JPH0898464A - Hydraulic circuit of driver for electric automobile - Google Patents

Hydraulic circuit of driver for electric automobile

Info

Publication number
JPH0898464A
JPH0898464A JP25611594A JP25611594A JPH0898464A JP H0898464 A JPH0898464 A JP H0898464A JP 25611594 A JP25611594 A JP 25611594A JP 25611594 A JP25611594 A JP 25611594A JP H0898464 A JPH0898464 A JP H0898464A
Authority
JP
Japan
Prior art keywords
oil
circuit
motor
cooling
oil pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25611594A
Other languages
Japanese (ja)
Other versions
JP3424351B2 (en
Inventor
Iwao Kanefuji
厳士 金藤
Masahiro Hasebe
正広 長谷部
Masayuki Takenaka
正幸 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP25611594A priority Critical patent/JP3424351B2/en
Priority to US08/534,465 priority patent/US5718302A/en
Publication of JPH0898464A publication Critical patent/JPH0898464A/en
Application granted granted Critical
Publication of JP3424351B2 publication Critical patent/JP3424351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0476Electric machines and gearing, i.e. joint lubrication or cooling or heating thereof

Abstract

PURPOSE: To ensure sufficient quantity of motor cooling oil during high speed rotation by setting an appropriate quantity of lubricant in the torque transmission means of a driver for electric automobile where a motor is combined with the torque transmission means. CONSTITUTION: A driver 1 comprises a motor 2, means 3, 4 for transmitting the output torque from the motor 2 to driving wheels 9, an oil pump 5, a driving means 8 for the oil pump 5, a delivery circuit 71 being fed with oil delivered from the oil pump 5, and a lubrication circuit 72 coupled through a restrictor 74 with the delivery circuit 71 in order to introduce the oil to the torque transmission means 3, 4. The driver 1 further comprises a cooling circuit 73 coupled through a restrictor 75 with the delivery circuit 75 in order to introduce the oil to the motor 2, and a valve 76 for feeding the oil from the delivery circuit 71 to the cooling circuit 73 when the hydraulic pressure of the delivery circuit 71 exceeds a predetermined level. Since the valve 76 regulates the pressure to sustain a constant oil supply to the lubrication circuit 72 even during high speed rotation, oil supply to the cooling circuit 73 is increased as the r.p.m. increases.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気自動車に用いる駆
動装置に関し、特にその潤滑及び冷却のための油圧回路
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive unit used in an electric vehicle, and more particularly to a hydraulic circuit for lubricating and cooling the drive unit.

【0002】[0002]

【従来の技術】従来、電気自動車用の駆動装置の一形式
として、モータと、その出力トルクを駆動輪に伝達する
トルク伝達手段とを組み合わせたものがある。上記形式
の電気自動車用駆動装置においては、トルク伝達手段各
部の潤滑と、特に中高速時にモータの冷却を行うため
に、潤滑と冷却を兼ねる油圧回路が設けられる。こうし
た油圧回路として、米国特許第4,418,777号明
細書には、電動オイルポンプから吐出された油をケース
壁内の油路を通して一旦サポート部まで導き、そこで分
流させてトルク伝達手段の各部を潤滑するための潤滑回
路と、モータのコイルを冷却するための冷却回路とに所
定の配分で供給する油圧回路が開示されている。
2. Description of the Related Art Conventionally, as one type of drive device for an electric vehicle, there has been a combination of a motor and torque transmission means for transmitting output torque of the motor to drive wheels. In the drive device for an electric vehicle of the type described above, a hydraulic circuit that serves both lubrication and cooling is provided in order to lubricate each part of the torque transmission means and particularly to cool the motor at medium and high speeds. As such a hydraulic circuit, U.S. Pat. No. 4,418,777 discloses that oil discharged from an electric oil pump is once guided to a support portion through an oil passage in a case wall, and then divided to be divided there to form each portion of a torque transmission means. There is disclosed a hydraulic circuit for supplying a predetermined amount to a lubrication circuit for lubricating the motor and a cooling circuit for cooling the coil of the motor.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記装置に
おいて潤滑油量は、ある一定量を確保すれば足り、しか
もそのようにした方が油の攪拌等による回転抵抗の増加
を防ぐのに好ましいのに対して、冷却油量の方は、モー
タの発熱量の増加に対して増大させる必要がある。しか
るに上記構成の油圧回路では、オイルポンプの吐出油量
が増加すれば、潤滑回路及び冷却回路に供給される油量
もそれに比例してそれぞれ増加する。したがって、モ−
タの冷却に多量の油を必要とする時、それに応じてオイ
ルポンプの吐出油量を多くすると、モ−タの冷却油量の
みならず、トルク伝達手段の潤滑油量も増大し、潤滑回
路に必要量をはるかに超える油が供給されることにな
る。この超過分の油を吐出させるための駆動力は、オイ
ルポンプの駆動損失となる。
By the way, in the above apparatus, it is sufficient to secure a certain amount of lubricating oil, and it is preferable to do so in order to prevent an increase in rotational resistance due to agitation of oil. On the other hand, the cooling oil amount needs to be increased with respect to the increase in the heat generation amount of the motor. However, in the hydraulic circuit having the above configuration, when the amount of oil discharged from the oil pump increases, the amount of oil supplied to the lubricating circuit and the cooling circuit also increases in proportion to each. Therefore, the mode
When a large amount of oil is required for cooling the motor, if the amount of oil discharged from the oil pump is increased accordingly, not only the amount of cooling oil for the motor but also the amount of lubricating oil for the torque transmission means increases, and the lubricating circuit Will be supplied with much more oil than is needed. The driving force for discharging the excess amount of oil causes a driving loss of the oil pump.

【0004】そこで、本発明はモ−タの冷却油量だけを
オイルポンプの吐出油量の増大に伴って増加させるよう
にし、それにより不要な潤滑油量の消費をなくすことで
オイルポンプの駆動損失を低減しながらモータの冷却を
効率良く行うことができるようにした電気自動車用駆動
装置の油圧回路を提供することを目的とする。
Therefore, according to the present invention, only the cooling oil amount of the motor is increased along with the increase of the discharge oil amount of the oil pump, thereby eliminating the consumption of the unnecessary lubricating oil amount to drive the oil pump. An object of the present invention is to provide a hydraulic circuit of a drive device for an electric vehicle, which is capable of efficiently cooling a motor while reducing loss.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、モ−タと、該モ−タの出力トルクを駆動
輪へ伝達するトルク伝達手段と、オイルポンプと、該オ
イルポンプを回転駆動する駆動手段と、前記オイルポン
プより吐出された油を供給される吐出回路と、該吐出回
路に第1の絞り手段を介して連結され、前記トルク伝達
手段へ油を導く潤滑回路と、前記吐出回路に第2の絞り
手段を介して連結され、前記モ−タへ油を導く冷却回路
と、前記吐出回路の油圧が所定圧以上になった時に、前
記吐出回路から前記冷却回路へ油を供給するバルブとを
備えたことを特徴とする。そして、前記駆動手段は、前
記モータの出力トルクを前記オイルポンプに伝達する第
2のトルク伝達手段とすることができる。
To achieve the above object, the present invention provides a motor, torque transmitting means for transmitting the output torque of the motor to a drive wheel, an oil pump, and the oil. A drive circuit for rotationally driving the pump, a discharge circuit to which the oil discharged from the oil pump is supplied, and a lubrication circuit connected to the discharge circuit via first throttle means and for guiding the oil to the torque transmission means. And a cooling circuit connected to the discharge circuit through a second throttle means for guiding oil to the motor, and when the hydraulic pressure of the discharge circuit becomes equal to or higher than a predetermined pressure, the cooling circuit is discharged from the discharge circuit. And a valve for supplying oil to. The drive means may be second torque transmission means for transmitting the output torque of the motor to the oil pump.

【0006】[0006]

【発明の作用及び効果】上記のように構成された油圧回
路では、オイルポンプの吐出油量が少ないときには、ト
ルク伝達手段への潤滑油の供給は、ポンプ、吐出回路、
第1の絞り手段及び潤滑回路の経路で行われ、モ−タへ
の冷却油の供給は、ポンプ、吐出回路、第2の絞り手段
及び冷却回路の経路で行われる。これに対して、オイル
ポンプの吐出油量が多いときには、トルク伝達手段への
潤滑油の供給、モ−タへの冷却油の供給、共に上記経路
が保たれながら、モ−タへの冷却油の供給については、
吐出回路の油圧が所定圧以上になることでバルブが開口
し、吐出回路の余剰油を冷却回路へ供給するようになる
ため、ポンプ、吐出回路、バルブ及び冷却回路の経路を
辿る冷却油の供給が追加される。
In the hydraulic circuit configured as described above, when the amount of oil discharged from the oil pump is small, the lubricating oil is supplied to the torque transmitting means by the pump, the discharge circuit,
The first throttle means and the lubrication circuit are used to supply the cooling oil to the motor, and the pump, the discharge circuit, the second throttle means and the cooling circuit are used to supply the cooling oil. On the other hand, when the amount of oil discharged from the oil pump is large, the lubricating oil is supplied to the torque transmitting means and the cooling oil is supplied to the motor. For the supply of
When the hydraulic pressure of the discharge circuit becomes higher than a predetermined pressure, the valve opens and the surplus oil of the discharge circuit is supplied to the cooling circuit.Therefore, the supply of cooling oil that follows the route of the pump, the discharge circuit, the valve and the cooling circuit. Is added.

【0007】かくして本発明の油圧回路によれば、吐出
回路の油圧が所定圧以上になるとバルブが開口し、吐出
回路の余剰油を冷却回路へ供給するため、吐出回路の油
圧はオイルポンプの吐出油量に関わりなく一定に保た
れ、第1の絞り手段を介して潤滑回路からの一定の油量
をトルク伝達手段へ供給する。これに対して、バルブを
介して冷却回路に供給される油は、吐出回路から潤滑回
路に供給される油の中の余剰分であるため、モ−タの発
熱量が増加したときには、多量に必要となるモ−タの冷
却油量を吐出回路の余剰油で補うことができる。したが
って、トルク伝達手段へ必要以上の油量を供給すること
がなくなり、その分のオイルポンプの余分な駆動損失を
低減することができる。しかも、余剰油をモ−タの冷却
に充てることでオイルポンプの吐出量に比してモータの
冷却油量を増大させることができ、結果的にモータの冷
却及びトルク伝達手段の潤滑それぞれの目的に合わせた
油量を確実に確保することができる。
Thus, according to the hydraulic circuit of the present invention, when the hydraulic pressure in the discharge circuit becomes equal to or higher than the predetermined pressure, the valve opens and the surplus oil in the discharge circuit is supplied to the cooling circuit. The amount of oil is kept constant regardless of the amount of oil, and a constant amount of oil from the lubricating circuit is supplied to the torque transmitting means via the first throttle means. On the other hand, since the oil supplied to the cooling circuit via the valve is an excess of the oil supplied from the discharge circuit to the lubricating circuit, a large amount of oil is generated when the heat generation amount of the motor increases. The required amount of cooling oil for the motor can be supplemented with surplus oil in the discharge circuit. Therefore, an unnecessary amount of oil is not supplied to the torque transmission means, and an extra drive loss of the oil pump can be reduced accordingly. Moreover, the amount of cooling oil for the motor can be increased as compared with the discharge amount of the oil pump by using the excess oil for cooling the motor, and as a result, the purpose of cooling the motor and lubricating the torque transmission means can be increased. It is possible to reliably secure the amount of oil according to.

【0008】また、オイルポンプを回転駆動する駆動手
段をモータの出力トルクをオイルポンプに伝達する第2
のトルク伝達手段とした場合、モータの出力トルクによ
りオイルポンプを回転駆動することができ、電気自動車
用駆動装置を簡単な構成とすることができる。さらに、
車両の走行抵抗は、車速の増加に伴って増加するため、
電気自動車においては、車速の増加に伴ってモータが大
きな出力を発生する頻度が高くなり、モータの平均発熱
量も車速の増加に伴って増加するが、上記のようにオイ
ルポンプをモータの出力トルクによって回転駆動するこ
とにより、オイルポンプの吐出油量を車速の増加に応じ
て増加させ、これに伴いモータの冷却油量を車速の増加
に応じて増加させることができ、冷却を効率良く行うこ
とができる。また、モータの被駆動時には、電力を消費
することなくオイルポンプを回転駆動させることができ
るので、モータ被駆動時にもトルク伝達手段への潤滑油
量及びモータへの冷却油量を確実に確保することができ
る。
A second means for transmitting the output torque of the motor to the oil pump by the drive means for rotationally driving the oil pump.
When the torque transmission means is used, the oil pump can be rotationally driven by the output torque of the motor, and the electric vehicle drive device can have a simple configuration. further,
Since the running resistance of the vehicle increases as the vehicle speed increases,
In an electric vehicle, the motor frequently produces a large output as the vehicle speed increases, and the average heat value of the motor also increases as the vehicle speed increases. By rotating the oil pump, the amount of oil discharged from the oil pump can be increased in accordance with the increase in vehicle speed, and the cooling oil amount in the motor can be increased in accordance with the increase in vehicle speed, and cooling can be performed efficiently. You can Further, since the oil pump can be driven to rotate without consuming electric power when the motor is driven, the amount of lubricating oil to the torque transmitting means and the amount of cooling oil to the motor can be reliably secured even when the motor is driven. be able to.

【0009】[0009]

【実施例】以下、実施例を示す図面を参照しながら本発
明を説明する。図1に概念的に示すように、本発明に係
る電気自動車用駆動装置1は、モ−タ2と、モ−タ2の
出力トルクを駆動輪9へ伝達するトルク伝達手段3,4
と、オイルポンプ5と、オイルポンプ5を回転駆動する
駆動手段8と、オイルポンプ5より吐出された油を供給
される吐出回路71と、吐出回路71に第1の絞り手段
74を介して連結され、トルク伝達手段3,4へ油を導
く潤滑回路72と、吐出回路71に第2の絞り手段75
を介して連結され、モ−タ2へ油を導く冷却回路73
と、吐出回路71の油圧が所定圧以上になった時に、吐
出回路71から冷却回路73へ油を供給するバルブ76
とを備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing the embodiments. As conceptually shown in FIG. 1, an electric vehicle drive device 1 according to the present invention includes a motor 2 and torque transmission means 3, 4 for transmitting output torque of the motor 2 to drive wheels 9.
An oil pump 5, a drive means 8 for rotationally driving the oil pump 5, a discharge circuit 71 to which the oil discharged from the oil pump 5 is supplied, and a connection to the discharge circuit 71 via a first throttle means 74. The lubricating circuit 72 that guides oil to the torque transmitting means 3 and 4 and the second throttle means 75 in the discharge circuit 71.
And a cooling circuit 73 for guiding oil to the motor 2
And a valve 76 for supplying oil from the discharge circuit 71 to the cooling circuit 73 when the hydraulic pressure of the discharge circuit 71 exceeds a predetermined pressure.
It has and.

【0010】図に示す駆動手段8としては、モータ2に
よりオイルポンプ5を回転駆動する第2のトルク伝達手
段81〜85によりオイルポンプ5を回転駆動するよう
にしても良いし、別途オイルポンプ駆動用モータと、該
モータを制御する制御手段を設けて、モータのトルク指
令値、電気自動車の車速、コイルエンドの温度及びオイ
ルの温度等を検出して、モータのトルク指令値が大きい
とき、電気自動車の車速が大きいとき、コイルエンドの
温度が高いとき及びオイルの温度が高いときに、オイル
ポンプ5の吐出油量を増大させるように前記オイルポン
プ駆動用モータを制御しても良い。
As the driving means 8 shown in the figure, the oil pump 5 may be rotationally driven by the second torque transmitting means 81 to 85 which rotationally drive the oil pump 5 by the motor 2, or may be separately driven by the oil pump. And a control means for controlling the motor are provided to detect the torque command value of the motor, the vehicle speed of the electric vehicle, the temperature of the coil end, the oil temperature, etc., and when the torque command value of the motor is large, the The oil pump driving motor may be controlled to increase the amount of oil discharged from the oil pump 5 when the vehicle speed is high, the coil end temperature is high, and the oil temperature is high.

【0011】次に、これら各部について、より具体化し
た図面を参照してさらに詳細に説明する。図2に断面を
示すように、この電気自動車用駆動装置1は、モータケ
ース10mとギヤケース10gとに分割されたケース1
0のモータケース10m側に固定されたステータ21
と、ステータ21の径方向内側に配設されたロータ22
と、ロータ22にスプライン連結され、ラジアル及びス
ラスト力を支持する一対のボールベアリング16,18
でモータケース10mに回転自在に支持されたロータ軸
23とを有するモータ2と、ギヤケース10g側にロー
タ軸23と同軸に配設され、モータ2の回転を減速して
出力するトルク伝達手段を構成するプラネタリギヤ3
と、プラネタリギヤ3の出力を本例において一方はロー
タ軸23内を通して、他方は直接、車両の左右駆動輪に
伝達する、同じくトルク伝達手段を構成する差動装置4
とから構成されている。
Next, each of these parts will be described in more detail with reference to the more specific drawings. As shown in the cross section in FIG. 2, the electric vehicle drive device 1 includes a case 1 divided into a motor case 10m and a gear case 10g.
Stator 21 fixed to the 0m motor case 10m side
And a rotor 22 arranged radially inside the stator 21.
And a pair of ball bearings 16 and 18 which are spline-connected to the rotor 22 and support radial and thrust forces.
A motor 2 having a rotor shaft 23 rotatably supported by the motor case 10m and a rotor shaft 23 coaxially arranged on the gear case 10g side, and constituting torque transmitting means for decelerating and outputting the rotation of the motor 2. Planetary gear 3
In this example, the output of the planetary gear 3 is transmitted through the rotor shaft 23, and the other is directly transmitted to the left and right drive wheels of the vehicle.
It consists of and.

【0012】プラネタリギヤ3は、ロータ軸23に連結
するサンギヤ31と、ギヤケース10gにラジアル方向
への遊びを許容して回り止め固定されたリングギヤ32
と、モータケース10m側のサポートに回転自在に支持
され、サンギヤ31及びリングギヤ32に噛合するピニ
オン33を回転自在に支持し、差動装置4に連結された
キャリヤ34とを有する。サンギヤ31は、ロータ軸2
3に端部を当接させて配設され、スリーブ81によりス
プライン嵌合で相互に連結されている。
The planetary gear 3 is composed of a sun gear 31 connected to the rotor shaft 23 and a ring gear 32 fixed to the gear case 10g so as to allow radial play.
And a carrier 34 that is rotatably supported by a support on the side of the motor case 10m, rotatably supports a pinion 33 that meshes with the sun gear 31 and the ring gear 32, and is coupled to the differential device 4. The sun gear 31 is the rotor shaft 2
3, the end portions of which are in contact with each other, and are connected to each other by a spline fitting by a sleeve 81.

【0013】差動装置4は、プラネタリギヤ3のキャリ
ヤ34と一体化された部分と、別体でこれにボルト止め
された部分とからなる差動装置ケース40内に配設され
た一対の差動大歯車41と、これらに噛合し、差動装置
ケース40にピン止めされた差動小歯車軸42に遊嵌さ
れた複数の差動小歯車43(図にその1つだけを示す)
とを備え、一方の差動大歯車41の軸孔には、ロータ軸
23内を通して差動装置4の一方の出力をヨーク軸12
a(図に想像線で示す)を介して一方の駆動輪に伝達す
るドライブ軸11の端部がスプライン嵌合且つスナップ
リング止めされ、他方の差動大歯車41の軸孔には、差
動装置4の他方の出力を直接他方の駆動輪に伝達するド
ライブ軸を兼ねるヨーク軸12bがスプライン嵌合且つ
スナップリング止めされている。差動装置ケース40の
一方の部分に形成された軸部は、ボールベアリング15
を介してギヤケース10gの外端壁のサポート部に支持
され、キャリヤ34と一体化された他方の部分は、キャ
リヤ34に形成された軸部をボールベアリング13を介
してモータケース10m側のサポート部に支持されてい
る。
The differential gear 4 is a pair of differential gears arranged in a differential gear case 40 which is composed of a portion integrated with the carrier 34 of the planetary gear 3 and a separate bolted portion. A large gear 41 and a plurality of differential small gears 43 meshing with these and loosely fitted on a differential small gear shaft 42 pinned to the differential case 40 (only one of which is shown in the figure).
And one of the outputs of the differential device 4 is passed through the rotor shaft 23 through the shaft hole of the one differential large gear 41.
The end portion of the drive shaft 11 that transmits to one drive wheel via a (shown by an imaginary line) is spline-fitted and snap ring-fastened, and the differential large gear 41 has a differential in its shaft hole. A yoke shaft 12b, which also functions as a drive shaft for directly transmitting the other output of the device 4 to the other drive wheel, is spline-fitted and snap ring-fastened. The shaft portion formed on one portion of the differential gear case 40 has a ball bearing 15
The other part, which is supported by the support part of the outer end wall of the gear case 10g via the carrier and is integrated with the carrier 34, has a shaft part formed on the carrier 34 through the ball bearing 13 and a support part on the side of the motor case 10m. Supported by.

【0014】なお、図2において、符号19はドライブ
軸11をヨーク軸12aにスプライン連結する連結スリ
ーブを示し、該スリーブ19はその外端の外周をボール
ベアリング17を介してモータケース10mの外端を閉
じるリッドに支持され、内端側外周をニードルベアリン
グ20を介してロータ軸23の内周に支持されている。
また、符号101は駆動装置内の潤滑兼冷却油を回収す
る油溜めのオイルパン、24はモータ2に3相交流電力
を給電するパワーケーブル、5は駆動装置各部の潤滑兼
冷却油をケース10に内において循環させるべくパーキ
ングギヤ82のスリーブ81にギヤ連結されたオイルポ
ンプ、6はロータ22の回転位置を検出すべくオイルポ
ンプ軸に連結されたレゾルバ、7はオイルストレーナ及
びレリーフ弁形式のバルブ76を組込んだバルブボデ
ィ、82はパーキングギヤ、102はモータケース10
mの外周面に多数突出形成され、モータの熱を直接大気
に逃がす冷却フィンを示す。
In FIG. 2, reference numeral 19 indicates a connecting sleeve for spline-connecting the drive shaft 11 to the yoke shaft 12a. The outer periphery of the sleeve 19 is connected to the outer end of the motor case 10m via a ball bearing 17. Is supported by the lid, and the outer circumference of the inner end side is supported by the inner circumference of the rotor shaft 23 via the needle bearing 20.
Further, reference numeral 101 is an oil pan of an oil sump for collecting lubrication and cooling oil in the drive device, 24 is a power cable for supplying three-phase AC power to the motor 2, and 5 is a case 10 for lubrication and cooling oil of each part of the drive device. An oil pump geared to the sleeve 81 of the parking gear 82 to circulate in the interior of the engine, 6 a resolver connected to the oil pump shaft to detect the rotational position of the rotor 22, and 7 an oil strainer and a relief valve type valve. A valve body incorporating 76, a parking gear 82, and a motor case 10
The cooling fins are formed in a large number on the outer peripheral surface of m and allow the heat of the motor to escape directly to the atmosphere.

【0015】特にこの例では、駆動手段8としてモータ
2の出力トルクをオイルポンプ5に伝達する第2のトル
ク伝達手段を用いているため、上記駆動手段8は、スリ
ーブ81の端部に形成された外周歯811に噛合するギ
ヤ83と、それに重合して一体化され、オイルポンプ軸
に一体形成された被動ギヤ85に噛合する小径のギヤ8
4とからなる中間ギヤとで構成される第2のトルク伝達
手段を備えている。中間ギヤ83,84は、一端をモー
タケース10mのセンタサポートに支持され、他端をオ
イルポンプハウジングに支持されている。
Particularly in this example, since the second torque transmitting means for transmitting the output torque of the motor 2 to the oil pump 5 is used as the driving means 8, the driving means 8 is formed at the end of the sleeve 81. Gear 83 meshing with the outer peripheral teeth 811 and a small diameter gear 8 meshing with the driven gear 85 which is superposed on the gear 83 and integrally formed with the oil pump shaft.
And a second torque transmission means composed of an intermediate gear consisting of 4 and 4. The intermediate gears 83 and 84 have one end supported by the center support of the motor case 10m and the other end supported by the oil pump housing.

【0016】上記のように構成された電気自動車用駆動
装置1では、モータ2のロータ22の回転がロータ軸2
3からパーキングギヤ82のスリーブ81を連結手段に
利用してサンギヤ31に伝えられる。サンギヤ31に伝
達された回転は、ギヤケース10gに回り止め固定され
たリングギヤ32に自転の反力を取るピニオン33の公
転としてキャリヤ34に取り出され、それと一体化され
た差動装置ケース40を回転させる。差動装置ケース4
0の回転は、差動小歯車軸42及びそれに遊嵌された差
動小歯車43を経て、一方で差動大歯車41からそれに
スプライン嵌合したドライブ軸11の回転とされ、他方
で差動大歯車41を経てそれにスプライン嵌合したヨー
ク軸12bの回転とされて、最終的に図示しない左右駆
動輪に伝達され、車両の駆動力とされる。
In the electric vehicle drive device 1 configured as described above, the rotation of the rotor 22 of the motor 2 is caused by the rotation of the rotor shaft 2.
3 is transmitted to the sun gear 31 by utilizing the sleeve 81 of the parking gear 82 as a connecting means. The rotation transmitted to the sun gear 31 is taken out to the carrier 34 as the revolution of the pinion 33 that takes a reaction force of the rotation to the ring gear 32 fixed to the gear case 10g to rotate, and the differential case 40 integrated with it is rotated. . Differential case 4
The rotation of 0 passes through the differential small gear shaft 42 and the differential small gear 43 loosely fitted thereto, and is the rotation of the drive shaft 11 spline-fitted from the large differential gear 41 on one side, and the differential on the other side. The yoke shaft 12b, which is spline-fitted through the large gear 41, is rotated, and finally transmitted to the left and right driving wheels (not shown) to be used as the driving force of the vehicle.

【0017】図3は上記電気自動車用駆動装置1の油圧
回路を図2に明瞭に現れない部分を展開して示してお
り、ギヤケース10gの下部には上記ストレーナとバル
ブ76を内蔵したバルブボディ7が取付けられている。
バルブボディ7とオイルポンプ5とは吸込回路70と吐
出回路71とで接続されている。吐出回路71は、この
例では、バルブボディ7内で図4に示すように3分岐し
ており、その第1の油路71aには前記第1の絞り手段
74を構成するオリフィスが設けられており、オリフィ
スの下流側が第1の潤滑油路72aとなっている。この
油路72aは、ギヤケース10gの端壁内を通り、サポ
ート部で差動装置ケース40の軸部に達し、そこから2
分岐して一方は、差動装置ケース40のケース壁内油路
を経てキャリヤ34のピニオン支持軸341内に至り、
該軸の径方向油孔で終端している。他方はヨーク軸12
b内の油路を経て差動装置ケース40内に開口し、さら
にドライブ軸11内油路111を経て放射方向の2つの
油孔112,113で終端している。
FIG. 3 shows the hydraulic circuit of the drive system 1 for the electric vehicle in an undeveloped part which does not clearly appear in FIG. 2, and a valve body 7 having the strainer and the valve 76 built in is provided below the gear case 10g. Is installed.
The valve body 7 and the oil pump 5 are connected by a suction circuit 70 and a discharge circuit 71. In this example, the discharge circuit 71 is divided into three branches in the valve body 7 as shown in FIG. 4, and the first oil passage 71a is provided with an orifice which constitutes the first throttle means 74. The downstream side of the orifice is the first lubricating oil passage 72a. This oil passage 72a passes through the inside of the end wall of the gear case 10g, reaches the shaft of the differential gear case 40 at the support portion, and from there, 2
One of the branches branches to the inside of the pinion support shaft 341 of the carrier 34 through the oil passage in the case wall of the differential case 40,
It terminates in a radial oil hole in the shaft. The other is the yoke shaft 12
It opens in the differential gear case 40 through the oil passage in b, and further ends in two oil holes 112 and 113 in the radial direction via the oil passage 111 in the drive shaft 11.

【0018】バルブボディ7内で3分岐した第2の油路
71bには前記第2の絞り手段75を構成するオリフィ
スが設けられており、オリフィスの下流側は、この例に
おいて、図4に示すように、2分岐して、一方が第2の
潤滑油路72bとなっている。この油路72bは、図5
及び図6に示すように、モータケース10mの周壁内を
通り、リッド内の第3の絞り手段78すなわちオリフィ
スで絞られてモータケース10m外端側のリッドのサポ
ート部に達して、連結スリーブ19とロータ軸23との
間に開口して終端している。2分岐した他方の回路は、
この例において冷却回路73を構成し、図6に示すモー
タケース10m内に配設された接続パイプ73pを経て
モータケース10mの上部に取付けられた一対のノズル
ブロックの一方107aに接続している。両ノズルブロ
ック107a,107b間はモータケース10m最上部
の油路73cで接続されている。それぞれのノズルブロ
ック107a,107bにはモータ2のステータ21の
コイル211に指向するノズルとして機能する多数の第
4の絞り手段79a,79bが形成されている。
The second oil passage 71b, which is branched into three in the valve body 7, is provided with an orifice constituting the second throttle means 75, and the downstream side of the orifice is shown in FIG. 4 in this example. As described above, it is branched into two, and one side serves as the second lubricating oil passage 72b. This oil passage 72b is shown in FIG.
As shown in FIG. 6, it passes through the peripheral wall of the motor case 10m, is squeezed by the third squeezing means 78 in the lid, that is, an orifice, and reaches the support portion of the lid on the outer end side of the motor case 10m. And the rotor shaft 23 are opened and terminated. The other circuit with two branches is
In this example, the cooling circuit 73 is configured, and is connected to one of the pair of nozzle blocks 107a mounted on the upper part of the motor case 10m via the connection pipe 73p arranged in the motor case 10m shown in FIG. The nozzle blocks 107a and 107b are connected by an oil passage 73c at the top of the motor case 10m. Each of the nozzle blocks 107a and 107b is formed with a large number of fourth throttle means 79a and 79b functioning as nozzles directed to the coil 211 of the stator 21 of the motor 2.

【0019】図4に示すように、バルブボディ内で3分
岐した第3の油路71cには、本例において、前記吐出
回路71の油圧すなわち1次圧が所定圧以上になった時
にスプリング負荷に抗して開弁し、吐出回路71から冷
却回路73へ油を逃がす、直動形レリーフ弁形式のバル
ブ76が介装されており、該弁の2次側すなわち排出側
は、分岐回路77で前記第2の潤滑油路72b及び冷却
回路73に接続されている。
As shown in FIG. 4, in the third oil passage 71c which is branched into three in the valve body, in this embodiment, when the hydraulic pressure of the discharge circuit 71, that is, the primary pressure becomes a predetermined pressure or more, a spring load is applied. A direct-acting relief valve type valve 76, which opens the valve against the pressure and releases the oil from the discharge circuit 71 to the cooling circuit 73, is interposed. The secondary side, that is, the discharge side, of the valve is a branch circuit 77. Is connected to the second lubricating oil passage 72b and the cooling circuit 73.

【0020】こうして上記実施例の駆動装置によれば、
ストレーナ70sを経てポンプ5に吸い上げられた油
は、吐出回路71を経て一旦バルブボディ7に戻り、そ
こで前記のように3分岐された油路に至る。第1の油路
71aに入った油は、オリフィス74で流量を規制され
てギヤケース10g端壁側の軸支持部に達し、差動装置
ケース40のギヤケース10gへの支持部の油溝を経
て、一方は、ヨーク軸12bと差動装置ケース40の軸
部の間を通り、差動装置ケース40壁内の油孔からキャ
リヤ34のピニオン支持軸内の油路341に導かれる。
この油は、該油路341に続く径方向油孔から放出され
てニードルベアリング及びスラストワッシャを潤滑す
る。他方、ヨーク軸12b内の油路に入った油は、差動
装置ケース40内に達して差動歯車の噛み合い面、差動
大歯車41と差動装置ケース40との摺動面、差動大歯
車41とドライブ軸11及びヨーク軸12bとのスプラ
イン嵌合部、差動小歯車43と差動小歯車軸42及び差
動装置ケースとの摺動面を潤滑し、さらにドライブ軸1
1内の油路111を通って径方向油孔112,113か
ら吐き出され、サンギヤ31とピニオン33との噛み合
い面、ベアリング14及びボ−ルベアリング13、スリ
ーブ81がロータ軸23とサンギヤ31と連結するスプ
ライン嵌合部、ボ−ルベアリング18、さらにはドライ
ブ軸11とスリーブ19のスプライン嵌合部、ニードル
ベアリング20等を潤滑する。潤滑を終わった油は、ケ
ース内に飛散し、ケース壁を伝ってその最下方部に流下
し、やがて油溜に回収される。
Thus, according to the driving device of the above embodiment,
The oil sucked up by the pump 5 through the strainer 70s once returns to the valve body 7 through the discharge circuit 71, and then reaches the oil passage branched into three as described above. The flow rate of the oil in the first oil passage 71a is regulated by the orifice 74, reaches the shaft support portion on the end wall side of the gear case 10g, and passes through the oil groove of the support portion of the differential case 40 to the gear case 10g, One passes between the yoke shaft 12b and the shaft portion of the differential gear case 40, and is guided from an oil hole in the wall of the differential gear case 40 to the oil passage 341 in the pinion support shaft of the carrier 34.
This oil is discharged from a radial oil hole continuing to the oil passage 341 to lubricate the needle bearing and the thrust washer. On the other hand, the oil that has entered the oil passage in the yoke shaft 12b reaches the inside of the differential gear case 40 and meshes with the differential gear, the sliding surface between the differential gear 41 and the differential gear case 40, and the differential gear. Lubricate the spline fitting portion between the large gear 41 and the drive shaft 11 and the yoke shaft 12b, the sliding surface between the differential small gear 43, the differential small gear shaft 42, and the differential device case, and further drive the drive shaft 1
The oil is discharged from the radial oil holes 112 and 113 through the oil passage 111 in the No. 1, and the meshing surface of the sun gear 31 and the pinion 33, the bearing 14 and the ball bearing 13, and the sleeve 81 connect the rotor shaft 23 and the sun gear 31. The spline fitting portion, the ball bearing 18, the spline fitting portion of the drive shaft 11 and the sleeve 19, the needle bearing 20 and the like are lubricated. The oil that has been lubricated scatters in the case, travels down the case wall, flows down to the lowermost portion, and is eventually collected in the oil sump.

【0021】第2の油路71bに入った油は、第3の絞
り手段78で流量規制されてモータケース10m外端側
のリッドにより構成されるサポート部に流れ、ボ−ルベ
アリング16、ボ−ルベアリング17等を潤滑後、同様
にケース壁を伝ってその最下方部に流下し、やがて油溜
に回収される。
The flow rate of the oil entering the second oil passage 71b is regulated by the third throttle means 78 and flows to the support portion constituted by the lid on the outer end side of the motor case 10m, and the ball bearing 16 and the ball. After lubricating the bearing 17, etc., it also travels down the case wall, flows down to the lowermost part thereof, and is eventually collected in the oil sump.

【0022】これに対して、冷却回路73に入った油
は、接続パイプ73pを経てノズルブロック107a,
107bに至り、該ブロックに設けられた多数のノズル
孔からステータ21のコイル211に噴きかけられる。
この油もコイル211を冷却後は、同様に直接あるいは
ケース壁を伝ってその最下方部に流下し、モータケース
10mのサポート部の下方の開口を通ってやがて油溜に
回収される。
On the other hand, the oil that has entered the cooling circuit 73 passes through the connecting pipe 73p and the nozzle block 107a,
It reaches 107 b, and is sprayed onto the coil 211 of the stator 21 from a large number of nozzle holes provided in the block.
Similarly, after cooling the coil 211, this oil also flows down to the lowermost portion thereof directly or along the case wall and is collected in the oil reservoir through the opening below the support portion of the motor case 10m.

【0023】図7はこうして各部に分配される油のオイ
ルポンプ吐出流量に対する配分を示しており、吐出流量
は当然にモータの回転速度を反映する車速に比例して上
昇するが、図4に示す第1の潤滑油路72aへの供給油
量(図に潤滑1と表示)は、吐出回路71の油圧のバル
ブ76のレリーフ作用による一定化で第1の絞り手段7
4により絶対量が規制されるため、レリーフ圧を超える
車速(図の流量を示す線の屈曲点がこれに当たる)以上
では増加しなくなる。これに対して、第2の潤滑油路7
2bへの供給油量(図に潤滑2と表示)は、最終的に第
3の絞り手段78により流量規制されるものの、第2の
絞り手段75と第3の絞り手段78との間の回路にバル
ブ76を介して供給される2次圧の上昇に伴い、車速の
上昇につれて若干は増加する。これに対して冷却回路7
3への供給油量は、車速に比例して増加する吐出流量の
残余となるため、車速の上昇につれて増加する。かくし
て、上記実施例の回路によれば、潤滑回路72への供給
油量が車速の変化に関係なく実質的に一定となるため、
そうすることにより生じる余剰の油量を全て冷却に回す
ことができる。この結果、従来のように潤滑回路への供
給過多によるトルク伝達手段の回転抵抗の増加等をも避
けることができるようになる。他方、従来必要以上に潤
滑回路に供給されていた油量を冷却回路に廻すことで、
流量全体として見たときに、余剰油量をなくす分だけオ
イルポンプの駆動損失を少なくすることができることと
なる。
FIG. 7 shows the distribution of the oil distributed to the respective parts with respect to the oil pump discharge flow rate. The discharge flow rate naturally rises in proportion to the vehicle speed which reflects the rotation speed of the motor, but is shown in FIG. The amount of oil supplied to the first lubricating oil passage 72a (indicated as "lubrication 1" in the figure) is made constant by the relief action of the valve 76 of the hydraulic pressure of the discharge circuit 71, and the first throttle means 7
Since the absolute amount is regulated by No. 4, it does not increase at a vehicle speed exceeding the relief pressure (the bending point of the line showing the flow rate in the figure hits this). On the other hand, the second lubricating oil passage 7
The amount of oil supplied to 2b (indicated as lubrication 2 in the figure) is finally regulated by the third throttle means 78, but a circuit between the second throttle means 75 and the third throttle means 78. Along with the increase in the secondary pressure supplied via the valve 76, the pressure slightly increases as the vehicle speed increases. On the other hand, the cooling circuit 7
The amount of oil supplied to No. 3 is the remainder of the discharge flow rate that increases in proportion to the vehicle speed, and therefore increases as the vehicle speed increases. Thus, according to the circuit of the above embodiment, the amount of oil supplied to the lubrication circuit 72 becomes substantially constant regardless of changes in vehicle speed.
Any excess oil produced by doing so can be used for cooling. As a result, it becomes possible to avoid an increase in the rotational resistance of the torque transmission means due to excessive supply to the lubrication circuit, which is conventionally required. On the other hand, by supplying the cooling circuit with the amount of oil that was conventionally supplied to the lubricating circuit more than necessary,
When viewed as the entire flow rate, the drive loss of the oil pump can be reduced by the amount of surplus oil.

【0024】以上要するに、上記実施例の油圧回路で
は、オイルポンプ5により装置内を循環する油をオリフ
ィスにより、潤滑用及びコイル冷却用にそれぞれ目的に
則って最適に分配させ、バルブ76の調圧作用により潤
滑に分配する油量を速度に関係なく一定とし、それ以外
をコイル冷却に利用する。また、この例では、モ−タケ
ース10mにフィン102を設け冷却の効率を上げてい
る。これにより、低速高負荷時は、モ−タ本体、フィン
等の熱容量で温度の急激な上昇を防ぎ、中高速時は、冷
却油を最大限コイルに噴射させ、局部的な温度上昇をな
くして冷却を効率良く行うことができる。
In summary, in the hydraulic circuit of the above embodiment, the oil circulating through the device by the oil pump 5 is optimally distributed by the orifice for lubrication and coil cooling respectively, and the pressure of the valve 76 is adjusted. The amount of oil distributed to lubrication by the action is made constant regardless of the speed, and the rest is used for coil cooling. Further, in this example, fins 102 are provided on the motor case 10m to improve cooling efficiency. This prevents a rapid increase in temperature due to the heat capacity of the motor body, fins, etc. at low speeds and high loads, and at the time of medium and high speeds, the cooling oil is injected to the coil as much as possible to eliminate the local temperature rise. Cooling can be performed efficiently.

【0025】以上、本発明を実施例に基づき説明した
が、本発明は、この構成に限定されるものではなく、特
許請求の範囲に記載の範囲内で、必要に応じて適宜各部
の具体的な構成を変更して実施可能である。
Although the present invention has been described above based on the embodiments, the present invention is not limited to this structure, and the specifics of each part are appropriately specified within the scope of the claims. It can be implemented by changing various configurations.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の油圧回路構成を備える電気自動車用駆
動装置の構成を概念的に示すブロック図である。
FIG. 1 is a block diagram conceptually showing the structure of a drive device for an electric vehicle having a hydraulic circuit structure of the present invention.

【図2】本発明の実施例に係る電気自動車用駆動装置の
断面図である。
FIG. 2 is a sectional view of a drive device for an electric vehicle according to an embodiment of the present invention.

【図3】上記電気自動車用駆動装置における油圧回路を
一部展開して示す接続関係を示す回路接続図である。
FIG. 3 is a circuit connection diagram showing a connection relationship in which a hydraulic circuit in the electric vehicle drive device is partially developed.

【図4】本発明の実施例に係る油圧回路の一部を示す回
路図である。
FIG. 4 is a circuit diagram showing a part of a hydraulic circuit according to an embodiment of the present invention.

【図5】図2のV−V矢視図である。FIG. 5 is a view taken in the direction of arrows VV in FIG. 2;

【図6】図2のVI−VI矢視図である。6 is a VI-VI arrow view of FIG. 2. FIG.

【図7】実施例における車速とオイルポンプ吐出流量の
関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the vehicle speed and the oil pump discharge flow rate in the example.

【符号の説明】[Explanation of symbols]

1 電気自動車用駆動装置 2 モ−タ 3 プラネタリギヤ(トルク伝達手段) 4 差動装置(トルク伝達手段) 5 オイルポンプ 8 駆動手段 9 駆動輪 71 吐出回路 72 潤滑回路 73 冷却回路 74 第1の絞り手段 75 第2の絞り手段 76 バルブ DESCRIPTION OF SYMBOLS 1 Electric vehicle drive device 2 Motor 3 Planetary gear (torque transmission means) 4 Differential device (torque transmission means) 5 Oil pump 8 Drive means 9 Drive wheel 71 Discharge circuit 72 Lubricating circuit 73 Cooling circuit 74 First throttle means 75 Second throttle means 76 Valve

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年10月3日[Submission date] October 3, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 モ−タと、 該モ−タの出力トルクを駆動輪へ伝達するトルク伝達手
段と、 オイルポンプと、 該オイルポンプを回転駆動する駆動手段と、 前記オイルポンプより吐出された油を供給される吐出回
路と、 該吐出回路に第1の絞り手段を介して連結され、前記ト
ルク伝達手段へ油を導く潤滑回路と、 前記吐出回路に第2の絞り手段を介して連結され、前記
モ−タへ油を導く冷却回路と、 前記吐出回路の油圧が所定圧以上になった時に、前記吐
出回路から前記冷却回路へ油を供給するバルブとを備え
たことを特徴とする電気自動車用駆動装置の油圧回路。
1. A motor, a torque transmitting means for transmitting an output torque of the motor to a drive wheel, an oil pump, a driving means for rotationally driving the oil pump, and a discharge from the oil pump. A discharge circuit to which oil is supplied, a lubrication circuit connected to the discharge circuit via a first throttle means, and guiding oil to the torque transmission means, and a discharge circuit connected to the discharge circuit via a second throttle means. An electric circuit comprising a cooling circuit for guiding oil to the motor, and a valve for supplying oil from the discharge circuit to the cooling circuit when the hydraulic pressure of the discharge circuit exceeds a predetermined pressure. Hydraulic circuit for automobile drive unit.
【請求項2】 前記駆動手段は、前記モータの出力トル
クを前記オイルポンプに伝達する第2のトルク伝達手段
とされた請求項1記載の電気自動車用駆動装置の油圧回
路。
2. The hydraulic circuit for a drive device for an electric vehicle according to claim 1, wherein the drive means is second torque transmission means for transmitting the output torque of the motor to the oil pump.
JP25611594A 1994-09-27 1994-09-27 Hydraulic circuit of electric vehicle drive unit Expired - Fee Related JP3424351B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25611594A JP3424351B2 (en) 1994-09-27 1994-09-27 Hydraulic circuit of electric vehicle drive unit
US08/534,465 US5718302A (en) 1994-09-27 1995-09-27 Hydraulic circuit for electric car drive train

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25611594A JP3424351B2 (en) 1994-09-27 1994-09-27 Hydraulic circuit of electric vehicle drive unit

Publications (2)

Publication Number Publication Date
JPH0898464A true JPH0898464A (en) 1996-04-12
JP3424351B2 JP3424351B2 (en) 2003-07-07

Family

ID=17288111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25611594A Expired - Fee Related JP3424351B2 (en) 1994-09-27 1994-09-27 Hydraulic circuit of electric vehicle drive unit

Country Status (1)

Country Link
JP (1) JP3424351B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065647A (en) * 1999-08-10 2001-03-16 Swatch Group Manag Services Ag Swatch Group Manag Services Sa Swatch Group Manag:The Driving unit
JP2002233107A (en) * 2001-01-31 2002-08-16 Aisin Seiki Co Ltd Cooling structure for rotating electric machine
JP2003047202A (en) * 2001-07-31 2003-02-14 Honda Motor Co Ltd Cooling device for vehicle
US6881165B2 (en) 2001-02-07 2005-04-19 Toyota Jidosha Kabushiki Kaisha Hydraulic control apparatus of vehicle and control method
JP2006353051A (en) * 2005-06-20 2006-12-28 Nissan Motor Co Ltd Cooling system for electric motor
WO2009041148A1 (en) * 2007-09-27 2009-04-02 Ihi Corporation Structure and method for cooling electric motor for large-sized industrial machine
JP2009118666A (en) * 2007-11-07 2009-05-28 Toyota Motor Corp Fluid supply apparatus for vehicle
JP2009121551A (en) * 2007-11-13 2009-06-04 Honda Motor Co Ltd Motor power device
JP2010220274A (en) * 2009-03-13 2010-09-30 Nissan Motor Co Ltd Device for control of coolant flow rate in rotary electric machine
US7884511B2 (en) 2007-11-13 2011-02-08 Honda Motor Co., Ltd. Motor-type power device
JP2011105196A (en) * 2009-11-19 2011-06-02 Aisin Seiki Co Ltd Driving device for hybrid vehicle
JP2012170317A (en) * 2011-02-11 2012-09-06 Hamilton Sundstrand Corp Flooded electric machine, cooling system and method for cooling electric machine
JP2013162685A (en) * 2012-02-07 2013-08-19 Ntn Corp Drive unit of electric vehicle
WO2015041274A1 (en) * 2013-09-18 2015-03-26 アイシン・エィ・ダブリュ株式会社 Vehicle drive device
JP2016088197A (en) * 2014-10-31 2016-05-23 トヨタ自動車株式会社 Hybrid vehicle
WO2017072874A1 (en) * 2015-10-28 2017-05-04 三菱電機株式会社 Cooling structure for rotary electric machine and method for controlling same
KR20170103916A (en) 2015-03-26 2017-09-13 쟈트코 가부시키가이샤 Hydraulic control circuit
JP2018123797A (en) * 2017-02-02 2018-08-09 トヨタ自動車株式会社 Air supply system
WO2019039211A1 (en) * 2017-08-21 2019-02-28 ソニー株式会社 Motor device, and motor driven moving body
JP2019143747A (en) * 2018-02-22 2019-08-29 本田技研工業株式会社 Oil pump driving mechanism of vehicular power transmission device
CN110212701A (en) * 2019-06-21 2019-09-06 上海蔚来汽车有限公司 Electric drive unit cooling system
WO2019208081A1 (en) * 2018-04-27 2019-10-31 日本電産株式会社 Motor unit and vehicle drive device
WO2020032026A1 (en) * 2018-08-09 2020-02-13 日本電産株式会社 Motor unit
WO2020067259A1 (en) * 2018-09-28 2020-04-02 日本電産株式会社 Drive device
CN112106281A (en) * 2018-04-27 2020-12-18 日本电产株式会社 Motor unit
CN114556752A (en) * 2019-11-02 2022-05-27 博格华纳公司 Drive module with improved efficiency

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065647A (en) * 1999-08-10 2001-03-16 Swatch Group Manag Services Ag Swatch Group Manag Services Sa Swatch Group Manag:The Driving unit
JP4567212B2 (en) * 2001-01-31 2010-10-20 アイシン精機株式会社 Cooling structure of rotating electric machine
JP2002233107A (en) * 2001-01-31 2002-08-16 Aisin Seiki Co Ltd Cooling structure for rotating electric machine
US6881165B2 (en) 2001-02-07 2005-04-19 Toyota Jidosha Kabushiki Kaisha Hydraulic control apparatus of vehicle and control method
JP2003047202A (en) * 2001-07-31 2003-02-14 Honda Motor Co Ltd Cooling device for vehicle
JP4625597B2 (en) * 2001-07-31 2011-02-02 本田技研工業株式会社 Vehicle cooling system
JP4682716B2 (en) * 2005-06-20 2011-05-11 日産自動車株式会社 Motor cooling device
JP2006353051A (en) * 2005-06-20 2006-12-28 Nissan Motor Co Ltd Cooling system for electric motor
WO2009041148A1 (en) * 2007-09-27 2009-04-02 Ihi Corporation Structure and method for cooling electric motor for large-sized industrial machine
JP2009118666A (en) * 2007-11-07 2009-05-28 Toyota Motor Corp Fluid supply apparatus for vehicle
JP2009121551A (en) * 2007-11-13 2009-06-04 Honda Motor Co Ltd Motor power device
US7884511B2 (en) 2007-11-13 2011-02-08 Honda Motor Co., Ltd. Motor-type power device
US7980343B2 (en) 2007-11-13 2011-07-19 Honda Motor Co., Ltd. Motor-type power device
US7982346B2 (en) 2007-11-13 2011-07-19 Honda Motor Co., Ltd. Motor-type power device
JP2010220274A (en) * 2009-03-13 2010-09-30 Nissan Motor Co Ltd Device for control of coolant flow rate in rotary electric machine
JP2011105196A (en) * 2009-11-19 2011-06-02 Aisin Seiki Co Ltd Driving device for hybrid vehicle
JP2012170317A (en) * 2011-02-11 2012-09-06 Hamilton Sundstrand Corp Flooded electric machine, cooling system and method for cooling electric machine
JP2013162685A (en) * 2012-02-07 2013-08-19 Ntn Corp Drive unit of electric vehicle
WO2015041274A1 (en) * 2013-09-18 2015-03-26 アイシン・エィ・ダブリュ株式会社 Vehicle drive device
US9592727B2 (en) 2014-10-31 2017-03-14 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
RU2628286C2 (en) * 2014-10-31 2017-08-15 Тойота Дзидося Кабусики Кайся Hybrid vehicle
JP2016088197A (en) * 2014-10-31 2016-05-23 トヨタ自動車株式会社 Hybrid vehicle
US10415698B2 (en) 2015-03-26 2019-09-17 Jatco Ltd Hydraulic control circuit
KR20170103916A (en) 2015-03-26 2017-09-13 쟈트코 가부시키가이샤 Hydraulic control circuit
CN107250623A (en) * 2015-03-26 2017-10-13 加特可株式会社 Oil pressure control circuit
EP3276229A4 (en) * 2015-03-26 2018-04-25 Jatco Ltd Hydraulic control circuit
WO2017072874A1 (en) * 2015-10-28 2017-05-04 三菱電機株式会社 Cooling structure for rotary electric machine and method for controlling same
JP2018123797A (en) * 2017-02-02 2018-08-09 トヨタ自動車株式会社 Air supply system
WO2019039211A1 (en) * 2017-08-21 2019-02-28 ソニー株式会社 Motor device, and motor driven moving body
JPWO2019039211A1 (en) * 2017-08-21 2020-10-01 ソニー株式会社 Motor device and motor-driven moving body
JP2019143747A (en) * 2018-02-22 2019-08-29 本田技研工業株式会社 Oil pump driving mechanism of vehicular power transmission device
WO2019208081A1 (en) * 2018-04-27 2019-10-31 日本電産株式会社 Motor unit and vehicle drive device
CN112088262A (en) * 2018-04-27 2020-12-15 日本电产株式会社 Motor unit and vehicle drive device
CN112106281A (en) * 2018-04-27 2020-12-18 日本电产株式会社 Motor unit
WO2020032026A1 (en) * 2018-08-09 2020-02-13 日本電産株式会社 Motor unit
CN112533783A (en) * 2018-08-09 2021-03-19 日本电产株式会社 Motor unit
WO2020067259A1 (en) * 2018-09-28 2020-04-02 日本電産株式会社 Drive device
CN112867881A (en) * 2018-09-28 2021-05-28 日本电产株式会社 Drive device
CN110212701A (en) * 2019-06-21 2019-09-06 上海蔚来汽车有限公司 Electric drive unit cooling system
CN110212701B (en) * 2019-06-21 2023-04-11 上海蔚来汽车有限公司 Electric drive unit cooling system
CN114556752A (en) * 2019-11-02 2022-05-27 博格华纳公司 Drive module with improved efficiency

Also Published As

Publication number Publication date
JP3424351B2 (en) 2003-07-07

Similar Documents

Publication Publication Date Title
JPH0898464A (en) Hydraulic circuit of driver for electric automobile
CN112449739B (en) Electric driver with cooling function
US5474428A (en) Oil pump driving device for transmission
US5718302A (en) Hydraulic circuit for electric car drive train
US6685437B2 (en) Hydraulic transmission pump assembly having a differential actuation and integrated line pressure control
JP4218129B2 (en) Hydraulic pressure generator and hybrid vehicle using the same
US7421928B2 (en) Motor vehicle drive arrangement
US4418777A (en) Transmission lubrication and motor cooling system
JP3322072B2 (en) Power transmission lubrication system
US4713982A (en) Integral gear box and electrical generating system
US8096910B2 (en) Travel assembly for dump truck
CN107842602A (en) Geared system
JP3235208B2 (en) Electric vehicle
EP3869070B1 (en) Gear system
US20210190201A1 (en) Lubrication device for vehicle drive-force transmitting apparatus
GB2202919A (en) Lubrication of gearing
JP4701587B2 (en) Electric drive
DE102006003213A1 (en) Lubricating oil supplying device, has hollow shaft, within which ladling device is arranged, which protrudes into oil ring rotating in operation of rotary hollow shaft
JP2765487B2 (en) Lubricating device for differential bearings
CN212615359U (en) Gear pump power device for lubricating speed-adjustable gearbox
US10023041B1 (en) Electric drive system for independent wheel drive
JPH10325457A (en) Power train for vehicle
JP2792040B2 (en) Transfer lubrication oil guiding device
US5120283A (en) Hydraulic and gear transmission
JP2767523B2 (en) Lubricating device for tandem drive shaft

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Effective date: 20041209

Free format text: JAPANESE INTERMEDIATE CODE: A7425

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20050329

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080502

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees