WO2020031234A1 - 空気調和システム - Google Patents
空気調和システム Download PDFInfo
- Publication number
- WO2020031234A1 WO2020031234A1 PCT/JP2018/029417 JP2018029417W WO2020031234A1 WO 2020031234 A1 WO2020031234 A1 WO 2020031234A1 JP 2018029417 W JP2018029417 W JP 2018029417W WO 2020031234 A1 WO2020031234 A1 WO 2020031234A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- heat source
- refrigerant
- heat pump
- indoor
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
- F24F11/36—Responding to malfunctions or emergencies to leakage of heat-exchange fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D7/00—Central heating systems employing heat-transfer fluids not covered by groups F24D1/00 - F24D5/00, e.g. oil, salt or gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/65—Electronic processing for selecting an operating mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2221/00—Details or features not otherwise provided for
- F24F2221/34—Heater, e.g. gas burner, electric air heater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/12—Inflammable refrigerants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/22—Preventing, detecting or repairing leaks of refrigeration fluids
- F25B2500/222—Detecting refrigerant leaks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
Definitions
- An air conditioning system that has a heat pump unit that heats the room with a vapor compression type refrigerant circuit and another heat source unit that heats the room with a heat source different from the heat pump unit
- an air conditioning system having a heat pump unit that heats a room by a vapor compression type refrigerant circuit and another heat source unit that heats a room by a furnace (a heat source different from the heat pump unit).
- a heat pump unit that heats a room by a vapor compression type refrigerant circuit
- another heat source unit that heats a room by a furnace (a heat source different from the heat pump unit).
- Patent Document 1 Japanese Patent Application Laid-Open No. 64-54160
- An air conditioning system includes a heat pump unit that heats a room using a vapor compression type refrigerant circuit, another heat source unit that heats a room using a heat source different from the heat pump unit, a heat pump unit, and another heat source.
- a control unit for controlling the operation of the unit.
- a flammable refrigerant is sealed in the refrigerant circuit as a refrigerant.
- the control unit heats the room by the heat pump unit when the heat pump heating condition is satisfied, and heats the room by the different heat source unit when the heat source heating condition is satisfied.
- the control unit heats the room using the different heat source unit regardless of whether the heat pump heating condition is satisfied or the different heat source heating condition is satisfied.
- An air conditioning system is the air conditioning system according to the first aspect, wherein the control unit determines which of a heat pump heating condition and another heat source heating condition is satisfied based on an outside air temperature or an indoor load. .
- the air conditioning system according to the third aspect is the air conditioning system according to the first or second aspect, wherein the separate heat source unit has a furnace for heating the air sent indoors by burning fuel.
- the flammable refrigerant when the flammable refrigerant does not leak, if the separate heat source heating condition is satisfied, the room is heated by the furnace, and when the flammable refrigerant is leaking, the heat pump heating condition is satisfied. In both cases and when different heat source heating conditions are satisfied, the room can be heated by the furnace.
- the air conditioning system according to a fourth aspect is the air conditioning system according to any one of the first to third aspects, further including a refrigerant sensor for detecting a flammable refrigerant.
- FIG. 1 is a schematic diagram illustrating an arrangement of an air conditioning system 1 according to one embodiment.
- FIG. 2 is a schematic configuration diagram of the air conditioning system 1.
- the air conditioning system 1 is a device used for air conditioning of houses and buildings.
- the air conditioning system 1 is installed in a house 100 having a two-story structure.
- rooms 101 and 102 are provided on the first floor, and rooms 103 and 104 are provided on the second floor.
- the basement 105 is provided in the house 100.
- the house or building in which the air conditioning system 1 is installed is not limited to the structure shown in FIG. 1 and may have another structure.
- the air conditioning system 1 is a so-called duct type air conditioning system.
- the air conditioning system 1 mainly includes an outdoor unit 2, a use unit 3, refrigerant communication pipes 6 and 7 connecting the outdoor unit 2 and the use unit 3, and air conditioned by the use unit 3 into the rooms 101 to 104. And a ventilation duct 9 for sending air to the air.
- the air duct 9 is branched into rooms 101 to 104 and connected to ventilation holes 101a to 104a of the rooms 101 to 104.
- the outdoor unit 2, the indoor unit 4 that is a part of the utilization unit 3, and the refrigerant communication pipes 6 and 7 constitute a heat pump unit 60 that heats the indoor by the vapor compression type refrigerant circuit 20.
- the furnace unit 5 which is a part of the utilization unit 3 constitutes another heat source unit 70 for heating the room by using a heat source different from the heat pump unit 60 (here, heat generated by fuel combustion). I have.
- the utilization unit 3 has both the indoor unit 4 constituting the heat pump unit 60 and the furnace unit 5 constituting the separate heat source unit 70.
- the usage unit 3 takes in the air in the rooms 101 to 104 into the housing 30 of the usage unit 3, and air-conditioned by the heat pump unit 60 (the indoor unit 4) and the separate heat source unit 70 (the furnace unit 5). Indoor blower 40 for sending air into rooms 101 to 104.
- the heat pump unit 60 includes the outdoor unit 2, the indoor unit 4 that is a part of the utilization unit 3, and the refrigerant communication tubes 6 and 7.
- the outdoor unit 2 and the indoor unit 4 are connected via refrigerant communication pipes 6 and 7.
- the refrigerant circuit 20 of the heat pump unit 60 is configured by connecting the outdoor unit 2 and the indoor unit 4 via the refrigerant communication pipes 6 and 7.
- the refrigerant communication pipes 6 and 7 are refrigerant pipes installed on site when the air conditioning system 1 is installed.
- the refrigerant circuit 20 is filled with a refrigerant (hereinafter, referred to as a “flammable refrigerant”) that may ignite under specific conditions such as R32 as a refrigerant.
- a refrigerant hereinafter, referred to as a “flammable refrigerant”
- the indoor unit 4 is provided in the housing 30 of the use unit 3 installed in the basement 105 of the house 100 here.
- the indoor unit 4 is connected to the outdoor unit 2 via the refrigerant communication pipes 6 and 7, and forms a part of the refrigerant circuit 20.
- the use unit 3 may be provided in a place other than the basement 105.
- the indoor unit 4 mainly includes an indoor expansion valve 41 and an indoor heat exchanger 42 (refrigerant heat exchanger) that heats air by radiating flammable refrigerant in a refrigeration cycle during a heat pump heating operation (described later).
- the indoor expansion valve 41 is a valve that decompresses the flammable refrigerant circulating in the refrigerant circuit 20 and adjusts the flow rate of the flammable refrigerant flowing through the indoor heat exchanger 42 as a refrigerant heat exchanger.
- the indoor heat exchanger 42 is located at the most leeward side (in the direction of air flow in the airflow passage 30a) in the airflow passage 30a from the air inlet 32 to the air outlet 31 formed in the housing 30 of the utilization unit 3. (The most downstream side with respect to).
- the outdoor unit 2 is installed outside the house 100.
- the outdoor unit 2 is connected to the indoor unit 4 via the refrigerant communication pipes 6 and 7, and forms a part of the refrigerant circuit 20.
- the outdoor unit 2 mainly includes a compressor 21, an outdoor heat exchanger 23, an outdoor expansion valve 24, and a four-way switching valve 29.
- the compressor 21 has a compression element (not shown) for compressing the flammable refrigerant, and a compressor motor 22 for driving the compression element to rotate.
- the outdoor heat exchanger 23 is a heat exchanger that evaporates the flammable refrigerant in the refrigeration cycle by the outdoor air during the heat pump heating operation.
- An outdoor fan 25 that sends outdoor air to the outdoor heat exchanger 23 is provided near the outdoor heat exchanger 23. The outdoor fan 25 is driven to rotate by an outdoor fan motor 26.
- the outdoor expansion valve 24 is a valve that reduces the pressure of the flammable refrigerant circulating in the refrigerant circuit 20 before sending it to the outdoor heat exchanger 23 during the heat pump heating operation.
- the four-way switching valve 29 is a valve that switches the flow direction of the flammable refrigerant in the refrigerant circuit 20. During the heat pump heating operation, the four-way switching valve 29 allows the indoor heat exchanger 42 to function as a flammable refrigerant radiator and the outdoor heat exchanger 23 to function as a flammable refrigerant evaporator (FIG. 2). (See the broken line of the four-way switching valve 29).
- the four-way switching valve 29 is in a cooling state (the four-way state in FIG. 2) in which the indoor heat exchanger 42 functions as a combustible refrigerant evaporator and the outdoor heat exchanger 23 functions as a combustible refrigerant radiator. (See the solid line of the switching valve 29).
- the outdoor unit 2 is provided with an outdoor temperature sensor 27 that detects the temperature of outdoor air outside the house 100 in which the outdoor unit 2 is arranged, that is, the outdoor temperature Ta.
- the outdoor unit 2 has an outdoor control unit 28 that controls the operation of each unit constituting the outdoor unit 2.
- the outdoor controller 28 has a microcomputer, a memory, and the like provided for controlling the outdoor unit 2 so that control signals and the like can be exchanged with the use unit 3. It has become.
- the separate heat source unit 70 is configured by the furnace unit 5 that is a part of the utilization unit 3 as described above.
- the furnace unit 5 is provided in the housing 30 of the usage unit 3 installed in the basement 105 of the house 100.
- the furnace unit 5 is a gas-fired heating device.
- the furnace unit 5 mainly includes a fuel gas valve 51, a furnace fan 52, a combustion section 54, a furnace heat exchanger 55, an air supply pipe 56, an exhaust pipe 57, and an ignition device 59.
- the fuel gas valve 51 includes an electromagnetic valve or the like that can be controlled to open and close, and is provided in a fuel gas supply pipe 58 extending from outside the housing 30 to the combustion section 54.
- natural gas, petroleum gas, or the like is used as the fuel gas.
- the furnace fan 52 is a fan that takes in air into the combustion unit 54 through the air supply pipe 55, sends air to the furnace heat exchanger 55, and then discharges the air from the exhaust pipe 57 to generate an air flow.
- the furnace fan 52 is driven to rotate by a furnace fan motor 53.
- the combustion unit 54 is a device that obtains high-temperature combustion gas by burning a mixed gas of fuel gas and air by a gas burner or the like (not shown).
- the ignition device 59 is provided in the combustion section 54.
- the ignition device 59 includes an igniter, and ignites the combustion section 54.
- the combustion part 54 is separated from the ventilation passage 30 a by a wall, but when a hole is formed in the wall, the combustible refrigerant leaked from the indoor heat exchanger 42 comes into contact with the ignition device 59.
- the energy of the ignition device 59 is desirably 120 V or less in order to reduce the possibility that the combustible refrigerant will ignite.
- the furnace heat exchanger 55 is a heat exchanger that heats the air by radiating the combustion gas obtained in the combustion section 54 (that is, another heat source).
- the furnace heat exchanger 55 is located on the windward side of the indoor heat exchanger 42 (in the airflow channel) in the airflow channel 30a from the air inlet 32 to the air outlet 31 formed in the housing 30 of the usage unit 3. It is arranged on the upstream side of the indoor heat exchanger 42 with respect to the flow direction of air in 30a).
- the utilization unit 3 is provided with a refrigerant sensor 33 for detecting a flammable refrigerant, and an indoor temperature sensor 34 for detecting an indoor temperature Tr, which is the temperature of air at the air inlet 32 of the housing 30.
- the refrigerant sensor 33 is provided on the downstream side of the indoor heat exchanger 42 with respect to the flow direction of the air in the blowing passage 30a.
- the indoor temperature sensor 34 may be provided in the rooms 101 to 104 instead of the use unit 3.
- the indoor blower 40 is a blower that sends air heated by the indoor heat exchanger 42 constituting the heat pump section 60 and the furnace heat exchanger 55 constituting the separate heat source section 70 into the rooms 101 to 104.
- the indoor blower 40 is located within the air flow passage 30a from the air inlet 32 to the air outlet 31 formed in the housing 30 of the usage unit 3 more than both the indoor heat exchanger 42 and the furnace heat exchanger 55. It is arranged on the windward side (upstream of the indoor heat exchanger 42 and the furnace heat exchanger 55 with respect to the flow direction of air in the air flow passage 30a).
- the indoor blower 40 has an indoor fan 43 and an indoor fan motor 44 that drives the indoor fan 43 to rotate.
- a sirocco fan or a turbo fan is used as the indoor fan 43.
- the usage unit 3 includes a usage-side control unit 38 that controls the operation of each unit (the indoor unit 4, the furnace unit 5, and the indoor blower 40) that configures the usage unit 3.
- the use-side control unit 38 has a microcomputer, a memory, and the like provided for controlling the use unit 3 so that control signals and the like can be exchanged with the outdoor unit 2. It has become.
- the use-side control unit 38 of the use unit 3 and the outdoor-side control unit 28 of the outdoor unit 2 constitute a control unit 8 that controls the operation of the entire air-conditioning system 1 as shown in FIG. .
- the control unit 8 is connected so as to be able to receive detection signals from various sensors 27, 33, and 34.
- FIG. 3 is a control block diagram of the air conditioning system 1.
- the control unit 8 controls the various devices and the valves 22, 24, 26, 29, 41, 44, 51, 53, and 59 based on the detection signals and the like, that is, the heat pump unit 60 and the separate heat source unit.
- An air-conditioning operation (heating operation) is performed by controlling the operation of 70.
- the control unit 8 performs a heat pump heating operation of heating the rooms 101 to 104 by the heat pump unit 60 and a separate heat source heating operation of heating the rooms 101 to 104 by the separate heat source unit 70. Has become.
- the heating operation of the air conditioning system 1 includes the heat pump heating operation of heating the room by the heat pump unit 60 and the separate heat source heating operation of heating the room by the different heat source unit 70.
- the heat pump heating operation and another heat source heating operation are performed by the control unit 8.
- ⁇ Heat pump heating operation In the heat pump heating operation, the flammable refrigerant in the refrigerant circuit 20 is sucked into the compressor 21 and compressed to be in a high-pressure gas state.
- the combustible refrigerant compressed in the compressor 21 is sent from the outdoor unit 2 to the indoor unit 4 of the utilization unit 3 via the four-way switching valve 29 and the gas refrigerant communication pipe 7 in a heated state.
- the high-pressure flammable refrigerant sent to the indoor unit 4 of the use unit 3 is sent to the indoor heat exchanger 42.
- the high-pressure flammable refrigerant sent to the indoor heat exchanger 42 exchanges heat with the indoor air F1 (F2) flowing in the air passage 30a by the indoor blower 40 in the indoor heat exchanger 42, and radiates heat.
- the flammable refrigerant radiated in the indoor heat exchanger 42 is sent to the outdoor unit 2 from the indoor unit 4 of the utilization unit 3 via the liquid refrigerant communication pipe 6 after being decompressed by the indoor expansion valve 41.
- the indoor air F3 heated in the indoor heat exchanger 42 exits the airflow passage 30a, is sent from the use unit 3 to each of the rooms 101 to 104 through the duct 9, and is heated.
- the high-pressure flammable refrigerant sent to the outdoor unit 2 is sent to the outdoor expansion valve 24 and decompressed by the outdoor expansion valve 24.
- the flammable refrigerant reduced in pressure in the indoor expansion valve 24 is sent to the outdoor heat exchanger 23.
- the combustible refrigerant sent to the outdoor heat exchanger 23 evaporates by performing heat exchange with outdoor air supplied by the outdoor fan 25 in the outdoor heat exchanger 23.
- the combustible refrigerant evaporated in the outdoor heat exchanger 23 is sent to the compressor 21 via the four-way switching valve 29 in a heated state, and is sucked into the compressor 21 again.
- the fuel gas is supplied to the combustion unit 54 by opening the fuel gas valve 51, and the air taken into the furnace unit 5 of the utilization unit 3 via the air supply pipe 56 by the furnace fan 52 and the combustion unit
- the mixture is mixed in 54 and ignited by the igniter 59 to be burned to generate high-temperature combustion gas.
- the combustion gas generated in the combustion section 54 is sent to the furnace heat exchanger 55.
- the combustion gas sent to the furnace heat exchanger 55 is cooled in the furnace heat exchanger 55 by performing heat exchange with the indoor air F1 flowing in the air flow passage 30a by the indoor blower 40.
- the combustion gas cooled in the furnace heat exchanger 55 is discharged from the furnace unit 5 of the utilization unit 3 via the exhaust pipe 57.
- the room air F2 (F3) heated in the furnace heat exchanger 55 exits the ventilation channel 30a and is sent from the use unit 3 to each of the rooms 101 to 104 through the duct 9 to be heated.
- the control unit 8 when the control unit 8 satisfies the conditions (heat pump heating conditions) suitable for the heat pump heating operation, the control unit 8 performs the heat pump heating operation and sets the conditions (other heat source heating conditions) suitable for another heat source heating operation. When it is satisfied, another heat source heating operation is performed.
- the control unit 8 determines which of the heat pump heating condition and the other heat source heating condition is satisfied. Is determined.
- the use of the heat pump unit 60 needs to be restricted, so that the heat pump heating operation cannot be performed. In this case, even if the heat pump heating condition is satisfied, if the flammable refrigerant is leaking, the room itself is not heated, and the comfort of the person in the room may be impaired. is there.
- FIG. 4 is a flowchart showing the operation of the air conditioning system 1. Then, the control unit 8 also selects the heat pump heating operation and another heat source heating operation.
- step ST1 the control unit 8 determines whether or not the combustible refrigerant is leaking from the refrigerant circuit 20.
- the control unit 8 determines that the flammable refrigerant is leaking, and when the refrigerant sensor 33 does not detect the flammable refrigerant, It is determined that the conductive refrigerant has not leaked.
- step ST1 the control unit 8 shifts to the process of step ST2 when the flammable refrigerant has not leaked, and shifts to the process of step ST5 when the flammable refrigerant has leaked. .
- step ST2 the control unit 8 determines which of the heat pump heating condition and another heat source heating condition is satisfied.
- the control unit 8 determines which of the heat pump heating condition and the other heat source heating condition is satisfied, based on the outside air temperature Ta or the indoor load (here, the indoor temperature difference ⁇ Tr). Specifically, the control unit 8 determines that the heat pump heating condition is satisfied when the outside air temperature Ta is equal to or higher than the threshold outside air temperature Tat, or when the indoor temperature difference ⁇ Tr is equal to or lower than the threshold indoor temperature difference ⁇ Tr.
- step ST2 when the heat pump heating condition is satisfied, the control unit 8 shifts to a process of step ST3, and when the heat source heating condition is satisfied, shifts to a process of step ST4.
- step ST2 when it is determined that the heat pump heating condition is satisfied, in step ST3, the control unit 8 performs the above-described heat pump heating operation.
- step ST4 the control unit 8 performs the above-described separate heat source heating operation.
- the control unit 8 when the combustible refrigerant does not leak, the control unit 8 performs heating of the room by the heat pump unit 60 when the heat pump heating condition is satisfied, and when the heat source heating condition is satisfied, The interior of the room is heated by the separate heat source unit 70.
- step ST5 when it is determined in step ST1 that the flammable refrigerant is leaking, in step ST5, the control unit 8 determines whether any of the heat pump heating condition and the different heat source heating condition is satisfied, as in step ST2. Is determined. However, when the flammable refrigerant is leaking, it is necessary to restrict the use of the heat pump unit 60. Therefore, unlike the case where the flammable refrigerant does not leak, when the heat pump heating condition is satisfied and when another heat source heating is performed. In any case where the condition is satisfied, the separate heat source heating operation of step ST4 is performed.
- the control unit 8 controls the indoor unit by using the different heat source unit regardless of whether the heat pump heating condition is satisfied or the different heat source heating condition is satisfied. Perform heating.
- the determination process of step ST5 is omitted to perform the separate heat source heating operation. Then, the process may move from step ST1 to step ST4.
- the air conditioner including the heat pump unit 60 that heats the room by the vapor compression type refrigerant circuit 20 and the separate heat source unit 70 that heats the room by using a heat source different from the heat pump unit 60.
- the control unit 8 heats the room by the heat pump unit when the heat pump heating condition is satisfied, and performs the heating by the different heat source unit when the heat source unit satisfies the different heat source heating condition. Heat the room. Further, when the flammable refrigerant is leaking, the control unit 8 heats the room by using another heat source unit regardless of whether the heat pump heating condition is satisfied or the different heat source heating condition is satisfied.
- the heating of the room is performed by the separate heat source unit 70, so that the heating of the room itself is not performed. That is, the comfort of the person in the room can be prevented from being impaired.
- the control unit 8 determines which of the heat pump heating condition and the different heat source heating condition is satisfied based on the outside air temperature Ta or the indoor load. It should be noted that whether the heat pump heating condition or the separate heat source heating condition is satisfied may be determined using not only the outside air temperature Ta or the indoor load but also other state quantities. That is, at least the outside air temperature Ta or the indoor load is used to determine which of the heat pump heating condition and the separate heat source heating condition is satisfied.
- the indoor heating can be performed by the separate heat source unit 70.
- the separate heat source unit 70 has the furnace unit 5 (furnace) for heating the air sent indoors by burning the fuel.
- the refrigerant sensor 33 that detects the flammable refrigerant is provided.
- the refrigerant sensor 33 is disposed in the air flow passage 30a, it is possible to quickly detect whether or not the flammable refrigerant is leaking.
- the furnace heat exchanger 55 of the furnace unit 5 constituting the separate heat source unit 70 is located on the windward side of the indoor heat exchanger 42 of the indoor unit 4 constituting the heat pump unit 60. Although it is arranged on the upstream side of the indoor heat exchanger 42 with respect to the flow direction of the air in 30a), the arrangement of the two heat exchangers 42 and 55 is not limited to this.
- the furnace heat exchanger 55 of the furnace unit 5 as the separate heat source unit 70 is connected to the leeward side of the indoor heat exchanger 42 of the indoor unit 4 as the heat pump unit 60 (the air in the air passage 30 a). (Downstream of the indoor heat exchanger 42 with respect to the flow direction).
- the refrigerant sensor 33 is provided on the downstream side of the indoor heat exchanger 42 and on the upstream side of the furnace indoor heat exchanger 42 with respect to the flow direction of air in the air flow passage 30a.
- the furnace unit 5 constitutes another heat source unit 70, but the other heat source unit 70 is not limited to this.
- the electric heater 10 for heating the air by the heat generated by energization may constitute the separate heat source unit 70.
- the energy of the electric heater 10 is desirably 25 kW or less in order to reduce the possibility that the flammable refrigerant ignites.
- the indoor units 4 constituting the heat pump unit 60 are arranged in order from the windward side to the leeward side.
- the electric heater 10 which forms the indoor heat exchanger 42, the indoor blower 40, and the separate heat source unit 70 is provided.
- the refrigerant sensor 33 is provided on the downstream side of the indoor heat exchanger 42 and on the upstream side of the electric heater 10 with respect to the flow direction of air in the air flow passage 30a.
- the air flow passage 30a is formed so that air flows upward from the air inlet 32 toward the air outlet 31; however, the present invention is not limited to this.
- the air flow path 30a may be formed so that air flows downward from the air inlet 32 toward the air outlet 31, or may be formed so that air flows horizontally. Is also good.
- the indoor blower 40, the indoor heat exchanger 42 forming the heat pump unit 60, and the furnace heat exchanger 55 and the electric heater 10 forming the separate heat source unit 70 are arranged along the flow direction of the air. Provided.
- a refrigerant sensor may be further arranged near the indoor blower 40.
- a sirocco fan when used as the indoor blower 40, it may be arranged near the suction port.
- the present disclosure is widely applicable to an air conditioning system including a heat pump unit that heats a room by a refrigerant circuit of a vapor compression type and another heat source unit that heats a room by a heat source different from the heat pump unit. It is.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Thermal Sciences (AREA)
- Air Conditioning Control Device (AREA)
Abstract
空気調和システム(1)は、蒸気圧縮式の冷媒回路(20)によって室内の暖房を行うヒートポンプ部(60)と、ヒートポンプ部(60)とは別の熱源によって室内の暖房を行う別熱源部(70)と、ヒートポンプ部(60)及び別熱源部(70)の動作を制御する制御部(8)と、を有する。冷媒回路(20)には、冷媒として、可燃性冷媒が封入されている。制御部(8)は、可燃性冷媒が漏洩している場合は、ヒートポンプ暖房条件を満たす場合及び別熱源暖房条件を満たす場合のいずれの場合においても、別熱源部(70)によって室内の暖房を行う。
Description
蒸気圧縮式の冷媒回路によって室内の暖房を行うヒートポンプ部と、ヒートポンプ部とは別の熱源によって室内の暖房を行う別熱源部と、を有する空気調和システム
従来より、蒸気圧縮式の冷媒回路によって室内の暖房を行うヒートポンプ部と、ファーネス(ヒートポンプ部とは別の熱源)によって室内の暖房を行う別熱源部と、を有する空気調和システムがある。このような空気調和システムとして、特許文献1(特開昭64-54160号公報)に示すように、ヒートポンプ部による暖房と、別熱源部による暖房と、を切り換えるものがある。すなわち、この空気調和システムでは、ヒートポンプ部による暖房を行う条件を満たす場合には、ヒートポンプ部による暖房が行われ、別熱源部による暖房を行う条件を満たす場合には、別熱源による暖房が行われる。
上記従来の空気調和システムにおいて、冷媒回路に封入される冷媒として可燃性冷媒を使用する場合には、可燃性冷媒が冷媒回路から漏洩した際に、ヒートポンプ部の使用を制限する必要が生じるため、ヒートポンプ部による室内の暖房を行うことができなくなる。
そうすると、ヒートポンプ部による暖房を行う条件を満たす場合であるにもかかわらず、可燃性冷媒が漏洩している場合には、室内の暖房そのものが行われなくなってしまい、室内に居る人の快適性が損なわれるおそれがある。
第1の観点にかかる空気調和システムは、蒸気圧縮式の冷媒回路によって室内の暖房を行うヒートポンプ部と、ヒートポンプ部とは別の熱源によって室内の暖房を行う別熱源部と、ヒートポンプ部及び別熱源部の動作を制御する制御部と、を有している。冷媒回路には、冷媒として、可燃性冷媒が封入されている。制御部は、可燃性冷媒が漏洩していない場合は、ヒートポンプ暖房条件を満たす場合に、ヒートポンプ部によって室内の暖房を行い、別熱源暖房条件を満たす場合に、別熱源部によって室内の暖房を行う。また、制御部は、可燃性冷媒が漏洩している場合は、ヒートポンプ暖房条件を満たす場合及び別熱源暖房条件を満たす場合のいずれの場合においても、別熱源部によって室内の暖房を行う。
これにより、ここでは、可燃性冷媒が漏洩している場合には、ヒートポンプ暖房条件を満たす場合であっても、別熱源部によって室内の暖房が行われるため、室内の暖房そのものが行われなくなることを回避し、室内に居る人の快適性が損なわれないようにすることができる。
第2の観点にかかる空気調和システムは、第1の観点にかかる空気調和システムにおいて、制御部が、外気温度又は室内負荷に基づいてヒートポンプ暖房条件及び別熱源暖房条件のいずれを満たすかを判定する。
これにより、ここでは、可燃性冷媒が漏洩している場合には、外気温度又は室内負荷がヒートポンプ暖房条件を満たす場合であっても、別熱源部によって室内の暖房を行うことができる。
第3の観点にかかる空気調和システムは、第1又は第2の観点にかかる空気調和システムにおいて、別熱源部が、燃料を燃焼させることによって室内に送る空気を加熱するファーネスを有している。
これにより、ここでは、可燃性冷媒が漏洩していない場合は、別熱源暖房条件を満たす場合に、ファーネスによって室内の暖房を行い、可燃性冷媒が漏洩している場合は、ヒートポンプ暖房条件を満たす場合及び別熱源暖房条件を満たす場合のいずれの場合においても、ファーネスによって室内の暖房を行うことができる。
第4の観点にかかる空気調和システムは、第1~第3の観点のいずれかにかかる空気調和システムにおいて、可燃性冷媒を検知する冷媒センサを有している。
これにより、ここでは、冷媒センサを使用して可燃性冷媒が漏洩しているかどうかを検知することができる。
以下、空気調和システムについて、図面に基づいて説明する。
(1)構成
<全体>
図1は、一実施形態にかかる空気調和システム1の配置を示す模式図である。図2は、空気調和システム1の概略構成図である。
<全体>
図1は、一実施形態にかかる空気調和システム1の配置を示す模式図である。図2は、空気調和システム1の概略構成図である。
空気調和システム1は、住宅やビルの空調に使用される装置である。ここでは、空気調和システム1は、2階建て構造の住宅100に設置されている。住宅100には、1階に部屋101、102が設けられ、2階に部屋103、104が設けられている。また、住宅100には、地下室105が設けられている。尚、空気調和システム1が設置される住宅やビルは、図1に示される構造に限定されず、他の構造であってもよい。
空気調和システム1は、いわゆるダクト式の空気調和システムである。空気調和システム1は、主として、室外ユニット2と、利用ユニット3と、室外ユニット2と利用ユニット3とを接続する冷媒連絡管6、7と、利用ユニット3で空調された空気を部屋101~104に送る送風ダクト9と、を有している。送風ダクト9は、部屋101~104に分岐されて、各部屋101~104の通風口101a~104aに接続されている。
ここで、室外ユニット2、利用ユニット3の一部である室内ユニット4、及び、冷媒連絡管6、7は、蒸気圧縮式の冷媒回路20によって室内の暖房を行うヒートポンプ部60を構成している。また、利用ユニット3の一部であるファーネスユニット5(ファーネス)は、ヒートポンプ部60とは別の熱源(ここでは、燃料の燃焼による熱)によって室内の暖房を行う別熱源部70を構成している。このように、ここでは、利用ユニット3は、ヒートポンプ部60を構成する室内ユニット4、及び、別熱源部70を構成するファーネスユニット5の両方を有している。また、利用ユニット3は、利用ユニット3の筐体30内に部屋101~104内の空気を取り込んで、ヒートポンプ部60(室内ユニット4)や別熱源部70(ファーネスユニット5)で空調された空気を部屋101~104内に送る室内送風機40を有している。
<ヒートポンプ部>
ヒートポンプ部60は、上記のように、室外ユニット2、利用ユニット3の一部である室内ユニット4、及び、冷媒連絡管6、7によって構成されている。ここで、室外ユニット2と室内ユニット4とは、冷媒連絡管6、7を介して接続されている。すなわち、ヒートポンプ部60の冷媒回路20は、室外ユニット2と、室内ユニット4とが冷媒連絡管6、7を介して接続されることによって構成されている。ここで、冷媒連絡管6、7は、空気調和システム1を設置する際に、現地にて施工される冷媒管である。また、冷媒回路20には、冷媒として、R32等の特定条件下で発火の可能性がある冷媒(以下、「可燃性冷媒」とする)が封入されている。
ヒートポンプ部60は、上記のように、室外ユニット2、利用ユニット3の一部である室内ユニット4、及び、冷媒連絡管6、7によって構成されている。ここで、室外ユニット2と室内ユニット4とは、冷媒連絡管6、7を介して接続されている。すなわち、ヒートポンプ部60の冷媒回路20は、室外ユニット2と、室内ユニット4とが冷媒連絡管6、7を介して接続されることによって構成されている。ここで、冷媒連絡管6、7は、空気調和システム1を設置する際に、現地にて施工される冷媒管である。また、冷媒回路20には、冷媒として、R32等の特定条件下で発火の可能性がある冷媒(以下、「可燃性冷媒」とする)が封入されている。
室内ユニット4は、ここでは、住宅100の地下室105に設置された利用ユニット3の筐体30内に設けられている。室内ユニット4は、冷媒連絡管6、7を介して室外ユニット2に接続されており、冷媒回路20の一部を構成している。尚、利用ユニット3は、地下室105以外の場所に設けられていてもよい。
室内ユニット4は、主として、室内膨張弁41と、ヒートポンプ暖房運転(後述)時に冷凍サイクルにおける可燃性冷媒の放熱によって空気を加熱する室内熱交換器42(冷媒熱交換器)と、を有している。室内膨張弁41は、冷媒回路20を循環する可燃性冷媒を減圧して冷媒熱交換器としての室内熱交換器42を流れる可燃性冷媒の流量を調節する弁である。ここでは、室内熱交換器42は、利用ユニット3の筐体30に形成された空気入口32から空気出口31までの送風流路30a内の最も風下側(送風流路30aにおける空気の流れ方向に対して最も下流側)に配置されている。
室外ユニット2は、住宅100の屋外に設置されている。室外ユニット2は、冷媒連絡管6、7を介して室内ユニット4に接続されており、冷媒回路20の一部を構成している。
室外ユニット2は、主として、圧縮機21と、室外熱交換器23と、室外膨張弁24と、四路切換弁29と、を有している。圧縮機21は、可燃性冷媒を圧縮する圧縮要素(図示せず)と、圧縮要素を回転駆動する圧縮機モータ22と、を有している。室外熱交換器23は、ヒートポンプ暖房運転時に室外空気によって冷凍サイクルにおける可燃性冷媒を蒸発させる熱交換器である。室外熱交換器23の近傍には、室外熱交換器23に室外空気を送る室外ファン25が設けられている。室外ファン25は、室外ファンモータ26によって回転駆動されるようになっている。室外膨張弁24は、ヒートポンプ暖房運転時に冷媒回路20を循環する可燃性冷媒を室外熱交換器23に送る前に減圧する弁である。四路切換弁29は、冷媒回路20における可燃性冷媒の流れ方向を切り換える弁である。四路切換弁29は、ヒートポンプ暖房運転時には、室内熱交換器42を可燃性冷媒の放熱器として機能させ、かつ、室外熱交換器23を可燃性冷媒の蒸発器として機能させる暖房状態(図2の四路切換弁29の破線を参照)に切り換えられる。また、四路切換弁29は、室内熱交換器42を可燃性冷媒の蒸発器として機能させ、かつ、室外熱交換器23を可燃性冷媒の放熱器として機能させる冷房状態(図2の四路切換弁29の実線を参照)にも切り換えることが可能である。
また、室外ユニット2には、室外ユニット2が配置される住宅100の屋外の室外空気の温度、すなわち、外気温度Taを検出する室外温度センサ27が設けられている。また、室外ユニット2は、室外ユニット2を構成する各部の動作を制御する室外側制御部28を有している。そして、室外側制御部28は、室外ユニット2の制御を行うために設けられたマイクロコンピュータやメモリ等を有しており、利用ユニット3との間で制御信号等のやりとりを行うことができるようになっている。
<別熱源部>
別熱源部70は、上記のように、利用ユニット3の一部であるファーネスユニット5によって構成されている。
別熱源部70は、上記のように、利用ユニット3の一部であるファーネスユニット5によって構成されている。
ファーネスユニット5は、ここでは、住宅100の地下室105に設置された利用ユニット3の筐体30内に設けられている。ここでは、ファーネスユニット5は、ガス燃焼式暖房装置である。
ファーネスユニット5は、主として、燃料ガス弁51と、ファーネスファン52と、燃焼部54と、ファーネス熱交換器55と、給気管56と、排気管57と、点火装置59と、を有している。燃料ガス弁51は、開閉制御が可能な電磁弁等からなり、筐体30外から燃焼部54まで延びる燃料ガス供給管58に設けられている。ここで、燃料ガスとしては、天然ガスや石油ガス等が使用される。ファーネスファン52は、給気管55を通じて燃焼部54に空気を取り込んで、その後、ファーネス熱交換器55に空気を送り、排気管57から排出するという空気の流れを生成するファンである。ファーネスファン52は、ファーネスファンモータ53によって回転駆動されるようになっている。燃焼部54は、ガスバーナ等(図示せず)によって燃料ガスと空気との混合ガスを燃焼させて高温の燃焼ガスを得る機器である。点火装置59は、燃焼部54に設けられている。点火装置59は、イグナイタからなり、燃焼部54の点火を行う。ここで、燃焼部54は、送風流路30aとは壁で離隔されているが、壁に穴が開いた場合には、室内熱交換器42から漏洩した可燃性冷媒が点火装置59に接触する可能性がある。このような場合でも、可燃性冷媒が着火するおそれを減らすために、点火装置59のエネルギは、120V以下にすることが望ましい。ファーネス熱交換器55は、燃焼部54で得られた燃焼ガスの放熱(すなわち、別熱源)によって空気を加熱する熱交換器である。ここでは、ファーネス熱交換器55は、利用ユニット3の筐体30に形成された空気入口32から空気出口31までの送風流路30a内において、室内熱交換器42よりも風上側(送風流路30aにおける空気の流れ方向に対して室内熱交換器42よりも上流側)に配置されている。また、利用ユニット3には、可燃性冷媒を検知する冷媒センサ33と、筐体30の空気入口32における空気の温度である室内温度Trを検出する室内温度センサ34と、が設けられている。ここで、冷媒センサ33は、送風流路30aにおける空気の流れ方向に対して、室内熱交換器42の下流側に設けられている。また、室内温度センサ34は、利用ユニット3ではなく、部屋101~104内に設けられていてもよい。
<室内送風機>
室内送風機40は、上記のように、ヒートポンプ部60を構成する室内熱交換器42や別熱源部70を構成するファーネス熱交換器55によって加熱される空気を部屋101~104内に送る送風機である。ここでは、室内送風機40は、利用ユニット3の筐体30に形成された空気入口32から空気出口31までの送風流路30a内において、室内熱交換器42及びファーネス熱交換器55の両方よりも風上側(送風流路30aにおける空気の流れ方向に対して室内熱交換器42及びファーネス熱交換器55よりも上流側)に配置されている。室内送風機40は、室内ファン43と、室内ファン43を回転駆動する室内ファンモータ44とを有している。室内ファン43としては、シロッコファンやターボファンが使用される。
室内送風機40は、上記のように、ヒートポンプ部60を構成する室内熱交換器42や別熱源部70を構成するファーネス熱交換器55によって加熱される空気を部屋101~104内に送る送風機である。ここでは、室内送風機40は、利用ユニット3の筐体30に形成された空気入口32から空気出口31までの送風流路30a内において、室内熱交換器42及びファーネス熱交換器55の両方よりも風上側(送風流路30aにおける空気の流れ方向に対して室内熱交換器42及びファーネス熱交換器55よりも上流側)に配置されている。室内送風機40は、室内ファン43と、室内ファン43を回転駆動する室内ファンモータ44とを有している。室内ファン43としては、シロッコファンやターボファンが使用される。
<制御部>
利用ユニット3は、利用ユニット3を構成する各部(室内ユニット4、ファーネスユニット5、及び、室内送風機40)の動作を制御する利用側制御部38を有している。そして、利用側制御部38は、利用ユニット3の制御を行うために設けられたマイクロコンピュータやメモリ等を有しており、室外ユニット2との間で制御信号等のやりとりを行うことができるようになっている。
利用ユニット3は、利用ユニット3を構成する各部(室内ユニット4、ファーネスユニット5、及び、室内送風機40)の動作を制御する利用側制御部38を有している。そして、利用側制御部38は、利用ユニット3の制御を行うために設けられたマイクロコンピュータやメモリ等を有しており、室外ユニット2との間で制御信号等のやりとりを行うことができるようになっている。
そして、利用ユニット3の利用側制御部38と、室外ユニット2の室外側制御部28とは、図2に示すように、空気調和システム1全体の運転制御を行う制御部8を構成している。制御部8は、図3に示されるように、各種センサ27、33、34等の検出信号を受けることができるように接続されている。ここで、図3は、空気調和システム1の制御ブロック図である。そして、制御部8は、これらの検出信号等に基づいて各種機器及び弁22、24、26、29、41、44、51、53、59を制御すること、すなわち、ヒートポンプ部60及び別熱源部70の動作を制御することによって、空調運転(暖房運転)を行うように構成されている。ここでは、制御部8は、ヒートポンプ部60によって部屋101~104内の暖房を行うヒートポンプ暖房運転と、別熱源部70によって部屋101~104内の暖房を行う別熱源暖房運転と、を行うようになっている。
(2)動作
次に、空気調和システム1の空調運転(暖房運転)の動作について、図1~図3を用いて説明する。上記のように、空気調和システム1の暖房運転には、ヒートポンプ部60によって室内の暖房を行うヒートポンプ暖房運転と、別熱源部70によって室内の暖房を行う別熱源暖房運転と、がある。そして、ヒートポンプ暖房運転及び別熱源暖房運転は、制御部8によって行われる。
次に、空気調和システム1の空調運転(暖房運転)の動作について、図1~図3を用いて説明する。上記のように、空気調和システム1の暖房運転には、ヒートポンプ部60によって室内の暖房を行うヒートポンプ暖房運転と、別熱源部70によって室内の暖房を行う別熱源暖房運転と、がある。そして、ヒートポンプ暖房運転及び別熱源暖房運転は、制御部8によって行われる。
<ヒートポンプ暖房運転>
ヒートポンプ暖房運転においては、冷媒回路20内の可燃性冷媒が圧縮機21に吸入されて圧縮されて高圧のガス状態となる。圧縮機21において圧縮された可燃性冷媒は、暖房状態の四路切換弁29及びガス冷媒連絡管7を経由して、室外ユニット2から利用ユニット3の室内ユニット4に送られる。
ヒートポンプ暖房運転においては、冷媒回路20内の可燃性冷媒が圧縮機21に吸入されて圧縮されて高圧のガス状態となる。圧縮機21において圧縮された可燃性冷媒は、暖房状態の四路切換弁29及びガス冷媒連絡管7を経由して、室外ユニット2から利用ユニット3の室内ユニット4に送られる。
利用ユニット3の室内ユニット4に送られた高圧の可燃性冷媒は、室内熱交換器42に送られる。室内熱交換器42に送られた高圧の可燃性冷媒は、室内熱交換器42において、室内送風機40によって送風流路30a内を流れる室内空気F1(F2)と熱交換を行って放熱する。室内熱交換器42において放熱した可燃性冷媒は、室内膨張弁41によって減圧された後に、液冷媒連絡管6を経由して、利用ユニット3の室内ユニット4から室外ユニット2に送られる。一方、室内熱交換器42において加熱された室内空気F3は、送風流路30aを出て、ダクト9を通じて利用ユニット3から各部屋101~104に送られて、暖房が行われる。
室外ユニット2に送られた高圧の可燃性冷媒は、室外膨張弁24に送られ、室外膨張弁24によって減圧される。室内膨張弁24において減圧された可燃性冷媒は、室外熱交換器23に送られる。室外熱交換器23に送られた可燃性冷媒は、室外熱交換器23において、室外ファン25によって供給される室外空気と熱交換を行って蒸発する。室外熱交換器23において蒸発した可燃性冷媒は、暖房状態の四路切換弁29を経由して、圧縮機21に送られ、再び、圧縮機21に吸入される。
<別熱源暖房運転>
別熱源暖房運転においては、燃料ガス弁51を開けることによって燃焼部54に燃料ガスを供給し、ファーネスファン52によって給気管56を経由して利用ユニット3のファーネスユニット5に取り込まれる空気と燃焼部54内で混合し、点火装置59で着火することで燃焼させ、高温の燃焼ガスを生成させる。
別熱源暖房運転においては、燃料ガス弁51を開けることによって燃焼部54に燃料ガスを供給し、ファーネスファン52によって給気管56を経由して利用ユニット3のファーネスユニット5に取り込まれる空気と燃焼部54内で混合し、点火装置59で着火することで燃焼させ、高温の燃焼ガスを生成させる。
燃焼部54内で生成した燃焼ガスは、ファーネス熱交換器55に送られる。ファーネス熱交換器55に送られた燃焼ガスは、ファーネス熱交換器55において、室内送風機40によって送風流路30a内を流れる室内空気F1と熱交換を行って冷却される。ファーネス熱交換器55において冷却された燃焼ガスは、排気管57を経由して利用ユニット3のファーネスユニット5から排出される。一方、ファーネス熱交換器55において加熱された室内空気F2(F3)は、送風流路30aを出て、ダクト9を通じて利用ユニット3から各部屋101~104に送られて、暖房が行われる。
<ヒートポンプ暖房運転及び別熱源暖房運転の選択>
空気調和システム1では、制御部8が、ヒートポンプ暖房運転に適した条件(ヒートポンプ暖房条件)を満たす場合には、ヒートポンプ暖房運転を行い、別熱源暖房運転に適した条件(別熱源暖房条件)を満たす場合には、別熱源暖房運転を行うようになっている。ここでは、制御部8が、外気温度Ta又は室内負荷(例えば、目標室内温度Trtから室内温度Trを差し引いた室内温度差ΔTr)に基づいて、ヒートポンプ暖房条件及び別熱源暖房条件のいずれを満たすかを判定している。例えば、制御部8は、外気温度Taが高い場合(閾外気温度Tat以上である場合)、又は、室内負荷が小さい場合(室内温度差ΔTrが閾室内温度差ΔTr以下である場合)には、ヒートポンプ暖房運転を行うようにしている。逆に、制御部8は、外気温度Taが低い場合(閾外気温度Tat未満である場合)、又は、室内負荷が大きい場合(室内温度差ΔTrが閾室内温度差ΔTrよりも大きい場合)には、別熱源暖房運転を行うようにしている。すなわち、外気温度Taが高い場合や室内負荷が小さい場合のような、運転効率の良いヒートポンプ暖房運転によって室内の空調負荷(暖房負荷)をカバーすることが可能な場合には、ヒートポンプ暖房運転を行い、外気温度Taが低い場合や室内負荷が大きい場合のような、ヒートポンプ暖房運転では運転効率が悪く室内の空調負荷(暖房負荷)をカバーできない場合には、別熱源暖房運転を行うようにしている。
空気調和システム1では、制御部8が、ヒートポンプ暖房運転に適した条件(ヒートポンプ暖房条件)を満たす場合には、ヒートポンプ暖房運転を行い、別熱源暖房運転に適した条件(別熱源暖房条件)を満たす場合には、別熱源暖房運転を行うようになっている。ここでは、制御部8が、外気温度Ta又は室内負荷(例えば、目標室内温度Trtから室内温度Trを差し引いた室内温度差ΔTr)に基づいて、ヒートポンプ暖房条件及び別熱源暖房条件のいずれを満たすかを判定している。例えば、制御部8は、外気温度Taが高い場合(閾外気温度Tat以上である場合)、又は、室内負荷が小さい場合(室内温度差ΔTrが閾室内温度差ΔTr以下である場合)には、ヒートポンプ暖房運転を行うようにしている。逆に、制御部8は、外気温度Taが低い場合(閾外気温度Tat未満である場合)、又は、室内負荷が大きい場合(室内温度差ΔTrが閾室内温度差ΔTrよりも大きい場合)には、別熱源暖房運転を行うようにしている。すなわち、外気温度Taが高い場合や室内負荷が小さい場合のような、運転効率の良いヒートポンプ暖房運転によって室内の空調負荷(暖房負荷)をカバーすることが可能な場合には、ヒートポンプ暖房運転を行い、外気温度Taが低い場合や室内負荷が大きい場合のような、ヒートポンプ暖房運転では運転効率が悪く室内の空調負荷(暖房負荷)をカバーできない場合には、別熱源暖房運転を行うようにしている。
しかし、可燃性冷媒が冷媒回路20から漏洩した場合には、ヒートポンプ部60の使用を制限する必要が生じるため、ヒートポンプ暖房運転を行うことができなくなる。そうすると、ヒートポンプ暖房条件を満たす場合であるにもかかわらず、可燃性冷媒が漏洩している場合には、室内の暖房そのものが行われなくなってしまい、室内に居る人の快適性が損なわれるおそれがある。
そこで、ここでは、図4に示すように、ヒートポンプ暖房条件及び別熱源暖房条件のいずれを満たすかだけでなく、可燃性冷媒が冷媒回路20から漏洩しているかどうかにも基づいて、ヒートポンプ暖房運転及び別熱源暖房運転を選択して行うようにしている。ここで、図4は、空気調和システム1の動作を示すフローチャートである。そして、ヒートポンプ暖房運転及び別熱源暖房運転の選択も、制御部8によって行われる。
制御部8に対して暖房運転を行う旨の指令がなされると、まず、ステップST1において、制御部8が、可燃性冷媒が冷媒回路20から漏洩しているかどうかを判定する。ここでは、制御部8は、冷媒センサ33が可燃性冷媒を検知した場合には、可燃性冷媒が漏洩しているものと判定し、冷媒センサ33が可燃性冷媒を検知しない場合には、可燃性冷媒が漏洩していないものと判定する。そして、ステップST1において、制御部8は、可燃性冷媒が漏洩していない場合には、ステップST2の処理に移行し、可燃性冷媒が漏洩している場合には、ステップST5の処理に移行する。
次に、ステップST2において、制御部8が、ヒートポンプ暖房条件及び別熱源暖房条件のいずれを満たすかを判定する。ここでは、制御部8は、外気温度Ta又は室内負荷(ここでは、室内温度差ΔTr)に基づいて、ヒートポンプ暖房条件及び別熱源暖房条件のいずれを満たすかを判定する。具体的には、制御部8は、外気温度Taが閾外気温度Tat以上である場合、又は、室内温度差ΔTrが閾室内温度差ΔTr以下である場合には、ヒートポンプ暖房条件を満たすものと判定し、外気温度Taが閾外気温度Tat未満である場合、又は、室内温度差ΔTrが閾室内温度差ΔTrよりも大きい場合には、別熱源暖房条件を満たすものと判定する。そして、ステップST2において、制御部8は、ヒートポンプ暖房条件を満たす場合には、ステップST3の処理に移行し、別熱源暖房条件を満たす場合には、ステップST4の処理に移行する。
次に、ステップST2においてヒートポンプ暖房条件を満たすものと判定された場合には、ステップST3において、制御部8は、上記のヒートポンプ暖房運転を行う。また、ステップST2において別熱源暖房条件を満たすものと判定された場合には、ステップST4において、制御部8は、上記の別熱源暖房運転を行う。このように、ここでは、制御部8が、可燃性冷媒が漏洩していない場合は、ヒートポンプ暖房条件を満たす場合に、ヒートポンプ部60によって室内の暖房を行い、別熱源暖房条件を満たす場合に、別熱源部70によって室内の暖房を行う。
一方、ステップST1において可燃性冷媒が漏洩しているものと判定された場合にも、ステップST5において、制御部8は、ステップST2と同様に、ヒートポンプ暖房条件及び別熱源暖房条件のいずれを満たすかを判定する。しかし、可燃性冷媒が漏洩している場合には、ヒートポンプ部60の使用を制限する必要が生じるため、可燃性冷媒が漏洩していない場合とは異なり、ヒートポンプ暖房条件を満たす場合及び別熱源暖房条件を満たす場合のいずれの場合においても、ステップST4の別熱源暖房運転を行う。このように、ここでは、制御部8が、可燃性冷媒が漏洩している場合は、ヒートポンプ暖房条件を満たす場合及び別熱源暖房条件を満たす場合のいずれの場合においても、別熱源部によって室内の暖房を行う。尚、可燃性冷媒が漏洩している場合は、ヒートポンプ暖房条件を満たす場合及び別熱源暖房条件を満たす場合のいずれの場合においても、別熱源暖房運転を行うため、ステップST5の判定処理を省略して、ステップST1からステップST4の処理に移行させてもよい。
(3)特徴
次に、空気調和システム1の特徴について説明する。
次に、空気調和システム1の特徴について説明する。
<A>
ここでは、上記のように、蒸気圧縮式の冷媒回路20によって室内の暖房を行うヒートポンプ部60と、ヒートポンプ部60とは別の熱源によって室内の暖房を行う別熱源部70と、を有する空気調和システム1において、制御部8が、可燃性冷媒が漏洩していない場合は、ヒートポンプ暖房条件を満たす場合に、ヒートポンプ部によって室内の暖房を行い、別熱源暖房条件を満たす場合に、別熱源部によって室内の暖房を行う。また、制御部8は、可燃性冷媒が漏洩している場合は、ヒートポンプ暖房条件を満たす場合及び別熱源暖房条件を満たす場合のいずれの場合においても、別熱源部によって室内の暖房を行う。
ここでは、上記のように、蒸気圧縮式の冷媒回路20によって室内の暖房を行うヒートポンプ部60と、ヒートポンプ部60とは別の熱源によって室内の暖房を行う別熱源部70と、を有する空気調和システム1において、制御部8が、可燃性冷媒が漏洩していない場合は、ヒートポンプ暖房条件を満たす場合に、ヒートポンプ部によって室内の暖房を行い、別熱源暖房条件を満たす場合に、別熱源部によって室内の暖房を行う。また、制御部8は、可燃性冷媒が漏洩している場合は、ヒートポンプ暖房条件を満たす場合及び別熱源暖房条件を満たす場合のいずれの場合においても、別熱源部によって室内の暖房を行う。
これにより、ここでは、可燃性冷媒が漏洩している場合には、ヒートポンプ暖房条件を満たす場合であっても、別熱源部70によって室内の暖房が行われるため、室内の暖房そのものが行われなくなることを回避し、室内に居る人の快適性が損なわれないようにすることができる。
<B>
また、ここでは、上記のように、制御部8が、外気温度Ta又は室内負荷に基づいてヒートポンプ暖房条件及び別熱源暖房条件のいずれを満たすかを判定する。尚、ヒートポンプ暖房条件及び別熱源暖房条件のいずれを満たすかは、外気温度Ta又は室内負荷だけではなく、他の状態量を用いて判定してもよい。すなわち、ヒートポンプ暖房条件及び別熱源暖房条件のいずれを満たすかの判定に、外気温度Ta又は室内負荷を少なくとも用いるのである。
また、ここでは、上記のように、制御部8が、外気温度Ta又は室内負荷に基づいてヒートポンプ暖房条件及び別熱源暖房条件のいずれを満たすかを判定する。尚、ヒートポンプ暖房条件及び別熱源暖房条件のいずれを満たすかは、外気温度Ta又は室内負荷だけではなく、他の状態量を用いて判定してもよい。すなわち、ヒートポンプ暖房条件及び別熱源暖房条件のいずれを満たすかの判定に、外気温度Ta又は室内負荷を少なくとも用いるのである。
これにより、ここでは、可燃性冷媒が漏洩している場合には、外気温度Ta又は室内負荷がヒートポンプ暖房条件を満たす場合であっても、別熱源部70によって室内の暖房を行うことができる。
<C>
また、ここでは、上記のように、別熱源部70が、燃料を燃焼させることによって室内に送る空気を加熱するファーネスユニット5(ファーネス)を有している。
また、ここでは、上記のように、別熱源部70が、燃料を燃焼させることによって室内に送る空気を加熱するファーネスユニット5(ファーネス)を有している。
これにより、ここでは、可燃性冷媒が漏洩していない場合は、別熱源暖房条件を満たす場合に、ファーネス5によって室内の暖房を行い、可燃性冷媒が漏洩している場合は、ヒートポンプ暖房条件を満たす場合及び別熱源暖房条件を満たす場合のいずれの場合においても、ファーネス5によって室内の暖房を行うことができる。
<D>
また、ここでは、上記のように、可燃性冷媒を検知する冷媒センサ33を有している。
また、ここでは、上記のように、可燃性冷媒を検知する冷媒センサ33を有している。
これにより、ここでは、冷媒センサ33を使用して可燃性冷媒が漏洩しているかどうかを検知することができる。
また、ここでは、冷媒センサ33が送風流路30a内に配置されているため、可燃性冷媒が漏洩しているかどうかを速やかに検知することができる。
(4)変形例
<A>
上記実施形態では、利用ユニット3において、別熱源部70を構成するファーネスユニット5のファーネス熱交換器55を、ヒートポンプ部60を構成する室内ユニット4の室内熱交換器42の風上側(送風流路30aにおける空気の流れ方向に対して室内熱交換器42よりも上流側)に配置しているが、両熱交換器42、55の配置は、これに限定されるものではない。
<A>
上記実施形態では、利用ユニット3において、別熱源部70を構成するファーネスユニット5のファーネス熱交換器55を、ヒートポンプ部60を構成する室内ユニット4の室内熱交換器42の風上側(送風流路30aにおける空気の流れ方向に対して室内熱交換器42よりも上流側)に配置しているが、両熱交換器42、55の配置は、これに限定されるものではない。
例えば、図5に示すように、別熱源部70としてのファーネスユニット5のファーネス熱交換器55を、ヒートポンプ部60としての室内ユニット4の室内熱交換器42の風下側(送風流路30aにおける空気の流れ方向に対して室内熱交換器42よりも下流側)に配置してもよい。ここでは、冷媒センサ33が、送風流路30aにおける空気の流れ方向に対して、室内熱交換器42の下流側、かつ、ファーネス室内熱交換器42の上流側に設けられている。
<B>
上記実施形態及び変形例Aでは、ファーネスユニット5が別熱源部70を構成しているが、別熱源部70は、これに限定されるものではない。
上記実施形態及び変形例Aでは、ファーネスユニット5が別熱源部70を構成しているが、別熱源部70は、これに限定されるものではない。
例えば、図6及び図7に示すように、通電により発生する熱によって空気を加熱する電気ヒータ10が別熱源部70を構成してもよい。ここで、室内熱交換器42から漏洩した可燃性冷媒が電気ヒータ10に接触した場合でも、可燃性冷媒が着火するおそれを減らすために、電気ヒータ10のエネルギは、25kW以下にすることが望ましい。ここでは、利用ユニット3の筐体30に形成された空気入口32から空気出口31までの送風流路30a内において、風上側から風下側に向かって順に、ヒートポンプ部60を構成する室内ユニット4の室内熱交換器42、室内送風機40、別熱源部70を構成する電気ヒータ10が設けられている。ここでは、冷媒センサ33が、送風流路30aにおける空気の流れ方向に対して、室内熱交換器42の下流側、かつ、電気ヒータ10の上流側に設けられている。
<C>
上記実施形態及び変形例A、Bでは、送風流路30aが、空気入口32から空気出口31に向かって上向きに空気が流れるように形成されているが、これに限定されるものではない。例えば、ここでは図示しないが、送風流路30aが、空気入口32から空気出口31に向かって下向きに空気が流れるように形成されていてもよいし、水平向きに空気が流れるように形成されてもよい。この場合には、これらの空気の流れ方向に沿って、室内送風機40、ヒートポンプ部60を構成する室内熱交換器42、及び、別熱源部70を構成するファーネス熱交換器55や電気ヒータ10が設けられる。
上記実施形態及び変形例A、Bでは、送風流路30aが、空気入口32から空気出口31に向かって上向きに空気が流れるように形成されているが、これに限定されるものではない。例えば、ここでは図示しないが、送風流路30aが、空気入口32から空気出口31に向かって下向きに空気が流れるように形成されていてもよいし、水平向きに空気が流れるように形成されてもよい。この場合には、これらの空気の流れ方向に沿って、室内送風機40、ヒートポンプ部60を構成する室内熱交換器42、及び、別熱源部70を構成するファーネス熱交換器55や電気ヒータ10が設けられる。
<D>
上記実施形態及び変形例A~Cでは、可燃性冷媒が漏洩しているかどうかを、冷媒センサ33を用いて検知しているが、これに限定されるものではなく、冷媒回路20内の可燃性冷媒の温度や圧力等を用いて検知してもよい。
上記実施形態及び変形例A~Cでは、可燃性冷媒が漏洩しているかどうかを、冷媒センサ33を用いて検知しているが、これに限定されるものではなく、冷媒回路20内の可燃性冷媒の温度や圧力等を用いて検知してもよい。
<E>
上記実施形態及び変形例A~Dでは、ヒートポンプ部60を構成する冷媒回路20によって室内の暖房(ヒートポンプ暖房運転)を行っているが、この運転だけでなく、四路切換弁29を冷房状態に切り換えることによって、ヒートポンプ部60を構成する冷媒回路20によって室内の冷房を行うことも可能である。
上記実施形態及び変形例A~Dでは、ヒートポンプ部60を構成する冷媒回路20によって室内の暖房(ヒートポンプ暖房運転)を行っているが、この運転だけでなく、四路切換弁29を冷房状態に切り換えることによって、ヒートポンプ部60を構成する冷媒回路20によって室内の冷房を行うことも可能である。
<F>
上記実施形態及び変形例A~Eにおいて、室内送風機40の近傍に冷媒センサをさらに配置してもよい。例えば、室内送風機40としてシロッコファンを使用する場合には、吸入口の近傍に配置することが考えられる。このような位置に冷媒センサを配置することによって、室内送風機40を回転させた際に、可燃性冷媒の漏洩の有無を素早く検知することが可能になる。
上記実施形態及び変形例A~Eにおいて、室内送風機40の近傍に冷媒センサをさらに配置してもよい。例えば、室内送風機40としてシロッコファンを使用する場合には、吸入口の近傍に配置することが考えられる。このような位置に冷媒センサを配置することによって、室内送風機40を回転させた際に、可燃性冷媒の漏洩の有無を素早く検知することが可能になる。
以上、本開示の実施形態を説明したが、請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能であることが理解されるであろう。
本開示は、蒸気圧縮式の冷媒回路によって室内の暖房を行うヒートポンプ部と、ヒートポンプ部とは別の熱源によって室内の暖房を行う別熱源部と、を有する空気調和システムに対して、広く適用可能である。
1 空気調和システム
5 ファーネスユニット(ファーネス)
8 制御部
20 冷媒回路
33 冷媒センサ
60 ヒートポンプ部
70 別熱源部
5 ファーネスユニット(ファーネス)
8 制御部
20 冷媒回路
33 冷媒センサ
60 ヒートポンプ部
70 別熱源部
Claims (4)
- 蒸気圧縮式の冷媒回路(20)によって室内の暖房を行うヒートポンプ部(60)と、
前記ヒートポンプ部とは別の熱源によって室内の暖房を行う別熱源部(70)と、
前記ヒートポンプ部及び前記別熱源部の動作を制御する制御部(8)と、
を備えており、
前記冷媒回路には、冷媒として、可燃性冷媒が封入されており、
前記制御部は、前記可燃性冷媒が漏洩していない場合は、ヒートポンプ暖房条件を満たす場合に、前記ヒートポンプ部によって前記室内の暖房を行い、別熱源暖房条件を満たす場合に、前記別熱源部によって前記室内の暖房を行い、
前記制御部は、前記可燃性冷媒が漏洩している場合は、前記ヒートポンプ暖房条件を満たす場合及び前記別熱源暖房条件を満たす場合のいずれの場合においても、前記別熱源部によって前記室内の暖房を行う、
空気調和システム(1)。 - 前記制御部は、外気温度又は室内負荷に基づいて前記ヒートポンプ暖房条件及び前記別熱源暖房条件のいずれを満たすかを判定する、
請求項1に記載の空気調和システム。 - 前記別熱源部は、燃料を燃焼させることによって前記室内に送る空気を加熱するファーネス(5)を有している、
請求項1又は2に記載の空気調和システム。 - 前記可燃性冷媒を検知する冷媒センサ(33)を備えている、
請求項1~3のいずれか1項に記載の空気調和システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/266,189 US20210302051A1 (en) | 2018-08-06 | 2018-08-06 | Air conditioning system |
PCT/JP2018/029417 WO2020031234A1 (ja) | 2018-08-06 | 2018-08-06 | 空気調和システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/029417 WO2020031234A1 (ja) | 2018-08-06 | 2018-08-06 | 空気調和システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020031234A1 true WO2020031234A1 (ja) | 2020-02-13 |
Family
ID=69414287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/029417 WO2020031234A1 (ja) | 2018-08-06 | 2018-08-06 | 空気調和システム |
Country Status (2)
Country | Link |
---|---|
US (1) | US20210302051A1 (ja) |
WO (1) | WO2020031234A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10119738B2 (en) | 2014-09-26 | 2018-11-06 | Waterfurnace International Inc. | Air conditioning system with vapor injection compressor |
US11592215B2 (en) | 2018-08-29 | 2023-02-28 | Waterfurnace International, Inc. | Integrated demand water heating using a capacity modulated heat pump with desuperheater |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4971136A (en) * | 1989-11-28 | 1990-11-20 | Electric Power Research Institute | Dual fuel heat pump controller |
WO2015011920A1 (ja) * | 2013-07-26 | 2015-01-29 | パナソニックIpマネジメント株式会社 | 車両用空調装置 |
JP2015145758A (ja) * | 2014-02-03 | 2015-08-13 | ダイキン工業株式会社 | 空気調和システム |
WO2016151642A1 (ja) * | 2015-03-26 | 2016-09-29 | 三菱電機株式会社 | 空気調和機の室内機 |
-
2018
- 2018-08-06 WO PCT/JP2018/029417 patent/WO2020031234A1/ja active Application Filing
- 2018-08-06 US US17/266,189 patent/US20210302051A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4971136A (en) * | 1989-11-28 | 1990-11-20 | Electric Power Research Institute | Dual fuel heat pump controller |
WO2015011920A1 (ja) * | 2013-07-26 | 2015-01-29 | パナソニックIpマネジメント株式会社 | 車両用空調装置 |
JP2015145758A (ja) * | 2014-02-03 | 2015-08-13 | ダイキン工業株式会社 | 空気調和システム |
WO2016151642A1 (ja) * | 2015-03-26 | 2016-09-29 | 三菱電機株式会社 | 空気調和機の室内機 |
Also Published As
Publication number | Publication date |
---|---|
US20210302051A1 (en) | 2021-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5858062B2 (ja) | 空気調和システム | |
WO2020031233A1 (ja) | 空気調和システム | |
US11898763B2 (en) | Air conditioning system with refrigerant leak management | |
US12050038B2 (en) | Refrigeration cycle system | |
US11604020B2 (en) | Heating, ventilation, and air conditioning control system with refrigerant leak control | |
WO2013038577A1 (ja) | ヒートポンプ装置及びヒートポンプ装置の制御方法 | |
JP5861726B2 (ja) | 空気調和システム | |
US20220404038A1 (en) | Air conditioning system | |
US20160348927A1 (en) | Air conditioner | |
JP5677461B2 (ja) | 冷凍サイクル装置の部品交換方法および冷凍サイクル装置 | |
JP7315845B2 (ja) | 空気調和装置 | |
WO2020031234A1 (ja) | 空気調和システム | |
WO2020179826A1 (ja) | 冷媒サイクルシステム、および、方法 | |
AU2010364872B2 (en) | Part replacement method for refrigeration cycle device | |
JP2021085642A (ja) | 空気調和装置 | |
US20220146158A1 (en) | Refrigerant cycle system and method | |
JP2021076263A (ja) | 空調室内機及び空調室内機を備えた空調機 | |
JP2002147880A (ja) | 温水冷媒加熱エアコン及びその制御方法 | |
JPS5818137Y2 (ja) | 冷暖房装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18929013 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18929013 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |