ。径方向のうち、モータ軸J2に近づく方向を径方向内側と呼び、モータ軸J2から離れる方向を径方向外側と呼ぶ。モータ軸J2を中心とする周方向、すなわち、モータ軸J2の軸回りを単に「周方向」と呼ぶ。なお、本実施形態において、「平行な方向」は略平行な方向も含み、「直交する方向」は略直交する方向も含む。 The motor shaft J2 shown as appropriate in each drawing extends in the Y-axis direction, that is, the left-right direction of the vehicle. In the following description, unless otherwise specified, a direction parallel to the motor shaft J2 is simply referred to as “axial direction”. Of the axial directions, a direction from the motor 20 to the transmission mechanism 30 (to be described later) of the motor unit 1 is referred to as one axial direction, and a direction from the transmission mechanism 30 to the motor 20 is referred to as the other axial direction. Specifically, in the present embodiment, in one motor unit 1 located on the left side (+ Y side) of the vehicle 100 among a pair of motor units 1 described later, one axial side is the + Y side and the other axial side is -Y side. In the other motor unit 1 located on the right side (−Y side) of the vehicle 100, one axial side is the −Y side, and the other axial side is the + Y side. The radial direction around the motor shaft J2 is simply referred to as “radial direction”. Of the radial directions, a direction approaching the motor shaft J2 is referred to as a radially inner side, and a direction away from the motor shaft J2 is referred to as a radially outer side. The circumferential direction around the motor axis J2, that is, the circumference of the motor axis J2, is simply referred to as “circumferential direction”. In the present embodiment, the “parallel direction” includes a substantially parallel direction, and the “perpendicular direction” includes a substantially orthogonal direction.
 図1に示すように、車両100は、車軸を回転させる動力発生手段として、2つの車両駆動装置10,101を備える。すなわち、車両100はパワートレインを有し、パワートレインは、2つの車両駆動装置10,101と、バッテリ(図示省略)と、を備える。本実施形態の車両100は、モータを動力発生手段とする電気自動車(EV)である。車両100は、フロント用の車両駆動装置101と、リア用の車両駆動装置10と、を備える。フロント用の車両駆動装置101は、フロント左側の車輪およびフロント右側の車輪を駆動する。リア用の車両駆動装置10は、一対のリア用のモータユニット1を備える。一対のリア用のモータユニット1のうち、一方のモータユニット1はリア左側の車輪を駆動し、他方のモータユニット1はリア右側の車輪を駆動する。 As shown in FIG. 1, the vehicle 100 includes two vehicle drive devices 10 and 101 as power generation means for rotating the axle. That is, the vehicle 100 has a power train, and the power train includes two vehicle drive devices 10 and 101 and a battery (not shown). The vehicle 100 of the present embodiment is an electric vehicle (EV) that uses a motor as power generation means. The vehicle 100 includes a front vehicle drive device 101 and a rear vehicle drive device 10. The front vehicle drive device 101 drives the front left wheel and the front right wheel. The rear vehicle drive device 10 includes a pair of rear motor units 1. Of the pair of rear motor units 1, one motor unit 1 drives the rear left wheel, and the other motor unit 1 drives the rear right wheel.
 リア用の車両駆動装置10は、車両100の車幅方向の略中央部に配置される。車両駆動装置10の2つのモータユニット1は、互いに車幅方向に対向し、車幅方向に並んで配置される。2つのモータユニット1は、車両100の車幅方向の中心軸J1を含みモータ軸J2と垂直な仮想の鉛直面を中心として、互いに面対称(左右対称)の構造を有する。 The rear vehicle drive device 10 is disposed at a substantially central portion of the vehicle 100 in the vehicle width direction. The two motor units 1 of the vehicle drive device 10 face each other in the vehicle width direction and are arranged side by side in the vehicle width direction. The two motor units 1 have a symmetrical structure with respect to each other about a virtual vertical plane that includes the central axis J1 in the vehicle width direction of the vehicle 100 and is perpendicular to the motor axis J2.
 図2および図3に示すように、本実施形態の車両駆動装置10は、モータユニット1と、サブフレーム2と、インバータ3と、インバータケース4と、を備える。サブフレーム2は、車両100に取り付けられる。サブフレーム2は、モータユニット1を支持する。本実施形態ではサブフレーム2が、インバータケース4も支持する。サブフレーム2は、前フレーム部2aと、後フレーム部2bと、一対の横フレーム部2cと、を有する。 As shown in FIGS. 2 and 3, the vehicle drive device 10 of this embodiment includes a motor unit 1, a subframe 2, an inverter 3, and an inverter case 4. The subframe 2 is attached to the vehicle 100. The sub frame 2 supports the motor unit 1. In the present embodiment, the subframe 2 also supports the inverter case 4. The subframe 2 includes a front frame portion 2a, a rear frame portion 2b, and a pair of horizontal frame portions 2c.
前フレーム部2aは、軸方向(車幅方向)に延び、モータユニット1に前側から対向する。前フレーム部2aは、モータユニット1の後述するハウジング11に対して、前側から接触する。後フレーム部2bは、軸方向に延び、モータユニット1に後側から対向する。後フレーム部2bは、モータユニット1のハウジング11に対して、後側から接触する。モータユニット1は、前フレーム部2aおよび後フレーム部2bにより、前後方向から挟まれる。 The front frame portion 2a extends in the axial direction (vehicle width direction) and faces the motor unit 1 from the front side. The front frame portion 2a comes into contact with a housing 11 (described later) of the motor unit 1 from the front side. The rear frame portion 2b extends in the axial direction and faces the motor unit 1 from the rear side. The rear frame portion 2b contacts the housing 11 of the motor unit 1 from the rear side. The motor unit 1 is sandwiched between the front frame part 2a and the rear frame part 2b from the front-rear direction.
一対の横フレーム部2cは、軸方向に互いに間隔をあけて配置される。一対の横フレーム部2cは、前後方向に延び、それぞれモータユニット1に軸方向から対向する。本実施形態の例では、横フレーム部2cが、モータユニット1のハウジング11に対して、軸方向に隙間をあけて対向する。ただしこれに限らず、横フレーム部2cは、モータユニット1のハウジング11に対して、軸方向から接触してもよい。一対のモータユニット1は、軸方向において一対の横フレーム部2c間に配置される。このように、サブフレーム2は、モータユニット1に軸方向および前後方向から対向する部分を有する。 A pair of horizontal frame part 2c is arrange | positioned at intervals in the axial direction. The pair of horizontal frame portions 2c extend in the front-rear direction and face the motor unit 1 from the axial direction. In the example of this embodiment, the horizontal frame portion 2 c faces the housing 11 of the motor unit 1 with a gap in the axial direction. However, the present invention is not limited thereto, and the horizontal frame portion 2c may contact the housing 11 of the motor unit 1 from the axial direction. The pair of motor units 1 are disposed between the pair of horizontal frame portions 2c in the axial direction. As described above, the subframe 2 has a portion facing the motor unit 1 from the axial direction and the front-rear direction.
 インバータ3は、モータユニット1と電気的に接続される。本実施形態では、インバータ3が、一対のモータユニット1とそれぞれ電気的に接続される。インバータ3は、モータユニット1の後述するモータ20のステータ26と電気的に接続される。インバータ3は、ステータ26に供給される電力を調整可能である。インバータ3は、図示しない電子制御装置によって制御される。 The inverter 3 is electrically connected to the motor unit 1. In the present embodiment, the inverter 3 is electrically connected to the pair of motor units 1. The inverter 3 is electrically connected to a stator 26 of the motor 20 described later of the motor unit 1. The inverter 3 can adjust the power supplied to the stator 26. The inverter 3 is controlled by an electronic control device (not shown).
インバータケース4にはインバータ3が収容される。つまりインバータ3は、インバータケース4の内部に配置される。インバータケース4は、インバータ3を収容可能な容器状である。本実施形態の例では、インバータケース4が直方体状である。ただしこれに限らず、インバータケース4は、直方体状以外の形状であってもよい。インバータケース4は、サブフレーム2の上部に配置される。インバータケース4は、サブフレーム2の軸方向の略中央部に配置されて、サブフレーム2に支持される。インバータケース4は、冷却液が流れる水路(図示省略)を有する。インバータケース4の水路は、車両100に設けられる図示しないラジエータと接続される。インバータケース4の水路には、ラジエータで冷却された冷却液が供給される。インバータケース4の水路を冷却液が流れることにより、インバータ3が冷却される。 The inverter case 4 accommodates the inverter 3. That is, the inverter 3 is disposed inside the inverter case 4. The inverter case 4 has a container shape that can accommodate the inverter 3. In the example of the present embodiment, the inverter case 4 has a rectangular parallelepiped shape. However, the present invention is not limited to this, and the inverter case 4 may have a shape other than a rectangular parallelepiped shape. The inverter case 4 is disposed on the upper part of the subframe 2. The inverter case 4 is disposed at a substantially central portion in the axial direction of the subframe 2 and is supported by the subframe 2. The inverter case 4 has a water channel (not shown) through which the coolant flows. The water channel of the inverter case 4 is connected to a radiator (not shown) provided in the vehicle 100. The coolant cooled by the radiator is supplied to the water channel of the inverter case 4. As the coolant flows through the water channel of the inverter case 4, the inverter 3 is cooled.
 モータユニット1は、車両100の車軸を回転させる。図4~図7に示すように、モータユニット1は、ハウジング11と、複数のベアリング14,15,16と、モータ20と、伝達機構30と、油路40と、オイルポンプ61,62と、オイルクーラ65と、第1温度センサ70と、第2温度センサ(図示省略)と、回転センサ80と、を備える。ベアリング14,15,16は、例えばボールベアリング等である。 The motor unit 1 rotates the axle of the vehicle 100. 4 to 7, the motor unit 1 includes a housing 11, a plurality of bearings 14, 15, 16, a motor 20, a transmission mechanism 30, an oil passage 40, oil pumps 61, 62, An oil cooler 65, a first temperature sensor 70, a second temperature sensor (not shown), and a rotation sensor 80 are provided. The bearings 14, 15, and 16 are, for example, ball bearings.
 図5に示すように、ハウジング11は、モータ20および伝達機構30を収容する。ハウジング11は、モータ収容部12と、ギア収容部13と、仕切り壁部17と、を有する。モータ収容部12とギア収容部13とは、互いに軸方向に対向し、軸方向に並んで配置される。 As shown in FIG. 5, the housing 11 houses the motor 20 and the transmission mechanism 30. The housing 11 includes a motor housing portion 12, a gear housing portion 13, and a partition wall portion 17. The motor housing portion 12 and the gear housing portion 13 face each other in the axial direction and are arranged side by side in the axial direction.
 モータ収容部12は、ハウジング11のうち、モータ20を収容する部分である。モータ収容部12は、軸方向に延びる筒状である。本実施形態ではモータ収容部12が、有底筒状である。モータ収容部12は、軸方向一方側に開口する。モータ収容部12は、周壁部12aと、底壁部12bと、を有する。底壁部12bは、ベアリング14を保持する。底壁部12bは、ベアリング14を介して、モータシャフト22をモータ軸J2回りに回転自在に支持する。つまり、ハウジング11は、ベアリング14を介して、モータシャフト22を回転自在に支持する。 The motor housing portion 12 is a portion of the housing 11 that houses the motor 20. The motor housing portion 12 has a cylindrical shape extending in the axial direction. In this embodiment, the motor accommodating part 12 is a bottomed cylindrical shape. The motor housing portion 12 opens on one side in the axial direction. The motor housing part 12 has a peripheral wall part 12a and a bottom wall part 12b. The bottom wall portion 12 b holds the bearing 14. The bottom wall portion 12b supports the motor shaft 22 through the bearing 14 so as to be rotatable around the motor axis J2. That is, the housing 11 rotatably supports the motor shaft 22 via the bearing 14.
 ギア収容部13は、ハウジング11のうち、伝達機構30を収容する部分である。ギア収容部13は、軸方向に延びる筒状である。ギア収容部13は、周壁部13aを有する。周壁部13aは、内部にベアリング15を保持する。周壁部13aは、ベアリング15を介して、出力シャフト38をモータ軸J2回りに回転自在に支持する。つまり、ハウジング11は、ベアリング15を介して、出力シャフト38を回転自在に支持する。 The gear housing portion 13 is a portion of the housing 11 that houses the transmission mechanism 30. The gear accommodating part 13 is a cylinder shape extended in an axial direction. The gear accommodating part 13 has the surrounding wall part 13a. The peripheral wall portion 13a holds the bearing 15 therein. The peripheral wall portion 13a supports the output shaft 38 via the bearing 15 so as to be rotatable around the motor axis J2. That is, the housing 11 rotatably supports the output shaft 38 via the bearing 15.
 仕切り壁部17は、モータ軸J2に垂直な方向に広がる板状である。仕切り壁部17の板面は、軸方向を向く。仕切り壁部17は、モータ軸J2を中心とする円環板状である。仕切り壁部17は、ギア収容部13内に配置される。仕切り壁部17は、ベアリング15よりも軸方向他方側に位置する。仕切り壁部17の外周部は、周壁部13aの内周面に固定される。仕切り壁部17の内周部は、伝達機構30の後述するインターナルギア34の外周部と接続される。仕切り壁部17は、仕切り壁部17を軸方向に貫通するオイル流通孔17aを有する。オイル流通孔17aは、仕切り壁部17のうち少なくとも下側の部分に配置される。オイル流通孔17aは、仕切り壁部17に1つのみ設けられてもよく、複数設けられてもよい。 The partition wall 17 has a plate shape that extends in a direction perpendicular to the motor shaft J2. The plate surface of the partition wall portion 17 faces the axial direction. The partition wall portion 17 has an annular plate shape centered on the motor shaft J2. The partition wall portion 17 is disposed in the gear housing portion 13. The partition wall portion 17 is located on the other side in the axial direction from the bearing 15. The outer peripheral part of the partition wall part 17 is fixed to the inner peripheral surface of the peripheral wall part 13a. An inner peripheral portion of the partition wall portion 17 is connected to an outer peripheral portion of an internal gear 34 described later of the transmission mechanism 30. The partition wall part 17 has an oil circulation hole 17a that penetrates the partition wall part 17 in the axial direction. The oil circulation hole 17 a is disposed in at least the lower part of the partition wall portion 17. Only one oil circulation hole 17a may be provided in the partition wall 17 or a plurality of oil circulation holes 17a may be provided.
 モータ20は、車両100の車軸を回転させるトルクを出力する。モータ20のトルクは、伝達機構30を介して車軸に伝達される。モータ20は、ロータ21と、ステータ26と、を有する。ロータ21は、モータシャフト22と、ロータホルダ23と、ロータコア24と、ロータマグネット25と、を有する。 The motor 20 outputs torque that rotates the axle of the vehicle 100. Torque of the motor 20 is transmitted to the axle via the transmission mechanism 30. The motor 20 includes a rotor 21 and a stator 26. The rotor 21 includes a motor shaft 22, a rotor holder 23, a rotor core 24, and a rotor magnet 25.
 モータシャフト22は、モータ軸J2を中心として軸方向に延びる。モータシャフト22は、筒状である。モータシャフト22は、軸方向両側に開口する中空のシャフトである。モータシャフト22は、モータ軸J2を中心として回転する。モータシャフト22は、一対のベアリング14,16によりモータ軸J2回りに回転自在に支持される。ベアリング14は、モータシャフト22の軸方向他方側の端部を支持する。ベアリング16は、モータシャフト22の軸方向一方側の部分を支持する。ベアリング16は、伝達機構30の後述するベアリングホルダ35に保持される。 The motor shaft 22 extends in the axial direction around the motor shaft J2. The motor shaft 22 is cylindrical. The motor shaft 22 is a hollow shaft that opens on both sides in the axial direction. The motor shaft 22 rotates about the motor shaft J2. The motor shaft 22 is supported by a pair of bearings 14 and 16 so as to be rotatable around the motor axis J2. The bearing 14 supports an end portion on the other axial side of the motor shaft 22. The bearing 16 supports a portion on one side of the motor shaft 22 in the axial direction. The bearing 16 is held by a bearing holder 35 described later of the transmission mechanism 30.
 モータシャフト22は、凹部22aを有する。凹部22aは、モータシャフト22の軸方向一方側の端面に開口し、この端面から軸方向他方側に窪む。凹部22aは、軸方向に延びる穴状である。凹部22a内には、伝達機構30の後述する連結シャフト31が嵌合する。モータシャフト22のうち、凹部22aよりも軸方向他方側に位置する部分の内径は、凹部22aの内径に比べて小さい。本実施形態では、モータシャフト22の内周面のうち、最も内径が大きい部分が凹部22aである。本実施形態によれば、モータシャフト22の凹部22a以外の部分において、モータシャフト22の肉厚を大きく確保できる。したがって、モータシャフト22の剛性を高められる。 The motor shaft 22 has a recess 22a. The recess 22a opens to an end surface on one axial side of the motor shaft 22, and is recessed from the end surface to the other axial side. The recess 22a has a hole shape extending in the axial direction. A connecting shaft 31 (described later) of the transmission mechanism 30 is fitted into the recess 22a. Of the motor shaft 22, the inner diameter of the portion located on the other axial side of the recess 22a is smaller than the inner diameter of the recess 22a. In the present embodiment, the largest inner diameter portion of the inner peripheral surface of the motor shaft 22 is the recess 22a. According to the present embodiment, it is possible to ensure a large thickness of the motor shaft 22 in a portion other than the recess 22 a of the motor shaft 22. Therefore, the rigidity of the motor shaft 22 can be increased.
 ロータホルダ23は、モータシャフト22に固定される。ロータホルダ23は、モータシャフト22の径方向外側に位置する部分を有する。ロータホルダ23は、ロータコア24およびロータマグネット25を保持する。ロータホルダ23は、有底筒状である。ロータホルダ23は、軸方向一方側に開口する。ロータホルダ23は、底部23aと、筒部23bと、センサ支持部23cと、を有する。 The rotor holder 23 is fixed to the motor shaft 22. The rotor holder 23 has a portion located on the radially outer side of the motor shaft 22. The rotor holder 23 holds the rotor core 24 and the rotor magnet 25. The rotor holder 23 has a bottomed cylindrical shape. The rotor holder 23 opens to one side in the axial direction. The rotor holder 23 includes a bottom portion 23a, a cylinder portion 23b, and a sensor support portion 23c.
 底部23aは、モータ軸J2を中心として周方向に延びる環状である。本実施形態では、底部23aが、モータ軸J2に対して垂直に広がる板状であり、板面が軸方向を向く。底部23aは、円環板状である。底部23aの内周部は、モータシャフト22の外周部と固定される。底部23aの軸方向位置は、ベアリング14の軸方向位置よりも軸方向一方側であり、ベアリング16の軸方向位置よりも軸方向他方側である。 The bottom 23a is a ring extending in the circumferential direction around the motor shaft J2. In the present embodiment, the bottom portion 23a has a plate shape extending perpendicularly to the motor shaft J2, and the plate surface faces the axial direction. The bottom portion 23a has an annular plate shape. The inner peripheral portion of the bottom portion 23 a is fixed to the outer peripheral portion of the motor shaft 22. The axial position of the bottom 23 a is on one side in the axial direction with respect to the axial position of the bearing 14, and on the other side in the axial direction with respect to the axial position of the bearing 16.
 筒部23bは、軸方向に延びる。筒部23bは、モータ軸J2を中心とする円筒状である。筒部23bの内周面と、モータシャフト22の外周面との間には、空間が設けられる。筒部23bの内周面のうち、軸方向他方側の端部は、底部23aの外周部と接続される。筒部23bの内径は、底部23aと接続される部分から軸方向一方側に向かうにしたがい大きくなる。筒部23bの内周面は、軸方向一方側に向かうにしたがい内径が大きくなるテーパ面状の部分を有する。径方向から見て、筒部23bの軸方向一方側の端部と、ベアリング16とは、重なって配置される。径方向から見て、筒部23bの軸方向他方側の端部と、ベアリング14とは、重なって配置される。 The cylinder portion 23b extends in the axial direction. The cylinder portion 23b has a cylindrical shape centered on the motor shaft J2. A space is provided between the inner peripheral surface of the cylindrical portion 23 b and the outer peripheral surface of the motor shaft 22. Of the inner peripheral surface of the cylindrical portion 23b, the end portion on the other side in the axial direction is connected to the outer peripheral portion of the bottom portion 23a. The inner diameter of the cylindrical portion 23b increases as it goes from the portion connected to the bottom portion 23a toward one side in the axial direction. The inner peripheral surface of the cylindrical portion 23b has a tapered surface-shaped portion whose inner diameter increases as it goes toward one side in the axial direction. When viewed from the radial direction, the end portion on one side in the axial direction of the cylindrical portion 23b and the bearing 16 are disposed so as to overlap each other. When viewed from the radial direction, the end of the cylindrical portion 23b on the other side in the axial direction and the bearing 14 are disposed so as to overlap each other.
 センサ支持部23cは、底部23aの軸方向他方側を向く板面から軸方向他方側に突出する。センサ支持部23cは、モータ軸J2を中心として軸方向に延びる筒状である。センサ支持部23cは、筒部23bの軸方向他方側の端部よりも軸方向他方側に突出する部分を有する。センサ支持部23cの軸方向他方側の端部には、回転センサ80の後述するレゾルバロータ80aが固定される。図示の例では、センサ支持部23cの外周面に、レゾルバロータ80aが固定される。 The sensor support portion 23c protrudes from the plate surface facing the other side in the axial direction of the bottom portion 23a to the other side in the axial direction. The sensor support 23c has a cylindrical shape that extends in the axial direction about the motor shaft J2. The sensor support portion 23c has a portion that protrudes to the other side in the axial direction than the end portion on the other side in the axial direction of the cylindrical portion 23b. A resolver rotor 80a, which will be described later, of the rotation sensor 80 is fixed to the other end of the sensor support 23c in the axial direction. In the illustrated example, the resolver rotor 80a is fixed to the outer peripheral surface of the sensor support portion 23c.
 ロータコア24は、筒部23bの外周面に固定される。ロータコア24は、モータ軸J2を中心として周方向に延びる環状である。本実施形態では、ロータコア24が、軸方向に延びる筒状である。ロータコア24は、例えば、複数の電磁鋼板が軸方向に積層されて構成される積層鋼板である。ロータコア24は、ロータコア24の径方向外端部に、ロータコア24を軸方向に貫通する保持孔24aを有する。保持孔24aは、ロータコア24の径方向外端部に、周方向に互いに間隔をあけて複数配置される。複数の保持孔24aの内部には、ロータマグネット25がそれぞれ保持される。複数のロータマグネット25は、ロータコア24の径方向外端部において周方向に配列する。ロータマグネット25は、ロータコア24の径方向外端部に固定される。なお、ロータマグネット25は、円環状のリングマグネットから構成されていてもよい。 The rotor core 24 is fixed to the outer peripheral surface of the cylindrical portion 23b. The rotor core 24 has an annular shape that extends in the circumferential direction about the motor shaft J2. In the present embodiment, the rotor core 24 has a cylindrical shape extending in the axial direction. The rotor core 24 is, for example, a laminated steel plate configured by laminating a plurality of electromagnetic steel plates in the axial direction. The rotor core 24 has a holding hole 24 a that penetrates the rotor core 24 in the axial direction at the radially outer end of the rotor core 24. A plurality of holding holes 24 a are disposed at the radially outer end of the rotor core 24 at intervals in the circumferential direction. The rotor magnets 25 are respectively held in the plurality of holding holes 24a. The plurality of rotor magnets 25 are arranged in the circumferential direction at the radially outer end of the rotor core 24. The rotor magnet 25 is fixed to the radially outer end of the rotor core 24. In addition, the rotor magnet 25 may be comprised from the annular ring magnet.
 ステータ26は、ロータ21と径方向に隙間をあけて対向する。ステータ26は、ロータ21の径方向外側に位置する。ステータ26は、ステータコア27と、インシュレータ(図示省略)と、複数のコイル28と、を有する。ステータコア27は、モータ軸J2を中心として周方向に延びる環状である。本実施形態では、ステータコア27が、軸方向に延びる筒状である。ステータコア27は、モータ収容部12の内周面に固定される。ステータコア27の内周部は、ロータコア24の外周部と径方向に隙間をあけて対向する。ステータコア27は、例えば、複数の電磁鋼板が軸方向に積層されて構成される積層鋼板である。インシュレータの材料は、例えば樹脂などの絶縁材料である。複数のコイル28は、インシュレータを介してステータコア27に取り付けられる。ステータ26の下側の端部は、油路40の後述する貯油部50に配置される。 The stator 26 faces the rotor 21 with a gap in the radial direction. The stator 26 is located on the radially outer side of the rotor 21. The stator 26 includes a stator core 27, an insulator (not shown), and a plurality of coils 28. The stator core 27 has an annular shape that extends in the circumferential direction about the motor shaft J2. In the present embodiment, the stator core 27 has a cylindrical shape extending in the axial direction. The stator core 27 is fixed to the inner peripheral surface of the motor housing portion 12. The inner peripheral portion of the stator core 27 faces the outer peripheral portion of the rotor core 24 with a gap in the radial direction. The stator core 27 is, for example, a laminated steel plate configured by laminating a plurality of electromagnetic steel plates in the axial direction. The insulator material is, for example, an insulating material such as resin. The plurality of coils 28 are attached to the stator core 27 via insulators. The lower end portion of the stator 26 is disposed in an oil storage portion 50 (described later) of the oil passage 40.
 伝達機構30は、モータシャフト22に接続され、モータ20の動力を出力シャフト38に伝達する。伝達機構30は、モータシャフト22の軸方向一方側の端部に接続される。伝達機構30は、モータ20の回転を減速してトルクを高め、出力シャフト38の出力軸J4回りの回転として出力する。伝達機構30は減速機構であり、本実施形態では、遊星歯車機構である。出力シャフト38の出力軸J4は、モータ軸J2と同軸に配置される。本実施形態によれば、モータユニット1を小型化できる。 The transmission mechanism 30 is connected to the motor shaft 22 and transmits the power of the motor 20 to the output shaft 38. The transmission mechanism 30 is connected to an end portion on one side in the axial direction of the motor shaft 22. The transmission mechanism 30 decelerates the rotation of the motor 20 to increase the torque, and outputs the rotation as a rotation around the output shaft J4 of the output shaft 38. The transmission mechanism 30 is a speed reduction mechanism, and is a planetary gear mechanism in the present embodiment. The output shaft J4 of the output shaft 38 is disposed coaxially with the motor shaft J2. According to this embodiment, the motor unit 1 can be reduced in size.
 伝達機構30は、連結シャフト31と、サンギア32と、プラネタリギア33と、インターナルギア34と、ベアリングホルダ35と、キャリアピン36と、キャリア37と、出力シャフト38と、複数のベアリング39a,39bと、を有する。ベアリング39a,39bは、例えばニードルローラベアリング等である。 The transmission mechanism 30 includes a connecting shaft 31, a sun gear 32, a planetary gear 33, an internal gear 34, a bearing holder 35, a carrier pin 36, a carrier 37, an output shaft 38, and a plurality of bearings 39a and 39b. Have. The bearings 39a and 39b are, for example, needle roller bearings.
連結シャフト31は、軸方向に延びる筒状である。連結シャフト31は、軸方向両側に開口する中空のシャフトである。連結シャフト31の軸方向一方側の端部は、ベアリング39aを介して、出力シャフト38によりモータ軸J2回りに回転自在に支持される。すなわち、連結シャフト31と出力シャフト38とは、ベアリング39aを介して周方向に相互に回転自在である。 The connecting shaft 31 has a cylindrical shape extending in the axial direction. The connection shaft 31 is a hollow shaft that opens on both sides in the axial direction. One end of the coupling shaft 31 in the axial direction is rotatably supported around the motor axis J2 by the output shaft 38 via the bearing 39a. That is, the connecting shaft 31 and the output shaft 38 are rotatable in the circumferential direction via the bearing 39a.
 連結シャフト31は、軸方向他方側の端部が凹部22a内に挿入される。連結シャフト31は、軸方向他方側の端部が凹部22a内に嵌合する。本実施形態では、連結シャフト31の外周面における軸方向他方側の端部のうち軸方向一方側に位置する部分と、凹部22aの内周面のうち軸方向一方側に位置する部分とが、周方向に相互に回転不能に嵌合する。すなわち、連結シャフト31とモータシャフト22とは、周方向に相互に回転不能である。本実施形態によれば、上述した通り凹部22aの内径が大きい。凹部22aの内径が大きい分、凹部22a内に嵌合する連結シャフト31の外径を大きくすることができる。したがって、上述のようにモータシャフト22の剛性を高めつつ、連結シャフト31の剛性も高められる。 The connecting shaft 31 is inserted into the recess 22a at the other end in the axial direction. The connecting shaft 31 is fitted in the recess 22a at the other end in the axial direction. In the present embodiment, a portion located on one axial side of the end portion on the other axial side of the outer peripheral surface of the connecting shaft 31 and a portion located on one axial side of the inner peripheral surface of the recess 22a are: They fit in the circumferential direction so as not to rotate with each other. That is, the connecting shaft 31 and the motor shaft 22 are not mutually rotatable in the circumferential direction. According to this embodiment, the inner diameter of the recess 22a is large as described above. As the inner diameter of the recess 22a is larger, the outer diameter of the connecting shaft 31 fitted into the recess 22a can be increased. Therefore, the rigidity of the connecting shaft 31 can be increased while increasing the rigidity of the motor shaft 22 as described above.
 本実施形態において、連結シャフト31は、軸方向他方側の端部が凹部22aに対して軸方向に移動自在に嵌合する。具体的に、連結シャフト31の軸方向他方側の端部は、凹部22a内にスプライン嵌合する。このため連結シャフト31は、モータシャフト22に対して、軸方向に移動可能である。連結シャフト31の軸方向他方側を向く端面は、凹部22aの軸方向一方側を向く底面に接触し、または隙間をあけて対向する。図示の例では、モータシャフト22の内周面の内径と、連結シャフト31の内周面の内径とが、略同じである。図5および図6では図示を省略するが、モータシャフト22の内部と、連結シャフト31の内部との間には、後述する第2オリフィス58が設けられる。 In the present embodiment, the connecting shaft 31 is fitted such that the other end in the axial direction is movably movable in the axial direction with respect to the recess 22a. Specifically, the other axial end of the connecting shaft 31 is splined into the recess 22a. For this reason, the connecting shaft 31 is movable in the axial direction with respect to the motor shaft 22. The end surface of the coupling shaft 31 facing the other side in the axial direction is in contact with the bottom surface of the recess 22a facing the one side in the axial direction or is opposed with a gap. In the illustrated example, the inner diameter of the inner peripheral surface of the motor shaft 22 and the inner diameter of the inner peripheral surface of the connecting shaft 31 are substantially the same. Although not shown in FIGS. 5 and 6, a second orifice 58 described later is provided between the inside of the motor shaft 22 and the inside of the connecting shaft 31.
 サンギア32は、連結シャフト31に設けられる。サンギア32は、モータ軸J2を中心軸とする外歯ギアである。サンギア32は、凹部22aよりも軸方向一方側に位置する。サンギア32は、連結シャフト31の外周部のうち、軸方向一方側の端部と軸方向他方側の端部との間に位置する中間部分に配置される。本実施形態では、連結シャフト31とサンギア32とが、単一の部材の部分である。サンギア32は、はす歯ギアである。すなわち、サンギア32のギアの歯すじは、軸方向に向かうにしたがいモータ軸J2回りに向けて延びる。径方向から見て、サンギア32のギアの歯すじは、モータ軸J2に対して傾斜して延びる。 The sun gear 32 is provided on the connecting shaft 31. The sun gear 32 is an external gear whose central axis is the motor shaft J2. The sun gear 32 is positioned on one side in the axial direction from the recess 22a. The sun gear 32 is disposed in an intermediate portion located between the end portion on one side in the axial direction and the end portion on the other side in the axial direction in the outer peripheral portion of the connecting shaft 31. In the present embodiment, the connecting shaft 31 and the sun gear 32 are part of a single member. The sun gear 32 is a helical gear. In other words, the gear teeth of the sun gear 32 extend around the motor shaft J2 in the axial direction. When viewed from the radial direction, the gear teeth of the sun gear 32 extend while being inclined with respect to the motor shaft J2.
プラネタリギア33は、サンギア32の径方向外側に配置され、サンギア32と噛み合う。プラネタリギア33は、サンギア32の径方向外側に、周方向に互いに間隔をあけて複数設けられる。すなわち、伝達機構30は、複数のプラネタリギア33を有する。本実施形態では、伝達機構30が、周方向に互いに等間隔をあけて配置される3つのプラネタリギア33を有する。ただし、伝達機構30が有するプラネタリギア33の数は、3つに限らない。 The planetary gear 33 is disposed radially outside the sun gear 32 and meshes with the sun gear 32. A plurality of planetary gears 33 are provided on the outer side in the radial direction of the sun gear 32 at intervals in the circumferential direction. That is, the transmission mechanism 30 has a plurality of planetary gears 33. In the present embodiment, the transmission mechanism 30 includes three planetary gears 33 that are arranged at equal intervals in the circumferential direction. However, the number of planetary gears 33 included in the transmission mechanism 30 is not limited to three.
 プラネタリギア33は、回転軸J3を中心とする環状である。プラネタリギア33は、回転軸J3を中心軸とする外歯ギアである。回転軸J3は、モータ軸J2の径方向外側に位置して、モータ軸J2と平行に延びる。回転軸J3は、キャリアピン36の中心軸でもある。本実施形態では、プラネタリギア33が、軸方向に延びる筒状である。プラネタリギア33は、回転軸J3を中心として回転する。つまりプラネタリギア33は、回転軸J3回りに自転する。プラネタリギア33は、モータ軸J2を中心として回転する。つまりプラネタリギア33は、モータ軸J2回りに公転する。プラネタリギア33は、サンギア32の周囲を自転しつつ公転する。 The planetary gear 33 has an annular shape around the rotation axis J3. The planetary gear 33 is an external gear whose central axis is the rotation axis J3. The rotating shaft J3 is located radially outside the motor shaft J2 and extends in parallel with the motor shaft J2. The rotation axis J3 is also the center axis of the carrier pin 36. In the present embodiment, the planetary gear 33 has a cylindrical shape extending in the axial direction. The planetary gear 33 rotates about the rotation axis J3. That is, the planetary gear 33 rotates around the rotation axis J3. The planetary gear 33 rotates about the motor shaft J2. That is, the planetary gear 33 revolves around the motor shaft J2. The planetary gear 33 revolves while rotating around the sun gear 32.
プラネタリギア33は、第1ギア部33aと、第2ギア部33bと、を有する。第1ギア部33aの直径(外径)は、第2ギア部33bの直径よりも大きい。すなわち本実施形態では、プラネタリギア33が、段付きピニオンタイプである。したがって、伝達機構30により、モータ20の回転の減速比がより高められる。第1ギア部33aは、インターナルギア34よりも径方向外側に位置する部分を有する。第1ギア部33aは、ギア収容部13の周壁部13aの内周面に、径方向内側から隙間をあけて対向する部分を有する。軸方向から見て、第1ギア部33aと仕切り壁部17とは、互いに重なって配置される。 The planetary gear 33 has a first gear portion 33a and a second gear portion 33b. The diameter (outer diameter) of the first gear portion 33a is larger than the diameter of the second gear portion 33b. That is, in this embodiment, the planetary gear 33 is a stepped pinion type. Therefore, the transmission mechanism 30 further increases the reduction ratio of the rotation of the motor 20. The first gear portion 33 a has a portion located on the radially outer side than the internal gear 34. The first gear portion 33 a has a portion facing the inner peripheral surface of the peripheral wall portion 13 a of the gear housing portion 13 with a gap from the radially inner side. When viewed from the axial direction, the first gear portion 33a and the partition wall portion 17 are arranged to overlap each other.
 第1ギア部33aは、回転軸J3を中心とする筒状である。径方向から見て、第1ギア部33aとサンギア32とは、互いに重なって配置される。第1ギア部33aは、サンギア32と噛み合う。第1ギア部33aの直径は、サンギア32の直径よりも大きい。第1ギア部33aは、はす歯ギアである。すなわち、第1ギア部33aのギアの歯すじは、軸方向に向かうにしたがい回転軸J3回りに向けて延びる。回転軸J3に直交する方向から見て、第1ギア部33aのギアの歯すじは、回転軸J3に対して傾斜して延びる。 The first gear portion 33a has a cylindrical shape centered on the rotation axis J3. When viewed from the radial direction, the first gear portion 33a and the sun gear 32 are arranged to overlap each other. The first gear portion 33 a meshes with the sun gear 32. The diameter of the first gear portion 33 a is larger than the diameter of the sun gear 32. The first gear portion 33a is a helical gear. That is, the gear teeth of the first gear portion 33a extend around the rotation axis J3 in the axial direction. When viewed from the direction perpendicular to the rotation axis J3, the gear teeth of the first gear portion 33a extend while being inclined with respect to the rotation axis J3.
第2ギア部33bは回転軸J3を中心とする筒状である。第2ギア部33bはインターナルギア34と噛み合う。第2ギア部33bは、はす歯ギアである。すなわち、第2ギア部33bのギアの歯すじは、軸方向に向かうにしたがい回転軸J3回りに向けて延びる。回転軸J3に直交する方向から見て、第2ギア部33bのギアの歯すじは、回転軸J3に対して傾斜して延びる。 The second gear portion 33b is cylindrical with the rotation axis J3 as the center. The second gear portion 33 b meshes with the internal gear 34. The second gear portion 33b is a helical gear. That is, the gear teeth of the second gear portion 33b extend around the rotation axis J3 in the axial direction. When viewed from a direction orthogonal to the rotation axis J3, the gear teeth of the second gear portion 33b extend while being inclined with respect to the rotation axis J3.
 詳しくは、第2ギア部33bは、噛合部33cと、嵌合部33dと、を有する。噛合部33cと嵌合部33dとは、互いに軸方向に並んで配置される。径方向から見て、噛合部33cとインターナルギア34とは、互いに重なって配置される。噛合部33cは、第2ギア部33bにおいてインターナルギア34と噛み合う部分である。つまり第2ギア部33bのギアは、噛合部33cの外周に設けられる。噛合部33cは、嵌合部33dよりも軸方向他方側に位置する。噛合部33cの直径は、第1ギア部33aの直径よりも小さい。本実施形態の例では、噛合部33cの軸方向の長さが、第1ギア部33aの軸方向の長さよりも大きい。径方向から見て、噛合部33cは、モータシャフト22の軸方向一方側の端部、凹部22aおよび連結シャフト31の軸方向他方側の端部と、重なって配置される。 Specifically, the second gear portion 33b has a meshing portion 33c and a fitting portion 33d. The meshing portion 33c and the fitting portion 33d are arranged side by side in the axial direction. When viewed from the radial direction, the meshing portion 33c and the internal gear 34 are arranged to overlap each other. The meshing portion 33c is a portion that meshes with the internal gear 34 in the second gear portion 33b. That is, the gear of the 2nd gear part 33b is provided in the outer periphery of the meshing part 33c. The meshing part 33c is located on the other side in the axial direction from the fitting part 33d. The diameter of the meshing part 33c is smaller than the diameter of the first gear part 33a. In the example of the present embodiment, the axial length of the meshing portion 33c is larger than the axial length of the first gear portion 33a. When viewed from the radial direction, the meshing portion 33 c is disposed so as to overlap with the end portion on the one axial side of the motor shaft 22, the end portion on the other axial side of the concave portion 22 a and the connecting shaft 31.
 嵌合部33dは、第2ギア部33bにおいて第1ギア部33aと嵌合する部分である。本実施形態では、第1ギア部33aの内周部が、嵌合部33dの外周部に対して、軸方向に移動自在に嵌合する。すなわち、第1ギア部33aは、第2ギア部33bに対して軸方向に移動自在に嵌合する部分を有する。具体的に、第1ギア部33aの内周部は、嵌合部33dの外周部に対して、スプライン嵌合する。このため第1ギア部33aは、第2ギア部33bに対して、軸方向に移動可能である。 The fitting portion 33d is a portion that fits with the first gear portion 33a in the second gear portion 33b. In the present embodiment, the inner peripheral portion of the first gear portion 33a is fitted to the outer peripheral portion of the fitting portion 33d so as to be movable in the axial direction. That is, the first gear portion 33a has a portion that is movably fitted in the axial direction with respect to the second gear portion 33b. Specifically, the inner peripheral portion of the first gear portion 33a is spline-fitted to the outer peripheral portion of the fitting portion 33d. For this reason, the first gear portion 33a is movable in the axial direction with respect to the second gear portion 33b.
本実施形態では、上述のように連結シャフト31の軸方向他方側の端部が、凹部22a内にスプライン嵌合する。プラネタリギア33の第1ギア部33aが、第2ギア部33bとスプライン嵌合する。このため、モータユニット1の製造時において、プラネタリギア33の第1ギア部33aと、連結シャフト31のサンギア32とを噛み合わせた状態としてアセンブリを組み、このアセンブリをモータシャフト22および第2ギア部33bに取り付けることができる。したがって、モータ20と伝達機構30との組み立てが容易である。特に本実施形態のように、サンギア32および第1ギア部33aがはす歯ギアである場合には、上記構成によって、より組み立てが容易となる。 In the present embodiment, as described above, the other axial end of the connecting shaft 31 is spline-fitted into the recess 22a. The first gear portion 33a of the planetary gear 33 is spline-fitted with the second gear portion 33b. Therefore, when the motor unit 1 is manufactured, the assembly is assembled with the first gear portion 33a of the planetary gear 33 and the sun gear 32 of the connecting shaft 31 engaged with each other, and this assembly is assembled with the motor shaft 22 and the second gear portion. 33b can be attached. Therefore, assembly of the motor 20 and the transmission mechanism 30 is easy. In particular, as in the present embodiment, when the sun gear 32 and the first gear portion 33a are helical gears, the above configuration makes assembly easier.
 インターナルギア34は、モータ軸J2を中心とする環状である。インターナルギア34は、モータ軸J2を中心軸とする内歯ギアである。インターナルギア34は、軸方向に延びる筒状である。インターナルギア34は、プラネタリギア33の径方向外側に配置され、プラネタリギア33と噛み合う。本実施形態では、インターナルギア34が、第2ギア部33bの噛合部33cの径方向外側に配置されて、噛合部33cと噛み合う。インターナルギア34は、はす歯ギアである。すなわち、インターナルギア34のギアの歯すじは、軸方向に向かうにしたがいモータ軸J2回りに向けて延びる。径方向から見て、インターナルギア34のギアの歯すじは、モータ軸J2に対して傾斜して延びる。 The internal gear 34 has an annular shape centered on the motor shaft J2. The internal gear 34 is an internal gear whose central axis is the motor shaft J2. The internal gear 34 has a cylindrical shape extending in the axial direction. The internal gear 34 is disposed on the outer side in the radial direction of the planetary gear 33 and meshes with the planetary gear 33. In this embodiment, the internal gear 34 is arrange | positioned in the radial direction outer side of the meshing part 33c of the 2nd gear part 33b, and meshes with the meshing part 33c. The internal gear 34 is a helical gear. That is, the gear teeth of the internal gear 34 extend around the motor shaft J2 in the axial direction. When viewed from the radial direction, the gear teeth of the internal gear 34 are inclined and extend with respect to the motor shaft J2.
 インターナルギア34は、ハウジング11に固定される。インターナルギア34は、仕切り壁部17に接続される。詳しくは、インターナルギア34の外周部のうち軸方向一方側の端部が、仕切り壁部17の内周部と接続される。本実施形態では、インターナルギア34と仕切り壁部17とが、単一の部材の部分である。 The internal gear 34 is fixed to the housing 11. The internal gear 34 is connected to the partition wall portion 17. Specifically, the end on the one axial side of the outer peripheral portion of the internal gear 34 is connected to the inner peripheral portion of the partition wall portion 17. In the present embodiment, the internal gear 34 and the partition wall portion 17 are part of a single member.
 ベアリングホルダ35は、フランジ部35aと、ホルダ筒部35bと、を有する。フランジ部35aは、モータ軸J2に垂直な方向に広がる板状である。フランジ部35aの板面は、軸方向を向く。フランジ部35aは、モータ軸J2を中心とする円環板状である。フランジ部35aの外周部は、インターナルギア34の軸方向他方側の端部に固定される。つまりベアリングホルダ35は、インターナルギア34に固定される。 The bearing holder 35 has a flange portion 35a and a holder tube portion 35b. The flange portion 35a has a plate shape extending in a direction perpendicular to the motor shaft J2. The plate surface of the flange portion 35a faces the axial direction. The flange portion 35a has an annular plate shape centered on the motor shaft J2. The outer peripheral portion of the flange portion 35 a is fixed to the end portion on the other axial side of the internal gear 34. That is, the bearing holder 35 is fixed to the internal gear 34.
 ホルダ筒部35bは、モータ軸J2を中心として軸方向に延びる筒状である。ホルダ筒部35bの軸方向一方側の端部は、フランジ部35aの内周部と接続される。ホルダ筒部35bの内周面と、モータシャフト22の外周面との間には、空間が設けられる。ホルダ筒部35bは、内部にベアリング16を保持する。つまりベアリングホルダ35は、ベアリング16を保持する。ホルダ筒部35bは、ベアリング16を介して、モータシャフト22を保持する。ベアリングホルダ35は、ベアリング16を介して、モータシャフト22をモータ軸J2回りに回転自在に支持する。 The holder cylinder portion 35b has a cylindrical shape extending in the axial direction around the motor shaft J2. One end of the holder tube portion 35b in the axial direction is connected to the inner peripheral portion of the flange portion 35a. A space is provided between the inner peripheral surface of the holder cylinder portion 35 b and the outer peripheral surface of the motor shaft 22. The holder cylinder portion 35b holds the bearing 16 therein. That is, the bearing holder 35 holds the bearing 16. The holder cylinder portion 35 b holds the motor shaft 22 via the bearing 16. The bearing holder 35 supports the motor shaft 22 through the bearing 16 so as to be rotatable around the motor axis J2.
 キャリアピン36は、サンギア32および連結シャフト31の径方向外側に配置される。キャリアピン36は、サンギア32の径方向外側に、周方向に互いに間隔をあけて複数設けられる。すなわち、伝達機構30は、複数のキャリアピン36を有する。本実施形態では、伝達機構30が、周方向に互いに等間隔をあけて配置される3つのキャリアピン36を有する。 The carrier pin 36 is disposed on the radially outer side of the sun gear 32 and the connecting shaft 31. A plurality of carrier pins 36 are provided on the outer side in the radial direction of the sun gear 32 at intervals in the circumferential direction. That is, the transmission mechanism 30 has a plurality of carrier pins 36. In the present embodiment, the transmission mechanism 30 includes three carrier pins 36 that are arranged at equal intervals in the circumferential direction.
 キャリアピン36は、回転軸J3を中心として軸方向に延びる筒状である。キャリアピン36は、軸方向両側に開口する中空のピンである。キャリアピン36は、プラネタリギア33の内部に挿入される。キャリアピン36は、プラネタリギア33内を軸方向に延びる。キャリアピン36は、プラネタリギア33を、ベアリング39bを介して回転自在に支持する。すなわち、キャリアピン36に対してプラネタリギア33は、回転軸J3回りに回転自在である。キャリアピン36は、ベアリング39bを介して、第2ギア部33bを回転自在に支持する。本実施形態では、キャリアピン36と第2ギア部33bとの間に、複数のベアリング39bが軸方向に並んで配置される。 The carrier pin 36 has a cylindrical shape extending in the axial direction around the rotation axis J3. The carrier pin 36 is a hollow pin that opens on both sides in the axial direction. The carrier pin 36 is inserted into the planetary gear 33. The carrier pin 36 extends in the planetary gear 33 in the axial direction. The carrier pin 36 rotatably supports the planetary gear 33 via a bearing 39b. That is, the planetary gear 33 is rotatable about the rotation axis J3 with respect to the carrier pin 36. The carrier pin 36 rotatably supports the second gear portion 33b via the bearing 39b. In the present embodiment, a plurality of bearings 39b are arranged in the axial direction between the carrier pin 36 and the second gear portion 33b.
 キャリア37は、キャリアピン36を支持する。キャリア37は、キャリアピン36と固定される。キャリア37は、プラネタリギア33およびキャリアピン36のモータ軸J2回りの回転(公転)にともない、モータ軸J2回りに回転する。 The carrier 37 supports the carrier pin 36. The carrier 37 is fixed to the carrier pin 36. The carrier 37 rotates around the motor shaft J2 as the planetary gear 33 and the carrier pin 36 rotate (revolve) around the motor shaft J2.
 キャリア37は、第1壁部37aと、第2壁部37bと、連結部37cと、を有する。第1壁部37aは、モータ軸J2に垂直な方向に広がる板状である。第1壁部37aの板面は、軸方向を向く。第1壁部37aは、モータ軸J2を中心とする円環板状である。第1壁部37aは、キャリアピン36の軸方向他方側の端部を支持する。第1壁部37aには、複数のキャリアピン36の軸方向他方側の端部が固定される。第1壁部37aは、ベアリングホルダ35のフランジ部35aに、軸方向一方側から対向する。第1壁部37aとフランジ部35aとの間には、空間が設けられる。第1壁部37aは、モータ軸J2上に位置して第1壁部37aを軸方向に貫通する孔37dを有する。孔37d内には、モータシャフト22の軸方向一方側の端部および連結シャフト31の軸方向他方側の端部が挿入される。径方向から見て、第1壁部37aは、モータシャフト22の軸方向一方側の端部および連結シャフト31の軸方向他方側の端部と、重なって配置される。 The carrier 37 includes a first wall portion 37a, a second wall portion 37b, and a connecting portion 37c. The first wall portion 37a has a plate shape extending in a direction perpendicular to the motor shaft J2. The plate surface of the first wall portion 37a faces the axial direction. The first wall portion 37a has an annular plate shape centered on the motor shaft J2. The first wall portion 37 a supports the end portion on the other axial side of the carrier pin 36. The ends on the other axial side of the plurality of carrier pins 36 are fixed to the first wall portion 37a. The first wall portion 37a faces the flange portion 35a of the bearing holder 35 from one side in the axial direction. A space is provided between the first wall portion 37a and the flange portion 35a. The first wall portion 37a has a hole 37d that is located on the motor shaft J2 and penetrates the first wall portion 37a in the axial direction. An end on one axial side of the motor shaft 22 and an end on the other axial side of the connecting shaft 31 are inserted into the hole 37d. When viewed from the radial direction, the first wall portion 37 a is disposed so as to overlap with the end portion on one axial side of the motor shaft 22 and the end portion on the other axial side of the connecting shaft 31.
 第2壁部37bは、第1壁部37aよりも軸方向一方側に配置される。第1壁部37aおよび第2壁部37bは、互いに軸方向に間隔をあけて配置される。プラネタリギア33は、軸方向において第1壁部37aと第2壁部37bとの間に配置される。第2壁部37bは、モータ軸J2に垂直な方向に広がる板状である。第2壁部37bの板面は、軸方向を向く。第2壁部37bは、モータ軸J2を中心とする円環板状である。第2壁部37bは、キャリアピン36の軸方向一方側の端部を支持する。第2壁部37bには、複数のキャリアピン36の軸方向一方側の端部が固定される。つまり第1壁部37aおよび第2壁部37bは、キャリアピン36の軸方向の両端部を支持する。本実施形態では、第2壁部37bが、サンギア32よりも軸方向一方側に位置する。 The second wall portion 37b is disposed on one side in the axial direction from the first wall portion 37a. The first wall portion 37a and the second wall portion 37b are arranged with a space therebetween in the axial direction. The planetary gear 33 is disposed between the first wall portion 37a and the second wall portion 37b in the axial direction. The second wall portion 37b has a plate shape that extends in a direction perpendicular to the motor shaft J2. The plate surface of the second wall portion 37b faces the axial direction. The second wall portion 37b has an annular plate shape centered on the motor shaft J2. The second wall portion 37 b supports the end portion on one side of the carrier pin 36 in the axial direction. End portions on one axial side of the plurality of carrier pins 36 are fixed to the second wall portion 37b. That is, the first wall portion 37a and the second wall portion 37b support both end portions of the carrier pin 36 in the axial direction. In the present embodiment, the second wall portion 37b is located on one axial side of the sun gear 32.
 連結部37cは、軸方向に延び、第1壁部37aと第2壁部37bとを連結する。本実施形態では、連結部37cが、軸方向に延びる板状である。ただしこれに限らず、連結部37cは、軸方向に延びる軸状等であってもよい。連結部37cの板面は、径方向を向く。連結部37cの軸方向他方側の端部は、第1壁部37aの外周部と接続される。連結部37cの軸方向一方側の端部は、第2壁部37bの外周部と接続される。本実施形態では、連結部37cと第1壁部37aとが、単一の部材の部分である。 The connecting portion 37c extends in the axial direction and connects the first wall portion 37a and the second wall portion 37b. In this embodiment, the connection part 37c is plate shape extended in an axial direction. However, the present invention is not limited thereto, and the connecting portion 37c may have an axial shape that extends in the axial direction. The plate surface of the connecting portion 37c faces the radial direction. The end portion on the other axial side of the connecting portion 37c is connected to the outer peripheral portion of the first wall portion 37a. One end of the connecting portion 37c in the axial direction is connected to the outer peripheral portion of the second wall portion 37b. In this embodiment, the connection part 37c and the 1st wall part 37a are parts of a single member.
 連結部37cは、周方向に互いに間隔をあけて複数設けられる。本実施形態ではキャリア37が、3つの連結部37cを有する。連結部37cは、プラネタリギア33と周方向に隣り合って配置される。複数の連結部37cと複数のプラネタリギア33とは、周方向に交互に配列する。連結部37cは、プラネタリギア33において最も径方向外側に位置する部分よりも、径方向内側に配置される。すなわち、プラネタリギア33は、連結部37cよりも径方向外側に突出する部分を有する。本実施形態では、第1ギア部33aおよび第2ギア部33bのうち、少なくとも第1ギア部33aが、連結部37cよりも径方向外側に突出する。 A plurality of connecting portions 37c are provided at intervals in the circumferential direction. In the present embodiment, the carrier 37 has three connecting portions 37c. The connecting portion 37c is disposed adjacent to the planetary gear 33 in the circumferential direction. The plurality of connecting portions 37c and the plurality of planetary gears 33 are alternately arranged in the circumferential direction. The connecting portion 37 c is disposed on the radially inner side of the planetary gear 33 with respect to the most radially outer portion. That is, the planetary gear 33 has a portion that protrudes radially outward from the connecting portion 37c. In the present embodiment, at least the first gear portion 33a of the first gear portion 33a and the second gear portion 33b protrudes radially outward from the connecting portion 37c.
 出力シャフト38は、モータ軸J2と同軸に配置される。本実施形態では、出力シャフト38が、軸方向に延びる筒状である。出力シャフト38は、キャリア37の軸方向一方側に配置される。出力シャフト38は、キャリア37と接続される。出力シャフト38は、軸方向他方側の端部がキャリア37の第2壁部37bと接続される。本実施形態では、出力シャフト38と第2壁部37bとが、単一の部材の部分であり、一体に設けられる。つまり、出力シャフト38とキャリア37の一部とが、単一の部材の部分である。出力シャフト38は、キャリア37のモータ軸J2回りの回転にともない、モータ軸J2回りに回転する。 The output shaft 38 is arranged coaxially with the motor shaft J2. In the present embodiment, the output shaft 38 has a cylindrical shape extending in the axial direction. The output shaft 38 is disposed on one side of the carrier 37 in the axial direction. The output shaft 38 is connected to the carrier 37. The output shaft 38 is connected to the second wall portion 37 b of the carrier 37 at the other axial end. In the present embodiment, the output shaft 38 and the second wall portion 37b are part of a single member and are integrally provided. That is, the output shaft 38 and a part of the carrier 37 are part of a single member. The output shaft 38 rotates about the motor axis J2 as the carrier 37 rotates about the motor axis J2.
 出力シャフト38の外周面と、ギア収容部13の周壁部13aの内周面との間には、空間が設けられる。出力シャフト38は、ベアリング15を介して、周壁部13aに支持される。図示の例では、出力シャフト38の軸方向一方側の端部が、周壁部13aから軸方向一方側に向けて突出する。ただしこれに限らず、出力シャフト38は、周壁部13aから軸方向一方側に突出しなくてもよい。出力シャフト38は、車両100の車軸と直接または間接的に連結される。 A space is provided between the outer peripheral surface of the output shaft 38 and the inner peripheral surface of the peripheral wall portion 13 a of the gear housing portion 13. The output shaft 38 is supported by the peripheral wall portion 13 a via the bearing 15. In the illustrated example, the end portion on one side in the axial direction of the output shaft 38 projects from the peripheral wall portion 13a toward the one side in the axial direction. However, the present invention is not limited to this, and the output shaft 38 may not protrude from the peripheral wall portion 13a to the one side in the axial direction. The output shaft 38 is directly or indirectly connected to the axle of the vehicle 100.
 本実施形態において、オイルOの循環構造は、油路40と、オイルポンプ61,62と、を有する。油路40は、ハウジング11の内部に設けられる。オイルポンプ61,62は、油路40にオイルOを循環させる。すなわち本実施形態では、モータユニット1が、油路40にオイルOを循環させる第1オイルポンプ61および第2オイルポンプ62を備える。つまりモータユニット1は、複数のオイルポンプ61,62を備える。第1オイルポンプ61および第2オイルポンプ62は、オイルOを伝達機構30に供給可能である。本実施形態では、第1オイルポンプ61および第2オイルポンプ62が、モータシャフト22の内部を通して、伝達機構30にオイルOを供給可能である。第1オイルポンプ61および第2オイルポンプ62については、別途後述する。 In this embodiment, the circulation structure of the oil O includes an oil passage 40 and oil pumps 61 and 62. The oil passage 40 is provided inside the housing 11. The oil pumps 61 and 62 circulate the oil O through the oil passage 40. That is, in the present embodiment, the motor unit 1 includes the first oil pump 61 and the second oil pump 62 that circulate the oil O through the oil passage 40. That is, the motor unit 1 includes a plurality of oil pumps 61 and 62. The first oil pump 61 and the second oil pump 62 can supply the oil O to the transmission mechanism 30. In the present embodiment, the first oil pump 61 and the second oil pump 62 can supply the oil O to the transmission mechanism 30 through the inside of the motor shaft 22. The first oil pump 61 and the second oil pump 62 will be described later separately.
 油路40は、モータシャフト内油路部41と、連結シャフト内油路部42と、環状油路部43と、第1径方向油路部44と、第2径方向油路部45と、キャリアピン内油路部46と、接続油路部47と、第3径方向油路部48と、第4径方向油路部49と、貯油部50と、を有する。 The oil passage 40 includes an oil passage portion 41 in the motor shaft, an oil passage portion 42 in the connecting shaft, an annular oil passage portion 43, a first radial oil passage portion 44, a second radial oil passage portion 45, The carrier pin internal oil passage portion 46, the connecting oil passage portion 47, the third radial oil passage portion 48, the fourth radial oil passage portion 49, and the oil storage portion 50 are provided.
図5に示すように、モータシャフト内油路部41は、モータシャフト22の内部を軸方向に延びる。モータシャフト内油路部41は、モータ軸J2上に位置する。モータシャフト内油路部41は、モータシャフト22を軸方向に貫通する貫通孔により構成される。モータシャフト内油路部41は、凹部22aの底面に開口する。すなわち、モータシャフト内油路部41の軸方向一方側の端部は、凹部22aの軸方向一方側を向く底面に開口する。 As shown in FIG. 5, the oil passage portion 41 in the motor shaft extends in the axial direction inside the motor shaft 22. The oil passage portion 41 in the motor shaft is located on the motor shaft J2. The oil passage portion 41 in the motor shaft is configured by a through hole that penetrates the motor shaft 22 in the axial direction. The motor shaft oil passage 41 opens at the bottom of the recess 22a. That is, the end portion on one side in the axial direction of the oil passage portion 41 in the motor shaft opens to the bottom surface facing the one side in the axial direction of the recess 22a.
 連結シャフト内油路部42は、連結シャフト31の内部を軸方向に延びる。連結シャフト内油路部42は、モータ軸J2上に位置する。連結シャフト内油路部42は、連結シャフト31を軸方向に貫通する貫通孔により構成される。連結シャフト内油路部42は、モータシャフト内油路部41と繋がる。すなわち、連結シャフト内油路部42の軸方向他方側の端部は、モータシャフト内油路部41の軸方向一方側の端部と接続する。本実施形態の例では、連結シャフト内油路部42の内径と、モータシャフト内油路部41の内径とが、略同じである。本実施形態では、上述したようにモータシャフト22に凹部22aが設けられることで、連結シャフト31の外径を大きくできるので、連結シャフト31の内径とモータシャフト22の内径とを、略同じにできる。したがって、モータシャフト22の内部から連結シャフト31の内部に流入するオイルOの圧力損失を小さく抑えることができる。 The connection shaft oil passage portion 42 extends in the axial direction inside the connection shaft 31. The connecting shaft oil passage portion 42 is located on the motor shaft J2. The connecting shaft internal oil passage portion 42 is configured by a through-hole penetrating the connecting shaft 31 in the axial direction. The connecting shaft oil passage portion 42 is connected to the motor shaft oil passage portion 41. In other words, the end portion on the other side in the axial direction of the coupling shaft oil passage portion 42 is connected to the end portion on the one side in the axial direction of the oil passage portion 41 in the motor shaft. In the example of this embodiment, the inner diameter of the connecting shaft oil passage portion 42 and the inner diameter of the motor shaft oil passage portion 41 are substantially the same. In this embodiment, since the motor shaft 22 is provided with the recess 22a as described above, the outer diameter of the connecting shaft 31 can be increased, so that the inner diameter of the connecting shaft 31 and the inner diameter of the motor shaft 22 can be made substantially the same. . Therefore, the pressure loss of the oil O flowing from the inside of the motor shaft 22 into the inside of the connecting shaft 31 can be reduced.
 環状油路部43は、連結シャフト31の軸方向他方側の端部の外周面と、凹部22aの内周面との間に配置される。環状油路部43は、周方向に延びる環状である。環状油路部43は、モータ軸J2を中心とする円筒状の空間であり、凹部22a内に設けられる。環状油路部43は、連結シャフト31の軸方向他方側の端部と凹部22aとが嵌合する部分よりも、軸方向他方側に位置する。 The annular oil passage portion 43 is disposed between the outer peripheral surface of the end portion on the other axial side of the connecting shaft 31 and the inner peripheral surface of the recess 22a. The annular oil passage 43 is a ring extending in the circumferential direction. The annular oil passage 43 is a cylindrical space centered on the motor shaft J2, and is provided in the recess 22a. The annular oil passage portion 43 is located on the other side in the axial direction from a portion where the end portion on the other side in the axial direction of the connecting shaft 31 and the recess 22a are fitted.
 第1径方向油路部44は、連結シャフト31の軸方向他方側の端部に配置されて径方向に延び、連結シャフト内油路部42および環状油路部43に開口する。第1径方向油路部44は、連結シャフト31の軸方向他方側の端部において、連結シャフト31の内部を径方向に延び、連結シャフト31の内周面と外周面とに開口する貫通孔により構成される。本実施形態では、第1径方向油路部44が、周方向に互いに間隔をあけて複数設けられる。 The first radial oil passage portion 44 is disposed at the other axial end of the connecting shaft 31 and extends in the radial direction, and opens to the connecting shaft inner oil passage portion 42 and the annular oil passage portion 43. The first radial oil passage 44 is a through hole that extends radially inside the connecting shaft 31 at the other axial end of the connecting shaft 31 and opens to the inner and outer peripheral surfaces of the connecting shaft 31. Consists of. In the present embodiment, a plurality of first radial oil passage portions 44 are provided at intervals in the circumferential direction.
 第2径方向油路部45は、モータシャフト22の軸方向一方側の端部に配置されて径方向に延び、環状油路部43およびモータシャフト22の外周面に開口する。第2径方向油路部45は、モータシャフト22の軸方向一方側の端部において、モータシャフト22の内部を径方向に延び、凹部22aの内周面とモータシャフト22の外周面とに開口する貫通孔により構成される。第2径方向油路部45の径方向外側の端部は、軸方向に沿う第1壁部37aと、フランジ部35aおよびベアリング16と、の間の空間に向けて開口する。本実施形態では、第2径方向油路部45が、周方向に互いに間隔をあけて複数設けられる。 The second radial oil passage portion 45 is disposed at the end portion on the one axial side of the motor shaft 22 and extends in the radial direction, and opens to the outer peripheral surface of the annular oil passage portion 43 and the motor shaft 22. The second radial oil passage 45 extends radially inside the motor shaft 22 at one end in the axial direction of the motor shaft 22, and opens to the inner peripheral surface of the recess 22 a and the outer peripheral surface of the motor shaft 22. It is constituted by a through-hole. The radially outer end of the second radial oil passage portion 45 opens toward the space between the first wall portion 37a along the axial direction, the flange portion 35a, and the bearing 16. In the present embodiment, a plurality of second radial oil passage portions 45 are provided at intervals in the circumferential direction.
 キャリアピン内油路部46は、キャリアピン36の内部に設けられ、キャリアピン36の軸方向の端面およびキャリアピン36の外周面に開口する。キャリアピン内油路部46は、ピン軸方向油路部46aと、ピン径方向油路部46bと、を有する。 The carrier pin oil passage 46 is provided inside the carrier pin 36 and opens to the end surface of the carrier pin 36 in the axial direction and the outer peripheral surface of the carrier pin 36. The carrier pin oil passage 46 has a pin axial oil passage 46a and a pin radial oil passage 46b.
 ピン軸方向油路部46aは、キャリアピン36の内部を軸方向に延びる。ピン軸方向油路部46aは、回転軸J3上に位置する。ピン軸方向油路部46aは、キャリアピン36を軸方向に貫通する貫通孔により構成される。ピン軸方向油路部46aは、キャリアピン36の軸方向一方側を向く端面および軸方向他方側を向く端面に、それぞれ開口する。 The pin axial oil passage 46a extends in the axial direction inside the carrier pin 36. The pin axial direction oil passage 46a is located on the rotation axis J3. The pin axial oil passage 46a is formed by a through hole that penetrates the carrier pin 36 in the axial direction. The pin axial oil passage portion 46a opens on an end surface of the carrier pin 36 facing the one side in the axial direction and an end surface facing the other side of the axial direction.
 ピン径方向油路部46bは、キャリアピン36の内部を回転軸J3に直交する方向に延びる。ピン径方向油路部46bは、ピン軸方向油路部46aおよびキャリアピン36の外周面に開口する。ピン径方向油路部46bは、キャリアピン36の内部を回転軸J3に直交する方向に延び、キャリアピン36の内周面と外周面とに開口する貫通孔により構成される。詳しくは、ピン径方向油路部46bは、キャリアピン36の内部のうち、回転軸J3よりも径方向外側、つまり回転軸J3よりも径方向に沿うモータ軸J2から離れる方向に配置される。すなわち、ピン径方向油路部46bは、ピン軸方向油路部46aと接続する部分から、径方向に沿うモータ軸J2から離れる方向に向けて延びる。本実施形態では、キャリアピン内油路部46が、軸方向に互いに間隔をあけて配置される複数のピン径方向油路部46bを有する。複数のピン径方向油路部46bは、キャリアピン36の外周部に設けられる複数のベアリング39bに向けて、それぞれ開口する。本実施形態によれば、キャリアピン36がモータ軸J2回りに回転(公転)するときの遠心力の作用により、キャリアピン36の内部を流れるオイルOが、ベアリング39bに安定して供給される。 The pin radial direction oil passage 46b extends inside the carrier pin 36 in a direction perpendicular to the rotation axis J3. The pin radial direction oil passage 46 b opens on the outer peripheral surfaces of the pin axial direction oil passage 46 a and the carrier pin 36. The pin radial direction oil passage portion 46 b extends through the inside of the carrier pin 36 in a direction orthogonal to the rotation axis J <b> 3, and is configured by a through hole that opens to the inner peripheral surface and outer peripheral surface of the carrier pin 36. Specifically, the pin radial direction oil passage portion 46b is disposed in the carrier pin 36 inside in the radial direction from the rotation axis J3, that is, in the direction away from the motor shaft J2 along the radial direction from the rotation axis J3. That is, the pin radial oil passage 46b extends from the portion connected to the pin axial oil passage 46a in a direction away from the motor shaft J2 along the radial direction. In the present embodiment, the carrier pin oil passage 46 has a plurality of pin radial oil passages 46b that are spaced apart from each other in the axial direction. The plurality of pin radial direction oil passage portions 46 b open toward the plurality of bearings 39 b provided on the outer peripheral portion of the carrier pin 36. According to the present embodiment, the oil O flowing inside the carrier pin 36 is stably supplied to the bearing 39b by the action of centrifugal force when the carrier pin 36 rotates (revolves) around the motor shaft J2.
 接続油路部47は、キャリアピン内油路部46においてキャリアピン36の軸方向の端面に開口する部分と、第2径方向油路部45とを接続する。接続油路部47は、ピン軸方向油路部46aの軸方向他方側の端部と、第2径方向油路部45の径方向外側の端部とを繋ぐ。接続油路部47は、軸方向に沿う第1壁部37aと、フランジ部35aおよびベアリング16と、の間に配置される。接続油路部47は、モータ軸J2を中心とする環状の空間(室)である。すなわち、接続油路部47は、軸方向に沿う第1壁部37aと、フランジ部35aおよびベアリング16と、の間に設けられる環状の室により構成される。 The connecting oil passage portion 47 connects a portion of the carrier pin inner oil passage portion 46 that opens to the end face in the axial direction of the carrier pin 36 and the second radial oil passage portion 45. The connecting oil passage portion 47 connects the end portion on the other axial side of the pin axial oil passage portion 46 a and the radially outer end portion of the second radial oil passage portion 45. The connecting oil passage portion 47 is disposed between the first wall portion 37 a along the axial direction, the flange portion 35 a and the bearing 16. The connecting oil passage portion 47 is an annular space (chamber) centered on the motor shaft J2. That is, the connecting oil passage portion 47 is configured by an annular chamber provided between the first wall portion 37 a along the axial direction, the flange portion 35 a and the bearing 16.
 本実施形態では、モータシャフト内油路部41を流れるオイルOが、連結シャフト内油路部42、第1径方向油路部44、環状油路部43、第2径方向油路部45および接続油路部47を通って、キャリアピン内油路部46に流入する。キャリアピン内油路部46に流入したオイルOは、キャリアピン36の外周面に流出して、キャリアピン36とプラネタリギア33の間に位置するベアリング39bを潤滑および冷却する。本実施形態によれば、油路40が、凹部22a内に配置される環状油路部43を有する。これにより、モータユニット1の製造時において、モータシャフト22の凹部22a内に連結シャフト31の軸方向他方側の端部を嵌合する際に、第1径方向油路部44と第2径方向油路部45とを位置合わせする作業を削減できる。すなわち、第1径方向油路部44と第2径方向油路部45とが環状油路部43を通して繋がるため、第1径方向油路部44の周方向位置と第2径方向油路部45の周方向位置とを一致させなくても、オイルOが連結シャフト31の内部の連結シャフト内油路部42からキャリアピン内油路部46へと安定して供給される。また、第1径方向油路部44の軸方向位置と第2径方向油路部45の軸方向位置とを一致させなくても、上述と同様の効果が得られる。つまり本実施形態によれば、連結シャフト31内から伝達機構30の部材に安定してオイルOを供給できる。 In this embodiment, the oil O flowing through the motor shaft oil passage portion 41 is connected to the connecting shaft oil passage portion 42, the first radial oil passage portion 44, the annular oil passage portion 43, the second radial oil passage portion 45, and The oil flows into the carrier pin oil passage 46 through the connection oil passage 47. The oil O flowing into the carrier pin internal oil passage 46 flows out to the outer peripheral surface of the carrier pin 36 and lubricates and cools the bearing 39b located between the carrier pin 36 and the planetary gear 33. According to the present embodiment, the oil passage 40 has the annular oil passage portion 43 disposed in the recess 22a. Accordingly, when the motor unit 1 is manufactured, when the end portion on the other axial side of the connecting shaft 31 is fitted into the recess 22a of the motor shaft 22, the first radial oil passage 44 and the second radial direction are fitted. The work of aligning the oil passage 45 can be reduced. That is, since the first radial oil passage portion 44 and the second radial oil passage portion 45 are connected through the annular oil passage portion 43, the circumferential position of the first radial oil passage portion 44 and the second radial oil passage portion. The oil O is stably supplied from the connecting shaft inner oil passage portion 42 inside the connecting shaft 31 to the carrier pin inner oil passage portion 46 without matching the circumferential position of 45. Even if the axial position of the first radial oil passage portion 44 and the axial position of the second radial oil passage portion 45 do not coincide with each other, the same effect as described above can be obtained. In other words, according to the present embodiment, the oil O can be stably supplied from the connection shaft 31 to the members of the transmission mechanism 30.
 第3径方向油路部48は、モータシャフト22の凹部22aよりも軸方向他方側に位置する部分に配置されて、径方向に延びる。すなわち、第3径方向油路部48は、モータシャフト22のうち軸方向一方側の端部よりも軸方向他方側に位置する部分に配置される。第3径方向油路部48は、モータシャフト内油路部41およびモータシャフト22の外周面に開口する。第3径方向油路部48は、モータシャフト22の内部を径方向に延び、モータシャフト22の内周面と外周面とに開口する貫通孔により構成される。第3径方向油路部48は、軸方向に間隔をあけて配置される一対のベアリング14,16同士の間に位置する。第3径方向油路部48は、モータシャフト22のうち軸方向の両端部間に位置する中間部分に配置される。第3径方向油路部48の径方向外側の端部は、ロータホルダ23の筒部23bの内周面に向けて開口する。径方向から見て、ロータホルダ23、ロータコア24、ロータマグネット25およびステータコア27と、第3径方向油路部48とは、互いに重なって配置される。本実施形態では、第3径方向油路部48が、周方向に互いに間隔をあけて複数設けられる。本実施形態によれば、モータシャフト内油路部41を流れるオイルOが、第3径方向油路部48を通って、ロータ21およびステータ26等のモータ20の各部材に供給される。これにより、モータ20の各部材の冷却および潤滑を安定して行える。 The third radial oil passage portion 48 is disposed at a portion located on the other side in the axial direction from the concave portion 22a of the motor shaft 22, and extends in the radial direction. That is, the third radial oil passage portion 48 is disposed in a portion of the motor shaft 22 that is located on the other axial side than the end on the one axial side. The third radial oil passage portion 48 opens on the outer peripheral surfaces of the motor shaft oil passage portion 41 and the motor shaft 22. The third radial oil passage portion 48 extends through the inside of the motor shaft 22 in the radial direction, and includes a through hole that opens to the inner peripheral surface and the outer peripheral surface of the motor shaft 22. The third radial oil passage portion 48 is located between the pair of bearings 14 and 16 that are arranged with a space therebetween in the axial direction. The third radial oil passage portion 48 is disposed in an intermediate portion located between both end portions in the axial direction of the motor shaft 22. The radially outer end of the third radial oil passage portion 48 opens toward the inner peripheral surface of the cylindrical portion 23 b of the rotor holder 23. When viewed from the radial direction, the rotor holder 23, the rotor core 24, the rotor magnet 25, the stator core 27, and the third radial oil passage portion 48 are arranged to overlap each other. In the present embodiment, a plurality of third radial oil passage portions 48 are provided at intervals in the circumferential direction. According to the present embodiment, the oil O flowing through the oil passage portion 41 in the motor shaft is supplied to each member of the motor 20 such as the rotor 21 and the stator 26 through the third radial oil passage portion 48. Thereby, each member of the motor 20 can be stably cooled and lubricated.
 第4径方向油路部49は、連結シャフト31のうち凹部22aよりも軸方向一方側に位置する部分に配置されて、径方向に延びる。すなわち、第4径方向油路部49は、連結シャフト31のうち軸方向他方側の端部よりも軸方向一方側に位置する部分に配置される。第4径方向油路部49は、連結シャフト内油路部42および連結シャフト31の外周面に開口する。第4径方向油路部49は、連結シャフト31の内部を径方向に延び、連結シャフト31の内周面と外周面とに開口する貫通孔により構成される。第4径方向油路部49は、軸方向に間隔をあけて配置される一対のベアリング15,16同士の間に位置する。第4径方向油路部49は、連結シャフト31のうち軸方向の両端部間に位置する中間部分に配置される。第4径方向油路部49の径方向外側の端部は、プラネタリギア33に向けて開口する。第4径方向油路部49は、第2ギア部33bの噛合部33cの外周部に向けて開口する。径方向から見て、インターナルギア34およびプラネタリギア33と、第4径方向油路部49とは、互いに重なって配置される。本実施形態では、第4径方向油路部49が、周方向に互いに間隔をあけて複数設けられる。本実施形態によれば、連結シャフト内油路部42を流れるオイルOが、第4径方向油路部49を通って、プラネタリギア33、インターナルギア34およびサンギア32等の伝達機構30の各部材に供給される。これにより、伝達機構30の各部材の潤滑および冷却を安定して行える。 The fourth radial oil passage portion 49 is disposed in a portion of the connecting shaft 31 that is located on one side in the axial direction with respect to the recess 22a, and extends in the radial direction. That is, the fourth radial oil passage portion 49 is disposed in a portion of the connecting shaft 31 that is located on the one axial side relative to the end portion on the other axial side. The fourth radial oil passage portion 49 opens in the outer peripheral surface of the connection shaft oil passage portion 42 and the connection shaft 31. The fourth radial oil passage portion 49 is configured by a through hole that extends radially inside the connecting shaft 31 and opens to the inner peripheral surface and the outer peripheral surface of the connecting shaft 31. The fourth radial oil passage portion 49 is located between the pair of bearings 15 and 16 that are arranged with a space therebetween in the axial direction. The fourth radial oil passage portion 49 is disposed in an intermediate portion located between both end portions in the axial direction of the connecting shaft 31. The radially outer end of the fourth radial oil passage portion 49 opens toward the planetary gear 33. The fourth radial oil passage portion 49 opens toward the outer peripheral portion of the meshing portion 33c of the second gear portion 33b. When viewed from the radial direction, the internal gear 34 and the planetary gear 33 and the fourth radial oil passage portion 49 are disposed so as to overlap each other. In the present embodiment, a plurality of fourth radial oil passage portions 49 are provided at intervals in the circumferential direction. According to the present embodiment, the oil O flowing through the connecting shaft oil passage portion 42 passes through the fourth radial oil passage portion 49, and each member of the transmission mechanism 30 such as the planetary gear 33, the internal gear 34, and the sun gear 32. To be supplied. Thereby, each member of the transmission mechanism 30 can be stably lubricated and cooled.
 本実施形態では上述の通り、モータシャフト22の内部を流れるオイルOが、モータ20および伝達機構30に供給される。本実施形態によれば、モータシャフト22内を通して、モータ20および伝達機構30に安定してオイルOを供給できる。すなわち、オイルOがモータシャフト22内を流通することで広範囲に分散させられて、ハウジング11内の各部材にオイルOを行き渡らせやすくできる。 In the present embodiment, as described above, the oil O flowing inside the motor shaft 22 is supplied to the motor 20 and the transmission mechanism 30. According to this embodiment, the oil O can be stably supplied to the motor 20 and the transmission mechanism 30 through the motor shaft 22. That is, the oil O is distributed over a wide range by circulating in the motor shaft 22, and the oil O can be easily distributed to each member in the housing 11.
 貯油部50は、ハウジング11の下部(底部)に配置される。貯油部50は、ハウジング11内の下側の部分に位置する。貯油部50には、オイルOが溜められる。貯油部50は、モータ貯油部50aと、ギア貯油部50bと、を有する。モータ貯油部50aは、貯油部50のうち、仕切り壁部17よりも軸方向他方側に位置する部分である。モータ貯油部50aには、ステータ26の下部が配置される。すなわち、ステータ26の下部は、モータ貯油部50aのオイルOに浸漬される。 The oil storage part 50 is arranged at the lower part (bottom part) of the housing 11. The oil storage part 50 is located in the lower part of the housing 11. Oil O is stored in the oil storage unit 50. The oil reservoir 50 includes a motor oil reservoir 50a and a gear oil reservoir 50b. The motor oil storage part 50 a is a part of the oil storage part 50 that is located on the other side in the axial direction from the partition wall part 17. The lower part of the stator 26 is arrange | positioned at the motor oil storage part 50a. That is, the lower part of the stator 26 is immersed in the oil O of the motor oil storage part 50a.
 ギア貯油部50bは、貯油部50のうち、仕切り壁部17よりも軸方向一方側に位置する部分である。ギア貯油部50bには、プラネタリギア33のモータ軸J2回りの回転軌跡(図示省略)が配置される。詳しくは、プラネタリギア33の第1ギア部33aおよび第2ギア部33bのうち、少なくとも第1ギア部33aのモータ軸J2を中心とする回転軌跡が、ギア貯油部50bを通る。つまり、プラネタリギア33のモータ軸J2を中心とする回転軌跡が、貯油部50を通る。本実施形態によれば、プラネタリギア33が貯油部50を通過することにより、貯油部50のオイルOがかき上げられ、ハウジング11の上部にもオイルOが供給される。これにより、伝達機構30等の各部材の潤滑および冷却を安定して行える。 The gear oil storage part 50 b is a part of the oil storage part 50 that is located on one side in the axial direction from the partition wall part 17. A rotation locus (not shown) around the motor shaft J2 of the planetary gear 33 is disposed in the gear oil storage unit 50b. Specifically, of the first gear portion 33a and the second gear portion 33b of the planetary gear 33, at least the rotation locus centering on the motor shaft J2 of the first gear portion 33a passes through the gear oil storage portion 50b. That is, the rotation locus centering on the motor shaft J <b> 2 of the planetary gear 33 passes through the oil storage unit 50. According to the present embodiment, when the planetary gear 33 passes through the oil storage unit 50, the oil O of the oil storage unit 50 is lifted up, and the oil O is also supplied to the upper portion of the housing 11. Thereby, lubrication and cooling of each member such as the transmission mechanism 30 can be stably performed.
図6に示す矢印のOF1,OF2,OF3は、ハウジング11内のオイルOの流れを簡略的に表す。OF1は、オイルクーラ65から供給されるオイルOの流れを示す。流れOF1は例えばステータ26等を冷却する。OF2は、第1オイルポンプ61から供給されるオイルOの流れを示す。流れOF2は、例えばロータ21及びステータ26等を冷却し、サンギア32、プラネタリギア33、インターナルギア34およびベアリング14,15,16,39a,39b等を潤滑する。OF3は、プラネタリギア33のモータ軸J2回りの公転によるオイルかき上げ作用によって供給されるオイルOの流れを示す。流れOF3は、例えばサンギア32、プラネタリギア33、インターナルギア34及びベアリング15,16,39a,39b等を潤滑する。 The arrows OF1, OF2, OF3 shown in FIG. 6 simply represent the flow of the oil O in the housing 11. OF1 indicates the flow of oil O supplied from the oil cooler 65. The flow OF1 cools, for example, the stator 26 and the like. OF2 indicates the flow of the oil O supplied from the first oil pump 61. The flow OF2 cools, for example, the rotor 21 and the stator 26, and lubricates the sun gear 32, the planetary gear 33, the internal gear 34, and the bearings 14, 15, 16, 39a, 39b, and the like. OF3 indicates the flow of the oil O supplied by the oil pumping action by the revolution of the planetary gear 33 around the motor shaft J2. The flow OF3 lubricates, for example, the sun gear 32, the planetary gear 33, the internal gear 34, the bearings 15, 16, 39a, and 39b.
 図7に示すように、さらに油路40は、第1油路部51と、第2油路部52と、オイル室53と、第3油路部54と、第1オリフィス55と、キャッチタンク56と、第4油路部57と、第2オリフィス58と、ポンプ収容部59と、ストレーナ60と、を有する。つまり本実施形態のモータユニット1は、第1オリフィス55と、キャッチタンク56と、第2オリフィス58と、ストレーナ60と、を備える。第1オリフィス55、キャッチタンク56、第2オリフィス58およびストレーナ60は、ハウジング11の内部に設けられる。 As shown in FIG. 7, the oil passage 40 further includes a first oil passage portion 51, a second oil passage portion 52, an oil chamber 53, a third oil passage portion 54, a first orifice 55, and a catch tank. 56, a fourth oil passage portion 57, a second orifice 58, a pump housing portion 59, and a strainer 60. That is, the motor unit 1 of the present embodiment includes the first orifice 55, the catch tank 56, the second orifice 58, and the strainer 60. The first orifice 55, the catch tank 56, the second orifice 58 and the strainer 60 are provided inside the housing 11.
 第1油路部51は、第1オイルポンプ61とモータシャフト22の内部とを繋ぐ。第1油路部51は、第1オイルポンプ61とモータシャフト22の内部との間に、逆止弁51aを有する。つまりモータユニット1は、ハウジング11の内部に逆止弁51aを備える。逆止弁51aは、流体の背圧によって弁体が逆流を抑制することで、オイルOを一方向にのみ通す構造である。具体的には、逆止弁51aにより、第1油路部51において第1オイルポンプ61からモータシャフト22へ向けたオイルOの流れは許容されるが、モータシャフト22から第1オイルポンプ61へ向けたオイルOの流れは許容されない。 The first oil passage portion 51 connects the first oil pump 61 and the inside of the motor shaft 22. The first oil passage portion 51 includes a check valve 51 a between the first oil pump 61 and the inside of the motor shaft 22. That is, the motor unit 1 includes a check valve 51 a inside the housing 11. The check valve 51a has a structure that allows the oil O to pass only in one direction by suppressing the back flow of the valve body by the back pressure of the fluid. Specifically, the check valve 51 a allows the flow of oil O from the first oil pump 61 toward the motor shaft 22 in the first oil passage 51, but from the motor shaft 22 to the first oil pump 61. The directed oil O flow is not allowed.
 第1オイルポンプ61は、電動オイルポンプである。本実施形態によれば、電動オイルポンプである第1オイルポンプ61により、第1油路部51を通してモータシャフト22内にオイルOを安定して供給できる。例えば本実施形態と異なり、第1オイルポンプ61が、モータシャフト22に連結された機械式オイルポンプである場合、モータ20の回転が停止している時には、モータシャフト22内にオイルOが供給されない。また、モータ20の回転数が低い時には、モータシャフト22内にオイルが供給されにくい。一方、本実施形態によれば、モータ20の回転が停止している時であっても、例えば車両100のイグニッションをターンオンしたタイミングで第1オイルポンプ61を作動させて、モータシャフト22内にオイルOを供給できる。また、モータ20の回転数が低い時でも、モータシャフト22内に所定量のオイルOを供給できる。そして第1オイルポンプ61により、伝達機構30にオイルOを供給できる。したがって、モータ始動時などにおいて、伝達機構30の部材にかかる負荷を低減できる。 The first oil pump 61 is an electric oil pump. According to the present embodiment, the oil O can be stably supplied into the motor shaft 22 through the first oil passage portion 51 by the first oil pump 61 which is an electric oil pump. For example, unlike the present embodiment, when the first oil pump 61 is a mechanical oil pump coupled to the motor shaft 22, the oil O is not supplied into the motor shaft 22 when the rotation of the motor 20 is stopped. . Further, when the rotational speed of the motor 20 is low, oil is not easily supplied into the motor shaft 22. On the other hand, according to the present embodiment, even when the rotation of the motor 20 is stopped, for example, the first oil pump 61 is operated at the timing when the ignition of the vehicle 100 is turned on, and the oil is put into the motor shaft 22. O can be supplied. Even when the rotational speed of the motor 20 is low, a predetermined amount of oil O can be supplied into the motor shaft 22. The oil O can be supplied to the transmission mechanism 30 by the first oil pump 61. Accordingly, it is possible to reduce the load applied to the members of the transmission mechanism 30 when starting the motor.
 図2~図6に示すように、第1オイルポンプ61は、ハウジング11の上部に配置される。本実施形態によれば、第1オイルポンプ61がハウジング11の上部に配置されるので、第1オイルポンプ61をインバータ3と電気的に接続しやすい。すなわち、インバータ3と第1オイルポンプ61とを接続する配線(図示省略)を取り回しやすく、また配線長さを短くすることができる。また本実施形態では、第1オイルポンプ61が、ハウジング11の内部に設けられる。すなわち、第1オイルポンプ61がビルトインタイプであるので、第1オイルポンプ61および油路40の全体を、ハウジング11内に配置できる。したがって、例えばハウジングの外部において油路や電動オイルポンプからオイル漏れが生じるような不具合を、本実施形態によれば抑制できる。 As shown in FIGS. 2 to 6, the first oil pump 61 is disposed on the upper portion of the housing 11. According to the present embodiment, since the first oil pump 61 is disposed on the upper portion of the housing 11, it is easy to electrically connect the first oil pump 61 to the inverter 3. That is, the wiring (not shown) for connecting the inverter 3 and the first oil pump 61 can be easily routed, and the wiring length can be shortened. In the present embodiment, the first oil pump 61 is provided inside the housing 11. That is, since the first oil pump 61 is a built-in type, the entire first oil pump 61 and the oil passage 40 can be disposed in the housing 11. Therefore, for example, in accordance with this embodiment, it is possible to suppress a problem that oil leakage occurs from the oil passage or the electric oil pump outside the housing.
 図7に示すように、第2油路部52は、第2オイルポンプ62とモータシャフト22の内部とを繋ぐ。本実施形態によれば、第2オイルポンプ62により、モータシャフト22内により安定してオイルOを供給できる。第2オイルポンプ62は、モータシャフト22に連結される機械式オイルポンプである。図5に示すように、第2オイルポンプ62は、モータ収容部12の底壁部12bに配置される。第2オイルポンプ62は、モータシャフト22の軸方向他方側に、モータシャフト22と同軸に配置される。第2オイルポンプ62は、例えばトロコイドポンプ等である。本実施形態によれば、電動オイルポンプである第1オイルポンプ61を、モータ20の回転状態や温度等に応じて選択的に使用できる。例えば、車両100の走行時等にモータ20の回転数が低速で安定している場合や、モータ20およびオイルOの温度が低い場合などには、第1オイルポンプ(電動オイルポンプ)61の動作を停止させ、第2オイルポンプ(機械式オイルポンプ)62のみによって、モータシャフト22内にオイルOを供給することとしてもよい。 As shown in FIG. 7, the second oil passage portion 52 connects the second oil pump 62 and the inside of the motor shaft 22. According to the present embodiment, the oil O can be supplied more stably in the motor shaft 22 by the second oil pump 62. The second oil pump 62 is a mechanical oil pump connected to the motor shaft 22. As shown in FIG. 5, the second oil pump 62 is disposed on the bottom wall portion 12 b of the motor housing portion 12. The second oil pump 62 is disposed coaxially with the motor shaft 22 on the other axial side of the motor shaft 22. The second oil pump 62 is, for example, a trochoid pump. According to the present embodiment, the first oil pump 61 that is an electric oil pump can be selectively used according to the rotation state, temperature, and the like of the motor 20. For example, the operation of the first oil pump (electric oil pump) 61 is performed when the rotational speed of the motor 20 is stable at a low speed when the vehicle 100 is traveling, or when the temperature of the motor 20 and the oil O is low. The oil O may be supplied into the motor shaft 22 only by the second oil pump (mechanical oil pump) 62.
 第1オイルポンプ61から吐出されるオイルOの吐出量は、第2オイルポンプ62から吐出されるオイルOの吐出量に比べて小さい。言い換えると、第2オイルポンプ62から吐出されるオイルOの吐出量が、第1オイルポンプ61から吐出されるオイルOの吐出量よりも大きい。具体的には、第2オイルポンプ62の吐出口における油路の断面積が、第1オイルポンプ61の吐出口における油路の断面積よりも大きい。本実施形態では、第2オイルポンプ62をメインポンプとして使用し、第1オイルポンプ61をサブポンプとして選択的に使用することができる。 The amount of oil O discharged from the first oil pump 61 is smaller than the amount of oil O discharged from the second oil pump 62. In other words, the discharge amount of oil O discharged from the second oil pump 62 is larger than the discharge amount of oil O discharged from the first oil pump 61. Specifically, the cross-sectional area of the oil passage at the discharge port of the second oil pump 62 is larger than the cross-sectional area of the oil passage at the discharge port of the first oil pump 61. In the present embodiment, the second oil pump 62 can be used as a main pump, and the first oil pump 61 can be selectively used as a sub pump.
 第1オイルポンプ61は、オイルOを第2オイルポンプ62に供給可能である。本実施形態では第1オイルポンプ61が、オイル室53を通して、第2オイルポンプ62にオイルOを供給可能である。本実施形態のモータユニット1の制御方法は、モータ20の始動時に、第1オイルポンプ61により第2オイルポンプ62にオイルOを供給させる。一般に、モータの回転が停止している時には、機械式オイルポンプにオイルが供給されない。このため従来では、モータ始動時などにおいて、機械式オイルポンプにかかる負荷が大きかった。一方、本実施形態によれば、モータ20の回転が停止している場合であっても、モータ20の始動時に合わせて、第1オイルポンプ(電動オイルポンプ)61によって、第2オイルポンプ(機械式オイルポンプ)62にオイルOを供給できる。例えば、車両100のイグニッションをターンオンしたタイミングで、第1オイルポンプ61により第2オイルポンプ62にオイルOを供給できる。したがって、モータ始動時などにおいて、第2オイルポンプ62にかかる負荷を低減できる。 The first oil pump 61 can supply oil O to the second oil pump 62. In the present embodiment, the first oil pump 61 can supply the oil O to the second oil pump 62 through the oil chamber 53. In the control method of the motor unit 1 of the present embodiment, the oil O is supplied to the second oil pump 62 by the first oil pump 61 when the motor 20 is started. In general, when the rotation of the motor is stopped, no oil is supplied to the mechanical oil pump. For this reason, conventionally, the load applied to the mechanical oil pump at the time of starting the motor is large. On the other hand, according to the present embodiment, even when the rotation of the motor 20 is stopped, the second oil pump (mechanical oil pump) 61 is used by the first oil pump (electric oil pump) 61 when the motor 20 is started. Oil O can be supplied to the (type oil pump) 62. For example, the oil O can be supplied to the second oil pump 62 by the first oil pump 61 at the timing when the ignition of the vehicle 100 is turned on. Accordingly, it is possible to reduce the load applied to the second oil pump 62 when starting the motor.
 オイル室53は、モータ収容部12の底壁部12bに配置されて、軸方向に延びる。オイル室53は、モータ軸J2上に位置する。オイル室53は、軸方向においてモータシャフト内油路部41と第2オイルポンプ62との間に位置する空間である。オイル室53は、第2オイルポンプ62の吐出口に対向する。図7に示すように、オイル室53は、第1油路部51と第2油路部52とが接続する部分に配置される。本実施形態によれば、第1油路部51と第2油路部52とがオイル室53で合流するので、例えば各油路部51,52をモータシャフト22内にそれぞれ接続する構成と比べて、油路40の構造を簡素化できる。また本実施形態では、上述したように第1油路部51が逆止弁51aを有するので、第2オイルポンプ62によりモータシャフト22内にオイルOを供給したときに、第1油路部51を通して第1オイルポンプ61にオイルOが逆流することを抑制できる。また、第1油路部51が、第2オイルポンプ62の吸入口ではなく吐出口と対向するオイル室53に接続されるので、第1油路部51を流れるオイルOが、第2オイルポンプ62の上流側に逆流することを抑制できる。 The oil chamber 53 is disposed on the bottom wall portion 12b of the motor housing portion 12 and extends in the axial direction. The oil chamber 53 is located on the motor shaft J2. The oil chamber 53 is a space located between the oil passage portion 41 in the motor shaft and the second oil pump 62 in the axial direction. The oil chamber 53 faces the discharge port of the second oil pump 62. As shown in FIG. 7, the oil chamber 53 is disposed at a portion where the first oil passage portion 51 and the second oil passage portion 52 are connected. According to the present embodiment, the first oil passage portion 51 and the second oil passage portion 52 are merged in the oil chamber 53. Therefore, for example, compared with a configuration in which the oil passage portions 51 and 52 are connected to the motor shaft 22, respectively. Thus, the structure of the oil passage 40 can be simplified. In the present embodiment, since the first oil passage 51 has the check valve 51a as described above, when the oil O is supplied into the motor shaft 22 by the second oil pump 62, the first oil passage 51 The oil O can be prevented from flowing back to the first oil pump 61 through the first oil pump 61. Further, since the first oil passage 51 is connected to the oil chamber 53 facing the discharge port instead of the suction port of the second oil pump 62, the oil O flowing through the first oil passage 51 is transferred to the second oil pump. Backflow to the upstream side of 62 can be suppressed.
 第3油路部54は、第1オイルポンプ61とオイルクーラ65とを繋ぐ。すなわち本実施形態では、第1オイルポンプ61から下流側へ向けて油路が分岐する。具体的に、第1オイルポンプ61から吐出されるオイルOは、モータシャフト22内に繋がる第1油路部51と、オイルクーラ65に繋がる第3油路部54とに流入する。第3油路部54は、ハウジング11の上部に配置される。つまり油路40は、第1オイルポンプ61とオイルクーラ65とを繋いでハウジング11の上部に配置される部分を有する。本実施形態によれば、上述のように第1オイルポンプ61がハウジング11の上部に配置され、油路40のうち、第1オイルポンプ61とオイルクーラ65とを繋ぐ部分(つまり第3油路部54)もハウジング11の上部に配置される。したがって、第3油路部54の長さを短く抑えられ、効率よくオイルOを冷却して油路40に循環できる。 The third oil passage portion 54 connects the first oil pump 61 and the oil cooler 65. That is, in the present embodiment, the oil path branches from the first oil pump 61 toward the downstream side. Specifically, the oil O discharged from the first oil pump 61 flows into the first oil passage portion 51 connected to the motor shaft 22 and the third oil passage portion 54 connected to the oil cooler 65. The third oil passage portion 54 is disposed on the upper portion of the housing 11. That is, the oil passage 40 has a portion that is disposed at the upper portion of the housing 11 by connecting the first oil pump 61 and the oil cooler 65. According to the present embodiment, as described above, the first oil pump 61 is disposed on the upper portion of the housing 11, and a portion of the oil passage 40 that connects the first oil pump 61 and the oil cooler 65 (that is, the third oil passage). The part 54) is also arranged at the top of the housing 11. Therefore, the length of the third oil passage portion 54 can be kept short, and the oil O can be efficiently cooled and circulated to the oil passage 40.
 第1オリフィス55は、第3油路部54に設けられる。第1オリフィス55は、第3油路部54の油路を狭める。具体的に本実施形態では、第1オリフィス55の上流側に位置する油路40の部分の内径に比べて、第1オリフィス55の下流側に位置する油路40の部分の内径が小さい。本実施形態によれば、第1オリフィス55により第3油路部54内の圧力損失が高められるので、第1オイルポンプ61から吐出されるオイルOが第1油路部51に優先的に流される。このため、例えばオイルOを冷却する必要性の低いモータ始動時などにおいて、第1オイルポンプ61からオイルクーラ65へ流れるオイルOの流量に比べて、第1オイルポンプ61からモータシャフト22内へ流れるオイルOの流量を多く確保できる。 The first orifice 55 is provided in the third oil passage portion 54. The first orifice 55 narrows the oil passage of the third oil passage portion 54. Specifically, in the present embodiment, the inner diameter of the portion of the oil passage 40 located on the downstream side of the first orifice 55 is smaller than the inner diameter of the portion of the oil passage 40 located on the upstream side of the first orifice 55. According to the present embodiment, the pressure loss in the third oil passage portion 54 is increased by the first orifice 55, so that the oil O discharged from the first oil pump 61 flows preferentially to the first oil passage portion 51. It is. For this reason, for example, at the time of starting the motor where the necessity of cooling the oil O is low, the flow rate of the oil O flowing from the first oil pump 61 to the oil cooler 65 flows from the first oil pump 61 into the motor shaft 22. A large amount of oil O can be secured.
 キャッチタンク56は、モータ20の上部に配置される。キャッチタンク56は、オイルOを一時的に貯留可能である。キャッチタンク56の底壁には、複数の孔が設けられる。キャッチタンク56は、オイルOを貯留して、モータ20に滴下可能である。第4油路部57は、オイルクーラ65とキャッチタンク56とを繋ぐ。本実施形態によれば、オイルクーラ65で冷却されたオイルOが、第4油路部57を通してキャッチタンク56に供給される。キャッチタンク56から冷えたオイルOを滴下することにより、モータ20を効率よく冷却できる。 The catch tank 56 is disposed at the top of the motor 20. The catch tank 56 can temporarily store the oil O. A plurality of holes are provided in the bottom wall of the catch tank 56. The catch tank 56 stores the oil O and can be dropped onto the motor 20. The fourth oil passage portion 57 connects the oil cooler 65 and the catch tank 56. According to the present embodiment, the oil O cooled by the oil cooler 65 is supplied to the catch tank 56 through the fourth oil passage portion 57. By dripping the cooled oil O from the catch tank 56, the motor 20 can be efficiently cooled.
 第2オリフィス58は、モータシャフト22の内部と伝達機構30とを繋ぐ部分の油路を狭める。本実施形態によれば、第2オリフィス58により、油路40のうちモータシャフト22の内部と伝達機構30とを繋ぐ部分の圧力損失が高められるので、モータシャフト22内のオイルOが、伝達機構30よりもモータ20に優先的に流される。すなわち、伝達機構30を潤滑させるために要するオイルOの量に比べて、モータ20を冷却するために要するオイルOの量が多いため、モータ20へと優先的にオイルOを流す。これにより、モータ20の各部材を安定して冷却および潤滑できる。 The second orifice 58 narrows the oil passage at the portion connecting the inside of the motor shaft 22 and the transmission mechanism 30. According to the present embodiment, the second orifice 58 increases the pressure loss in the portion of the oil passage 40 that connects the inside of the motor shaft 22 and the transmission mechanism 30, so that the oil O in the motor shaft 22 is transferred to the transmission mechanism. 30 is preferentially flowed to the motor 20. That is, since the amount of oil O required to cool the motor 20 is larger than the amount of oil O required to lubricate the transmission mechanism 30, the oil O flows preferentially to the motor 20. Thereby, each member of the motor 20 can be cooled and lubricated stably.
 ポンプ収容部59には、第1オイルポンプ61が収容される。ポンプ収容部59は、ハウジング11の壁部内に設けられる空間(室)である。本実施形態では、第1オイルポンプ61が略円柱状であり、第1オイルポンプ61を収容するポンプ収容部59は、略円柱状の空間である。ポンプ収容部59は、軸方向に延びる円柱穴状である。ただしこれに限らず、ポンプ収容部59は、円柱穴状以外の形状であってもよい。ポンプ収容部59は、ハウジング11の上部に配置される。ポンプ収容部59には、第1オイルポンプ61の少なくとも一部が収容される。ポンプ収容部59の内径は、ポンプ収容部59に収容される第1オイルポンプ61の部分の外径よりも、大きい。ポンプ収容部59には、オイルOが溜められる。本実施形態によれば、第1オイルポンプ61付近の油路40の配置スペースを小さく抑えつつ、第1オイルポンプ61で効率よく油路40にオイルOを循環させることができる。 The first oil pump 61 is accommodated in the pump accommodating portion 59. The pump housing portion 59 is a space (chamber) provided in the wall portion of the housing 11. In the present embodiment, the first oil pump 61 has a substantially cylindrical shape, and the pump housing portion 59 that houses the first oil pump 61 is a substantially cylindrical space. The pump housing part 59 has a cylindrical hole shape extending in the axial direction. However, not limited to this, the pump housing portion 59 may have a shape other than the cylindrical hole shape. The pump housing portion 59 is disposed on the upper portion of the housing 11. The pump housing part 59 houses at least a part of the first oil pump 61. The inner diameter of the pump housing part 59 is larger than the outer diameter of the portion of the first oil pump 61 housed in the pump housing part 59. Oil O is stored in the pump housing portion 59. According to the present embodiment, the oil O can be efficiently circulated through the oil passage 40 by the first oil pump 61 while the arrangement space of the oil passage 40 near the first oil pump 61 is kept small.
 ストレーナ60は、オイルOから不純物を回収する。ストレーナ60は、少なくとも一部が貯油部50に配置される。ストレーナ60は、少なくとも一部が貯油部50のオイルOに浸漬される。ただしこれに限らず、ストレーナ60は、例えば、第1オイルポンプ61および第2オイルポンプ62と、貯油部50との間に位置する油路40の部分に設けられてもよい。第1オイルポンプ61は、貯油部50からストレーナ60を通してオイルOを吸入する。本実施形態では、第2オイルポンプ62も、貯油部50からストレーナ60を通してオイルOを吸入する。第1オイルポンプ61は、貯油部50からストレーナ60を通して吸入したオイルOを、オイルクーラ65へ送る。本実施形態によれば、ストレーナ60でオイルO内の固形成分等の不純物を回収し取り除くことができる。したがって、モータ20および伝達機構30等が安定して動作する。第1オイルポンプ61がオイルクーラ65へオイルOを圧送するので、オイルOの冷却効率が高められ、モータ20および伝達機構30の冷却および潤滑が効率よく行える。 The strainer 60 collects impurities from the oil O. The strainer 60 is at least partially disposed in the oil storage unit 50. The strainer 60 is at least partially immersed in the oil O of the oil storage unit 50. However, the present invention is not limited to this, and the strainer 60 may be provided in a portion of the oil passage 40 located between the first oil pump 61 and the second oil pump 62 and the oil storage unit 50, for example. The first oil pump 61 sucks oil O from the oil storage section 50 through the strainer 60. In the present embodiment, the second oil pump 62 also sucks the oil O from the oil storage unit 50 through the strainer 60. The first oil pump 61 sends the oil O sucked from the oil storage section 50 through the strainer 60 to the oil cooler 65. According to this embodiment, the strainer 60 can collect and remove impurities such as solid components in the oil O. Therefore, the motor 20 and the transmission mechanism 30 etc. operate stably. Since the first oil pump 61 pumps the oil O to the oil cooler 65, the cooling efficiency of the oil O is increased, and the motor 20 and the transmission mechanism 30 can be efficiently cooled and lubricated.
 オイルクーラ65は、内部に冷却液が流れる水路を有する。オイルクーラ65は、インバータケース4と配管やホース等により接続される。オイルクーラ65は、インバータケース4内を流れる冷却液を内部に受け入れ可能である。オイルクーラ65には、油路40の一部が配置される。オイルクーラ65の水路を流れる冷却液と、油路40の一部を流れるオイルOとの間で熱交換が行われることにより、オイルOが冷却される。つまり、オイルクーラ65は、オイルOを冷却する。本実施形態によれば、オイルクーラ65により、油路40を循環するオイルOの温度を下げることができる。したがって、冷却されたオイルOにより、モータ20および伝達機構30等を効率よく冷却できる。また、オイルクーラ65は、オイルクーラ65の外部に露出する複数のフィン部を有する。複数のフィン部を介して、外気とオイルOとの間で熱交換が行われることにより、オイルOが冷却される。 The oil cooler 65 has a water channel through which coolant flows. The oil cooler 65 is connected to the inverter case 4 by piping or a hose. The oil cooler 65 can receive the coolant flowing in the inverter case 4 inside. A part of the oil passage 40 is disposed in the oil cooler 65. The oil O is cooled by heat exchange between the coolant flowing through the water passage of the oil cooler 65 and the oil O flowing through a part of the oil passage 40. That is, the oil cooler 65 cools the oil O. According to the present embodiment, the temperature of the oil O circulating in the oil passage 40 can be lowered by the oil cooler 65. Accordingly, the motor 20 and the transmission mechanism 30 can be efficiently cooled by the cooled oil O. The oil cooler 65 has a plurality of fin portions exposed to the outside of the oil cooler 65. The oil O is cooled by heat exchange between the outside air and the oil O through the plurality of fin portions.
 図2~図6に示すように、オイルクーラ65は、ハウジング11のうち鉛直方向の路面とは反対側の上部に配置される。つまりオイルクーラ65は、ハウジング11の上部に配置される。なお、路面とは、車両100が走行しまたは停止する道路等の上面であり、つまり車両100が位置する道路等の上面である。本実施形態のように、車両100にサブフレーム2、モータユニット1およびインバータケース4が設けられる場合において、インバータケース4は、例えば路面からの水の浸入等を考慮して、サブフレーム2の上部に配置される。本実施形態によれば、モータユニット1のオイルクーラ65がハウジング11の上部(頂部)に配置されるので、オイルクーラ65をインバータケース4と接続しやすい。すなわち、オイルクーラ65とインバータケース4とを配管やホース等で接続しやすく、インバータ3を冷却した冷却液をオイルクーラ65に引き込みやすい。また、オイルクーラ65で冷却されたオイルOを、ハウジング11の上部から滴下等によりモータ20に供給しやすい。 As shown in FIGS. 2 to 6, the oil cooler 65 is disposed in the upper portion of the housing 11 opposite to the road surface in the vertical direction. That is, the oil cooler 65 is disposed on the upper portion of the housing 11. The road surface is an upper surface of a road or the like on which the vehicle 100 travels or stops, that is, an upper surface of a road or the like on which the vehicle 100 is located. When the subframe 2, the motor unit 1, and the inverter case 4 are provided in the vehicle 100 as in the present embodiment, the inverter case 4 is arranged at the top of the subframe 2 in consideration of, for example, water intrusion from the road surface. Placed in. According to the present embodiment, the oil cooler 65 of the motor unit 1 is disposed on the top (top) of the housing 11, so that the oil cooler 65 can be easily connected to the inverter case 4. That is, it is easy to connect the oil cooler 65 and the inverter case 4 with pipes or hoses, and the coolant that has cooled the inverter 3 is easily drawn into the oil cooler 65. Further, the oil O cooled by the oil cooler 65 can be easily supplied to the motor 20 by dropping from the upper portion of the housing 11.
 本実施形態では、第1オイルポンプ61が、オイルクーラ65と車両100の前後方向に並ぶ。本実施形態のように、2つのモータユニット1がサブフレーム2内に設置されるツインモータタイプでは、モータユニット1における車両100の前後方向および車幅方向(軸方向)において、部材の配置スペースを確保しにくい。具体的に、モータユニット1は、車両100の前後方向からサブフレーム2に挟まれるため、モータユニット1と前後方向に隣り合う領域には、部材を設置するスペースが確保できない。また、モータユニット1の車幅方向には、別のモータユニット1、車軸およびサブフレーム2の一部等が配置されるため、モータユニット1と車幅方向に隣り合う領域には、部材を設置するスペースが確保できない。そこで本実施形態のように、第1オイルポンプ61およびオイルクーラ65がモータユニット1の上部に配置され、これらの部材が車両100の前後方向に並ぶ構成であると、第1オイルポンプ61およびオイルクーラ65を配置するスペースを容易に確保しやすい。なお、本実施形態の例では、オイルクーラ65の上下方向の位置と、第1オイルポンプ61の上下方向の位置と、インバータケース4の上下方向の位置とが、互いに略同じである。車両100の前後方向において、オイルクーラ65とインバータケース4との間に、第1オイルポンプ61が配置される。 In the present embodiment, the first oil pump 61 is arranged in the front-rear direction of the oil cooler 65 and the vehicle 100. In the twin motor type in which the two motor units 1 are installed in the subframe 2 as in the present embodiment, the arrangement space for the members is reduced in the front-rear direction and the vehicle width direction (axial direction) of the vehicle 100 in the motor unit 1. Hard to secure. Specifically, since the motor unit 1 is sandwiched between the subframes 2 from the front-rear direction of the vehicle 100, a space for installing a member cannot be secured in a region adjacent to the motor unit 1 in the front-rear direction. In addition, since another motor unit 1, an axle, a part of the subframe 2, and the like are arranged in the vehicle width direction of the motor unit 1, members are installed in areas adjacent to the motor unit 1 in the vehicle width direction. The space to do is not secured. Therefore, as in the present embodiment, when the first oil pump 61 and the oil cooler 65 are arranged at the top of the motor unit 1 and these members are arranged in the front-rear direction of the vehicle 100, the first oil pump 61 and the oil cooler It is easy to secure a space for disposing the cooler 65. In the example of this embodiment, the vertical position of the oil cooler 65, the vertical position of the first oil pump 61, and the vertical position of the inverter case 4 are substantially the same. A first oil pump 61 is disposed between the oil cooler 65 and the inverter case 4 in the front-rear direction of the vehicle 100.
 図3に示すように、オイルクーラ65は、少なくとも一部がサブフレーム2よりも上側に配置される。本実施形態によれば、オイルクーラ65がサブフレーム2よりも上側に突出して配置されるので、オイルクーラ65とインバータケース4とをより配管接続しやすい。なお本実施形態においては、オイルクーラ65の全体が、サブフレーム2よりも上側に配置される。 As shown in FIG. 3, at least a part of the oil cooler 65 is disposed above the subframe 2. According to the present embodiment, since the oil cooler 65 is disposed so as to protrude above the subframe 2, the oil cooler 65 and the inverter case 4 can be more easily connected by piping. In the present embodiment, the entire oil cooler 65 is disposed above the subframe 2.
 図7に示すように、第1温度センサ70は、モータ20に設けられる。本実施形態では、第1温度センサ70が、ステータ26の温度を検知する。つまり第1温度センサ70は、モータ20の温度を検知する。第1温度センサ70は、例えばサーミスタ等である。第1温度センサ70は、例えばインバータ3と電気的に接続される。本実施形態によれば、モータ20の温度が所定値以上となった場合に、第1オイルポンプ61を動作させて、モータ20等をオイルOで冷却することができる。 As shown in FIG. 7, the first temperature sensor 70 is provided in the motor 20. In the present embodiment, the first temperature sensor 70 detects the temperature of the stator 26. That is, the first temperature sensor 70 detects the temperature of the motor 20. The first temperature sensor 70 is, for example, a thermistor. The first temperature sensor 70 is electrically connected to, for example, the inverter 3. According to the present embodiment, when the temperature of the motor 20 becomes equal to or higher than a predetermined value, the first oil pump 61 can be operated to cool the motor 20 and the like with the oil O.
 特に図示しないが、第2温度センサは、油路40の一部に配置される。第2温度センサは、例えば貯油部50に配置される。第2温度センサは、オイルOの温度を検知する。第2温度センサは、例えばインバータ3と電気的に接続される。本実施形態によれば、油路40のオイルOの温度が所定値以上となった場合に、第1オイルポンプ61を動作させて、油路40にオイルOを循環させることにより、オイルOを冷却して、モータユニット1の各部材をオイルOで冷却することができる。 Although not particularly illustrated, the second temperature sensor is disposed in a part of the oil passage 40. The second temperature sensor is disposed in the oil storage unit 50, for example. The second temperature sensor detects the temperature of the oil O. The second temperature sensor is electrically connected to, for example, the inverter 3. According to the present embodiment, when the temperature of the oil O in the oil passage 40 becomes equal to or higher than a predetermined value, the oil O is circulated by operating the first oil pump 61 and circulating the oil O through the oil passage 40. By cooling, each member of the motor unit 1 can be cooled with the oil O.
 図5~図7に示すように、回転センサ80は、モータ20の軸方向の端部に設けられる。本実施形態では、回転センサ80が、モータ20の軸方向他方側の端部に配置される。径方向から見て、回転センサ80とベアリング14とは、互いに重なって配置される。回転センサ80は、モータ20の回転を検知する。本実施形態では、回転センサ80がレゾルバである。回転センサ80は、レゾルバロータ80aと、レゾルバステータ80bと、を有する。レゾルバロータ80aは、ロータ21に固定される。本実施形態では、レゾルバロータ80aが、ロータホルダ23のセンサ支持部23cに固定される。レゾルバステータ80bは、ハウジング11に固定される。本実施形態では、レゾルバステータ80bが、モータ収容部12の底壁部12bに固定される。回転センサ80は、インバータ3と電気的に接続される。本実施形態によれば、モータ20の回転数が所定値以上となった場合に、第1オイルポンプ61を動作させて、油路40にオイルOを循環させることにより、各部材をオイルOで冷却することができる。 As shown in FIGS. 5 to 7, the rotation sensor 80 is provided at the end of the motor 20 in the axial direction. In the present embodiment, the rotation sensor 80 is disposed at the end on the other axial side of the motor 20. When viewed from the radial direction, the rotation sensor 80 and the bearing 14 are arranged to overlap each other. The rotation sensor 80 detects the rotation of the motor 20. In the present embodiment, the rotation sensor 80 is a resolver. The rotation sensor 80 includes a resolver rotor 80a and a resolver stator 80b. The resolver rotor 80 a is fixed to the rotor 21. In the present embodiment, the resolver rotor 80 a is fixed to the sensor support portion 23 c of the rotor holder 23. The resolver stator 80 b is fixed to the housing 11. In the present embodiment, the resolver stator 80 b is fixed to the bottom wall portion 12 b of the motor housing portion 12. The rotation sensor 80 is electrically connected to the inverter 3. According to the present embodiment, when the rotation speed of the motor 20 becomes a predetermined value or more, the first oil pump 61 is operated to circulate the oil O through the oil passage 40, whereby each member is made of oil O. Can be cooled.
 図8に示す白抜きの矢印は、第1オイルポンプ61および第2オイルポンプ62が動作している場合の、油路40を循環するオイルOの流れを簡略的に表している。例えば、モータ始動時、車両100の走行時等においてモータ20の負荷が所定値以上に大きい場合、モータ20の温度が所定値以上に高い場合、および、オイルOの温度が所定値以上に高い場合などには、インバータ3が第1オイルポンプ61を動作させる。図9に示す白抜きの矢印は、第1オイルポンプ61の動作を停止させ、第2オイルポンプ62が動作している場合の、油路40を循環するオイルOの流れを簡略的に表している。例えば、車両100の走行時等においてモータ20の負荷が所定値以下に小さい場合、モータ20の温度が所定値以下に低い場合、および、オイルOの温度が所定値以下に低い場合などには、インバータ3が第1オイルポンプ61の動作を停止させる。 8 indicates the flow of the oil O that circulates through the oil passage 40 when the first oil pump 61 and the second oil pump 62 are operating. For example, when the load of the motor 20 is larger than a predetermined value when the motor is started, when the vehicle 100 is traveling, etc., when the temperature of the motor 20 is higher than a predetermined value, and when the temperature of the oil O is higher than a predetermined value For example, the inverter 3 operates the first oil pump 61. The white arrow shown in FIG. 9 simply represents the flow of the oil O circulating through the oil passage 40 when the operation of the first oil pump 61 is stopped and the second oil pump 62 is operating. Yes. For example, when the load of the motor 20 is small below a predetermined value when the vehicle 100 is traveling, etc., when the temperature of the motor 20 is low below a predetermined value, and when the temperature of the oil O is low below a predetermined value, etc. The inverter 3 stops the operation of the first oil pump 61.
 なお、本発明は前述の実施形態に限定されず、例えば下記に説明するように、本発明の趣旨を逸脱しない範囲において構成の変更等が可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and, for example, as described below, the configuration can be changed without departing from the spirit of the present invention.
 前述の実施形態では、モータユニット1が、車両100のリア用のモータユニットであるが、これに限らない。モータユニット1は、車両100のフロント用のモータユニットであってもよい。また、サブフレーム2の形状は、前述の実施形態で説明した形状に限らない。 In the above-described embodiment, the motor unit 1 is a rear motor unit of the vehicle 100, but is not limited thereto. The motor unit 1 may be a front motor unit of the vehicle 100. Further, the shape of the subframe 2 is not limited to the shape described in the above embodiment.
 前述の実施形態では、第2オイルポンプ62が機械式オイルポンプである例を挙げたが、これに限らない。第2オイルポンプ62は、電動オイルポンプであってもよい。この場合、電動オイルポンプである第1オイルポンプ61および第2オイルポンプ62を、モータ20の回転状態や負荷、モータ20の温度およびオイルOの温度等に応じて選択的に適宜使用できる。例えば、モータ20の負荷が所定値以上に大きい場合は、第2オイルポンプ62を使用し、モータ20の負荷が所定値以下に小さい場合は、第1オイルポンプ61を使用してもよい。なおこの場合、第2オイルポンプ62は、ハウジング11の上部に配置されることが好ましい。 In the above-described embodiment, the example in which the second oil pump 62 is a mechanical oil pump has been described, but the present invention is not limited thereto. The second oil pump 62 may be an electric oil pump. In this case, the first oil pump 61 and the second oil pump 62, which are electric oil pumps, can be selectively used as appropriate according to the rotational state and load of the motor 20, the temperature of the motor 20, the temperature of the oil O, and the like. For example, the second oil pump 62 may be used when the load on the motor 20 is larger than a predetermined value, and the first oil pump 61 may be used when the load on the motor 20 is smaller than a predetermined value. In this case, it is preferable that the second oil pump 62 is disposed on the upper portion of the housing 11.
 図10は、前述の実施形態のモータユニット1の変形例を示す。この変形例のように、モータユニット1が、第2オイルポンプ62を備えていなくてもよい。また、第1油路部51に逆止弁51aが設けられなくてもよい。この場合、前述の実施形態で説明した作用効果が得られつつ、モータユニット1の構造を簡素化できる。 FIG. 10 shows a modification of the motor unit 1 of the above-described embodiment. As in this modification, the motor unit 1 may not include the second oil pump 62. Further, the check valve 51 a may not be provided in the first oil passage portion 51. In this case, the structure of the motor unit 1 can be simplified while the operational effects described in the above-described embodiment are obtained.
 前述の実施形態では、モータユニット1が、第1温度センサ70および第2温度センサを備える例を挙げたが、これに限らない。モータユニット1が、第1温度センサ70および第2温度センサのいずれかを備えなくてもよい。また、第1温度センサ70が複数設けられてもよい。第2温度センサが複数設けられてもよい。 In the above-described embodiment, the example in which the motor unit 1 includes the first temperature sensor 70 and the second temperature sensor has been described, but the present invention is not limited thereto. The motor unit 1 may not include any of the first temperature sensor 70 and the second temperature sensor. A plurality of first temperature sensors 70 may be provided. A plurality of second temperature sensors may be provided.
 前述の実施形態では、モータユニット1および車両駆動装置10が、電気自動車(EV)に搭載される例を挙げたが、これに限らない。モータユニット1および車両駆動装置10は、例えば、プラグインハイブリッド自動車(PHEV)やハイブリッド自動車(HEV)等に搭載されてもよい。 In the above-described embodiment, the example in which the motor unit 1 and the vehicle driving device 10 are mounted on an electric vehicle (EV) has been described, but the present invention is not limited thereto. The motor unit 1 and the vehicle drive device 10 may be mounted on, for example, a plug-in hybrid vehicle (PHEV), a hybrid vehicle (HEV), or the like.
その他、本発明の趣旨から逸脱しない範囲において、前述の実施形態、変形例およびなお書き等で説明した各構成(構成要素)を組み合わせてもよく、構成の付加、省略、置換、その他の変更が可能である。本発明は、前述した実施形態によって限定されず、特許請求の範囲によってのみ限定される。 In addition, in the range which does not deviate from the meaning of this invention, you may combine each structure (component) demonstrated by the above-mentioned embodiment, a modification, and a note, etc., and addition of a structure, omission, replacement, and other changes are possible. Is possible. The present invention is not limited by the above-described embodiments, but only by the claims.
 1…モータユニット、2…サブフレーム、3…インバータ、4…インバータケース、10…車両駆動装置、11…ハウジング、20…モータ、22…モータシャフト、30…伝達機構、38…出力シャフト、40…油路、50…貯油部、59…ポンプ収容部、60…ストレーナ、61…第1オイルポンプ(電動オイルポンプ)、65…オイルクーラ、100…車両、J2…モータ軸、O…オイル DESCRIPTION OF SYMBOLS 1 ... Motor unit, 2 ... Sub-frame, 3 ... Inverter, 4 ... Inverter case, 10 ... Vehicle drive device, 11 ... Housing, 20 ... Motor, 22 ... Motor shaft, 30 ... Transmission mechanism, 38 ... Output shaft, 40 ... Oil passage, 50 ... Oil storage part, 59 ... Pump housing part, 60 ... Strainer, 61 ... First oil pump (electric oil pump), 65 ... Oil cooler, 100 ... Vehicle, J2 ... Motor shaft, O ... Oil

Claims (8)

  1.  車両の車軸を回転させるモータユニットであって、
     モータ軸を中心として回転するモータシャフトを有するモータと、
     前記モータシャフトに接続され、前記モータの動力を出力シャフトに伝達する伝達機構と、
     前記モータおよび前記伝達機構を収容するハウジングと、
     前記ハウジングの内部に設けられる油路と、
     前記油路にオイルを循環させる電動オイルポンプと、
     前記油路の一部が配置され前記オイルを冷却するオイルクーラと、を備え、
     前記オイルクーラは、前記ハウジングのうち鉛直方向の路面とは反対側の上部に配置される、モータユニット。
    A motor unit for rotating the axle of a vehicle,
    A motor having a motor shaft that rotates about the motor shaft;
    A transmission mechanism connected to the motor shaft and transmitting the power of the motor to an output shaft;
    A housing that houses the motor and the transmission mechanism;
    An oil passage provided inside the housing;
    An electric oil pump for circulating oil in the oil passage;
    An oil cooler in which a part of the oil passage is arranged and cools the oil,
    The oil cooler is a motor unit that is disposed in an upper portion of the housing on the opposite side to the road surface in the vertical direction.
  2.  請求項1に記載のモータユニットであって、
     前記電動オイルポンプは、前記ハウジングの上部に配置される、モータユニット。
    The motor unit according to claim 1,
    The electric oil pump is a motor unit disposed at an upper part of the housing.
  3.  請求項2に記載のモータユニットであって、
     前記電動オイルポンプは、前記オイルクーラと前記車両の前後方向に並ぶ、モータユニット。
    The motor unit according to claim 2,
    The electric oil pump is a motor unit arranged in the front-rear direction of the oil cooler and the vehicle.
  4.  請求項2または3に記載のモータユニットであって、
     前記油路は、前記電動オイルポンプと前記オイルクーラとを繋いで前記ハウジングの上部に配置される部分を有する、モータユニット。
    The motor unit according to claim 2 or 3,
    The oil passage has a portion arranged on an upper portion of the housing by connecting the electric oil pump and the oil cooler.
  5.  請求項2~4のいずれか一項に記載のモータユニットであって、
     前記油路は、前記電動オイルポンプが収容されるポンプ収容部を有し、
     前記ポンプ収容部には前記オイルが溜められる、モータユニット。
    The motor unit according to any one of claims 2 to 4,
    The oil passage has a pump housing portion in which the electric oil pump is housed,
    A motor unit in which the oil is stored in the pump housing portion.
  6.  請求項1~5のいずれか一項に記載のモータユニットであって、
     前記電動オイルポンプは、前記ハウジングの内部に設けられる、モータユニット。
    The motor unit according to any one of claims 1 to 5,
    The electric oil pump is a motor unit provided inside the housing.
  7.  請求項1~6のいずれか一項に記載のモータユニットであって、
     前記油路は、
     前記ハウジングの下部に配置され、前記オイルが溜められる貯油部と、
     前記オイルから不純物を回収するストレーナと、を有し、
     前記電動オイルポンプは、前記貯油部から前記ストレーナを通して吸入した前記オイルを前記オイルクーラへ送る、モータユニット。
    The motor unit according to any one of claims 1 to 6,
    The oil passage is
    An oil storage part disposed at a lower part of the housing and storing the oil;
    A strainer for collecting impurities from the oil,
    The electric oil pump is a motor unit that sends the oil sucked from the oil storage section through the strainer to the oil cooler.
  8.  請求項1~7のいずれか一項に記載のモータユニットと、
     前記モータユニットを支持し、前記車両に取り付けられるサブフレームと、
     前記モータユニットと電気的に接続されるインバータと、
     前記インバータが収容されるインバータケースと、を備える車両駆動装置であって、
     前記サブフレームは、前記モータユニットに軸方向および前記車両の前後方向から対向する部分を有し、
     前記インバータケースは、前記サブフレームの上部に配置され、
     前記オイルクーラは、少なくとも一部が前記サブフレームよりも上側に配置され、前記インバータケース内を流れる冷却液を内部に受け入れ可能である、車両駆動装置。
    The motor unit according to any one of claims 1 to 7,
    A subframe that supports the motor unit and is attached to the vehicle;
    An inverter electrically connected to the motor unit;
    An inverter case in which the inverter is accommodated, and a vehicle drive device comprising:
    The sub-frame has a portion facing the motor unit from the axial direction and the front-rear direction of the vehicle,
    The inverter case is disposed on an upper part of the subframe,
    The oil cooler is a vehicle drive device, wherein at least a part of the oil cooler is disposed above the subframe and can receive a coolant flowing in the inverter case.
PCT/JP2019/013508 2018-04-27 2019-03-28 Motor unit and vehicle drive device WO2019208081A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980028271.9A CN112088262A (en) 2018-04-27 2019-03-28 Motor unit and vehicle drive device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862663324P 2018-04-27 2018-04-27
US62/663,324 2018-04-27
JP2018-150702 2018-08-09
JP2018150702 2018-08-09

Publications (1)

Publication Number Publication Date
WO2019208081A1 true WO2019208081A1 (en) 2019-10-31

Family

ID=68293962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013508 WO2019208081A1 (en) 2018-04-27 2019-03-28 Motor unit and vehicle drive device

Country Status (2)

Country Link
CN (1) CN112088262A (en)
WO (1) WO2019208081A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210086608A1 (en) * 2018-05-15 2021-03-25 Valeo Siemens Eautomotive Germany Gmbh Integrated drive system
DE102020212685A1 (en) 2020-10-07 2022-04-07 Volkswagen Aktiengesellschaft Device for supplying oil to an electric machine and electric machine comprising a device for supplying oil
US11303183B2 (en) 2019-04-25 2022-04-12 American Axle & Manufacturing, Inc. Electric drive module
US11845328B2 (en) 2021-12-01 2023-12-19 American Axle & Manufacturing, Inc. Electric drive unit with motor assembly isolated from beaming loads transmitted through housing assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0898464A (en) * 1994-09-27 1996-04-12 Aisin Aw Co Ltd Hydraulic circuit of driver for electric automobile
JP2004285757A (en) * 2003-03-24 2004-10-14 Kobelco Contstruction Machinery Ltd Cooling device for construction machine
JP2011148445A (en) * 2010-01-22 2011-08-04 Mazda Motor Corp Vehicle structure of electric vehicle
JP2012235579A (en) * 2011-04-28 2012-11-29 Toyota Motor Corp Electric vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216865A (en) * 2006-02-17 2007-08-30 Honda Motor Co Ltd Power transmission device for hybrid vehicle
JP5252311B2 (en) * 2009-09-25 2013-07-31 スズキ株式会社 Hybrid vehicle cooling system
JP2012086826A (en) * 2010-09-24 2012-05-10 Aisin Aw Co Ltd Vehicle drive device
JP5705928B2 (en) * 2013-08-08 2015-04-22 株式会社小松製作所 Wheel loader
CN203574501U (en) * 2013-09-26 2014-04-30 比亚迪股份有限公司 Cooling motor
JP2017047732A (en) * 2015-08-31 2017-03-09 トヨタ自動車株式会社 Power transmission mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0898464A (en) * 1994-09-27 1996-04-12 Aisin Aw Co Ltd Hydraulic circuit of driver for electric automobile
JP2004285757A (en) * 2003-03-24 2004-10-14 Kobelco Contstruction Machinery Ltd Cooling device for construction machine
JP2011148445A (en) * 2010-01-22 2011-08-04 Mazda Motor Corp Vehicle structure of electric vehicle
JP2012235579A (en) * 2011-04-28 2012-11-29 Toyota Motor Corp Electric vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210086608A1 (en) * 2018-05-15 2021-03-25 Valeo Siemens Eautomotive Germany Gmbh Integrated drive system
US11938806B2 (en) * 2018-05-15 2024-03-26 Valeo Siemens Eautomotive Germany Gmbh Integrated drive system
US11303183B2 (en) 2019-04-25 2022-04-12 American Axle & Manufacturing, Inc. Electric drive module
US11456239B2 (en) 2019-04-25 2022-09-27 American Axle & Manufacturing, Inc. Electric drive module
US11862543B2 (en) 2019-04-25 2024-01-02 American Axle & Manufacturing, Inc. Electric drive module
DE102020212685A1 (en) 2020-10-07 2022-04-07 Volkswagen Aktiengesellschaft Device for supplying oil to an electric machine and electric machine comprising a device for supplying oil
US11845328B2 (en) 2021-12-01 2023-12-19 American Axle & Manufacturing, Inc. Electric drive unit with motor assembly isolated from beaming loads transmitted through housing assembly

Also Published As

Publication number Publication date
CN112088262A (en) 2020-12-15

Similar Documents

Publication Publication Date Title
WO2019208081A1 (en) Motor unit and vehicle drive device
WO2019208083A1 (en) Motor unit
CN111585394B (en) Motor unit
CN114321339B (en) Power transmission device and motor unit
TWI792763B (en) Power transmission device, motor unit and vehicle
CN111835138B (en) Motor unit
WO2019208084A1 (en) Motor unit and method for controlling motor unit
US20220281310A1 (en) Drive device
CN114520563B (en) Driving device and vehicle
JP7400365B2 (en) motor unit
JP7456382B2 (en) motor unit
WO2021140807A1 (en) Motor unit
WO2020066955A1 (en) Drive device
CN114555399A (en) Vehicle drive device
US11496023B2 (en) Drive apparatus
JP2022149926A (en) Driving device, and vehicle
WO2019208082A1 (en) Motor unit
JP2023042978A (en) Driving device
JP2023030829A (en) Drive unit
JP2022136504A (en) Drive device
US20230139180A1 (en) Drive apparatus
US20230065709A1 (en) Drive apparatus
CN115706471A (en) Drive device
CN115706465A (en) Drive device
JP2021061675A (en) Motor unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP