WO2020066955A1 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
WO2020066955A1
WO2020066955A1 PCT/JP2019/037134 JP2019037134W WO2020066955A1 WO 2020066955 A1 WO2020066955 A1 WO 2020066955A1 JP 2019037134 W JP2019037134 W JP 2019037134W WO 2020066955 A1 WO2020066955 A1 WO 2020066955A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
oil
inverter
refrigerant
oil cooler
Prior art date
Application number
PCT/JP2019/037134
Other languages
French (fr)
Japanese (ja)
Inventor
中村 圭吾
久嗣 藤原
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2020549173A priority Critical patent/JPWO2020066955A1/en
Priority to CN201980063204.0A priority patent/CN112770926A/en
Publication of WO2020066955A1 publication Critical patent/WO2020066955A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption

Definitions

  • the present invention relates to a driving device.
  • This application is based on Japanese Patent Application No. 2018-178667 filed on September 25, 2018. This application claims the benefit of priority to the application. The entire contents are hereby incorporated by reference into the present application.
  • the drive device that rotates an axle of a vehicle by the power of a motor.
  • the drive device includes a motor, a housing that houses the motor, an oil cooler that cools oil circulating inside the housing, and a cooling circuit that flows a coolant through the oil cooler.
  • a cooling circuit described in Patent Document 1 is known.
  • a refrigerant flows through the cooling circuit, and the refrigerant is cooled by a radiator.
  • One aspect of the drive device of the present invention includes a first motor that drives a first wheel among a plurality of wheels provided in the vehicle, a first housing that houses the first motor, A first oil cooler provided in the first housing for cooling oil circulating in the first housing; a second motor for driving a second wheel of the plurality of wheels; A second housing accommodating the second motor; a second oil cooler provided in the second housing for cooling oil circulating in the second housing; the first motor and the second oil cooler; An inverter electrically connected to the second motor, an inverter case accommodating the inverter, and a refrigerant for cooling the first oil cooler, the second oil cooler, and the inverter.
  • An inverter cooling unit that is disposed in the inverter case and cools the inverter; one supply channel that sends a refrigerant to the inverter cooling unit; Unit and the first oil cooler, and a first connection passage for sending a refrigerant from the inverter cooling unit to the first oil cooler, and a connection between the inverter cooling unit and the second oil cooler. And a second connection flow path for sending a refrigerant from the inverter cooling unit to the second oil cooler.
  • a plurality of motors can be cooled evenly, and variations in performance between the motors can be suppressed.
  • FIG. 1 is a plan view schematically showing a driving device according to an embodiment mounted on a vehicle.
  • FIG. 2 is a perspective view showing a part of the driving device.
  • FIG. 3 is a sectional view showing a part of the driving device.
  • FIG. 4 is a cross-sectional view showing a part of the drive device, and schematically shows a flow of oil inside the housing and the like.
  • FIG. 5 is a plan view schematically showing the inside of the inverter case.
  • FIG. 6 is a plan view schematically showing the inside of an inverter case according to a modification of the embodiment.
  • the drive device 10 according to one embodiment of the present invention will be described with reference to the drawings.
  • the drive device 10 of the present embodiment is mounted on a vehicle 100.
  • the drive device 10 is a vehicle drive device.
  • the vehicle 100 is provided with a plurality of wheels.
  • the drive device 10 drives the wheels 102A and 102B.
  • the vertical direction is defined based on the positional relationship when the drive device 10 of the present embodiment shown in each figure is mounted on a vehicle 100 located on a horizontal road surface.
  • an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system.
  • the Z-axis direction is a vertical direction.
  • the + Z side is the upper side in the vertical direction, and the -Z side is the lower side in the vertical direction.
  • the upper side in the vertical direction is simply called “upper side”
  • the lower side in the vertical direction is simply called “lower side”.
  • the X-axis direction is a direction orthogonal to the Z-axis direction, and is a front-rear direction of the vehicle 100 on which the driving device 10 is mounted.
  • the + X side is the front side of the vehicle 100
  • the ⁇ X side is the rear side of the vehicle 100.
  • the Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction, and is the left-right direction of the vehicle 100 (vehicle width direction).
  • the + Y side is the left side of the vehicle 100
  • the ⁇ Y side is the right side of the vehicle 100.
  • the positional relationship in the front-rear direction is not limited to the positional relationship in the present embodiment, and the + X side may be the rear side of the vehicle 100 and the ⁇ X side may be the front side of the vehicle 100.
  • the + Y side is the right side of the vehicle 100
  • the ⁇ Y side is the left side of the vehicle 100.
  • the motor shaft J2 appropriately shown in each drawing extends in the Y-axis direction, that is, in the vehicle width direction of the vehicle 100.
  • a direction parallel to the motor axis J2 is simply referred to as an "axial direction" unless otherwise specified.
  • the direction from the motor 20A to the transmission mechanism 30A is called one axial side, and the direction from the transmission mechanism 30A to the motor 20A is the other axial side. Call.
  • the driving device 10 is provided with a pair of motor units 1A and 1B.
  • the direction from the motor 20B to the transmission mechanism 30B is called one axial side
  • the direction from the transmission mechanism 30B to the motor 20B is called the other axial side.
  • one axial side is the + Y side
  • the other axial side is the -Y side
  • one side in the axial direction is the ⁇ Y side
  • the other side in the axial direction is the + Y side.
  • the radial direction about the motor shaft J2 is simply referred to as “radial direction”.
  • a direction approaching the motor shaft J2 is referred to as a radial inside, and a direction away from the motor shaft J2 is referred to as a radial outside.
  • the circumferential direction around the motor shaft J2, that is, around the axis of the motor shaft J2 is simply referred to as the “circumferential direction”.
  • the “parallel direction” includes a substantially parallel direction
  • the “perpendicular direction” includes a substantially perpendicular direction.
  • the vehicle 100 includes two driving devices 10 and 101 as power generating means for rotating the axle. That is, the vehicle 100 has a power train, and the power train includes two driving devices 10 and 101 and a battery (not shown).
  • the vehicle 100 of the present embodiment is an electric vehicle (EV) using a motor as a power generation unit.
  • the driving devices 10 and 101 rotate the axle of the vehicle 100 by the power of a motor.
  • the vehicle 100 includes a front drive device 101 and a rear drive device 10.
  • the front drive device 101 is located at the front side of the vehicle 100.
  • the front drive device 101 drives the front left wheel and the front right wheel.
  • the rear drive device 10 is located at a rear portion of the vehicle 100.
  • the rear drive device 10 includes a pair of rear motor units 1A and 1B. Of the pair of rear motor units 1A and 1B, one motor unit 1A drives the rear left wheel 102A, and the other motor unit 1B drives the rear right wheel 102B. That is, the drive device 10 includes a plurality of motor units 1A and 1B, and in the present embodiment, the number of the motor units 1A and 1B is two.
  • the motor unit 1A has one motor 20A.
  • the motor unit 1B has one motor 20B.
  • the drive device 10 includes a plurality of motors 20A and 20B, and in the present embodiment, the number of motors is two.
  • one motor unit 1A may be referred to as a first motor unit 1A.
  • the name of each component of the first motor unit 1A may be referred to by adding "first”.
  • the other motor unit 1B may be referred to as a second motor unit 1B.
  • the name of each component of the second motor unit 1B may be referred to by adding “second”.
  • the rear drive device 10 is disposed substantially at the center of the vehicle 100 in the vehicle width direction.
  • the two motor units 1A and 1B of the drive device 10 are opposed to each other in the vehicle width direction and are arranged side by side in the vehicle width direction.
  • the two motor units 1A and 1B have a plane-symmetric (laterally symmetric) structure with respect to a virtual vertical plane VS including the center axis J1 of the vehicle 100 in the vehicle width direction and perpendicular to the motor axis J2.
  • the motor shaft J2 of the first motor 20A and the motor shaft J2 of the second motor 20B extend in the vehicle width direction of the vehicle 100.
  • the motor shaft J2 of the first motor 20A and the motor shaft J2 of the second motor 20B are coaxially arranged.
  • the first motor 20A and the second motor 20B are arranged symmetrically with respect to each other about a vertical plane VS including the center axis J1 of the vehicle 100 in the vehicle width direction and perpendicular to the vehicle width direction.
  • the left wheel 102A and the right wheel 102B of the vehicle 100 can be individually driven (rotation controlled) by the two motors 20A and 20B arranged symmetrically with respect to the vertical plane VS.
  • a part of the drive device 10 is supported by a subframe (not shown) of the vehicle 100.
  • the sub-frame supports the motor units 1A and 1B of the drive device 10 and an inverter case 4 described later.
  • the subframe has, for example, a portion facing the motor units 1A and 1B in the axial direction and the front-back direction.
  • the driving device 10 includes a plurality of motor units 1A and 1B, an inverter 3, an inverter case 4, a refrigerant flow path 90, a refrigerant pump 95, and a radiator 96.
  • Each of the motor units 1A and 1B rotates the axle of the vehicle 100.
  • the first motor unit 1A includes a first housing 11A, a first motor 20A, a first transmission mechanism 30A, a first electric oil pump 61A, and a first oil cooler 65A.
  • the second motor unit 1B includes a second housing 11B, a second motor 20B, a second transmission mechanism 30B, a second electric oil pump 61B, and a second oil cooler 65B.
  • Each of the motor units 1A and 1B includes an oil seal 18, a bearing holder 35, a first bearing 15, a second bearing 16, a third bearing 14, an oil passage 40, and a mechanical oil pump 62, respectively. , A rotation sensor 80, and a temperature sensor (not shown).
  • the first bearing 15, the second bearing 16, and the third bearing 14 are, for example, ball bearings. Since the drive device 10 includes a plurality of motor units 1A and 1B, the drive device 10 includes a plurality (two in the present embodiment) of components included in the motor units 1A and 1B.
  • the driving device 10 includes a plurality of housings 11A and 11B, a plurality of motors 20A and 20B, a plurality of transmission mechanisms 30A and 30B, a plurality of electric oil pumps 61A and 61B, and a plurality of oil coolers 65A and 65B.
  • a plurality of oil seals 18, a plurality of bearing holders 35, a plurality of first bearings 15, a plurality of second bearings 16, a plurality of third bearings 14, a plurality of oil passages 40, a plurality of mechanical An oil pump 62, a plurality of rotation sensors 80, and a plurality of temperature sensors are provided.
  • first motor unit 1A and the second motor unit 1B are plane-symmetric with respect to the vertical plane VS, and have substantially the same structure. For this reason, in the following description, the components of the first motor unit 1A will be mainly described, and the description of the components of the second motor unit 1B may be omitted.
  • the first housing 11A houses the first motor 20A and the first transmission mechanism 30A. That is, the first housing 11A houses the first motor 20A.
  • the first housing 11 ⁇ / b> A has a motor housing 12, a gear housing 13, and a partition wall 17.
  • the motor accommodating section 12 and the gear accommodating section 13 face each other in the axial direction and are arranged side by side in the axial direction.
  • the motor housing portion 12 is a portion of the first housing 11A that houses the first motor 20A.
  • the motor accommodating portion 12 has a cylindrical shape extending in the axial direction. In the present embodiment, the motor accommodating portion 12 has a bottomed cylindrical shape.
  • the motor accommodating portion 12 is opened on one side in the axial direction.
  • the motor housing 12 has a peripheral wall 12a and a bottom wall 12b.
  • the bottom wall portion 12b holds the third bearing 14.
  • the bottom wall portion 12b supports a later-described motor shaft 22 of the first motor 20A via the third bearing 14 so as to be rotatable around the motor axis J2. That is, the first housing 11 ⁇ / b> A rotatably supports the motor shaft 22 via the third bearing 14.
  • the gear housing 13 is a part of the first housing 11A that houses the first transmission mechanism 30A.
  • the gear housing 13 has a cylindrical shape extending in the axial direction.
  • the gear housing 13 has a peripheral wall 13a.
  • the peripheral wall portion 13a holds the first bearing 15 and the oil seal 18 inside.
  • the peripheral wall portion 13a supports, via the first bearing 15, an output shaft 38 of the first transmission mechanism 30A described later so as to be rotatable around the motor axis J2. That is, the first housing 11 ⁇ / b> A rotatably supports the output shaft 38 via the first bearing 15.
  • the partition wall portion 17 is annular with the motor shaft J2 as the center.
  • the partition wall portion 17 has a plate shape extending in a direction perpendicular to the motor axis J2.
  • the plate surface of the partition wall portion 17 faces in the axial direction.
  • the partition wall portion 17 has an annular plate shape centered on the motor shaft J2.
  • the partition wall part 17 is arranged in the gear housing part 13.
  • the partition wall portion 17 is located on one axial side with respect to the second bearing 16.
  • the partition wall portion 17 is located on the other axial side than the first bearing 15.
  • the outer peripheral portion of the partition wall portion 17 is fixed to the inner peripheral surface of the peripheral wall portion 13a.
  • the partition wall part 17 partitions the motor oil storage part 50a and the gear oil storage part 50b of the oil storage part 50 mentioned later in the axial direction.
  • the oil storage unit 50 is partitioned by the partition wall 17 into a motor oil storage unit 50a and a gear oil storage unit 50b.
  • An inner peripheral portion of the partition wall portion 17 is connected to an outer peripheral portion of an internal gear 34 of the first transmission mechanism 30A described later.
  • the inner peripheral portion of the partition wall portion 17 is connected to one axial end of the outer peripheral surface of the internal gear 34.
  • the partition wall portion 17 has an oil flow hole 17a penetrating the partition wall portion 17 in the axial direction.
  • the oil flow hole 17a is arranged at least in a lower portion of the partition wall portion 17. Only one oil flow hole 17a may be provided in the partition wall portion 17, or a plurality of oil flow holes may be provided.
  • the cross-sectional shape of the oil flow hole 17a perpendicular to the motor axis J2 is, for example, a circular shape or a polygonal shape.
  • the oil circulation hole 17a connects a motor oil storage unit 50a and a gear oil storage unit 50b described later.
  • the motor oil storage unit 50a and the gear oil storage unit 50b communicate with each other through the oil circulation hole 17a.
  • the second housing 11B houses the second motor 20B and the second transmission mechanism 30B. That is, the second housing 11B houses the second motor 20B.
  • the structure of the second housing 11B is plane-symmetric with respect to the vertical plane VS with the structure of the first housing 11A, and therefore detailed description is omitted.
  • the first motor 20A outputs a torque for rotating the axle of the vehicle 100.
  • the torque of the first motor 20A is transmitted to the axle via the first transmission mechanism 30A.
  • the first motor 20A drives a first wheel 102A among a plurality of wheels provided in the vehicle 100.
  • the first wheel 102 ⁇ / b> A is a rear left wheel of the vehicle 100.
  • the first motor 20A is electrically connected to the inverter 3 and a control board (not shown).
  • the first motor 20A has a rotor 21 and a stator 26.
  • the rotor 21 has a motor shaft 22, a rotor holder 23, a rotor core 24, and a rotor magnet 25. That is, the first motor 20A has the motor shaft 22.
  • the motor shaft 22 extends in the axial direction about the motor shaft J2.
  • the motor shaft 22 is cylindrical.
  • the motor shaft 22 is a hollow shaft that opens on both sides in the axial direction.
  • the motor shaft 22 rotates around a motor axis J2.
  • the motor shaft 22 is rotatably supported around the motor axis J2 by the second bearing 16 and the third bearing 14.
  • the second bearing 16 supports a portion on one axial side of the motor shaft 22.
  • the third bearing 14 supports the other axial end of the motor shaft 22.
  • the motor shaft 22 has a concave portion 22a.
  • the concave portion 22a opens on one end surface in the axial direction of the motor shaft 22, and is recessed from this end surface on the other axial side.
  • the recess 22a is a hole extending in the axial direction.
  • the inner diameter of a portion of the motor shaft 22 located on the other side in the axial direction than the concave portion 22a is smaller than the inner diameter of the concave portion 22a. In the present embodiment, a portion having the largest inner diameter of the inner peripheral surface of the motor shaft 22 is the concave portion 22a.
  • the rotor holder 23 is fixed to the motor shaft 22.
  • the rotor holder 23 has a portion located radially outside the motor shaft 22.
  • the rotor holder 23 holds the rotor core 24 and the rotor magnet 25.
  • the rotor holder 23 has a bottomed cylindrical shape.
  • the rotor holder 23 opens on one side in the axial direction.
  • the rotor holder 23 has a bottom part 23a, a cylindrical part 23b, and a sensor support part 23c.
  • the bottom portion 23a has an annular shape extending in the circumferential direction around the motor shaft J2.
  • the bottom portion 23a has a plate shape that extends perpendicular to the motor shaft J2, and the plate surface faces in the axial direction.
  • the bottom portion 23a is in the shape of an annular plate.
  • the inner peripheral portion of the bottom portion 23a is fixed to the outer peripheral portion of the motor shaft 22.
  • the axial position of the bottom portion 23a is one axial side of the axial position of the third bearing 14 and the other axial side of the axial position of the second bearing 16.
  • the cylindrical portion 23b extends in the axial direction.
  • the cylindrical portion 23b has a cylindrical shape centered on the motor shaft J2.
  • a space is provided between the inner peripheral surface of the cylindrical portion 23b and the outer peripheral surface of the motor shaft 22.
  • the other end in the axial direction of the inner peripheral surface of the cylindrical portion 23b is connected to the outer peripheral portion of the bottom portion 23a.
  • the inner diameter of the cylindrical portion 23b increases as it goes from the portion connected to the bottom portion 23a to one side in the axial direction.
  • the inner peripheral surface of the cylindrical portion 23b has a tapered surface-like portion whose inner diameter increases toward one side in the axial direction.
  • the end on one axial side of the cylindrical portion 23b and the second bearing 16 are arranged so as to overlap.
  • the end on the other axial side of the cylindrical portion 23b and the third bearing 14 are arranged so as to overlap.
  • the sensor support 23c protrudes from the plate surface facing the other side in the axial direction of the bottom 23a to the other side in the axial direction.
  • the sensor support portion 23c has a cylindrical shape extending in the axial direction about the motor shaft J2.
  • the sensor support portion 23c has a portion projecting to the other axial side from the other axial end of the cylindrical portion 23b.
  • a resolver rotor 80a, which will be described later, of the rotation sensor 80 is fixed to the other axial end of the sensor support 23c.
  • the rotor core 24 is fixed to the outer peripheral surface of the cylindrical portion 23b.
  • the rotor core 24 has an annular shape extending in the circumferential direction around the motor shaft J2.
  • the rotor core 24 has a cylindrical shape extending in the axial direction.
  • the rotor core 24 is, for example, a laminated steel sheet formed by laminating a plurality of electromagnetic steel sheets in the axial direction.
  • the rotor core 24 has a holding hole 24 a at the radially outer end of the rotor core 24, which penetrates the rotor core 24 in the axial direction.
  • the plurality of holding holes 24a are arranged at the radially outer end of the rotor core 24 at intervals in the circumferential direction.
  • the rotor magnets 25 are respectively held in the plurality of holding holes 24a.
  • the plurality of rotor magnets 25 are circumferentially arranged at the radially outer end of the rotor core 24.
  • the rotor magnet 25 is fixed to a radially outer end of the rotor core 24.
  • the rotor magnet 25 may be formed of an annular ring magnet.
  • the stator 26 faces the rotor 21 with a gap in the radial direction.
  • the stator 26 is located radially outside the rotor 21.
  • the stator 26 has a stator core 27, an insulator (not shown), and a plurality of coils 28.
  • Stator core 27 is an annular shape extending in the circumferential direction around motor axis J2. In the present embodiment, the stator core 27 has a cylindrical shape extending in the axial direction. Stator core 27 is fixed to the inner peripheral surface of motor housing 12. The inner peripheral portion of the stator core 27 faces the outer peripheral portion of the rotor core 24 with a gap in the radial direction.
  • Stator core 27 is, for example, a laminated steel sheet formed by laminating a plurality of electromagnetic steel sheets in the axial direction.
  • the material of the insulator is, for example, an insulating material such as a resin.
  • the plurality of coils 28 are attached to the stator core 27 via insulators.
  • the lower end of the stator 26 is disposed in an oil storage section 50 of the oil passage 40, which will be described later.
  • the second motor 20B outputs a torque for rotating the axle of the vehicle 100.
  • the torque of the second motor 20B is transmitted to the axle via the second transmission mechanism 30B.
  • the second motor 20B drives a second wheel 102B among a plurality of wheels provided in the vehicle 100.
  • the second wheel 102B is a wheel on the rear right side of the vehicle 100.
  • Second motor 20B is electrically connected to inverter 3 and a control board (not shown).
  • the structure of the second motor 20B is plane-symmetric with respect to the vertical plane VS with the structure of the first motor 20A, and thus detailed description is omitted.
  • the first transmission mechanism 30A is connected to the motor shaft 22 and transmits the power of the first motor 20A to the output shaft 38.
  • the first transmission mechanism 30A is connected to one end of the motor shaft 22 in the axial direction. That is, the first transmission mechanism 30A is connected to the axial end of the motor shaft 22.
  • the first transmission mechanism 30A decelerates the rotation of the first motor 20A to increase the torque, and outputs the torque as rotation around the output shaft J4 of the output shaft 38.
  • the first transmission mechanism 30A is a reduction mechanism, and in this embodiment, is a planetary gear mechanism.
  • the output shaft J4 of the output shaft 38 is arranged coaxially with the motor shaft J2. According to the present embodiment, the first motor unit 1A can be reduced in size, and the drive device 10 can be reduced in size.
  • the first transmission mechanism 30A includes a connection shaft 31, a sun gear 32, a planetary gear 33, an internal gear 34, a carrier pin 36, a carrier 37, an output shaft 38, and a plurality of bearings 39a and 39b.
  • the bearings 39a and 39b are, for example, needle roller bearings.
  • the bearing 39a may be referred to as a fourth bearing 39a.
  • the bearing 39b may be referred to as a fifth bearing 39b.
  • connection shaft 31 extends in the axial direction around the motor shaft J2.
  • the connection shaft 31 is cylindrical.
  • the connection shaft 31 is a hollow shaft that opens on both sides in the axial direction.
  • the connection shaft 31 is connected to the motor shaft 22.
  • the other axial end of the connecting shaft 31 is connected to the axial one end of the motor shaft 22.
  • the inside of the motor shaft 22 and the inside of the connection shaft 31 communicate with each other.
  • One end in the axial direction of the connection shaft 31 is rotatably supported around the motor shaft J2 by the output shaft 38 via a bearing 39a. That is, the connection shaft 31 and the output shaft 38 are mutually rotatable in the circumferential direction via the bearing 39a.
  • connection shaft 31 has the other axial end inserted into the recess 22a.
  • the other end in the axial direction of the connection shaft 31 is fitted into the recess 22a.
  • a portion located on one axial side of the other end in the axial direction on the outer peripheral surface of the connection shaft 31 and a portion located on one axial side of the inner peripheral surface of the concave portion 22a include: They are fitted so that they cannot rotate with each other in the circumferential direction. That is, the connecting shaft 31 and the motor shaft 22 cannot rotate with each other in the circumferential direction.
  • the other end of the connecting shaft 31 on the other side in the axial direction is fitted to the concave portion 22a so as to be movable in the axial direction.
  • the other axial end of the connection shaft 31 is spline-fitted into the recess 22a. Therefore, the connection shaft 31 is movable in the axial direction with respect to the motor shaft 22.
  • the end face of the connection shaft 31 facing the other side in the axial direction is in contact with the bottom face facing the one side in the axial direction of the concave portion 22a, or faces the clearance 22 with a gap.
  • the inner diameter of the inner peripheral surface of the motor shaft 22 and the inner diameter of the inner peripheral surface of the connection shaft 31 are substantially the same.
  • the sun gear 32 is provided on the connection shaft 31.
  • the sun gear 32 is an external gear having the motor axis J2 as a central axis.
  • the sun gear 32 is located on one side in the axial direction from the concave portion 22a.
  • the sun gear 32 is disposed at an intermediate portion of the outer peripheral portion of the connection shaft 31 located between one end in the axial direction and the other end in the axial direction.
  • the connection shaft 31 and the sun gear 32 are portions of a single member.
  • the sun gear 32 is a helical gear. That is, the tooth traces of the gear of the sun gear 32 extend around the motor axis J2 in the axial direction. When viewed from the radial direction, the gear teeth of the sun gear 32 extend obliquely with respect to the motor axis J2.
  • the planetary gear 33 is disposed radially outside the sun gear 32 and meshes with the sun gear 32.
  • a plurality of planetary gears 33 are provided radially outside the sun gear 32 at intervals in the circumferential direction. That is, the first transmission mechanism 30 ⁇ / b> A has a plurality of planetary gears 33.
  • the first transmission mechanism 30A has three planetary gears 33 arranged at equal intervals in the circumferential direction.
  • the number of the planetary gears 33 included in the first transmission mechanism 30A is not limited to three.
  • the planetary gear 33 is annular with the rotation axis J3 as the center.
  • the planetary gear 33 is an external gear having the rotation axis J3 as a central axis.
  • the rotation shaft J3 is located radially outside the motor shaft J2 and extends in parallel with the motor shaft J2.
  • the rotation axis J3 is also the center axis of the carrier pin 36.
  • the planetary gear 33 has a cylindrical shape extending in the axial direction.
  • the planetary gear 33 rotates around the rotation axis J3. That is, the planetary gear 33 rotates around the rotation axis J3.
  • the planetary gear 33 rotates around the motor shaft J2. That is, the planetary gear 33 revolves around the motor axis J2.
  • the planetary gear 33 revolves around the sun gear 32 while rotating.
  • the planetary gear 33 has a first gear part 33a and a second gear part 33b.
  • the diameter (outer diameter) of the first gear portion 33a is larger than the diameter of the second gear portion 33b.
  • the first gear portion 33a may be referred to as a large-diameter gear portion 33a. That is, in this embodiment, the planetary gear 33 is a stepped pinion type. Therefore, the reduction ratio of the rotation of the first motor 20A is further increased by the first transmission mechanism 30A.
  • the first gear portion 33a has a portion located radially outside the internal gear 34.
  • the first gear portion 33a has a portion facing the inner peripheral surface of the peripheral wall portion 13a of the gear housing portion 13 with a gap from the inside in the radial direction.
  • the first gear portion 33a is disposed on one axial side with respect to the partition wall portion 17.
  • the first gear portion 33a faces the partition wall portion 17 from one side in the axial direction.
  • the first gear portion 33a is cylindrical with the rotation axis J3 as the center. When viewed from the radial direction, the first gear portion 33a and the sun gear 32 are arranged so as to overlap with each other. The first gear portion 33a meshes with the sun gear 32. The diameter of the first gear portion 33a is larger than the diameter of the sun gear 32.
  • the first gear portion 33a is a helical gear. That is, the tooth trace of the gear of the first gear portion 33a extends toward the rotation axis J3 in the axial direction. When viewed from a direction orthogonal to the rotation axis J3, the tooth trace of the gear of the first gear portion 33a extends obliquely with respect to the rotation axis J3.
  • the diameter (outer diameter) of the second gear portion 33b is smaller than the diameter of the first gear portion 33a.
  • the second gear portion 33b may be referred to as a small-diameter gear portion 33b.
  • the second gear portion 33b has a cylindrical shape centered on the rotation axis J3.
  • the second gear portion 33b meshes with the internal gear.
  • the second gear portion 33b is a helical gear. That is, the tooth trace of the gear of the second gear portion 33b extends around the rotation axis J3 as going in the axial direction. When viewed from a direction perpendicular to the rotation axis J3, the tooth trace of the gear of the second gear portion 33b extends obliquely with respect to the rotation axis J3.
  • the second gear portion 33b has a meshing portion 33c and a fitting portion 33d.
  • the meshing portion 33c and the fitting portion 33d are arranged side by side in the axial direction.
  • the meshing portion 33c and the internal gear 34 are arranged so as to overlap with each other.
  • the meshing portion 33c is a portion that meshes with the internal gear 34 in the second gear portion 33b. That is, the gear of the second gear portion 33b is provided on the outer periphery of the meshing portion 33c.
  • the meshing portion 33c is located on the other axial side than the fitting portion 33d.
  • the diameter of the meshing portion 33c is smaller than the diameter of the first gear portion 33a.
  • the axial length of the meshing portion 33c is larger than the axial length of the first gear portion 33a.
  • the meshing portion 33c is disposed so as to overlap with one axial end of the motor shaft 22, the concave portion 22a, and the axial other end of the connection shaft 31.
  • the fitting portion 33d is a portion of the second gear portion 33b that fits with the first gear portion 33a.
  • the inner peripheral portion of the first gear portion 33a is fitted movably in the axial direction with the outer peripheral portion of the fitting portion 33d. That is, the first gear portion 33a has a portion that is movably fitted in the second gear portion 33b in the axial direction.
  • the inner peripheral portion of the first gear portion 33a is spline-fitted to the outer peripheral portion of the fitting portion 33d. Therefore, the first gear portion 33a is movable in the axial direction with respect to the second gear portion 33b.
  • connection shaft 31 is spline-fitted into the recess 22a as described above.
  • first gear portion 33a of the planetary gear 33 is spline-fitted with the second gear portion 33b.
  • the internal gear 34 is annular with the motor shaft J2 as the center.
  • the internal gear 34 is an internal gear having the motor shaft J2 as a central axis.
  • the internal gear 34 has a cylindrical shape extending in the axial direction.
  • the internal gear 34 is arranged radially outside the planetary gear 33 and meshes with the planetary gear 33.
  • the internal gear 34 is arranged radially outside the meshing portion 33c of the second gear portion 33b and meshes with the meshing portion 33c.
  • the internal gear 34 is a helical gear. That is, the tooth trace of the gear of the internal gear 34 extends toward the periphery of the motor axis J2 in the axial direction. When viewed from the radial direction, the gear teeth of the internal gear 34 extend obliquely with respect to the motor axis J2.
  • the internal gear 34 is fixed to the first housing 11A.
  • the internal gear 34 is connected to the partition wall 17.
  • the internal gear 34 is provided on an inner peripheral portion of the partition wall 17. Specifically, one end in the axial direction of the outer peripheral portion of the internal gear 34 is connected to the inner peripheral portion of the partition wall portion 17.
  • the partition wall portion 17 and the internal gear 34 are portions of a single member.
  • the carrier pin 36 is disposed radially outside the sun gear 32 and the connection shaft 31.
  • a plurality of carrier pins 36 are provided radially outside the sun gear 32 at intervals in the circumferential direction. That is, the first transmission mechanism 30A has a plurality of carrier pins 36. In the present embodiment, the first transmission mechanism 30A has three carrier pins 36 arranged at equal intervals in the circumferential direction.
  • the carrier pin 36 has a cylindrical shape extending in the axial direction about the rotation axis J3.
  • the carrier pin 36 is a hollow pin that opens on both sides in the axial direction.
  • the carrier pin 36 is inserted inside the planetary gear 33.
  • the carrier pin 36 extends in the planetary gear 33 in the axial direction.
  • the carrier pin 36 rotatably supports the planetary gear 33 via a bearing 39b. That is, the carrier pin 36 rotatably supports the planetary gear 33.
  • the planetary gear 33 is rotatable around the rotation axis J3 with respect to the carrier pin 36.
  • the carrier pin 36 rotatably supports the second gear portion 33b via a bearing 39b.
  • a plurality of bearings 39b are arranged between the carrier pin 36 and the second gear portion 33b in the axial direction.
  • the carrier 37 supports the carrier pin 36.
  • the carrier 37 is fixed to a carrier pin 36.
  • the carrier 37 rotates around the motor shaft J2 with the rotation (revolution) of the planetary gear 33 and the carrier pin 36 around the motor shaft J2.
  • the carrier 37 has a first wall portion 37a, a second wall portion 37b, and a connecting portion 37c.
  • the first wall portion 37a has a plate shape that extends in a direction perpendicular to the motor axis J2.
  • the plate surface of the first wall portion 37a faces in the axial direction.
  • the first wall portion 37a has an annular plate shape centered on the motor shaft J2.
  • the first wall portion 37a supports the other end of the carrier pin 36 in the axial direction.
  • the other axial end of the plurality of carrier pins 36 is fixed to the first wall 37a.
  • the first wall portion 37a faces a flange portion 35a of the bearing holder 35, which will be described later, from one axial side.
  • a space is provided between the first wall 37a and the flange 35a.
  • the first wall 37a has a hole 37d located on the motor shaft J2 and penetrating the first wall 37a in the axial direction.
  • the axial end of the motor shaft 22 and the axial end of the connecting shaft 31 are inserted into the hole 37d.
  • the first wall portion 37 a is disposed so as to overlap with one axial end of the motor shaft 22 and the other axial end of the connection shaft 31.
  • the second wall 37b is disposed on one side in the axial direction from the first wall 37a.
  • the first wall portion 37a and the second wall portion 37b are arranged at an interval from each other in the axial direction.
  • the planetary gear 33 is disposed between the first wall 37a and the second wall 37b in the axial direction.
  • the second wall portion 37b has a plate shape that extends in a direction perpendicular to the motor axis J2.
  • the plate surface of the second wall portion 37b faces in the axial direction.
  • the second wall portion 37b has an annular plate shape centered on the motor shaft J2.
  • the second wall 37b supports an end of the carrier pin 36 on one side in the axial direction.
  • the axial ends of the plurality of carrier pins 36 are fixed to the second wall 37b. That is, the first wall portion 37a and the second wall portion 37b support both ends of the carrier pin 36 in the axial direction.
  • the second wall portion 37b is located on one axial side of the sun gear 32.
  • the connecting portion 37c extends in the axial direction and connects the first wall portion 37a and the second wall portion 37b.
  • the connecting portion 37c has a plate shape extending in the axial direction.
  • the present invention is not limited to this, and the connecting portion 37c may have an axial shape extending in the axial direction.
  • the plate surface of the connecting portion 37c faces in the radial direction.
  • the other axial end of the connecting portion 37c is connected to the outer peripheral portion of the first wall portion 37a.
  • One end in the axial direction of the connecting portion 37c is connected to the outer peripheral portion of the second wall portion 37b.
  • the connecting portion 37c and the first wall portion 37a are portions of a single member.
  • a plurality of connecting portions 37c are provided at intervals in the circumferential direction.
  • the carrier 37 has three connecting portions 37c.
  • the connecting portion 37c is disposed adjacent to the planetary gear 33 in the circumferential direction.
  • the plurality of connecting portions 37c and the plurality of planetary gears 33 are alternately arranged in the circumferential direction.
  • the connecting portion 37c is disposed radially inward of a portion of the planetary gear 33 that is located radially outward. That is, the planetary gear 33 has a portion that protrudes radially outward from the connecting portion 37c.
  • at least the first gear portion 33a of the first gear portion 33a and the second gear portion 33b protrudes radially outward from the connecting portion 37c.
  • the output shaft 38 is arranged coaxially with the motor shaft J2.
  • the output shaft J4 which is the center axis of the output shaft 38, extends in the axial direction in accordance with the motor shaft J2.
  • the output shaft 38 has a cylindrical shape extending in the axial direction.
  • the output shaft 38 is arranged on one axial side of the carrier 37.
  • the output shaft 38 is connected to the carrier 37.
  • the output shaft 38 has the other axial end connected to the second wall 37 b of the carrier 37.
  • the output shaft 38 and the second wall 37b are parts of a single member and are provided integrally. That is, the output shaft 38 and a part of the carrier 37 are part of a single member.
  • the output shaft 38 rotates around the motor axis J2 with the rotation of the carrier 37 around the motor axis J2.
  • a space is provided between the outer peripheral surface of the output shaft 38 and the inner peripheral surface of the peripheral wall 13a of the gear housing 13.
  • the output shaft 38 is supported by the peripheral wall 13a via the first bearing 15.
  • the first bearing 15 and the oil seal 18 are arranged between the output shaft 38 and the peripheral wall 13a in the axial direction.
  • one end in the axial direction of the output shaft 38 protrudes from the peripheral wall 13a toward one side in the axial direction.
  • the invention is not limited to this, and the output shaft 38 does not have to protrude from the peripheral wall 13a to one side in the axial direction.
  • the output shaft 38 is directly or indirectly connected to the axle of the vehicle 100.
  • the second transmission mechanism 30B is connected to the motor shaft 22 of the second motor 20B, and transmits the power of the second motor 20B to the output shaft 38.
  • the second transmission mechanism 30B decelerates the rotation of the second motor 20B to increase the torque, and outputs the rotation as rotation about the output shaft J4 of the output shaft 38.
  • the second transmission mechanism 30B is a reduction mechanism, and in the present embodiment, is a planetary gear mechanism.
  • the output shaft J4 of the output shaft 38 is arranged coaxially with the motor shaft J2.
  • the structure of the second transmission mechanism 30B is plane-symmetric with respect to the vertical plane VS with the structure of the first transmission mechanism 30A, and thus detailed description is omitted.
  • the second motor unit 1B can be reduced in size, and the drive device 10 can be reduced in size.
  • the oil seal 18 of the first motor unit 1A will be described.
  • the oil seal 18 is ring-shaped around the motor shaft J2.
  • the oil seal 18 has an annular shape around the output shaft J4.
  • the oil seal 18 has a cylindrical shape extending in the axial direction.
  • the oil seal 18 is provided between the output shaft 38 and the first housing 11A, and seals between the output shaft 38 and the first housing 11A.
  • the oil seal 18 is provided between the outer peripheral surface of the output shaft 38 and the inner peripheral surface of the peripheral wall 13a of the gear housing 13, and seals the oil O.
  • the outer peripheral portion of the oil seal 18 is fixed to the inner peripheral surface of the peripheral wall portion 13a.
  • the inner peripheral portion of the oil seal 18 is slidable in the circumferential direction with the outer peripheral surface of the output shaft 38.
  • the oil seal 18 is disposed adjacent to the first bearing 15 in the axial direction.
  • the oil seal 18 is arranged on one side of the first bearing 15 in the axial direction, and faces the first bearing 15 from one side in the axial direction. In the illustrated example, an axial gap is provided between the oil seal 18 and the first bearing 15.
  • the structure of the oil seal 18 of the second motor unit 1B is plane-symmetric with respect to the vertical plane VS with the structure of the oil seal 18 of the first motor unit 1A, and thus detailed description is omitted.
  • the bearing holder 35 of the first motor unit 1A will be described.
  • the bearing holder 35 is ring-shaped around the motor shaft J2.
  • the bearing holder 35 has a flange portion 35a and a holder tubular portion 35b.
  • the flange portion 35a has a plate shape that extends in a direction perpendicular to the motor axis J2.
  • the plate surface of the flange portion 35a faces in the axial direction.
  • the flange portion 35a has an annular plate shape centered on the motor shaft J2.
  • the outer peripheral portion of the flange portion 35a is fixed to the other axial end of the internal gear 34. That is, the bearing holder 35 is fixed to the internal gear 34.
  • the bearing holder 35 is supported by the internal gear 34.
  • the bearing holder 35 is supported by the first housing 11A via the internal gear 34.
  • the holder cylinder 35b has a cylindrical shape extending in the axial direction about the motor shaft J2. One end in the axial direction of the holder tubular portion 35b is connected to the inner peripheral portion of the flange portion 35a. A space is provided between the inner peripheral surface of the holder cylindrical portion 35b and the outer peripheral surface of the motor shaft 22.
  • the holder cylinder 35b holds the second bearing 16 inside. That is, the bearing holder 35 holds the second bearing 16.
  • the holder cylinder 35b holds the motor shaft 22 via the second bearing 16.
  • the bearing holder 35 supports the motor shaft 22 via the second bearing 16 so as to be rotatable around the motor axis J2.
  • the structure of the bearing holder 35 of the second motor unit 1B is plane-symmetric with respect to the vertical plane VS with the structure of the bearing holder 35 of the first motor unit 1A, and thus detailed description is omitted.
  • the first bearing 15, the second bearing 16, and the third bearing 14 of the first motor unit 1A will be described.
  • the first bearing 15 is provided between the output shaft 38 and the first housing 11A, and supports the output shaft 38 rotatably around the motor axis J2.
  • the first bearing 15 is annular with the motor shaft J2 as a center.
  • the first bearing 15 is fitted into the peripheral wall 13 a of the gear housing 13.
  • the output shaft 38 is fitted in the first bearing 15.
  • the second bearing 16 supports the motor shaft 22 rotatably around the motor axis J2.
  • the second bearing 16 rotatably supports a portion on one axial side of the motor shaft 22.
  • the second bearing 16 is annular with the motor shaft J2 as the center.
  • the second bearing 16 is fitted into the holder cylinder 35b of the bearing holder 35.
  • the motor shaft 22 is fitted in the second bearing 16.
  • the third bearing 14 supports the motor shaft 22 so as to be rotatable around the motor axis J2.
  • the third bearing 14 rotatably supports the other end in the axial direction of the motor shaft 22.
  • the third bearing 14 is annular with the motor shaft J2 at the center.
  • the third bearing 14 fits inside the cylindrical portion of the bottom wall 12 b of the motor housing 12.
  • the motor shaft 22 is fitted in the third bearing 14.
  • each structure of the first bearing 15, the second bearing 16 and the third bearing 14 of the second motor unit 1B is the same as the first bearing 15, the second bearing 16 and the third bearing 15 of the first motor unit 1A.
  • Each structure of the bearing 14 and the vertical plane VS are plane-symmetric with respect to each other, and therefore, detailed description is omitted.
  • the oil O circulation structure includes the oil passage 40, a first electric oil pump 61A, and a mechanical oil pump 62.
  • the oil passage 40 is provided inside the first housing 11A.
  • the first electric oil pump 61 ⁇ / b> A and the mechanical oil pump 62 circulate the oil O through the oil passage 40. That is, the oil O circulates inside the first housing 11A.
  • the first motor unit 1A includes a first electric oil pump 61A and a mechanical oil pump 62 that circulate the oil O through the oil passage 40. That is, the first motor unit 1A includes a plurality of oil pumps 61A and 62.
  • the first electric oil pump 61A and the mechanical oil pump 62 can supply oil O to the first transmission mechanism 30A.
  • the first electric oil pump 61A and the mechanical oil pump 62 can supply the oil O to the first transmission mechanism 30A through the inside of the motor shaft 22.
  • the first electric oil pump 61A and the mechanical oil pump 62 will be described separately later.
  • the oil passage 40 includes an oil passage portion 41 in the motor shaft, an oil passage portion 42 in the connection shaft, an annular oil passage portion 43, a first radial oil passage portion 44, a second radial oil passage portion 45, An oil passage portion 46 in the carrier pin, a connection oil passage portion 47, a third radial oil passage portion 48, a fourth radial oil passage portion 49, and an oil storage portion 50 are provided.
  • the oil passage portion 41 in the motor shaft extends in the motor shaft 22 in the axial direction.
  • the oil passage portion 41 in the motor shaft is located on the motor shaft J2.
  • the oil passage portion 41 in the motor shaft is constituted by a through-hole penetrating the motor shaft 22 in the axial direction.
  • the oil passage portion 41 in the motor shaft opens at the bottom surface of the concave portion 22a. That is, one end in the axial direction of the oil passage portion 41 in the motor shaft is opened at the bottom face of the concave portion 22a facing one side in the axial direction.
  • the oil passage portion 42 in the connection shaft extends in the connection shaft 31 in the axial direction.
  • the oil passage portion 42 in the connection shaft is located on the motor shaft J2.
  • the oil passage portion 42 in the connection shaft is constituted by a through-hole penetrating the connection shaft 31 in the axial direction.
  • the oil passage portion 42 in the connection shaft is connected to the oil passage portion 41 in the motor shaft. That is, the other end in the axial direction of the oil passage portion 42 in the connection shaft is connected to the one end in the axial direction of the oil passage portion 41 in the motor shaft.
  • the inner diameter of the oil passage portion 42 in the connection shaft and the inner diameter of the oil passage portion 41 in the motor shaft are substantially the same.
  • the annular oil passage 43 is arranged between the outer peripheral surface of the other end in the axial direction of the connecting shaft 31 and the inner peripheral surface of the concave portion 22a.
  • the annular oil passage portion 43 has an annular shape extending in the circumferential direction.
  • the annular oil passage 43 is a cylindrical space centered on the motor shaft J2, and is provided in the recess 22a.
  • the annular oil passage portion 43 is located on the other side in the axial direction from the portion where the end on the other side in the axial direction of the connecting shaft 31 and the recess 22a are fitted.
  • the first radial oil passage portion 44 is disposed at the other axial end of the connection shaft 31, extends in the radial direction, and opens to the connection shaft inner oil passage portion 42 and the annular oil passage portion 43.
  • the first radial oil passage portion 44 extends radially inside the connection shaft 31 at the other end in the axial direction of the connection shaft 31, and is a through hole that opens to the inner peripheral surface and the outer peripheral surface of the connection shaft 31. It consists of.
  • a plurality of first radial oil passage portions 44 are provided at intervals in the circumferential direction.
  • the second radial oil passage 45 is disposed at one axial end of the motor shaft 22, extends in the radial direction, and opens to the annular oil passage 43 and the outer peripheral surface of the motor shaft 22.
  • the second radial oil passage portion 45 extends radially inside the motor shaft 22 at one axial end of the motor shaft 22, and is opened to the inner peripheral surface of the concave portion 22 a and the outer peripheral surface of the motor shaft 22. It is constituted by a through-hole.
  • the radially outer end of the second radial oil passage portion 45 opens toward a space between the first wall portion 37a along the axial direction, the flange portion 35a, and the second bearing 16.
  • a plurality of second radial oil passage portions 45 are provided at intervals in the circumferential direction.
  • the oil passage portion 46 in the carrier pin is provided inside the carrier pin 36 and opens to the axial end surface of the carrier pin 36 and the outer peripheral surface of the carrier pin 36.
  • the oil passage portion 46 in the carrier pin has a pin axial oil passage portion 46a and a pin radial oil passage portion 46b.
  • the pin axial oil passage portion 46a extends inside the carrier pin 36 in the axial direction.
  • the pin axial direction oil passage portion 46a is located on the rotation axis J3.
  • the pin axial direction oil passage portion 46a is formed by a through-hole penetrating the carrier pin 36 in the axial direction.
  • the pin axial direction oil passage portion 46a is opened on an end face facing the one side in the axial direction of the carrier pin 36 and an end face facing the other side in the axial direction.
  • the pin radial direction oil passage portion 46b extends inside the carrier pin 36 in a direction orthogonal to the rotation axis J3.
  • the pin radial direction oil passage portion 46b opens to the outer peripheral surfaces of the pin axial direction oil passage portion 46a and the carrier pin 36.
  • the pin radial direction oil passage portion 46b extends through the inside of the carrier pin 36 in a direction orthogonal to the rotation axis J3, and is formed by a through hole that opens on the inner peripheral surface and the outer peripheral surface of the carrier pin 36.
  • the pin radial oil passage portion 46b is disposed inside the carrier pin 36 in a direction radially outward of the rotation axis J3, that is, in a direction away from the motor shaft J2 along the radial direction of the rotation axis J3. That is, the pin radial oil passage portion 46b extends from a portion connected to the pin axial oil passage portion 46a in a direction away from the motor shaft J2 along the radial direction.
  • the oil passage portion 46 in the carrier pin has a plurality of pin radial oil passage portions 46b arranged at intervals in the axial direction. The plurality of pin radial direction oil passage portions 46b open toward a plurality of bearings 39b provided on the outer peripheral portion of the carrier pin 36, respectively.
  • connection oil passage portion 47 connects the portion of the carrier pin oil passage portion 46 that opens to the axial end surface of the carrier pin 36 and the second radial oil passage portion 45.
  • the connection oil passage portion 47 connects the other end in the axial direction of the pin axial oil passage portion 46a to the radially outer end of the second radial oil passage portion 45.
  • the connection oil passage portion 47 is disposed between the first wall portion 37a along the axial direction, the flange portion 35a, and the second bearing 16.
  • the connection oil passage portion 47 is an annular space (room) centered on the motor shaft J2. That is, the connection oil passage portion 47 is constituted by an annular chamber provided between the first wall portion 37a along the axial direction, the flange portion 35a and the second bearing 16.
  • the oil O flowing through the oil passage 41 in the motor shaft receives the oil passage 42 in the connection shaft, the first radial oil passage 44, the annular oil passage 43, the second radial oil passage 45, and The fluid flows into the carrier pin oil passage 46 through the connection oil passage 47.
  • the oil O flowing into the oil passage portion 46 in the carrier pin flows out to the outer peripheral surface of the carrier pin 36, and lubricates and cools the bearing 39b located between the carrier pin 36 and the planetary gear 33.
  • the third radial oil passage portion 48 is disposed at a portion located on the other axial side of the concave portion 22a of the motor shaft 22 and extends in the radial direction. That is, the third radial oil passage portion 48 is disposed in a portion of the motor shaft 22 that is located on the other side in the axial direction from the end portion on one side in the axial direction.
  • the third radial oil passage portion 48 opens on the outer peripheral surfaces of the motor shaft inner oil passage portion 41 and the motor shaft 22.
  • the third radial oil passage portion 48 extends in the motor shaft 22 in the radial direction, and is formed by a through hole that opens on the inner peripheral surface and the outer peripheral surface of the motor shaft 22.
  • the third radial oil passage portion 48 is located between the second bearing 16 and the third bearing 14 that are arranged at intervals in the axial direction.
  • the third radial oil passage portion 48 is disposed at an intermediate portion of the motor shaft 22 located between both ends in the axial direction.
  • the radially outer end of the third radial oil passage portion 48 opens toward the inner peripheral surface of the cylindrical portion 23b of the rotor holder 23. Seen from the radial direction, the rotor holder 23, the rotor core 24, the rotor magnet 25, the stator core 27, and the third radial oil passage portion 48 are arranged so as to overlap with each other.
  • a plurality of third radial oil passage portions 48 are provided at intervals in the circumferential direction.
  • the fourth radial oil passage portion 49 is disposed in a portion of the connecting shaft 31 located on one side in the axial direction from the concave portion 22a, and extends in the radial direction. That is, the fourth radial oil passage portion 49 is disposed in a portion of the connecting shaft 31 that is located on one side in the axial direction from the end on the other axial side.
  • the fourth radial oil passage portion 49 opens on the outer peripheral surface of the connection shaft inner oil passage portion 42 and the connection shaft 31.
  • the fourth radial oil passage 49 extends through the inside of the connecting shaft 31 in the radial direction, and is formed by a through hole that opens on the inner peripheral surface and the outer peripheral surface of the connecting shaft 31.
  • the fourth radial oil passage portion 49 is located between the first bearing 15 and the second bearing 16 which are arranged at intervals in the axial direction.
  • the fourth radial oil passage portion 49 is disposed at an intermediate portion of the connection shaft 31 located between both ends in the axial direction.
  • the radially outer end of the fourth radial oil passage 49 opens toward the planetary gear 33.
  • the fourth radial oil passage portion 49 opens toward the outer peripheral portion of the meshing portion 33c of the second gear portion 33b.
  • the internal gear 34 and the planetary gear 33 and the fourth radial oil passage 49 are arranged so as to overlap with each other.
  • a plurality of fourth radial oil passage portions 49 are provided at intervals in the circumferential direction.
  • the oil O flowing inside the motor shaft 22 is supplied to the first motor 20A and the first transmission mechanism 30A.
  • the oil O is dispersed in a wide range by flowing through the motor shaft 22, and is distributed to each member in the first housing 11A.
  • the oil storage unit 50 is arranged at a lower portion (bottom portion) of the first housing 11A.
  • the oil storage unit 50 is located at a lower part in the first housing 11A.
  • Oil O is stored in the oil storage unit 50.
  • Oil storage unit 50 has a motor oil storage unit 50a, a gear oil storage unit 50b, and a circulating oil passage unit.
  • the motor oil storage portion 50a is a portion of the oil storage portion 50 that is located on the other axial side of the partition wall portion 17.
  • the motor oil storage unit 50a is disposed at a position overlapping the first motor 20A when viewed from the radial direction.
  • the lower portion of the stator 26 is disposed in the motor oil storage section 50a. That is, the lower part of the stator 26 is immersed in the oil O of the motor oil storage part 50a.
  • the gear oil storage portion 50b is a portion of the oil storage portion 50 that is located on one axial side with respect to the partition wall portion 17.
  • the gear oil storage unit 50b is disposed at a position overlapping the first transmission mechanism 30A when viewed from the radial direction.
  • a rotation locus (not shown) of the planetary gear 33 around the motor axis J2 is arranged in the gear oil storage unit 50b. That is, the rotation locus of the planetary gear 33 around the motor axis J2 passes through the gear oil storage unit 50b. More specifically, of the first gear portion 33a and the second gear portion 33b of the planetary gear 33, at least the rotation locus of the first gear portion 33a around the motor axis J2 passes through the gear oil storage portion 50b.
  • the oil O in the oil storage unit 50 is scraped up by the planetary gear 33.
  • the oil O is scraped up by at least the first gear portion 33a having a large diameter. Since the oil storage unit 50 is partitioned into the gear oil storage unit 50b and the motor oil storage unit 50a by the partition wall 17, the oil amount of the oil O in the gear oil storage unit 50b is stabilized. Specifically, the oil O flowing through the oil passage portion 41 in the motor shaft passes through the oil passage portion 42 in the connection shaft, flows out of the opening at one axial end of the connection shaft 31, and flows through the bearing 39a and the like.
  • the oil is supplied to the gear oil storage unit 50b.
  • the oil O flowing through the oil passage portion 42 in the connection shaft is supplied to the first radial oil passage portion 44, the annular oil passage portion 43, the second radial oil passage portion 45, the connection oil passage portion 47, and the internal gear 34.
  • the oil is supplied to the gear oil storage unit 50b through a radial gap or the like between the motor oil and the connecting portion 37c.
  • the oil O spouted radially outward from the fourth radial oil passage 49 is also supplied to the gear oil storage 50b while lubricating the planetary gears 33 and the like.
  • the oil O supplied to the gear oil storage unit 50b is held by the gear oil storage unit 50b by the partition wall 17.
  • the distribution oil passage portion is a portion in the oil storage portion 50 that connects the gear oil storage portion 50b and the motor oil storage portion 50a.
  • the circulation oil passage portion is constituted by an oil circulation hole 17a penetrating the partition wall portion 17 in the axial direction.
  • the oil O accumulated in the gear oil storage unit 50b is also supplied to the motor oil storage unit 50a through the flow oil passage (oil flow hole 17a).
  • the amount of oil O flowing through the oil flow hole 17a is controlled by appropriately adjusting the vertical position, size (cross-sectional area perpendicular to the axial direction), number, and the like of the oil flow hole 17a in the partition wall portion 17. it can.
  • OF1 indicates a flow of the oil O sent from the first electric oil pump 61A to the first oil cooler 65A.
  • OF2 indicates a flow of the oil O supplied from the first oil cooler 65A to the first motor 20A and the like.
  • the flow OF2 cools, for example, the stator 26 and the like.
  • OF3 indicates a flow of the oil O supplied from the first electric oil pump 61A to the first motor 20A, the first transmission mechanism 30A, and the like.
  • the flow OF3 cools, for example, the rotor 21 and the stator 26, and lubricates the sun gear 32, the planetary gear 33, the internal gear 34, the bearings 14, 15, 16, 39a, 39b, and the like.
  • OF4 indicates the flow of the oil O supplied by the oil scooping action by the revolution of the planetary gear 33 around the motor axis J2.
  • the flow OF4 lubricates, for example, the sun gear 32, the planetary gear 33, the internal gear 34, the bearings 15, 16, 39a, 39b, and the like.
  • OF5 indicates a flow of the oil O sucked from the oil storage unit 50 to the first electric oil pump 61A.
  • the first electric oil pump 61A sucks oil O from the oil storage unit 50 via a strainer (not shown).
  • the first electric oil pump 61A sucks oil O from the motor oil storage unit 50a.
  • the first electric oil pump 61A is an electric oil pump including a motor and the like.
  • the first electric oil pump 61A is arranged above the first housing 11A.
  • the first electric oil pump 61A is provided inside the first housing 11A. That is, the first electric oil pump 61A is of a built-in type, and the entire first electric oil pump 61A and the oil passage 40 are arranged in the first housing 11A.
  • the mechanical oil pump 62 sucks the oil O from the oil storage unit 50 via a strainer (not shown).
  • the mechanical oil pump 62 sucks oil O from the motor oil storage unit 50a.
  • the mechanical oil pump 62 is a mechanical oil pump having a structure such as a trochoid pump connected to the motor shaft 22.
  • the mechanical oil pump 62 is disposed on the bottom wall 12b of the motor housing 12.
  • the mechanical oil pump 62 is disposed coaxially with the motor shaft 22 on the other axial side of the motor shaft 22.
  • the first electric oil pump 61A which is an electric oil pump, is selectively used in accordance with the rotation state and temperature of the first motor 20A.
  • the first electric oil pump is used.
  • the operation of 61A is stopped, and the oil O is supplied into the motor shaft 22 only by the mechanical oil pump 62.
  • the mechanical oil pump 62 is used as a main pump, and the first electric oil pump 61A is selectively used as a sub-pump.
  • the oil O circulation structure of the second motor unit 1B includes the oil passage 40, a second electric oil pump 61B, and a mechanical oil pump 62.
  • the circulation structure of the oil O of the second motor unit 1B is plane-symmetric with respect to the vertical structure VS of the circulation structure of the oil O of the first motor unit 1A, and therefore detailed description is omitted.
  • the first oil cooler 65A is connected to the refrigerant flow path 90.
  • the first oil cooler 65A is connected to a first connection flow channel 90c and a first outflow flow channel 90e of the refrigerant flow channel 90 which will be described later.
  • the first oil cooler 65A has a flow path (not shown) in which a refrigerant R such as a cooling liquid flows inside.
  • the flow path in the first oil cooler 65A is connected to the first connection flow path 90c and the first outflow flow path 90e.
  • a part of the oil passage 40 of the first motor unit 1A is arranged in the first oil cooler 65A.
  • the oil O is cooled by performing heat exchange between the refrigerant R flowing through the flow passage of the first oil cooler 65A and the oil O flowing through a part of the oil passage 40 of the first motor unit 1A. . That is, the first oil cooler 65A cools the oil O. The cooled oil O cools the first motor 20A, the first transmission mechanism 30A, and the like. Further, the first oil cooler 65A has a plurality of fin portions exposed to the outside of the first oil cooler 65A. The oil O is also cooled by performing heat exchange between the outside air and the oil O via the plurality of fin portions.
  • the first oil cooler 65A is provided in the first housing 11A.
  • the first oil cooler 65A cools the oil O circulating inside the first housing 11A.
  • the first oil cooler 65A is disposed at an upper portion of the first housing 11A on the side opposite to the vertical road surface. That is, the first oil cooler 65A is disposed above the first housing 11A.
  • the road surface is an upper surface of a road or the like on which the vehicle 100 runs or stops, that is, an upper surface of a road or the like on which the vehicle 100 is located.
  • the first oil cooler 65A is arranged vertically above the first motor 20A. According to the present embodiment, the oil O cooled by the refrigerant R in the first oil cooler 65A is easily supplied to the first motor 20A by dropping or the like.
  • the first oil cooler 65A is aligned with the first electric oil pump 61A in the front-rear direction of the vehicle 100.
  • the members of the first motor unit 1A in the front-back direction and the vehicle width direction (axial direction) of the vehicle 100 are used. It is difficult to secure placement space.
  • the first motor unit 1A is sandwiched between the subframes in the front-rear direction of the vehicle 100, so that a space for installing members cannot be secured in a region adjacent to the first motor unit 1A in the front-rear direction.
  • the second motor unit 1B in the vehicle width direction of the first motor unit 1A, the second motor unit 1B, the rear left axle, a part of the subframe, and the like are arranged. A space for installing members cannot be secured in the adjacent areas. Therefore, as in the present embodiment, if the first electric oil pump 61A and the first oil cooler 65A are arranged above the first housing 11A, and these members are arranged in the front-rear direction of the vehicle 100, It is easy to easily secure a space for disposing the first electric oil pump 61A and the first oil cooler 65A.
  • the first electric oil pump 61A and the inverter case 4 are arranged close to each other, wiring for electrically connecting the first electric oil pump 61A and the inverter 3 housed in the inverter case 4 is provided. Can be shortened, and wiring connection work is easy.
  • the first electric oil pump 61A is disposed between the first oil cooler 65A and the inverter case 4 in the front-rear direction of the vehicle 100. The vertical position of the first oil cooler 65A, the vertical position of the first electric oil pump 61A, and the vertical position of the inverter case 4 are substantially the same.
  • the second oil cooler 65B is connected to the refrigerant channel 90.
  • Second oil cooler 65 ⁇ / b> B # is connected to a second connection flow channel 90 d and a second outflow flow channel 90 f of refrigerant flow channel 90 described below.
  • the second oil cooler 65B has a flow path (not shown) through which a refrigerant R such as a cooling liquid flows.
  • the flow path in the second oil cooler 65B is connected to the second connection flow path 90d and the second outflow flow path 90f.
  • a part of the oil passage 40 of the second motor unit 1B is arranged in the second oil cooler 65B.
  • the cooled oil O cools the second motor 20B, the second transmission mechanism 30B, and the like.
  • the second oil cooler 65B has a plurality of fins exposed to the outside of the second oil cooler 65B.
  • the oil O is also cooled by performing heat exchange between the outside air and the oil O via the plurality of fin portions.
  • the second oil cooler 65B is provided in the second housing 11B.
  • the second oil cooler 65B cools the oil O circulating inside the second housing 11B.
  • the second oil cooler 65B is arranged in an upper part of the second housing 11B on the side opposite to the vertical road surface. That is, the second oil cooler 65B is disposed above the second housing 11B.
  • the second oil cooler 65B is arranged vertically above the second motor 20B. According to the present embodiment, the oil O cooled by the refrigerant R in the second oil cooler 65B is easily supplied to the second motor 20B by dropping or the like.
  • the second oil cooler 65B is arranged in the front-rear direction of the vehicle 100 with the second electric oil pump 61B.
  • the members of the second motor unit 1B in the front-rear direction and the vehicle width direction (axial direction) of the vehicle 100 are used. It is difficult to secure placement space. Specifically, since the second motor unit 1B is sandwiched between the subframes in the front-back direction of the vehicle 100, a space for installing members cannot be secured in a region adjacent to the second motor unit 1B in the front-back direction.
  • the first motor unit 1A in the vehicle width direction of the second motor unit 1B, the first motor unit 1A, the rear right axle, a part of the subframe, and the like are arranged.
  • a space for installing members cannot be secured in the adjacent regions. Therefore, as in the present embodiment, if the second electric oil pump 61B and the second oil cooler 65B are arranged on the upper part of the second housing 11B, and these members are arranged in the front-rear direction of the vehicle 100, It is easy to easily secure a space for disposing the second electric oil pump 61B and the second oil cooler 65B.
  • the second electric oil pump 61B and the inverter case 4 are arranged close to each other, wiring for electrically connecting the second electric oil pump 61B and the inverter 3 housed in the inverter case 4 is provided. Can be shortened, and wiring connection work is easy.
  • the second electric oil pump 61B is disposed between the second oil cooler 65B and the inverter case 4 in the front-rear direction of the vehicle 100. The vertical position of the second oil cooler 65B, the vertical position of the second electric oil pump 61B, and the vertical position of the inverter case 4 are substantially the same.
  • the rotation sensor 80 of the first motor unit 1A will be described.
  • the rotation sensor 80 is provided at an axial end of the first motor 20A.
  • the rotation sensor 80 is disposed at the other axial end of the first motor 20A.
  • the rotation sensor 80 and the third bearing 14 are arranged so as to overlap with each other.
  • the rotation sensor 80 detects rotation of the first motor 20A.
  • the rotation sensor 80 is a resolver.
  • the rotation sensor 80 has a resolver rotor 80a and a resolver stator 80b.
  • the resolver rotor 80a is fixed to the rotor 21.
  • the resolver rotor 80a is fixed to the sensor support 23c of the rotor holder 23.
  • the resolver stator 80b is fixed to the first housing 11A.
  • the resolver stator 80b is fixed to the bottom wall 12b of the motor housing 12.
  • the rotation sensor 80 is electrically connected to a control board (not shown) housed in the inverter case 4.
  • the structure of the rotation sensor 80 of the second motor unit 1B is plane-symmetric with respect to the vertical plane VS with the structure of the rotation sensor 80 of the first motor unit 1A, and therefore detailed description is omitted.
  • the temperature sensor (not shown) of the first motor unit 1A will be described.
  • the temperature sensor is provided on first motor 20A.
  • the temperature sensor detects, for example, the temperature of the stator 26. That is, the temperature sensor detects the temperature of the first motor 20A.
  • the temperature sensor is electrically connected to the control board.
  • the temperature sensor may be arranged in a part of the oil passage 40 of the first motor unit 1A. In this case, the temperature sensor is disposed, for example, in the oil storage unit 50 and detects the temperature of the oil O.
  • the structure of the temperature sensor of the second motor unit 1B is plane-symmetric with respect to the vertical plane VS with the structure of the temperature sensor of the first motor unit 1A, and thus detailed description is omitted.
  • the inverter 3 is electrically connected to the plurality of motor units 1A and 1B. Inverter 3 is electrically connected to first motor 20A, second motor 20B, first electric oil pump 61A, and second electric oil pump 61B. That is, inverter 3 is electrically connected to first motor 20A and second motor 20B.
  • the inverter 3 has a plurality of switching elements 3a, a power board (not shown), and a capacitor (not shown).
  • the switching element 3a is, for example, an insulated gate bipolar transistor (IGBT: Insulated Gate Bipolar Transistor).
  • the capacitor and the switching element 3a are connected to a power board. Inverter 3 is connected to an external power supply (not shown).
  • the external power supply is, for example, a secondary battery mounted on the vehicle 100.
  • the inverter 3 converts a DC current supplied from an external power supply into an AC current, and supplies the AC current to the first motor 20A, the second motor 20B, the first electric oil pump 61A, and the second electric oil pump 61B. I do.
  • the inverter 3 supplies an alternating current to the first motor 20A and the second motor 20B. I do.
  • a plurality of switching elements 3a are provided in the inverter case 4.
  • the number of switching elements 3a is, for example, a multiple of the number of motor units 1A and 1B (two in this embodiment).
  • the inverter 3 is capable of adjusting the power supplied to the stator 26 of the first motor 20A.
  • the inverter 3 is capable of adjusting the power supplied to the stator 26 of the second motor 20B.
  • the inverter 3 is controlled by an electronic control unit (not shown). For example, when the load of the first motor 20A is higher than a predetermined value at the time of starting the motor, when the vehicle 100 is running, and the like, when the temperature of the first motor 20A is higher than a predetermined value, When the temperature of the oil O of 1A is higher than a predetermined value or the like, the inverter 3 operates the first electric oil pump 61A.
  • the inverter 3 stops the operation of the first electric oil pump 61A.
  • the inverter 3 when the load of the second motor 20B is larger than a predetermined value at the time of starting the motor, at the time of running the vehicle 100, and the like, when the temperature of the second motor 20B is higher than a predetermined value, and When the temperature of the oil O of the motor unit 1B is higher than a predetermined value or the like, the inverter 3 operates the second electric oil pump 61B.
  • the load of the second motor 20B is smaller than or equal to a predetermined value, such as when the vehicle 100 is traveling, when the temperature of the second motor 20B is lower than or equal to a predetermined value, and when the oil O of the second motor unit 1B is reduced.
  • the inverter 3 stops the operation of the second electric oil pump 61B.
  • the inverter case 4 houses the inverter 3. That is, the inverter 3 is arranged inside the inverter case 4.
  • the inverter case 4 has a container shape that can accommodate the inverter 3.
  • the outer shape of the inverter case 4 is a rectangular parallelepiped (see FIG. 2).
  • the length of the inverter case 4 in the vehicle width direction is larger than the length of the inverter case 4 in the front-rear direction and the length in the up-down direction.
  • the length of the inverter case 4 in the front-rear direction is larger than the length of the inverter case 4 in the up-down direction.
  • the inverter case 4 has a case main body 4a and a case lid 4b.
  • the case main body 4a is a bottomed square cylindrical shape.
  • the inverter 3 is arranged on the case main body 4a.
  • the case body 4a has a plate-shaped bottom wall 4c and a rectangular cylindrical peripheral wall.
  • the bottom wall 4c is in the shape of a rectangular plate, and a pair of plate surfaces of the bottom wall 4c face in the vertical direction.
  • the bottom wall 4c has a rectangular plate shape, and the length of the bottom wall 4c in the vehicle width direction is larger than the length of the bottom wall 4c in the front-rear direction.
  • the case cover 4b has a rectangular plate shape, and a pair of plate surfaces face up and down.
  • the case lid 4b closes an upper opening of the case body 4a.
  • the inverter case 4 is supported by a sub-frame (not shown) of the vehicle 100.
  • the inverter case 4 is disposed above the sub-frame in consideration of, for example, intrusion of water from a road surface.
  • the vertical position of the inverter case 4 is substantially the same as the vertical position of the upper part (upper end) of the first housing 11A and the vertical position of the upper part of the second housing 11B.
  • the inverter case 4 is disposed vertically above the first motor 20A and the second motor 20B.
  • the refrigerant R is, for example, a cooling liquid such as a radiator liquid.
  • the coolant R flowing through the coolant channel 90 cools the plurality of oil coolers 65A and 65B, the plurality of switching elements 3a, and the like. That is, the refrigerant R flowing through the refrigerant flow path 90 cools at least a part of the inverter 3, and in this embodiment, cools at least the switching element 3a.
  • the coolant channel 90 includes an inverter cooling unit 90a, a supply channel 90b, a first connection channel 90c, a second connection channel 90d, a first outflow channel 90e, and a second outflow channel. It has a passage 90f and a discharge passage 90g.
  • the supply channel 90b, the first connection channel 90c, the second connection channel 90d, the first outflow channel 90e, the second outflow channel 90f, and the discharge channel 90g are, for example, pipes such as pipes and tubes. It is composed of members and the like.
  • the downstream side of the flow of the refrigerant R may be simply referred to as the downstream side
  • the upstream side of the flow of the refrigerant R may be simply referred to as the upstream side.
  • the inverter cooling unit 90a is disposed in the inverter case 4 and cools the inverter 3.
  • the inverter cooling unit 90a is a storage room (storage space) for the refrigerant R provided inside the bottom wall 4c. That is, the refrigerant R is stored in the inverter cooling unit 90a.
  • the refrigerant R flowing into the inverter cooling unit 90a from the upstream side of the inverter cooling unit 90a is temporarily held in the inverter cooling unit 90a, and flows out of the inverter cooling unit 90a toward the downstream side of the inverter cooling unit 90a.
  • the inverter cooling unit 90a when viewed from above and below (that is, in a plan view), has a square shape. Specifically, the inverter cooling unit 90a has a rectangular shape in plan view, and the length of the inverter cooling unit 90a in the vehicle width direction is larger than the length in the front-rear direction.
  • the inner wall of the chamber of the inverter cooling unit 90a is configured by a concave portion that is depressed downward from the upper surface of the bottom wall 4c, and a closing portion that closes an upper opening of the concave portion.
  • the inverter cooling unit 90a is disposed so as to overlap with the plurality of switching elements 3a when viewed from above and below.
  • Inverter cooling unit 90a faces the lower surface of switching element 3a.
  • the upper surface of the closing portion contacts the lower surface of the switching element 3a.
  • the switching element 3a that is, the inverter 3 is cooled by performing heat exchange between the refrigerant R of the inverter cooling unit 90a and the switching element 3a through the closing part.
  • a part of the closing portion may be constituted by the lower surface of the switching element 3a.
  • a part of the inner wall of the inverter cooling unit 90a is constituted by the lower surface of the switching element 3a. Then, heat is directly exchanged between the refrigerant R of the inverter cooling unit 90a and the switching element 3a, so that the inverter 3 is cooled.
  • one inverter cooling unit 90a is provided in the inverter case 4, and cools the plurality of switching elements 3a. According to the present embodiment, it is possible to cool the inverter 3 while simplifying the structures of the inverter case 4 and the coolant channel 90.
  • the supply channel 90b sends the refrigerant R to the inverter cooling unit 90a.
  • the supply flow path 90b is a flow path portion of the refrigerant flow path 90 located upstream of the inverter cooling unit 90a.
  • the supply channel 90b supplies the refrigerant R to the inverter cooling unit 90a located on the downstream side of the supply channel 90b.
  • the supply passage 90b is directly connected to the inverter cooling unit 90a.
  • One supply channel 90 b is provided in the refrigerant channel 90.
  • the first connection flow path 90c connects the inverter cooling unit 90a and the first oil cooler 65A.
  • the first connection flow channel 90c sends the refrigerant R from the inverter cooling unit 90a to the first oil cooler 65A.
  • the first connection flow channel 90c is a flow channel portion located on the downstream side of the inverter cooling unit 90a in the refrigerant flow channel 90 and a flow channel portion located on the upstream side of the first oil cooler 65A. .
  • the first connection channel 90c supplies the refrigerant R to a first oil cooler 65A located downstream of the first connection channel 90c. In the example shown in FIG.
  • the first connection flow path 90c extends in the front-rear direction, and connects the inverter cooling unit 90a of the inverter case 4 and the first oil cooler 65A.
  • one first connection channel 90c is provided in the refrigerant channel 90.
  • a plurality of first connection passages 90c may be provided between the inverter cooling unit 90a and the first oil cooler 65A.
  • the second connection flow path 90d connects the inverter cooling unit 90a and the second oil cooler 65B.
  • the second connection flow channel 90d sends the refrigerant R from the inverter cooling unit 90a to the second oil cooler 65B.
  • the second connection flow path 90d is a flow path part of the refrigerant flow path 90 located downstream of the inverter cooling unit 90a and a flow path part located upstream of the second oil cooler 65B. .
  • the second connection flow channel 90d supplies the refrigerant R to the second oil cooler 65B located downstream of the second connection flow channel 90d. In the example shown in FIG.
  • the second connection flow path 90d extends in the front-rear direction, and connects the inverter cooling unit 90a of the inverter case 4 to the second oil cooler 65B.
  • one second connection channel 90 d is provided in the refrigerant channel 90.
  • a plurality of second connection passages 90d may be provided between the inverter cooling unit 90a and the second oil cooler 65B. It is preferable that the number of the first connection channels 90c and the number of the second connection channels 90d are the same.
  • the refrigerant R that has flowed into the inverter cooling unit 90a from one supply channel 90b is sent from the inverter cooling unit 90a to the first oil cooler 65A through the first connection channel 90c, The air is sent from the inverter cooling unit 90a to the second oil cooler 65B through the second connection flow path 90d.
  • the refrigerant flow path 90 is integrated into one supply flow path 90 b, so that the piping for supplying the refrigerant R to the inverter case 4 can be simplified. For this reason, the piping mounted on the vehicle 100 is easily laid out, and the piping is easily connected to another member such as the refrigerant pump 95.
  • the refrigerant flow path 90 is branched into a first connection flow path 90c and a second connection flow path 90d, and the first connection flow path 90c is connected to the first oil cooler 65A.
  • the second connection flow path 90d is connected to the second oil cooler 65B (that is, connected in parallel). Therefore, the first oil cooler 65A and the second oil cooler 65B can be cooled evenly. Since the first oil cooler 65A and the second oil cooler 65B are uniformly cooled, the oil O in each of the housings 11A and 11B cooled by each of the oil coolers 65A and 65B is also uniformly cooled. As a result, the motors 20A, 20B housed in the housings 11A, 11B are also cooled and lubricated evenly, so that variations in performance among the plurality of motors 20A, 20B are suppressed.
  • the refrigerant flow path 90 includes a flow path portion connecting the inverter cooling section 90a and the first oil cooler 65A, and a first oil cooler 65A and a second oil cooler 65A.
  • the refrigerant R after cooling the first oil cooler 65A is sent to the second oil cooler 65B.
  • the two oil coolers 65A and 65B cannot be cooled evenly, and the cooling function of the second oil cooler 65B is lower than the cooling function (performance) of the first oil cooler 65A.
  • the oil O in each of the housings 11A and 11B cooled by the coolers 65A and 65B is not evenly cooled.
  • the motors 20A and 20B accommodated in the housings 11A and 11B are not evenly cooled and lubricated, and the performance varies among the plurality of motors 20A and 20B.
  • a first transmission mechanism 30A and the like other than the first motor 20A are housed in the first housing 11A, and a path (a component of the oil path 40) through which the oil O flows in the first housing 11A.
  • a second transmission mechanism 30B and the like other than the second motor 20B are housed in the second housing 11B, and a plurality of paths through which oil O flows are provided in the second housing 11B.
  • the first oil cooler 65A, the second oil cooler 65B, and the inverter case 4 are arranged above the first motor 20A and the second motor 20B, so that the first oil cooler 65A and the second oil cooler 65B and the inverter case 4 can be easily connected by a piping member or the like. That is, workability when connecting the inverter cooling unit 90a of the inverter case 4 and the first oil cooler 65A by the first connection flow path 90c is good.
  • the length of the first connection channel 90c can be kept short, and the piping member and the like of the first connection channel 90c can be simplified.
  • the refrigerant R passing through the first connection flow channel 90c can be prevented from exchanging heat with the outside air and increasing in temperature.
  • the workability when connecting the inverter cooling unit 90a of the inverter case 4 and the second oil cooler 65B by the second connection flow path 90d is good. Further, the length of the second connection flow channel 90d can be suppressed to be short, and the piping member and the like of the second connection flow channel 90d can be simplified. It is possible to suppress a rise in temperature of the refrigerant R passing through the second connection flow path 90d due to heat exchange with the outside air.
  • the first outflow channel 90e is a channel portion of the refrigerant channel 90 that is located downstream of the first oil cooler 65A.
  • the first outflow passage 90e is arranged between the first oil cooler 65A and the discharge passage 90g, and connects them.
  • the first outflow channel 90e is connected to the first oil cooler 65A.
  • the refrigerant R flowing out of the first oil cooler 65A flows through the first outflow channel 90e.
  • the first outflow channel 90e is connected to the discharge channel 90g.
  • the refrigerant R flowing through the first outflow channel 90e is sent to the discharge channel 90g.
  • the first outflow channel 90e receives the refrigerant R from the first oil cooler 65A located on the upstream side of the first outflow channel 90e and flows the refrigerant R toward the downstream discharge channel 90g.
  • one first outflow channel 90 e is provided in the refrigerant channel 90.
  • a plurality of first outflow passages 90e may be provided between the first oil cooler 65A and the discharge passage 90g.
  • the first outflow channel 90e has a portion extending rearward from the first oil cooler 65A.
  • the invention is not limited thereto, and the first outflow channel 90e may have a portion extending forward from the first oil cooler 65A as in the example shown in FIG. Further, as in the example shown in FIGS. 3 and 4, the first outflow channel 90e may have a portion extending from the first oil cooler 65A in the vehicle width direction. Although not particularly shown, the first outflow channel 90e may have a portion extending upward from the first oil cooler 65A.
  • the second outflow channel 90f is a channel portion of the refrigerant channel 90 located downstream of the second oil cooler 65B.
  • the second outflow passage 90f is arranged between the second oil cooler 65B and the discharge passage 90g, and connects them.
  • the second outflow channel 90f is connected to the second oil cooler 65B.
  • the refrigerant R flowing out of the second oil cooler 65B flows through the second outflow channel 90f.
  • the second outflow channel 90f is connected to the discharge channel 90g.
  • the refrigerant R flowing through the second outflow channel 90f is sent to the discharge channel 90g.
  • the second outflow channel 90f receives the refrigerant R from the second oil cooler 65B located on the upstream side of the second outflow channel 90f, and flows the refrigerant R toward the downstream discharge channel 90g.
  • one second outflow channel 90 f is provided in the refrigerant channel 90.
  • a plurality of second outflow passages 90f may be provided between the second oil cooler 65B and the discharge passage 90g.
  • the second outflow channel 90f has a portion extending rearward from the second oil cooler 65B.
  • the invention is not limited thereto, and the second outflow channel 90f may have a portion extending forward from the second oil cooler 65B, as in the example shown in FIG.
  • the second outflow channel 90f may have a portion extending from the second oil cooler 65B in the vehicle width direction.
  • the second outflow channel 90f may have a portion extending upward from the second oil cooler 65B.
  • the discharge channel 90g is a channel portion of the refrigerant channel 90 located downstream of the first outflow channel 90e and the second outflow channel 90f.
  • One discharge channel 90 g is provided in the refrigerant channel 90.
  • One discharge channel 90g is connected to first outflow channel 90e and second outflow channel 90f. That is, the first outflow channel 90e and the second outflow channel 90f are integrated into one discharge channel 90g on the downstream side.
  • the discharge channel 90g combines the refrigerant R flowing through the first outflow channel 90e and the refrigerant R flowing through the second outflow channel 90f, and sends it to the radiator 96.
  • the refrigerant R after cooling the first oil cooler 65A flows into the discharge passage 90g through the first outflow passage 90e connected to the first oil cooler 65A.
  • the refrigerant R after cooling the second oil cooler 65B flows into the discharge passage 90g through the second outflow passage 90f connected to the second oil cooler 65B.
  • the refrigerant flow path 90 is integrated into one discharge flow path 90g, so that piping for returning the refrigerant R to the radiator 96 or the like can be simplified. Therefore, it is easy to lay out the piping mounted on the vehicle 100, and it is easy to connect the piping to another member such as the radiator 96.
  • the refrigerant pump 95 circulates the refrigerant R through the refrigerant flow path 90.
  • the refrigerant pump 95 is connected to a part of the refrigerant channel 90.
  • the refrigerant pump 95 is, for example, a water pump or the like.
  • the refrigerant pump 95 is arranged on a front portion of the vehicle 100.
  • the refrigerant pump 95 is connected to the supply channel 90b.
  • the refrigerant pump 95 is located on the upstream side of the supply channel 90b.
  • the refrigerant pump 95 supplies the refrigerant R to the supply channel 90b located downstream of the refrigerant pump 95.
  • the radiator 96 cools the refrigerant R in the refrigerant passage 90.
  • the radiator 96 is connected to a part of the coolant channel 90.
  • the radiator 96 is arranged on a front portion of the vehicle 100.
  • the radiator 96 is connected to the discharge channel 90g.
  • the radiator 96 is located on the downstream side of the discharge passage 90 g and on the upstream side of the refrigerant pump 95.
  • the radiator 96 supplies the refrigerant R to a refrigerant pump 95 located downstream of the radiator 96. In other words, the refrigerant R cooled by the radiator 96 is sucked by the refrigerant pump 95 and discharged to the supply channel 90b.
  • the drive device 10 is the rear drive device of the vehicle 100, but is not limited thereto.
  • the drive device 10 may be a front drive device of the vehicle 100.
  • one inverter cooling unit 90a is provided in the inverter case 4 to cool the plurality of switching elements 3a, but the invention is not limited thereto.
  • a plurality of inverter cooling units 90a may be provided in the inverter case 4.
  • the plurality of inverter cooling units 90a respectively cool the plurality of switching elements 3a.
  • the number of switching elements 3a and the number of inverter cooling units 90a are the same. That is, one inverter cooling unit 90a cools one switching element 3a. Note that one inverter cooling unit 90a may cool the plurality of switching elements 3a.
  • each inverter cooling unit 90a When viewed from above and below, each inverter cooling unit 90a is arranged so as to overlap with each switching element 3a.
  • the inverter cooling unit 90a cools the switching element 3a vertically opposed to the inverter cooling unit 90a.
  • the refrigerant channel 90 has a plurality of branch channels 90h that connect the supply channel 90b and the plurality of inverter cooling units 90a. That is, a plurality of branch channels 90 h are provided in the refrigerant channel 90.
  • the branch flow path 90h is arranged between the supply flow path 90b and the inverter cooling unit 90a and connects them.
  • one branch flow channel 90h is provided between the supply flow channel 90b and one inverter cooling unit 90a.
  • the number of the inverter cooling units 90a is two, and the number of the branch passages 90h is also two.
  • One inverter cooling section 90a and one branch flow path 90h are connected one-to-one.
  • a plurality of branch passages 90h may be provided between the supply passage 90b and one inverter cooling unit 90a.
  • the branch flow path 90h is provided inside the bottom wall 4c of the inverter case 4.
  • the shape of each inverter cooling unit 90a can be matched with the shape of each switching element 3a when viewed from above and below. This suppresses the inverter cooling unit 90a from cooling the part of the inverter case 4 other than the switching element 3a, that is, the part other than the inverter 3 uselessly, and improves the cooling efficiency of the inverter 3.
  • the outer shape of the inverter case 4 is not limited to the rectangular parallelepiped described in the above embodiment.
  • the outer shape of the inverter case 4 may be, for example, a polygonal column shape other than a rectangular parallelepiped shape.
  • the shape of the inverter cooling unit 90a is not limited to the square shape described in the above embodiment.
  • the shape of the inverter cooling unit 90a may be, for example, a polygonal shape other than a square shape.
  • first transmission mechanism 30A and the second transmission mechanism 30B are planetary gear mechanisms, but the invention is not limited thereto.
  • the first transmission mechanism 30A and the second transmission mechanism 30B may be reduction mechanisms other than the planetary gear mechanism.
  • the circulation paths of the oil O provided in the first housing 11A and the second housing 11B are not limited to the configuration of the oil path 40 described above.
  • the first motor unit 1A of the driving device 10 includes one first motor 20A and one first transmission mechanism 30A
  • the second motor unit 1B includes one
  • the first motor unit 1A may include one first motor 20A and two first transmission mechanisms 30A.
  • the first transmission mechanisms 30A are respectively connected to both axial ends of the motor shaft 22 of the first motor 20A.
  • first motor 20A drives two first wheels (left and right wheels in the vehicle width direction) via two first transmission mechanisms 30A.
  • the second motor unit 1B may include one second motor 20B and two second transmission mechanisms 30B.
  • the second transmission mechanism 30B is connected to both axial ends of the motor shaft 22 of the second motor 20B.
  • the second motor 20B drives two second wheels (the left and right wheels in the vehicle width direction) via the two second transmission mechanisms 30B.
  • the motor shaft J2 of the first motor 20A of the first motor unit 1A and the motor shaft J2 of the second motor 20B of the second motor unit 1B are spaced from each other in the longitudinal direction of the vehicle 100, for example. Are placed with a gap.
  • the drive device 10 may be mounted on, for example, a plug-in hybrid vehicle (PHEV) or a hybrid vehicle (HEV).
  • PHEV plug-in hybrid vehicle
  • HEV hybrid vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

One embodiment of this drive device comprises: a first motor for driving a first wheel; a first housing; a first oil cooler for cooling the oil circulating inside the first housing; a second motor for driving a second wheel; a second housing; a second oil cooler for cooling the oil circulating inside the second housing; an inverter electrically connected to the first motor and the second motor; an inverter case; and a refrigerant flow path through which the refrigerant for cooling the first oil cooler, the second oil cooler, and the inverter flows. The refrigerant flow path includes: an inverter cooling section disposed in the inverter case; one supply flow path for feeding the refrigerant to the inverter cooling section; a first connection flow path for feeding the refrigerant to the first oil cooler from the inverter cooling section; and a second connection flow path for feeding the refrigerant to the second oil cooler from the inverter cooling section.

Description

駆動装置Drive
 本発明は、駆動装置に関する。本出願は、2018年9月25日に提出された日本特許出願第2018-178667号に基づいている。本出願は、当該出願に対して優先権の利益を主張するものである。その内容全体は、参照されることによって本出願に援用される。 The present invention relates to a driving device. This application is based on Japanese Patent Application No. 2018-178667 filed on September 25, 2018. This application claims the benefit of priority to the application. The entire contents are hereby incorporated by reference into the present application.
 モータの動力により車両の車軸を回転させる駆動装置が知られる。駆動装置は、モータと、モータを収容するハウジングと、ハウジングの内部を循環するオイルを冷却するオイルクーラと、オイルクーラに冷媒を流す冷却回路と、を備える。従来、例えば特許文献1に記載の冷却回路が知られる。冷却回路には冷媒が流通し、冷媒はラジエータで冷却される。 駆 動 There is known a drive device that rotates an axle of a vehicle by the power of a motor. The drive device includes a motor, a housing that houses the motor, an oil cooler that cools oil circulating inside the housing, and a cooling circuit that flows a coolant through the oil cooler. Conventionally, for example, a cooling circuit described in Patent Document 1 is known. A refrigerant flows through the cooling circuit, and the refrigerant is cooled by a radiator.
特開2018-118683号公報JP 2018-118683 A
 車輪を駆動するモータが車両に複数設けられる場合において、複数のモータを均等に冷却し、モータ同士の性能のばらつきを抑える点に改善の余地があった。 When a vehicle is provided with a plurality of motors for driving wheels, there is room for improvement in cooling the plurality of motors evenly and suppressing variations in performance among the motors.
本発明は上記事情に鑑みて、複数のモータを均等に冷却でき、モータ同士の性能のばらつきを抑えられる駆動装置を提供することを目的の一つとする。 In view of the above circumstances, it is an object of the present invention to provide a drive device capable of uniformly cooling a plurality of motors and suppressing variations in performance between the motors.
 本発明の駆動装置の一つの態様は、車両に設けられる複数の車輪のうち、第1の車輪を駆動する第1のモータと、前記第1のモータを収容する第1のハウジングと、前記第1のハウジングに設けられ、前記第1のハウジングの内部を循環するオイルを冷却する第1のオイルクーラと、前記複数の車輪のうち、第2の車輪を駆動する第2のモータと、前記第2のモータを収容する第2のハウジングと、前記第2のハウジングに設けられ、前記第2のハウジングの内部を循環するオイルを冷却する第2のオイルクーラと、前記第1のモータおよび前記第2のモータと電気的に接続されるインバータと、前記インバータを収容するインバータケースと、前記第1のオイルクーラ、前記第2のオイルクーラおよび前記インバータを冷却する冷媒が流通する冷媒流路と、を備え、前記冷媒流路は、前記インバータケースに配置され、前記インバータを冷却するインバータ冷却部と、前記インバータ冷却部に冷媒を送る1つの供給流路と、前記インバータ冷却部と前記第1のオイルクーラとを接続し、前記インバータ冷却部から前記第1のオイルクーラに冷媒を送る第1の接続流路と、前記インバータ冷却部と前記第2のオイルクーラとを接続し、前記インバータ冷却部から前記第2のオイルクーラに冷媒を送る第2の接続流路と、を有する。 One aspect of the drive device of the present invention includes a first motor that drives a first wheel among a plurality of wheels provided in the vehicle, a first housing that houses the first motor, A first oil cooler provided in the first housing for cooling oil circulating in the first housing; a second motor for driving a second wheel of the plurality of wheels; A second housing accommodating the second motor; a second oil cooler provided in the second housing for cooling oil circulating in the second housing; the first motor and the second oil cooler; An inverter electrically connected to the second motor, an inverter case accommodating the inverter, and a refrigerant for cooling the first oil cooler, the second oil cooler, and the inverter. An inverter cooling unit that is disposed in the inverter case and cools the inverter; one supply channel that sends a refrigerant to the inverter cooling unit; Unit and the first oil cooler, and a first connection passage for sending a refrigerant from the inverter cooling unit to the first oil cooler, and a connection between the inverter cooling unit and the second oil cooler. And a second connection flow path for sending a refrigerant from the inverter cooling unit to the second oil cooler.
 本発明の一つの態様の駆動装置によれば、複数のモータを均等に冷却でき、モータ同士の性能のばらつきを抑えられる。 According to the driving device of one aspect of the present invention, a plurality of motors can be cooled evenly, and variations in performance between the motors can be suppressed.
図1は、車両に搭載される一実施形態の駆動装置を模式的に示す平面図である。FIG. 1 is a plan view schematically showing a driving device according to an embodiment mounted on a vehicle. 図2は、駆動装置の一部を示す斜視図である。FIG. 2 is a perspective view showing a part of the driving device. 図3は、駆動装置の一部を示す断面図である。FIG. 3 is a sectional view showing a part of the driving device. 図4は、駆動装置の一部を示す断面図であり、ハウジングの内部のオイルの流れ等を模式的に表す。FIG. 4 is a cross-sectional view showing a part of the drive device, and schematically shows a flow of oil inside the housing and the like. 図5は、インバータケースの内部を模式的に示す平面図である。FIG. 5 is a plan view schematically showing the inside of the inverter case. 図6は、一実施形態の変形例のインバータケースの内部を模式的に示す平面図である。FIG. 6 is a plan view schematically showing the inside of an inverter case according to a modification of the embodiment.
 本発明の一実施形態の駆動装置10について、図面を参照して説明する。本実施形態の駆動装置10は、車両100に搭載される。駆動装置10は、車両駆動装置である。車両100には、複数の車輪が設けられる。駆動装置10は、複数の車輪102A,102Bを駆動する。以下の説明では、各図に示す本実施形態の駆動装置10が水平な路面上に位置する車両100に搭載された場合の位置関係を基に、鉛直方向を規定して説明する。また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、鉛直方向である。+Z側は、鉛直方向上側であり、-Z側は、鉛直方向下側である。本実施形態では、鉛直方向上側を単に「上側」と呼び、鉛直方向下側を単に「下側」と呼ぶ。X軸方向は、Z軸方向と直交する方向であって、駆動装置10が搭載される車両100の前後方向である。本実施形態において、+X側は、車両100の前側であり、-X側は、車両100の後側である。Y軸方向は、X軸方向とZ軸方向の両方と直交する方向であって、車両100の左右方向(車幅方向)である。本実施形態において、+Y側は、車両100の左側であり、-Y側は、車両100の右側である。なお、前後方向の位置関係は、本実施形態の位置関係に限らず、+X側が車両100の後側であり、-X側が車両100の前側であってもよい。この場合には、+Y側は、車両100の右側であり、-Y側は、車両100の左側である。 The drive device 10 according to one embodiment of the present invention will be described with reference to the drawings. The drive device 10 of the present embodiment is mounted on a vehicle 100. The drive device 10 is a vehicle drive device. The vehicle 100 is provided with a plurality of wheels. The drive device 10 drives the wheels 102A and 102B. In the following description, the vertical direction is defined based on the positional relationship when the drive device 10 of the present embodiment shown in each figure is mounted on a vehicle 100 located on a horizontal road surface. In the drawings, an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system. In the XYZ coordinate system, the Z-axis direction is a vertical direction. The + Z side is the upper side in the vertical direction, and the -Z side is the lower side in the vertical direction. In the present embodiment, the upper side in the vertical direction is simply called “upper side”, and the lower side in the vertical direction is simply called “lower side”. The X-axis direction is a direction orthogonal to the Z-axis direction, and is a front-rear direction of the vehicle 100 on which the driving device 10 is mounted. In the present embodiment, the + X side is the front side of the vehicle 100, and the −X side is the rear side of the vehicle 100. The Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction, and is the left-right direction of the vehicle 100 (vehicle width direction). In the present embodiment, the + Y side is the left side of the vehicle 100, and the −Y side is the right side of the vehicle 100. Note that the positional relationship in the front-rear direction is not limited to the positional relationship in the present embodiment, and the + X side may be the rear side of the vehicle 100 and the −X side may be the front side of the vehicle 100. In this case, the + Y side is the right side of the vehicle 100, and the −Y side is the left side of the vehicle 100.
 各図に適宜示すモータ軸J2は、Y軸方向、すなわち車両100の車幅方向に延びる。以下の説明においては、特に断りのない限り、モータ軸J2に平行な方向を単に「軸方向」と呼ぶ。軸方向のうち、後述するモータユニット1A(図3等を参照)において、モータ20Aから伝達機構30Aへ向かう方向を軸方向一方側と呼び、伝達機構30Aからモータ20Aへ向かう方向を軸方向他方側と呼ぶ。図1および図2に示すように、本実施形態では駆動装置10にモータユニット1A,1Bが一対設けられている。モータユニット1Bにおいても上記同様に、モータ20Bから伝達機構30Bへ向かう方向を軸方向一方側と呼び、伝達機構30Bからモータ20Bへ向かう方向を軸方向他方側と呼ぶ。一対のモータユニット1A,1Bのうち、車両100の左側(+Y側)に位置する一方のモータユニット1Aにおいては、軸方向一方側が+Y側であり、軸方向他方側が-Y側である。車両100の右側(-Y側)に位置する他方のモータユニット1Bにおいては、軸方向一方側が-Y側であり、軸方向他方側が+Y側である。モータ軸J2を中心とする径方向を単に「径方向」と呼ぶ。径方向のうち、モータ軸J2に近づく方向を径方向内側と呼び、モータ軸J2から離れる方向を径方向外側と呼ぶ。モータ軸J2を中心とする周方向、すなわち、モータ軸J2の軸回りを単に「周方向」と呼ぶ。なお、本実施形態において、「平行な方向」は略平行な方向も含み、「直交する方向」は略直交する方向も含む。 モ ー タ The motor shaft J2 appropriately shown in each drawing extends in the Y-axis direction, that is, in the vehicle width direction of the vehicle 100. In the following description, a direction parallel to the motor axis J2 is simply referred to as an "axial direction" unless otherwise specified. In the axial direction, in a motor unit 1A (see FIG. 3 and the like) described later, the direction from the motor 20A to the transmission mechanism 30A is called one axial side, and the direction from the transmission mechanism 30A to the motor 20A is the other axial side. Call. As shown in FIGS. 1 and 2, in the present embodiment, the driving device 10 is provided with a pair of motor units 1A and 1B. Similarly, in the motor unit 1B, the direction from the motor 20B to the transmission mechanism 30B is called one axial side, and the direction from the transmission mechanism 30B to the motor 20B is called the other axial side. Of the pair of motor units 1A and 1B, in one motor unit 1A located on the left side (+ Y side) of the vehicle 100, one axial side is the + Y side, and the other axial side is the -Y side. In the other motor unit 1B located on the right side (−Y side) of the vehicle 100, one side in the axial direction is the −Y side, and the other side in the axial direction is the + Y side. The radial direction about the motor shaft J2 is simply referred to as “radial direction”. Of the radial directions, a direction approaching the motor shaft J2 is referred to as a radial inside, and a direction away from the motor shaft J2 is referred to as a radial outside. The circumferential direction around the motor shaft J2, that is, around the axis of the motor shaft J2 is simply referred to as the “circumferential direction”. In the present embodiment, the “parallel direction” includes a substantially parallel direction, and the “perpendicular direction” includes a substantially perpendicular direction.
 図1に示すように、車両100は、車軸を回転させる動力発生手段として、2つの駆動装置10,101を備える。すなわち、車両100はパワートレインを有し、パワートレインは、2つの駆動装置10,101と、バッテリ(図示省略)と、を備える。本実施形態の車両100は、モータを動力発生手段とする電気自動車(EV)である。駆動装置10,101は、モータの動力により車両100の車軸を回転させる。車両100は、フロント用の駆動装置101と、リア用の駆動装置10と、を備える。 As shown in FIG. 1, the vehicle 100 includes two driving devices 10 and 101 as power generating means for rotating the axle. That is, the vehicle 100 has a power train, and the power train includes two driving devices 10 and 101 and a battery (not shown). The vehicle 100 of the present embodiment is an electric vehicle (EV) using a motor as a power generation unit. The driving devices 10 and 101 rotate the axle of the vehicle 100 by the power of a motor. The vehicle 100 includes a front drive device 101 and a rear drive device 10.
フロント用の駆動装置101は車両100の前側部分に位置する。フロント用の駆動装置101は、フロント左側の車輪およびフロント右側の車輪を駆動する。リア用の駆動装置10は、車両100の後側部分に位置する。リア用の駆動装置10は、一対のリア用のモータユニット1A,1Bを備える。一対のリア用のモータユニット1A,1Bのうち、一方のモータユニット1Aはリア左側の車輪102Aを駆動し、他方のモータユニット1Bはリア右側の車輪102Bを駆動する。すなわち、駆動装置10は複数のモータユニット1A,1Bを備え、本実施形態ではモータユニット1A,1Bの数が2つである。モータユニット1Aは、モータ20Aを1つ有する。モータユニット1Bは、モータ20Bを1つ有する。言い換えると、駆動装置10はモータ20A,20Bを複数備え、本実施形態ではモータの数が2つである。 The front drive device 101 is located at the front side of the vehicle 100. The front drive device 101 drives the front left wheel and the front right wheel. The rear drive device 10 is located at a rear portion of the vehicle 100. The rear drive device 10 includes a pair of rear motor units 1A and 1B. Of the pair of rear motor units 1A and 1B, one motor unit 1A drives the rear left wheel 102A, and the other motor unit 1B drives the rear right wheel 102B. That is, the drive device 10 includes a plurality of motor units 1A and 1B, and in the present embodiment, the number of the motor units 1A and 1B is two. The motor unit 1A has one motor 20A. The motor unit 1B has one motor 20B. In other words, the drive device 10 includes a plurality of motors 20A and 20B, and in the present embodiment, the number of motors is two.
 以下の説明では、一方のモータユニット1Aを、第1のモータユニット1Aと呼ぶ場合がある。第1のモータユニット1Aの各構成要素の名称に、「第1の」を付して呼ぶ場合がある。また、他方のモータユニット1Bを、第2のモータユニット1Bと呼ぶ場合がある。第2のモータユニット1Bの各構成要素の名称に、「第2の」を付して呼ぶ場合がある。 In the following description, one motor unit 1A may be referred to as a first motor unit 1A. The name of each component of the first motor unit 1A may be referred to by adding "first". Further, the other motor unit 1B may be referred to as a second motor unit 1B. The name of each component of the second motor unit 1B may be referred to by adding “second”.
 リア用の駆動装置10は、車両100の車幅方向の略中央部に配置される。駆動装置10の2つのモータユニット1A,1Bは、互いに車幅方向に対向し、車幅方向に並んで配置される。2つのモータユニット1A,1Bは、車両100の車幅方向の中心軸J1を含みモータ軸J2と垂直な仮想の鉛直面VSを中心として、互いに面対称(左右対称)の構造を有する。第1のモータ20Aのモータ軸J2および第2のモータ20Bのモータ軸J2は、車両100の車幅方向に延びる。第1のモータ20Aのモータ軸J2と、第2のモータ20Bのモータ軸J2とは、互いに同軸に配置される。第1のモータ20Aと第2のモータ20Bとは、車両100の車幅方向の中心軸J1を含み車幅方向に垂直な鉛直面VSを中心として、互いに面対称に配置される。本実施形態によれば、鉛直面VSに関して互いに面対称に配置される2つのモータ20A,20Bによって、車両100の左側の車輪102Aと右側の車輪102Bとを、個別に駆動(回転制御)できる。 The rear drive device 10 is disposed substantially at the center of the vehicle 100 in the vehicle width direction. The two motor units 1A and 1B of the drive device 10 are opposed to each other in the vehicle width direction and are arranged side by side in the vehicle width direction. The two motor units 1A and 1B have a plane-symmetric (laterally symmetric) structure with respect to a virtual vertical plane VS including the center axis J1 of the vehicle 100 in the vehicle width direction and perpendicular to the motor axis J2. The motor shaft J2 of the first motor 20A and the motor shaft J2 of the second motor 20B extend in the vehicle width direction of the vehicle 100. The motor shaft J2 of the first motor 20A and the motor shaft J2 of the second motor 20B are coaxially arranged. The first motor 20A and the second motor 20B are arranged symmetrically with respect to each other about a vertical plane VS including the center axis J1 of the vehicle 100 in the vehicle width direction and perpendicular to the vehicle width direction. According to the present embodiment, the left wheel 102A and the right wheel 102B of the vehicle 100 can be individually driven (rotation controlled) by the two motors 20A and 20B arranged symmetrically with respect to the vertical plane VS.
 駆動装置10の一部は、車両100が備えるサブフレーム(図示省略)に支持される。本実施形態ではサブフレームが、駆動装置10のモータユニット1A,1Bおよび後述するインバータケース4を支持する。サブフレームは、例えば、モータユニット1A,1Bに軸方向および前後方向から対向する部分を有する。 一部 A part of the drive device 10 is supported by a subframe (not shown) of the vehicle 100. In the present embodiment, the sub-frame supports the motor units 1A and 1B of the drive device 10 and an inverter case 4 described later. The subframe has, for example, a portion facing the motor units 1A and 1B in the axial direction and the front-back direction.
 図1~図5に示すように、駆動装置10は、複数のモータユニット1A,1Bと、インバータ3と、インバータケース4と、冷媒流路90と、冷媒ポンプ95と、ラジエータ96と、を備える。各モータユニット1A,1Bはそれぞれ、車両100の車軸を回転させる。第1のモータユニット1Aは、第1のハウジング11Aと、第1のモータ20Aと、第1の伝達機構30Aと、第1の電動オイルポンプ61Aと、第1のオイルクーラ65Aと、を備える。第2のモータユニット1Bは、第2のハウジング11Bと、第2のモータ20Bと、第2の伝達機構30Bと、第2の電動オイルポンプ61Bと、第2のオイルクーラ65Bと、を備える。また、各モータユニット1A,1Bはそれぞれ、オイルシール18と、ベアリングホルダ35と、第1ベアリング15と、第2ベアリング16と、第3ベアリング14と、油路40と、機械式オイルポンプ62と、回転センサ80と、温度センサ(図示省略)と、を備える。第1ベアリング15、第2ベアリング16および第3ベアリング14は、例えばボールベアリング等である。駆動装置10は、複数のモータユニット1A,1Bを備えるため、モータユニット1A,1Bが備える構成要素を複数(本実施形態では2つずつ)有する。すなわち、駆動装置10は、複数のハウジング11A,11Bと、複数のモータ20A,20Bと、複数の伝達機構30A,30Bと、複数の電動オイルポンプ61A,61Bと、複数のオイルクーラ65A,65Bと、複数のオイルシール18と、複数のベアリングホルダ35と、複数の第1ベアリング15と、複数の第2ベアリング16と、複数の第3ベアリング14と、複数の油路40と、複数の機械式オイルポンプ62と、複数の回転センサ80と、複数の温度センサと、を備える。 As shown in FIGS. 1 to 5, the driving device 10 includes a plurality of motor units 1A and 1B, an inverter 3, an inverter case 4, a refrigerant flow path 90, a refrigerant pump 95, and a radiator 96. . Each of the motor units 1A and 1B rotates the axle of the vehicle 100. The first motor unit 1A includes a first housing 11A, a first motor 20A, a first transmission mechanism 30A, a first electric oil pump 61A, and a first oil cooler 65A. The second motor unit 1B includes a second housing 11B, a second motor 20B, a second transmission mechanism 30B, a second electric oil pump 61B, and a second oil cooler 65B. Each of the motor units 1A and 1B includes an oil seal 18, a bearing holder 35, a first bearing 15, a second bearing 16, a third bearing 14, an oil passage 40, and a mechanical oil pump 62, respectively. , A rotation sensor 80, and a temperature sensor (not shown). The first bearing 15, the second bearing 16, and the third bearing 14 are, for example, ball bearings. Since the drive device 10 includes a plurality of motor units 1A and 1B, the drive device 10 includes a plurality (two in the present embodiment) of components included in the motor units 1A and 1B. That is, the driving device 10 includes a plurality of housings 11A and 11B, a plurality of motors 20A and 20B, a plurality of transmission mechanisms 30A and 30B, a plurality of electric oil pumps 61A and 61B, and a plurality of oil coolers 65A and 65B. , A plurality of oil seals 18, a plurality of bearing holders 35, a plurality of first bearings 15, a plurality of second bearings 16, a plurality of third bearings 14, a plurality of oil passages 40, a plurality of mechanical An oil pump 62, a plurality of rotation sensors 80, and a plurality of temperature sensors are provided.
なお、第1のモータユニット1Aと第2のモータユニット1Bとは、鉛直面VSに関して互いに面対称とされ、略同じ構造を有する。このため以下の説明では、主として第1のモータユニット1Aの構成要素について説明し、第2のモータユニット1Bの構成要素については説明を省略する場合がある。 Note that the first motor unit 1A and the second motor unit 1B are plane-symmetric with respect to the vertical plane VS, and have substantially the same structure. For this reason, in the following description, the components of the first motor unit 1A will be mainly described, and the description of the components of the second motor unit 1B may be omitted.
 第1のハウジング11Aは、第1のモータ20Aおよび第1の伝達機構30Aを収容する。つまり第1のハウジング11Aは、第1のモータ20Aを収容する。第1のハウジング11Aは、モータ収容部12と、ギア収容部13と、仕切り壁部17と、を有する。モータ収容部12とギア収容部13とは、互いに軸方向に対向し、軸方向に並んで配置される。 The first housing 11A houses the first motor 20A and the first transmission mechanism 30A. That is, the first housing 11A houses the first motor 20A. The first housing 11 </ b> A has a motor housing 12, a gear housing 13, and a partition wall 17. The motor accommodating section 12 and the gear accommodating section 13 face each other in the axial direction and are arranged side by side in the axial direction.
 モータ収容部12は、第1のハウジング11Aのうち、第1のモータ20Aを収容する部分である。モータ収容部12は、軸方向に延びる筒状である。本実施形態ではモータ収容部12が、有底筒状である。モータ収容部12は、軸方向一方側に開口する。モータ収容部12は、周壁部12aと、底壁部12bと、を有する。底壁部12bは、第3ベアリング14を保持する。底壁部12bは、第3ベアリング14を介して、第1のモータ20Aの後述するモータシャフト22をモータ軸J2回りに回転自在に支持する。つまり、第1のハウジング11Aは、第3ベアリング14を介して、モータシャフト22を回転自在に支持する。 The motor housing portion 12 is a portion of the first housing 11A that houses the first motor 20A. The motor accommodating portion 12 has a cylindrical shape extending in the axial direction. In the present embodiment, the motor accommodating portion 12 has a bottomed cylindrical shape. The motor accommodating portion 12 is opened on one side in the axial direction. The motor housing 12 has a peripheral wall 12a and a bottom wall 12b. The bottom wall portion 12b holds the third bearing 14. The bottom wall portion 12b supports a later-described motor shaft 22 of the first motor 20A via the third bearing 14 so as to be rotatable around the motor axis J2. That is, the first housing 11 </ b> A rotatably supports the motor shaft 22 via the third bearing 14.
ギア収容部13は、第1のハウジング11Aのうち、第1の伝達機構30Aを収容する部分である。ギア収容部13は軸方向に延びる筒状である。ギア収容部13は、周壁部13aを有する。周壁部13aは、内部に第1ベアリング15およびオイルシール18を保持する。周壁部13aは、第1ベアリング15を介して、第1の伝達機構30Aの後述する出力シャフト38をモータ軸J2回りに回転自在に支持する。つまり、第1のハウジング11Aは、第1ベアリング15を介して、出力シャフト38を回転自在に支持する。 The gear housing 13 is a part of the first housing 11A that houses the first transmission mechanism 30A. The gear housing 13 has a cylindrical shape extending in the axial direction. The gear housing 13 has a peripheral wall 13a. The peripheral wall portion 13a holds the first bearing 15 and the oil seal 18 inside. The peripheral wall portion 13a supports, via the first bearing 15, an output shaft 38 of the first transmission mechanism 30A described later so as to be rotatable around the motor axis J2. That is, the first housing 11 </ b> A rotatably supports the output shaft 38 via the first bearing 15.
 仕切り壁部17は、モータ軸J2を中心とする環状である。仕切り壁部17は、モータ軸J2に垂直な方向に広がる板状である。仕切り壁部17の板面は、軸方向を向く。本実施形態では、仕切り壁部17が、モータ軸J2を中心とする円環板状である。仕切り壁部17は、ギア収容部13内に配置される。仕切り壁部17は、第2ベアリング16よりも軸方向一方側に位置する。仕切り壁部17は、第1ベアリング15よりも軸方向他方側に位置する。仕切り壁部17の外周部は、周壁部13aの内周面に固定される。仕切り壁部17は、後述する貯油部50のモータ貯油部50aとギア貯油部50bとを軸方向に仕切る。仕切り壁部17によって貯油部50は、モータ貯油部50aとギア貯油部50bとに区画される。 The partition wall portion 17 is annular with the motor shaft J2 as the center. The partition wall portion 17 has a plate shape extending in a direction perpendicular to the motor axis J2. The plate surface of the partition wall portion 17 faces in the axial direction. In the present embodiment, the partition wall portion 17 has an annular plate shape centered on the motor shaft J2. The partition wall part 17 is arranged in the gear housing part 13. The partition wall portion 17 is located on one axial side with respect to the second bearing 16. The partition wall portion 17 is located on the other axial side than the first bearing 15. The outer peripheral portion of the partition wall portion 17 is fixed to the inner peripheral surface of the peripheral wall portion 13a. The partition wall part 17 partitions the motor oil storage part 50a and the gear oil storage part 50b of the oil storage part 50 mentioned later in the axial direction. The oil storage unit 50 is partitioned by the partition wall 17 into a motor oil storage unit 50a and a gear oil storage unit 50b.
仕切り壁部17の内周部は、第1の伝達機構30Aの後述するインターナルギア34の外周部と接続される。仕切り壁部17の内周部は、インターナルギア34の外周面のうち軸方向一方側の端部と接続される。仕切り壁部17は、仕切り壁部17を軸方向に貫通するオイル流通孔17aを有する。オイル流通孔17aは、仕切り壁部17のうち少なくとも下側の部分に配置される。オイル流通孔17aは、仕切り壁部17に1つのみ設けられてもよく、複数設けられてもよい。オイル流通孔17aのモータ軸J2に垂直な断面の形状は、例えば円形状および多角形状等である。オイル流通孔17aは、後述するモータ貯油部50aとギア貯油部50bとを繋ぐ。オイル流通孔17aを通して、モータ貯油部50aとギア貯油部50bとが互いに連通する。 An inner peripheral portion of the partition wall portion 17 is connected to an outer peripheral portion of an internal gear 34 of the first transmission mechanism 30A described later. The inner peripheral portion of the partition wall portion 17 is connected to one axial end of the outer peripheral surface of the internal gear 34. The partition wall portion 17 has an oil flow hole 17a penetrating the partition wall portion 17 in the axial direction. The oil flow hole 17a is arranged at least in a lower portion of the partition wall portion 17. Only one oil flow hole 17a may be provided in the partition wall portion 17, or a plurality of oil flow holes may be provided. The cross-sectional shape of the oil flow hole 17a perpendicular to the motor axis J2 is, for example, a circular shape or a polygonal shape. The oil circulation hole 17a connects a motor oil storage unit 50a and a gear oil storage unit 50b described later. The motor oil storage unit 50a and the gear oil storage unit 50b communicate with each other through the oil circulation hole 17a.
 第2のハウジング11Bは、第2のモータ20Bおよび第2の伝達機構30Bを収容する。つまり第2のハウジング11Bは、第2のモータ20Bを収容する。特に図示しないが、第2のハウジング11Bの構造は、第1のハウジング11Aの構造と鉛直面VSに関して面対称であり、よって詳細な説明は省略する。 The second housing 11B houses the second motor 20B and the second transmission mechanism 30B. That is, the second housing 11B houses the second motor 20B. Although not particularly shown, the structure of the second housing 11B is plane-symmetric with respect to the vertical plane VS with the structure of the first housing 11A, and therefore detailed description is omitted.
 第1のモータ20Aは、車両100の車軸を回転させるトルクを出力する。第1のモータ20Aのトルクは、第1の伝達機構30Aを介して車軸に伝達される。第1のモータ20Aは、車両100に設けられる複数の車輪のうち、第1の車輪102Aを駆動する。本実施形態では、第1の車輪102Aが、車両100のリア左側の車輪である。第1のモータ20Aは、インバータ3および制御基板(図示省略)と電気的に接続される。第1のモータ20Aは、ロータ21と、ステータ26と、を有する。ロータ21は、モータシャフト22と、ロータホルダ23と、ロータコア24と、ロータマグネット25と、を有する。つまり第1のモータ20Aは、モータシャフト22を有する。 The first motor 20A outputs a torque for rotating the axle of the vehicle 100. The torque of the first motor 20A is transmitted to the axle via the first transmission mechanism 30A. The first motor 20A drives a first wheel 102A among a plurality of wheels provided in the vehicle 100. In the present embodiment, the first wheel 102 </ b> A is a rear left wheel of the vehicle 100. The first motor 20A is electrically connected to the inverter 3 and a control board (not shown). The first motor 20A has a rotor 21 and a stator 26. The rotor 21 has a motor shaft 22, a rotor holder 23, a rotor core 24, and a rotor magnet 25. That is, the first motor 20A has the motor shaft 22.
 モータシャフト22は、モータ軸J2を中心として軸方向に延びる。モータシャフト22は、筒状である。モータシャフト22は、軸方向両側に開口する中空のシャフトである。モータシャフト22は、モータ軸J2を中心として回転する。モータシャフト22は、第2ベアリング16および第3ベアリング14によりモータ軸J2回りに回転自在に支持される。第2ベアリング16は、モータシャフト22の軸方向一方側の部分を支持する。第3ベアリング14は、モータシャフト22の軸方向他方側の端部を支持する。 The motor shaft 22 extends in the axial direction about the motor shaft J2. The motor shaft 22 is cylindrical. The motor shaft 22 is a hollow shaft that opens on both sides in the axial direction. The motor shaft 22 rotates around a motor axis J2. The motor shaft 22 is rotatably supported around the motor axis J2 by the second bearing 16 and the third bearing 14. The second bearing 16 supports a portion on one axial side of the motor shaft 22. The third bearing 14 supports the other axial end of the motor shaft 22.
 モータシャフト22は、凹部22aを有する。凹部22aは、モータシャフト22の軸方向一方側の端面に開口し、この端面から軸方向他方側に窪む。凹部22aは、軸方向に延びる穴状である。凹部22a内には、第1の伝達機構30Aの後述する連結シャフト31が嵌合する。モータシャフト22のうち、凹部22aよりも軸方向他方側に位置する部分の内径は、凹部22aの内径に比べて小さい。本実施形態では、モータシャフト22の内周面のうち、最も内径が大きい部分が凹部22aである。 The motor shaft 22 has a concave portion 22a. The concave portion 22a opens on one end surface in the axial direction of the motor shaft 22, and is recessed from this end surface on the other axial side. The recess 22a is a hole extending in the axial direction. A coupling shaft 31 of the first transmission mechanism 30A described later fits into the recess 22a. The inner diameter of a portion of the motor shaft 22 located on the other side in the axial direction than the concave portion 22a is smaller than the inner diameter of the concave portion 22a. In the present embodiment, a portion having the largest inner diameter of the inner peripheral surface of the motor shaft 22 is the concave portion 22a.
 ロータホルダ23は、モータシャフト22に固定される。ロータホルダ23は、モータシャフト22の径方向外側に位置する部分を有する。ロータホルダ23は、ロータコア24およびロータマグネット25を保持する。ロータホルダ23は、有底筒状である。ロータホルダ23は、軸方向一方側に開口する。ロータホルダ23は、底部23aと、筒部23bと、センサ支持部23cと、を有する。 The rotor holder 23 is fixed to the motor shaft 22. The rotor holder 23 has a portion located radially outside the motor shaft 22. The rotor holder 23 holds the rotor core 24 and the rotor magnet 25. The rotor holder 23 has a bottomed cylindrical shape. The rotor holder 23 opens on one side in the axial direction. The rotor holder 23 has a bottom part 23a, a cylindrical part 23b, and a sensor support part 23c.
 底部23aは、モータ軸J2を中心として周方向に延びる環状である。本実施形態では、底部23aが、モータ軸J2に対して垂直に広がる板状であり、板面が軸方向を向く。底部23aは、円環板状である。底部23aの内周部は、モータシャフト22の外周部と固定される。底部23aの軸方向位置は、第3ベアリング14の軸方向位置よりも軸方向一方側であり、第2ベアリング16の軸方向位置よりも軸方向他方側である。 The bottom portion 23a has an annular shape extending in the circumferential direction around the motor shaft J2. In the present embodiment, the bottom portion 23a has a plate shape that extends perpendicular to the motor shaft J2, and the plate surface faces in the axial direction. The bottom portion 23a is in the shape of an annular plate. The inner peripheral portion of the bottom portion 23a is fixed to the outer peripheral portion of the motor shaft 22. The axial position of the bottom portion 23a is one axial side of the axial position of the third bearing 14 and the other axial side of the axial position of the second bearing 16.
筒部23bは軸方向に延びる。筒部23bは、モータ軸J2を中心とする円筒状である。筒部23bの内周面と、モータシャフト22の外周面との間には、空間が設けられる。筒部23bの内周面のうち、軸方向他方側の端部は、底部23aの外周部と接続される。筒部23bの内径は、底部23aと接続される部分から軸方向一方側に向かうにしたがい大きくなる。筒部23bの内周面は、軸方向一方側に向かうにしたがい内径が大きくなるテーパ面状の部分を有する。径方向から見て、筒部23bの軸方向一方側の端部と、第2ベアリング16とは、重なって配置される。径方向から見て、筒部23bの軸方向他方側の端部と、第3ベアリング14とは、重なって配置される。 The cylindrical portion 23b extends in the axial direction. The cylindrical portion 23b has a cylindrical shape centered on the motor shaft J2. A space is provided between the inner peripheral surface of the cylindrical portion 23b and the outer peripheral surface of the motor shaft 22. The other end in the axial direction of the inner peripheral surface of the cylindrical portion 23b is connected to the outer peripheral portion of the bottom portion 23a. The inner diameter of the cylindrical portion 23b increases as it goes from the portion connected to the bottom portion 23a to one side in the axial direction. The inner peripheral surface of the cylindrical portion 23b has a tapered surface-like portion whose inner diameter increases toward one side in the axial direction. When viewed from the radial direction, the end on one axial side of the cylindrical portion 23b and the second bearing 16 are arranged so as to overlap. When viewed from the radial direction, the end on the other axial side of the cylindrical portion 23b and the third bearing 14 are arranged so as to overlap.
 センサ支持部23cは、底部23aの軸方向他方側を向く板面から軸方向他方側に突出する。センサ支持部23cは、モータ軸J2を中心として軸方向に延びる筒状である。センサ支持部23cは、筒部23bの軸方向他方側の端部よりも軸方向他方側に突出する部分を有する。センサ支持部23cの軸方向他方側の端部には、回転センサ80の後述するレゾルバロータ80aが固定される。 The sensor support 23c protrudes from the plate surface facing the other side in the axial direction of the bottom 23a to the other side in the axial direction. The sensor support portion 23c has a cylindrical shape extending in the axial direction about the motor shaft J2. The sensor support portion 23c has a portion projecting to the other axial side from the other axial end of the cylindrical portion 23b. A resolver rotor 80a, which will be described later, of the rotation sensor 80 is fixed to the other axial end of the sensor support 23c.
 ロータコア24は、筒部23bの外周面に固定される。ロータコア24は、モータ軸J2を中心として周方向に延びる環状である。本実施形態では、ロータコア24が、軸方向に延びる筒状である。ロータコア24は、例えば、複数の電磁鋼板が軸方向に積層されて構成される積層鋼板である。ロータコア24は、ロータコア24の径方向外端部に、ロータコア24を軸方向に貫通する保持孔24aを有する。保持孔24aは、ロータコア24の径方向外端部に、周方向に互いに間隔をあけて複数配置される。複数の保持孔24aの内部には、ロータマグネット25がそれぞれ保持される。複数のロータマグネット25は、ロータコア24の径方向外端部において周方向に配列する。ロータマグネット25は、ロータコア24の径方向外端部に固定される。なお、ロータマグネット25は、円環状のリングマグネットから構成されていてもよい。 The rotor core 24 is fixed to the outer peripheral surface of the cylindrical portion 23b. The rotor core 24 has an annular shape extending in the circumferential direction around the motor shaft J2. In the present embodiment, the rotor core 24 has a cylindrical shape extending in the axial direction. The rotor core 24 is, for example, a laminated steel sheet formed by laminating a plurality of electromagnetic steel sheets in the axial direction. The rotor core 24 has a holding hole 24 a at the radially outer end of the rotor core 24, which penetrates the rotor core 24 in the axial direction. The plurality of holding holes 24a are arranged at the radially outer end of the rotor core 24 at intervals in the circumferential direction. The rotor magnets 25 are respectively held in the plurality of holding holes 24a. The plurality of rotor magnets 25 are circumferentially arranged at the radially outer end of the rotor core 24. The rotor magnet 25 is fixed to a radially outer end of the rotor core 24. Note that the rotor magnet 25 may be formed of an annular ring magnet.
 ステータ26は、ロータ21と径方向に隙間をあけて対向する。ステータ26は、ロータ21の径方向外側に位置する。ステータ26は、ステータコア27と、インシュレータ(図示省略)と、複数のコイル28と、を有する。ステータコア27は、モータ軸J2を中心として周方向に延びる環状である。本実施形態では、ステータコア27が、軸方向に延びる筒状である。ステータコア27は、モータ収容部12の内周面に固定される。ステータコア27の内周部は、ロータコア24の外周部と径方向に隙間をあけて対向する。ステータコア27は、例えば、複数の電磁鋼板が軸方向に積層されて構成される積層鋼板である。インシュレータの材料は、例えば樹脂などの絶縁材料である。複数のコイル28は、インシュレータを介してステータコア27に取り付けられる。ステータ26の下側の端部は、油路40の後述する貯油部50に配置される。 The stator 26 faces the rotor 21 with a gap in the radial direction. The stator 26 is located radially outside the rotor 21. The stator 26 has a stator core 27, an insulator (not shown), and a plurality of coils 28. Stator core 27 is an annular shape extending in the circumferential direction around motor axis J2. In the present embodiment, the stator core 27 has a cylindrical shape extending in the axial direction. Stator core 27 is fixed to the inner peripheral surface of motor housing 12. The inner peripheral portion of the stator core 27 faces the outer peripheral portion of the rotor core 24 with a gap in the radial direction. Stator core 27 is, for example, a laminated steel sheet formed by laminating a plurality of electromagnetic steel sheets in the axial direction. The material of the insulator is, for example, an insulating material such as a resin. The plurality of coils 28 are attached to the stator core 27 via insulators. The lower end of the stator 26 is disposed in an oil storage section 50 of the oil passage 40, which will be described later.
 第2のモータ20Bは、車両100の車軸を回転させるトルクを出力する。第2のモータ20Bのトルクは、第2の伝達機構30Bを介して車軸に伝達される。第2のモータ20Bは、車両100に設けられる複数の車輪のうち、第2の車輪102Bを駆動する。本実施形態では、第2の車輪102Bが、車両100のリア右側の車輪である。第2のモータ20Bは、インバータ3および制御基板(図示省略)と電気的に接続される。特に図示しないが、第2のモータ20Bの構造は、第1のモータ20Aの構造と鉛直面VSに関して面対称であり、よって詳細な説明は省略する。 The second motor 20B outputs a torque for rotating the axle of the vehicle 100. The torque of the second motor 20B is transmitted to the axle via the second transmission mechanism 30B. The second motor 20B drives a second wheel 102B among a plurality of wheels provided in the vehicle 100. In the present embodiment, the second wheel 102B is a wheel on the rear right side of the vehicle 100. Second motor 20B is electrically connected to inverter 3 and a control board (not shown). Although not particularly shown, the structure of the second motor 20B is plane-symmetric with respect to the vertical plane VS with the structure of the first motor 20A, and thus detailed description is omitted.
 第1の伝達機構30Aは、モータシャフト22に接続され、第1のモータ20Aの動力を出力シャフト38に伝達する。第1の伝達機構30Aは、モータシャフト22の軸方向一方側の端部に接続される。つまり第1の伝達機構30Aは、モータシャフト22の軸方向の端部に接続される。第1の伝達機構30Aは、第1のモータ20Aの回転を減速してトルクを高め、出力シャフト38の出力軸J4回りの回転として出力する。第1の伝達機構30Aは減速機構であり、本実施形態では、遊星歯車機構である。出力シャフト38の出力軸J4は、モータ軸J2と同軸に配置される。本実施形態によれば、第1のモータユニット1Aを小型化でき、駆動装置10を小型化できる。 The first transmission mechanism 30A is connected to the motor shaft 22 and transmits the power of the first motor 20A to the output shaft 38. The first transmission mechanism 30A is connected to one end of the motor shaft 22 in the axial direction. That is, the first transmission mechanism 30A is connected to the axial end of the motor shaft 22. The first transmission mechanism 30A decelerates the rotation of the first motor 20A to increase the torque, and outputs the torque as rotation around the output shaft J4 of the output shaft 38. The first transmission mechanism 30A is a reduction mechanism, and in this embodiment, is a planetary gear mechanism. The output shaft J4 of the output shaft 38 is arranged coaxially with the motor shaft J2. According to the present embodiment, the first motor unit 1A can be reduced in size, and the drive device 10 can be reduced in size.
 第1の伝達機構30Aは、連結シャフト31と、サンギア32と、プラネタリギア33と、インターナルギア34と、キャリアピン36と、キャリア37と、出力シャフト38と、複数のベアリング39a,39bと、を有する。ベアリング39a,39bは、例えばニードルローラベアリング等である。ベアリング39aは、第4ベアリング39aと言い換えてもよい。ベアリング39bは、第5ベアリング39bと言い換えてもよい。 The first transmission mechanism 30A includes a connection shaft 31, a sun gear 32, a planetary gear 33, an internal gear 34, a carrier pin 36, a carrier 37, an output shaft 38, and a plurality of bearings 39a and 39b. Have. The bearings 39a and 39b are, for example, needle roller bearings. The bearing 39a may be referred to as a fourth bearing 39a. The bearing 39b may be referred to as a fifth bearing 39b.
 連結シャフト31は、モータ軸J2を中心として軸方向に延びる。連結シャフト31は、筒状である。連結シャフト31は、軸方向両側に開口する中空のシャフトである。連結シャフト31は、モータシャフト22に連結される。連結シャフト31の軸方向他方側の端部が、モータシャフト22の軸方向一方側の端部に接続される。モータシャフト22の内部と連結シャフト31の内部とは、互いに連通する。連結シャフト31の軸方向一方側の端部は、ベアリング39aを介して、出力シャフト38によりモータ軸J2回りに回転自在に支持される。すなわち、連結シャフト31と出力シャフト38とは、ベアリング39aを介して周方向に相互に回転自在である。 The connection shaft 31 extends in the axial direction around the motor shaft J2. The connection shaft 31 is cylindrical. The connection shaft 31 is a hollow shaft that opens on both sides in the axial direction. The connection shaft 31 is connected to the motor shaft 22. The other axial end of the connecting shaft 31 is connected to the axial one end of the motor shaft 22. The inside of the motor shaft 22 and the inside of the connection shaft 31 communicate with each other. One end in the axial direction of the connection shaft 31 is rotatably supported around the motor shaft J2 by the output shaft 38 via a bearing 39a. That is, the connection shaft 31 and the output shaft 38 are mutually rotatable in the circumferential direction via the bearing 39a.
 連結シャフト31は、軸方向他方側の端部が凹部22a内に挿入される。連結シャフト31は、軸方向他方側の端部が凹部22a内に嵌合する。本実施形態では、連結シャフト31の外周面における軸方向他方側の端部のうち軸方向一方側に位置する部分と、凹部22aの内周面のうち軸方向一方側に位置する部分とが、周方向に相互に回転不能に嵌合する。すなわち、連結シャフト31とモータシャフト22とは、周方向に相互に回転不能である。 The connection shaft 31 has the other axial end inserted into the recess 22a. The other end in the axial direction of the connection shaft 31 is fitted into the recess 22a. In the present embodiment, a portion located on one axial side of the other end in the axial direction on the outer peripheral surface of the connection shaft 31 and a portion located on one axial side of the inner peripheral surface of the concave portion 22a include: They are fitted so that they cannot rotate with each other in the circumferential direction. That is, the connecting shaft 31 and the motor shaft 22 cannot rotate with each other in the circumferential direction.
 本実施形態において、連結シャフト31は、軸方向他方側の端部が凹部22aに対して軸方向に移動自在に嵌合する。具体的に、連結シャフト31の軸方向他方側の端部は、凹部22a内にスプライン嵌合する。このため連結シャフト31は、モータシャフト22に対して、軸方向に移動可能である。連結シャフト31の軸方向他方側を向く端面は、凹部22aの軸方向一方側を向く底面に接触し、または隙間をあけて対向する。図示の例では、モータシャフト22の内周面の内径と、連結シャフト31の内周面の内径とが、略同じである。 In the present embodiment, the other end of the connecting shaft 31 on the other side in the axial direction is fitted to the concave portion 22a so as to be movable in the axial direction. Specifically, the other axial end of the connection shaft 31 is spline-fitted into the recess 22a. Therefore, the connection shaft 31 is movable in the axial direction with respect to the motor shaft 22. The end face of the connection shaft 31 facing the other side in the axial direction is in contact with the bottom face facing the one side in the axial direction of the concave portion 22a, or faces the clearance 22 with a gap. In the illustrated example, the inner diameter of the inner peripheral surface of the motor shaft 22 and the inner diameter of the inner peripheral surface of the connection shaft 31 are substantially the same.
 サンギア32は、連結シャフト31に設けられる。サンギア32は、モータ軸J2を中心軸とする外歯ギアである。サンギア32は、凹部22aよりも軸方向一方側に位置する。サンギア32は、連結シャフト31の外周部のうち、軸方向一方側の端部と軸方向他方側の端部との間に位置する中間部分に配置される。本実施形態では、連結シャフト31とサンギア32とが、単一の部材の部分である。サンギア32は、はす歯ギアである。すなわち、サンギア32のギアの歯すじは、軸方向に向かうにしたがいモータ軸J2回りに向けて延びる。径方向から見て、サンギア32のギアの歯すじは、モータ軸J2に対して傾斜して延びる。 The sun gear 32 is provided on the connection shaft 31. The sun gear 32 is an external gear having the motor axis J2 as a central axis. The sun gear 32 is located on one side in the axial direction from the concave portion 22a. The sun gear 32 is disposed at an intermediate portion of the outer peripheral portion of the connection shaft 31 located between one end in the axial direction and the other end in the axial direction. In the present embodiment, the connection shaft 31 and the sun gear 32 are portions of a single member. The sun gear 32 is a helical gear. That is, the tooth traces of the gear of the sun gear 32 extend around the motor axis J2 in the axial direction. When viewed from the radial direction, the gear teeth of the sun gear 32 extend obliquely with respect to the motor axis J2.
 プラネタリギア33は、サンギア32の径方向外側に配置され、サンギア32と噛み合う。プラネタリギア33は、サンギア32の径方向外側に、周方向に互いに間隔をあけて複数設けられる。すなわち、第1の伝達機構30Aは、複数のプラネタリギア33を有する。本実施形態では、第1の伝達機構30Aが、周方向に互いに等間隔をあけて配置される3つのプラネタリギア33を有する。ただし、第1の伝達機構30Aが有するプラネタリギア33の数は、3つに限らない。 The planetary gear 33 is disposed radially outside the sun gear 32 and meshes with the sun gear 32. A plurality of planetary gears 33 are provided radially outside the sun gear 32 at intervals in the circumferential direction. That is, the first transmission mechanism 30 </ b> A has a plurality of planetary gears 33. In the present embodiment, the first transmission mechanism 30A has three planetary gears 33 arranged at equal intervals in the circumferential direction. However, the number of the planetary gears 33 included in the first transmission mechanism 30A is not limited to three.
 プラネタリギア33は、回転軸J3を中心とする環状である。プラネタリギア33は、回転軸J3を中心軸とする外歯ギアである。回転軸J3は、モータ軸J2の径方向外側に位置して、モータ軸J2と平行に延びる。回転軸J3は、キャリアピン36の中心軸でもある。本実施形態では、プラネタリギア33が、軸方向に延びる筒状である。プラネタリギア33は、回転軸J3を中心として回転する。つまりプラネタリギア33は、回転軸J3回りに自転する。プラネタリギア33は、モータ軸J2を中心として回転する。つまりプラネタリギア33は、モータ軸J2回りに公転する。プラネタリギア33は、サンギア32の周囲を自転しつつ公転する。 The planetary gear 33 is annular with the rotation axis J3 as the center. The planetary gear 33 is an external gear having the rotation axis J3 as a central axis. The rotation shaft J3 is located radially outside the motor shaft J2 and extends in parallel with the motor shaft J2. The rotation axis J3 is also the center axis of the carrier pin 36. In the present embodiment, the planetary gear 33 has a cylindrical shape extending in the axial direction. The planetary gear 33 rotates around the rotation axis J3. That is, the planetary gear 33 rotates around the rotation axis J3. The planetary gear 33 rotates around the motor shaft J2. That is, the planetary gear 33 revolves around the motor axis J2. The planetary gear 33 revolves around the sun gear 32 while rotating.
 プラネタリギア33は、第1ギア部33aと、第2ギア部33bと、を有する。第1ギア部33aの直径(外径)は、第2ギア部33bの直径よりも大きい。第1ギア部33aは、大径ギア部33aと言い換えてもよい。すなわち本実施形態では、プラネタリギア33が、段付きピニオンタイプである。したがって、第1の伝達機構30Aにより、第1のモータ20Aの回転の減速比がより高められる。第1ギア部33aは、インターナルギア34よりも径方向外側に位置する部分を有する。第1ギア部33aは、ギア収容部13の周壁部13aの内周面に、径方向内側から隙間をあけて対向する部分を有する。第1ギア部33aは、仕切り壁部17よりも軸方向一方側に配置される。第1ギア部33aは、仕切り壁部17に軸方向一方側から対向する。 The planetary gear 33 has a first gear part 33a and a second gear part 33b. The diameter (outer diameter) of the first gear portion 33a is larger than the diameter of the second gear portion 33b. The first gear portion 33a may be referred to as a large-diameter gear portion 33a. That is, in this embodiment, the planetary gear 33 is a stepped pinion type. Therefore, the reduction ratio of the rotation of the first motor 20A is further increased by the first transmission mechanism 30A. The first gear portion 33a has a portion located radially outside the internal gear 34. The first gear portion 33a has a portion facing the inner peripheral surface of the peripheral wall portion 13a of the gear housing portion 13 with a gap from the inside in the radial direction. The first gear portion 33a is disposed on one axial side with respect to the partition wall portion 17. The first gear portion 33a faces the partition wall portion 17 from one side in the axial direction.
 第1ギア部33aは、回転軸J3を中心とする筒状である。径方向から見て、第1ギア部33aとサンギア32とは、互いに重なって配置される。第1ギア部33aは、サンギア32と噛み合う。第1ギア部33aの直径は、サンギア32の直径よりも大きい。第1ギア部33aは、はす歯ギアである。すなわち、第1ギア部33aのギアの歯すじは、軸方向に向かうにしたがい回転軸J3回りに向けて延びる。回転軸J3に直交する方向から見て、第1ギア部33aのギアの歯すじは、回転軸J3に対して傾斜して延びる。 The first gear portion 33a is cylindrical with the rotation axis J3 as the center. When viewed from the radial direction, the first gear portion 33a and the sun gear 32 are arranged so as to overlap with each other. The first gear portion 33a meshes with the sun gear 32. The diameter of the first gear portion 33a is larger than the diameter of the sun gear 32. The first gear portion 33a is a helical gear. That is, the tooth trace of the gear of the first gear portion 33a extends toward the rotation axis J3 in the axial direction. When viewed from a direction orthogonal to the rotation axis J3, the tooth trace of the gear of the first gear portion 33a extends obliquely with respect to the rotation axis J3.
 第2ギア部33bの直径(外径)は、第1ギア部33aの直径よりも小さい。第2ギア部33bは、小径ギア部33bと言い換えてもよい。第2ギア部33bは、回転軸J3を中心とする筒状である。第2ギア部33bは、インターナルギア34と噛み合う。第2ギア部33bは、はす歯ギアである。すなわち、第2ギア部33bのギアの歯すじは、軸方向に向かうにしたがい回転軸J3回りに向けて延びる。回転軸J3に直交する方向から見て、第2ギア部33bのギアの歯すじは、回転軸J3に対して傾斜して延びる。 直径 The diameter (outer diameter) of the second gear portion 33b is smaller than the diameter of the first gear portion 33a. The second gear portion 33b may be referred to as a small-diameter gear portion 33b. The second gear portion 33b has a cylindrical shape centered on the rotation axis J3. The second gear portion 33b meshes with the internal gear. The second gear portion 33b is a helical gear. That is, the tooth trace of the gear of the second gear portion 33b extends around the rotation axis J3 as going in the axial direction. When viewed from a direction perpendicular to the rotation axis J3, the tooth trace of the gear of the second gear portion 33b extends obliquely with respect to the rotation axis J3.
 詳しくは、第2ギア部33bは、噛合部33cと、嵌合部33dと、を有する。噛合部33cと嵌合部33dとは、互いに軸方向に並んで配置される。径方向から見て、噛合部33cとインターナルギア34とは、互いに重なって配置される。噛合部33cは、第2ギア部33bにおいてインターナルギア34と噛み合う部分である。つまり第2ギア部33bのギアは、噛合部33cの外周に設けられる。噛合部33cは、嵌合部33dよりも軸方向他方側に位置する。噛合部33cの直径は、第1ギア部33aの直径よりも小さい。本実施形態の例では、噛合部33cの軸方向の長さが、第1ギア部33aの軸方向の長さよりも大きい。径方向から見て、噛合部33cは、モータシャフト22の軸方向一方側の端部、凹部22aおよび連結シャフト31の軸方向他方側の端部と、重なって配置される。 Specifically, the second gear portion 33b has a meshing portion 33c and a fitting portion 33d. The meshing portion 33c and the fitting portion 33d are arranged side by side in the axial direction. When viewed from the radial direction, the meshing portion 33c and the internal gear 34 are arranged so as to overlap with each other. The meshing portion 33c is a portion that meshes with the internal gear 34 in the second gear portion 33b. That is, the gear of the second gear portion 33b is provided on the outer periphery of the meshing portion 33c. The meshing portion 33c is located on the other axial side than the fitting portion 33d. The diameter of the meshing portion 33c is smaller than the diameter of the first gear portion 33a. In the example of the present embodiment, the axial length of the meshing portion 33c is larger than the axial length of the first gear portion 33a. When viewed from the radial direction, the meshing portion 33c is disposed so as to overlap with one axial end of the motor shaft 22, the concave portion 22a, and the axial other end of the connection shaft 31.
 嵌合部33dは、第2ギア部33bにおいて第1ギア部33aと嵌合する部分である。本実施形態では、第1ギア部33aの内周部が、嵌合部33dの外周部に対して、軸方向に移動自在に嵌合する。すなわち、第1ギア部33aは、第2ギア部33bに対して軸方向に移動自在に嵌合する部分を有する。具体的に、第1ギア部33aの内周部は、嵌合部33dの外周部に対して、スプライン嵌合する。このため第1ギア部33aは、第2ギア部33bに対して、軸方向に移動可能である。 The fitting portion 33d is a portion of the second gear portion 33b that fits with the first gear portion 33a. In the present embodiment, the inner peripheral portion of the first gear portion 33a is fitted movably in the axial direction with the outer peripheral portion of the fitting portion 33d. That is, the first gear portion 33a has a portion that is movably fitted in the second gear portion 33b in the axial direction. Specifically, the inner peripheral portion of the first gear portion 33a is spline-fitted to the outer peripheral portion of the fitting portion 33d. Therefore, the first gear portion 33a is movable in the axial direction with respect to the second gear portion 33b.
 本実施形態では、上述のように連結シャフト31の軸方向他方側の端部が、凹部22a内にスプライン嵌合する。また、プラネタリギア33の第1ギア部33aが、第2ギア部33bとスプライン嵌合する。このため、第1のモータユニット1Aの製造時において、プラネタリギア33の第1ギア部33aと、連結シャフト31のサンギア32とを噛み合わせた状態としてアセンブリを組み、このアセンブリをモータシャフト22および第2ギア部33bに取り付けることができる。 In the present embodiment, the other end in the axial direction of the connection shaft 31 is spline-fitted into the recess 22a as described above. Further, the first gear portion 33a of the planetary gear 33 is spline-fitted with the second gear portion 33b. For this reason, when manufacturing the first motor unit 1A, the assembly is assembled with the first gear portion 33a of the planetary gear 33 and the sun gear 32 of the connection shaft 31 engaged with each other. It can be attached to the two gear portion 33b.
 インターナルギア34は、モータ軸J2を中心とする環状である。インターナルギア34は、モータ軸J2を中心軸とする内歯ギアである。インターナルギア34は、軸方向に延びる筒状である。インターナルギア34は、プラネタリギア33の径方向外側に配置され、プラネタリギア33と噛み合う。本実施形態では、インターナルギア34が、第2ギア部33bの噛合部33cの径方向外側に配置されて、噛合部33cと噛み合う。インターナルギア34は、はす歯ギアである。すなわち、インターナルギア34のギアの歯すじは、軸方向に向かうにしたがいモータ軸J2回りに向けて延びる。径方向から見て、インターナルギア34のギアの歯すじは、モータ軸J2に対して傾斜して延びる。 The internal gear 34 is annular with the motor shaft J2 as the center. The internal gear 34 is an internal gear having the motor shaft J2 as a central axis. The internal gear 34 has a cylindrical shape extending in the axial direction. The internal gear 34 is arranged radially outside the planetary gear 33 and meshes with the planetary gear 33. In the present embodiment, the internal gear 34 is arranged radially outside the meshing portion 33c of the second gear portion 33b and meshes with the meshing portion 33c. The internal gear 34 is a helical gear. That is, the tooth trace of the gear of the internal gear 34 extends toward the periphery of the motor axis J2 in the axial direction. When viewed from the radial direction, the gear teeth of the internal gear 34 extend obliquely with respect to the motor axis J2.
 インターナルギア34は、第1のハウジング11Aに固定される。インターナルギア34は、仕切り壁部17に接続される。インターナルギア34は、仕切り壁部17の内周部に設けられる。詳しくは、インターナルギア34の外周部のうち軸方向一方側の端部が、仕切り壁部17の内周部と接続される。本実施形態では、仕切り壁部17とインターナルギア34とが、単一の部材の部分である。 The internal gear 34 is fixed to the first housing 11A. The internal gear 34 is connected to the partition wall 17. The internal gear 34 is provided on an inner peripheral portion of the partition wall 17. Specifically, one end in the axial direction of the outer peripheral portion of the internal gear 34 is connected to the inner peripheral portion of the partition wall portion 17. In the present embodiment, the partition wall portion 17 and the internal gear 34 are portions of a single member.
 キャリアピン36は、サンギア32および連結シャフト31の径方向外側に配置される。キャリアピン36は、サンギア32の径方向外側に、周方向に互いに間隔をあけて複数設けられる。すなわち、第1の伝達機構30Aは、複数のキャリアピン36を有する。本実施形態では、第1の伝達機構30Aが、周方向に互いに等間隔をあけて配置される3つのキャリアピン36を有する。 The carrier pin 36 is disposed radially outside the sun gear 32 and the connection shaft 31. A plurality of carrier pins 36 are provided radially outside the sun gear 32 at intervals in the circumferential direction. That is, the first transmission mechanism 30A has a plurality of carrier pins 36. In the present embodiment, the first transmission mechanism 30A has three carrier pins 36 arranged at equal intervals in the circumferential direction.
 キャリアピン36は、回転軸J3を中心として軸方向に延びる筒状である。キャリアピン36は、軸方向両側に開口する中空のピンである。キャリアピン36は、プラネタリギア33の内部に挿入される。キャリアピン36は、プラネタリギア33内を軸方向に延びる。キャリアピン36は、プラネタリギア33を、ベアリング39bを介して回転自在に支持する。つまりキャリアピン36は、プラネタリギア33を回転自在に支持する。キャリアピン36に対してプラネタリギア33は、回転軸J3回りに回転自在である。キャリアピン36は、ベアリング39bを介して、第2ギア部33bを回転自在に支持する。本実施形態では、キャリアピン36と第2ギア部33bとの間に、複数のベアリング39bが軸方向に並んで配置される。 The carrier pin 36 has a cylindrical shape extending in the axial direction about the rotation axis J3. The carrier pin 36 is a hollow pin that opens on both sides in the axial direction. The carrier pin 36 is inserted inside the planetary gear 33. The carrier pin 36 extends in the planetary gear 33 in the axial direction. The carrier pin 36 rotatably supports the planetary gear 33 via a bearing 39b. That is, the carrier pin 36 rotatably supports the planetary gear 33. The planetary gear 33 is rotatable around the rotation axis J3 with respect to the carrier pin 36. The carrier pin 36 rotatably supports the second gear portion 33b via a bearing 39b. In the present embodiment, a plurality of bearings 39b are arranged between the carrier pin 36 and the second gear portion 33b in the axial direction.
 キャリア37は、キャリアピン36を支持する。キャリア37は、キャリアピン36と固定される。キャリア37は、プラネタリギア33およびキャリアピン36のモータ軸J2回りの回転(公転)にともない、モータ軸J2回りに回転する。 The carrier 37 supports the carrier pin 36. The carrier 37 is fixed to a carrier pin 36. The carrier 37 rotates around the motor shaft J2 with the rotation (revolution) of the planetary gear 33 and the carrier pin 36 around the motor shaft J2.
 キャリア37は、第1壁部37aと、第2壁部37bと、連結部37cと、を有する。第1壁部37aは、モータ軸J2に垂直な方向に広がる板状である。第1壁部37aの板面は、軸方向を向く。第1壁部37aは、モータ軸J2を中心とする円環板状である。第1壁部37aは、キャリアピン36の軸方向他方側の端部を支持する。第1壁部37aには、複数のキャリアピン36の軸方向他方側の端部が固定される。第1壁部37aは、ベアリングホルダ35の後述するフランジ部35aに、軸方向一方側から対向する。第1壁部37aとフランジ部35aとの間には、空間が設けられる。第1壁部37aは、モータ軸J2上に位置して第1壁部37aを軸方向に貫通する孔37dを有する。孔37d内には、モータシャフト22の軸方向一方側の端部および連結シャフト31の軸方向他方側の端部が挿入される。径方向から見て、第1壁部37aは、モータシャフト22の軸方向一方側の端部および連結シャフト31の軸方向他方側の端部と、重なって配置される。 The carrier 37 has a first wall portion 37a, a second wall portion 37b, and a connecting portion 37c. The first wall portion 37a has a plate shape that extends in a direction perpendicular to the motor axis J2. The plate surface of the first wall portion 37a faces in the axial direction. The first wall portion 37a has an annular plate shape centered on the motor shaft J2. The first wall portion 37a supports the other end of the carrier pin 36 in the axial direction. The other axial end of the plurality of carrier pins 36 is fixed to the first wall 37a. The first wall portion 37a faces a flange portion 35a of the bearing holder 35, which will be described later, from one axial side. A space is provided between the first wall 37a and the flange 35a. The first wall 37a has a hole 37d located on the motor shaft J2 and penetrating the first wall 37a in the axial direction. The axial end of the motor shaft 22 and the axial end of the connecting shaft 31 are inserted into the hole 37d. When viewed from the radial direction, the first wall portion 37 a is disposed so as to overlap with one axial end of the motor shaft 22 and the other axial end of the connection shaft 31.
 第2壁部37bは、第1壁部37aよりも軸方向一方側に配置される。第1壁部37aおよび第2壁部37bは、互いに軸方向に間隔をあけて配置される。プラネタリギア33は、軸方向において第1壁部37aと第2壁部37bとの間に配置される。第2壁部37bは、モータ軸J2に垂直な方向に広がる板状である。第2壁部37bの板面は、軸方向を向く。第2壁部37bは、モータ軸J2を中心とする円環板状である。第2壁部37bは、キャリアピン36の軸方向一方側の端部を支持する。第2壁部37bには、複数のキャリアピン36の軸方向一方側の端部が固定される。つまり第1壁部37aおよび第2壁部37bは、キャリアピン36の軸方向の両端部を支持する。本実施形態では、第2壁部37bが、サンギア32よりも軸方向一方側に位置する。 The second wall 37b is disposed on one side in the axial direction from the first wall 37a. The first wall portion 37a and the second wall portion 37b are arranged at an interval from each other in the axial direction. The planetary gear 33 is disposed between the first wall 37a and the second wall 37b in the axial direction. The second wall portion 37b has a plate shape that extends in a direction perpendicular to the motor axis J2. The plate surface of the second wall portion 37b faces in the axial direction. The second wall portion 37b has an annular plate shape centered on the motor shaft J2. The second wall 37b supports an end of the carrier pin 36 on one side in the axial direction. The axial ends of the plurality of carrier pins 36 are fixed to the second wall 37b. That is, the first wall portion 37a and the second wall portion 37b support both ends of the carrier pin 36 in the axial direction. In the present embodiment, the second wall portion 37b is located on one axial side of the sun gear 32.
 連結部37cは、軸方向に延び、第1壁部37aと第2壁部37bとを連結する。本実施形態では、連結部37cが、軸方向に延びる板状である。ただしこれに限らず、連結部37cは、軸方向に延びる軸状等であってもよい。連結部37cの板面は、径方向を向く。連結部37cの軸方向他方側の端部は、第1壁部37aの外周部と接続される。連結部37cの軸方向一方側の端部は、第2壁部37bの外周部と接続される。本実施形態では、連結部37cと第1壁部37aとが、単一の部材の部分である。 The connecting portion 37c extends in the axial direction and connects the first wall portion 37a and the second wall portion 37b. In the present embodiment, the connecting portion 37c has a plate shape extending in the axial direction. However, the present invention is not limited to this, and the connecting portion 37c may have an axial shape extending in the axial direction. The plate surface of the connecting portion 37c faces in the radial direction. The other axial end of the connecting portion 37c is connected to the outer peripheral portion of the first wall portion 37a. One end in the axial direction of the connecting portion 37c is connected to the outer peripheral portion of the second wall portion 37b. In the present embodiment, the connecting portion 37c and the first wall portion 37a are portions of a single member.
 連結部37cは、周方向に互いに間隔をあけて複数設けられる。本実施形態ではキャリア37が、3つの連結部37cを有する。連結部37cは、プラネタリギア33と周方向に隣り合って配置される。複数の連結部37cと複数のプラネタリギア33とは、周方向に交互に配列する。連結部37cは、プラネタリギア33において最も径方向外側に位置する部分よりも、径方向内側に配置される。すなわち、プラネタリギア33は、連結部37cよりも径方向外側に突出する部分を有する。本実施形態では、第1ギア部33aおよび第2ギア部33bのうち、少なくとも第1ギア部33aが、連結部37cよりも径方向外側に突出する。 A plurality of connecting portions 37c are provided at intervals in the circumferential direction. In the present embodiment, the carrier 37 has three connecting portions 37c. The connecting portion 37c is disposed adjacent to the planetary gear 33 in the circumferential direction. The plurality of connecting portions 37c and the plurality of planetary gears 33 are alternately arranged in the circumferential direction. The connecting portion 37c is disposed radially inward of a portion of the planetary gear 33 that is located radially outward. That is, the planetary gear 33 has a portion that protrudes radially outward from the connecting portion 37c. In the present embodiment, at least the first gear portion 33a of the first gear portion 33a and the second gear portion 33b protrudes radially outward from the connecting portion 37c.
 出力シャフト38は、モータ軸J2と同軸に配置される。出力シャフト38の中心軸である出力軸J4は、モータ軸J2と一致して軸方向に延びる。本実施形態では、出力シャフト38が、軸方向に延びる筒状である。出力シャフト38は、キャリア37の軸方向一方側に配置される。出力シャフト38は、キャリア37と接続される。出力シャフト38は、軸方向他方側の端部がキャリア37の第2壁部37bと接続される。本実施形態では、出力シャフト38と第2壁部37bとが、単一の部材の部分であり、一体に設けられる。つまり、出力シャフト38とキャリア37の一部とが、単一の部材の部分である。出力シャフト38は、キャリア37のモータ軸J2回りの回転にともない、モータ軸J2回りに回転する。 The output shaft 38 is arranged coaxially with the motor shaft J2. The output shaft J4, which is the center axis of the output shaft 38, extends in the axial direction in accordance with the motor shaft J2. In the present embodiment, the output shaft 38 has a cylindrical shape extending in the axial direction. The output shaft 38 is arranged on one axial side of the carrier 37. The output shaft 38 is connected to the carrier 37. The output shaft 38 has the other axial end connected to the second wall 37 b of the carrier 37. In the present embodiment, the output shaft 38 and the second wall 37b are parts of a single member and are provided integrally. That is, the output shaft 38 and a part of the carrier 37 are part of a single member. The output shaft 38 rotates around the motor axis J2 with the rotation of the carrier 37 around the motor axis J2.
 出力シャフト38の外周面と、ギア収容部13の周壁部13aの内周面との間には、空間が設けられる。出力シャフト38は、第1ベアリング15を介して、周壁部13aに支持される。出力シャフト38と周壁部13aとの間には、第1ベアリング15およびオイルシール18が軸方向に並んで配置される。図示の例では、出力シャフト38の軸方向一方側の端部が、周壁部13aから軸方向一方側に向けて突出する。ただしこれに限らず、出力シャフト38は、周壁部13aから軸方向一方側に突出しなくてもよい。出力シャフト38は、車両100の車軸と直接または間接的に連結される。 空間 A space is provided between the outer peripheral surface of the output shaft 38 and the inner peripheral surface of the peripheral wall 13a of the gear housing 13. The output shaft 38 is supported by the peripheral wall 13a via the first bearing 15. The first bearing 15 and the oil seal 18 are arranged between the output shaft 38 and the peripheral wall 13a in the axial direction. In the illustrated example, one end in the axial direction of the output shaft 38 protrudes from the peripheral wall 13a toward one side in the axial direction. However, the invention is not limited to this, and the output shaft 38 does not have to protrude from the peripheral wall 13a to one side in the axial direction. The output shaft 38 is directly or indirectly connected to the axle of the vehicle 100.
 特に図示しないが、第2の伝達機構30Bは、第2のモータ20Bのモータシャフト22に接続され、第2のモータ20Bの動力を出力シャフト38に伝達する。第2の伝達機構30Bは、第2のモータ20Bの回転を減速してトルクを高め、出力シャフト38の出力軸J4回りの回転として出力する。第2の伝達機構30Bは減速機構であり、本実施形態では、遊星歯車機構である。出力シャフト38の出力軸J4は、モータ軸J2と同軸に配置される。第2の伝達機構30Bの構造は、第1の伝達機構30Aの構造と鉛直面VSに関して面対称であり、よって詳細な説明は省略する。本実施形態によれば、第2のモータユニット1Bを小型化でき、駆動装置10を小型化できる。 し な い Although not particularly shown, the second transmission mechanism 30B is connected to the motor shaft 22 of the second motor 20B, and transmits the power of the second motor 20B to the output shaft 38. The second transmission mechanism 30B decelerates the rotation of the second motor 20B to increase the torque, and outputs the rotation as rotation about the output shaft J4 of the output shaft 38. The second transmission mechanism 30B is a reduction mechanism, and in the present embodiment, is a planetary gear mechanism. The output shaft J4 of the output shaft 38 is arranged coaxially with the motor shaft J2. The structure of the second transmission mechanism 30B is plane-symmetric with respect to the vertical plane VS with the structure of the first transmission mechanism 30A, and thus detailed description is omitted. According to the present embodiment, the second motor unit 1B can be reduced in size, and the drive device 10 can be reduced in size.
 第1のモータユニット1Aのオイルシール18について説明する。オイルシール18は、モータ軸J2を中心とする環状である。オイルシール18は、出力軸J4を中心とする円環状である。本実施形態の例では、オイルシール18が、軸方向に延びる筒状である。オイルシール18は、出力シャフト38と第1のハウジング11Aとの間に設けられ、出力シャフト38と第1のハウジング11Aとの間をシールする。オイルシール18は、出力シャフト38の外周面と、ギア収容部13の周壁部13aの内周面との間に設けられ、オイルOを封止する。オイルシール18の外周部は、周壁部13aの内周面に固定される。オイルシール18の内周部は、出力シャフト38の外周面と周方向に摺動自在である。オイルシール18は、第1ベアリング15と軸方向に隣り合って配置される。オイルシール18は、第1ベアリング15の軸方向一方側に配置されて、第1ベアリング15に軸方向一方側から対向する。図示の例では、オイルシール18と第1ベアリング15との間に、軸方向の隙間が設けられる。特に図示しないが、第2のモータユニット1Bのオイルシール18の構造は、第1のモータユニット1Aのオイルシール18の構造と鉛直面VSに関して面対称であり、よって詳細な説明は省略する。 The oil seal 18 of the first motor unit 1A will be described. The oil seal 18 is ring-shaped around the motor shaft J2. The oil seal 18 has an annular shape around the output shaft J4. In the example of the present embodiment, the oil seal 18 has a cylindrical shape extending in the axial direction. The oil seal 18 is provided between the output shaft 38 and the first housing 11A, and seals between the output shaft 38 and the first housing 11A. The oil seal 18 is provided between the outer peripheral surface of the output shaft 38 and the inner peripheral surface of the peripheral wall 13a of the gear housing 13, and seals the oil O. The outer peripheral portion of the oil seal 18 is fixed to the inner peripheral surface of the peripheral wall portion 13a. The inner peripheral portion of the oil seal 18 is slidable in the circumferential direction with the outer peripheral surface of the output shaft 38. The oil seal 18 is disposed adjacent to the first bearing 15 in the axial direction. The oil seal 18 is arranged on one side of the first bearing 15 in the axial direction, and faces the first bearing 15 from one side in the axial direction. In the illustrated example, an axial gap is provided between the oil seal 18 and the first bearing 15. Although not specifically shown, the structure of the oil seal 18 of the second motor unit 1B is plane-symmetric with respect to the vertical plane VS with the structure of the oil seal 18 of the first motor unit 1A, and thus detailed description is omitted.
 第1のモータユニット1Aのベアリングホルダ35について説明する。ベアリングホルダ35は、モータ軸J2を中心とする環状である。ベアリングホルダ35は、フランジ部35aと、ホルダ筒部35bと、を有する。フランジ部35aは、モータ軸J2に垂直な方向に広がる板状である。フランジ部35aの板面は、軸方向を向く。フランジ部35aは、モータ軸J2を中心とする円環板状である。フランジ部35aの外周部は、インターナルギア34の軸方向他方側の端部に固定される。つまりベアリングホルダ35は、インターナルギア34に固定される。ベアリングホルダ35は、インターナルギア34に支持される。ベアリングホルダ35は、インターナルギア34を介して、第1のハウジング11Aに支持される。 ベ ア リ ン グ The bearing holder 35 of the first motor unit 1A will be described. The bearing holder 35 is ring-shaped around the motor shaft J2. The bearing holder 35 has a flange portion 35a and a holder tubular portion 35b. The flange portion 35a has a plate shape that extends in a direction perpendicular to the motor axis J2. The plate surface of the flange portion 35a faces in the axial direction. The flange portion 35a has an annular plate shape centered on the motor shaft J2. The outer peripheral portion of the flange portion 35a is fixed to the other axial end of the internal gear 34. That is, the bearing holder 35 is fixed to the internal gear 34. The bearing holder 35 is supported by the internal gear 34. The bearing holder 35 is supported by the first housing 11A via the internal gear 34.
 ホルダ筒部35bは、モータ軸J2を中心として軸方向に延びる筒状である。ホルダ筒部35bの軸方向一方側の端部は、フランジ部35aの内周部と接続される。ホルダ筒部35bの内周面と、モータシャフト22の外周面との間には、空間が設けられる。ホルダ筒部35bは、内部に第2ベアリング16を保持する。つまりベアリングホルダ35は、第2ベアリング16を保持する。ホルダ筒部35bは、第2ベアリング16を介して、モータシャフト22を保持する。ベアリングホルダ35は、第2ベアリング16を介して、モータシャフト22をモータ軸J2回りに回転自在に支持する。特に図示しないが、第2のモータユニット1Bのベアリングホルダ35の構造は、第1のモータユニット1Aのベアリングホルダ35の構造と鉛直面VSに関して面対称であり、よって詳細な説明は省略する。 The holder cylinder 35b has a cylindrical shape extending in the axial direction about the motor shaft J2. One end in the axial direction of the holder tubular portion 35b is connected to the inner peripheral portion of the flange portion 35a. A space is provided between the inner peripheral surface of the holder cylindrical portion 35b and the outer peripheral surface of the motor shaft 22. The holder cylinder 35b holds the second bearing 16 inside. That is, the bearing holder 35 holds the second bearing 16. The holder cylinder 35b holds the motor shaft 22 via the second bearing 16. The bearing holder 35 supports the motor shaft 22 via the second bearing 16 so as to be rotatable around the motor axis J2. Although not particularly shown, the structure of the bearing holder 35 of the second motor unit 1B is plane-symmetric with respect to the vertical plane VS with the structure of the bearing holder 35 of the first motor unit 1A, and thus detailed description is omitted.
 第1のモータユニット1Aの第1ベアリング15、第2ベアリング16および第3ベアリング14について説明する。第1ベアリング15は、出力シャフト38と第1のハウジング11Aとの間に設けられ、出力シャフト38をモータ軸J2回りに回転自在に支持する。第1ベアリング15は、モータ軸J2を中心とする環状である。本実施形態では、第1ベアリング15が、ギア収容部13の周壁部13a内に嵌合する。第1ベアリング15内には、出力シャフト38が嵌合する。 The first bearing 15, the second bearing 16, and the third bearing 14 of the first motor unit 1A will be described. The first bearing 15 is provided between the output shaft 38 and the first housing 11A, and supports the output shaft 38 rotatably around the motor axis J2. The first bearing 15 is annular with the motor shaft J2 as a center. In the present embodiment, the first bearing 15 is fitted into the peripheral wall 13 a of the gear housing 13. The output shaft 38 is fitted in the first bearing 15.
 第2ベアリング16は、モータシャフト22をモータ軸J2回りに回転自在に支持する。第2ベアリング16は、モータシャフト22のうち軸方向一方側の部分を回転自在に支持する。第2ベアリング16は、モータ軸J2を中心とする環状である。第2ベアリング16は、ベアリングホルダ35のホルダ筒部35b内に嵌合する。第2ベアリング16内には、モータシャフト22が嵌合する。 The second bearing 16 supports the motor shaft 22 rotatably around the motor axis J2. The second bearing 16 rotatably supports a portion on one axial side of the motor shaft 22. The second bearing 16 is annular with the motor shaft J2 as the center. The second bearing 16 is fitted into the holder cylinder 35b of the bearing holder 35. The motor shaft 22 is fitted in the second bearing 16.
 第3ベアリング14は、モータシャフト22をモータ軸J2回りに回転自在に支持する。第3ベアリング14は、モータシャフト22のうち軸方向他方側の端部を回転自在に支持する。第3ベアリング14は、モータ軸J2を中心とする環状である。第3ベアリング14は、モータ収容部12の底壁部12bにおける筒状部分の内部に嵌合する。第3ベアリング14内には、モータシャフト22が嵌合する。特に図示しないが、第2のモータユニット1Bの第1ベアリング15、第2ベアリング16および第3ベアリング14の各構造は、第1のモータユニット1Aの第1ベアリング15、第2ベアリング16および第3ベアリング14の各構造と鉛直面VSに関して面対称であり、よって詳細な説明は省略する。 The third bearing 14 supports the motor shaft 22 so as to be rotatable around the motor axis J2. The third bearing 14 rotatably supports the other end in the axial direction of the motor shaft 22. The third bearing 14 is annular with the motor shaft J2 at the center. The third bearing 14 fits inside the cylindrical portion of the bottom wall 12 b of the motor housing 12. The motor shaft 22 is fitted in the third bearing 14. Although not particularly shown, each structure of the first bearing 15, the second bearing 16 and the third bearing 14 of the second motor unit 1B is the same as the first bearing 15, the second bearing 16 and the third bearing 15 of the first motor unit 1A. Each structure of the bearing 14 and the vertical plane VS are plane-symmetric with respect to each other, and therefore, detailed description is omitted.
 第1のモータユニット1AのオイルOの循環構造について説明する。本実施形態において、オイルOの循環構造は、油路40と、第1の電動オイルポンプ61Aと、機械式オイルポンプ62と、を有する。油路40は、第1のハウジング11Aの内部に設けられる。第1の電動オイルポンプ61Aおよび機械式オイルポンプ62は、油路40にオイルOを循環させる。つまりオイルOは、第1のハウジング11Aの内部を循環する。本実施形態では、第1のモータユニット1Aが、油路40にオイルOを循環させる第1の電動オイルポンプ61Aおよび機械式オイルポンプ62を備える。つまり第1のモータユニット1Aは、複数のオイルポンプ61A,62を備える。第1の電動オイルポンプ61Aおよび機械式オイルポンプ62は、オイルOを第1の伝達機構30Aに供給可能である。本実施形態では、第1の電動オイルポンプ61Aおよび機械式オイルポンプ62が、モータシャフト22の内部を通して、第1の伝達機構30AにオイルOを供給可能である。第1の電動オイルポンプ61Aおよび機械式オイルポンプ62については、別途後述する。 循環 The circulation structure of the oil O of the first motor unit 1A will be described. In the present embodiment, the oil O circulation structure includes the oil passage 40, a first electric oil pump 61A, and a mechanical oil pump 62. The oil passage 40 is provided inside the first housing 11A. The first electric oil pump 61 </ b> A and the mechanical oil pump 62 circulate the oil O through the oil passage 40. That is, the oil O circulates inside the first housing 11A. In the present embodiment, the first motor unit 1A includes a first electric oil pump 61A and a mechanical oil pump 62 that circulate the oil O through the oil passage 40. That is, the first motor unit 1A includes a plurality of oil pumps 61A and 62. The first electric oil pump 61A and the mechanical oil pump 62 can supply oil O to the first transmission mechanism 30A. In the present embodiment, the first electric oil pump 61A and the mechanical oil pump 62 can supply the oil O to the first transmission mechanism 30A through the inside of the motor shaft 22. The first electric oil pump 61A and the mechanical oil pump 62 will be described separately later.
 油路40は、モータシャフト内油路部41と、連結シャフト内油路部42と、環状油路部43と、第1径方向油路部44と、第2径方向油路部45と、キャリアピン内油路部46と、接続油路部47と、第3径方向油路部48と、第4径方向油路部49と、貯油部50と、を有する。 The oil passage 40 includes an oil passage portion 41 in the motor shaft, an oil passage portion 42 in the connection shaft, an annular oil passage portion 43, a first radial oil passage portion 44, a second radial oil passage portion 45, An oil passage portion 46 in the carrier pin, a connection oil passage portion 47, a third radial oil passage portion 48, a fourth radial oil passage portion 49, and an oil storage portion 50 are provided.
 モータシャフト内油路部41は、モータシャフト22の内部を軸方向に延びる。モータシャフト内油路部41は、モータ軸J2上に位置する。モータシャフト内油路部41は、モータシャフト22を軸方向に貫通する貫通孔により構成される。モータシャフト内油路部41は、凹部22aの底面に開口する。すなわち、モータシャフト内油路部41の軸方向一方側の端部は、凹部22aの軸方向一方側を向く底面に開口する。 油 The oil passage portion 41 in the motor shaft extends in the motor shaft 22 in the axial direction. The oil passage portion 41 in the motor shaft is located on the motor shaft J2. The oil passage portion 41 in the motor shaft is constituted by a through-hole penetrating the motor shaft 22 in the axial direction. The oil passage portion 41 in the motor shaft opens at the bottom surface of the concave portion 22a. That is, one end in the axial direction of the oil passage portion 41 in the motor shaft is opened at the bottom face of the concave portion 22a facing one side in the axial direction.
 連結シャフト内油路部42は、連結シャフト31の内部を軸方向に延びる。連結シャフト内油路部42は、モータ軸J2上に位置する。連結シャフト内油路部42は、連結シャフト31を軸方向に貫通する貫通孔により構成される。連結シャフト内油路部42は、モータシャフト内油路部41と繋がる。すなわち、連結シャフト内油路部42の軸方向他方側の端部は、モータシャフト内油路部41の軸方向一方側の端部と接続する。本実施形態の例では、連結シャフト内油路部42の内径と、モータシャフト内油路部41の内径とが、略同じである。 油 The oil passage portion 42 in the connection shaft extends in the connection shaft 31 in the axial direction. The oil passage portion 42 in the connection shaft is located on the motor shaft J2. The oil passage portion 42 in the connection shaft is constituted by a through-hole penetrating the connection shaft 31 in the axial direction. The oil passage portion 42 in the connection shaft is connected to the oil passage portion 41 in the motor shaft. That is, the other end in the axial direction of the oil passage portion 42 in the connection shaft is connected to the one end in the axial direction of the oil passage portion 41 in the motor shaft. In the example of the present embodiment, the inner diameter of the oil passage portion 42 in the connection shaft and the inner diameter of the oil passage portion 41 in the motor shaft are substantially the same.
 環状油路部43は、連結シャフト31の軸方向他方側の端部の外周面と、凹部22aの内周面との間に配置される。環状油路部43は、周方向に延びる環状である。環状油路部43は、モータ軸J2を中心とする円筒状の空間であり、凹部22a内に設けられる。環状油路部43は、連結シャフト31の軸方向他方側の端部と凹部22aとが嵌合する部分よりも、軸方向他方側に位置する。 The annular oil passage 43 is arranged between the outer peripheral surface of the other end in the axial direction of the connecting shaft 31 and the inner peripheral surface of the concave portion 22a. The annular oil passage portion 43 has an annular shape extending in the circumferential direction. The annular oil passage 43 is a cylindrical space centered on the motor shaft J2, and is provided in the recess 22a. The annular oil passage portion 43 is located on the other side in the axial direction from the portion where the end on the other side in the axial direction of the connecting shaft 31 and the recess 22a are fitted.
 第1径方向油路部44は、連結シャフト31の軸方向他方側の端部に配置されて径方向に延び、連結シャフト内油路部42および環状油路部43に開口する。第1径方向油路部44は、連結シャフト31の軸方向他方側の端部において、連結シャフト31の内部を径方向に延び、連結シャフト31の内周面と外周面とに開口する貫通孔により構成される。本実施形態では、第1径方向油路部44が、周方向に互いに間隔をあけて複数設けられる。 The first radial oil passage portion 44 is disposed at the other axial end of the connection shaft 31, extends in the radial direction, and opens to the connection shaft inner oil passage portion 42 and the annular oil passage portion 43. The first radial oil passage portion 44 extends radially inside the connection shaft 31 at the other end in the axial direction of the connection shaft 31, and is a through hole that opens to the inner peripheral surface and the outer peripheral surface of the connection shaft 31. It consists of. In the present embodiment, a plurality of first radial oil passage portions 44 are provided at intervals in the circumferential direction.
 第2径方向油路部45は、モータシャフト22の軸方向一方側の端部に配置されて径方向に延び、環状油路部43およびモータシャフト22の外周面に開口する。第2径方向油路部45は、モータシャフト22の軸方向一方側の端部において、モータシャフト22の内部を径方向に延び、凹部22aの内周面とモータシャフト22の外周面とに開口する貫通孔により構成される。第2径方向油路部45の径方向外側の端部は、軸方向に沿う第1壁部37aと、フランジ部35aおよび第2ベアリング16と、の間の空間に向けて開口する。本実施形態では、第2径方向油路部45が、周方向に互いに間隔をあけて複数設けられる。 The second radial oil passage 45 is disposed at one axial end of the motor shaft 22, extends in the radial direction, and opens to the annular oil passage 43 and the outer peripheral surface of the motor shaft 22. The second radial oil passage portion 45 extends radially inside the motor shaft 22 at one axial end of the motor shaft 22, and is opened to the inner peripheral surface of the concave portion 22 a and the outer peripheral surface of the motor shaft 22. It is constituted by a through-hole. The radially outer end of the second radial oil passage portion 45 opens toward a space between the first wall portion 37a along the axial direction, the flange portion 35a, and the second bearing 16. In the present embodiment, a plurality of second radial oil passage portions 45 are provided at intervals in the circumferential direction.
 キャリアピン内油路部46は、キャリアピン36の内部に設けられ、キャリアピン36の軸方向の端面およびキャリアピン36の外周面に開口する。キャリアピン内油路部46は、ピン軸方向油路部46aと、ピン径方向油路部46bと、を有する。 The oil passage portion 46 in the carrier pin is provided inside the carrier pin 36 and opens to the axial end surface of the carrier pin 36 and the outer peripheral surface of the carrier pin 36. The oil passage portion 46 in the carrier pin has a pin axial oil passage portion 46a and a pin radial oil passage portion 46b.
 ピン軸方向油路部46aは、キャリアピン36の内部を軸方向に延びる。ピン軸方向油路部46aは、回転軸J3上に位置する。ピン軸方向油路部46aは、キャリアピン36を軸方向に貫通する貫通孔により構成される。ピン軸方向油路部46aは、キャリアピン36の軸方向一方側を向く端面および軸方向他方側を向く端面に、それぞれ開口する。 The pin axial oil passage portion 46a extends inside the carrier pin 36 in the axial direction. The pin axial direction oil passage portion 46a is located on the rotation axis J3. The pin axial direction oil passage portion 46a is formed by a through-hole penetrating the carrier pin 36 in the axial direction. The pin axial direction oil passage portion 46a is opened on an end face facing the one side in the axial direction of the carrier pin 36 and an end face facing the other side in the axial direction.
 ピン径方向油路部46bは、キャリアピン36の内部を回転軸J3に直交する方向に延びる。ピン径方向油路部46bは、ピン軸方向油路部46aおよびキャリアピン36の外周面に開口する。ピン径方向油路部46bは、キャリアピン36の内部を回転軸J3に直交する方向に延び、キャリアピン36の内周面と外周面とに開口する貫通孔により構成される。詳しくは、ピン径方向油路部46bは、キャリアピン36の内部のうち、回転軸J3よりも径方向外側、つまり回転軸J3よりも径方向に沿うモータ軸J2から離れる方向に配置される。すなわち、ピン径方向油路部46bは、ピン軸方向油路部46aと接続する部分から、径方向に沿うモータ軸J2から離れる方向に向けて延びる。本実施形態では、キャリアピン内油路部46が、軸方向に互いに間隔をあけて配置される複数のピン径方向油路部46bを有する。複数のピン径方向油路部46bは、キャリアピン36の外周部に設けられる複数のベアリング39bに向けて、それぞれ開口する。 The pin radial direction oil passage portion 46b extends inside the carrier pin 36 in a direction orthogonal to the rotation axis J3. The pin radial direction oil passage portion 46b opens to the outer peripheral surfaces of the pin axial direction oil passage portion 46a and the carrier pin 36. The pin radial direction oil passage portion 46b extends through the inside of the carrier pin 36 in a direction orthogonal to the rotation axis J3, and is formed by a through hole that opens on the inner peripheral surface and the outer peripheral surface of the carrier pin 36. More specifically, the pin radial oil passage portion 46b is disposed inside the carrier pin 36 in a direction radially outward of the rotation axis J3, that is, in a direction away from the motor shaft J2 along the radial direction of the rotation axis J3. That is, the pin radial oil passage portion 46b extends from a portion connected to the pin axial oil passage portion 46a in a direction away from the motor shaft J2 along the radial direction. In the present embodiment, the oil passage portion 46 in the carrier pin has a plurality of pin radial oil passage portions 46b arranged at intervals in the axial direction. The plurality of pin radial direction oil passage portions 46b open toward a plurality of bearings 39b provided on the outer peripheral portion of the carrier pin 36, respectively.
 接続油路部47は、キャリアピン内油路部46においてキャリアピン36の軸方向の端面に開口する部分と、第2径方向油路部45とを接続する。接続油路部47は、ピン軸方向油路部46aの軸方向他方側の端部と、第2径方向油路部45の径方向外側の端部とを繋ぐ。接続油路部47は、軸方向に沿う第1壁部37aと、フランジ部35aおよび第2ベアリング16と、の間に配置される。接続油路部47は、モータ軸J2を中心とする環状の空間(室)である。すなわち、接続油路部47は、軸方向に沿う第1壁部37aと、フランジ部35aおよび第2ベアリング16と、の間に設けられる環状の室により構成される。 The connection oil passage portion 47 connects the portion of the carrier pin oil passage portion 46 that opens to the axial end surface of the carrier pin 36 and the second radial oil passage portion 45. The connection oil passage portion 47 connects the other end in the axial direction of the pin axial oil passage portion 46a to the radially outer end of the second radial oil passage portion 45. The connection oil passage portion 47 is disposed between the first wall portion 37a along the axial direction, the flange portion 35a, and the second bearing 16. The connection oil passage portion 47 is an annular space (room) centered on the motor shaft J2. That is, the connection oil passage portion 47 is constituted by an annular chamber provided between the first wall portion 37a along the axial direction, the flange portion 35a and the second bearing 16.
 本実施形態では、モータシャフト内油路部41を流れるオイルOが、連結シャフト内油路部42、第1径方向油路部44、環状油路部43、第2径方向油路部45および接続油路部47を通って、キャリアピン内油路部46に流入する。キャリアピン内油路部46に流入したオイルOは、キャリアピン36の外周面に流出して、キャリアピン36とプラネタリギア33の間に位置するベアリング39bを潤滑および冷却する。 In the present embodiment, the oil O flowing through the oil passage 41 in the motor shaft receives the oil passage 42 in the connection shaft, the first radial oil passage 44, the annular oil passage 43, the second radial oil passage 45, and The fluid flows into the carrier pin oil passage 46 through the connection oil passage 47. The oil O flowing into the oil passage portion 46 in the carrier pin flows out to the outer peripheral surface of the carrier pin 36, and lubricates and cools the bearing 39b located between the carrier pin 36 and the planetary gear 33.
 第3径方向油路部48は、モータシャフト22の凹部22aよりも軸方向他方側に位置する部分に配置されて、径方向に延びる。すなわち、第3径方向油路部48は、モータシャフト22のうち軸方向一方側の端部よりも軸方向他方側に位置する部分に配置される。第3径方向油路部48は、モータシャフト内油路部41およびモータシャフト22の外周面に開口する。第3径方向油路部48は、モータシャフト22の内部を径方向に延び、モータシャフト22の内周面と外周面とに開口する貫通孔により構成される。第3径方向油路部48は、軸方向に互いに間隔をあけて配置される第2ベアリング16と第3ベアリング14との間に位置する。第3径方向油路部48は、モータシャフト22のうち軸方向の両端部間に位置する中間部分に配置される。第3径方向油路部48の径方向外側の端部は、ロータホルダ23の筒部23bの内周面に向けて開口する。径方向から見て、ロータホルダ23、ロータコア24、ロータマグネット25およびステータコア27と、第3径方向油路部48とは、互いに重なって配置される。本実施形態では、第3径方向油路部48が、周方向に互いに間隔をあけて複数設けられる。 The third radial oil passage portion 48 is disposed at a portion located on the other axial side of the concave portion 22a of the motor shaft 22 and extends in the radial direction. That is, the third radial oil passage portion 48 is disposed in a portion of the motor shaft 22 that is located on the other side in the axial direction from the end portion on one side in the axial direction. The third radial oil passage portion 48 opens on the outer peripheral surfaces of the motor shaft inner oil passage portion 41 and the motor shaft 22. The third radial oil passage portion 48 extends in the motor shaft 22 in the radial direction, and is formed by a through hole that opens on the inner peripheral surface and the outer peripheral surface of the motor shaft 22. The third radial oil passage portion 48 is located between the second bearing 16 and the third bearing 14 that are arranged at intervals in the axial direction. The third radial oil passage portion 48 is disposed at an intermediate portion of the motor shaft 22 located between both ends in the axial direction. The radially outer end of the third radial oil passage portion 48 opens toward the inner peripheral surface of the cylindrical portion 23b of the rotor holder 23. Seen from the radial direction, the rotor holder 23, the rotor core 24, the rotor magnet 25, the stator core 27, and the third radial oil passage portion 48 are arranged so as to overlap with each other. In the present embodiment, a plurality of third radial oil passage portions 48 are provided at intervals in the circumferential direction.
 第4径方向油路部49は、連結シャフト31のうち凹部22aよりも軸方向一方側に位置する部分に配置されて、径方向に延びる。すなわち、第4径方向油路部49は、連結シャフト31のうち軸方向他方側の端部よりも軸方向一方側に位置する部分に配置される。第4径方向油路部49は、連結シャフト内油路部42および連結シャフト31の外周面に開口する。第4径方向油路部49は、連結シャフト31の内部を径方向に延び、連結シャフト31の内周面と外周面とに開口する貫通孔により構成される。第4径方向油路部49は、軸方向に互いに間隔をあけて配置される第1ベアリング15と第2ベアリング16との間に位置する。第4径方向油路部49は、連結シャフト31のうち軸方向の両端部間に位置する中間部分に配置される。第4径方向油路部49の径方向外側の端部は、プラネタリギア33に向けて開口する。第4径方向油路部49は、第2ギア部33bの噛合部33cの外周部に向けて開口する。径方向から見て、インターナルギア34およびプラネタリギア33と、第4径方向油路部49とは、互いに重なって配置される。本実施形態では、第4径方向油路部49が、周方向に互いに間隔をあけて複数設けられる。 4The fourth radial oil passage portion 49 is disposed in a portion of the connecting shaft 31 located on one side in the axial direction from the concave portion 22a, and extends in the radial direction. That is, the fourth radial oil passage portion 49 is disposed in a portion of the connecting shaft 31 that is located on one side in the axial direction from the end on the other axial side. The fourth radial oil passage portion 49 opens on the outer peripheral surface of the connection shaft inner oil passage portion 42 and the connection shaft 31. The fourth radial oil passage 49 extends through the inside of the connecting shaft 31 in the radial direction, and is formed by a through hole that opens on the inner peripheral surface and the outer peripheral surface of the connecting shaft 31. The fourth radial oil passage portion 49 is located between the first bearing 15 and the second bearing 16 which are arranged at intervals in the axial direction. The fourth radial oil passage portion 49 is disposed at an intermediate portion of the connection shaft 31 located between both ends in the axial direction. The radially outer end of the fourth radial oil passage 49 opens toward the planetary gear 33. The fourth radial oil passage portion 49 opens toward the outer peripheral portion of the meshing portion 33c of the second gear portion 33b. When viewed from the radial direction, the internal gear 34 and the planetary gear 33 and the fourth radial oil passage 49 are arranged so as to overlap with each other. In the present embodiment, a plurality of fourth radial oil passage portions 49 are provided at intervals in the circumferential direction.
 本実施形態では上述の構成により、モータシャフト22の内部を流れるオイルOが、第1のモータ20Aおよび第1の伝達機構30Aに供給される。オイルOが、モータシャフト22内を流通することで広範囲に分散させられて、第1のハウジング11A内の各部材に行き渡らされる。 In the present embodiment, with the above-described configuration, the oil O flowing inside the motor shaft 22 is supplied to the first motor 20A and the first transmission mechanism 30A. The oil O is dispersed in a wide range by flowing through the motor shaft 22, and is distributed to each member in the first housing 11A.
 貯油部50は、第1のハウジング11Aの下部(底部)に配置される。貯油部50は、第1のハウジング11A内の下側の部分に位置する。貯油部50には、オイルOが溜められる。貯油部50は、モータ貯油部50aと、ギア貯油部50bと、流通油路部と、を有する。モータ貯油部50aは、貯油部50のうち、仕切り壁部17よりも軸方向他方側に位置する部分である。モータ貯油部50aは、径方向から見て、第1のモータ20Aと重なる位置に配置される。モータ貯油部50aには、ステータ26の下部が配置される。すなわち、ステータ26の下部は、モータ貯油部50aのオイルOに浸漬される。 油 The oil storage unit 50 is arranged at a lower portion (bottom portion) of the first housing 11A. The oil storage unit 50 is located at a lower part in the first housing 11A. Oil O is stored in the oil storage unit 50. Oil storage unit 50 has a motor oil storage unit 50a, a gear oil storage unit 50b, and a circulating oil passage unit. The motor oil storage portion 50a is a portion of the oil storage portion 50 that is located on the other axial side of the partition wall portion 17. The motor oil storage unit 50a is disposed at a position overlapping the first motor 20A when viewed from the radial direction. The lower portion of the stator 26 is disposed in the motor oil storage section 50a. That is, the lower part of the stator 26 is immersed in the oil O of the motor oil storage part 50a.
 ギア貯油部50bは、貯油部50のうち、仕切り壁部17よりも軸方向一方側に位置する部分である。ギア貯油部50bは、径方向から見て、第1の伝達機構30Aと重なる位置に配置される。ギア貯油部50bには、プラネタリギア33のモータ軸J2回りの回転軌跡(図示省略)が配置される。すなわち、プラネタリギア33のモータ軸J2を中心とする回転軌跡が、ギア貯油部50bを通る。詳しくは、プラネタリギア33の第1ギア部33aおよび第2ギア部33bのうち、少なくとも第1ギア部33aのモータ軸J2を中心とする回転軌跡が、ギア貯油部50bを通る。 The gear oil storage portion 50b is a portion of the oil storage portion 50 that is located on one axial side with respect to the partition wall portion 17. The gear oil storage unit 50b is disposed at a position overlapping the first transmission mechanism 30A when viewed from the radial direction. A rotation locus (not shown) of the planetary gear 33 around the motor axis J2 is arranged in the gear oil storage unit 50b. That is, the rotation locus of the planetary gear 33 around the motor axis J2 passes through the gear oil storage unit 50b. More specifically, of the first gear portion 33a and the second gear portion 33b of the planetary gear 33, at least the rotation locus of the first gear portion 33a around the motor axis J2 passes through the gear oil storage portion 50b.
 貯油部50をプラネタリギア33が通過することにより、プラネタリギア33によって貯油部50のオイルOがかき上げられる。本実施形態では、段付きピニオンタイプのプラネタリギア33のうち、少なくとも大径の第1ギア部33aによって、オイルOがかき上げられる。なお、貯油部50が仕切り壁部17によってギア貯油部50bとモータ貯油部50aとに仕切られているため、ギア貯油部50bのオイルOの油量が安定する。具体的に、モータシャフト内油路部41を流れるオイルOは、連結シャフト内油路部42を通り、連結シャフト31の軸方向一方側の端部の開口部から流出して、ベアリング39a等を潤滑しつつ、ギア貯油部50bに供給される。また、連結シャフト内油路部42を流れるオイルOは、第1径方向油路部44、環状油路部43、第2径方向油路部45、接続油路部47、および、インターナルギア34と連結部37cとの径方向の隙間等を通り、ギア貯油部50bに供給される。また、第4径方向油路部49から径方向外側に噴出されるオイルOも、プラネタリギア33等を潤滑しつつギア貯油部50bに供給される。ギア貯油部50bに供給されたオイルOは、仕切り壁部17によりギア貯油部50bに保持される。 に よ り As the planetary gear 33 passes through the oil storage unit 50, the oil O in the oil storage unit 50 is scraped up by the planetary gear 33. In the present embodiment, of the stepped pinion type planetary gear 33, the oil O is scraped up by at least the first gear portion 33a having a large diameter. Since the oil storage unit 50 is partitioned into the gear oil storage unit 50b and the motor oil storage unit 50a by the partition wall 17, the oil amount of the oil O in the gear oil storage unit 50b is stabilized. Specifically, the oil O flowing through the oil passage portion 41 in the motor shaft passes through the oil passage portion 42 in the connection shaft, flows out of the opening at one axial end of the connection shaft 31, and flows through the bearing 39a and the like. While lubricating, the oil is supplied to the gear oil storage unit 50b. The oil O flowing through the oil passage portion 42 in the connection shaft is supplied to the first radial oil passage portion 44, the annular oil passage portion 43, the second radial oil passage portion 45, the connection oil passage portion 47, and the internal gear 34. The oil is supplied to the gear oil storage unit 50b through a radial gap or the like between the motor oil and the connecting portion 37c. The oil O spouted radially outward from the fourth radial oil passage 49 is also supplied to the gear oil storage 50b while lubricating the planetary gears 33 and the like. The oil O supplied to the gear oil storage unit 50b is held by the gear oil storage unit 50b by the partition wall 17.
 流通油路部は、貯油部50においてギア貯油部50bとモータ貯油部50aとを連通させる部分である。流通油路部は、仕切り壁部17を軸方向に貫通するオイル流通孔17aにより構成される。ギア貯油部50bに溜まったオイルOは、流通油路部(オイル流通孔17a)を通して、モータ貯油部50aにも供給される。仕切り壁部17において、オイル流通孔17aの上下方向の位置、大きさ(軸方向に垂直な断面積)および数等を適宜調整することにより、オイル流通孔17aを流通するオイルOの量を制御できる。 The distribution oil passage portion is a portion in the oil storage portion 50 that connects the gear oil storage portion 50b and the motor oil storage portion 50a. The circulation oil passage portion is constituted by an oil circulation hole 17a penetrating the partition wall portion 17 in the axial direction. The oil O accumulated in the gear oil storage unit 50b is also supplied to the motor oil storage unit 50a through the flow oil passage (oil flow hole 17a). The amount of oil O flowing through the oil flow hole 17a is controlled by appropriately adjusting the vertical position, size (cross-sectional area perpendicular to the axial direction), number, and the like of the oil flow hole 17a in the partition wall portion 17. it can.
 図4に示す矢印のOF1~OF5は、第1のハウジング11A内のオイルOの流れを簡略的に表している。OF1は、第1の電動オイルポンプ61Aから第1のオイルクーラ65Aに送られるオイルOの流れを示す。OF2は、第1のオイルクーラ65Aから第1のモータ20A等に供給されるオイルOの流れを示す。流れOF2は、例えばステータ26等を冷却する。OF3は、第1の電動オイルポンプ61Aから第1のモータ20Aおよび第1の伝達機構30A等に供給されるオイルOの流れを示す。流れOF3は、例えばロータ21およびステータ26等を冷却し、サンギア32、プラネタリギア33、インターナルギア34およびベアリング14,15,16,39a,39b等を潤滑する。OF4は、プラネタリギア33のモータ軸J2回りの公転によるオイルかき上げ作用によって供給されるオイルOの流れを示す。流れOF4は、例えばサンギア32、プラネタリギア33、インターナルギア34およびベアリング15,16,39a,39b等を潤滑する。OF5は、貯油部50から第1の電動オイルポンプ61Aに吸入されるオイルOの流れを示す。 矢 印 OF1 to OF5 shown by arrows in FIG. 4 simply represent the flow of the oil O in the first housing 11A. OF1 indicates a flow of the oil O sent from the first electric oil pump 61A to the first oil cooler 65A. OF2 indicates a flow of the oil O supplied from the first oil cooler 65A to the first motor 20A and the like. The flow OF2 cools, for example, the stator 26 and the like. OF3 indicates a flow of the oil O supplied from the first electric oil pump 61A to the first motor 20A, the first transmission mechanism 30A, and the like. The flow OF3 cools, for example, the rotor 21 and the stator 26, and lubricates the sun gear 32, the planetary gear 33, the internal gear 34, the bearings 14, 15, 16, 39a, 39b, and the like. OF4 indicates the flow of the oil O supplied by the oil scooping action by the revolution of the planetary gear 33 around the motor axis J2. The flow OF4 lubricates, for example, the sun gear 32, the planetary gear 33, the internal gear 34, the bearings 15, 16, 39a, 39b, and the like. OF5 indicates a flow of the oil O sucked from the oil storage unit 50 to the first electric oil pump 61A.
 第1の電動オイルポンプ61Aは、ストレーナ(図示省略)を介して、貯油部50からオイルOを吸入する。第1の電動オイルポンプ61Aは、モータ貯油部50aからオイルOを吸入する。第1の電動オイルポンプ61Aは、モータ等を内蔵する電動式のオイルポンプである。第1の電動オイルポンプ61Aは、第1のハウジング11Aの上部に配置される。本実施形態では、第1の電動オイルポンプ61Aが、第1のハウジング11Aの内部に設けられる。すなわち、第1の電動オイルポンプ61Aがビルトインタイプであり、第1の電動オイルポンプ61Aおよび油路40の全体が、第1のハウジング11A内に配置される。 The first electric oil pump 61A sucks oil O from the oil storage unit 50 via a strainer (not shown). The first electric oil pump 61A sucks oil O from the motor oil storage unit 50a. The first electric oil pump 61A is an electric oil pump including a motor and the like. The first electric oil pump 61A is arranged above the first housing 11A. In the present embodiment, the first electric oil pump 61A is provided inside the first housing 11A. That is, the first electric oil pump 61A is of a built-in type, and the entire first electric oil pump 61A and the oil passage 40 are arranged in the first housing 11A.
 機械式オイルポンプ62は、ストレーナ(図示省略)を介して、貯油部50からオイルOを吸入する。機械式オイルポンプ62は、モータ貯油部50aからオイルOを吸入する。機械式オイルポンプ62は、モータシャフト22に連結される例えばトロコイドポンプ等の構造を有する機械式のオイルポンプである。機械式オイルポンプ62は、モータ収容部12の底壁部12bに配置される。機械式オイルポンプ62は、モータシャフト22の軸方向他方側に、モータシャフト22と同軸に配置される。本実施形態では、電動式のオイルポンプである第1の電動オイルポンプ61Aを、第1のモータ20Aの回転状態や温度等に応じて選択的に使用する。例えば、車両100の走行時等に第1のモータ20Aの回転数が低速で安定している場合や、第1のモータ20AおよびオイルOの温度が低い場合などには、第1の電動オイルポンプ61Aの動作を停止させ、機械式オイルポンプ62のみによって、モータシャフト22内にオイルOを供給する。本実施形態では、機械式オイルポンプ62をメインポンプとして使用し、第1の電動オイルポンプ61Aをサブポンプとして選択的に使用する。 The mechanical oil pump 62 sucks the oil O from the oil storage unit 50 via a strainer (not shown). The mechanical oil pump 62 sucks oil O from the motor oil storage unit 50a. The mechanical oil pump 62 is a mechanical oil pump having a structure such as a trochoid pump connected to the motor shaft 22. The mechanical oil pump 62 is disposed on the bottom wall 12b of the motor housing 12. The mechanical oil pump 62 is disposed coaxially with the motor shaft 22 on the other axial side of the motor shaft 22. In the present embodiment, the first electric oil pump 61A, which is an electric oil pump, is selectively used in accordance with the rotation state and temperature of the first motor 20A. For example, when the rotation speed of the first motor 20A is low and stable when the vehicle 100 is traveling, or when the temperature of the first motor 20A and the oil O is low, the first electric oil pump is used. The operation of 61A is stopped, and the oil O is supplied into the motor shaft 22 only by the mechanical oil pump 62. In the present embodiment, the mechanical oil pump 62 is used as a main pump, and the first electric oil pump 61A is selectively used as a sub-pump.
 特に図示しないが、第2のモータユニット1BのオイルOの循環構造は、油路40と、第2の電動オイルポンプ61Bと、機械式オイルポンプ62と、を有する。第2のモータユニット1BのオイルOの循環構造は、第1のモータユニット1AのオイルOの循環構造と鉛直面VSに関して面対称であり、よって詳細な説明は省略する。 し な い Although not particularly shown, the oil O circulation structure of the second motor unit 1B includes the oil passage 40, a second electric oil pump 61B, and a mechanical oil pump 62. The circulation structure of the oil O of the second motor unit 1B is plane-symmetric with respect to the vertical structure VS of the circulation structure of the oil O of the first motor unit 1A, and therefore detailed description is omitted.
 第1のオイルクーラ65Aは、冷媒流路90と接続される。第1のオイルクーラ65Aは、冷媒流路90の後述する第1の接続流路90cおよび第1の流出流路90eと接続される。第1のオイルクーラ65Aは、内部に冷却液等の冷媒Rが流れる流路(図示省略)を有する。第1のオイルクーラ65A内の流路が、第1の接続流路90cおよび第1の流出流路90eと接続される。第1のオイルクーラ65Aには、第1のモータユニット1Aの油路40の一部が配置される。第1のオイルクーラ65Aの流路を流れる冷媒Rと、第1のモータユニット1Aの油路40の一部を流れるオイルOとの間で熱交換が行われることにより、オイルOが冷却される。つまり、第1のオイルクーラ65Aは、オイルOを冷却する。冷却されたオイルOにより、第1のモータ20Aおよび第1の伝達機構30A等が冷却される。また、第1のオイルクーラ65Aは、第1のオイルクーラ65Aの外部に露出する複数のフィン部を有する。複数のフィン部を介して、外気とオイルOとの間で熱交換が行われることによってもオイルOが冷却される。 The first oil cooler 65A is connected to the refrigerant flow path 90. The first oil cooler 65A is connected to a first connection flow channel 90c and a first outflow flow channel 90e of the refrigerant flow channel 90 which will be described later. The first oil cooler 65A has a flow path (not shown) in which a refrigerant R such as a cooling liquid flows inside. The flow path in the first oil cooler 65A is connected to the first connection flow path 90c and the first outflow flow path 90e. A part of the oil passage 40 of the first motor unit 1A is arranged in the first oil cooler 65A. The oil O is cooled by performing heat exchange between the refrigerant R flowing through the flow passage of the first oil cooler 65A and the oil O flowing through a part of the oil passage 40 of the first motor unit 1A. . That is, the first oil cooler 65A cools the oil O. The cooled oil O cools the first motor 20A, the first transmission mechanism 30A, and the like. Further, the first oil cooler 65A has a plurality of fin portions exposed to the outside of the first oil cooler 65A. The oil O is also cooled by performing heat exchange between the outside air and the oil O via the plurality of fin portions.
 第1のオイルクーラ65Aは、第1のハウジング11Aに設けられる。第1のオイルクーラ65Aは、第1のハウジング11Aの内部を循環するオイルOを冷却する。第1のオイルクーラ65Aは、第1のハウジング11Aのうち鉛直方向の路面とは反対側の上部に配置される。つまり第1のオイルクーラ65Aは、第1のハウジング11Aの上部に配置される。なお、路面とは、車両100が走行しまたは停止する道路等の上面であり、つまり車両100が位置する道路等の上面である。第1のオイルクーラ65Aは、第1のモータ20Aよりも鉛直方向の上側に配置される。本実施形態によれば、第1のオイルクーラ65Aにおいて冷媒Rで冷却したオイルOを、滴下等により第1のモータ20Aに供給しやすい。 The first oil cooler 65A is provided in the first housing 11A. The first oil cooler 65A cools the oil O circulating inside the first housing 11A. The first oil cooler 65A is disposed at an upper portion of the first housing 11A on the side opposite to the vertical road surface. That is, the first oil cooler 65A is disposed above the first housing 11A. Note that the road surface is an upper surface of a road or the like on which the vehicle 100 runs or stops, that is, an upper surface of a road or the like on which the vehicle 100 is located. The first oil cooler 65A is arranged vertically above the first motor 20A. According to the present embodiment, the oil O cooled by the refrigerant R in the first oil cooler 65A is easily supplied to the first motor 20A by dropping or the like.
 第1のオイルクーラ65Aは、第1の電動オイルポンプ61Aと車両100の前後方向に並ぶ。本実施形態のように、2つのモータユニット1A,1Bがサブフレームに設置されるツインモータタイプでは、第1のモータユニット1Aにおける車両100の前後方向および車幅方向(軸方向)において、部材の配置スペースを確保しにくい。具体的に、第1のモータユニット1Aは、車両100の前後方向からサブフレームに挟まれるため、第1のモータユニット1Aと前後方向に隣り合う領域には、部材を設置するスペースが確保できない。また、第1のモータユニット1Aの車幅方向には、第2のモータユニット1B、リア左側の車軸およびサブフレームの一部等が配置されるため、第1のモータユニット1Aと車幅方向に隣り合う領域には、部材を設置するスペースが確保できない。そこで本実施形態のように、第1の電動オイルポンプ61Aおよび第1のオイルクーラ65Aが第1のハウジング11Aの上部に配置され、これらの部材が車両100の前後方向に並ぶ構成であると、第1の電動オイルポンプ61Aおよび第1のオイルクーラ65Aを配置するスペースを容易に確保しやすい。また、第1の電動オイルポンプ61Aとインバータケース4とが互いに接近して配置されるので、第1の電動オイルポンプ61Aと、インバータケース4に収容されるインバータ3とを電気的に接続する配線の長さを短くでき、配線の接続作業が容易である。なお、本実施形態の例では、車両100の前後方向において、第1のオイルクーラ65Aとインバータケース4との間に、第1の電動オイルポンプ61Aが配置される。第1のオイルクーラ65Aの上下方向の位置と、第1の電動オイルポンプ61Aの上下方向の位置と、インバータケース4の上下方向の位置とは、互いに略同じである。 The first oil cooler 65A is aligned with the first electric oil pump 61A in the front-rear direction of the vehicle 100. In the twin motor type in which the two motor units 1A and 1B are installed in the subframe as in the present embodiment, the members of the first motor unit 1A in the front-back direction and the vehicle width direction (axial direction) of the vehicle 100 are used. It is difficult to secure placement space. Specifically, the first motor unit 1A is sandwiched between the subframes in the front-rear direction of the vehicle 100, so that a space for installing members cannot be secured in a region adjacent to the first motor unit 1A in the front-rear direction. Further, in the vehicle width direction of the first motor unit 1A, the second motor unit 1B, the rear left axle, a part of the subframe, and the like are arranged. A space for installing members cannot be secured in the adjacent areas. Therefore, as in the present embodiment, if the first electric oil pump 61A and the first oil cooler 65A are arranged above the first housing 11A, and these members are arranged in the front-rear direction of the vehicle 100, It is easy to easily secure a space for disposing the first electric oil pump 61A and the first oil cooler 65A. Further, since the first electric oil pump 61A and the inverter case 4 are arranged close to each other, wiring for electrically connecting the first electric oil pump 61A and the inverter 3 housed in the inverter case 4 is provided. Can be shortened, and wiring connection work is easy. In the example of the present embodiment, the first electric oil pump 61A is disposed between the first oil cooler 65A and the inverter case 4 in the front-rear direction of the vehicle 100. The vertical position of the first oil cooler 65A, the vertical position of the first electric oil pump 61A, and the vertical position of the inverter case 4 are substantially the same.
 第2のオイルクーラ65Bは、冷媒流路90と接続される。第2のオイルクーラ65B は、冷媒流路90の後述する第2の接続流路90dおよび第2の流出流路90fと接続される。第2のオイルクーラ65Bは、内部に冷却液等の冷媒Rが流れる流路(図示省略)を有する。第2のオイルクーラ65B内の流路が、第2の接続流路90dおよび第2の流出流路90fと接続される。第2のオイルクーラ65Bには、第2のモータユニット1Bの油路40の一部が配置される。第2のオイルクーラ65Bの流路を流れる冷媒Rと、第2のモータユニット1Bの油路40の一部を流れるオイルOとの間で熱交換が行われることにより、オイルOが冷却される。つまり、第2のオイルクーラ65Bは、オイルOを冷却する。冷却されたオイルOにより、第2のモータ20Bおよび第2の伝達機構30B等が冷却される。また、第2のオイルクーラ65Bは、第2のオイルクーラ65Bの外部に露出する複数のフィン部を有する。複数のフィン部を介して、外気とオイルOとの間で熱交換が行われることによってもオイルOが冷却される。 The second oil cooler 65B is connected to the refrigerant channel 90. Second oil cooler 65 </ b> B # is connected to a second connection flow channel 90 d and a second outflow flow channel 90 f of refrigerant flow channel 90 described below. The second oil cooler 65B has a flow path (not shown) through which a refrigerant R such as a cooling liquid flows. The flow path in the second oil cooler 65B is connected to the second connection flow path 90d and the second outflow flow path 90f. A part of the oil passage 40 of the second motor unit 1B is arranged in the second oil cooler 65B. The heat exchange between the refrigerant R flowing through the flow path of the second oil cooler 65B and the oil O flowing through a part of the oil passage 40 of the second motor unit 1B cools the oil O. . That is, the second oil cooler 65B cools the oil O. The cooled oil O cools the second motor 20B, the second transmission mechanism 30B, and the like. The second oil cooler 65B has a plurality of fins exposed to the outside of the second oil cooler 65B. The oil O is also cooled by performing heat exchange between the outside air and the oil O via the plurality of fin portions.
 第2のオイルクーラ65Bは、第2のハウジング11Bに設けられる。第2のオイルクーラ65Bは、第2のハウジング11Bの内部を循環するオイルOを冷却する。第2のオイルクーラ65Bは、第2のハウジング11Bのうち鉛直方向の路面とは反対側の上部に配置される。つまり第2のオイルクーラ65Bは、第2のハウジング11Bの上部に配置される。第2のオイルクーラ65Bは、第2のモータ20Bよりも鉛直方向の上側に配置される。本実施形態によれば、第2のオイルクーラ65Bにおいて冷媒Rで冷却したオイルOを、滴下等により第2のモータ20Bに供給しやすい。 2The second oil cooler 65B is provided in the second housing 11B. The second oil cooler 65B cools the oil O circulating inside the second housing 11B. The second oil cooler 65B is arranged in an upper part of the second housing 11B on the side opposite to the vertical road surface. That is, the second oil cooler 65B is disposed above the second housing 11B. The second oil cooler 65B is arranged vertically above the second motor 20B. According to the present embodiment, the oil O cooled by the refrigerant R in the second oil cooler 65B is easily supplied to the second motor 20B by dropping or the like.
 第2のオイルクーラ65Bは、第2の電動オイルポンプ61Bと車両100の前後方向に並ぶ。本実施形態のように、2つのモータユニット1A,1Bがサブフレームに設置されるツインモータタイプでは、第2のモータユニット1Bにおける車両100の前後方向および車幅方向(軸方向)において、部材の配置スペースを確保しにくい。具体的に、第2のモータユニット1Bは、車両100の前後方向からサブフレームに挟まれるため、第2のモータユニット1Bと前後方向に隣り合う領域には、部材を設置するスペースが確保できない。また、第2のモータユニット1Bの車幅方向には、第1のモータユニット1A、リア右側の車軸およびサブフレームの一部等が配置されるため、第2のモータユニット1Bと車幅方向に隣り合う領域には、部材を設置するスペースが確保できない。そこで本実施形態のように、第2の電動オイルポンプ61Bおよび第2のオイルクーラ65Bが第2のハウジング11Bの上部に配置され、これらの部材が車両100の前後方向に並ぶ構成であると、第2の電動オイルポンプ61Bおよび第2のオイルクーラ65Bを配置するスペースを容易に確保しやすい。また、第2の電動オイルポンプ61Bとインバータケース4とが互いに接近して配置されるので、第2の電動オイルポンプ61Bと、インバータケース4に収容されるインバータ3とを電気的に接続する配線の長さを短くでき、配線の接続作業が容易である。なお、本実施形態の例では、車両100の前後方向において、第2のオイルクーラ65Bとインバータケース4との間に、第2の電動オイルポンプ61Bが配置される。第2のオイルクーラ65Bの上下方向の位置と、第2の電動オイルポンプ61Bの上下方向の位置と、インバータケース4の上下方向の位置とは、互いに略同じである。 The second oil cooler 65B is arranged in the front-rear direction of the vehicle 100 with the second electric oil pump 61B. In the twin motor type in which the two motor units 1A and 1B are installed in the subframe as in the present embodiment, the members of the second motor unit 1B in the front-rear direction and the vehicle width direction (axial direction) of the vehicle 100 are used. It is difficult to secure placement space. Specifically, since the second motor unit 1B is sandwiched between the subframes in the front-back direction of the vehicle 100, a space for installing members cannot be secured in a region adjacent to the second motor unit 1B in the front-back direction. Further, in the vehicle width direction of the second motor unit 1B, the first motor unit 1A, the rear right axle, a part of the subframe, and the like are arranged. A space for installing members cannot be secured in the adjacent regions. Therefore, as in the present embodiment, if the second electric oil pump 61B and the second oil cooler 65B are arranged on the upper part of the second housing 11B, and these members are arranged in the front-rear direction of the vehicle 100, It is easy to easily secure a space for disposing the second electric oil pump 61B and the second oil cooler 65B. Further, since the second electric oil pump 61B and the inverter case 4 are arranged close to each other, wiring for electrically connecting the second electric oil pump 61B and the inverter 3 housed in the inverter case 4 is provided. Can be shortened, and wiring connection work is easy. In the example of the present embodiment, the second electric oil pump 61B is disposed between the second oil cooler 65B and the inverter case 4 in the front-rear direction of the vehicle 100. The vertical position of the second oil cooler 65B, the vertical position of the second electric oil pump 61B, and the vertical position of the inverter case 4 are substantially the same.
 第1のモータユニット1Aの回転センサ80について説明する。回転センサ80は、第1のモータ20Aの軸方向の端部に設けられる。本実施形態では、回転センサ80が、第1のモータ20Aの軸方向他方側の端部に配置される。径方向から見て、回転センサ80と第3ベアリング14とは、互いに重なって配置される。回転センサ80は、第1のモータ20Aの回転を検知する。本実施形態では、回転センサ80がレゾルバである。回転センサ80は、レゾルバロータ80aと、レゾルバステータ80bと、を有する。レゾルバロータ80aは、ロータ21に固定される。本実施形態では、レゾルバロータ80aが、ロータホルダ23のセンサ支持部23cに固定される。レゾルバステータ80bは、第1のハウジング11Aに固定される。本実施形態では、レゾルバステータ80bが、モータ収容部12の底壁部12bに固定される。回転センサ80は、インバータケース4に収容される制御基板(図示省略)と電気的に接続される。特に図示しないが、第2のモータユニット1Bの回転センサ80の構造は、第1のモータユニット1Aの回転センサ80の構造と鉛直面VSに関して面対称であり、よって詳細な説明は省略する。 The rotation sensor 80 of the first motor unit 1A will be described. The rotation sensor 80 is provided at an axial end of the first motor 20A. In the present embodiment, the rotation sensor 80 is disposed at the other axial end of the first motor 20A. As viewed from the radial direction, the rotation sensor 80 and the third bearing 14 are arranged so as to overlap with each other. The rotation sensor 80 detects rotation of the first motor 20A. In the present embodiment, the rotation sensor 80 is a resolver. The rotation sensor 80 has a resolver rotor 80a and a resolver stator 80b. The resolver rotor 80a is fixed to the rotor 21. In the present embodiment, the resolver rotor 80a is fixed to the sensor support 23c of the rotor holder 23. The resolver stator 80b is fixed to the first housing 11A. In the present embodiment, the resolver stator 80b is fixed to the bottom wall 12b of the motor housing 12. The rotation sensor 80 is electrically connected to a control board (not shown) housed in the inverter case 4. Although not particularly shown, the structure of the rotation sensor 80 of the second motor unit 1B is plane-symmetric with respect to the vertical plane VS with the structure of the rotation sensor 80 of the first motor unit 1A, and therefore detailed description is omitted.
 第1のモータユニット1Aの温度センサ(図示省略)について説明する。温度センサは、第1のモータ20Aに設けられる。温度センサは、例えばステータ26の温度を検知する。つまり温度センサは、第1のモータ20Aの温度を検知する。温度センサは、制御基板と電気的に接続される。なお、温度センサは、第1のモータユニット1Aの油路40の一部に配置されてもよい。この場合、温度センサは、例えば貯油部50に配置されて、オイルOの温度を検知する。特に図示しないが、第2のモータユニット1Bの温度センサの構造は、第1のモータユニット1Aの温度センサの構造と鉛直面VSに関して面対称であり、よって詳細な説明は省略する。 The temperature sensor (not shown) of the first motor unit 1A will be described. The temperature sensor is provided on first motor 20A. The temperature sensor detects, for example, the temperature of the stator 26. That is, the temperature sensor detects the temperature of the first motor 20A. The temperature sensor is electrically connected to the control board. Note that the temperature sensor may be arranged in a part of the oil passage 40 of the first motor unit 1A. In this case, the temperature sensor is disposed, for example, in the oil storage unit 50 and detects the temperature of the oil O. Although not particularly shown, the structure of the temperature sensor of the second motor unit 1B is plane-symmetric with respect to the vertical plane VS with the structure of the temperature sensor of the first motor unit 1A, and thus detailed description is omitted.
 インバータ3は、複数のモータユニット1A,1Bと電気的に接続される。インバータ3は、第1のモータ20A、第2のモータ20B、第1の電動オイルポンプ61Aおよび第2の電動オイルポンプ61Bと電気的に接続される。つまりインバータ3は、第1のモータ20Aおよび第2のモータ20Bと電気的に接続される。インバータ3は、複数のスイッチング素子3aと、パワー基板(図示省略)と、コンデンサ(図示省略)と、を有する。スイッチング素子3aは、例えば、絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)である。コンデンサおよびスイッチング素子3aは、パワー基板に接続される。インバータ3は、図示しない外部電源装置に接続される。外部電源装置は、例えば車両100に搭載される二次電池である。インバータ3は、外部電源装置から供給される直流電流を交流電流に変換して、第1のモータ20A、第2のモータ20B、第1の電動オイルポンプ61Aおよび第2の電動オイルポンプ61Bに供給する。なお、第1の電動オイルポンプ61Aおよび第2の電動オイルポンプ61Bにそれぞれ別のインバータが搭載される場合には、インバータ3は、第1のモータ20Aおよび第2のモータ20Bに交流電流を供給する。 (4) The inverter 3 is electrically connected to the plurality of motor units 1A and 1B. Inverter 3 is electrically connected to first motor 20A, second motor 20B, first electric oil pump 61A, and second electric oil pump 61B. That is, inverter 3 is electrically connected to first motor 20A and second motor 20B. The inverter 3 has a plurality of switching elements 3a, a power board (not shown), and a capacitor (not shown). The switching element 3a is, for example, an insulated gate bipolar transistor (IGBT: Insulated Gate Bipolar Transistor). The capacitor and the switching element 3a are connected to a power board. Inverter 3 is connected to an external power supply (not shown). The external power supply is, for example, a secondary battery mounted on the vehicle 100. The inverter 3 converts a DC current supplied from an external power supply into an AC current, and supplies the AC current to the first motor 20A, the second motor 20B, the first electric oil pump 61A, and the second electric oil pump 61B. I do. When different inverters are mounted on the first electric oil pump 61A and the second electric oil pump 61B, the inverter 3 supplies an alternating current to the first motor 20A and the second motor 20B. I do.
 図5に示すように、スイッチング素子3aは、インバータケース4に複数設けられる。スイッチング素子3aの数は、例えば、モータユニット1A,1Bの数(本実施形態では2つ)の倍数である。 (5) As shown in FIG. 5, a plurality of switching elements 3a are provided in the inverter case 4. The number of switching elements 3a is, for example, a multiple of the number of motor units 1A and 1B (two in this embodiment).
 インバータ3は、第1のモータ20Aのステータ26に供給される電力を調整可能である。インバータ3は、第2のモータ20Bのステータ26に供給される電力を調整可能である。インバータ3は、図示しない電子制御装置によって制御される。例えば、モータ始動時、車両100の走行時等において第1のモータ20Aの負荷が所定値以上に大きい場合、第1のモータ20Aの温度が所定値以上に高い場合、および、第1のモータユニット1AのオイルOの温度が所定値以上に高い場合などには、インバータ3が第1の電動オイルポンプ61Aを動作させる。例えば、車両100の走行時等において第1のモータ20Aの負荷が所定値以下に小さい場合、第1のモータ20Aの温度が所定値以下に低い場合、および、第1のモータユニット1AのオイルOの温度が所定値以下に低い場合などには、インバータ3が第1の電動オイルポンプ61Aの動作を停止させる。また、例えば、モータ始動時、車両100の走行時等において第2のモータ20Bの負荷が所定値以上に大きい場合、第2のモータ20Bの温度が所定値以上に高い場合、および、第2のモータユニット1BのオイルOの温度が所定値以上に高い場合などには、インバータ3が第2の電動オイルポンプ61Bを動作させる。例えば、車両100の走行時等において第2のモータ20Bの負荷が所定値以下に小さい場合、第2のモータ20Bの温度が所定値以下に低い場合、および、第2のモータユニット1BのオイルOの温度が所定値以下に低い場合などには、インバータ3が第2の電動オイルポンプ61Bの動作を停止させる。 The inverter 3 is capable of adjusting the power supplied to the stator 26 of the first motor 20A. The inverter 3 is capable of adjusting the power supplied to the stator 26 of the second motor 20B. The inverter 3 is controlled by an electronic control unit (not shown). For example, when the load of the first motor 20A is higher than a predetermined value at the time of starting the motor, when the vehicle 100 is running, and the like, when the temperature of the first motor 20A is higher than a predetermined value, When the temperature of the oil O of 1A is higher than a predetermined value or the like, the inverter 3 operates the first electric oil pump 61A. For example, when the load of the first motor 20A is smaller than or equal to a predetermined value, such as when the vehicle 100 is running, when the temperature of the first motor 20A is lower than or equal to a predetermined value, and when the oil O of the first motor unit 1A is reduced. When the temperature is lower than the predetermined value, the inverter 3 stops the operation of the first electric oil pump 61A. Further, for example, when the load of the second motor 20B is larger than a predetermined value at the time of starting the motor, at the time of running the vehicle 100, and the like, when the temperature of the second motor 20B is higher than a predetermined value, and When the temperature of the oil O of the motor unit 1B is higher than a predetermined value or the like, the inverter 3 operates the second electric oil pump 61B. For example, when the load of the second motor 20B is smaller than or equal to a predetermined value, such as when the vehicle 100 is traveling, when the temperature of the second motor 20B is lower than or equal to a predetermined value, and when the oil O of the second motor unit 1B is reduced. When the temperature is lower than the predetermined value, the inverter 3 stops the operation of the second electric oil pump 61B.
 インバータケース4は、インバータ3を収容する。つまりインバータ3は、インバータケース4の内部に配置される。インバータケース4は、インバータ3を収容可能な容器状である。本実施形態の例では、インバータケース4の外形が、直方体状である(図2参照)。インバータケース4の車幅方向の長さは、インバータケース4の前後方向の長さおよび上下方向の長さよりも大きい。インバータケース4の前後方向の長さは、インバータケース4の上下方向の長さよりも大きい。 The inverter case 4 houses the inverter 3. That is, the inverter 3 is arranged inside the inverter case 4. The inverter case 4 has a container shape that can accommodate the inverter 3. In the example of the present embodiment, the outer shape of the inverter case 4 is a rectangular parallelepiped (see FIG. 2). The length of the inverter case 4 in the vehicle width direction is larger than the length of the inverter case 4 in the front-rear direction and the length in the up-down direction. The length of the inverter case 4 in the front-rear direction is larger than the length of the inverter case 4 in the up-down direction.
 インバータケース4は、ケース本体部4aと、ケース蓋部4bと、を有する。ケース本体部4aは、有底の四角形筒状である。インバータ3は、ケース本体部4aに配置される。ケース本体部4aは、板状の底壁4cと、角筒状の周壁と、を有する。本実施形態では、底壁4cが四角形板状であり、底壁4cの一対の板面は上下方向を向く。具体的に、底壁4cは長方形板状であり、底壁4cの車幅方向の長さは、底壁4cの前後方向の長さよりも大きい。底壁4cには、冷媒流路90の後述するインバータ冷却部90aが配置される。ケース蓋部4bは、四角形板状であり、一対の板面が上下方向を向く。ケース蓋部4bは、ケース本体部4aの上側の開口を塞ぐ。 The inverter case 4 has a case main body 4a and a case lid 4b. The case main body 4a is a bottomed square cylindrical shape. The inverter 3 is arranged on the case main body 4a. The case body 4a has a plate-shaped bottom wall 4c and a rectangular cylindrical peripheral wall. In the present embodiment, the bottom wall 4c is in the shape of a rectangular plate, and a pair of plate surfaces of the bottom wall 4c face in the vertical direction. Specifically, the bottom wall 4c has a rectangular plate shape, and the length of the bottom wall 4c in the vehicle width direction is larger than the length of the bottom wall 4c in the front-rear direction. On the bottom wall 4c, an inverter cooling unit 90a of the refrigerant flow path 90 described later is arranged. The case cover 4b has a rectangular plate shape, and a pair of plate surfaces face up and down. The case lid 4b closes an upper opening of the case body 4a.
 インバータケース4は、車両100のサブフレーム(図示省略)に支持される。インバータケース4は、例えば路面からの水の浸入等を考慮して、サブフレームの上部に配置される。インバータケース4の上下方向の位置は、第1のハウジング11Aの上部(上端部)の上下方向の位置、および、第2のハウジング11Bの上部の上下方向の位置と略同じである。インバータケース4は、第1のモータ20Aおよび第2のモータ20Bよりも鉛直方向の上側に配置される。 The inverter case 4 is supported by a sub-frame (not shown) of the vehicle 100. The inverter case 4 is disposed above the sub-frame in consideration of, for example, intrusion of water from a road surface. The vertical position of the inverter case 4 is substantially the same as the vertical position of the upper part (upper end) of the first housing 11A and the vertical position of the upper part of the second housing 11B. The inverter case 4 is disposed vertically above the first motor 20A and the second motor 20B.
 冷媒流路90には、第1のオイルクーラ65A、第2のオイルクーラ65Bおよびインバータ3を冷却する冷媒Rが流通する。冷媒Rは、例えばラジエータ液などの冷却液等である。本実施形態では、冷媒流路90を流通する冷媒Rが、複数のオイルクーラ65A,65Bおよび複数のスイッチング素子3a等を冷却する。つまり冷媒流路90を流れる冷媒Rは、インバータ3の少なくとも一部を冷却し、本実施形態では少なくともスイッチング素子3aを冷却する。 (4) The refrigerant R that cools the first oil cooler 65A, the second oil cooler 65B, and the inverter 3 flows through the refrigerant passage 90. The refrigerant R is, for example, a cooling liquid such as a radiator liquid. In the present embodiment, the coolant R flowing through the coolant channel 90 cools the plurality of oil coolers 65A and 65B, the plurality of switching elements 3a, and the like. That is, the refrigerant R flowing through the refrigerant flow path 90 cools at least a part of the inverter 3, and in this embodiment, cools at least the switching element 3a.
冷媒流路90は、インバータ冷却部90aと、供給流路90bと、第1の接続流路90cと、第2の接続流路90dと、第1の流出流路90eと、第2の流出流路90fと、排出流路90gと、を有する。供給流路90b、第1の接続流路90c、第2の接続流路90d、第1の流出流路90e、第2の流出流路90fおよび排出流路90gは、例えばパイプやチューブ等の配管部材等により構成される。なお、以下の説明では、冷媒Rの流れの下流側を単に下流側と呼び、冷媒Rの流れの上流側を単に上流側と呼ぶ場合がある。 The coolant channel 90 includes an inverter cooling unit 90a, a supply channel 90b, a first connection channel 90c, a second connection channel 90d, a first outflow channel 90e, and a second outflow channel. It has a passage 90f and a discharge passage 90g. The supply channel 90b, the first connection channel 90c, the second connection channel 90d, the first outflow channel 90e, the second outflow channel 90f, and the discharge channel 90g are, for example, pipes such as pipes and tubes. It is composed of members and the like. In the following description, the downstream side of the flow of the refrigerant R may be simply referred to as the downstream side, and the upstream side of the flow of the refrigerant R may be simply referred to as the upstream side.
 インバータ冷却部90aは、インバータケース4に配置され、インバータ3を冷却する。インバータ冷却部90aは、底壁4cの内部に設けられる冷媒Rの貯留室(貯留空間)である。つまりインバータ冷却部90aには、冷媒Rが溜められる。インバータ冷却部90aの上流側からインバータ冷却部90aに流入した冷媒Rは、インバータ冷却部90aに一時的に保持され、インバータ冷却部90aの下流側へ向けてインバータ冷却部90aから流出する。 (4) The inverter cooling unit 90a is disposed in the inverter case 4 and cools the inverter 3. The inverter cooling unit 90a is a storage room (storage space) for the refrigerant R provided inside the bottom wall 4c. That is, the refrigerant R is stored in the inverter cooling unit 90a. The refrigerant R flowing into the inverter cooling unit 90a from the upstream side of the inverter cooling unit 90a is temporarily held in the inverter cooling unit 90a, and flows out of the inverter cooling unit 90a toward the downstream side of the inverter cooling unit 90a.
 本実施形態では、上下方向から見て(つまり平面視において)、インバータ冷却部90aが四角形状である。具体的に、平面視においてインバータ冷却部90aは長方形状であり、インバータ冷却部90aの車幅方向の長さは前後方向の長さよりも大きい。特に図示しないが、インバータ冷却部90aの室の内壁は、底壁4cの上面から下側に向けて窪む凹部と、凹部の上側の開口を塞ぐ塞ぎ部と、により構成される。インバータ冷却部90aは、上下方向から見て、複数のスイッチング素子3aと重なって配置される。インバータ冷却部90aは、スイッチング素子3aの下面と対向する。塞ぎ部の上面が、スイッチング素子3aの下面と接触する。塞ぎ部を通して、インバータ冷却部90aの冷媒Rとスイッチング素子3aとの間で熱交換が行われることにより、スイッチング素子3aつまりインバータ3が冷却される。なお、塞ぎ部の一部が、スイッチング素子3aの下面により構成されてもよい。この場合、インバータ冷却部90aの内壁の一部は、スイッチング素子3aの下面により構成される。そして、インバータ冷却部90aの冷媒Rとスイッチング素子3aとの間で直接的に熱交換が行われることにより、インバータ3が冷却される。本実施形態では、インバータ冷却部90aが、インバータケース4に1つ設けられ、複数のスイッチング素子3aを冷却する。本実施形態によれば、インバータケース4および冷媒流路90の構造を簡素化しつつ、インバータ3を冷却できる。 In the present embodiment, when viewed from above and below (that is, in a plan view), the inverter cooling unit 90a has a square shape. Specifically, the inverter cooling unit 90a has a rectangular shape in plan view, and the length of the inverter cooling unit 90a in the vehicle width direction is larger than the length in the front-rear direction. Although not particularly shown, the inner wall of the chamber of the inverter cooling unit 90a is configured by a concave portion that is depressed downward from the upper surface of the bottom wall 4c, and a closing portion that closes an upper opening of the concave portion. The inverter cooling unit 90a is disposed so as to overlap with the plurality of switching elements 3a when viewed from above and below. Inverter cooling unit 90a faces the lower surface of switching element 3a. The upper surface of the closing portion contacts the lower surface of the switching element 3a. The switching element 3a, that is, the inverter 3 is cooled by performing heat exchange between the refrigerant R of the inverter cooling unit 90a and the switching element 3a through the closing part. Note that a part of the closing portion may be constituted by the lower surface of the switching element 3a. In this case, a part of the inner wall of the inverter cooling unit 90a is constituted by the lower surface of the switching element 3a. Then, heat is directly exchanged between the refrigerant R of the inverter cooling unit 90a and the switching element 3a, so that the inverter 3 is cooled. In the present embodiment, one inverter cooling unit 90a is provided in the inverter case 4, and cools the plurality of switching elements 3a. According to the present embodiment, it is possible to cool the inverter 3 while simplifying the structures of the inverter case 4 and the coolant channel 90.
 供給流路90bは、インバータ冷却部90aに冷媒Rを送る。供給流路90bは、冷媒流路90のうち、インバータ冷却部90aの上流側に位置する流路部分である。供給流路90bは、供給流路90bの下流側に位置するインバータ冷却部90aに冷媒Rを供給する。本実施形態では、供給流路90bが、インバータ冷却部90aと直接接続する。供給流路90bは、冷媒流路90に1つ設けられる。 (4) The supply channel 90b sends the refrigerant R to the inverter cooling unit 90a. The supply flow path 90b is a flow path portion of the refrigerant flow path 90 located upstream of the inverter cooling unit 90a. The supply channel 90b supplies the refrigerant R to the inverter cooling unit 90a located on the downstream side of the supply channel 90b. In the present embodiment, the supply passage 90b is directly connected to the inverter cooling unit 90a. One supply channel 90 b is provided in the refrigerant channel 90.
 第1の接続流路90cは、インバータ冷却部90aと第1のオイルクーラ65Aとを接続する。第1の接続流路90cは、インバータ冷却部90aから第1のオイルクーラ65Aに冷媒Rを送る。第1の接続流路90cは、冷媒流路90のうち、インバータ冷却部90aの下流側に位置する流路部分であり、かつ第1のオイルクーラ65Aの上流側に位置する流路部分である。第1の接続流路90cは、第1の接続流路90cの下流側に位置する第1のオイルクーラ65Aに冷媒Rを供給する。図2に示す例では、第1の接続流路90cが前後方向に延びて、インバータケース4のインバータ冷却部90aと、第1のオイルクーラ65Aとを繋ぐ。本実施形態では、第1の接続流路90cが、冷媒流路90に1つ設けられる。第1の接続流路90cは、インバータ冷却部90aと第1のオイルクーラ65Aとの間に、複数設けられてもよい。 The first connection flow path 90c connects the inverter cooling unit 90a and the first oil cooler 65A. The first connection flow channel 90c sends the refrigerant R from the inverter cooling unit 90a to the first oil cooler 65A. The first connection flow channel 90c is a flow channel portion located on the downstream side of the inverter cooling unit 90a in the refrigerant flow channel 90 and a flow channel portion located on the upstream side of the first oil cooler 65A. . The first connection channel 90c supplies the refrigerant R to a first oil cooler 65A located downstream of the first connection channel 90c. In the example shown in FIG. 2, the first connection flow path 90c extends in the front-rear direction, and connects the inverter cooling unit 90a of the inverter case 4 and the first oil cooler 65A. In the present embodiment, one first connection channel 90c is provided in the refrigerant channel 90. A plurality of first connection passages 90c may be provided between the inverter cooling unit 90a and the first oil cooler 65A.
 第2の接続流路90dは、インバータ冷却部90aと第2のオイルクーラ65Bとを接続する。第2の接続流路90dは、インバータ冷却部90aから第2のオイルクーラ65Bに冷媒Rを送る。第2の接続流路90dは、冷媒流路90のうち、インバータ冷却部90aの下流側に位置する流路部分であり、かつ第2のオイルクーラ65Bの上流側に位置する流路部分である。第2の接続流路90dは、第2の接続流路90dの下流側に位置する第2のオイルクーラ65Bに冷媒Rを供給する。図2に示す例では、第2の接続流路90dが前後方向に延びて、インバータケース4のインバータ冷却部90aと、第2のオイルクーラ65Bとを繋ぐ。本実施形態では、第2の接続流路90dが、冷媒流路90に1つ設けられる。第2の接続流路90dは、インバータ冷却部90aと第2のオイルクーラ65Bとの間に、複数設けられてもよい。第1の接続流路90cの数と、第2の接続流路90dの数とは、互いに同じであることが好ましい。 90The second connection flow path 90d connects the inverter cooling unit 90a and the second oil cooler 65B. The second connection flow channel 90d sends the refrigerant R from the inverter cooling unit 90a to the second oil cooler 65B. The second connection flow path 90d is a flow path part of the refrigerant flow path 90 located downstream of the inverter cooling unit 90a and a flow path part located upstream of the second oil cooler 65B. . The second connection flow channel 90d supplies the refrigerant R to the second oil cooler 65B located downstream of the second connection flow channel 90d. In the example shown in FIG. 2, the second connection flow path 90d extends in the front-rear direction, and connects the inverter cooling unit 90a of the inverter case 4 to the second oil cooler 65B. In the present embodiment, one second connection channel 90 d is provided in the refrigerant channel 90. A plurality of second connection passages 90d may be provided between the inverter cooling unit 90a and the second oil cooler 65B. It is preferable that the number of the first connection channels 90c and the number of the second connection channels 90d are the same.
 本実施形態によれば、1つの供給流路90bからインバータ冷却部90aに流入した冷媒Rが、インバータ冷却部90aから第1の接続流路90cを通って第1のオイルクーラ65Aに送られ、インバータ冷却部90aから第2の接続流路90dを通って第2のオイルクーラ65Bに送られる。インバータケース4の上流側では、冷媒流路90が1つの供給流路90bに集約されるので、インバータケース4に冷媒Rを供給する配管を簡素化できる。このため、車両100に搭載する配管をレイアウトしやすく、また冷媒ポンプ95等の他の部材と配管を接続しやすい。インバータケース4の下流側では、冷媒流路90が第1の接続流路90cと第2の接続流路90dとに分岐され、第1の接続流路90cは第1のオイルクーラ65Aに接続し、第2の接続流路90dは第2のオイルクーラ65Bに接続する(つまり並列接続される)。このため、第1のオイルクーラ65Aと第2のオイルクーラ65Bとを均等に冷却できる。第1のオイルクーラ65Aと第2のオイルクーラ65Bとが均等に冷却されるので、各オイルクーラ65A,65Bが冷却する各ハウジング11A,11B内のオイルOも均等に冷却される。この結果、各ハウジング11A,11Bに収容される各モータ20A,20Bも均等に冷却および潤滑されて、複数のモータ20A,20B同士の性能のばらつきが抑えられる。 According to the present embodiment, the refrigerant R that has flowed into the inverter cooling unit 90a from one supply channel 90b is sent from the inverter cooling unit 90a to the first oil cooler 65A through the first connection channel 90c, The air is sent from the inverter cooling unit 90a to the second oil cooler 65B through the second connection flow path 90d. On the upstream side of the inverter case 4, the refrigerant flow path 90 is integrated into one supply flow path 90 b, so that the piping for supplying the refrigerant R to the inverter case 4 can be simplified. For this reason, the piping mounted on the vehicle 100 is easily laid out, and the piping is easily connected to another member such as the refrigerant pump 95. On the downstream side of the inverter case 4, the refrigerant flow path 90 is branched into a first connection flow path 90c and a second connection flow path 90d, and the first connection flow path 90c is connected to the first oil cooler 65A. The second connection flow path 90d is connected to the second oil cooler 65B (that is, connected in parallel). Therefore, the first oil cooler 65A and the second oil cooler 65B can be cooled evenly. Since the first oil cooler 65A and the second oil cooler 65B are uniformly cooled, the oil O in each of the housings 11A and 11B cooled by each of the oil coolers 65A and 65B is also uniformly cooled. As a result, the motors 20A, 20B housed in the housings 11A, 11B are also cooled and lubricated evenly, so that variations in performance among the plurality of motors 20A, 20B are suppressed.
 特に図示しないが、本実施形態とは異なり、例えば冷媒流路90が、インバータ冷却部90aと第1のオイルクーラ65Aとを接続する流路部分と、第1のオイルクーラ65Aと第2のオイルクーラ65Bとを接続する流路部分と、を有する構成(つまり直列接続)である場合、第1のオイルクーラ65Aを冷却した後の冷媒Rが、第2のオイルクーラ65Bに送られる。この場合、2つのオイルクーラ65A,65Bを均等に冷却することができず、第1のオイルクーラ65Aの冷却機能(性能)に比べて第2のオイルクーラ65Bの冷却機能が低下し、各オイルクーラ65A,65Bが冷却する各ハウジング11A,11B内のオイルOも均等に冷却されない。この結果、各ハウジング11A,11Bに収容される各モータ20A,20Bも均等に冷却および潤滑されず、複数のモータ20A,20B同士の間で性能のばらつきが生じる。 Although not particularly shown, unlike the present embodiment, for example, the refrigerant flow path 90 includes a flow path portion connecting the inverter cooling section 90a and the first oil cooler 65A, and a first oil cooler 65A and a second oil cooler 65A. In the case of a configuration having a flow path portion connecting to the cooler 65B (that is, a series connection), the refrigerant R after cooling the first oil cooler 65A is sent to the second oil cooler 65B. In this case, the two oil coolers 65A and 65B cannot be cooled evenly, and the cooling function of the second oil cooler 65B is lower than the cooling function (performance) of the first oil cooler 65A. The oil O in each of the housings 11A and 11B cooled by the coolers 65A and 65B is not evenly cooled. As a result, the motors 20A and 20B accommodated in the housings 11A and 11B are not evenly cooled and lubricated, and the performance varies among the plurality of motors 20A and 20B.
 特に、第1のハウジング11A内に第1のモータ20A以外の第1の伝達機構30A等が収容されており、第1のハウジング11A内にオイルOが流れる経路(油路40の構成要素)が複数設けられ、第2のハウジング11B内に第2のモータ20B以外の第2の伝達機構30B等が収容されており、第2のハウジング11B内にオイルOが流れる経路が複数設けられる場合には、各ハウジング11A,11B内のオイルOを互いに均等にかつ安定して冷却することがより難しくなる傾向がある。このような構成を有する場合であっても、本実施形態によれば、各ハウジング11A,11B内のオイルOを互いに均等にかつ安定して冷却できる。 In particular, a first transmission mechanism 30A and the like other than the first motor 20A are housed in the first housing 11A, and a path (a component of the oil path 40) through which the oil O flows in the first housing 11A. When a plurality of paths are provided, a second transmission mechanism 30B and the like other than the second motor 20B are housed in the second housing 11B, and a plurality of paths through which oil O flows are provided in the second housing 11B. There is a tendency that it is more difficult to cool the oil O in each of the housings 11A and 11B equally and stably. According to the present embodiment, even in the case of having such a configuration, the oil O in each of the housings 11A and 11B can be uniformly and stably cooled.
 また本実施形態では、第1のオイルクーラ65A、第2のオイルクーラ65Bおよびインバータケース4が、第1のモータ20Aおよび第2のモータ20Bよりも上側に配置されるので、第1のオイルクーラ65Aおよび第2のオイルクーラ65Bと、インバータケース4とを配管部材等により接続しやすい。すなわち、インバータケース4のインバータ冷却部90aと第1のオイルクーラ65Aとを、第1の接続流路90cにより接続する際の作業性がよい。また、第1の接続流路90cの長さを短く抑えられ、第1の接続流路90cの配管部材等を簡素化できる。第1の接続流路90cを通る冷媒Rが、外気と熱交換して温度上昇することを抑制できる。インバータケース4のインバータ冷却部90aと第2のオイルクーラ65Bとを、第2の接続流路90dにより接続する際の作業性がよい。また、第2の接続流路90dの長さを短く抑えられ、第2の接続流路90dの配管部材等を簡素化できる。第2の接続流路90dを通る冷媒Rが、外気と熱交換して温度上昇することを抑制できる。 Further, in the present embodiment, the first oil cooler 65A, the second oil cooler 65B, and the inverter case 4 are arranged above the first motor 20A and the second motor 20B, so that the first oil cooler 65A and the second oil cooler 65B and the inverter case 4 can be easily connected by a piping member or the like. That is, workability when connecting the inverter cooling unit 90a of the inverter case 4 and the first oil cooler 65A by the first connection flow path 90c is good. In addition, the length of the first connection channel 90c can be kept short, and the piping member and the like of the first connection channel 90c can be simplified. The refrigerant R passing through the first connection flow channel 90c can be prevented from exchanging heat with the outside air and increasing in temperature. The workability when connecting the inverter cooling unit 90a of the inverter case 4 and the second oil cooler 65B by the second connection flow path 90d is good. Further, the length of the second connection flow channel 90d can be suppressed to be short, and the piping member and the like of the second connection flow channel 90d can be simplified. It is possible to suppress a rise in temperature of the refrigerant R passing through the second connection flow path 90d due to heat exchange with the outside air.
 第1の流出流路90eは、冷媒流路90のうち、第1のオイルクーラ65Aの下流側に位置する流路部分である。第1の流出流路90eは、第1のオイルクーラ65Aと排出流路90gとの間に配置されて、これらを繋ぐ。第1の流出流路90eは、第1のオイルクーラ65Aに接続される。第1の流出流路90eには、第1のオイルクーラ65Aから流出される冷媒Rが流れる。第1の流出流路90eは、排出流路90gに接続される。第1の流出流路90eを流れる冷媒Rは、排出流路90gに送られる。すなわち、第1の流出流路90eは、第1の流出流路90eの上流側に位置する第1のオイルクーラ65Aから冷媒Rを受け入れ、下流側の排出流路90gへ向けて流す。本実施形態では、第1の流出流路90eが、冷媒流路90に1つ設けられる。第1の流出流路90eは、第1のオイルクーラ65Aと排出流路90gとの間に、複数設けられてもよい。 The first outflow channel 90e is a channel portion of the refrigerant channel 90 that is located downstream of the first oil cooler 65A. The first outflow passage 90e is arranged between the first oil cooler 65A and the discharge passage 90g, and connects them. The first outflow channel 90e is connected to the first oil cooler 65A. The refrigerant R flowing out of the first oil cooler 65A flows through the first outflow channel 90e. The first outflow channel 90e is connected to the discharge channel 90g. The refrigerant R flowing through the first outflow channel 90e is sent to the discharge channel 90g. That is, the first outflow channel 90e receives the refrigerant R from the first oil cooler 65A located on the upstream side of the first outflow channel 90e and flows the refrigerant R toward the downstream discharge channel 90g. In the present embodiment, one first outflow channel 90 e is provided in the refrigerant channel 90. A plurality of first outflow passages 90e may be provided between the first oil cooler 65A and the discharge passage 90g.
 図2に示す例では、第1の流出流路90eが第1のオイルクーラ65Aから後側に向けて延びる部分を有する。ただしこれに限らず、図1に示す例のように、第1の流出流路90eが、第1のオイルクーラ65Aから前側に向けて延びる部分を有していてもよい。また、図3および図4に示す例のように、第1の流出流路90eが、第1のオイルクーラ65Aから車幅方向に延びる部分を有していてもよい。特に図示しないが、第1の流出流路90eは、第1のオイルクーラ65Aから上側に延びる部分を有していてもよい。 In the example shown in FIG. 2, the first outflow channel 90e has a portion extending rearward from the first oil cooler 65A. However, the invention is not limited thereto, and the first outflow channel 90e may have a portion extending forward from the first oil cooler 65A as in the example shown in FIG. Further, as in the example shown in FIGS. 3 and 4, the first outflow channel 90e may have a portion extending from the first oil cooler 65A in the vehicle width direction. Although not particularly shown, the first outflow channel 90e may have a portion extending upward from the first oil cooler 65A.
 第2の流出流路90fは、冷媒流路90のうち、第2のオイルクーラ65Bの下流側に位置する流路部分である。第2の流出流路90fは、第2のオイルクーラ65Bと排出流路90gとの間に配置されて、これらを繋ぐ。第2の流出流路90fは、第2のオイルクーラ65Bに接続される。第2の流出流路90fには、第2のオイルクーラ65Bから流出される冷媒Rが流れる。第2の流出流路90fは、排出流路90gに接続される。第2の流出流路90fを流れる冷媒Rは、排出流路90gに送られる。すなわち、第2の流出流路90fは、第2の流出流路90fの上流側に位置する第2のオイルクーラ65Bから冷媒Rを受け入れ、下流側の排出流路90gへ向けて流す。本実施形態では、第2の流出流路90fが、冷媒流路90に1つ設けられる。第2の流出流路90fは、第2のオイルクーラ65Bと排出流路90gとの間に、複数設けられてもよい。 {Circle around (2)} The second outflow channel 90f is a channel portion of the refrigerant channel 90 located downstream of the second oil cooler 65B. The second outflow passage 90f is arranged between the second oil cooler 65B and the discharge passage 90g, and connects them. The second outflow channel 90f is connected to the second oil cooler 65B. The refrigerant R flowing out of the second oil cooler 65B flows through the second outflow channel 90f. The second outflow channel 90f is connected to the discharge channel 90g. The refrigerant R flowing through the second outflow channel 90f is sent to the discharge channel 90g. That is, the second outflow channel 90f receives the refrigerant R from the second oil cooler 65B located on the upstream side of the second outflow channel 90f, and flows the refrigerant R toward the downstream discharge channel 90g. In the present embodiment, one second outflow channel 90 f is provided in the refrigerant channel 90. A plurality of second outflow passages 90f may be provided between the second oil cooler 65B and the discharge passage 90g.
 図2に示す例では、第2の流出流路90fが第2のオイルクーラ65Bから後側に向けて延びる部分を有する。ただしこれに限らず、図1に示す例のように、第2の流出流路90fが、第2のオイルクーラ65Bから前側に向けて延びる部分を有していてもよい。第2の流出流路90fは、第2のオイルクーラ65Bから車幅方向に延びる部分を有していてもよい。第2の流出流路90fは、第2のオイルクーラ65Bから上側に延びる部分を有していてもよい。 In the example shown in FIG. 2, the second outflow channel 90f has a portion extending rearward from the second oil cooler 65B. However, the invention is not limited thereto, and the second outflow channel 90f may have a portion extending forward from the second oil cooler 65B, as in the example shown in FIG. The second outflow channel 90f may have a portion extending from the second oil cooler 65B in the vehicle width direction. The second outflow channel 90f may have a portion extending upward from the second oil cooler 65B.
 排出流路90gは、冷媒流路90のうち、第1の流出流路90eおよび第2の流出流路90fの下流側に位置する流路部分である。排出流路90gは、冷媒流路90に1つ設けられる。1つの排出流路90gは、第1の流出流路90eおよび第2の流出流路90fと接続される。つまり、第1の流出流路90eおよび第2の流出流路90fが、下流側において1つの排出流路90gに集約される。排出流路90gは、第1の流出流路90eを流れる冷媒Rと第2の流出流路90fを流れる冷媒Rとを合流させて、ラジエータ96へ送る。 The discharge channel 90g is a channel portion of the refrigerant channel 90 located downstream of the first outflow channel 90e and the second outflow channel 90f. One discharge channel 90 g is provided in the refrigerant channel 90. One discharge channel 90g is connected to first outflow channel 90e and second outflow channel 90f. That is, the first outflow channel 90e and the second outflow channel 90f are integrated into one discharge channel 90g on the downstream side. The discharge channel 90g combines the refrigerant R flowing through the first outflow channel 90e and the refrigerant R flowing through the second outflow channel 90f, and sends it to the radiator 96.
 本実施形態によれば、第1のオイルクーラ65Aを冷却した後の冷媒Rが、第1のオイルクーラ65Aに接続される第1の流出流路90eを通って、排出流路90gに流入する。また、第2のオイルクーラ65Bを冷却した後の冷媒Rが、第2のオイルクーラ65Bに接続される第2の流出流路90fを通って、排出流路90gに流入する。第1のオイルクーラ65Aおよび第2のオイルクーラ65Bの下流側で、冷媒流路90が1つの排出流路90gに集約されるので、ラジエータ96等に冷媒Rを戻す配管を簡素化できる。このため、車両100に搭載する配管をレイアウトしやすく、またラジエータ96等の他の部材と配管を接続しやすい。 According to the present embodiment, the refrigerant R after cooling the first oil cooler 65A flows into the discharge passage 90g through the first outflow passage 90e connected to the first oil cooler 65A. . In addition, the refrigerant R after cooling the second oil cooler 65B flows into the discharge passage 90g through the second outflow passage 90f connected to the second oil cooler 65B. On the downstream side of the first oil cooler 65A and the second oil cooler 65B, the refrigerant flow path 90 is integrated into one discharge flow path 90g, so that piping for returning the refrigerant R to the radiator 96 or the like can be simplified. Therefore, it is easy to lay out the piping mounted on the vehicle 100, and it is easy to connect the piping to another member such as the radiator 96.
 冷媒ポンプ95は、冷媒流路90に冷媒Rを循環させる。冷媒ポンプ95は、冷媒流路90の一部に接続される。冷媒ポンプ95は、例えばウォーターポンプ等である。本実施形態の例では、冷媒ポンプ95が車両100の前側部分に配置される。冷媒ポンプ95は、供給流路90bと接続される。冷媒ポンプ95は、供給流路90bの上流側に位置する。冷媒ポンプ95は、冷媒ポンプ95の下流側に位置する供給流路90bに冷媒Rを供給する。 The refrigerant pump 95 circulates the refrigerant R through the refrigerant flow path 90. The refrigerant pump 95 is connected to a part of the refrigerant channel 90. The refrigerant pump 95 is, for example, a water pump or the like. In the example of the present embodiment, the refrigerant pump 95 is arranged on a front portion of the vehicle 100. The refrigerant pump 95 is connected to the supply channel 90b. The refrigerant pump 95 is located on the upstream side of the supply channel 90b. The refrigerant pump 95 supplies the refrigerant R to the supply channel 90b located downstream of the refrigerant pump 95.
 ラジエータ96は、冷媒流路90の冷媒Rを冷却する。ラジエータ96は、冷媒流路90の一部に接続される。本実施形態では、ラジエータ96が車両100の前側部分に配置される。ラジエータ96は、排出流路90gと接続される。ラジエータ96は、排出流路90gの下流側に位置し、かつ冷媒ポンプ95の上流側に位置する。ラジエータ96は、ラジエータ96の下流側に位置する冷媒ポンプ95に冷媒Rを供給する。言い換えると、ラジエータ96で冷却された冷媒Rが、冷媒ポンプ95により吸入され、供給流路90bに吐出される。 The radiator 96 cools the refrigerant R in the refrigerant passage 90. The radiator 96 is connected to a part of the coolant channel 90. In the present embodiment, the radiator 96 is arranged on a front portion of the vehicle 100. The radiator 96 is connected to the discharge channel 90g. The radiator 96 is located on the downstream side of the discharge passage 90 g and on the upstream side of the refrigerant pump 95. The radiator 96 supplies the refrigerant R to a refrigerant pump 95 located downstream of the radiator 96. In other words, the refrigerant R cooled by the radiator 96 is sucked by the refrigerant pump 95 and discharged to the supply channel 90b.
 なお、本発明は前述の実施形態に限定されず、例えば下記に説明するように、本発明の趣旨を逸脱しない範囲において構成の変更等が可能である。 Note that the present invention is not limited to the above-described embodiment, and for example, as described below, a configuration change or the like can be made without departing from the spirit of the present invention.
 前述の実施形態では、駆動装置10が、車両100のリア用の駆動装置であるが、これに限らない。駆動装置10は、車両100のフロント用の駆動装置であってもよい。 In the above-described embodiment, the drive device 10 is the rear drive device of the vehicle 100, but is not limited thereto. The drive device 10 may be a front drive device of the vehicle 100.
 前述の実施形態では、インバータ冷却部90aが、インバータケース4に1つ設けられ、複数のスイッチング素子3aを冷却する例を挙げたが、これに限らない。図6に示す変形例のように、インバータ冷却部90aが、インバータケース4に複数設けられてもよい。複数のインバータ冷却部90aは、複数のスイッチング素子3aをそれぞれ冷却する。この変形例では、スイッチング素子3aの数とインバータ冷却部90aの数とが、互いに同じである。つまり1つのインバータ冷却部90aが、1つのスイッチング素子3aを冷却する。なお、1つのインバータ冷却部90aが、複数のスイッチング素子3aを冷却してもよい。上下方向から見て、各インバータ冷却部90aは、各スイッチング素子3aとそれぞれ重なって配置される。インバータ冷却部90aは、インバータ冷却部90aと上下方向に対向するスイッチング素子3aを冷却する。また、冷媒流路90は、供給流路90bと複数のインバータ冷却部90aとを接続する複数の分岐流路90hを有する。つまり分岐流路90hは、冷媒流路90に複数設けられる。分岐流路90hは、供給流路90bとインバータ冷却部90aとの間に配置されて、これらを繋ぐ。図示の例では、分岐流路90hが、供給流路90bと1つのインバータ冷却部90aとの間に、1つ設けられる。この変形例では、インバータ冷却部90aの数が2つであり、分岐流路90hの数も2つである。1つのインバータ冷却部90aと1つの分岐流路90hとは、1対1で接続される。なお、分岐流路90hは、供給流路90bと1つのインバータ冷却部90aとの間に、複数設けられてもよい。図示の例では、分岐流路90hが、インバータケース4の底壁4cの内部に設けられる。この変形例によれば、上下方向から見て、各インバータ冷却部90aの形状を各スイッチング素子3aの形状と合わせることができる。これにより、インバータ冷却部90aが、インバータケース4においてスイッチング素子3a以外の部分、つまりインバータ3以外の部分を無駄に冷却することが抑えられて、インバータ3の冷却効率が向上する。 In the above-described embodiment, an example is described in which one inverter cooling unit 90a is provided in the inverter case 4 to cool the plurality of switching elements 3a, but the invention is not limited thereto. As in the modification shown in FIG. 6, a plurality of inverter cooling units 90a may be provided in the inverter case 4. The plurality of inverter cooling units 90a respectively cool the plurality of switching elements 3a. In this modified example, the number of switching elements 3a and the number of inverter cooling units 90a are the same. That is, one inverter cooling unit 90a cools one switching element 3a. Note that one inverter cooling unit 90a may cool the plurality of switching elements 3a. When viewed from above and below, each inverter cooling unit 90a is arranged so as to overlap with each switching element 3a. The inverter cooling unit 90a cools the switching element 3a vertically opposed to the inverter cooling unit 90a. In addition, the refrigerant channel 90 has a plurality of branch channels 90h that connect the supply channel 90b and the plurality of inverter cooling units 90a. That is, a plurality of branch channels 90 h are provided in the refrigerant channel 90. The branch flow path 90h is arranged between the supply flow path 90b and the inverter cooling unit 90a and connects them. In the illustrated example, one branch flow channel 90h is provided between the supply flow channel 90b and one inverter cooling unit 90a. In this modification, the number of the inverter cooling units 90a is two, and the number of the branch passages 90h is also two. One inverter cooling section 90a and one branch flow path 90h are connected one-to-one. Note that a plurality of branch passages 90h may be provided between the supply passage 90b and one inverter cooling unit 90a. In the illustrated example, the branch flow path 90h is provided inside the bottom wall 4c of the inverter case 4. According to this modification, the shape of each inverter cooling unit 90a can be matched with the shape of each switching element 3a when viewed from above and below. This suppresses the inverter cooling unit 90a from cooling the part of the inverter case 4 other than the switching element 3a, that is, the part other than the inverter 3 uselessly, and improves the cooling efficiency of the inverter 3.
 インバータケース4の外形は、前述の実施形態で説明した直方体状に限らない。インバータケース4の外形は、例えば、直方体状以外の多角形柱状等であってもよい。上下方向から見て、インバータ冷却部90aの形状は、前述の実施形態で説明した四角形状に限らない。インバータ冷却部90aの形状は、例えば、四角形状以外の多角形状等であってもよい。 外形 The outer shape of the inverter case 4 is not limited to the rectangular parallelepiped described in the above embodiment. The outer shape of the inverter case 4 may be, for example, a polygonal column shape other than a rectangular parallelepiped shape. When viewed from above and below, the shape of the inverter cooling unit 90a is not limited to the square shape described in the above embodiment. The shape of the inverter cooling unit 90a may be, for example, a polygonal shape other than a square shape.
 前述の実施形態では、第1の伝達機構30Aおよび第2の伝達機構30Bが遊星歯車機構である例を挙げたが、これに限らない。第1の伝達機構30Aおよび第2の伝達機構30Bは、遊星歯車機構以外の減速機構であってもよい。また、第1のハウジング11A内および第2のハウジング11B内にそれぞれ設けられるオイルOの循環経路は、前述した油路40の構成に限らない。 In the above-described embodiment, an example has been given in which the first transmission mechanism 30A and the second transmission mechanism 30B are planetary gear mechanisms, but the invention is not limited thereto. The first transmission mechanism 30A and the second transmission mechanism 30B may be reduction mechanisms other than the planetary gear mechanism. Further, the circulation paths of the oil O provided in the first housing 11A and the second housing 11B are not limited to the configuration of the oil path 40 described above.
 前述の実施形態では、駆動装置10の第1のモータユニット1Aが、1つの第1のモータ20Aと、1つの第1の伝達機構30Aと、を備え、第2のモータユニット1Bが、1つの第2のモータ20Bと、1つの第2の伝達機構30Bと、を備える例を挙げたが、これに限らない。第1のモータユニット1Aが、1つの第1のモータ20Aと、2つの第1の伝達機構30Aと、を備えてもよい。この場合、第1のモータ20Aのモータシャフト22の軸方向の両端部に、第1の伝達機構30Aがそれぞれ接続される。そして第1のモータ20Aは、2つの第1の伝達機構30Aを介して、2つの第1の車輪(車幅方向の左側の車輪および右側の車輪)を駆動する。また、第2のモータユニット1Bが、1つの第2のモータ20Bと、2つの第2の伝達機構30Bと、を備えてもよい。この場合、第2のモータ20Bのモータシャフト22の軸方向の両端部に、第2の伝達機構30Bがそれぞれ接続される。そして第2のモータ20Bは、2つの第2の伝達機構30Bを介して、2つの第2の車輪(車幅方向の左側の車輪および右側の車輪)を駆動する。この場合、第1のモータユニット1Aの第1のモータ20Aのモータ軸J2と、第2のモータユニット1Bの第2のモータ20Bのモータ軸J2とは、例えば、車両100の前後方向に互いに間隔をあけて配置される。 In the above-described embodiment, the first motor unit 1A of the driving device 10 includes one first motor 20A and one first transmission mechanism 30A, and the second motor unit 1B includes one Although the example provided with the second motor 20B and one second transmission mechanism 30B has been described, the present invention is not limited to this. The first motor unit 1A may include one first motor 20A and two first transmission mechanisms 30A. In this case, the first transmission mechanisms 30A are respectively connected to both axial ends of the motor shaft 22 of the first motor 20A. Then, first motor 20A drives two first wheels (left and right wheels in the vehicle width direction) via two first transmission mechanisms 30A. Further, the second motor unit 1B may include one second motor 20B and two second transmission mechanisms 30B. In this case, the second transmission mechanism 30B is connected to both axial ends of the motor shaft 22 of the second motor 20B. The second motor 20B drives two second wheels (the left and right wheels in the vehicle width direction) via the two second transmission mechanisms 30B. In this case, for example, the motor shaft J2 of the first motor 20A of the first motor unit 1A and the motor shaft J2 of the second motor 20B of the second motor unit 1B are spaced from each other in the longitudinal direction of the vehicle 100, for example. Are placed with a gap.
 前述の実施形態では、駆動装置10が、電気自動車(EV)に搭載される例を挙げたが、これに限らない。駆動装置10は、例えば、プラグインハイブリッド自動車(PHEV)やハイブリッド自動車(HEV)等に搭載されてもよい。 In the above-described embodiment, the example in which the driving device 10 is mounted on the electric vehicle (EV) is described, but the invention is not limited to this. The drive device 10 may be mounted on, for example, a plug-in hybrid vehicle (PHEV) or a hybrid vehicle (HEV).
 その他、本発明の趣旨から逸脱しない範囲において、前述の実施形態、変形例およびなお書き等で説明した各構成(構成要素)を組み合わせてもよく、また、構成の付加、省略、置換、その他の変更が可能である。また本発明は、前述した実施形態によって限定されず、特許請求の範囲によってのみ限定される。 In addition, the components (components) described in the above-described embodiments, modifications, and the like may be combined without departing from the spirit of the present invention. Changes are possible. The present invention is not limited by the above-described embodiments, but is limited only by the scope of the claims.
 3…インバータ、3a…スイッチング素子、4…インバータケース、10…駆動装置、11A…第1のハウジング、11B…第2のハウジング、20A…第1のモータ、20B…第2のモータ、65A…第1のオイルクーラ、65B…第2のオイルクーラ、90…冷媒流路、90a…インバータ冷却部、90b…供給流路、90c…第1の接続流路、90d…第2の接続流路、90e…第1の流出流路、90f…第2の流出流路、90g…排出流路、90h…分岐流路、95…冷媒ポンプ、96…ラジエータ、100…車両、102A…第1の車輪、102B…第2の車輪、J1…中心軸、J2…モータ軸、O…オイル、R…冷媒、VS…鉛直面 DESCRIPTION OF SYMBOLS 3 ... Inverter, 3a ... Switching element, 4 ... Inverter case, 10 ... Drive device, 11A ... 1st housing, 11B ... 2nd housing, 20A ... 1st motor, 20B ... 2nd motor, 65A ... No. 1 oil cooler, 65B second oil cooler, 90 refrigerant channel, 90a inverter cooling section, 90b supply channel, 90c first connection channel, 90d second connection channel, 90e ... first outflow channel, 90f ... second outflow channel, 90g ... discharge channel, 90h ... branch channel, 95 ... refrigerant pump, 96 ... radiator, 100 ... vehicle, 102A ... first wheel, 102B ... second wheel, J1 ... center axis, J2 ... motor axis, O ... oil, R ... refrigerant, VS ... vertical surface

Claims (7)

  1.  車両に設けられる複数の車輪のうち、第1の車輪を駆動する第1のモータと、
     前記第1のモータを収容する第1のハウジングと、
     前記第1のハウジングに設けられ、前記第1のハウジングの内部を循環するオイルを冷却する第1のオイルクーラと、
     前記複数の車輪のうち、第2の車輪を駆動する第2のモータと、
     前記第2のモータを収容する第2のハウジングと、
     前記第2のハウジングに設けられ、前記第2のハウジングの内部を循環するオイルを冷却する第2のオイルクーラと、
     前記第1のモータおよび前記第2のモータと電気的に接続されるインバータと、
     前記インバータを収容するインバータケースと、
     前記第1のオイルクーラ、前記第2のオイルクーラおよび前記インバータを冷却する冷媒が流通する冷媒流路と、を備え、
     前記冷媒流路は、
     前記インバータケースに配置され、前記インバータを冷却するインバータ冷却部と、
     前記インバータ冷却部に冷媒を送る1つの供給流路と、
     前記インバータ冷却部と前記第1のオイルクーラとを接続し、前記インバータ冷却部から前記第1のオイルクーラに冷媒を送る第1の接続流路と、
     前記インバータ冷却部と前記第2のオイルクーラとを接続し、前記インバータ冷却部から前記第2のオイルクーラに冷媒を送る第2の接続流路と、を有する、駆動装置。
    A first motor that drives a first wheel among a plurality of wheels provided in the vehicle;
    A first housing that houses the first motor;
    A first oil cooler provided in the first housing to cool oil circulating inside the first housing;
    A second motor that drives a second wheel of the plurality of wheels;
    A second housing that houses the second motor;
    A second oil cooler provided in the second housing, for cooling oil circulating inside the second housing;
    An inverter electrically connected to the first motor and the second motor;
    An inverter case accommodating the inverter;
    A refrigerant flow passage through which a refrigerant for cooling the first oil cooler, the second oil cooler, and the inverter flows,
    The refrigerant flow path,
    An inverter cooling unit disposed on the inverter case and cooling the inverter;
    One supply flow path for sending a refrigerant to the inverter cooling unit;
    A first connection flow path that connects the inverter cooling unit and the first oil cooler, and that sends a refrigerant from the inverter cooling unit to the first oil cooler;
    And a second connection flow path that connects the inverter cooling unit and the second oil cooler and sends a refrigerant from the inverter cooling unit to the second oil cooler.
  2.  請求項1に記載の駆動装置であって、
     前記冷媒流路に冷媒を循環させる冷媒ポンプと、
     前記冷媒流路の冷媒を冷却するラジエータと、を備える、駆動装置。
    The drive device according to claim 1,
    A refrigerant pump for circulating a refrigerant in the refrigerant channel,
    A radiator for cooling the refrigerant in the refrigerant flow path.
  3. 請求項2に記載の駆動装置であって、
     前記冷媒流路は、
     前記第1のオイルクーラに接続され、前記第1のオイルクーラから流出される冷媒が流れる第1の流出流路と、
     前記第2のオイルクーラに接続され、前記第2のオイルクーラから流出される冷媒が流れる第2の流出流路と、
     前記第1の流出流路および前記第2の流出流路と接続され、前記第1の流出流路を流れる冷媒と前記第2の流出流路を流れる冷媒とを合流させて前記ラジエータへ送る1つの排出流路と、を有する、駆動装置。
    The drive device according to claim 2, wherein
    The refrigerant flow path,
    A first outflow channel connected to the first oil cooler, through which a refrigerant flowing out of the first oil cooler flows;
    A second outflow channel connected to the second oil cooler and through which a refrigerant flowing out of the second oil cooler flows;
    The refrigerant connected to the first outflow channel and the second outflow channel, and the refrigerant flowing in the first outflow channel and the refrigerant flowing in the second outflow channel are combined and sent to the radiator 1 A drive device having two discharge channels.
  4. 請求項1~3のいずれか一項に記載の駆動装置であって、
     前記インバータは、複数のスイッチング素子を有し、
     前記インバータ冷却部は、前記インバータケースに1つ設けられ、複数の前記スイッチング素子を冷却する、駆動装置。
    The drive device according to any one of claims 1 to 3, wherein
    The inverter has a plurality of switching elements,
    The drive device, wherein one inverter cooling unit is provided in the inverter case and cools a plurality of the switching elements.
  5. 請求項1~3のいずれか一項に記載の駆動装置であって、
     前記インバータは、複数のスイッチング素子を有し、
     前記インバータ冷却部は、前記インバータケースに複数設けられ、
     複数の前記インバータ冷却部が、複数の前記スイッチング素子をそれぞれ冷却し、
     前記冷媒流路は、前記供給流路と複数の前記インバータ冷却部とを接続する複数の分岐流路を有する、駆動装置。
    The drive device according to any one of claims 1 to 3, wherein
    The inverter has a plurality of switching elements,
    A plurality of the inverter cooling units are provided in the inverter case,
    The plurality of inverter cooling units respectively cool the plurality of switching elements,
    The drive device, wherein the refrigerant flow path has a plurality of branch flow paths connecting the supply flow path and the plurality of inverter cooling units.
  6. 請求項1~5のいずれか一項に記載の駆動装置であって、
     前記第1のモータのモータ軸および前記第2のモータのモータ軸が、前記車両の車幅方向に延び、
     前記第1のモータと前記第2のモータとが、前記車両の前記車幅方向の中心軸を含み前記車幅方向に垂直な鉛直面を中心として、互いに面対称に配置される、駆動装置。
    The driving device according to any one of claims 1 to 5, wherein
    A motor shaft of the first motor and a motor shaft of the second motor extend in a vehicle width direction of the vehicle,
    A drive device wherein the first motor and the second motor are arranged symmetrically with respect to each other about a vertical plane including a center axis of the vehicle in the vehicle width direction and perpendicular to the vehicle width direction.
  7. 請求項1~6のいずれか一項に記載の駆動装置であって、
     前記第1のオイルクーラ、前記第2のオイルクーラおよび前記インバータケースが、前記第1のモータおよび前記第2のモータよりも鉛直方向の上側に配置される、駆動装置。
    The driving device according to any one of claims 1 to 6, wherein
    A driving device, wherein the first oil cooler, the second oil cooler, and the inverter case are arranged vertically above the first motor and the second motor.
PCT/JP2019/037134 2018-09-25 2019-09-20 Drive device WO2020066955A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020549173A JPWO2020066955A1 (en) 2018-09-25 2019-09-20 Drive device
CN201980063204.0A CN112770926A (en) 2018-09-25 2019-09-20 Drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-178667 2018-09-25
JP2018178667 2018-09-25

Publications (1)

Publication Number Publication Date
WO2020066955A1 true WO2020066955A1 (en) 2020-04-02

Family

ID=69949431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037134 WO2020066955A1 (en) 2018-09-25 2019-09-20 Drive device

Country Status (3)

Country Link
JP (1) JPWO2020066955A1 (en)
CN (1) CN112770926A (en)
WO (1) WO2020066955A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022056954A (en) * 2020-09-30 2022-04-11 トヨタ自動車株式会社 Cooling device
US20220352788A1 (en) * 2021-04-29 2022-11-03 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Drive system for an electric vehicle and electric vehicle
WO2022270101A1 (en) * 2021-06-24 2022-12-29 ジヤトコ株式会社 Unit
TWI807496B (en) * 2020-11-19 2023-07-01 日商日本電產股份有限公司 drive unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148378A (en) * 2010-01-21 2011-08-04 Aisin Seiki Co Ltd In-wheel motor cooling device
JP2013247768A (en) * 2012-05-25 2013-12-09 Ntn Corp Heating control device for motor-mounted vehicle
JP2015218869A (en) * 2014-05-20 2015-12-07 トヨタ自動車株式会社 Lubrication device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3886696B2 (en) * 1999-04-27 2007-02-28 アイシン・エィ・ダブリュ株式会社 Drive device
JP5099431B2 (en) * 2008-02-15 2012-12-19 アイシン・エィ・ダブリュ株式会社 Inverter unit
CN104786825A (en) * 2014-01-22 2015-07-22 比亚迪股份有限公司 Hybrid electric vehicle and forecabin thereof
WO2017058664A1 (en) * 2015-09-29 2017-04-06 Faraday & Future Inc. Integrated drive and motor assemblies
US10442285B2 (en) * 2015-11-24 2019-10-15 Toyota Jidosha Kabushiki Kaisha Cooling apparatus for vehicle
CN105667285B (en) * 2016-01-04 2018-06-12 福建省汽车工业集团云度新能源汽车股份有限公司 A kind of integral electric automobile cooling system
CN207328174U (en) * 2017-08-17 2018-05-08 Lg电子株式会社 Power plant module and the electric automobile for including it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148378A (en) * 2010-01-21 2011-08-04 Aisin Seiki Co Ltd In-wheel motor cooling device
JP2013247768A (en) * 2012-05-25 2013-12-09 Ntn Corp Heating control device for motor-mounted vehicle
JP2015218869A (en) * 2014-05-20 2015-12-07 トヨタ自動車株式会社 Lubrication device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022056954A (en) * 2020-09-30 2022-04-11 トヨタ自動車株式会社 Cooling device
TWI807496B (en) * 2020-11-19 2023-07-01 日商日本電產股份有限公司 drive unit
US20220352788A1 (en) * 2021-04-29 2022-11-03 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Drive system for an electric vehicle and electric vehicle
DE102021111088A1 (en) 2021-04-29 2022-11-03 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Drive system for an electric vehicle and electric vehicle
WO2022270101A1 (en) * 2021-06-24 2022-12-29 ジヤトコ株式会社 Unit

Also Published As

Publication number Publication date
CN112770926A (en) 2021-05-07
JPWO2020066955A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
WO2020066955A1 (en) Drive device
JP4591312B2 (en) Vehicle drive device
US20220149701A1 (en) Motor unit
CN111585394B (en) Motor unit
JP5703698B2 (en) Rotating machine and vehicle
WO2021124792A1 (en) Drive device
JP2021008901A (en) Driving device
WO2019208081A1 (en) Motor unit and vehicle drive device
WO2019208083A1 (en) Motor unit
TWI792763B (en) Power transmission device, motor unit and vehicle
US11496023B2 (en) Drive apparatus
WO2021140807A1 (en) Motor unit
WO2020032026A1 (en) Motor unit
WO2019208084A1 (en) Motor unit and method for controlling motor unit
JP2007159314A (en) Vehicle driving apparatus
JP2021112052A (en) Motor unit
US20230090548A1 (en) Drive apparatus
JP7468313B2 (en) Drive unit
US11863052B2 (en) Drive device
WO2019208082A1 (en) Motor unit
JP2022136836A (en) Rotary electric machine, and drive unit
US20230139180A1 (en) Drive apparatus
JP2021061675A (en) Motor unit
JP2023050385A (en) Rotary electric machine and drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866730

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549173

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866730

Country of ref document: EP

Kind code of ref document: A1