WO2020029945A1 - 确定载波聚合下监控pdcch候选数目的方法和装置 - Google Patents

确定载波聚合下监控pdcch候选数目的方法和装置 Download PDF

Info

Publication number
WO2020029945A1
WO2020029945A1 PCT/CN2019/099371 CN2019099371W WO2020029945A1 WO 2020029945 A1 WO2020029945 A1 WO 2020029945A1 CN 2019099371 W CN2019099371 W CN 2019099371W WO 2020029945 A1 WO2020029945 A1 WO 2020029945A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
serving cell
serving
carrier
terminal device
Prior art date
Application number
PCT/CN2019/099371
Other languages
English (en)
French (fr)
Inventor
肖洁华
彭金磷
张旭
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020029945A1 publication Critical patent/WO2020029945A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and apparatus for determining the number of PDCCH candidates monitored under carrier aggregation.
  • a network device usually uses a physical downlink control channel (PDCCH) to send downlink control information (downlink control information) to a terminal device to schedule data transmission between the network device and the terminal device.
  • PDCCH physical downlink control channel
  • terminal devices have limited blind detection capabilities for PDCCH. Therefore, it is necessary to define the maximum number of PDCCH candidates that the terminal device can monitor on the serving cell, so that network devices can search for space. Perform configuration to ensure that the related configuration does not exceed the upper limit of the blind detection capability of the terminal device.
  • This application provides a method and apparatus for configuring parameters, which can determine the maximum number of PDCCH candidates monitored by a terminal device for each serving cell based on the maximum number of PDCCH candidates monitored by the terminal device on multiple serving cells.
  • a method for configuring parameters includes: a network device acquiring a first number of physical downlink control channel PDCCH candidates that a terminal device can monitor on T serving cells, where T is greater than or equal to 2 An integer; the network device configures a second number of PDCCH candidates monitored by the terminal device on the first serving cell, and the second number is the network device on the first serving cell according to the terminal device A third number of PDCCH candidates that can be monitored is determined, the third number is determined by the network device according to the first number, and the first serving cell belongs to the T serving cells.
  • a network device can determine the maximum number of PDCCH candidates that a terminal device can monitor for each serving cell based on the maximum number of PDCCH candidates monitored by the terminal device on multiple serving cells. Number, so that based on the maximum number of PDCCH candidates that the terminal device can monitor for each serving cell, the terminal device is reasonably configured with the number of PDCCH candidates monitored by each serving cell. In this way, the terminal device can correctly perform blind PDCCH detection, which can improve the flexibility and efficiency of communication.
  • the third number is determined by the network device according to the first number, and includes: the third number is the network device according to the first number
  • the first number is determined by at least one of the following parameters: the total number of serving cells configured by the network device for the terminal device, the T, and the number of PDCCH candidates that the first serving cell can monitor within a first unit duration.
  • Four numbers, the number of serving cells scheduled by the first serving cell, and the fifth number of PDCCH candidates that the primary cell can monitor within the second unit duration.
  • the network device can more accurately determine the maximum number of PDCCH candidates that the terminal device can monitor on each serving cell, so that the number of PDCCH candidates monitored by the terminal device for each serving cell can be more reasonably configured.
  • the third number is determined by the network device according to the first number, and includes: the third number is obtained by comparing the first number Obtained by average processing.
  • the maximum number of PDCCH candidates monitored by the terminal device for each serving cell can be quickly and easily obtained, and the number of PDCCH candidates monitored by each terminal device can be quickly and easily reduced Processing complexity.
  • the subcarrier spacing parameters of the T serving cells are the same, and the third number is obtained by rounding the following formula: N1 * Q / T; where, Q represents: the first number; N1 represents: the number of serving cells scheduled by the first serving cell, and N1 is an integer greater than or equal to 1.
  • the maximum number of PDCCH candidates monitored by the terminal device on each serving cell can be quickly obtained, the calculation is simple, and the processing complexity can be reduced.
  • the method further includes: the T serving cells include at least one secondary cell, and the method further includes: when the subcarriers of the T serving cells are spaced apart When the parameters are the same and the first serving cell is the primary cell, the network device determines the PDCCH candidates that the terminal device can monitor on the at least one secondary cell according to the third number and the first number. The sixth number.
  • the maximum number of PDCCH candidates monitored by the terminal device for multiple serving cells is allocated according to the primary cell and the secondary cell.
  • the primary cell serves as the carrier for the signaling interaction between the terminal device and the network device.
  • the information volume and importance of the primary cell are greater than those of the secondary cell. Assigning more PDCCH candidates to the primary cell can enhance the flexibility of signaling interaction and reliability.
  • the third number is determined by the network device according to the first number, including: the third number is the network device according to: The fourth number of PDCCH candidates that the first serving cell can monitor within the first unit duration, the number of serving cells scheduled by the first serving cell across carriers, and the first number are determined.
  • the third number is: a fourth number of PDCCH candidates that the first serving cell can monitor within a first unit duration is based on the network device according to A sum of a sixth number of PDCCH candidates that the terminal device can monitor on a second serving cell, where the second serving cell is a serving cell scheduled by the first serving cell across carriers.
  • the primary cell is used as a carrier for terminal equipment and network equipment to perform signaling interactions.
  • the information volume and importance of the primary cell are greater than those of the secondary cell.
  • Assigning the number of monitored PDCCH candidates to the primary cell can strengthen signaling. Interaction flexibility and reliability.
  • the third number is obtained by rounding the following formula: M + N2 * ⁇ (QM) / (T-1) ⁇ ; where M represents: the fourth number of PDCCH candidates that the first serving cell can monitor within the first unit duration; N2 represents: services scheduled by the first serving cell across carriers Number of cells, N2 is an integer greater than or equal to 0; Q represents: the first number.
  • the maximum number of PDCCH candidates monitored by the terminal device in the unit duration (that is, an example of the second unit duration) on the primary cell in the case of a single carrier can be determined to determine the PDCCH monitored by the terminal device on the primary cell
  • the maximum number of candidates can further enhance the flexibility and reliability of signaling interaction.
  • the terminal device is configured with a total of W serving cells, and the W serving cells include the T serving cells.
  • the third number is determined by the network device according to the first number, and includes: if a subcarrier interval parameter of the first serving cell and a subcarrier of a primary cell among the W serving cells The interval parameter is the same, and the third number is the fourth number of serving cells that the network device schedules according to the first serving cell, the fourth number of PDCCH candidates that the first serving cell can monitor within the first unit duration, The first number and T are determined; or, if the subcarrier interval parameter of the first serving cell is different from the subcarrier interval parameter of the main cell in the W serving cells, the third number is The network device determines the number of serving cells scheduled by the first serving cell, the first number, and T.
  • the terminal device is configured with a total of W serving cells, and the W serving cells include the T serving cells.
  • the W serving cells include the T serving cells.
  • the third number is obtained by rounding the following formula: N1 * ( QM) / (T-1); or, if the subcarrier interval parameter of the first serving cell is different from the subcarrier interval parameter of the main cell in the W serving cells, the third number is obtained by performing the following formula Rounded to get: N1 * Q / T;
  • M represents: the fourth number of PDCCH candidates that the first serving cell can monitor in the first unit duration;
  • N1 represents: the serving cell scheduled by the first serving cell N1 is an integer greater than or equal to 1;
  • Q represents: the first number.
  • the maximum number of PDCCH candidates monitored by the terminal device on the secondary cell is determined according to whether the subcarrier interval parameter of the secondary cell is the same as the subcarrier interval parameter of the primary cell. For example, when the subcarrier spacing parameters are different, the processing can be averaged. When the subcarrier interval parameters are the same, the maximum number of PDCCH candidates monitored by the terminal device on the primary cell may be subtracted first, and then averaged.
  • the T serving cells include a third serving cell, the first serving cell schedules the third serving cell across carriers, and when the third serving cell
  • the first number is determined according to a capability parameter of the terminal device for monitoring PDCCH candidates, and at least one of the following parameters: the T and the network device are The total number of serving cells configured by the terminal device, the fourth number of PDCCH candidates that the first serving cell can monitor within a first unit duration, the subcarrier interval of the first serving cell, the third serving cell And the seventh number of PDCCH candidates that the third serving cell can monitor within a third unit duration.
  • the terminal device is configured with a total of W serving cells, and the W serving cells include the T serving cells.
  • the W serving cells include the T serving cells.
  • the first serving cell schedules the third serving cell across carriers; the first number is The following formula is obtained by rounding: (T / W) * M * y; where M represents: the fourth number of PDCCH candidates that the first serving cell can monitor in the first unit duration; y represents: the terminal device Monitor capability parameters of PDCCH candidates.
  • the maximum number of PDCCH candidates serving the scheduled serving cell can be determined according to the subcarrier spacing parameter (or Numerology) of the scheduled serving cell. Calculation. In addition, it can also be calculated according to the Numerology of the scheduled serving cell. Based on the above scheme, it is possible to determine the maximum number of PDCCH candidates monitored by the terminal device on multiple serving cells when there is cross-carrier scheduling and the subcarrier spacing parameters of at least two serving cells are different.
  • the T serving cells include a third serving cell, the first serving cell schedules the third serving cell across carriers, and when the third serving When the cell has the same subcarrier interval parameter as the first serving cell, the first number is based on: the fourth number of PDCCH candidates that the first serving cell can monitor within a first unit duration, the terminal device The capability parameters for monitoring PDCCH candidates are determined.
  • the subcarrier spacing parameters of the T serving cells are the same, and the scheduling mode of at least one serving cell among the T serving cells is cross-carrier scheduling, so
  • the first number is: y * M, where M represents: the fifth number of PDCCH candidates that the primary cell can monitor within the second unit duration; y represents: the terminal device's ability parameter to monitor PDCCH candidates.
  • the maximum number of PDCCH candidates monitored by the terminal device on multiple serving cells of carrier aggregation can be determined.
  • the scheduling mode of at least one of the T serving cells is cross-carrier scheduling, and the terminal device can monitor the cross-carrier scheduling serving cell.
  • the maximum number of PDCCH candidates is: N3 * y * M ', where M' is the maximum number of PDCCH candidates that the terminal device can monitor on the serving cell scheduled by the cross-carrier within the fourth unit duration, and The maximum number of PDCCH candidates that the terminal device can monitor on the cross-carrier scheduled serving cell is determined, wherein the fourth unit duration is: a time corresponding to a subcarrier interval parameter of the cross-carrier scheduled serving cell.
  • N3 represents the number of service cells scheduled by the cross-carrier scheduled service cell, and N3 is greater than or equal to 1
  • An integer of y; y indicates: a capability parameter of the terminal device monitoring a PDCCH candidate.
  • the terminal device when the first serving cell schedules a fourth serving cell across carriers, the terminal device performs a fourth service on the first serving cell for the fourth service.
  • the eighth number of PDCCH candidates that the cell can monitor includes: the number of PDCCH candidates corresponding to the downlink control information DCI format of different sizes, and the number of different DCI sizes corresponding to the fourth serving cell is less than or equal to 4, the first Four serving cells belong to the T serving cells;
  • the network device configuring the second number of PDCCH candidates monitored by the terminal device on the first serving cell includes: the network device corresponding to the fourth serving cell
  • the number of different DCI sizes configures a second number of PDCCH candidates monitored by the terminal device on the first serving cell.
  • the number of different DCI sizes corresponding to the first serving cell is K2 or a first threshold, and K2 is less than or equal to the first threshold, so
  • the K2 is determined according to at least one of the following parameters: the K1, the number of the serving cells scheduled by the first serving cell, the fourth number of PDCCH candidates that the first serving cell can monitor in the first unit duration, and The subcarrier interval of the first serving cell and the subcarrier interval of the fourth serving cell are described.
  • the number of downlink control information sizes (DCI size) used for the scheduled carrier and the scheduled carrier can be determined.
  • the corresponding DCI size is less than or equal to 4, so that the number of blind detections of the PDCCH can be reduced, and the decoding complexity of the Polar coding can also be reduced.
  • the corresponding DCI size is less than or equal to a threshold. When it is less than the threshold, it can be calculated according to the above formula; when it reaches the threshold, it is unified and no longer increases.
  • the number of DCI formats of different sizes corresponding to the fourth serving cell is two.
  • the number of blind detections of the PDCCH can be greatly reduced, and the decoding complexity of the Polar coding can also be reduced.
  • a monitoring method includes: a terminal device acquiring a second number of physical downlink control channel PDCCH candidates monitored on a first serving cell, the second number being a network device according to the terminal device A third number of PDCCH candidates that can be monitored on the first serving cell is determined, the third number is determined by the network device according to the first number, and the first number is T of the terminal device.
  • the first serving cell belongs to the T serving cells, where T is an integer greater than or equal to 2; the terminal device monitors the PDCCH according to the second number.
  • the network device can determine the maximum number of PDCCH candidates monitored by the terminal device for each serving cell based on the maximum number of PDCCH candidates monitored by the terminal device on multiple serving cells. Therefore, based on the maximum number of PDCCH candidates monitored by the terminal device for each serving cell, the terminal device is reasonably configured with the number of PDCCH candidates monitored by each serving cell. In this way, the terminal device can correctly perform blind PDCCH detection, thereby improving the flexibility and efficiency of communication.
  • the third number is determined by the network device according to the first number, and includes: the third number is the network device according to the first number
  • the first number is determined by at least one of the following parameters: the total number of serving cells configured by the network device for the terminal device, the T, and the number of PDCCH candidates that the first serving cell can monitor within a first unit duration.
  • Four numbers, the number of serving cells scheduled by the first serving cell, and the fifth number of PDCCH candidates that the primary cell can monitor within the second unit duration.
  • the third number is determined by the network device according to the first number, including: the third number is obtained by averaging the first number Processed.
  • the third number is obtained by rounding the following formula: N1 * Q / T; where Q represents: the first number; N1 represents : The number of serving cells scheduled by the first serving cell, where N1 is an integer greater than or equal to 1.
  • the method further includes: the T serving cells include at least one secondary cell, and the method further includes: when the subcarriers of the T serving cells are spaced apart When the parameters are the same and the first serving cell is the primary cell, the network device determines the PDCCH candidates that the terminal device can monitor on the at least one secondary cell according to the third number and the first number. The sixth number.
  • the third number is determined by the network device according to the first number, including: the third number is the network device according to: The fourth number of PDCCH candidates that the first serving cell can monitor within the first unit duration, the number of serving cells scheduled by the first serving cell across carriers, and the first number are determined.
  • the third number is: a fourth number of PDCCH candidates that the first serving cell can monitor within a first unit duration is based on the network device according to A sum of a sixth number of PDCCH candidates that the terminal device can monitor on a second serving cell, where the second serving cell is a serving cell scheduled by the first serving cell across carriers.
  • the third number is obtained by rounding the following formula: M + N2 * ⁇ (QM) / (T-1) ⁇ ; where M represents: the fourth number of PDCCH candidates that the first serving cell can monitor within the first unit duration; N2 represents: services scheduled by the first serving cell across carriers Number of cells, N2 is an integer greater than or equal to 0; Q represents: the first number.
  • the terminal device is configured with a total of W serving cells, and the W serving cells include the T serving cells.
  • the third number is determined by the network device according to the first number, and includes: if a subcarrier interval parameter of the first serving cell and a subcarrier of a primary cell among the W serving cells The interval parameter is the same, and the third number is the fourth number of serving cells that the network device schedules according to the first serving cell, the fourth number of PDCCH candidates that the first serving cell can monitor within the first unit duration, The first number and T are determined; or, if the subcarrier interval parameter of the first serving cell is different from the subcarrier interval parameter of the main cell in the W serving cells, the third number is The network device determines the number of serving cells scheduled by the first serving cell, the first number, and T.
  • the terminal device is configured with a total of W serving cells, and the W serving cells include the T serving cells.
  • the W serving cells include the T serving cells.
  • the third number is obtained by rounding the following formula: N1 * ( QM) / (T-1); or, if the subcarrier interval parameter of the first serving cell is different from the subcarrier interval parameter of the main cell in the W serving cells, the third number is obtained by performing the following formula Rounded to get: N1 * Q / T;
  • M represents: the fourth number of PDCCH candidates that the first serving cell can monitor in the first unit duration;
  • N1 represents: the serving cell scheduled by the first serving cell N1 is an integer greater than or equal to 1;
  • Q represents: the first number.
  • the T serving cells include a third serving cell, and the first serving cell schedules the third serving cell across carriers, and when the third serving cell
  • the first number is determined according to a capability parameter of the terminal device for monitoring PDCCH candidates, and at least one of the following parameters: the T and the network device are The total number of serving cells configured by the terminal device, the fourth number of PDCCH candidates that the first serving cell can monitor within a first unit duration, the subcarrier interval of the first serving cell, the third serving cell And the seventh number of PDCCH candidates that the third serving cell can monitor within a third unit duration.
  • the terminal device is configured with a total of W serving cells, and the W serving cells include the T serving cells.
  • the W serving cells include the T serving cells.
  • the first serving cell schedules the third serving cell across carriers; the first number is The following formula is obtained by rounding: (T / W) * M * y; where M represents: the fourth number of PDCCH candidates that the first serving cell can monitor in the first unit duration; y represents: the terminal device Monitor capability parameters of PDCCH candidates.
  • the T serving cells include a third serving cell, and the first serving cell schedules the third serving cell across carriers, and when the third serving When the cell has the same subcarrier interval parameter as the first serving cell, the first number is based on: the fourth number of PDCCH candidates that the first serving cell can monitor within a first unit duration, the terminal device The capability parameters for monitoring PDCCH candidates are determined.
  • the subcarrier spacing parameters of the T serving cells are the same, and the scheduling mode of at least one serving cell among the T serving cells is cross-carrier scheduling, so
  • the first number is: y * M, where M represents: the fifth number of PDCCH candidates that the primary cell can monitor within the second unit duration; y represents: the terminal device's ability parameter to monitor PDCCH candidates.
  • the scheduling mode of at least one of the T serving cells is cross-carrier scheduling, and the terminal device can monitor the cross-carrier scheduling serving cell.
  • the maximum number of PDCCH candidates is: N3 * y * M ', where M' is the maximum number of PDCCH candidates that the terminal device can monitor on the serving cell scheduled by the cross-carrier within the fourth unit duration, and The maximum number of PDCCH candidates that the terminal device can monitor on the cross-carrier scheduled serving cell is determined, wherein the fourth unit duration is: a time corresponding to a subcarrier interval parameter of the cross-carrier scheduled serving cell.
  • N3 represents the number of service cells scheduled by the cross-carrier scheduled service cell, and N3 is greater than or equal to 1
  • An integer of y; y indicates: a capability parameter of the terminal device monitoring a PDCCH candidate.
  • the terminal device when the first serving cell schedules a fourth serving cell across carriers, the terminal device performs a fourth service on the first serving cell for the fourth service.
  • the eighth number of PDCCH candidates that the cell can monitor includes: the number of PDCCH candidates corresponding to the downlink control information DCI format of different sizes, and the number of different DCI sizes corresponding to the fourth serving cell is less than or equal to 4, the first Four serving cells belong to the T serving cells.
  • the number of different DCI sizes corresponding to the first serving cell is K2 or a first threshold, and K2 is less than or equal to the first threshold, so
  • the K2 is determined according to at least one of the following parameters: the K1, the number of the serving cells scheduled by the first serving cell, the fourth number of PDCCH candidates that the first serving cell can monitor in the first unit duration, and The subcarrier interval of the first serving cell and the subcarrier interval of the fourth serving cell are described.
  • the number of DCI formats of different sizes corresponding to the fourth serving cell is two.
  • a method for configuring parameters includes: a network device determining a number of PDCCH candidates for monitoring a physical downlink control channel corresponding to different sizes of downlink control information DCI format of a terminal device on a first serving cell.
  • the first serving cell cross-carrier schedules the second serving cell, wherein the number of different DCI sizes corresponding to the second serving cell is K1, and K1 is an integer less than or equal to 4; the network device configures the according to K1 The number of PDCCH candidates monitored by the terminal device in the first serving cell for the second serving cell.
  • the number of downlink control information sizes (DCI sizes) used for the scheduled serving cell can be determined. And for the scheduled serving cell, the corresponding DCI size is less than or equal to 4, which can reduce the number of blind detections of the PDCCH and reduce the decoding complexity of the Polar code.
  • the number of different DCI sizes corresponding to the first serving cell is K2 or a first threshold, and K2 is less than or equal to the first threshold, so
  • the K2 is determined according to at least one of the following parameters: the K1, the number of the serving cells scheduled by the first serving cell, the first number of PDCCH candidates that the first serving cell can monitor in the first unit duration, The subcarrier interval of the first serving cell and the subcarrier interval of the second serving cell; or the network device configures the terminal device to monitor on the first serving cell according to K2 or the first threshold Number of PDCCH candidates.
  • the corresponding DCI size is less than or equal to a threshold.
  • K2 4 + K1 * t, where t is the number of serving cells scheduled by the first serving cell for cross-carrier scheduling.
  • K2 when K2 is less than the threshold, it can be calculated according to the above formula; when the threshold is reached, it is unified and no longer increases.
  • the number of DCI formats of different sizes corresponding to the second serving cell is two.
  • a method for configuring parameters includes: the terminal device obtains a number of PDCCH candidates of a physical downlink control channel monitored on a first serving cell, and the number of PDCCH candidates is based on the first serving cell and The number of different downlink control information DCI sizes corresponding to the second serving cell is determined, the first serving cell schedules the second serving cell across carriers, and the number of different DCI sizes corresponding to the second serving cell K1, K1 is an integer less than or equal to 4; the terminal device monitors a PDCCH according to the number of PDCCH candidates.
  • the number of downlink control information sizes (DCI sizes) used for the scheduled serving cell can be determined. And for the scheduled serving cell, the corresponding DCI size is less than or equal to 4, which can reduce the number of blind detections of the PDCCH and reduce the decoding complexity of the Polar code.
  • the number of different DCI sizes corresponding to the first serving cell is K2 or a first threshold, and K2 is less than or equal to the first threshold, so
  • the K2 is determined according to at least one of the following parameters: the K1, the number of the serving cells scheduled by the first serving cell, the first number of PDCCH candidates that the first serving cell can monitor in the first unit duration, The subcarrier interval of the first serving cell and the subcarrier interval of the second serving cell; or the network device configures the terminal device to monitor on the first serving cell according to K2 or the first threshold Number of PDCCH candidates.
  • the corresponding DCI size is less than or equal to a threshold.
  • K2 4 + K1 * t, where t is the number of serving cells for the first serving cell cross-carrier scheduling.
  • K2 when K2 is less than the threshold, it can be calculated according to the above formula; when the threshold is reached, it is unified and no longer increases.
  • the number of DCI formats of different sizes corresponding to the second serving cell is two.
  • a method for configuring parameters includes: a terminal device receiving a first number of physical downlink control channel PDCCH candidates configured by a network device on a first serving cell; and the terminal device according to the first The number is determined as a second number of PDCCH candidates served by a second serving cell, and the second serving cell is a cell scheduled by the first serving cell.
  • the terminal device determines a third number of PDCCH candidates for the first serving cell on the first serving cell according to the first number
  • the determining, by the terminal device, a second number of PDCCH candidates for the second serving cell according to the first number includes: determining, by the terminal device, serving to the second serving cell according to the third number and at least one of the following parameters: Second number of PDCCH candidates: PDCCH candidate number conversion factor, PDCCH candidate number offset value, subcarrier interval of the first serving cell, subcarrier interval of the second serving cell, and the first service
  • Second number of PDCCH candidates PDCCH candidate number conversion factor, PDCCH candidate number offset value, subcarrier interval of the first serving cell, subcarrier interval of the second serving cell, and the first service
  • a network device has a function of implementing the network device in the method design of the first aspect and the third aspect.
  • These functions can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • a terminal device has a function of implementing the terminal device in the method design of the second aspect, the fourth aspect, and the fifth aspect.
  • These functions can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • a network device including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the network device executes the first aspect, the third aspect, and the first aspect, The method in any one of the possible implementation manners in the third aspect.
  • a terminal device including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the terminal device executes the second aspect, the fourth aspect, the fifth aspect, and The method in any one of the possible implementation manners of the second aspect, the fourth aspect, and the fifth aspect.
  • a communication device may be a network device in the method design described above, or a chip provided in the network device.
  • the device for determining the parameter includes: a processor, which is coupled to the memory and can be used to execute instructions in the memory to implement the first aspect, the third aspect, and any one of the first aspect and the third aspect in a possible implementation manner.
  • the method performed by the network device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • a communication device may be a terminal device designed in the foregoing method, or a chip provided in the terminal device.
  • the communication device includes a processor coupled to the memory, and may be configured to execute instructions in the memory to implement the second aspect, the fourth aspect, the fifth aspect, and any one of the second aspect, the fourth aspect, and the fifth aspect.
  • the method performed by the terminal device in one possible implementation manner.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • a computer program product includes: computer program code that, when the computer program code runs on a computer, causes the computer to execute the methods in the foregoing aspects.
  • a computer-readable medium stores program code, and when the computer program code runs on a computer, the computer causes the computer to execute the methods in the foregoing aspects.
  • a chip system includes a processor for supporting a network device to implement the functions involved in the foregoing aspects, for example, generating, receiving, sending, or processing data involved in the foregoing methods. And / or information.
  • the chip system further includes a memory, and the memory is configured to store program instructions and data necessary for the terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a chip system includes a processor for supporting a terminal device to implement the functions involved in the foregoing aspects, for example, generating, receiving, sending, or processing data involved in the foregoing methods. And / or information.
  • the chip system further includes a memory, and the memory is configured to store program instructions and data necessary for the terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a communication system applicable to a method for configuring parameters according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of carrier aggregation applicable to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of unconfigured cross-carrier scheduling applicable to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of cross-carrier scheduling configuration applicable to an embodiment of the present application.
  • FIG. 5 is another schematic diagram of cross-carrier scheduling configuration applicable to the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a BWP applicable to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a method for configuring parameters according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a method for configuring parameters applicable to another embodiment of the present application.
  • FIG. 9 is another schematic diagram of a method for configuring parameters applicable to another embodiment of the present application.
  • FIG. 10 is another schematic diagram of a method for configuring parameters applicable to another embodiment of the present application.
  • FIG. 11 is another schematic diagram of a method for configuring parameters applicable to another embodiment of the present application.
  • FIG. 12 is a schematic diagram of a method for configuring parameters applicable to still another embodiment of the present application.
  • FIG. 13 is another schematic diagram of a method for configuring parameters applicable to still another embodiment of the present application.
  • FIG. 14 is a schematic diagram of a method for configuring parameters applicable to yet another embodiment of the present application.
  • 15 is another schematic diagram of a method for configuring parameters applicable to another embodiment of the present application.
  • 16 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • 17 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Global Interoperability for Microwave Access
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • the wireless communication system 100 may include one or more network devices, for example, network device # 1, network device # 2, 112, and network device # 3 shown in FIG. 1; the wireless communication system 100 It may also include one or more terminal devices, for example, the terminal device 121 shown in FIG. 1.
  • the wireless communication system 100 can support coordinated multiple points (CoMP) transmission, that is, multiple cells or multiple network devices can cooperatively participate in data transmission of a terminal device or jointly receive data sent by a terminal device, or Multiple cells or multiple network devices perform cooperative scheduling or cooperative beamforming.
  • the multiple cells may belong to the same network device or different network devices, and the network device may select one or more cells to serve the terminal device according to channel gain or path loss, received signal strength, received signal instruction, and the like.
  • the network device in the communication system 100 may be any device having a wireless transceiver function or a chip that can be set on the device.
  • the device includes, but is not limited to, an evolved Node B (eNB), Radio network controller (RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home NodeB (HNB), donor base station (DeNB), baseband unit (BBU), access point (AP) in a wireless fidelity (WIFI) system , Wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc., it can also be 5G, such as NR, gNB in the system, or, transmission point (TRP or TP), one or a group of base stations (including multiple antenna panels) in a 5G system, or an antenna panel, or a network node constituting a gNB or transmission point, such as a baseband unit (BBU
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio frequency unit (radio unit, RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (RRC), packet data convergence layer protocol (PDCP) layer functions, and DU implements wireless chain Functions of radio control (RLC), media access control (MAC) and physical (PHY) layers.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • DU implements wireless chain Functions of radio control (RLC), media access control (MAC) and physical (PHY) layers.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • PHY physical
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network devices in the access network RAN, or the CU can be divided into network devices in the core network CN, which is not limited herein.
  • the terminal equipment in the communication system 100 may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiments of the present application may be a mobile phone, a tablet, a computer with a wireless transmitting and receiving function, a virtual reality (VR) terminal device, or an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( wireless terminals in transportation, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiment of the present application does not limit the application scenario.
  • the foregoing terminal device and chips that can be disposed in the foregoing terminal device may be collectively referred to as a terminal device.
  • one of the network device # 1 to the network device # 3 may be a serving network device, and the serving network device may refer to a wireless air interface protocol as A terminal device is a network device that provides at least one of RRC connection, non-access stratum (NAS) mobility management, and security input services.
  • network device # 2 and network device # 3 may be cooperative network devices.
  • the serving network device can send control signaling to the terminal device, the cooperative network device can send data to the terminal device; or the serving network device can send control signaling to the terminal device, and the serving network device and the cooperative network device can send data to the terminal device; Or, both the serving network device and the cooperative network device can send control signaling to the terminal device, and both the serving network device and the cooperative network device can send data to the terminal device; or, the cooperative network device can send control signaling to the terminal device and service At least one of the network device and the cooperative network device may send data to the terminal device; or, the cooperative network device may send control signaling and data to the terminal device.
  • This embodiment of the present application does not specifically limit this.
  • all of the network device # 1 to the network device # 3 may be serving network devices.
  • FIG. 1 is only for easy understanding, and schematically shows network device # 1 to network device # 3 and terminal device, but this should not constitute any limitation to this application, and the wireless communication system may include more Or a smaller number of network devices, or a larger number of terminal devices, the network devices communicating with different terminal devices can be the same network device, or different network devices, and the network communicating with different terminal devices The number of devices may be the same or different, which is not limited in this application.
  • the physical downlink control channel can be used to send downlink scheduling information (DL assignment) to the terminal device, so that the terminal device receives the physical downlink shared channel (PDSCH).
  • the PDCCH can also be used to send an uplink grant (UL Grant) to the terminal device, so that the terminal device sends a physical uplink shared channel (PUSCH).
  • the PDCCH can also be used to send a non-periodic channel quality indicator (CQI) report request.
  • the PDCCH can also be used to: notify a multicast control channel (MCCH) of a change.
  • the PDCCH can also be used to send uplink power control commands.
  • the PDCCH can also be used for: Hybrid automatic repeat request (HARQ) related information.
  • the PDCCH can also be used to carry a wireless network temporary identifier (RNTI), which is implicitly included in a cyclic redundancy check (cyclic redundancy check, CRC), and so on.
  • RNTI wireless network temporary identifier
  • CRC
  • One PDCCH is transmitted on a control channel element (CCE), and each CCE is composed of a certain number of resource-element groups (REGs).
  • the CCE index of the first CCE occupied by the PDCCH is called n CCE .
  • the information carried by the PDCCH is called downlink control information (downlink control information).
  • the downlink DCI can be used to send downlink scheduling allocation information or uplink scheduling information.
  • DCI has multiple formats, and various DCI formats and the specific information they carry vary according to the functions of each DCI format. For example, format 0 in the LTE system or format 0_0 / format 0_1 in the NR system can be used to transmit PUSCH scheduling authorization information; for example, format 1_0 in the LTE system or format 0_0 / format 0_1 in the NR system can be used to transmit PDSCH Single codeword scheduling authorization information.
  • DCI may indicate cell-level information, and system information wireless network temporary identifier (SI-RNTI), paging wireless network temporary identifier (P-RNTI) can be used.
  • SI-RNTI system information wireless network temporary identifier
  • P-RNTI paging wireless network temporary identifier
  • Random access wireless network temporary identifier random access network temporary identifier, RA-RNTI
  • C -RNTI cell wireless network temporary identifier
  • One PDCCH can only carry one format DCI.
  • a cell can schedule multiple terminal devices in both uplink and downlink, that is, a cell can send multiple scheduling information in each scheduling time unit.
  • Each scheduling information is transmitted on an independent PDCCH, that is, one cell can send multiple PDCCHs simultaneously on one scheduling time unit.
  • PDCCHs have different aggregation levels (AL).
  • AL includes ⁇ 1, 2, 4, 8, 16 ⁇ .
  • the aggregation level indicates the number of consecutive CCEs occupied by one PDCCH, as shown in Table 1.
  • the network device determines the aggregation level used by a certain PDCCH according to factors such as channel quality.
  • the PDCCH is sent to a terminal device with good downlink channel quality (for example, the terminal device is located at the center of the cell), it may be sufficient to use 1 CCE to send the PDCCH; if the PDCCH is sent to a downlink A terminal device with poor channel quality (for example, the terminal device is located at the cell edge) may need to use 8 CCEs or even 16 CCEs to send the PDCCH to achieve sufficient robustness.
  • the power of the PDCCH can also be adjusted according to the channel conditions, and the base station can save the PDCCH transmit power of the terminal equipment with better channel quality to allocate to the terminal equipment with poor channel quality.
  • CA Carrier Aggregation
  • CA aggregates two or more carrier components (CCs) to support a larger transmission bandwidth.
  • each CC usually corresponds to an independent cell. In this case, one CC can be equated with one cell.
  • carrier aggregation supports aggregation between different CCs. As shown in FIG. 2, carrier aggregation may include: intra-band or inter-band CC aggregation. For intra-band CC aggregation, it may be further classified into adjacent or non-adjacent CC aggregation within the band, and so on.
  • Cross-carrier scheduling is used to send the PDCCH of some CCs on other CCs with better channel quality, which can improve the decoding efficiency of the PDCCH.
  • Cross-carrier scheduling based on a carrier indicator field allows a PDCCH of one serving cell to schedule radio resources on another serving cell. That is, the downlink control information is transmitted on one CC, and the corresponding data is transmitted on the other CC.
  • the CIF may be used to specify a PDSCH and / or PUSCH resource of which cell the PDCCH corresponds to.
  • cross-carrier scheduling is not suitable for scheduling a primary cell (PCell), and may be suitable for scheduling a secondary cell (SCell).
  • PCell primary cell
  • SCell secondary cell
  • the PCell may be a cell for initial connection establishment of a terminal device, a cell for radio resource control (RRC) connection reconstruction, or a primary cell designated during a handover process.
  • the PCell always schedules through its own PDCCH.
  • PCell can be responsible for RRC communication with terminal equipment.
  • the CC corresponding to PCell may be called a primary CC (primary component carrier, PCC).
  • PCell's downlink carrier can be called DL PCC
  • PCell's uplink carrier can be called UL PCC.
  • the SCell is added during RRC reconfiguration to provide additional radio resources.
  • a SCell is configured with a PDCCH
  • cross-carrier scheduling is not applicable to the SCell.
  • the SCell is not configured with a PDCCH, the cross-carrier scheduling of the SCell is always scheduled through the PDCCH of another serving cell.
  • the CC corresponding to the SCell may be referred to as a secondary component carrier (SCC).
  • SCC secondary component carrier
  • the downlink carrier of the SCell can be called DL SCC
  • the uplink carrier of the SCell can be called UL SCC.
  • FIG. 3 shows a schematic diagram of cross-carrier scheduling without configuration.
  • the terminal device is not configured with cross-carrier scheduling
  • the PDCCH corresponding to each serving cell is transmitted on the carrier of the own cell.
  • the PDCCH sent by each cell does not carry the CIF field.
  • FIG. 4 shows another schematic diagram of configuring cross-carrier scheduling. It is assumed that the terminal device is configured with cross-carrier scheduling. PCell not only schedules the resources of its own cell, but also schedules the resources of SCell1 across carriers.
  • SCell1 does not schedule resources of its own cell or resources of other cells, and its resources are scheduled on PCell.
  • SCell2 schedules resources of its own cell, but does not schedule resources of other cells.
  • FIG. 5 shows another schematic diagram of configuring cross-carrier scheduling. It is assumed that the terminal device is configured with cross-carrier scheduling. PCell schedules resources of its own cell, but does not schedule resources of other cells.
  • SCell1 does not schedule resources of its own cell or resources of other cells, and its resources are scheduled on SCell2.
  • SCell2 not only schedules the resources of its own cell, but also schedules the resources of SCell1 across the carriers.
  • BWP bandwidth of a carrier of a base station in NR is wider than that of an LTE carrier.
  • the carrier bandwidth of NR can be 100M, and different terminal equipments have different radio frequency capabilities and support different maximum bandwidths. Therefore, the concept of BWP is introduced.
  • Figure 6 shows a schematic diagram of BWP.
  • BWP is a set of continuous RB resources on the carrier. Different BWPs can occupy frequency domain resources that partially overlap but have different bandwidths, or they can be bandwidth resources with different parameter sets (Numerology), which can not overlap each other in the frequency domain.
  • a service cell in NRRel-15 can be configured with a maximum of 4 BWPs, for example, frequency division duplex (FDD) uplink and downlink 4 BWP each, time division duplex (TDD) downlink and uplink 4 BWP pairs.
  • FDD frequency division duplex
  • TDD time division duplex
  • each serving cell can only activate one BWP at the same time, and the terminal device sends and receives data on the activated BWP.
  • Non-carrier aggregation that is, a scenario where a terminal device has only one serving cell.
  • the terminal device monitors a PDCCH candidate set within a PDCCH monitoring opportunity, which means that the terminal device needs to try to decode each PDCCH in the set according to the DCI format to be monitored. This collection is called the search space of the terminal device.
  • the search space is divided into a common search space (common search space) and a terminal device-specific search space (UE-specific search space).
  • the common search space is used to transmit control information (cell-level public information) related to paging, random access response (RA-R), broadcast control channel (BCCH), and so on. Check that this information is the same for all terminal devices.
  • the terminal device-specific search space is used to send control information (terminal device level information) related to a downlink shared channel (DL-SCH), an uplink shared channel (UL-SCH), and the like.
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • the common search space can also be used to transmit control information belonging to a specific terminal device.
  • the public search space and the terminal device-specific search space may overlap, and the terminal device-specific search spaces belonging to different terminal devices may also overlap. If the overlapping area is occupied by one terminal device, other terminal devices can no longer use these CCE resources.
  • the network device will select an available PDCCH candidate from the corresponding search space for each terminal device of the resource to be scheduled. If it can be allocated to the CCE, it will be scheduled, otherwise it will not be scheduled. PDCCHs sent to different terminal devices can have different aggregation levels.
  • the terminal device monitors the search spaces of all activated serving cells within each PDCCH monitoring occasion. At this time, for a PDCCH candidate in the search space of each serving cell, when the base station sends a PDCCH with CIF, it knows which serving cell the PDCCH corresponds to, and also knows the PDCCH candidate set that the PDCCH can select. , The terminal device is not sure what the CIF value is carried in the PDCCH, that is, it is uncertain which serving cell will send the PDCCH to the terminal device. The terminal device only knows the set of CIFs that may be carried on the PDCCH sent by each specific serving cell to the terminal device, so the UE will try all possible CIF values on the serving cell to blindly detect the PDCCH.
  • the terminal device does not know in advance which format the DCI carried by the received PDCCH, nor does it know through which PDCCH the DCI is transmitted. Therefore, the terminal device must perform a blind PDCCH check to receive the corresponding DCI.
  • the terminal device knows what state it is in and the DCI it expects to receive in this state.
  • the terminal device in the IDLE state, the terminal device expects to receive control information related to paging; after initiating random access, the terminal device expects RAR; when there is uplink data to be sent, the terminal device expects Uplink Grant, etc.
  • the terminal device knows its search space and therefore knows which CCEs DCI may be distributed on. For the desired DCI, the terminal device attempts to use the corresponding RNTI, possible DCI format, and possible aggregation level to perform a cyclic redundancy check (CRC) with the CCE in its own search space. If the CRC check is successful, then the terminal device knows that the DCI is needed by itself, and also knows the corresponding DCI format, so as to further resolve the DCI content.
  • CRC cyclic redundancy check
  • a terminal device When a terminal device performs a blind inspection in the search space, it only needs to try to decode the DCI format that may occur, and it does not need to match all DCI formats.
  • the number of blind detections refers to the number of blind detection of PDCCH candidates, and may also be referred to as the number of monitoring PDCCH candidates.
  • time-frequency resources may include resources in the time domain and resources in the frequency domain.
  • the time domain resource may include one or more time units (or, it may also be referred to as a time domain unit).
  • a time unit (also known as a time domain unit) can be a symbol, or a mini-slot, or a slot, or a subframe, where a subframe is in
  • the duration in the time domain can be 1 millisecond (ms)
  • a time slot consists of 7 or 14 symbols
  • a mini time slot can include at least one symbol (for example, 2 symbols or 7 symbols or 14 symbols, Or any number of symbols less than or equal to 14 symbols).
  • Numerology can be used to refer to a set of parameters, including but not limited to one or more of subcarrier spacing (SCS), symbol length, slot length, and cyclic prefix (CP) length.
  • SCS subcarrier spacing
  • CP cyclic prefix
  • SCS subcarrier spacing
  • CP cyclic prefix
  • Numerology is defined by SCS and CP.
  • Table 2 shows a variety of Numerology that can be currently supported in NR.
  • ⁇ ⁇ f 2 ⁇ * 15 (KHz) CP 0 15 Normal 1 30 Normal 2 60 Normal, Extended 3 120 Normal 4 240 Normal
  • the maximum number of PDCCH candidates that can be supported per slot is different for a terminal device in different Numerology situations.
  • Table 3 shows that in a non-carrier aggregation (ie, single-carrier) scenario, the terminal device can The maximum number of supported PDCCH candidates.
  • Numerology in Table 3 refers to Numerology in which BWP is activated on the single carrier.
  • the subcarrier intervals of the serving cell are the same or different, and it can be understood that the Numerology corresponding to the serving cell is the same or different.
  • a CORESET is a time-frequency resource in the control area.
  • a CORESET corresponds to a group of terminal devices.
  • CORESET 1 corresponds to terminal device 1
  • CORESET 2 corresponds to terminal device 4, terminal device 5, terminal device 6, and terminal device 7.
  • CORESET1 can send the PDCCH of terminal device 1
  • CORESET 2 can send the PDCCH of terminal device 4, terminal device 5, terminal device 6, and terminal device 7.
  • a user can correspond to multiple CORESETs, and the numerology on these CORESETs can be the same or different.
  • a PDCCH candidate (or, it may also be referred to as a candidate PDCCH) is a set of various PDCCH candidates of different aggregation levels on all search spaces configured by a network device, including all positions where a PDCCH may occur. Due to the limitation of the processing capability of the terminal device, there is a maximum number of PDCCH blind detections that can be supported per unit time, which is equivalent to the maximum number of PDCCH candidates that the terminal device can support in this application.
  • the number of non-overlapping CCEs in NR will affect the complexity and power consumption of the channel estimation of the terminal equipment.
  • the terminal equipment has a maximum number of non-overlapping CCEs that can be supported per unit of time. .
  • Table 4 shows that in the case of non-carrier aggregation (that is, single-carrier), the terminal equipment in different Numerology situations, every time The maximum number of non-overlapping CCEs that a slot can support.
  • During carrier aggregation determine the maximum number of PDCCH candidates monitored by the terminal device within the serving cell based on at least one of the following factors: whether the carrier Numerology is the same under carrier aggregation, whether cross-carrier scheduling is configured, the number of carrier aggregation, and the terminal A capability parameter reported by the device for monitoring PDCCH candidates.
  • the maximum number of PDCCH candidates monitored by the terminal device on all carriers is still determined according to Table 3. Specifically, the maximum number of PDCCH candidates monitored by the terminal device on all carriers is equal to y * M. Among them, M represents the maximum number of PDCCH candidates in the case of a single carrier. For details, refer to Table 3. Where y is the capability parameter for monitoring PDCCH candidates reported by the terminal device, and y may be an integer in ⁇ 4, ..., 16 ⁇ .
  • the terminal device Because the network device needs to configure the search space parameter according to the maximum number of PDCCH candidates or the number of CCEs monitored by the terminal device on each carrier under the carrier aggregation, the terminal device also performs the parameter configuration based on the maximum number of PDCCH candidates or the number of CCEs monitored.
  • the PDCCH is blindly detected, so it is necessary to determine the maximum number of PDCCH candidates or the number of CCEs for effectively scheduling carrier monitoring in each scenario. Therefore, it is necessary to determine the maximum number of PDCCH candidates or the number of CCEs monitored by the terminal device on each carrier.
  • an embodiment of the present application proposes a method for configuring parameters, which can reasonably define and allocate the maximum number of PDCCH candidates monitored by a terminal device on each carrier, thereby making full use of the processing capability of the terminal device, and improving the scheduling of the network side. Flexibility to improve resource utilization efficiency.
  • the maximum number of PDCCH candidates and “the maximum number of PDCCH candidates monitored by the terminal device” are often used interchangeably, but those skilled in the art can understand the meaning.
  • the "maximum number of PDCCH candidates” essentially means the maximum number of PDCCH candidates that the terminal equipment can support. Therefore, in the embodiments of the present application, when the difference is not emphasized, the meanings to be expressed are the same. It should be understood that “the maximum number of PDCCH candidates” and “the maximum number of monitored PDCCH candidates” are only two expressions, and do not limit the protection scope of the embodiment of the present application.
  • the subcarrier interval of the serving cell is the same” and “the subcarrier interval parameter of the serving cell are the same” are often used interchangeably, but those skilled in the art can understand the meaning. All of them indicate the same subcarrier spacing of the serving cell.
  • “the subcarrier spacing of the serving cell is the same” or “the subcarrier spacing parameter of the serving cell is the same” can be understood as "the same Numerology of the serving cell”. It should be noted that when the difference is not emphasized, the meanings to be expressed are the same.
  • pre-defined may be achieved by pre-storing corresponding codes, tables, or other methods that can be used to indicate related information in a device (for example, including a terminal device and / or a network device).
  • a device for example, including a terminal device and / or a network device.
  • pre-defined can be defined in the protocol.
  • “save” involved in the embodiments of the present application may refer to saving in one or more memories.
  • the one or more memories may be separately set, or may be integrated in an encoder or a decoder, a processor, or a device for determining parameters.
  • the one or more memories may also be partly provided separately and partly integrated in a decoder, a processor, or a device for determining parameters.
  • the type of the memory may be any form of storage medium, which is not limited in this application.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include an LTE protocol, an NR protocol, and a related protocol applied in a future communication system, which is not limited in this application.
  • “at least one” may mean “one or more”.
  • implementation in at least one of mode A, mode B, and mode C means: it can be implemented in mode A, or mode B, or mode C; it can also be expressed as: mode A and mode B Implementation, or implementation by means B and C, or implementation by means A and C; it can also be expressed as: implementation by means A, B and C.
  • “at least two” may mean “two or more”.
  • the first, the second, the third, etc. are only for the convenience of distinguishing different objects, and should not constitute any limitation to the present application. For example, distinguishing between different CCs or serving cells.
  • At least one means one or more than one; "At least one of A and B", similar to “A and / or B", describes the association relationship of related objects, and indicates that there can be three kinds of relationships, for example, A and B At least one of them can indicate: there are three cases of A alone, both A and B, and B alone. Among them, the number of A is not limited, and it can be one or more than one. The number of B is also It is not limited, and may be one or more than one.
  • the technical solution of the present application may be applied to a wireless communication system, for example, the communication system 100 shown in FIG. 1, the communication system may include at least one network device and at least one terminal device, and the network device and the terminal device may pass through Wireless air interface communication.
  • the network device in the communication system may correspond to the network device 111 or the network device 113 shown in FIG. 1
  • the terminal device may correspond to the terminal device 121 shown in FIG. 1.
  • FIG. 7 is a schematic diagram of a method for configuring parameters according to an embodiment of the present application.
  • the method 100 includes steps 110-120, which are described in detail below.
  • the network device obtains a first number of physical downlink control channel PDCCH candidates that the terminal device can monitor on T serving cells, where T is an integer greater than or equal to 2.
  • the network device acquires the first number of PDCCH candidates that the terminal device can monitor on the T serving cells, that is, it can be understood that the T serving cells correspond to a first number.
  • the T serving cells may be some serving cells among multiple serving cells configured by the network device for the terminal device, or may be all serving cells configured by the network device for the terminal device.
  • the network device configures W serving cells for the terminal device.
  • the W serving cells include T serving cells, and W is greater than or equal to T.
  • the subcarrier intervals corresponding to the W serving cells may all be the same, or they may all be different, or they may be partially the same or different.
  • a serving cell can be configured with a maximum of 4 BWPs, and each BWP can be configured as a different Numorolgy. Since each serving cell can only activate one BWP in a certain period of time, and the PDCCH is transmitted on the activated BWP, it can be understood that the subcarrier interval of the serving cell mentioned in the embodiments of the present application may refer to the serving cell. Subcarrier interval of the active BWP.
  • the network device configures a serving cell # 1, a serving cell # 2, and a serving cell # 3 for the terminal device.
  • the serving cell # 1 includes BWP1, BWP2, BWP3, and BWP4;
  • the serving cell # 2 includes BWP5, BWP6, BWP7, and BWP8.
  • BWP1 to BWP8 here are only a name identifier of the BWP configured for each serving cell, and do not indicate the BWP number information in each serving cell.
  • the BWP activated in serving cell # 1 is BWP1
  • the BWP activated in serving cell # 2 is BWP5.
  • the subcarrier intervals of the serving cell # 1 and the serving cell # 2 are different.
  • the subcarrier intervals of the BWP1 and BWP5 may be different.
  • the subcarrier intervals of the remaining BWPs in the serving cell # 1 and the serving cell # 2 are the same, The application examples are not limited.
  • carrier aggregation is to aggregate two or more CCs together to support a larger transmission bandwidth.
  • one CC is usually equated with one cell. Therefore, in the embodiments of the present application, the subcarrier interval of the serving cell can be understood as the subcarrier interval of the carrier (for example, activated BWP), and the serving cell and the carrier correspond one-to-one.
  • the carrier for example, activated BWP
  • a scheduled carrier or a scheduled serving cell indicates a carrier or a serving cell of another serving cell that is self-scheduled and / or cross-carrier scheduled; a scheduled carrier or a scheduled serving cell indicates cross-carrier scheduling by another serving cell Carrier or serving cell.
  • the first number of PDCCH candidates that the terminal device can monitor on the T serving cells is the maximum total value of the PDCCH candidates that the terminal device can monitor on the T serving cells.
  • the maximum total value of PDCCH candidates that the terminal device can monitor on the T serving cells can be determined according to at least one of the following parameters: the number of carriers configured by the network device for the terminal device, the blind detection capability reported by the terminal device, and the terminal device in a single carrier scenario.
  • the maximum number of PDCCH candidates that can be monitored on a serving cell The specific determination manner is described in detail in the following embodiments.
  • the blind detection capability refers to the capability of the UE to monitor the number of PDCCH candidates.
  • the blind detection here is an abbreviation of PDCCH blind detection, that is, detecting a PDCCH channel required by a terminal device from a PDCCH candidate position configured by a base station, so as to obtain downlink control information.
  • the maximum number of PDCCH candidates that a terminal device can monitor on a serving cell in the above-mentioned single carrier scenario refers to the corresponding subcarrier when the serving cell does not operate in the carrier aggregation member carrier mode (i.e., the single carrier operation scenario).
  • the network device configures the second number of PDCCH candidates monitored by the terminal device on the first serving cell.
  • the second number is determined by the network device according to the third number of PDCCH candidates that the terminal device can monitor on the first serving cell.
  • the three numbers are determined by the network device according to the first number, and the first serving cell belongs to T serving cells.
  • a network device can determine the number of PDCCH candidates monitored by a terminal device on each serving cell based on the maximum number of PDCCH candidates monitored by the terminal device on multiple serving cells (e.g., T serving cells).
  • the maximum number of PDCCH candidates so that based on the maximum number of PDCCH candidates monitored by the terminal device on each serving cell, the terminal device is reasonably configured with the number of PDCCH candidates monitored on each serving cell. In this way, the terminal device can perform blind detection of PDCCH within the processing capability, which can further improve the flexibility and efficiency of communication.
  • the network device configures the second number of PDCCH candidates monitored by the terminal device on the first serving cell according to the third number of PDCCH candidates that the terminal device can monitor on the first serving cell. For example, according to actual needs or the capabilities of the terminal equipment, the second number is guaranteed to be less than or equal to the third number. Or, the highest priority PDCCH candidates are preferentially placed in the number of terminals that can be monitored on the special primary cell in carrier aggregation. Other PDCCH candidates can select some PDCCH candidates within the number of PDCCH candidates that can be monitored by the UE through certain mapping criteria. To monitor.
  • the number # 1 (ie, an example of the first number) is used to indicate the maximum number of PDCCH candidates that the terminal device monitors in total on the T serving cells.
  • the number # 2 (ie, an example of the third number) is used to represent the maximum number of PDCCH candidates monitored by the terminal device on a serving cell in a carrier aggregation scenario.
  • the number # 3 (that is, an example of the fourth number) is used to indicate the maximum number of PDCCH candidates monitored by the terminal device on a serving cell within a unit duration in a single carrier scenario.
  • the unit duration may be a time slot length corresponding to a subcarrier interval of the serving cell.
  • the number # 3 can be determined from Table 3.
  • the cell #A is used to represent the first serving cell.
  • the number of T serving cells # 1 (that is, another example of the first number) indicates the maximum number of PDCCH candidates that the terminal device can monitor on the T serving cells.
  • the number # 2 of cells #A (ie, another example of the third number) indicates the maximum number of PDCCH candidates that the terminal device can monitor on the cell #A in the carrier aggregation scenario.
  • the number # 3 of cells #A (ie, another example of the fourth number) indicates the maximum number of PDCCH candidates that the terminal device can monitor on the cell #A within a unit duration in a single carrier scenario.
  • the unit duration can be understood as the slot length corresponding to the subcarrier interval of the serving cell, for example, the number # 3 of the cell #A can be determined by Table 3. For example, assuming that the subcarrier interval of the cell #A is 15 KHz, the number # 3 of the cell #A is 44. As another example, assuming that the subcarrier interval of the cell #A is 30 KHz, the number # 3 of the cell #A is 36. As another example, assuming that the subcarrier interval of the cell #A is 60 KHz, the number # 3 of the cell #A is 22. As another example, assuming that the subcarrier interval of the cell #A is 120 KHz, the number # 3 of the cell #A is 20.
  • the number of W serving cells # 1 indicates the maximum total value of PDCCH candidates that the terminal device can monitor on the W serving cells.
  • the number of primary cells # 2 indicates the maximum number of PDCCH candidates that the terminal device can monitor on the primary cell.
  • the number of primary cells # 3 indicates the maximum number of PDCCH candidates that the terminal device can monitor on the primary cell within a unit duration.
  • the number of primary cells # 3 can be determined from Table 3.
  • the primary cell is the primary cell among the W serving cells configured by the network device for the terminal device.
  • the number of secondary cells # 2 indicates the maximum number of PDCCH candidates that the terminal device can monitor on the secondary cell.
  • the number of secondary cells # 3 indicates the maximum number of PDCCH candidates that the terminal device can monitor on the secondary cell within a unit duration.
  • the number of secondary cells # 3 can be determined through Table 3.
  • the secondary cell is a secondary cell among the W serving cells configured by the network device for the terminal device.
  • the network device may determine the number # 2 of the cell #A according to the number # 1 of the cell #A and at least one of the following parameters: W, T, the number # 3 of the cell #A (that is, an example of the fourth number) The number of serving cells scheduled by cell #A.
  • the number of serving cells scheduled by cell #A includes cell #A itself and the number of serving cells performing cross-carrier scheduling.
  • the scheduling method of cell #A is self-scheduling, the serving cell scheduled by cell #A has only itself, that is, the number of serving cells scheduled by cell #A is one.
  • the number of serving cells scheduled by cell #A is zero.
  • the network device configures W serving cells for the terminal device, that is, the number of carriers in carrier aggregation is W.
  • the W serving cells include T serving cells, and W is an integer greater than or equal to T.
  • the determined number # 2 includes at least two schemes. Scheme 1 is determined according to a cell type of a serving cell, and the cell type includes: a primary cell and a secondary cell. Option 2 is determined by averaging the number # 1.
  • the primary cell and the secondary cell mentioned in the following embodiments represent the primary cell and the secondary cell among the W serving cells configured by the network device for the terminal device.
  • the primary cell and the secondary cell in the W serving cells are represented below by using the primary cell and the secondary cell.
  • the scheduling modes of the W serving cells are all self-scheduling, and the subcarrier intervals of the W serving cells are the same.
  • the specific implementation manner of the scheme 1: determined according to the cell type of the serving cell may be:
  • the number of primary cells # 2 and the number of secondary cells # 2 can be determined by rounding the following formula. Among them, the rounding method can be rounded down, which can be expressed as: Floor ().
  • M_SCell Floor ⁇ (Mtotal-M_PCell) / (W-1) ⁇ .
  • M_PCell indicates the number of primary cells # 2. It should be noted that, in this application, M_PCell is used to indicate the number of primary cells # 2. In each embodiment, unless otherwise specified, the same parameters (such as M_PCell, M_SCell, and Mi, etc.) all have the meaning of first appearance. For brevity, I won't repeat them.
  • M_SCell indicates the number of any secondary cell # 2. It should be noted that, in this application, M_SCell is used to indicate the number of any secondary cell # 2. In the following embodiments, for simplicity, details are not described again.
  • Mtotal indicates the number of W serving cells # 1.
  • any method that can be rounded off belongs to the protection scope of the embodiments of the present application.
  • it can be expressed as: Floor (), or mathematical symbols
  • the rounding method can also be rounding up, which can be expressed as: ceil (), or mathematical symbols You can also use rounding to round, which can be expressed as: round ().
  • the number # 1 of the terminal device on the W serving cells may be equal to: y * Mi.
  • y that is, an example of the capability parameter of the terminal device monitoring the PDCCH candidate
  • Mi is a parameter of the blind detection capability reported by the terminal device, which may be an integer in ⁇ 4, ..., 16 ⁇ .
  • Mi can be determined according to Table 3. For example, when the subcarrier interval of the primary cell is 15KHz, Mi is 44. As another example, when the subcarrier interval of the primary cell is 30KHz, Mi is 36. As another example, when the subcarrier interval of the primary cell is 60 KHz, Mi is 22. As another example, when the subcarrier interval of the primary cell is 120KHz, Mi is 20.
  • FIG. 8 shows a specific example.
  • the five carriers are denoted as carrier # 1, carrier # 2, carrier # 3, carrier # 4, and carrier # 5.
  • the subcarrier intervals of carrier # 1, carrier # 2, carrier # 3, carrier # 4, and carrier # 5 are all 15 KHz. It can be seen from Table 2 and Table 3 that the five carriers are within their own slot time (slot1), and Mi is 44. It is assumed that carrier # 1 is the carrier in the primary cell.
  • the number of serving cells # 2 is:
  • the number # 2 of the cell #A is 44.
  • the number # 2 of the cell #A is 33.
  • the number # 1 is allocated according to the cell type of the serving cell, that is, the primary cell and the secondary cell.
  • the advantage is that the primary cell, as the carrier for the terminal device and the network device to perform signaling interaction, has a greater amount of information and a greater importance than the secondary In the cell, the terminal equipment allocates more capabilities to the primary cell, which can enhance the flexibility and reliability of signaling interaction.
  • scenario 2 the specific implementation of the average processing can be:
  • the number # 2 of any one of the W serving cells can be obtained by averaging the number # 1.
  • the number # 2 of any one of the W serving cells can be obtained by rounding the following formula: Mtotal / W.
  • the rounding method may be other rounding methods.
  • a rounding manner may also be used.
  • scheme 2 by averaging the number # 1, the scheme is not only simple, but also has low processing complexity.
  • the scheduling modes of the W serving cells are all self-scheduling, and the subcarrier intervals of at least two serving cells in the W serving cells are different.
  • the specific implementation manner of the scheme 1: determined according to the cell type of the serving cell may be:
  • the subcarrier intervals of at least two serving cells in the W serving cells are different. Therefore, the serving cells with the same subcarrier interval or Numerology in the W serving cells can be grouped into one group.
  • a group of serving cells corresponds to a number # 1.
  • the number of serving cells # 2 in each group of serving cells is determined separately.
  • the number of primary cells # 2 is equal to the number of primary cells # 3.
  • the secondary cell there are two possibilities, whether the secondary cell is in the same serving cell group as the primary cell:
  • the number of the secondary cells # 2 can be evenly allocated to the secondary cells after the number of the serving cells # 1 minus the number of the primary cells # 2.
  • the serving cell group is taken as an object, and all secondary cells are directly averaged.
  • M_SCell Floor ((Mi_total-M_Pcell) / (Xi-1));
  • M_PCell indicates the number of primary cells # 2.
  • M_SCell indicates the number of secondary cells # 2.
  • Mi_total indicates the number of serving cells # 1 whose Numerology is i. It should be noted that, in this application, Mi_total is used to indicate the number of serving cells # 1 whose Numerology is i. In the following embodiments, for simplicity, details will not be repeated.
  • Xi indicates the number of serving cells where Numerology is i. It should be noted that, in the present application, Xi is used to denote the number of serving cells where Numerology is i. In the following embodiments, for simplicity, details will not be repeated.
  • the W serving cells include two kinds of subcarrier intervals, so the W serving cells are divided into two groups: cell group # 1 and cell group # 2.
  • Cell group # 1 includes a primary cell and a secondary cell with the same subcarrier spacing as the primary cell.
  • Cell group # 2 includes a secondary cell with a different subcarrier spacing from the primary cell.
  • the following formulas can be rounded, for example, rounded down to determine the number of primary cells # 2, the number of secondary cells in cell group # 1, and the number of secondary cells # 2 in cell group # 2.
  • M1_SCell Floor ⁇ (Mi_total_1-M_PCell) / Xi_1 ⁇ ;
  • M2_SCell Floor ⁇ Mi_total_2 / Xi_2 ⁇ .
  • M_PCell indicates the number of primary cells # 2.
  • M1_SCell represents the number # 2 of any secondary cell in the cell group # 1, and the corresponding slot length is the slot length corresponding to the subcarrier interval of the cell group # 1.
  • M2_SCell represents the number # 2 of any secondary cell in the cell group # 2, and the corresponding slot length is the slot length corresponding to the subcarrier interval of the cell group # 2.
  • Mi_total_1 indicates the number # 1 of the cell group # 1.
  • Mi_total_1 indicates the number # 1 of the cell group # 2.
  • Xi_1 and Xi_2 indicate the number of serving cells in cell group # 1 and cell group # 2, respectively.
  • the serving cells with the same subcarrier spacing are divided into a group, so among the W serving cells, a group of serving cells corresponds to one number # 1.
  • FIG. 9 shows a specific embodiment.
  • the number of carriers for carrier aggregation is five, which are respectively recorded as carrier # 1, carrier # 2, carrier # 3, carrier # 4, and carrier # 5.
  • the number of these 5 carriers can be determined # 2:
  • the maximum number of PDCCH candidates monitored by the terminal device on carrier # 1 within the slot length corresponding to the subcarrier interval of 15 KHz is 44.
  • the maximum number of PDCCH candidates monitored by the terminal device on carrier # 4 is 26.
  • the PDCCH candidate monitored by the terminal device on carrier # 2 carrier # 3, or carrier # 5 within a slot length corresponding to a subcarrier interval of 30 KHz The maximum number is all 28.
  • the number # 2 of the cell #A is 44.
  • the number # 2 of the cell #A is 26.
  • the cell #A includes any one of the carrier # 2, the carrier # 3, and the carrier # 5, the number # 2 of the cell #A is 28.
  • the number # 1 is allocated according to the cell type of the serving cell, that is, the primary cell and the secondary cell.
  • the advantage is that the primary cell, as the carrier for the terminal device and the network device to perform signaling interaction, has a greater amount of information and a greater importance than the secondary In the cell, the terminal equipment allocates more capabilities to the primary cell, which can enhance the flexibility and reliability of signaling interaction.
  • Option 2 The specific implementation of the average processing may be:
  • the number # 2 of any one of the W serving cells can be obtained by averaging the number # 1.
  • the number # 2 of any one of the W serving cells can be obtained by rounding the following formula:
  • the number of these 5 carriers can be determined # 2:
  • M_Cell_0 and M_Cell_1 respectively indicate the number of serving cells # 2 with a subcarrier interval of 15 KHz, and the number of serving cells # 2 with a subcarrier interval of 30 KHz.
  • the maximum number of PDCCH candidates monitored by the terminal device on carrier # 1 or carrier # 4 is 35.
  • the PDCCH candidate monitored by the terminal device on carrier # 2, carrier # 3, or carrier # 5 within a slot length corresponding to a subcarrier interval of 30 KHz The maximum number is all 30.
  • scheme 2 by averaging the number # 1, the scheme is not only simple, but also has low processing complexity.
  • the scheduling mode of at least one serving cell in the W serving cells is cross-carrier scheduling, and the subcarrier intervals in the W serving cells are the same.
  • y is an integer in ⁇ 4, ..., 16 ⁇ , as described above.
  • Mi can be determined according to Table 3.
  • the subcarrier interval of the serving cell is 15KHz, and Mi is 44.
  • the subcarrier interval of the serving cell is 30 KHz, Mi is 36.
  • the subcarrier interval of the serving cell is 60 KHz
  • Mi is 22.
  • the subcarrier interval of the serving cell is 120KHz, Mi is 20.
  • Solution 1 The specific implementation manner determined according to the cell type of the serving cell may be:
  • the number # 1 of each serving cell is determined according to whether the serving cell is a primary cell or a secondary cell, and whether the serving cell is a scheduling serving cell.
  • the number # 2 of each serving cell can be determined by rounding the following formula.
  • M_PCell Mi + N_PCell * Floor ⁇ (Mtotal-Mi) / (W-1) ⁇
  • N_PCell represents the number of serving cells scheduled by the primary cell across carriers, and does not include the primary cell itself. It should be noted that, in this application, N_PCell is used to indicate the number of serving cells scheduled by the cross-carrier of the primary cell. In the following embodiments, for simplicity, details are not described again. It should also be noted that, in this application, the scheduled serving cell includes the serving cell itself, and the serving cell scheduled for cross-carrier scheduling does not include itself. For example, carrier # 1 schedules carrier # 2 across carriers, then the serving cells scheduled by carrier # 1 are carrier # 1 and carrier # 2, and the number of scheduled serving cells is two. The serving cell for carrier # 1 cross-carrier scheduling is carrier # 2, and the number of serving cells for cross-carrier scheduling is 1. In the following embodiments, when the difference is not emphasized, the meanings to be expressed are the same.
  • M1_SCell Floor ⁇ N_SCell * (Mtotal-M_PCell) / (W-1) ⁇
  • N_SCell indicates the number of serving cells scheduled by the secondary cell, including the secondary cell itself. It should be noted that, in this application, N_SCell is used to indicate the number of serving cells scheduled by the secondary cell. In the following embodiments, for simplicity, details are not described again.
  • FIG. 10 shows a specific embodiment.
  • the five carriers are denoted as carrier # 1, carrier # 2, carrier # 3, carrier # 4, and carrier # 5.
  • the subcarrier intervals of carrier # 1, carrier # 2, carrier # 3, carrier # 4, and carrier # 5 are all 15 KHz. It can be seen from Table 2 and Table 3 that the five carriers are within their own slot time (slot1), and Mi is 44. It is assumed that carrier # 1 is the carrier in the primary cell.
  • the number of serving cells # 2 is:
  • the maximum number of PDCCH candidates monitored by the terminal device on carrier # 1 within a slot length corresponding to a subcarrier interval of 15 KHz is 77.
  • the maximum number of PDCCH candidates monitored by the terminal device on carrier # 4 is 99.
  • the PDCCH candidate monitored by the terminal device on carrier # 2, or carrier # 3, or carrier # 5 within a slot length corresponding to a subcarrier interval of 15 KHz The maximum number is all zero.
  • the number # 1 is allocated according to the cell type of the serving cell, that is, the primary cell and the secondary cell.
  • the advantage is that the primary cell, as the carrier for the terminal device and the network device to perform signaling interaction, has a greater amount of information and a greater importance than the secondary In the cell, the terminal equipment allocates more capabilities to the primary cell, which can enhance the flexibility and reliability of signaling interaction.
  • Option 2 The specific implementation of average processing can be:
  • the number # 2 of any one of the W serving cells can be obtained by averaging the number # 1. For the scheduled serving cell, the number # 2 is 0. Therefore, the number of serving cells # 2 of any of the W serving cells with a scheduled serving cell can be obtained by rounding the following formula: N_Cell * (Mtotal / W).
  • N_Cell represents the number of serving cells scheduled by the serving cell, including the serving cell itself. It should be noted that, in this application, N_Cell is used to indicate the number of serving cells scheduled by the serving cell. In the following embodiments, for simplicity, details are not described again.
  • Carrier # 2, carrier # 3, and the number # 2 of carrier # 5 are all 0.
  • scheme 2 by averaging the number # 1, the scheme is not only simple, but also has low processing complexity.
  • the scheduling mode of at least one serving cell among the W serving cells is cross-carrier scheduling, and the subcarrier intervals of at least two serving cells are different. Where W can be greater than 4.
  • y is an integer in ⁇ 4, ..., 16 ⁇ , as described above.
  • Mi can be determined according to Table 3.
  • the subcarrier interval of the serving cell is 15KHz, and Mi is 44.
  • the subcarrier interval of the serving cell is 30 KHz, Mi is 36.
  • the subcarrier interval of the serving cell is 60 KHz
  • Mi is 22.
  • the subcarrier interval of the serving cell is 120KHz, Mi is 20.
  • the difference is that it is necessary to determine that when the subcarrier interval of the scheduled serving cell and the scheduled serving cell are different, monitoring is performed for the scheduled serving cell.
  • the maximum number of PDCCH candidates is calculated according to the Numerology of the scheduled serving cell or the Numerology of the scheduled serving cell. Further, there are two methods. The above two methods are specifically described below with reference to FIG. 11.
  • Method A The maximum number of monitored PDCCH candidates for the service of the scheduled serving cell is calculated according to the Numerology of the scheduled serving cell.
  • the number of carriers for carrier aggregation is five, which are respectively recorded as carrier # 1, carrier # 2, carrier # 3, carrier # 4, and carrier # 5.
  • the subcarrier spacing between carrier # 1 and carrier # 5 is 15 KHz.
  • the subcarrier interval of carrier # 2, carrier # 3, and carrier # 4 is 30 KHz.
  • Carrier # 1 schedules carrier # 2, and carrier # 3 schedules carrier # 4.
  • Numerology of the scheduled serving cell can also be calculated according to min ( ⁇ _scheduling, ⁇ scheduled), or min ( ⁇ _scheduling, ⁇ scheduled), where ⁇ _scheduling indicates ⁇ corresponding to the scheduled serving cell, and ⁇ _scheduled indicates ⁇ corresponding to the scheduled serving cell max () means taking the maximum value, and min () means taking the minimum value.
  • solution 1 The specific implementation manner determined according to the cell type of the serving cell may be:
  • the number # 1 of each serving cell is determined according to whether the serving cell is a primary cell or a secondary cell, and whether the serving cell is a scheduling serving cell.
  • the number # 2 of each serving cell can be determined by rounding the following formula.
  • M_PCell Mi + N_PCell * Floor ⁇ (Mi_total_1-Mi) / (Xi_1-1) ⁇ ;
  • M_SCell_1 N_SCell_1 * Floor ⁇ (Mi_total_1-Mi) / (Xi_1-1) ⁇ ;
  • M_SCell_2 N_SCell_2 * Floor ⁇ (Mi_total_2) / Xi_2 ⁇ ;
  • M_PCell indicates the number of primary cells # 2;
  • M_SCell_1 represents the number of scheduling serving cells # 2 with the same subcarrier spacing as the primary cell
  • M_SCell_2 represents the number of scheduling serving cells # 2 that is different from the subcarrier interval of the primary cell
  • M_SCell_3 indicates the number of scheduled serving cells # 2.
  • N_PCell indicates the number of serving cells scheduled by the primary cell across carriers, excluding the primary cell itself
  • N_SCell_1 and N_SCell_2 indicate the number of serving cells scheduled by the corresponding secondary cell, including the secondary cell itself.
  • Mi_total_1 and Mi_total_2 respectively represent the number of serving cells # 1 with the same subcarrier spacing as the main cell, and the number of serving cells # 1 with the subcarrier spacing different from the main cell, respectively;
  • Xi_1 and Xi_2 represent the number of cells in the serving cell with the same subcarrier spacing as the main cell, and the number of cells in the serving cell with the subcarrier spacing different from the main cell, respectively.
  • carrier # 1 is the carrier in the main cell.
  • the number of scheduled serving cells # 1 with the same subcarrier spacing as the main cell is represented by M_SCell_1, and the number of scheduled serving cells # 1 with the subcarrier spacing different from the main cell is represented by M_SCell_2 .
  • the scheduled serving cell calculates the number of serving cells under the Numerology according to the Numerology of the scheduled serving cell.
  • the subcarrier interval of carrier # 4 is the same as the subcarrier interval of carrier # 3, both of which are 30KHz.
  • the number # 2 of each serving cell is as follows.
  • N_PCell represents the number of serving cells scheduled by the primary cell across carriers.
  • carrier # 1 is scheduled across carriers # 2, so N_PCell is 1.
  • N_SCell_1 represents the number of serving cells scheduled by carrier # 5.
  • the number of serving cells scheduled by carrier # 5 is 1, so N_SCell_1 is 1.
  • N_SCell_2 represents the number of serving cells scheduled by carrier # 3.
  • the number of serving cells scheduled by carrier # 3 is 2, that is, itself and carrier # 4. So N_SCell_2 is 2.
  • the maximum number of PDCCH candidates monitored by the scheduled serving cell is calculated according to the Numerology of the scheduled serving cell, according to scheme 1, for carrier # 1, within the slot length corresponding to the subcarrier interval of 15KHz, The maximum number of PDCCH candidates monitored on carrier # 1 is 74.
  • the maximum number of PDCCH candidates monitored by the terminal device on carrier # 5 within a slot length corresponding to a subcarrier interval of 15 KHz is 30.
  • the maximum number of PDCCH candidates monitored by the terminal device on carrier # 3 within a slot length corresponding to a subcarrier interval of 30 KHz is 56.
  • the maximum number of PDCCH candidates monitored by the terminal device on carrier # 2 or carrier # 4 is all zero.
  • the number # 1 is allocated according to the cell type of the serving cell, that is, the primary cell and the secondary cell.
  • the advantage is that the primary cell, as the carrier for the terminal device and the network device to perform signaling interaction, has a greater amount of information and a greater importance than the secondary In the cell, the terminal equipment allocates more capabilities to the primary cell, which can enhance the flexibility and reliability of signaling interaction.
  • Option 2 The specific implementation of the average processing may be:
  • the number # 2 of any one of the W serving cells can be obtained by averaging the number # 1. For the number of scheduled serving cells # 2, all are 0.
  • the number # 2 of any of the scheduling serving cells in the W serving cells can be obtained by rounding the following formula: Mi_total / Xi.
  • the number of subcarriers # 1 or # 2 is # 2:
  • the number of subcarriers # 3 # 2 is:
  • the number of subcarriers # 2 or # 2 is # 0.
  • the number # 2 of any scheduling serving cell in the W serving cells can be obtained by rounding the following formula: N_Cell * (Mi_total / Xi). Wherein, N_Cell represents the number of serving cells of the Numerology scheduled by the serving cell.
  • the number of subcarriers # 2 or # 2 is # 0.
  • scheme 2 by averaging the number # 1, the scheme is simple and the processing complexity is low.
  • Method B The maximum number of monitored PDCCH candidates for the service of the scheduled serving cell is calculated according to the Numerology of the scheduled serving cell.
  • Option 1 The specific implementation manner determined according to the cell type of the serving cell may be:
  • the number # 2 of each serving cell is determined according to whether the serving cell is a primary cell or a secondary cell, and whether the serving cell is a scheduling serving cell.
  • the number # 2 of each serving cell can be determined by rounding the following formula.
  • M_PCell Mi + N_PCell * Floor ⁇ (Mi_total_1-Mi) / (Xi_1-1) ⁇ ;
  • M_SCell_1 N_SCell_1 * Floor ⁇ (Mi_total_1-Mi) / (Xi_1-1) ⁇ ;
  • M_SCell_2 N_SCell_2 * Floor ⁇ (Mi_total_2) / Xi_2 ⁇ ;
  • M_PCell indicates the number of primary cells # 2;
  • M_SCell_1 represents the number of scheduling serving cells # 2 with the same subcarrier spacing as the primary cell
  • M_SCell_2 represents the number of scheduling serving cells # 2 that is different from the subcarrier interval of the primary cell
  • M_SCell_3 indicates the number of scheduled serving cells # 2.
  • N_PCell indicates the number of serving cells scheduled by the primary cell across carriers, excluding the primary cell itself
  • N_SCell_1 and N_SCell_2 indicate the number of serving cells scheduled by the corresponding secondary cell, including the secondary cell itself.
  • Mi_total_1 and Mi_total_2 respectively represent the number of serving cells # 1 with the same subcarrier spacing as the main cell, and the number of serving cells # 1 with the subcarrier spacing different from the main cell, respectively;
  • Xi_1 and Xi_2 represent the number of cells in the serving cell with the same subcarrier spacing as the main cell, and the number of cells in the serving cell with the subcarrier spacing different from the main cell, respectively.
  • carrier # 1 is the carrier in the main cell.
  • the number of scheduled serving cells # 1 with the same subcarrier spacing as the main cell is represented by M_SCell_1, and the number of scheduled serving cells # 1 with the subcarrier spacing different from the main cell is represented by M_SCell_2 .
  • the scheduled serving cell calculates the number of serving cells under the Numerology according to the Numerology of the scheduled serving cell, so:
  • the number # 2 of each serving cell is as follows.
  • N_PCell indicates the number of serving cells scheduled by the primary cell across carriers.
  • carrier # 1 is scheduled across carriers # 2, so N_PCell is 1.
  • N_SCell_1 indicates the number of carriers scheduled by carrier # 5.
  • the number of carriers scheduled by carrier # 5 is 1, so N_SCell_1 is 1.
  • N_SCell_2 represents the number of serving cells scheduled by carrier # 3.
  • the number of serving cells scheduled by carrier # 3 is 2, that is, itself and carrier # 4. So N_SCell_2 is 2.
  • M_SCell_3 0.
  • the terminal The maximum number of PDCCH candidates monitored by the device on carrier # 1 is 26.
  • the maximum number of PDCCH candidates monitored by the terminal device on carrier # 5 is 26.
  • the maximum number of PDCCH candidates monitored by the terminal device on carrier # 3 within a slot length corresponding to a subcarrier interval of 30 KHz is 56.
  • the maximum number of PDCCH candidates monitored by the terminal device on carrier # 2 or carrier # 4 is all zero.
  • the number # 1 is allocated according to the cell type of the serving cell, that is, the primary cell and the secondary cell.
  • the advantage is that the primary cell, as the carrier for the terminal device and the network device to perform signaling interaction, has a greater amount of information and a greater importance than the secondary In the cell, the terminal equipment allocates more capabilities to the primary cell, which can enhance the flexibility and reliability of signaling interaction.
  • Option 2 The specific implementation of the average processing may be:
  • the number # 2 of any one of the W serving cells can be obtained by averaging the number # 1. For the number of scheduled serving cells # 2, all are 0.
  • the number # 2 of any scheduling serving cell in the W serving cells can be obtained by rounding the following formula: Mi_total / Xi.
  • the number of subcarriers # 1 or # 2 is # 2:
  • the number of subcarriers # 3 # 2 is:
  • the number of subcarriers # 2 or # 2 is # 0.
  • the number # 2 of any scheduling serving cell in the W serving cells can be obtained by rounding the following formula: N_Cell * (Mi_total / Xi). Among them, N_Cell represents the number of serving cells scheduled by the serving cell.
  • the number of subcarriers # 2 or # 2 is # 0.
  • scheme 2 by averaging the number # 1, the scheme is simple and the processing complexity is low.
  • determining the number of scheduled serving cells # 1 may adopt a similar method to scenario 2.
  • different Numerology and mixed Numerology have the same meaning.
  • the difference is that when determining the number of scheduled serving cells # 1 (that is, Mtotal), it is necessary to first determine the maximum number of PDCCH candidates to be monitored when serving the scheduled serving cell according to the scheduling serving cell. Numerology is used for calculation (that is, the foregoing method A), or it is calculated according to Numerology of the scheduled serving cell (that is, the foregoing method B).
  • the scenario of cross-carrier scheduling includes at least the following:
  • the subcarrier interval of the scheduled serving cell is smaller than the subcarrier interval of the scheduled serving cell.
  • the subcarrier interval of carrier # 1 is 15 KHz, and the subcarrier interval of carrier # 2 is 30 KHz.
  • Carrier # 1 schedules carrier # 2.
  • the subcarrier interval of the scheduled serving cell is greater than the subcarrier interval of the scheduled serving cell.
  • the subcarrier interval of carrier # 1 is 15KHz, and the subcarrier interval of carrier # 2 is 30KHz.
  • Carrier # 2 schedules carrier # 1.
  • the sub-carrier spacing of the scheduled serving cell and the scheduled serving cell is the same.
  • case 1 The embodiment of the present application mainly considers case 1 and case 2.
  • case 2 The two cases are specifically described below.
  • one time slot on the scheduling serving cell corresponds to multiple time slots of the scheduled serving cell.
  • the slot length of the carrier # 1 is twice that of the carrier # 2. In this case, there are two methods to determine the maximum number of monitored PDCCH candidates that are served by the scheduled serving cell.
  • Method A The maximum number of monitored PDCCH candidates serving the scheduled serving cell is calculated according to the Numerology of the scheduled serving cell.
  • Method B The maximum number of monitored PDCCH candidates serving the scheduled serving cell is calculated according to the Numerology of the scheduled serving cell.
  • Numerology of the scheduled serving cell is used to determine the number of PDCCH candidates added for the scheduled serving cell. According to this principle, since the slot length of the scheduled serving cell is shorter than the slot length on the scheduled serving cell, the number of PDCCH candidates on the scheduled serving cell needs to be unified to the same time before the number of PDCCH candidates is summed. The length of the time slot corresponding to the scheduled serving cell is long, so the number of PDCCH candidates on the scheduled serving cell is converted into the number of PDCCH candidates in multiple time slots.
  • the subcarrier interval of the scheduled serving cell is greater than the subcarrier interval of the scheduled serving cell.
  • Numerology of the scheduled serving cell is used to determine the number of PDCCH candidates added for the scheduled serving cell. According to this principle, since the slot length of the scheduled serving cell is greater than the slot length of the scheduled serving cell, before the number of PDCCH candidates on the scheduled serving cell is summed up, the number of PDCCH candidates needs to be evenly divided into the scheduled serving cell. Within the gap length. Therefore, the number of PDCCH candidates on the scheduled serving cell is converted into the number of PDCCH candidates on one slot in the scheduled serving cell.
  • the number of PDCCH candidates on the scheduling serving cell is: M ( ⁇ _scheduling) + Ks * M ( ⁇ _scheduling).
  • M ( ⁇ ) represents the number of PDCCH candidates for a single carrier whose Numerolgy is ⁇ ;
  • ⁇ _scheduling indicates ⁇ corresponding to the scheduled serving cell
  • ⁇ _scheduled indicates ⁇ corresponding to the scheduled serving cell
  • Ks is the number of scheduled serving cells.
  • ⁇ _scheduled ⁇ _scheduling is the number of scheduled serving cells.
  • ⁇ k here is ⁇ _scheduled, which is applicable to all subsequent ⁇ k descriptions.
  • the number of PDCCH candidates on the scheduling serving cell is: M ( ⁇ _scheduling) + Ks * M ( ⁇ k ) * 2 ( ⁇ _scheduled- ⁇ _scheduling) .
  • the number of PDCCH candidates on the scheduling carrier is:
  • the number of PDCCH candidates that need to be increased for each scheduled serving cell is:
  • the number of PDCCH candidates to be increased is the sum of the number of PDCCH candidates on the K C scheduled serving cells, that is:
  • the number of PDCCH candidates on the scheduling serving cell is:
  • Carrier # 2 schedules one carrier across carriers, namely carrier # 1. therefore:
  • the number of PDCCH candidates to be increased is:
  • the number of PDCCH candidates on the scheduling serving cell is:
  • the Numerology of the scheduling serving cell is ⁇ _scheduling
  • the Numerology on the scheduling serving cell is ⁇ _scheduled or ⁇ k.
  • the number of PDCCH candidates on the scheduling service cell is the sum of the above case 1 and case 2. It should be noted that, at this time, M ( ⁇ _scheduling) corresponding to the scheduling service cell only needs to be added once.
  • the number of PDCCH candidates on the scheduling serving cell is:
  • Ks is the number of cells satisfying scheduling service ⁇ _scheduled ⁇ _scheduling the number of carriers, K C is ⁇ _scheduled ⁇ _scheduling number of carriers serving cell is scheduled to meet.
  • carrier # 1, carrier # 2, and carrier # 3 are aggregated.
  • Carrier # 1 schedules carrier # 2 and carrier # 3.
  • the number of PDCCH candidates on the scheduling serving cell is:
  • the corresponding slot length is the slot length corresponding to the subcarrier interval of 30KHz, that is, 0.5ms.
  • the number of PDCCH candidates on the scheduling serving cell is:
  • K C is the number of all scheduled serving cells.
  • the number of PDCCH candidates on the scheduling serving cell is:
  • the existing terminal equipment is evolved from the LTE terminal equipment, the original LTE system only supports a subcarrier interval of 15 KHz.
  • NR terminal equipment has improved a certain processing capacity on the basis of LTE terminal equipment, but still cannot exceed a hard limit within a certain time.
  • the maximum number of PDCCH candidates that can be monitored on the scheduling serving cell can be directly proportional to the number of scheduled serving cells.
  • the time unit at this time refers to a time unit of a subcarrier interval of 15 KHz, that is, a time slot of 1 ms.
  • the maximum number of PDCCH candidates that can be monitored on the scheduled serving cell may be a product of a number greater than or equal to 44 and the number of scheduled serving cells, and the corresponding time unit is 1 ms.
  • the first number of PDCCH candidates that the terminal device can monitor is determined according to the maximum number of carriers that the terminal device can support, and the corresponding slot length of the subcarrier interval with a unit duration of 15KHz ( (Ie 1ms).
  • the maximum number of PDCCH candidates that the terminal device can monitor is y * 44, and its corresponding time unit is a 15k SCS slot length (that is, 1ms).
  • the scheduling service cell of the scheduling service cell includes the scheduling service cell itself. In the following, for simplicity and without loss of generality, the scheduling serving cell is cell # 1, and the serving cell scheduled by cell # 1 for cross-carrier scheduling is cell # 2.
  • the number of monitoring PDCCH candidates configured on cell # 1 is number #A
  • the number of PDCCH candidates that can serve cell # 1 on cell # 1 is number #B
  • the number of candidates is the number #C.
  • the cell # 1 can schedule one or more serving cells.
  • the cell # 1 is only used for scheduling the cell # 2 as an example for illustrative description.
  • the terminal device receives the number of PDCCH candidates #A configured by the network device on the cell # 1; the terminal device determines the number of PDCCH candidates #B serving the cell # 2 according to the number #A.
  • the terminal device determines the number #B of PDCCH candidates serving the cell # 1 according to the number #A, and the terminal device determines the number #C according to the number #B and at least one of the following parameters: a PDCCH candidate number conversion factor and a PDCCH candidate number Value offset value, subcarrier interval of the first serving cell, subcarrier interval of the second serving cell, maximum number of PDCCH candidates that the first serving cell can monitor within a first unit duration, the The maximum number of PDCCH candidates that the second serving cell can monitor within the second unit duration, the offset value of the common search space CSS, and the number of serving cells scheduled by the first serving cell.
  • the terminal device determines the number of PDCCH candidates for each scheduled serving cell on the scheduling serving cell. It can also be understood that the terminal device determines the number of PDCCH candidates for each scheduled serving cell on the scheduled serving cell. Specifically, the R cell (including cell # 1 itself) is scheduled as an example for description by cell # 1. It is assumed that the number of monitoring PDCCH candidates configured on cell # 1 is number #A.
  • the terminal device determines the number of PDCCH candidates for each scheduled serving cell on the scheduled serving cell.
  • the steps may be as follows:
  • a cell configures a cell search space (including the number of PDCCH candidates), it does not consider the case of cross-carrier scheduling, so the configuration of its parameters is limited to the case of a single cell. Therefore, before the number of PDCCH candidates for each scheduled cell is allocated, the number of PDCCHs to be monitored needs to be extended to the number of PDCCHs in multiple cells.
  • the number #A of monitoring PDCCH candidates configured on cell # 1 is multiplied by the number R of scheduled serving cells. It is assumed that the product of the number #A and R is K, so the total number of K monitored PDCCH candidates can be obtained.
  • the terminal may allocate the number of K monitored PDCCH candidates to the cell # 1 and the serving cell scheduled by the cell # 1 across carriers according to the following manner.
  • the cell # 1 scheduling cell # 2 is taken as an example for description.
  • a possible implementation manner is to determine the number of PDCCH candidates serving cell # 1 and the number of PDCCH candidates serving cell # 2 according to the type of the cell (ie, the primary cell and the secondary cell). Specifically, reference may be made to the specific implementation manner for determining the number of the respective PDCCH candidates # 2 for the primary cell and the secondary cell with the same subcarrier interval in the first scenario based on scenario 1 to scenario 4 above. It is concise and will not be repeated here.
  • Another possible implementation manner is to determine the number of PDCCH candidates serving the cell # 1 and the number of PDCCH candidates serving the cell # 2 by using a direct equalization method. Specifically, reference may be made to the specific implementation of how to determine the number of respective PDCCH candidates # 2 for the primary cell and the secondary cell with the same subcarrier interval in the solution 2 in any of the scenarios 1 to 4 above. It is concise and will not be repeated here.
  • a possible implementation manner is to determine the number of PDCCH candidates serving cell # 1 and the number of PDCCH candidates serving cell # 2 according to the type of the cell (ie, the primary cell and the secondary cell). Specifically, reference may be made to the specific implementation of how to determine the number of respective PDCCH candidates # 2 for the primary cell and the secondary cell with different subcarrier intervals in the first scenario based on scenario 1 to scenario 4 above. It is concise and will not be repeated here.
  • Another possible implementation manner is to determine the number of PDCCH candidates serving the cell # 1 and the number of PDCCH candidates serving the cell # 2 by using a direct equalization method. Specifically, reference may be made to the specific implementation of how to determine the number of respective PDCCH candidates # 2 for the primary cell and the secondary cell with different subcarrier intervals in the scenario 2 in any of the scenarios 1 to 4 above. It is concise and will not be repeated here.
  • the terminal device obtains configuration information of a search space set of the scheduling service cell, where the configuration information of the search space set includes configuration information of the number of candidate control channels; the terminal device obtains cross-carrier scheduling instruction information, and the cross-carrier scheduling instruction information includes being scheduled Index information of the serving cell; the terminal device determines the number of candidate control channels of each scheduled serving cell according to the configuration information of the number of candidate control channels and the index information of the scheduled serving cell.
  • the terminal device determines the number of candidate control channels for each scheduled serving cell according to the subcarrier interval of the scheduled serving cell.
  • the number of candidate control channels of the scheduled serving cell satisfies N * M (L) X0 * p, where M (L) X0 is a candidate whose aggregation level configured by the configuration information of the number of candidate control channels is L Number of control channels; Q is the number of serving cells with the same subcarrier spacing as the scheduled serving cell, Q serving cells include the scheduled serving cell and / or the scheduling serving cell; N is the number of the serving serving cell and the scheduled serving cell Number of serving cells, p is a real number related to the subcarrier interval of the scheduled serving cell or a real number related to the blind detection performance of the terminal device.
  • the number of candidate control channels of the scheduled serving cell satisfies Q / N * M (L) X0 * p, where M (L) X0 is an aggregation level configured by configuration information of the number of candidate control channels.
  • Q is the number of carriers with the same subcarrier spacing as the scheduled serving cell
  • Q serving cells include the scheduled serving cell and / or the scheduled serving cell
  • N is the number of the scheduled serving cell and The number of serving cells of the scheduling serving cell
  • p is a real number related to the subcarrier interval of the scheduled serving cell or a real number related to the blind detection performance of the terminal device.
  • p may be the number of supportable scheduling parameters reported by the terminal device, and p is a positive integer greater than 4; or p may be the ratio of the subcarrier interval size of the scheduling parameter to the subcarrier interval size of the scheduled parameter, p is an integer multiple of two.
  • the terminal device acquires configuration information of a search space set of a scheduling service cell, wherein the configuration information of the number of candidate control channels indicates that the number of candidate PDCCHs whose aggregation level is L is M (L) X0 ;
  • Carrier scheduling configuration information includes index information of a scheduled serving cell, for example, the cross-carrier configuration information includes index (identity, ID) information of the scheduled serving cell, and the index information includes ⁇ 1 , 2,3,4 ⁇ , that is, the number of scheduled serving cells is four, and the IDs of the four serving cells are 1,2,3,4, and the carriers of the scheduled carriers do not include the scheduled carriers.
  • the terminal device determines the number of candidate control channels for each scheduled serving cell according to the configuration information of the number of candidate control channels and the index information of the scheduling serving cell, and further includes, according to the scheduled service, The subcarrier interval of a cell determines the number of candidate control channels for each scheduled serving cell;
  • the scheduled serving cell includes X1, X2, X3, and X4, where the number of candidate PDCCHs configured with aggregation level L on the scheduled serving cell is M (L) X0 , and the subcarrier interval of the scheduled serving cell is 15 kHz.
  • the sub-carrier spacing of the scheduled serving cells X1, X2 is 15 kHz; the sub-carrier spacing of the scheduled serving cells X3, X4 is 30 kHz; the aggregation level L of the scheduled serving cell, the number of candidate PDCCHs meet, Q / N * M ( L) X0 * p, where Q is the number of serving cells with the same subcarrier interval as the scheduled serving cell, where Q serving cells include the scheduled serving cell and / or the scheduling serving cell; N is the scheduling service cell With the number of serving cells of the scheduled serving cell, p is a real number related to the subcarrier interval of the scheduled serving cell or a real number related to the blind detection performance of the terminal device.
  • the number of candidate PDCCHs on the scheduled serving cell X1 is 3/5 * M (L) X0 * p
  • the number of candidate PDCCHs on the scheduled serving cell X2 is 3/5 * M (L) X0 * p
  • the number of candidate PDCCHs on the scheduled serving cell X3 is 2/5 ⁇ M (L) X0 ⁇ p
  • the number of candidate PDCCHs on the scheduled serving cell X2 is 2/5 * M (L) X0 * p.
  • the aggregation level L of the scheduled serving cell satisfies the number of candidate PDCCHs, N * M (L) X0 * p, where Q is the number of serving cells having the same subcarrier interval as the scheduled serving cell, where Q
  • Each serving cell includes a scheduled serving cell and / or a scheduled serving cell; N is the number of serving cells including the scheduled serving cell and the scheduled serving cell, and p is a real number related to the subcarrier interval of the scheduled serving cell or a terminal device Real numbers for blind detection performance.
  • the number of candidate PDCCHs on the scheduled serving cell X1 is 5 * M (L) X0 * p; the number of candidate PDCCHs on the scheduled serving cell X2 is 5 * M (L) X0 * p ;
  • the number of candidate PDCCHs on the scheduled serving cell X3 is 5 * M (L) X0 * p;
  • the number of candidate PDCCHs on the scheduled serving cell X2 is 5 * M (L) X0 * p.
  • the network device obtains the first number of non-overlapping CCEs that the terminal device can monitor on T serving cells, where T is an integer greater than or equal to 2;
  • the network device configures a second number of non-overlapping CCEs monitored by the terminal device on the first serving cell, and the second number is a non-overlapping CCE that the network device can monitor on the first serving cell according to the terminal device
  • the third number is determined, the third number is determined by the network device according to the first number, and the first serving cell belongs to the T serving cells.
  • the number # 1 is still used to indicate the maximum number of non-overlapping CCEs that the terminal device monitors on multiple serving cells.
  • the number # 2 is used to indicate the maximum number of non-overlapping CCEs monitored by a terminal device on a serving cell in a carrier aggregation scenario.
  • the number # 3 is used to indicate the maximum number of non-overlapping CCEs monitored by a terminal device on a serving cell within a unit duration when the carrier is a single carrier.
  • the unit duration may be a slot length corresponding to a subcarrier interval of the serving cell.
  • the number # 3 can be determined from Table 4.
  • the network device configures W serving cells for the terminal device, that is, the number of carriers in carrier aggregation is W.
  • the W serving cells include T serving cells, and W is an integer greater than or equal to T.
  • the determined number # 2 includes at least two schemes. Scheme 1 is determined according to a cell type of a serving cell, and the cell type includes: a primary cell and a secondary cell. Option 2 is determined by averaging the number # 1.
  • the scheduling modes of the W serving cells are all self-scheduling, and the subcarrier intervals of the W serving cells are the same.
  • the specific implementation manner of the scheme 1: determined according to the cell type of the serving cell may be:
  • the T serving cells include at least one secondary cell.
  • the network device # 2 and T cells are based on the number of primary cells.
  • the number of serving cells # 1 determines the number of PDCCH candidates that the terminal device can monitor on the secondary cell.
  • the number of primary cells # 2 and the number of secondary cells # 2 can be determined by rounding the following formula. Among them, the rounding method can be rounded down, which can be expressed as: Floor ().
  • M_SCell Floor ⁇ (Mtotal-M_PCell) / (W-1) ⁇ .
  • M_PCell indicates the number of primary cells # 2. It should be noted that, in this application, M_PCell is used to indicate the number of primary cells # 2. In the following embodiments, for simplicity, details are not described again.
  • M_SCell indicates the number of any secondary cell # 2. It should be noted that, in this application, M_SCell is used to indicate the number of any secondary cell # 2. In the following embodiments, for simplicity, details are not described again.
  • Mtotal indicates the number of W serving cells # 1.
  • any method that can be rounded off belongs to the protection scope of the embodiments of the present application.
  • it can be expressed as: Floor (), or mathematical symbols
  • the rounding method can also be rounded up, which can be expressed as: ceil (), or mathematical symbols
  • the number # 1 of the terminal device on the W serving cells may be equal to: y * Mi.
  • y is a parameter of the blind detection capability reported by the terminal device, and may be an integer in ⁇ 4, ..., 16 ⁇ .
  • Mi can be determined according to Table 4. For example, when the subcarrier interval of the primary cell is 15KHz, Mi is 56. As another example, when the subcarrier interval of the primary cell is 30 KHz, Mi is 56. As another example, when the subcarrier interval of the primary cell is 60 KHz, Mi is 48. As another example, when the subcarrier interval of the primary cell is 120KHz, Mi is 32.
  • carrier # 1 is the carrier in the primary cell.
  • the number of serving cells # 2 is:
  • the number # 2 of the cell #A is 56.
  • the number # 2 of the cell #A is 42.
  • the number # 1 is allocated according to the cell type of the serving cell, that is, the primary cell and the secondary cell.
  • the advantage is that the primary cell, as the carrier for the terminal device and the network device to perform signaling interaction, has a greater amount of information and a greater importance than the secondary In the cell, the terminal equipment allocates more capabilities to the primary cell, which can enhance the flexibility and reliability of signaling interaction.
  • scenario 2 the specific implementation of the average processing can be:
  • the number # 2 of any one of the W serving cells can be obtained by averaging the number # 1.
  • the number # 2 of any one of the W serving cells can be obtained by rounding the following formula: Mtotal / W.
  • the rounding method may be other rounding methods.
  • a rounding manner may also be used.
  • scheme 2 by averaging the number # 1, the scheme is not only simple, but also has low processing complexity.
  • the scheduling modes of the W serving cells are all self-scheduling, and the subcarrier intervals of at least two serving cells in the W serving cells are different.
  • the specific implementation manner of the scheme 1: determined according to the cell type of the serving cell may be:
  • the subcarrier intervals of at least two serving cells in the W serving cells are different. Therefore, the serving cells with the same subcarrier interval or Numerology in the W serving cells can be grouped into one group.
  • a group of serving cells corresponds to a number # 1.
  • the number of serving cells # 2 in each group of serving cells is determined separately.
  • the number of primary cells # 2 is equal to the number of primary cells # 3.
  • the secondary cell there are two possibilities, whether the secondary cell is in the same serving cell group as the primary cell:
  • the number of the secondary cells # 2 can be evenly allocated to the secondary cells after the number of the serving cells # 1 minus the number of the primary cells # 2.
  • the serving cell group is taken as an object, and all secondary cells are directly averaged.
  • M_SCell Floor ((Mi_total-M_Pcell) / (Xi-1));
  • M_PCell indicates the number of primary cells # 2.
  • M_SCell indicates the number of secondary cells # 2.
  • Mi_total indicates the number of serving cells # 1 whose Numerology is i.
  • Mi_total indicates the number of serving cells # 1 whose Numerology is i. It should be noted that, in this application, Mi_total is used to indicate the number of serving cells # 1 whose Numerology is i. In the following embodiments, for simplicity, details will not be repeated.
  • Xi indicates the number of serving cells where Numerology is i. It should be noted that, in the present application, Xi is used to denote the number of serving cells where Numerology is i. In the following embodiments, for simplicity, details will not be repeated.
  • the W serving cells include two kinds of subcarrier intervals, so the W serving cells are divided into two groups: cell group # 1 and cell group # 2.
  • Cell group # 1 includes a primary cell and a secondary cell with the same subcarrier spacing as the primary cell.
  • Cell group # 2 includes a secondary cell with a different subcarrier spacing from the primary cell.
  • the following formulas can be rounded, for example, rounded down to determine the number of primary cells # 2, the number of secondary cells in cell group # 1, and the number of secondary cells # 2 in cell group # 2.
  • M1_SCell Floor ⁇ (Mi_total_1-M_PCell) / Xi_1 ⁇ ;
  • M2_SCell Floor ⁇ Mi_total_2 / Xi_2 ⁇ .
  • M_PCell indicates the number of primary cells # 2.
  • M1_SCell represents the number # 2 of any secondary cell in the cell group # 1, and the corresponding slot length is the slot length corresponding to the subcarrier interval of the cell group # 1.
  • M2_SCell represents the number # 2 of any secondary cell in the cell group # 2, and the corresponding slot length is the slot length corresponding to the subcarrier interval of the cell group # 2.
  • Mi_total_1 indicates the number # 1 of the cell group # 1.
  • Mi_total_1 indicates the number # 1 of the cell group # 2.
  • Xi_1 and Xi_2 indicate the number of serving cells in cell # 1 and cell # 2, respectively.
  • the serving cells with the same subcarrier spacing are divided into a group, so among the W serving cells, a group of serving cells corresponds to one number # 1.
  • FIG. 9 shows a specific embodiment.
  • the number of carriers for carrier aggregation is five, which are respectively recorded as carrier # 1, carrier # 2, carrier # 3, carrier # 4, and carrier # 5.
  • the number of these 5 carriers can be determined # 2:
  • the maximum number of non-overlapping CCEs that the terminal device monitors on carrier # 1 within the slot length corresponding to the subcarrier interval of 15 KHz is 56.
  • the maximum number of non-overlapping CCEs that the terminal device monitors on carrier # 4 within the slot length corresponding to the subcarrier interval of 15 KHz is 33.
  • the non-overlapping CCEs monitored by the terminal device on carrier # 2, or carrier # 3, or carrier # 5 within a slot length corresponding to a subcarrier interval of 30 KHz The maximum number are all 44.
  • the number # 2 of the cell #A is 56.
  • the number # 2 of the cell #A is 33.
  • the cell #A includes any one of the carrier # 2, the carrier # 3, and the carrier # 5, the number # 2 of the cell #A is 44.
  • the number # 1 is allocated according to the cell type of the serving cell, that is, the primary cell and the secondary cell.
  • the advantage is that the primary cell, as the carrier for the terminal device and the network device to perform signaling interaction, has a greater amount of information and a greater importance than the secondary In the cell, the terminal equipment allocates more capabilities to the primary cell, which can enhance the flexibility and reliability of signaling interaction.
  • Option 2 The specific implementation of the average processing may be:
  • the number # 2 of any one of the W serving cells can be obtained by averaging the number # 1.
  • the number # 2 of any one of the W serving cells can be obtained by rounding the following formula:
  • the number of these 5 carriers can be determined # 2:
  • M_Cell_0 and M_Cell_1 respectively indicate the number of serving cells # 2 with a subcarrier interval of 15 KHz, and the number of serving cells # 2 with a subcarrier interval of 30 KHz.
  • the maximum number of non-overlapping CCEs monitored by the terminal device on carrier # 1 or carrier # 4 within a slot length corresponding to a subcarrier interval of 15 KHz is 44.
  • the non-overlapping CCEs monitored by the terminal device on carrier # 2, or carrier # 3, or carrier # 5 within a slot length corresponding to a subcarrier interval of 30 KHz The maximum number are all 44.
  • scheme 2 by averaging the number # 1, the scheme is not only simple, but also has low processing complexity.
  • the scheduling mode of at least one serving cell in the W serving cells is cross-carrier scheduling, and the subcarrier intervals in the W serving cells are the same.
  • y is an integer in ⁇ 4, ..., 16 ⁇ , as described above.
  • Mi can be determined according to Table 4.
  • the subcarrier interval of the serving cell is 15KHz, and Mi is 56.
  • the subcarrier interval of the serving cell is 30 KHz, Mi is 56.
  • the subcarrier interval of the serving cell is 60 KHz
  • Mi is 48.
  • the subcarrier interval of the serving cell is 120KHz, Mi is 32.
  • the number of PDCCH candidates i.e., the number # 1 that can be monitored by W serving cells with the same subcarrier interval within a period of 1ms is 224, where W can be greater than 4.
  • Solution 1 The specific implementation manner determined according to the cell type of the serving cell may be:
  • the number # 1 of each serving cell is determined according to whether the serving cell is a primary cell or a secondary cell, and whether the serving cell is a scheduling serving cell.
  • the number # 2 of each serving cell can be determined by rounding the following formula.
  • M_PCell Mi + N_PCell * Floor ⁇ (Mtotal-Mi) / (W-1) ⁇
  • N_PCell indicates the number of serving cells scheduled by the PCell cross-carrier, excluding the primary cell itself. It should be noted that, in this application, N_PCell is used to indicate the number of serving cells scheduled by the cross-carrier of the primary cell. In the following embodiments, for simplicity, details are not described again.
  • M1_SCell Floor ⁇ N_SCell * (Mtotal-M_PCell) / (W-1) ⁇
  • N_SCell indicates the number of serving cells scheduled by the secondary cell, including the secondary cell itself. It should be noted that, in this application, N_SCell is used to indicate the number of serving cells scheduled by the secondary cell. In the following embodiments, for simplicity, details are not described again.
  • FIG. 10 shows a specific embodiment.
  • the five carriers are denoted as carrier # 1, carrier # 2, carrier # 3, carrier # 4, and carrier # 5.
  • the subcarrier intervals of carrier # 1, carrier # 2, carrier # 3, carrier # 4, and carrier # 5 are all 15 KHz. It can be seen from Table 2 and Table 4 that the five carriers are within their own slot time (slot1), and Mi is 56. It is assumed that carrier # 1 is the carrier in the primary cell.
  • the number of serving cells # 2 is:
  • the maximum number of non-overlapping CCEs monitored by the terminal device on carrier # 1 within the slot length corresponding to the subcarrier interval of 15 KHz is 98.
  • the maximum number of non-overlapping CCEs monitored by the terminal device on carrier # 4 within the slot length corresponding to the subcarrier interval of 15 KHz is 126.
  • the non-overlapping CCEs monitored by the terminal device on carrier # 2, or carrier # 3, or carrier # 5 within the slot length corresponding to the subcarrier interval of 15 KHz The maximum number are all 0.
  • the number # 1 is allocated according to the cell type of the serving cell, that is, the primary cell and the secondary cell.
  • the advantage is that the primary cell, as the carrier for the terminal device and the network device to perform signaling interaction, has a greater amount of information and a greater degree of importance than the secondary cell.
  • the terminal equipment allocates more capabilities to the primary cell, which can enhance the flexibility and reliability of signaling interaction.
  • Option 2 The specific implementation of average processing can be:
  • the number # 2 of any one of the W serving cells can be obtained by averaging the number # 1. For the scheduled serving cell, the number # 2 is 0. Therefore, the number # 2 of any serving cell with a scheduled carrier among the W serving cells can be obtained by rounding the following formula: N_Cell * (Mtotal / W).
  • N_Cell represents the number of serving cells scheduled by the serving cell, including the serving cell itself. It should be noted that, in this application, N_Cell is used to indicate the number of serving cells scheduled by the serving cell. In the following embodiments, for simplicity, details are not described again.
  • Carrier # 2, carrier # 3, and the number # 2 of carrier # 5 are all 0.
  • scheme 2 by averaging the number # 1, the scheme is not only simple, but also has low processing complexity.
  • the scheduling mode of at least one serving cell among the W serving cells is cross-carrier scheduling, and the subcarrier intervals of at least two serving cells are different. Where W can be greater than 4.
  • y is an integer in ⁇ 4, ..., 16 ⁇ , as described above.
  • Mi can be determined according to Table 4.
  • the subcarrier interval of the serving cell is 15KHz, and Mi is 56.
  • the subcarrier interval of the serving cell is 30 KHz, Mi is 56.
  • the subcarrier interval of the serving cell is 60 KHz, Mi is 48.
  • the subcarrier interval of the serving cell is 120KHz, Mi is 32.
  • the difference is that it is necessary to determine that the scheduled serving cell and the scheduled serving cell have different subcarrier intervals to serve the scheduled serving cell.
  • the maximum number of non-overlapping CCEs to be monitored is calculated according to the Numerology of the scheduled serving cell or the Numerology of the scheduled serving cell. Further, there are two methods. The above two methods are specifically described below with reference to FIG. 11.
  • Method A The maximum number of non-overlapping CCEs to be monitored for the scheduled serving cell is calculated according to the Numerology of the scheduled serving cell.
  • the number of carriers for carrier aggregation is five, which are respectively recorded as carrier # 1, carrier # 2, carrier # 3, carrier # 4, and carrier # 5.
  • the subcarrier spacing between carrier # 1 and carrier # 5 is 15 KHz.
  • the subcarrier interval of carrier # 2, carrier # 3, and carrier # 4 is 30 KHz.
  • Carrier # 1 schedules carrier # 2, and carrier # 3 schedules carrier # 4.
  • Numerology of the scheduled serving cell can also be calculated according to min ( ⁇ _scheduling, ⁇ scheduled), or min ( ⁇ _scheduling, ⁇ scheduled), where ⁇ _scheduling indicates ⁇ corresponding to the scheduled serving cell, and ⁇ _scheduled indicates ⁇ corresponding to the scheduled serving cell max () means taking the maximum value, and min () means taking the minimum value.
  • solution 1 The specific implementation manner determined according to the cell type of the serving cell may be:
  • the number # 1 of each serving cell is determined according to whether the serving cell is a primary cell or a secondary cell, and whether the serving cell is a scheduling serving cell.
  • the number # 2 of each serving cell can be determined by rounding the following formula.
  • M_PCell Mi + N_PCell * Floor ⁇ (Mi_total_1-Mi) / (Xi_1-1) ⁇ ;
  • M_SCell_1 N_SCell_1 * Floor ⁇ (Mi_total_1-Mi) / (Xi_1-1) ⁇ ;
  • M_SCell_2 N_SCell_2 * Floor ⁇ (Mi_total_2) / Xi_2 ⁇ ;
  • M_PCell indicates the number of primary cells # 2;
  • M_SCell_1 represents the number of scheduling serving cells # 2 with the same subcarrier spacing as the primary cell
  • M_SCell_2 represents the number of scheduling serving cells # 2 that is different from the subcarrier interval of the primary cell
  • M_SCell_3 indicates the number of scheduled serving cells # 2.
  • N_PCell indicates the number of serving cells scheduled by the primary cell across carriers, excluding the primary cell itself
  • N_SCell_1 and N_SCell_2 indicate the number of serving cells scheduled by the corresponding secondary cell, including the secondary cell itself.
  • Mi_total_1 and Mi_total_2 respectively represent the number of serving cells # 1 with the same subcarrier spacing as the main cell, and the number of serving cells # 1 with the subcarrier spacing different from the main cell, respectively;
  • Xi_1 and Xi_2 represent the number of cells in the serving cell with the same subcarrier spacing as the main cell, and the number of cells in the serving cell with the subcarrier spacing different from the main cell, respectively.
  • carrier # 1 is the carrier in the main cell, and the number of scheduled carriers # 1 with the same subcarrier interval as the main cell is represented by M_SCell_1, and the number of scheduled carriers # 1 with a subcarrier interval different from the main cell is represented by M_SCell_2.
  • the scheduled carrier is calculated according to the Numerology of the scheduled carrier, which means that the subcarrier interval of carrier # 2 is taken as the subcarrier interval of carrier # 1 at 15 KHz.
  • the subcarrier interval of carrier # 4 is the same as the subcarrier interval of carrier # 3, both of which are 30KHz.
  • the number # 2 of each serving cell is as follows.
  • N_PCell represents the number of serving cells scheduled by the primary cell across carriers.
  • carrier # 1 is scheduled across carriers # 2, so N_PCell is 1.
  • N_SCell_1 represents the number of serving cells scheduled by carrier # 5.
  • the number of serving cells scheduled by carrier # 5 is 1, so N_SCell_1 is 1.
  • N_SCell_2 represents the number of serving cells scheduled by carrier # 3.
  • the number of serving cells scheduled by carrier # 3 is 2, that is, itself and carrier # 4. So N_SCell_2 is 2.
  • the terminal device is within the slot length corresponding to the subcarrier interval of 15 kHz.
  • the maximum number of non-overlapping CCEs monitored on carrier # 1 is 95.
  • the maximum number of non-overlapping CCEs monitored by the terminal device on carrier # 5 within the slot length corresponding to the subcarrier interval of 15 KHz is 39.
  • the maximum number of non-overlapping CCEs monitored by the terminal device on carrier # 3 within the slot length corresponding to the subcarrier interval of 30 KHz is 88.
  • the maximum number of non-overlapping CCEs monitored by the terminal device on carrier # 2 or carrier # 4 is zero.
  • the number # 1 is allocated according to the cell type of the serving cell, that is, the primary cell and the secondary cell.
  • the advantage is that the primary cell, as the carrier for the terminal device and the network device to perform signaling interaction, has a greater amount of information and a greater importance than the secondary In the cell, the terminal equipment allocates more capabilities to the primary cell, which can enhance the flexibility and reliability of signaling interaction.
  • the number # 2 of any one of the W serving cells can be obtained by averaging the number # 1. For the number of scheduled serving cells # 2, all are 0.
  • the number # 2 of any of the scheduling serving cells in the W serving cells can be obtained by rounding the following formula: Mi_total / Xi.
  • the number of subcarriers # 1 or # 2 is # 2:
  • the number of subcarriers # 3 # 2 is:
  • the number of subcarriers # 2 or # 2 is # 0.
  • the number # 2 of any scheduling serving cell in the W serving cells can be obtained by rounding the following formula: N_Cell * (Mi_total / Xi). Wherein, N_Cell represents the number of serving cells of the Numerology scheduled by the serving cell.
  • the number of subcarriers # 2 or # 2 is # 0.
  • scheme 2 by averaging the number # 1, the scheme is simple and the processing complexity is low.
  • Method B The maximum number of monitored non-overlapping CCEs serving the scheduled serving cell is calculated according to the Numerology of the scheduled serving cell.
  • Option 1 The specific implementation manner determined according to the cell type of the serving cell may be:
  • the number # 2 of each serving cell is determined according to whether the serving cell is a primary cell or a secondary cell, and whether the serving cell is a scheduling carrier.
  • the number # 2 of each serving cell can be determined by rounding the following formula.
  • M_PCell Mi + N_PCell * Floor ⁇ (Mi_total_1-Mi) / (Xi_1-1) ⁇ ;
  • M_SCell_1 N_SCell_1 * Floor ⁇ (Mi_total_1-Mi) / (Xi_1-1) ⁇ ;
  • M_SCell_2 N_SCell_2 * Floor ⁇ (Mi_total_2) / Xi_2 ⁇ ;
  • M_PCell indicates the number of primary cells # 2;
  • M_SCell_1 represents the number of scheduling serving cells # 2 with the same subcarrier spacing as the primary cell
  • M_SCell_2 represents the number of scheduling serving cells # 2 that is different from the subcarrier interval of the primary cell
  • M_SCell_3 indicates the number of scheduled serving cells # 2.
  • N_PCell indicates the number of serving cells scheduled by the primary cell across carriers, excluding the primary cell itself
  • N_SCell_1 and N_SCell_2 indicate the number of serving cells scheduled by the corresponding secondary cell, including the secondary cell itself.
  • Mi_total_1 and Mi_total_2 respectively represent the number of serving cells # 1 with the same subcarrier spacing as the main cell, and the number of serving cells # 1 with the subcarrier spacing different from the main cell, respectively;
  • Xi_1 and Xi_2 represent the number of cells in the serving cell with the same subcarrier spacing as the main cell, and the number of cells in the serving cell with the subcarrier spacing different from the main cell, respectively.
  • carrier # 1 is the carrier in the main cell, and the number of scheduled carriers # 1 with the same subcarrier interval as the main cell is represented by M_SCell_1, and the number of scheduled carriers # 1 with a subcarrier interval different from the main cell is represented by M_SCell_2.
  • the scheduled serving cell calculates the number of serving cells under the Numerology according to the Numerology of the scheduled serving cell, so:
  • the number # 2 of each serving cell is as follows.
  • N_PCell indicates the number of serving cells scheduled by the primary cell across carriers.
  • carrier # 1 is scheduled across carriers # 2, so N_PCell is 1.
  • N_SCell_1 represents the number of serving cells scheduled by carrier # 5.
  • the number of serving cells scheduled by carrier # 5 is 1, so N_SCell_1 is 1.
  • N_SCell_2 represents the number of serving cells scheduled by carrier # 3.
  • the number of serving cells scheduled by carrier # 3 is 2, that is, itself and carrier # 4. So N_SCell_2 is 2.
  • M_SCell_3 0.
  • the maximum number of non-overlapping CCEs serving the scheduled serving cell is calculated according to the Numerology of the scheduled serving cell, according to scheme 1, for carrier # 1, within the slot length corresponding to the subcarrier interval of 15KHz, The maximum number of non-overlapping CCEs monitored by the terminal device on carrier # 1 is 89.
  • the maximum number of non-overlapping CCEs monitored by the terminal device on carrier # 5 within the slot length corresponding to the subcarrier interval of 15 KHz is 33.
  • the maximum number of non-overlapping CCEs monitored by the terminal device on carrier # 3 within the slot length corresponding to the subcarrier interval of 30 KHz is 88.
  • the maximum number of non-overlapping CCEs monitored by the terminal device on carrier # 2 or carrier # 4 is zero.
  • the number # 1 is allocated according to the cell type of the serving cell, that is, the primary cell and the secondary cell.
  • the advantage is that the primary cell, as the carrier for the terminal device and the network device to perform signaling interaction, has a greater amount of information and a greater importance than the secondary In the cell, the terminal equipment allocates more capabilities to the primary cell, which can enhance the flexibility and reliability of signaling interaction.
  • Option 2 The specific implementation of the average processing may be:
  • the number # 2 of any one of the W serving cells can be obtained by averaging the number # 1. For the number of scheduled serving cells # 2, all are 0.
  • the number # 2 of any of the scheduling serving cells in the W serving cells can be obtained by rounding the following formula: Mi_total / Xi.
  • the number of subcarriers # 1 or # 2 is # 2:
  • the number of subcarriers # 3 # 2 is:
  • the number of subcarriers # 2 or # 2 is # 0.
  • the number # 2 of any scheduling serving cell in the W serving cells can be obtained by rounding the following formula: N_Cell * (Mi_total / Xi). Among them, N_Cell represents the number of serving cells scheduled by the serving cell.
  • the number of subcarriers # 2 or # 2 is # 0.
  • scheme 2 by averaging the number # 1, the scheme is simple and the processing complexity is low.
  • a method similar to scenario 2 may be adopted to determine the number of scheduled carriers # 1.
  • different Numerology and mixed Numerology have the same meaning. It should be noted that, compared to scenario 2, the difference is that when determining the number of scheduled carriers # 1 (that is, Mtotal), the maximum number of non-overlapping CCEs to be monitored when serving the scheduled carriers is determined according to the Numerology of the scheduled carriers. The calculation (that is, the aforementioned method A) is still based on the Numerology of the scheduled carrier (that is, the aforementioned method B).
  • one time slot on the scheduled carrier corresponds to multiple time slots of the scheduled carrier.
  • the slot length of the carrier # 1 is twice that of the carrier # 2. In this case, there are two methods to determine the maximum number of non-overlapping CCEs for monitoring of scheduled carrier services.
  • Method A The maximum number of non-overlapping CCEs monitored for the scheduled carrier service is calculated according to the Numerology of the scheduled carrier.
  • the scheduling carrier By using the Numerology of the scheduling carrier to determine the number of non-overlapping CCEs added to the scheduled carrier, it is possible to avoid adding too much processing load to the scheduling carrier, such as processing delay and complexity of channel estimation.
  • Method B The maximum number of non-overlapping CCEs for the monitoring of the scheduled carrier service is calculated according to the Numerology of the scheduled carrier.
  • the Numerology of the scheduled carrier is used to determine the number of non-overlapping CCEs added for the scheduled carrier. According to this principle, since the slot length of the scheduled carrier is shorter than the slot length on the scheduled carrier, the number of non-overlapping CCEs on the scheduled carriers needs to be unified to the same time before summing. The time slot corresponding to the scheduled carrier is long, so the number of non-overlapping CCEs on the scheduled carrier is to be converted into the number of non-overlapping CCEs in multiple time slots.
  • the slot length of the carrier # 1 is twice the slot length of the carrier # 2. Therefore, within the slot length of the carrier # 1, the non-overlapping of the carrier # 2
  • the subcarrier interval of the scheduled carrier is greater than the subcarrier interval of the scheduled carrier.
  • the Numerology of the scheduled carrier is used to determine the number of non-overlapping CCEs added for the scheduled carrier.
  • the slot length of the scheduled carrier is greater than the slot length on the scheduled carrier, before the sum of the number of non-overlapping CCEs on the scheduled carriers is summed, the number of non-overlapping CCEs needs to be evenly divided into the slot length of the scheduled carrier. Inside. Therefore, the number of non-overlapping CCEs on the scheduled carrier is converted into the number of non-overlapping CCEs on one slot on the scheduled carrier.
  • the slot length of the carrier # 1 is twice the slot length of the carrier # 2. Therefore, within the slot length of the carrier # 2, the non-overlapping of the carrier # 1
  • the number of non-overlapping CCEs on the scheduling carrier is: M ( ⁇ _scheduling) + Ks * M ( ⁇ _scheduling).
  • M ( ⁇ ) represents the number of non-overlapping CCEs of a single carrier with Numerolgy ⁇ ;
  • ⁇ _scheduling indicates ⁇ corresponding to the scheduled carrier
  • ⁇ _scheduled indicates ⁇ corresponding to the scheduled carrier
  • Ks is the number of scheduled carriers.
  • ⁇ _scheduled ⁇ _scheduling It should be noted that ⁇ k here is ⁇ _scheduled, which is applicable to all subsequent ⁇ k descriptions.
  • the number of non-overlapping CCEs on the scheduling carrier is: M ( ⁇ _scheduling) + Ks * M ( ⁇ k ) * 2 ( ⁇ _scheduled- ⁇ _scheduling) .
  • the number of non-overlapping CCEs on the scheduling carrier is:
  • the number of non-overlapping CCEs that need to be increased for each scheduled carrier is:
  • the number of non-overlapping CCEs to be increased is the sum of the number of non-overlapping CCEs on the K C scheduled carriers, that is:
  • the number of non-overlapping CCEs on the scheduling carrier is:
  • Carrier # 2 schedules one carrier across carriers, namely carrier # 1. therefore:
  • the number of non-overlapping CCEs to be increased is:
  • the number of non-overlapping CCEs on the scheduling carrier is:
  • the Numerology of the scheduling carrier is ⁇ _scheduling
  • the Numerology on the scheduling carrier is ⁇ _scheduled or ⁇ k.
  • the number of non-overlapping CCEs on the scheduling carrier is the sum of the above cases 1 and 2. It should be noted that, at this time, M ( ⁇ _scheduling) corresponding to the scheduling service cell only needs to be added once.
  • the number of non-overlapping CCEs on the scheduling serving cell is:
  • Ks is the number of carriers that satisfy ⁇ _scheduled ⁇ _scheduling among the number of scheduled serving cells
  • K C is the number of carriers that satisfy ⁇ _scheduled ⁇ _scheduling among the scheduled carriers.
  • carrier # 1, carrier # 2, and carrier # 3 are aggregated.
  • Carrier # 1 schedules carrier # 2 and carrier # 3.
  • the number of non-overlapping CCEs on the scheduling serving cell is:
  • the corresponding slot length is the slot length corresponding to the subcarrier interval of 30KHz, that is, 0.5ms.
  • the number of non-overlapping CCEs on the scheduling serving cell is:
  • K C is the number of all scheduled serving cells.
  • the number of non-overlapping CCEs on the scheduling serving cell is:
  • the existing terminal equipment is evolved from the LTE terminal equipment, the original LTE system only supports a subcarrier interval of 15 KHz.
  • NR terminal equipment has improved a certain processing capacity on the basis of LTE terminal equipment, but still cannot exceed a hard limit within a certain time.
  • the maximum number of non-overlapping CCEs that can be monitored on the scheduling serving cell can be directly proportional to the number of scheduling serving cells.
  • the time unit at this time refers to a time unit of a subcarrier interval of 15 KHz, that is, a time slot of 1 ms.
  • the maximum number of non-overlapping CCEs that can be monitored on a scheduled serving cell may be a product of a number greater than or equal to 56 and the number of scheduled serving cells, and the corresponding time unit is 1 ms.
  • the first number of non-overlapping CCEs that the terminal device can monitor is determined according to the maximum number of carriers that the terminal device can support, and its corresponding unit length is the slot length of the subcarrier interval of 15KHz. (Ie 1ms).
  • the maximum number of non-overlapping CCEs that the terminal device can monitor is y * 56, and its corresponding time unit is the slot length of the subcarrier interval of 15 KHz (that is, 1 ms).
  • the slot length of the subcarrier interval ie, 1ms).
  • the scheduling service cell of the scheduling service cell includes the scheduling service cell itself.
  • the scheduling serving cell is cell # 1
  • the serving cell scheduled by cell # 1 for cross-carrier scheduling is cell # 2.
  • the number of non-overlapping CCEs configured on cell # 1 is number #A
  • the number of non-overlapping CCEs that can serve cell # 1 on cell # 1 is number #B
  • cell # 1 can serve cell # 2.
  • the number of non-overlapping CCEs is number #C. It should be understood that the cell # 1 can schedule one or more serving cells.
  • the cell # 1 is only used for scheduling the cell # 2 as an example for illustrative description.
  • the terminal device receives the number #A of non-overlapping CCEs configured by the network device on the cell # 1; the terminal device determines the number #B of non-overlapping CCEs serving the cell # 2 according to the number #A.
  • the terminal device determines the number #B of non-overlapping CCEs serving the cell # 1 according to the number #A, and the terminal device determines the number #C according to the number #B and at least one of the following parameters: non-overlapping CCE number conversion factor, non- The offset value of the number of overlapping CCEs, the subcarrier interval of the first serving cell, the subcarrier interval of the second serving cell, and the maximum number of non-overlapping CCEs that the first serving cell can monitor within a first unit duration. Number, the maximum number of non-overlapping CCEs that the second serving cell can monitor in the second unit duration, the offset value of the common search space CSS, and the number of serving cells scheduled by the first serving cell.
  • the terminal device determines the number of non-overlapping CCEs on the scheduling serving cell for each scheduled serving cell. It can also be understood that the terminal device determines the number of non-overlapping CCEs on the scheduling serving cell for each scheduled serving cell.
  • the R cell including cell # 1 itself
  • the number of monitoring non-overlapping CCEs configured on cell # 1 is number #A.
  • the terminal device determines the number of non-overlapping CCEs on the scheduling serving cell for each scheduled serving cell.
  • the steps may be as follows:
  • a cell configures a cell search space (including the number of non-overlapping CCEs), it does not consider the case of cross-carrier scheduling, so the configuration of its parameters is limited to the case of a single cell. Therefore, before the number of non-overlapping CCEs for each scheduled cell is allocated, the number of non-overlapping CCEs to be monitored needs to be extended to the number of non-overlapping CCEs in multiple cells.
  • the number #A of monitoring non-overlapping CCEs configured on cell # 1 is multiplied by the number R of scheduled serving cells. It is assumed that the product of the number #A and R is K, so the total number of non-overlapping CCEs monitored by K can be obtained.
  • the terminal may allocate the number of K monitored non-overlapping CCEs to the cell # 1 and the serving cell scheduled by the cell # 1 across carriers according to the following manner.
  • the cell # 1 scheduling cell # 2 is taken as an example for description.
  • a possible implementation manner is to determine the number of non-overlapping CCEs serving cell # 1 and the number of non-overlapping CCEs serving cell # 2 according to the cell type (ie, the primary cell and the secondary cell). Specifically, reference may be made to the specific implementation of how to determine the number of non-overlapping CCEs # 2 for the primary cell and the secondary cell with the same subcarrier spacing in the first scenario based on any of scenarios 1 to 4 above. This is concise and will not be repeated here.
  • Another possible implementation manner is to determine the number of non-overlapping CCEs serving cell # 1 and the number of non-overlapping CCEs serving cell # 2 by using a direct equalization method. Specifically, reference may be made to the specific implementation of how to determine the number of non-overlapping CCEs # 2 for the primary cell and the secondary cell with the same subcarrier interval in the scenario 2 in any of the scenarios 1 to 4 above. This is concise and will not be repeated here.
  • a possible implementation manner is to determine the number of non-overlapping CCEs serving cell # 1 and the number of non-overlapping CCEs serving cell # 2 according to the cell type (ie, the primary cell and the secondary cell). Specifically, reference may be made to the specific implementation of how to determine the number of non-overlapping CCEs # 2 for the primary cell and the secondary cell with different subcarrier intervals in the first scenario based on any of scenarios 1 to 4 above. This is concise and will not be repeated here.
  • Another possible implementation manner is to determine the number of non-overlapping CCEs serving cell # 1 and the number of non-overlapping CCEs serving cell # 2 by using a direct equalization method. Specifically, reference may be made to the specific implementation of how to determine the number of non-overlapping CCEs # 2 for the primary cell and the secondary cell with different subcarrier intervals in the scenario 2 in any of the scenarios 1 to 4 above, This is concise and will not be repeated here.
  • the above describes how to allocate the maximum total number of PDCCH candidates or the maximum total number of non-overlapping CCEs monitored by the terminal device on multiple carriers to each carrier when multiple carriers are aggregated.
  • the following analyzes the PDCCH candidate in conjunction with the DCI size. The maximum number.
  • the network device determines the number of PDCCH candidates corresponding to the DCI formats of different sizes on the first serving cell of the terminal device, and the first serving cell schedules the second serving cell across the carriers, where the number of different DCI sizes corresponding to the second serving cell is K1 and K1 are integers less than or equal to 4.
  • the network device configures the number of PDCCH candidates monitored by the terminal device in the first serving cell for the second serving cell according to K1.
  • the number of different DCI sizes corresponding to the first serving cell is K2 or a first threshold, K2 is less than or equal to the first threshold, and K2 is determined according to at least one of the following parameters: K1, the service scheduled by the first serving cell The number of cells, the first number of PDCCH candidates that the first serving cell can monitor within the first unit duration, the subcarrier interval of the first serving cell, and the subcarrier interval of the second serving cell; or, the network device is based on K2 or the first The threshold value configures the number of PDCCH candidates monitored by the terminal device on the first serving cell.
  • the corresponding DCI sizes are different.
  • the DCI format first briefly describe the DCI format.
  • DCI format is used to define the position of the control information field in the DCI.
  • DCI format in conjunction with Table 5.
  • DCI size can be understood as the number of information bits included in the DCI. If the DCI includes W information bits, the DCI size is W. Alternatively, DCI size can be understood as the sum of the number of information bits included in the DCI and the length of the cyclic redundancy check code. For example, if the DCI includes W information bits and the length of the cyclic redundancy check code is L, then the DCI size is equal to the value of W + L.
  • the number of DCI sizes directly affects the number of PDCCH candidates. A PDCCH with the same DCI size in the same search space is regarded as a PDCCH candidate.
  • a terminal device supports PDCCH monitoring of up to four different DCI sizes of each time slot, that is, the total DCI size detected by the terminal device cannot exceed four.
  • the DCI size of the C-RNTI scrambled on the cyclic redundancy check code detected by the terminal device cannot exceed three.
  • the network device controls the number of PDCCH candidates monitored by the terminal device, it needs to consider the monitoring configuration of different DCI sizes of the terminal device at the same time.
  • the following description is made with reference to Table 6 from the two cases where the aggregated carrier is not configured with cross-carrier scheduling and the aggregated carrier is configured with cross-carrier scheduling. Different columns in Table 6 represent different DCI sizes, and different rows correspond to different DCI formats.
  • the possible DCI size and the possible DCI format include the contents of the entire table.
  • the DCI size used for the scheduling of the secondary cell can be only two kinds, column 3 and column 4.
  • the number of DCI sizes used for the scheduled secondary cell scheduling there can be only two types, which can reduce the number of blind detections of the PDCCH and reduce the decoding complexity of the Polar code.
  • the number of DCI sizes that need to be supported on the scheduling serving cell Yes: 4 + 2 * N.
  • a possible implementation manner is to set a threshold (that is, an example of the first threshold).
  • the threshold may be pre-configured or independently configured according to the capabilities of the terminal device, which is not limited in the embodiment of the present application.
  • the number of scheduled serving cells is greater than the threshold, the number of DCI sizes that can be supported on the scheduled serving cell does not increase linearly.
  • Another possible implementation manner is that each scheduling serving cell can have a maximum number of DCI sizes supported.
  • 10 types of DCI sizes are supported, including 10-bit, 15-bit, 20-bit, 25-bit, 30-bit, 40-bit, 50-bit, 60-bit, 70-bit, and 80-bit.
  • the existing DCI size is selected for it (removing the 2-bit DCI information).
  • carrier # 1 is used as a scheduling carrier, and the maximum number of DCI sizes that can be supported when scheduling itself is 4.
  • carrier # 1 supports scheduling carrier # 2 and carrier # 3, in order not to affect scheduling Flexibility, it is necessary to increase the number of DCIs that can be supported on carrier # 1.
  • the terminal device may not detect DCI on the scheduled serving cell.
  • the number of serving cells configured by the terminal device may be less than the maximum number of serving cells that the terminal device can support. Then, when the number of serving cells configured by the terminal device is less than the maximum number of serving cells that the terminal device can support, how to determine the number # 1 And assign that number # 1. The following describes it in detail with reference to FIG. 15. As mentioned above, the number # 1 is used to indicate the maximum number of PDCCH candidates monitored by the terminal device on multiple serving cells, or the maximum number of non-overlapping CCEs monitored by the terminal device on multiple serving cells.
  • the terminal device processing architecture is based on each serving cell having independent processing capabilities, and the processing of each serving cell is independent of each other.
  • the processing capability of the terminal equipment for multiple serving cells may become a shareable pool resource, that is, these processing capabilities may be shared by multiple serving cells.
  • the following methods can be used to define the number # 1.
  • carrier # 1, carrier # 2, and carrier # 3 are aggregated, that is, the number of carriers T that is actually configured is three.
  • Carrier # 1, Carrier # 2, and Carrier # 3 have Numerology of 0, and the subcarrier interval is 15KHz.
  • X 4
  • the number # 1 may be allocated according to the characteristics of the primary cell and the secondary cell.
  • the primary cell serves as the serving cell for the signaling interaction between the terminal device and the network device. Its information volume and importance are greater than those of the secondary cell. Assigning more PDCCH candidates to the primary cell can enhance the flexibility and reliability of signaling interaction. . Or, it may be evenly distributed according to the number of scheduling serving cells. The average distribution scheme is simple and the complexity is low.
  • the number of DCI sizes (that is, types) used for the scheduling of the secondary cell may be less than or equal to four types, for example, there may be two types. Therefore, the number of blind detections of the PDCCH can be reduced, and the decoding complexity of the Polar coding can also be reduced.
  • the processing capability of the terminal device for multi-carriers can be used as a shared pool resource, thereby improving the overall communication efficiency.
  • any manner that can be rounded off belongs to the protection scope of the embodiments of the present application.
  • rounding down, rounding up, rounding, and so on, the above is only described by taking rounding down as an example.
  • any method that can be rounded off belongs to the protection scope of the embodiments of the present application. For example, suppose that a formula similar to: A + B * C is rounded down, which can be: Floor ⁇ A + B * C ⁇ , or A + Floor ⁇ B * C ⁇ .
  • the size of the sequence number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in the embodiments of the present application.
  • the process constitutes any qualification.
  • FIG. 16 is a schematic diagram of a device 20 for configuring parameters according to an embodiment of the present application.
  • the device 20 may include a processing unit 21 and a transceiver unit 22.
  • the apparatus 20 may be a network device or a chip configured in the network device.
  • the transceiver unit 22 is configured to: obtain the first number of physical downlink control channel PDCCH candidates that the terminal device can monitor on T serving cells, where T is an integer greater than or equal to 2;
  • the processing unit 21 is configured to configure a second number of PDCCH candidates that the terminal device monitors on the first serving cell, where the second number is a value that the network device can perform on the first serving cell according to the terminal device.
  • a third number of monitored PDCCH candidates is determined, the third number is determined by the network device according to the first number, and the first serving cell belongs to the T serving cells.
  • the device 20 may be a terminal device or a chip configured in the terminal device.
  • the transceiver unit 22 is configured to obtain a second number of physical downlink control channel PDCCH candidates monitored on the first serving cell, where the second number is a network device according to the terminal device in the first
  • a third number of PDCCH candidates that can be monitored on a serving cell is determined, the third number is determined by the network device according to a first number, and the first number is a capability that the terminal device can perform on T serving cells
  • the number of monitored PDCCH candidates, the first serving cell belongs to the T serving cells, where T is an integer greater than or equal to 2;
  • the processing unit 21 is configured to monitor the PDCCH according to the second number.
  • the processing unit 21 is specifically configured to be determined according to the first number and at least one of the following parameters: the total number of serving cells configured by the network device for the terminal device, the T, and the first service The fourth number of PDCCH candidates that the cell can monitor in the first unit duration, the number of serving cells scheduled by the first serving cell, and the fifth number of PDCCH candidates that the primary cell can monitor in the second unit duration.
  • the processing unit 21 is specifically configured to obtain the second maximum number by performing an average process on the first maximum number.
  • the third number is determined by the network device according to the first number, and includes: the third number is obtained by averaging the first number.
  • the third number is obtained by rounding the following formula: N1 * Q / T; where Q represents: the first number; N1 represents : The number of serving cells scheduled by the first serving cell, where N1 is an integer greater than or equal to 1.
  • the method further includes: the T serving cells include at least one secondary cell, and when the subcarrier spacing parameters of the T serving cells are the same, and the first serving cell is the primary cell, the processing unit 21 Specifically: determining a sixth number of PDCCH candidates that the terminal device can monitor on the at least one secondary cell according to the third number and the first number.
  • the third number is a fourth number of PDCCH candidates that can be monitored by the first serving cell within a first unit duration, and the services scheduled by the first serving cell across carriers.
  • the number of cells and the first number are determined.
  • the third number is: a fourth number of PDCCH candidates that the first serving cell can monitor within a first unit duration, and the network device can monitor the second serving cell according to the terminal device according to the terminal device.
  • a sum of the sixth number of PDCCH candidates, the second serving cell is a serving cell scheduled by the first serving cell across carriers.
  • the third number is obtained by rounding the following formula: M + N2 * ⁇ (QM) / (T-1) ⁇ ; where M represents : The fourth number of PDCCH candidates that the first serving cell can monitor within the first unit duration; N2 represents: the number of serving cells scheduled by the first serving cell across carriers, and N2 is an integer greater than or equal to 0; Q represents: the first number.
  • the terminal device is configured with a total of W serving cells, and the W serving cells include the T serving cells.
  • the third number is the The network device determines according to the first number, and includes: if a subcarrier interval parameter of the first serving cell is the same as a subcarrier interval parameter of a main cell in the W serving cells, the third number is the The processing unit 21 determines according to: the number of serving cells scheduled by the first serving cell, a fourth number of PDCCH candidates that the first serving cell can monitor within a first unit duration, the first number, and the T Or if the subcarrier interval parameter of the first serving cell is different from the subcarrier interval parameter of the main cell in the W serving cells, the third number is based on the first unit of the processing unit 21: The number of serving cells scheduled by the serving cell, the first number, and T are determined.
  • the terminal device is configured with a total of W serving cells, and the W serving cells include the T serving cells.
  • the W serving cells include the T serving cells.
  • the first serving cell is a secondary cell
  • the third number is obtained by rounding the following formula: N1 * (QM) / (T-1); or, if The subcarrier interval parameter of the first serving cell is different from the subcarrier interval parameter of the main cell in the W serving cells, and the third number is obtained by rounding the following formula: N1 * Q / T
  • M represents: the fourth number of PDCCH candidates that the first serving cell can monitor within the first unit duration
  • N1 represents: the number of serving cells scheduled by the first serving cell, N1 is an integer greater than or equal to 1
  • the T serving cells include a third serving cell, and the first serving cell schedules the third serving cell across carriers, and when the third serving cell and a subcarrier of the first serving cell
  • the first number is determined according to the terminal device's ability parameter for monitoring PDCCH candidates, and at least one of the following parameters: the T, the total number of serving cells configured by the network device for the terminal device, The fourth number of PDCCH candidates that the first serving cell can monitor within the first unit duration, the subcarrier interval of the first serving cell, the subcarrier interval of the third serving cell, and the third serving cell at The seventh number of PDCCH candidates that can be monitored in the third unit duration.
  • the terminal device is configured with a total of W serving cells, the W serving cells include the T serving cells, and when the T serving cells include a third serving cell, the third serving cell
  • the first serving cell schedules the third serving cell across carriers; the first number is obtained by rounding the following formula: (T / W) * M * y; where M represents: the fourth number of PDCCH candidates that the first serving cell can monitor within a first unit duration; y represents: a capability parameter of the terminal device to monitor PDCCH candidates.
  • the T serving cells include a third serving cell, and the first serving cell schedules the third serving cell across carriers.
  • the third serving cell is spaced from the subcarrier of the first serving cell.
  • the first number is determined according to a fourth number of PDCCH candidates that the first serving cell can monitor within a first unit duration, and a capability parameter of the terminal device to monitor PDCCH candidates.
  • the subcarrier spacing parameters of the T serving cells are the same, and the scheduling method of at least one serving cell in the T serving cells is cross-carrier scheduling, and the first number is: y * M, where: M represents: the fifth number of PDCCH candidates that the primary cell can monitor in the second unit duration; y represents: the terminal device's ability parameter to monitor the PDCCH candidates.
  • the scheduling mode of at least one of the T serving cells is cross-carrier scheduling
  • the maximum number of PDCCH candidates that the terminal device can monitor on the cross-carrier scheduled serving cell is: N3 * y * M '
  • Said M' is the maximum number of PDCCH candidates that the terminal device can monitor on the serving cell scheduled by cross-carrier scheduling within the fourth unit duration, and the serving cell scheduled by the terminal device on the cross-carrier scheduling
  • the maximum number of PDCCH candidates that can be monitored on the network is determined, wherein the fourth unit duration is: a slot length corresponding to a subcarrier interval parameter of the cross-carrier scheduled serving cell, or the cross-carrier scheduled Slot length corresponding to the subcarrier interval parameter of the serving cell, where N3 represents: the number of serving cells scheduled by the cross-carrier scheduling serving cell, N3 is an integer greater than or equal to 1; y represents: the terminal device monitors the PDCCH Candidate capability parameters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种确定载波聚合下监控PDCCH候选数目的方法和装置。方法包括:在载波聚合场景下,网络设备获取终端设备在多个服务小区上能够监控的物理下行控制信道PDCCH候选的第一数目;将该第一数目分配到多个服务小区中的各个服务小区上,从而确定终端设备为每个服务小区能够监控的PDCCH候选的最大数目。根据本申请,可以确定载波聚合场景下,终端设备在各个服务小区上能够监控的PDCCH候选的最大数目,从而可以为终端设备配置为每个服务小区监控的PDCCH候选的数目,以便终端设备正确进行PDCCH盲检。

Description

确定载波聚合下监控PDCCH候选数目的方法和装置
本申请要求于2018年08月10日提交中国专利局、申请号为201810912238.X、申请名称为“确定载波聚合下监控PDCCH候选数目的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种确定载波聚合下监控PDCCH候选数目的方法和装置。
背景技术
网络设备通常使用物理下行控制信道(physical downlink control channel,PDCCH)向终端设备发送下行控制信息(downlink control information,DCI),以调度网络设备和终端设备间的数据传输。DCI有很多格式,在接收属于终端设备的DCI之前,该终端设备并不确定接收到的是哪种格式的DCI,也不确定其期待收到的DCI使用哪个PDCCH候选进行传输。因此,该终端设备会进行PDCCH盲检。
在新无线(new radio,NR)Rel-15的讨论中,终端设备对PDCCH的盲检能力有限,因此需要定义终端设备在服务小区上能够监控的PDCCH候选的最大数目,以便网络设备对搜索空间进行配置,保证相关配置不超过终端设备盲检能力的上限。
然而在载波聚合场景下,如何确定终端设备为服务小区能够监控的PDCCH候选的最大数目,并没有明确的实现方案。
发明内容
本申请提供一种配置参数的方法和装置,能够在基于终端设备在多个服务小区上监控的PDCCH候选的最大数目确定终端设备为各个服务小区上监控的PDCCH候选的最大数目。
第一方面,提供了一种配置参数的方法,该方法包括:网络设备获取终端设备在T个服务小区上能够监控的物理下行控制信道PDCCH候选的第一数目,其中,T为大于或等于2的整数;所述网络设备配置所述终端设备在第一服务小区上监控的PDCCH候选的第二数目,所述第二数目是所述网络设备根据所述终端设备在所述第一服务小区上能够监控的PDCCH候选的第三数目确定的,所述第三数目是所述网络设备根据所述第一数目确定的,所述第一服务小区属于所述T个服务小区。
基于上述技术方案,在载波聚合场景下,网络设备可以基于终端设备在多个服务小区上监控的物理下行控制信道PDCCH候选的最大数目,确定终端设备为每个服务小区能够监控的PDCCH候选的最大数目,从而基于终端设备为每个服务小区能够监控的PDCCH候选的最大数目,合理地为终端设备配置为每个服务小区监控的PDCCH候选的数目。以 便终端设备可以正确地进行PDCCH盲检,进而可以提高通信的灵活性和效率。
结合第一方面,在第一方面的某些实现方式中,所述第三数目是所述网络设备根据所述第一数目确定的,包括:所述第三数目是所述网络设备根据所述第一数目与以下至少一个参数确定的:所述网络设备为所述终端设备配置的服务小区的总数、所述T、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述第一服务小区调度的服务小区数、主小区在第二单位时长内能够监控的PDCCH候选的第五数目。
基于上述技术方案,网络设备可以更加准确地确定终端设备在各个服务小区上能够监控的PDCCH候选的最大数目,从而可以更加合理地配置终端设备为各个服务小区监控的PDCCH候选的数目。
结合第一方面,在第一方面的某些实现方式中,所述第三数目是所述网络设备根据所述第一数目确定的,包括:所述第三数目为通过对所述第一数目进行平均处理所得。
基于上述技术方案,通过对终端设备在多个服务小区上监控的PDCCH候选的最大数目进行平均处理,从而可以快速简单的得到终端设备为各个服务小区上监控的PDCCH候选的最大数目,且可以降低处理复杂度。
结合第一方面,在第一方面的某些实现方式中,所述T个服务小区的子载波间隔参数相同,所述第三数目为对以下公式取整得到:N1*Q/T;其中,Q表示:所述第一数目;N1表示:所述第一服务小区调度的服务小区数,N1为大于或等于1的整数。
基于上述技术方案,可以很快的得到终端设备在各个服务小区上监控的PDCCH候选的最大数目,且计算简单,可以降低处理复杂度。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:所述T个服务小区包括至少一个辅小区,所述方法还包括:当所述T个服务小区的子载波间隔参数相同,且所述第一服务小区为主小区时,所述网络设备根据所述第三数目和所述第一数目确定所述终端设备在所述至少一个辅小区上能够监控的PDCCH候选的第六数目。
基于上述技术方案,根据主小区和辅小区来分配终端设备为多个服务小区监控的PDCCH候选的最大数目。主小区作为终端设备和网络设备进行信令交互的载波,主小区的信息量和重要程度都大于辅小区,将监控的PDCCH候选的数目多分配给主小区,可以加强信令交互的灵活性和可靠性。
结合第一方面,在第一方面的某些实现方式中,所述第三数目是所述网络设备根据所述第一数目确定的,包括:所述第三数目是所述网络设备根据:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、被所述第一服务小区跨载波调度的服务小区数、以及所述第一数目确定的。
结合第一方面,在第一方面的某些实现方式中,所述第三数目为:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目与所述网络设备根据所述终端设备在第二服务小区上能够监控的PDCCH候选的第六数目之和,所述第二服务小区为被所述第一服务小区跨载波调度的服务小区。
基于上述技术方案,主小区作为终端设备和网络设备进行信令交互的载波,主小区的信息量和重要程度都大于辅小区,将监控的PDCCH候选的数目多分配给主小区,可以加强信令交互的灵活性和可靠性。
结合第一方面,在第一方面的某些实现方式中,当所述第一服务小区为主小区时,所 述第三数目为对以下公式进行取整得到:M+N2*{(Q-M)/(T-1)};其中,M表示:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目;N2表示:被所述第一服务小区跨载波调度的服务小区数,N2为大于或等于0的整数;Q表示:所述第一数目。
基于上述技术方案,可以结合在单载波情况下,终端设备在主小区上单位时长(即,第二单位时长的一例)内监控的PDCCH候选的最大数目,确定终端设备在主小区上监控的PDCCH候选的最大数目,进而可以加强信令交互的灵活性和可靠性。
结合第一方面,在第一方面的某些实现方式中,所述终端设备共配置有W个服务小区,所述W个服务小区包括所述T个服务小区,当所述第一服务小区为辅小区时,所述第三数目是所述网络设备根据所述第一数目确定的,包括:若所述第一服务小区的子载波间隔参数与所述W个服务小区中主小区的子载波间隔参数相同,所述第三数目是所述网络设备根据:所述第一服务小区调度的服务小区数、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述第一数目、以及所述T确定的;或,若所述第一服务小区的子载波间隔参数与所述W个服务小区中主小区的子载波间隔参数不同,所述第三数目是所述网络设备根据:所述第一服务小区调度的服务小区数、所述第一数目、以及所述T确定的。
结合第一方面,在第一方面的某些实现方式中,所述终端设备共配置有W个服务小区,所述W个服务小区包括所述T个服务小区,当所述第一服务小区为辅小区时,若所述第一服务小区的子载波间隔参数与所述W个服务小区中主小区的子载波间隔参数相同,所述第三数目为对以下公式进行取整得到:N1*(Q-M)/(T-1);或者,若所述第一服务小区的子载波间隔参数与所述W个服务小区中主小区的子载波间隔参数不同,所述第三数目为对以下公式进行取整得到:N1*Q/T;其中,M表示:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目;N1表示:所述第一服务小区调度的服务小区数,N1为大于或等于1的整数;Q表示:所述第一数目。
基于上述技术方案,根据辅小区的子载波间隔参数是否与主小区的子载波间隔参数相同,确定终端设备在辅小区上监控的PDCCH候选的最大数目。例如,当子载波间隔参数不同时,可以平均处理。当子载波间隔参数相同时,可以先减去终端设备在主小区上监控的PDCCH候选的最大数目,再平均处理。
结合第一方面,在第一方面的某些实现方式中,所述T个服务小区中包括第三服务小区,所述第一服务小区跨载波调度所述第三服务小区,当所述第三服务小区与所述第一服务小区的子载波间隔参数不同时,所述第一数目根据所述终端设备监控PDCCH候选的能力参数,以及以下至少一个参数确定:所述T、所述网络设备为所述终端设备配置的服务小区的总数、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述第一服务小区的子载波间隔、所述第三服务小区的子载波间隔、所述第三服务小区在第三单位时长内能够监控的PDCCH候选的第七数目。
结合第一方面,在第一方面的某些实现方式中,所述终端设备共配置有W个服务小区,所述W个服务小区包括所述T个服务小区,当所述T个服务小区中包括第三服务小区,所述第三服务小区与所述第一服务小区的子载波间隔参数不同时,所述第一服务小区跨载波调度所述第三服务小区;所述第一数目为对以下公式取整得到:(T/W)*M*y;其 中,M表示:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目;y表示:所述终端设备监控PDCCH候选的能力参数。
基于上述技术方案,当调度服务小区和被调度服务小区的子载波间隔参数不同时,为被调度服务小区服务的PDCCH候选的最大数目可以按照调度服务小区的子载波间隔参数(或,Numerology)来计算。此外,也可以还是按照被调度服务小区的Numerology来计算。基于上述方案,可以确定在有跨载波调度、且至少两个服务小区的子载波间隔参数不同时,终端设备在多个服务小区上监控的PDCCH候选的最大数目。
结合第一方面,在第一方面的某些实现方式中,所述T个服务小区包括第三服务小区,所述第一服务小区跨载波调度所述第三服务小区,当所述第三服务小区与所述第一服务小区的子载波间隔参数相同时,所述第一数目是根据:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述终端设备监控PDCCH候选的能力参数确定的。
结合第一方面,在第一方面的某些实现方式中,所述T个服务小区的子载波间隔参数相同,且所述T个服务小区中至少一个服务小区的调度方式为跨载波调度,所述第一数目为:y*M,其中,M表示:主小区在第二单位时长内能够监控的PDCCH候选的第五数目;y表示:所述终端设备监控PDCCH候选的能力参数。
基于上述技术方案,可以确定在有跨载波调度时,终端设备在载波聚合的多个服务小区上监控的PDCCH候选的最大数目。
结合第一方面,在第一方面的某些实现方式中,所述T个服务小区中至少一个服务小区的调度方式为跨载波调度,所述终端设备在跨载波调度的服务小区上能够监控的PDCCH候选的最大数目为:N3*y*M’,所述M’是根据第四单位时长内,所述终端设备在被跨载波调度的服务小区上能够监控的PDCCH候选的最大数目,和所述终端设备在所述跨载波调度的服务小区上能够监控的PDCCH候选的最大数目确定的,其中,所述第四单位时长为:所述跨载波调度的服务小区的子载波间隔参数对应的时隙长度,或,所述被跨载波调度的服务小区的子载波间隔参数对应的时隙长度,其中,N3表示:所述跨载波调度的服务小区调度的服务小区数,N3为大于或等于1的整数;y表示:所述终端设备监控PDCCH候选的能力参数。
基于上述技术方案,可以确定调度服务小区和被调度服务小区的子载波间隔参数不同时,终端设备在调度服务小区上监控的PDCCH候选的最大数目。
结合第一方面,在第一方面的某些实现方式中,当所述第一服务小区跨载波调度第四服务小区时,所述终端设备在所述第一服务小区上针对所述第四服务小区能够监控的PDCCH候选的第八数目包括:不同大小的下行控制信息DCI格式对应的PDCCH候选的数目,且所述第四服务小区对应的不同DCI大小的个数小于或等于4,所述第四服务小区属于所述T个服务小区;所述网络设备配置所述终端设备在第一服务小区上监控的PDCCH候选的第二数目,包括:所述网络设备根据所述第四服务小区对应的不同DCI大小的个数,配置所述终端设备在所述第一服务小区上监控的PDCCH候选的第二数目。
结合第一方面,在第一方面的某些实现方式中,所述第一服务小区对应的不同DCI大小的个数为K2或第一阈值,所述K2小于或等于所述第一阈值,所述K2是根据以下至少一个参数确定的:所述K1、所述第一服务小区调度的服务小区数、所述第一服务小区 在第一单位时长内能够监控的PDCCH候选的第四数目、所述第一服务小区的子载波间隔、所述第四服务小区的子载波间隔。
结合第一方面,在第一方面的某些实现方式中,K2=4+K1*t,其中,t为被所述第一服务小区跨载波调度的服务小区数;所述网络设备配置所述终端设备在第一服务小区上监控的PDCCH候选的第二数目,包括:所述网络设备根据所述第一服务小区对应的不同DCI大小的个数,配置所述终端设备在所述第一服务小区上监控的PDCCH候选的第二数目。
基于上述技术方案,可以确定用于调度载波和被调度载波的下行控制信息大小(DCI size)的个数。且对于被调度载波,其对应的DCI size小于或等于4,从而可以减少PDCCH的盲检次数,也可以降低Polar编码的译码复杂度。此外,对于调度载波,其对应的DCI size小于或等于一个阈值。当小于该阈值时,可以根据上述公式计算;当达到该阈值时,进行统一,不再增加。
结合第一方面,在第一方面的某些实现方式中,所述第四服务小区对应的不同大小的DCI格式的个数为2。
基于上述技术方案,可以大大减少PDCCH的盲检次数,也可以降低Polar编码的译码复杂度。
第二方面,提供了一种监控方法,该方法包括:终端设备获取在第一服务小区上监控的物理下行控制信道PDCCH候选的第二数目,所述第二数目是网络设备根据所述终端设备在所述第一服务小区上能够监控的PDCCH候选的第三数目确定的,所述第三数目是所述网络设备根据第一数目确定的,所述第一数目为所述终端设备在T个服务小区上能够监控的PDCCH候选的最大数目,所述第一服务小区属于所述T个服务小区,其中,T为大于或等于2的整数;所述终端设备根据所述第二数目监控PDCCH。
基于上述技术方案,在载波聚合场景下,网络设备可以基于终端设备在多个服务小区上监控的物理下行控制信道PDCCH候选的最大数目,确定终端设备为每个服务小区监控的PDCCH候选的最大数目,从而基于终端设备为每个服务小区监控的PDCCH候选的最大数目,合理地为终端设备配置为每个服务小区监控的PDCCH候选的数目。以便终端设备可以正确地进行PDCCH盲检,进而可以提高通信的灵活性和效率。
结合第二方面,在第二方面的某些实现方式中,所述第三数目是所述网络设备根据所述第一数目确定的,包括:所述第三数目是所述网络设备根据所述第一数目与以下至少一个参数确定的:所述网络设备为所述终端设备配置的服务小区的总数、所述T、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述第一服务小区调度的服务小区数、主小区在第二单位时长内能够监控的PDCCH候选的第五数目。
结合第二方面,在第二方面的某些实现方式中,所述第三数目是所述网络设备根据第一数目确定的,包括:所述第三数目为通过对所述第一数目进行平均处理所得。
结合第二方面,在第二方面的某些实现方式中,所述第三数目是通过对以下公式取整得到的:N1*Q/T;其中,Q表示:所述第一数目;N1表示:所述第一服务小区调度的服务小区数,N1为大于或等于1的整数。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:所述T个服务小区包括至少一个辅小区,所述方法还包括:当所述T个服务小区的子载波间隔参数相同,且所 述第一服务小区为主小区时,所述网络设备根据所述第三数目和所述第一数目确定所述终端设备在所述至少一个辅小区上能够监控的PDCCH候选的第六数目。
结合第二方面,在第二方面的某些实现方式中,所述第三数目是所述网络设备根据所述第一数目确定的,包括:所述第三数目是所述网络设备根据:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、被所述第一服务小区跨载波调度的服务小区数、以及所述第一数目确定的。
结合第二方面,在第二方面的某些实现方式中,所述第三数目为:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目与所述网络设备根据所述终端设备在第二服务小区上能够监控的PDCCH候选的第六数目之和,所述第二服务小区为被所述第一服务小区跨载波调度的服务小区。
结合第二方面,在第二方面的某些实现方式中,当所述第一服务小区为主小区时,所述第三数目为对以下公式进行取整得到:M+N2*{(Q-M)/(T-1)};其中,M表示:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目;N2表示:被所述第一服务小区跨载波调度的服务小区数,N2为大于或等于0的整数;Q表示:所述第一数目。
结合第二方面,在第二方面的某些实现方式中,所述终端设备共配置有W个服务小区,所述W个服务小区包括所述T个服务小区,当所述第一服务小区为辅小区时,所述第三数目是所述网络设备根据所述第一数目确定的,包括:若所述第一服务小区的子载波间隔参数与所述W个服务小区中主小区的子载波间隔参数相同,所述第三数目是所述网络设备根据:所述第一服务小区调度的服务小区数、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述第一数目、以及所述T确定的;或,若所述第一服务小区的子载波间隔参数与所述W个服务小区中主小区的子载波间隔参数不同,所述第三数目是所述网络设备根据:所述第一服务小区调度的服务小区数、所述第一数目、以及所述T确定的。
结合第二方面,在第二方面的某些实现方式中,所述终端设备共配置有W个服务小区,所述W个服务小区包括所述T个服务小区,当所述第一服务小区为辅小区时,若所述第一服务小区的子载波间隔参数与所述W个服务小区中主小区的子载波间隔参数相同,所述第三数目为对以下公式进行取整得到:N1*(Q-M)/(T-1);或者,若所述第一服务小区的子载波间隔参数与所述W个服务小区中主小区的子载波间隔参数不同,所述第三数目为对以下公式进行取整得到:N1*Q/T;其中,M表示:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目;N1表示:所述第一服务小区调度的服务小区数,N1为大于或等于1的整数;Q表示:所述第一数目。
结合第二方面,在第二方面的某些实现方式中,所述T个服务小区中包括第三服务小区,所述第一服务小区跨载波调度所述第三服务小区,当所述第三服务小区与所述第一服务小区的子载波间隔参数不同时,所述第一数目根据所述终端设备监控PDCCH候选的能力参数,以及以下至少一个参数确定:所述T、所述网络设备为所述终端设备配置的服务小区的总数、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述第一服务小区的子载波间隔、所述第三服务小区的子载波间隔、所述第三服务小区在第三单位时长内能够监控的PDCCH候选的第七数目。
结合第二方面,在第二方面的某些实现方式中,所述终端设备共配置有W个服务小区,所述W个服务小区包括所述T个服务小区,当所述T个服务小区中包括第三服务小区,所述第三服务小区与所述第一服务小区的子载波间隔参数不同时,所述第一服务小区跨载波调度所述第三服务小区;所述第一数目为对以下公式取整得到:(T/W)*M*y;其中,M表示:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目;y表示:所述终端设备监控PDCCH候选的能力参数。
结合第二方面,在第二方面的某些实现方式中,所述T个服务小区包括第三服务小区,所述第一服务小区跨载波调度所述第三服务小区,当所述第三服务小区与所述第一服务小区的子载波间隔参数相同时,所述第一数目是根据:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述终端设备监控PDCCH候选的能力参数确定的。
结合第二方面,在第二方面的某些实现方式中,所述T个服务小区的子载波间隔参数相同,且所述T个服务小区中至少一个服务小区的调度方式为跨载波调度,所述第一数目为:y*M,其中,M表示:主小区在第二单位时长内能够监控的PDCCH候选的第五数目;y表示:所述终端设备监控PDCCH候选的能力参数。
结合第二方面,在第二方面的某些实现方式中,所述T个服务小区中至少一个服务小区的调度方式为跨载波调度,所述终端设备在跨载波调度的服务小区上能够监控的PDCCH候选的最大数目为:N3*y*M’,所述M’是根据第四单位时长内,所述终端设备在被跨载波调度的服务小区上能够监控的PDCCH候选的最大数目,和所述终端设备在所述跨载波调度的服务小区上能够监控的PDCCH候选的最大数目确定的,其中,所述第四单位时长为:所述跨载波调度的服务小区的子载波间隔参数对应的时隙长度,或,所述被跨载波调度的服务小区的子载波间隔参数对应的时隙长度,其中,N3表示:所述跨载波调度的服务小区调度的服务小区数,N3为大于或等于1的整数;y表示:所述终端设备监控PDCCH候选的能力参数。
结合第二方面,在第二方面的某些实现方式中,当所述第一服务小区跨载波调度第四服务小区时,所述终端设备在所述第一服务小区上针对所述第四服务小区能够监控的PDCCH候选的第八数目包括:不同大小的下行控制信息DCI格式对应的PDCCH候选的数目,且所述第四服务小区对应的不同DCI大小的个数小于或等于4,所述第四服务小区属于所述T个服务小区。
结合第二方面,在第二方面的某些实现方式中,所述第一服务小区对应的不同DCI大小的个数为K2或第一阈值,所述K2小于或等于所述第一阈值,所述K2是根据以下至少一个参数确定的:所述K1、所述第一服务小区调度的服务小区数、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述第一服务小区的子载波间隔、所述第四服务小区的子载波间隔。
结合第二方面,在第二方面的某些实现方式中,所述第四服务小区对应的不同大小的DCI格式的个数为2。
第三方面,提供了一种配置参数的方法,该方法包括:网络设备确定终端设备在第一服务小区上不同大小的下行控制信息DCI格式对应的监控物理下行控制信道PDCCH候选的数目,所述第一服务小区跨载波调度第二服务小区,其中,所述第二服务小区对应的不 同DCI大小的个数为K1,K1为小于或等于4的整数;所述网络设备根据K1,配置所述终端设备在所述第一服务小区为所述第二服务小区监控的PDCCH候选的数目。
基于上述技术方案,可以确定用于被调度服务小区的下行控制信息大小(DCI size)的个数。且对于被调度服务小区,其对应的DCI size小于或等于4,从而可以减少PDCCH的盲检次数,也可以降低Polar编码的译码复杂度。
结合第三方面,在第三方面的某些实现方式中,所述第一服务小区对应的不同DCI大小的个数为K2或第一阈值,所述K2小于或等于所述第一阈值,所述K2是根据以下至少一个参数确定的:所述K1、所述第一服务小区调度的服务小区数、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第一数目、所述第一服务小区的子载波间隔、所述第二服务小区的子载波间隔;或,所述网络设备根据K2或所述第一阈值,配置所述终端设备在所述第一服务小区上监控的PDCCH候选的数目。
基于上述技术方案,对于调度服务小区,其对应的DCI size小于或等于一个阈值。
结合第三方面,在第三方面的某些实现方式中,K2=4+K1*t,t为所述第一服务小区跨载波调度的服务小区数。
基于上述技术方案,当K2小于该阈值时,可以根据上述公式计算;当达到该阈值时,进行统一,不再增加。
结合第三方面,在第三方面的某些实现方式中,所述第二服务小区对应的不同大小的DCI格式的个数为2。
第四方面,提供了一种配置参数的方法,该方法包括:终端设备获得在第一服务小区上监控的物理下行控制信道PDCCH候选的数目,PDCCH候选的数目是根据所述第一服务小区和所述第二服务小区对应的不同下行控制信息DCI大小的个数确定的,所述第一服务小区跨载波调度所述第二服务小区,所述第二服务小区对应的不同DCI大小的个数为K1,K1为小于或等于4的整数;所述终端设备根据所述PDCCH候选的数目监控PDCCH。
基于上述技术方案,可以确定用于被调度服务小区的下行控制信息大小(DCI size)的个数。且对于被调度服务小区,其对应的DCI size小于或等于4,从而可以减少PDCCH的盲检次数,也可以降低Polar编码的译码复杂度。
结合第四方面,在第四方面的某些实现方式中,所述第一服务小区对应的不同DCI大小的个数为K2或第一阈值,所述K2小于或等于所述第一阈值,所述K2是根据以下至少一个参数确定的:所述K1、所述第一服务小区调度的服务小区数、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第一数目、所述第一服务小区的子载波间隔、所述第二服务小区的子载波间隔;或,所述网络设备根据K2或所述第一阈值,配置所述终端设备在所述第一服务小区上监控的PDCCH候选的数目。
基于上述技术方案,对于调度服务小区,其对应的DCI size小于或等于一个阈值。
结合第四方面,在第四方面的某些实现方式中,K2=4+K1*t,t为所述第一服务小区跨载波调度的服务小区数。
基于上述技术方案,当K2小于该阈值时,可以根据上述公式计算;当达到该阈值时,进行统一,不再增加。
结合第四方面,在第四方面的某些实现方式中,所述第二服务小区对应的不同大小的DCI格式的个数为2。
第五方面,提供了一种配置参数的方法,该方法包括:终端设备接收网络设备在第一服务小区上配置的物理下行控制信道PDCCH候选的第一数目;所述终端设备根据所述第一数目确定为第二服务小区服务的PDCCH候选的第二数目,所述第二服务小区是被所述第一服务小区调度的小区。
结合第五方面,在第五方面的某些实现方式中,所述终端设备根据所述第一数目确定在所述第一服务小区上针对所述第一服务小区的PDCCH候选的第三数目,所述终端设备根据所述第一数目确定针对第二服务小区的PDCCH候选的第二数目,包括:所述终端设备根据所述第三数目,以及以下至少一个参数,确定针对第二服务小区服务的PDCCH候选的第二数目:PDCCH候选个数折算因子、PDCCH候选个数偏移值、所述第一服务小区的子载波间隔、所述第二服务小区的子载波间隔、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的最大数目、所述第二服务小区在第二单位时长内能够监控的PDCCH候选的最大数目、公共搜索空间CSS的偏移值、被所述第一服务小区调度的服务小区数。
第六方面,提供了一种网络设备,所述网络设备具有实现上述第一方面、第三方面的方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第七方面,提供了一种终端设备,所述终端设备具有实现上述第二方面、第四方面、第五方面的方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第八方面,提供了一种网络设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行上述第一方面、第三方面以及第一方面、第三方面中任意一种可能的实现方式中的方法。
第九方面,提供了一种终端设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行上述第二方面、第四方面、第五方面以及第二方面、第四方面、第五方面中任意一种可能的实现方式中的方法。
第十方面,提供了一种通信装置,该通信装置可以为上述是方法设计中的网络设备,或者为设置在网络设备中的芯片。该参数确定的装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面、第三方面以及第一方面、第三方面中的任意一种可能的实现方式中网络设备所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
第十一方面,提供了一种通信装置,该通信装置可以为上述方法设计中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面、第四方面、第五方面以及第二方面、第四方面、第五方面中的任意一种可能的实现方式中终端设备所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
第十二方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法
第十三方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
第十四方面,提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现上述方面中所涉及的功能,例如,生成,接收,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
第十五方面,提供了一种芯片系统,该芯片系统包括处理器,用于支持终端设备实现上述方面中所涉及的功能,例如,生成,接收,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是适用于本申请实施例的配置参数的方法的通信系统的示意图;
图2是适用于本申请实施例的载波聚合的示意图;
图3是适用于本申请实施例的未配置跨载波调度的一示意图;
图4是适用于本申请实施例的配置跨载波调度的一示意图;
图5是适用于本申请实施例的配置跨载波调度的另一示意图;
图6是适用于本申请实施例的BWP的示意图;
图7是根据本申请一实施例提出的配置参数的方法的示意图;
图8是适用于本申请另一实施例的配置参数的方法的一示意图;
图9是适用于本申请另一实施例的配置参数的方法的另一示意图;
图10是适用于本申请另一实施例的配置参数的方法的又一示意图;
图11是适用于本申请另一实施例的配置参数的方法的再一示意图;
图12是适用于本申请再一实施例的配置参数的方法的一示意图;
图13是适用于本申请再一实施例的配置参数的方法的另一示意图;
图14是适用于本申请又一实施例的配置参数的方法的一示意图;
图15是适用于本申请又一实施例的配置参数的方法的又一示意图;
图16是本申请实施例提供的通信装置的示意性框图;
图17是本申请实施例提供的通信装置的结构示意图;
图18是本申请实施例提供的网络设备的结构示意图;
图19是本申请实施例提供的终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、 通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1是适用于本申请实施例的无线通信系统100的示意图。如图1所示,该无线通信系统100可以包括一个或多个网络设备,例如,图1所示的网络设备#1 111、网络设备#2 112、网络设备#3 113;该无线通信系统100还可以包括一个或多个终端设备,例如,图1所示的终端设备121。该无线通信系统100可支持多点协作传输(coordinated multiple points,CoMP)传输,即,多个小区或多个网络设备可以协同参与一个终端设备的数据传输或者联合接收一个终端设备发送的数据,或者多个小区或多个网络设备进行协作调度或者协作波束成型。其中,该多个小区可以属于相同的网络设备或者不同的网络设备,并且网络设备可以根据信道增益或路径损耗、接收信号强度、接收信号指令等来选择一个或多个小区来服务于终端设备。
应理解,该通信系统100中的网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、宿主基站(donor eNB,DeNB)、基带单元(base band Unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
还应理解,该通信系统100中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手 机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述的终端设备及可设置于前述终端设备的芯片可以统称为终端设备。
可选地,图1示出的通信系统100中,网络设备#1至网络设备#3中的一个(例如网络设备#1)可以为服务网络设备,服务网络设备可以是指通过无线空口协议为终端设备提供RRC连接、非接入层(non-access stratum,NAS)移动性管理和安全性输入中至少一项服务的网络设备。可选地,网络设备#2和网络设备#3可以为协作网络设备。服务网络设备可以向终端设备发送控制信令,协作网络设备可以向终端设备发送数据;或者,服务网络设备可以向终端设备发送控制信令,服务网络设备和协作网络设备可以向终端设备发送数据;或者,服务网络设备和协作网络设备均可以向终端设备发送控制信令,并且服务网络设备和协作网络设备均可以向终端设备发送数据;或者,协作网络设备可以向终端设备发送控制信令,服务网络设备和协作网络设备中的至少一个可以向终端设备发送数据;或者,协作网络设备可以向终端设备发送控制信令和数据。本申请实施例对此并未特别限定。
可选地,图1示出的通信系统100中,网络设备#1至网络设备#3均可以为服务网络设备。
应理解,图1中仅为便于理解,示意性地示出了网络设备#1至网络设备#3和终端设备,但这不应对本申请构成任何限定,该无线通信系统中还可以包括更多或更少数量的网络设备,也可以包括更多数量的终端设备,与不同的终端设备通信的网络设备可以是相同的网络设备,也可以是不同的网络设备,与不同的终端设备通信的网络设备的数量可以相同,也可以不同,本申请对此不做限定。
为便于理解本申请实施例,在开始介绍本申请实施例之前,先对本申请涉及到的几个名词或术语进行简单介绍。
1、物理下行控制信道
物理下行控制信道(physical downlink control channel,PDCCH)可以用于:向终端设备发送下行调度信息(downlink assignment,DL assignment),以便终端设备接收物理下行共享信道(physical downlink shared channel,PDSCH)。PDCCH还可以用于:向终端设备发送上行授权(uplink grant,UL Grant),以便终端设备发送物理上行共享信道(physical uplink shared channel,PUSCH)。PDCCH还可以用于:发送非周期性信道质量指示(channel quality indicator,CQI)上报请求。PDCCH还可以用于:通知多播控制信道(multicast control channel,MCCH)变化。PDCCH还可以用于:发送上行功控命令。PDCCH还可以用于:混合自动重传请求(hybrid automatic repeat reQuest,HARQ)相关信息。PDCCH还可以用于:携带无线网络临时标识(radio network temporary identifier,RNTI),该信息隐式包含在循环冗余校验(cyclic redundancy check,CRC)中等等。
一个PDCCH在控制信道单元(control channel element,CCE)上传输,每个CCE由一定数量的资源单元组(resource-element group,REG)组成。PDCCH所占的第一个CCE 的CCE索引称为n CCE
2、下行控制信息
PDCCH携带的信息称为下行控制信息(downlink control information,DCI)。下行DCI可以用于发送下行调度分配信息或上行调度信息。DCI有多种格式(format),各种DCI format及其携带的具体信息根据各DCI format的功能不同而不同。例如,LTE系统中的format 0或NR系统中format 0_0/format 0_1的可以用于传输PUSCH调度授权信息;又如,LTE系统中的format 1或NR系统中format 0_0/format 0_1可以用于传输PDSCH单码字调度授权信息。
其中,DCI可能指示小区级的信息,可以使用系统信息无线网络临时标识符(system information radio network temporary identifier,SI-RNTI)、寻呼无线网络临时标识符(paging radio network temporary identifier,P-RNTI)、随机接入无线网络临时标识符(random access radio network temporary identifier,RA-RNTI)等加扰;也可能指示终端设备级的信息,可以使用小区无线网络临时标识符(cell radio network temporary identifier,C-RNTI)加扰。
一个PDCCH只能携带一个format的DCI。一个小区可以在上行和下行同时调度多个终端设备,即一个小区可以在每个调度时间单位发送多个调度信息。每个调度信息在独立的PDCCH上传输,也就是说,一个小区可以在一个调度时间单位上同时发送多个PDCCH。
3、聚合等级
PDCCH有不同的聚合等级(aggregation level,AL),AL包括{1,2,4,8,16}。聚合等级表示一个PDCCH占用的连续的CCE个数,如表1所示。网络设备会根据信道质量等因素来决定某个PDCCH使用的聚合等级。例如:如果PDCCH是发给某个下行信道质量很好的终端设备(例如,该终端设备位于小区中心),则使用1个CCE来发送该PDCCH可能就足够了;如果PDCCH是发给某个下行信道质量很差的终端设备(例如,该终端设备位于小区边缘),则可能需要使用8个CCE甚至16个CCE来发送该PDCCH以达到足够的鲁棒性。
表1
聚合等级 CCE个数
1 1
2 2
4 4
8 8
16 16
此外,PDCCH的功率也可以根据信道条件进行调整,基站可以将信道质量较好终端设备的PDCCH发射功率节省下来以分配给信道质量较差的终端设备。
4、载波聚合(carrier aggregation,CA)
CA是将2个或2个以上的载波单元(component carrier,CC)聚合在一起以支持更大的传输带宽。实际上,现有LTE和NR通常情况下每个CC对应一个独立的小区。此时可以将1个CC等同于1个小区。为了高效地利用零碎的频谱,载波聚合支持不同CC之间的聚合。如图2所示,载波聚合可以包括:频带内或频带间CC聚合,对于频带内CC聚合,进一步可以分为频带内邻接或非邻接的CC聚合,等等。
5、跨载波调度
使用跨载波调度(cross-carrier scheduling),将某些CC的PDCCH在信道质量较好的其它CC上发送,能提高PDCCH的解码效率。
基于载波指示域(carrier Indicator Field,CIF)的跨载波调度允许一个服务小区(serving cell)的PDCCH调度另一个服务小区上的无线资源。即下行控制信息在一个CC上传输,而对应的数据在另一个CC上传输。其中,CIF可以用于指定该PDCCH对应哪个小区的PDSCH和/或PUSCH资源。
关于跨载波调度,包括一些限制。如,跨载波调度不适用于调度主小区(primary cell,PCell),可以适用于调度辅小区(secondary cell,SCell)。
其中,PCell可以为终端设备进行初始连接建立的小区,或进行无线资源控制(radio resource control,RRC)连接重建的小区,或是在切换(handover)过程中指定的主小区。PCell总是通过它自身的PDCCH进行调度。PCell可以负责与终端设备之间的RRC通信。PCell对应的CC可以称为主CC(primary component carrier,PCC)。其中,PCell的下行载波可以称为DL PCC,PCell的上行载波可以称为UL PCC。
SCell是在RRC重配置时添加的,用于提供额外的无线资源。当某个SCell配置了PDCCH,则跨载波调度不适用于该SCell。当某个SCell没有配置PDCCH时,则该SCell的跨载波调度总是通过另一个服务小区的PDCCH进行调度。SCell对应的CC可以称为辅CC(secondary component carrier,SCC)。其中,SCell的下行载波可以称为DL SCC,SCell的上行载波可以称为UL SCC。
图3示出了未配置跨载波调度的一示意图。如图3所示,假设终端设备不配置跨载波调度,则对应每个服务小区的PDCCH都在本小区的载波上发送。此时每个小区发送的PDCCH都不带CIF字段。
图4示出了配置跨载波调度的另一示意图。假设终端设备配置了跨载波调度。PCell既调度本小区的资源,又跨载波调度SCell1的资源。
在图4中,SCell1既不调度本小区的资源,也不调度其它小区的资源,其资源在PCell上调度。
SCell2调度本小区的资源,但不调度其它小区的资源。
图5示出了配置跨载波调度的又一示意图。假设终端设备配置了跨载波调度。PCell调度本小区的资源,但不调度其它小区的资源。
SCell1既不调度本小区的资源,也不调度其它小区的资源,其资源在SCell2上调度。
SCell2既调度本小区的资源,又跨载波调度SCell1的资源。
6、带宽部分(bandwidth part,BWP)
NR中基站一个载波的带宽相较于LTE载波带宽更宽,例如,NR的载波带宽可以为100M,而不同终端设备的射频能力不同,所能支持的最大带宽不同,因此引入BWP的概 念。图6示出了BWP的一示意图。BWP是载波上一组连续的RB资源。不同的BWP可以占用部分重叠但带宽不同的频域资源,也可以是具有不同参数集(Numerology)的带宽资源,频域上可以互不重叠。NR Rel-15中一个服务小区最多可以配置4个BWP,如,频分双工(frequency division duplexing,FDD)下上下行各4个BWP,时分双工(time division duplexing,TDD)下上下行共4个BWP对。通常每个服务小区同时只能激活一个BWP,终端设备在激活的BWP上进行数据的收发。
7、搜索空间(search space)
下面从非载波聚合的场景和载波聚合的场景下分别描述。
非载波聚合场景
非载波聚合,即终端设备只有一个服务小区的场景。终端设备会在PDCCH监控时机内监控PDCCH候选(PDCCH candidates)集合,这意味着终端设备需要根据所要监控的DCI format来尝试解码该集合中的每一个PDCCH。该集合被称为该终端设备的搜索空间。
搜索空间分为公共搜索空间(common search space)和终端设备特定的搜索空间(UE-specific search space)。公共搜索空间用于传输与寻呼(paging)、随机接入响应(random access response,RA-R)、广播控制信道(broadcast control channel,BCCH)等相关的控制信息(小区级别的公共信息)的检测,该信息对所有终端设备来说都是一样的。终端设备特定的搜索空间用于发送与下行共享信道(downlink shared channel,DL-SCH)、上行共享信道(uplink shared channel,UL-SCH)等相关的控制信息(终端设备级别的信息)。但是当终端设备特定的搜索空间没有足够的可用资源时,公共搜索空间也可以用于传输属于某个特定终端设备的控制信息。
公共搜索空间和终端设备特定的搜索空间可能重叠,属于不同终端设备的终端设备特定的搜索空间也可能重叠。如果重叠的区域被一个终端设备占用,那么其它终端设备将不能再使用这些CCE资源。
网络设备会针对每个待调度资源的终端设备,从对应的搜索空间中选择一个可用的PDCCH candidate。如果能分配到CCE就进行调度,否则就不进行调度。发给不同终端设备的PDCCH可以有不同的聚合等级。
载波聚合的场景
如果终端设备配置了载波聚合,则终端设备会在每个PDCCH监控时机内对所有激活的服务小区的搜索空间进行监控。此时对于每个服务小区的搜索空间内的某个PDCCH candidate,基站在发送带CIF的PDCCH时,知道该PDCCH对应哪个服务小区,也知道该PDCCH可选的PDCCH candidate集合;对于终端设备来说,终端设备并不确定PDCCH中携带的CIF值是什么,即不确定哪个服务小区会给该终端设备发送PDCCH。终端设备只知道每个特定的服务小区给该终端设备发送的PDCCH上可能携带的CIF的集合,因此UE会在该服务小区上尝试所有可能的CIF值去盲检PDCCH。
8、PDCCH盲检
DCI有多种format,但终端设备事先并不知道接收到的PDCCH携带的是哪种format的DCI,也不知道该DCI通过哪个PDCCH candidate进行传输,所以终端设备必须进行PDCCH盲检以接收对应的DCI。
终端设备知道自己处于何种状态以及在该状态下期待收到的DCI。
例如在空闲(IDLE)态时,终端设备期待收到寻呼相关的控制信息;在发起随机接入(random access)后,终端设备期待的是RAR;在有上行数据待发送时,终端设备期待上行授权(Uplink Grant)等。
此外,终端设备知道自己的搜索空间,因此知道DCI可能分布在哪些CCE上。对于期望的DCI,终端设备尝试使用相应的RNTI、可能的DCI format、可能的聚合等级,去与属于自己的搜索空间内的CCE做循环冗余校验(cyclic redundancy check,CRC)。如果CRC校验成功,那么终端设备就知道这个DCI是自己需要的,也就知道相应的DCI format,从而进一步解出DCI内容。
终端设备不知道要收到的PDCCH使用哪种聚合等级,所以终端设备会把所有可能性都尝试一遍。例如:对于公共搜索空间,终端设备需要分别按AL=4和AL=8来搜索。当按AL=4盲检时,16个CCE需要盲检4次,即有4个PDCCH candidate;当按AL=8盲检时,16个CCE需要盲检2次,也就是有2个PDCCH candidates;那么对于公共空间来说,一共有4+2=6个PDCCH candidates。而对于终端设备特定的搜索空间,终端设备需要分别按AL=1、2、4、8来盲检一遍,此时一共有6+6+2+2=16个PDCCH candidates。
终端设备在搜索空间进行盲检时,只需对可能出现的DCI format进行尝试解码,并不需要对所有的DCI format进行匹配。
在本申请中,盲检次数指盲检PDCCH候选的次数,也可以称为监测PDCCH候选的个数。
9、时间单位
在本申请实施例中,数据和/或信令可以通过时频资源来承载,该时频资源可以包括时域上的资源和频域上的资源。其中,时域资源可以包括一个或多个时间单位(或者,也可以称为时域单位)。
一个时间单位(也可称为时域单元)可以是一个符号,或者一个迷你时隙(Mini-slot),或者一个时隙(slot),或者一个子帧(subframe),其中,一个子帧在时域上的持续时长可以是1毫秒(ms),一个时隙由7个或者14个符号组成,一个迷你时隙可以包括至少一个符号(例如,2个符号或7个符号或者14个符号,或者小于等于14个符号的任意数目符号)。
10、参数集(Numerology)
Numerology,可以用于指一套参数,包括但不限于子载波间隔(subcarrier spacing,SCS),符号长度,时隙长度,循环前缀(cyclic prefix,CP)长度中的一个或者多个。在NR中,多个Numerology可混合和/或同时使用。Numerology由SCS和CP定义。表2给出了NR中目前可以支持的多种Numerology。
μ可以用来表示不同的Numerology。从表2可以看出,至少包括μ=0、μ=1、μ=2、μ=3、μ=4这四种不同的Numerology。在本申请实施例中,为区分,将μ分别记为μ0、μ1、μ2、μ3、μ4。可选地,μ=0时,SCS=2 μ*15=2 0*15=15KHz;μ=1时,SCS=2 μ*15=2 1*15=30KHz;μ=2时,SCS=2 μ*15=2 2*15=60KHz;μ=3时,SCS=2 μ*15=2 3*15=120KHz;μ=4时,SCS=2 μ*15=2 4*15=240KHz。
表2
μ △f=2 μ*15(KHz) CP
0 15 常规(Normal)
1 30 Normal
2 60 Normal,扩展(Extended)
3 120 Normal
4 240 Normal
终端设备在不同Numerology情况下,每时隙可支持的PDCCH候选的最大数目不同,表3示出了在非载波聚合(即单载波)场景下,终端设备在不同Numerology情况下,每时隙可支持的PDCCH候选的最大数目。可选的,表3中的Numerology指的是在该单载波上激活BWP的Numerology。
具体地,如表3所示,在μ=μ0=0时,SCS=15KHz,其对应的时隙为slot1,在slot1内,终端设备所能支持的PDCCH候选的最大数目为44。同理,在μ=μ1=1时,SCS=30KHz,其对应的时隙单元为slot2,在slot2内,终端设备所能支持的PDCCH候选的最大数目为36。同理,在μ=μ2=2时,SCS=60KHz,其对应的时隙单元为slot3,在slot3内,终端设备所能支持的PDCCH候选的最大数目为22。同理,在μ=μ3=3时,SCS=120KHz,其对应的时隙单元为slot4,在slot4内,终端设备所能支持的PDCCH候选的最大数目为20。
需要说明的是,在本申请实施例中,服务小区的子载波间隔相同或不同,可以理解为服务小区对应的Numerology相同或不同。
表3
μ 每时隙、每服务小区内,终端设备监控的PDCCH候选的最大数目
0 44
1 36
2 22
3 20
11、控制资源集(control-resource set,CORESET)
一个CORESET是控制区域内的一块时频资源。一个CORESET对应一组终端设备,例如CORESET 1对应终端设备1,终端设备2,终端设备3和终端设备4,而CORESET2对应终端设备4,终端设备5,终端设备6和终端设备7。在CORESET 1上可以发送终端设备1、终端设备2、终端设备3和终端设备4的PDCCH,在CORESET 2上可以发送终 端设备4、终端设备5、终端设备6和终端设备7的PDCCH。一个用户可以对应多个CORESET,这些CORESET上的numerology可以相同也可以不同。
12、PDCCH候选(PDCCH candidate)
PDCCH候选(或者,也可以称为候选PDCCH)是可能出现PDCCH的所有位置,包括网络设备配置的所有搜索空间上不同聚合级别的各种PDCCH候选的集合。由于终端设备处理能力的限制,在单位时长内有一个最大可支持的PDCCH盲检测的个数,等价于本申请中终端设备可支持的PDCCH候选的最大数目。
13、非重叠CCE的数目
在NR中非重叠CCE的个数会影响到终端设备进行信道估计的复杂度和功耗,考虑到终端设备处理能力的限制,终端设备在单位时长内有一个最大可支持的非重叠CCE的数目。
终端设备在不同Numerology情况下,每时隙可支持的非重叠CCE的最大数目也不同,表4示出了在非载波聚合(即单载波)场景下,终端设备在不同Numerology情况下,每时隙可支持的非重叠CCE的最大数目。
表4
μ 每时隙、每服务小区内,终端设备最大能够监控的非重叠CCE的数目
0 56
1 56
2 48
3 32
具体地,如表4所示,在μ=μ0=0时,SCS=15KHz,其对应的时隙单元为slot1,在slot1内,终端设备最大能够监控的非重叠CCE的最大数目非重叠CCE的最大数目为56。同理,在μ=μ1=1时,SCS=30KHz,其对应的时隙单元为slot2,在slot2内,终端设备最大能够监控的非重叠CCE的数目为56。同理,在μ=μ2=2时,SCS=60KHz,其对应的时隙单元为slot3,在slot3内,终端设备最大能够监控的非重叠CCE的数目为48。同理,在μ=μ3=3时,SCS=120KHz,其对应的时隙单元为slot4,在slot4内,终端设备最大能够监控的非重叠CCE的数目为32。
在NR Rel-15的讨论中,考虑到一个slot内对PDCCH的盲检次数能力有限,需要定义终端设备在服务小区内监控的PDCCH候选的最大数目,以便网络设备对搜索空间进行配置。
在载波聚合时,至少根据以下至少一个因素来确定终端设备在服务小区内监控的PDCCH候选的最大数目:载波聚合下各载波Numerology是否相同、是否配置了跨载波调度、载波聚合的个数以及终端设备上报的监控PDCCH候选的能力参数。
一种方式是,当自调度、以及所有聚合的载波具有相同Numerology时,依然根据表3来确定终端设备在所有载波上监控的PDCCH候选的最大数目。具体地,终端设备在所 有载波上监控的PDCCH候选的最大数目等于y*M。其中,M表示单载波情况下的PDCCH候选的最大数目,具体可参见表3。其中y为终端设备上报的监控PDCCH候选的能力参数,y可以是{4,…,16}中的一个整数。例如,当SCS=15kHz时,若终端设备上报的y值等于4,配置的载波个数T=5时,则该终端设备在所有载波上能够监控的PDCCH候选的最大总值等于4*44=176。
由于网络设备需要根据载波聚合下,终端设备在各个载波上监控的PDCCH候选的最大数目或CCE的数目进行搜索空间的参数配置,终端设备也会根据监控的PDCCH候选的最大数目或CCE的数目进行PDCCH盲检测,因此需要明确各个场景下有效调度载波的监控的PDCCH候选的最大数目或CCE的数目。因此明确终端设备在每个载波上的监控的PDCCH候选的最大数目或CCE的数目是必须的。上述仅给出了终端设备在所有载波上能够监控的PDCCH候选的最大总值,对该总值如何分配到各个载波,即确定终端设备在各个载波上监控的PDCCH候选的最大数目,现有技术中没有具体的解决方案。
鉴于此,本申请实施例提出一种配置参数的方法,能够合理的定义和分配终端设备在各个载波上监控的PDCCH候选的最大数目,进而可以充分利用终端设备处理能力,并提高网络侧调度的灵活性,提高资源利用效率。
下面结合附图详细说明本申请实施例。
特别需要说明的是,在本申请实施例中,“PDCCH候选的最大数目”和“终端设备监控的PDCCH候选的最大数目”经常交替使用,但本领域的技术人员可以理解其含义。对于终端设备设备来说,“PDCCH候选的最大数目”实质上就是指终端设备所能支持的PDCCH候选的最大数目。因此,在本申请实施例中,在不强调其区别时,其所要表达的含义是一致的。应理解,“PDCCH候选的最大数目”和“监控的PDCCH候选的最大数目”仅是两种表达方式,并不对本申请实施例的保护范围造成限定。
还需要说明的是,本申请实施例中,“服务小区的子载波间隔相同”和“服务小区的子载波间隔参数相同”经常交替使用,但本领域的技术人员可以理解其含义。其都是表示服务小区的子载波间隔相同。在本申请实施例中,“服务小区的子载波间隔相同”或“服务小区的子载波间隔参数相同”可以理解为“服务小区的Numerology相同”。应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
还需要说明的是,本申请实施例中,“预先定义”可以通过在设备(例如,包括终端设备和/或网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预先定义可以是指协议中定义的。
还需要说明的是,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或参数确定的装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或参数确定的装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
还需要说明的是,“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
还需要说明的是,本申请实施例中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。“的(of)”,“相应的(corresponding,relevant)”和“对应的 (corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
还需要说明的是,在本申请实施例中,“至少一个”可表示“一个或多个”。例如,通方式A、方式B、方式C中的至少一个方式实现,表示:可以通过方式A实现、或通过方式B实现、或通过方式C实现;也可以表示为:可以通过方式A和方式B实现、或通过方式B和方式C实现、或通过方式A和方式C实现;也可以表示为:可以通过方式A和方式B和方式C实现。与此类似地,“至少两个”可表示“两个或更多个”。
还需要说明的是,在下文示出的实施例中,第一、第二、第三等仅为便于区分不同对象,而不应对本申请构成任何限定。例如,区分对应不同的CC或服务小区等。
还需要说明的是,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系,但也不排除表示前后关联对象是“和/或”的关系的可能,具体可依据前后文确定。“至少一个”是指一个或一个以上;“A和B中的至少一个”,类似于“A和/或B”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和B中的至少一个,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中,A的数量并不限定,可以为一个,也可以为多于一个,B的数量也不限定,可以为一个,也可以为多于一个。
下面将结合附图详细说明本申请提供的技术方案。
应理解,本申请的技术方案可以应用于无线通信系统中,例如,图1中所示的通信系统100,该通信系统可以包括至少一个网络设备和至少一个终端设备,网络设备和终端设备可以通过无线空口通信。例如,该通信系统中的网络设备可以对应于图1中所示的网络设备111或网络设备113,终端设备可以对应于图1中所示的终端设备121。
图7是本申请实施例提供的配置参数的方法的一示意图。方法100包括步骤110-120,下面详细描述。
110,络设备获取终端设备在T个服务小区上能够监控的物理下行控制信道PDCCH候选的第一数目,其中,T为大于或等于2的整数。
网络设备获取终端设备在T个服务小区上能够监控的PDCCH候选的第一数目,即可以理解为T个服务小区对应一个第一数目。其中,该T个服务小区可以是网络设备为终端设备配置的多个服务小区中的部分服务小区,或者,也可以是网络设备为终端设备配置的全部服务小区。具体地,在本申请实施例中,假设网络设备为终端设备配置W个服务小区,该W个服务小区包括T个服务小区,W大于或等于T。该W个服务小区对应的子载波间隔可以全都相同,也可以全都不同,也可以部分相同部分不同。
作为一种实现方式,一个服务小区最多可以配置4个BWP,每个BWP可以配置为不同的Numorolgy。由于每个服务小区在某个时间段只能够激活一个BWP,且PDCCH在激活的BWP上进行发送,因此可以理解,本申请实施例提及的服务小区的子载波间隔,可以是指服务小区中激活的BWP的子载波间隔。
例如,网络设备为终端设备配置服务小区#1、服务小区#2、服务小区#3。服务小区#1包括BWP1、BWP2、BWP3、BWP4;服务小区#2包括BWP5、BWP6、BWP7、BWP8。需要注意的是这里的BWP1~BWP8只是对各服务小区配置BWP的一个名称标识,并不表 示各服务小区中BWP的编号信息。假设服务小区#1中激活的BWP为BWP1,服务小区#2中激活的BWP为BWP5。那么假设服务小区#1和服务小区#2的子载波间隔不同,可以是BWP1和BWP5的子载波间隔不同,至于服务小区#1和服务小区#2中其余的BWP的子载波间隔是否相同,本申请实施例并不限定。
需要说明的是,如前所述,载波聚合是将2个或2个以上的CC聚合在一起以支持更大的传输带宽。实际中,通常将一个CC等同于一个小区。因此,在本申请实施例中,服务小区的子载波间隔可以理解为载波(如,激活的BWP)的子载波间隔,服务小区和载波一一对应。例如,调度载波和调度服务小区一一对应,被调度载波和被调度服务小区一一对应。其中,调度载波或调度服务小区,表示的是自调度和/或跨载波调度的其他服务小区的载波或服务小区;被调度载波或被调度服务小区,表示的是被另一个服务小区跨载波调度的载波或服务小区。
终端设备在T个服务小区上能够监控的PDCCH候选的第一数目,即表示终端设备在T个服务小区上能够监控的PDCCH候选的最大总值。终端设备在T个服务小区上能够监控的PDCCH候选的最大总值可以根据以下至少一个参数确定:网络设备为终端设备配置的载波数、终端设备上报的盲检能力、单载波场景下终端设备在一个服务小区上能够监控的PDCCH候选的最大数目。具体的确定方式在下面实施例中详细描述。其中盲检能力指的是UE监控PDCCH候选个数的能力。这里的盲检是PDCCH盲检测的简称,也就是从基站配置的PDCCH候选位置检测终端设备需要的PDCCH信道,从而获得下行控制信息。上述单载波场景下终端设备在一个服务小区上能够监控的PDCCH候选的最大数目指的是当这个服务小区不是以载波聚合的成员载波的方式工作时(即单载波工作场景)其对应的子载波间隔参数下在每个时隙中最大可监控的PDCCH候选个数。
120,网络设备配置终端设备在第一服务小区上监控的PDCCH候选的第二数目,第二数目是网络设备根据终端设备在第一服务小区上能够监控的PDCCH候选的第三数目确定的,第三数目是网络设备根据第一数目确定的,所述第一服务小区属于T个服务小区。
基于上述技术方案,在载波聚合场景下,网络设备可以基于终端设备在多个服务小区(如,T个服务小区)上监控的PDCCH候选的最大数目,确定终端设备在每个服务小区上监控的PDCCH候选的最大数目,从而基于终端设备在每个服务小区上监控的PDCCH候选的最大数目,合理地为终端设备配置在每个服务小区上监控的PDCCH候选的数目。以便终端设备可以进行处理能力内的PDCCH盲检,进而可以提高通信的灵活性和效率。
网络设备根据终端设备在第一服务小区上能够监控的PDCCH候选的第三数目,配置终端设备在第一服务小区上监控的PDCCH候选的第二数目。例如根据实际需要或终端设备的能力等,保证第二数目小于或等于第三数目。或者在载波聚合中特殊的主小区上将最高优先级的PDCCH候选优先放到终端可监控的数量范围内,其他PDCCH候选通过一定的映射准则可以在UE的可监控PDCCH候选数目内选择部分PDCCH候选进行监控。
下面为简洁,不失一般性,用数目#1(即,第一数目的一例)来表示终端设备在T个服务小区上共监控的PDCCH候选的最大数目。用数目#2(即,第三数目的一例)来表示载波聚合场景下,终端设备在一个服务小区上监控的PDCCH候选的最大数目。用数目#3(即,第四数目的一例)来表示在单载波场景时,终端设备在单位时长内、在一个服务小区上监控的PDCCH候选的最大数目。其中,单位时长可以为该服务小区的子载波间隔对 应的时隙长度。数目#3可以通过表3来确定。
此外,为简洁,不失一般性,在本申请实施例中,用小区#A表示第一服务小区。T个服务小区的数目#1(即,第一数目的又一例),表示终端设备在T个服务小区上能够监控的PDCCH候选的最大数目。小区#A的数目#2(即,第三数目的又一例),表示载波聚合场景下,终端设备在小区#A上能够监控的PDCCH候选的最大数目。小区#A的数目#3(即,第四数目的又一例),表示在单载波场景下,终端设备在单位时长内、在小区#A上能够监控的PDCCH候选的最大数目。在本申请实施例中,单位时长可以理解为,服务小区的子载波间隔对应的时隙长度,如小区#A的数目#3可以通过表3来确定。例如,假设小区#A的子载波间隔为15KHz,则小区#A的数目#3为44。又如,假设小区#A的子载波间隔为30KHz,则小区#A的数目#3为36。又如,假设小区#A的子载波间隔为60KHz,则小区#A的数目#3为22。又如,假设小区#A的子载波间隔为120KHz,则小区#A的数目#3为20。
类似,W个服务小区的数目#1表示终端设备在W个服务小区上能够监控的PDCCH候选的最大总值。主小区的数目#2表示终端设备在主小区上能够监控的PDCCH候选的最大数目。主小区的数目#3,表示终端设备在单位时长内、在主小区上能够监控的PDCCH候选的最大数目。主小区的数目#3可以通过表3来确定。其中,主小区为网络设备为终端设备配置的W个服务小区中的主小区。
类似,辅小区的数目#2表示终端设备在辅小区上能够监控的PDCCH候选的最大数目。辅小区的数目#3,表示终端设备在单位时长内、在辅小区上能够监控的PDCCH候选的最大数目。辅小区的数目#3可以通过表3来确定。其中,辅小区为网络设备为终端设备配置的W个服务小区中的辅小区。
可选地,网络设备可以根据小区#A的数目#1与以下至少一个参数来确定小区#A的数目#2:W、T、小区#A的数目#3(即,第四数目的一例)、小区#A调度的服务小区数。
其中,小区#A调度的服务小区数包括小区#A自身、以及进行跨载波调度的服务小区数。当小区#A的调度方式为自调度时,小区#A调度的服务小区只有自身,即小区#A调度的服务小区数为1。当小区#A被其它服务小区跨载波调度时,小区#A调度的服务小区数为0。
在本申请实施例中,假设网络设备为终端设备配置W个服务小区,即载波聚合在载波数为W。W个服务小区包括T个服务小区,W为大于或等于T的整数。确定数目#2至少包括两种方案,方案1是根据服务小区的小区类型确定,该小区类型包括:主小区和辅小区。方案2是通过对数目#1进行平均处理确定。
需要说明的是,下面实施例中提到的主小区、辅小区,代表网络设备为终端设备配置的W个服务小区中的主小区、辅小区。为简洁,下面用主小区、辅小区表示W个服务小区中的主小区、辅小区。
本申请实施例中,根据W个服务小区中的服务小区的子载波间隔是否相同,和/或,调度方式为自调度还是跨载波调度,分为四个场景,下面结合不同的场景具体说明上述两种方案。
场景1:
W个服务小区的调度方式均为自调度,且W个服务小区的子载波间隔相同。
此时,方案1:根据服务小区的小区类型确定的具体实现方式可以是:
可以通过对以下公式取整确定主小区的数目#2、辅小区的数目#2。其中,取整方式可以用向下取整,可表示为:Floor()。
M_PCell=Mi;
M_SCell=Floor{(Mtotal-M_PCell)/(W-1)}。
其中,
M_PCell表示主小区的数目#2。需要说明的是,在本申请中,用M_PCell表示主小区的数目#2,各个实施例中,若非特别说明,同一参数(如M_PCell,M_SCell和Mi等)均具有第一次出现是介绍的含义,为简洁,不再赘述。
Mi表示主小区的数目#3。例如,当i=0时,Mi=M0=44;当i=1时,Mi=M1=36;当i=2时,Mi=M2=22;当i=3时,Mi=M3=20。
M_SCell表示任一辅小区的数目#2。需要说明的是,在本申请中,用M_SCell表示任一辅小区的数目#2,在后面的实施例中,为简洁,不再赘述。
Mtotal表示W个服务小区的数目#1。
当然,任何可以取整的方式都属于本申请实施例的保护范围。例如,除了上述的向下取整,可表示为:Floor(),或,数学符号
Figure PCTCN2019099371-appb-000001
取整方式还可以为向上取整,可表示为:ceil(),或,数学符号
Figure PCTCN2019099371-appb-000002
还可以用四舍五入的方式进行取整,可表示为:round()。
此外,在本申请实施例中,假设对类似于:A+B*C的这种公式作向下取整,关于取整的方式可以有多种,例如可以是:Floor{A+B*C},或也可以是A+Floor{B*C}。本申请实施例对此不作限定,任何可以取整的方式都属于本申请实施例的保护范围。下面,为简洁,不再一一赘述。
另外,关于Mtotal的计算方式,在场景1中,终端设备在W个服务小区上的数目#1可以等于:y*Mi。其中,如前所述y(即,终端设备监控PDCCH候选的能力参数的一例)为终端设备上报的盲检能力的参数,可以是{4,…,16}中的一个整数。Mi可以根据表3确定。如,当主小区的子载波间隔为15KHz,Mi为44。又如,当主小区的子载波间隔为30KHz,Mi为36。又如,当主小区的子载波间隔为60KHz,Mi为22。又如,当主小区的子载波间隔为120KHz,Mi为20。
具体地,图8示出了一个具体例子。如图8所示,假设载波聚合的载波数为5,即,W=5。该5个载波分别记为:载波#1、载波#2、载波#3、载波#4、载波#5。载波#1、载波#2、载波#3、载波#4、载波#5的子载波间隔都为15KHz。结合表2和表3可以看出,该5个载波在自己的时隙时间(slot1)内,Mi为44。假设载波#1为主小区中的载波。
假设终端设备上报的y值为4,因此,W个服务小区上的数目#1为:Mtotal=y*Mi=4*44=176。
因此,各个服务小区的数目#2为:
主小区的数目#2为:M_PCell=Mi=44;
辅小区的数目#2为:M_SCell=Floor{(Mtotal-M_PCell)/(W-1)}=Floor{(176-44)/4}=33。
因此,当小区#A为主小区时,小区#A的数目#2为44。当小区#A为辅小区时,小区#A的数目#2为33。
应理解,上述以取整方式为向下取整为例进行示例性说明,此处也可以用其他取整方 式、例如,上述提到的向上取整,或,四舍五入。
方案1中,根据服务小区的小区类型,即主小区和辅小区来分配数目#1的好处在于,主小区作为终端设备和网络设备进行信令交互的载波,其信息量和重要程度都大于辅小区,终端设备将能力多分配到主小区可以加强信令交互的灵活性和可靠性。
基于场景1,方案2:平均处理的具体实现方式可以是:
W个服务小区中任一服务小区的数目#2可以通过对数目#1进行平均处理所得。
具体地,W个服务小区中任一服务小区的数目#2可以通过对下面的公式取整求得:Mtotal/W。
如图8所示。由方案1可知,W个服务小区上的数目#1为:
y*Mi=4*44=176。
因此,小区#A的数目#2为:Floor{Mtotal/W}=Floor{176/5}=35。
同样,在方案2中,取整方式还可以是其他取整方式。
例如,还可以使用向上取整的方式,此时,小区#A的数目#2为:ceil(Mtotal/W)=ceil(176/5)=36。
又如,还可以使用四舍五入的方式,此时小区#A的数目#2为:round(Mtotal/W)=round(176/5)=35。
关于取整方式的说明,已经在前述进行说明,因此不再赘述。在本申请下面的实施例中,均以向下取整的方式为例进行示例性说明。
方案2中,通过对数目#1平均处理,不仅方案简单,且处理复杂度低。
应理解,在本申请实施例中,并不限定公式的表示形式,任何和公式所要表达思想类似的公式都属于本申请实施例的保护范围。下面为简洁,不再赘述。
场景2:
W个服务小区的调度方式均为自调度,且W个服务小区中至少两个服务小区的子载波间隔不同。
此时,方案1:根据服务小区的小区类型确定的具体实现方式可以是:
W个服务小区中至少两个服务小区的子载波间隔不同,因此,可以将W个服务小区中子载波间隔或Numerology相同的服务小区分为一组。一组服务小区对应一个数目#1。分别确定每组服务小区中的服务小区的数目#2。
方案1中,主小区的数目#2等于主小区的数目#3。
关于辅小区,存在两种可能,辅小区是否与主小区在同一个服务小区组:
对于与主小区在同一个服务小区组的辅小区,该辅小区的数目#2可以在该组服务小区的数目#1减去主小区的数目#2后,再平均分配到各辅小区。
对于与主小区不在同一个服务小区组的辅小区,以服务小区组为对象,直接对所有辅小区进行平均。
例如,计算主小区和辅小区的数目#2,使用伪代码可以表示为:
M_PCell=Mi;
If SCell Numerology=i,M_SCell=Floor((Mi_total-M_Pcell)/(Xi-1));
Else if SCell Numerology!=i,M_SCell=Floor(Mi_total/Xi)。
其中,
假设Numerology为i,Mi={44,36,22,20}for i={0,1,2,3}。具体地,例如,i=0时,Mi=44;i=1时,Mi=36;i=2时,Mi=22;i=3时,Mi=20。
M_PCell表示主小区的数目#2。
M_SCell表示辅小区的数目#2。
Mi_total表示Numerology为i的服务小区的数目#1。需要说明的是,在本申请中,用Mi_total表示Numerology为i的服务小区的数目#1,在后面的实施例中,为简洁,不再赘述。
Xi表示Numerology为i的服务小区数。需要说明的是,在本申请中,用Xi表示Numerology为i的服务小区数,在后面的实施例中,为简洁,不再赘述。
假设W个服务小区中包括两种子载波间隔,因此将W个服务小区分为两组:小区组#1和小区组#2。小区组#1包括主小区,以及与主小区的子载波间隔相同的辅小区。小区组#2包括与主小区的子载波间隔不同的辅小区。
可以通过对以下公式取整,如,向下取整,分别确定主小区的数目#2、小区组#1中的辅小区的数目#2、小区组#2中的辅小区的数目#2。
M_PCell=Mi;
M1_SCell=Floor{(Mi_total_1-M_PCell)/Xi_1};
M2_SCell=Floor{Mi_total_2/Xi_2}。
其中,
M_PCell表示主小区的数目#2。
M1_SCell表示小区组#1中的任一辅小区的数目#2,其对应的时隙长度为小区组#1的子载波间隔对应的时隙长度。
M2_SCell表示小区组#2中的任一辅小区的数目#2,其对应的时隙长度为小区组#2的子载波间隔对应的时隙长度。
Mi表示主小区的数目#3。例如,当i=0时,Mi=M0=44;当i=1时,Mi=M1=36;当i=2时,Mi=M2=22;当i=3时,Mi=M3=20。
Mi_total_1表示小区组#1的数目#1。
Mi_total_1表示小区组#2的数目#1。
Xi_1、Xi_2分别表示小区组#1、小区组#2中的服务小区的个数。
关于W个服务小区的数目#1的计算方式,在场景2中,将子载波间隔相同的服务小区分为一组,因此W个服务小区中,一组服务小区对应一个数目#1。且每组服务小区的数目#1可以通过下述公式表示:Mi_total=Floor{Xi/W*Mi*y}。
具体地,图9示出了一具体实施例。如图9所示,假设载波聚合的载波数为5,分别记为:载波#1、载波#2、载波#3、载波#4、载波#5。将该5个服务小区分为两组。其中,假设小区组#1包括载波#1和载波#4,载波#1和载波#4的子载波间隔为15KHz,Xi_1=X0_1=2。假设小区组#2包括载波#2、载波#3、载波#5,载波#2、载波#3、载波#5的子载波间隔为30KHz,Xi_2=X1_2=3。结合表2和表3可以看出,载波#1和载波#4在自己的时隙时间(slot)内,监控的PDCCH候选的最大数目为44;载波#2、载波#3、载波#5在自己的时隙时间(slot)内,监控的PDCCH候选的最大数目为36。假设载波#1为主小区中的载波。
因此,W=5,假设y=4,根据上述公式可得:
对于子载波间隔为15KHz的2个载波,在子载波间隔为15KHz对应的时隙长度内:
Mi_total=M0_total=Floor{X0/W*M0*y}=Floor{2/5*44*4}=Floor(70.4)=70。
对于子载波间隔为30KHz的3个载波,在子载波间隔为30KHz对应的时隙长度内:
Mi_total=M1_total=Floor{X1/W*M1*y}=Floor{3/5*36*4}=Floor(86.4)=86。
根据方案1,可以确定这5个载波的数目#2:
对于主小区,M_PCell=M0=44;
对于子载波间隔为15KHz的其他辅小区,M_SCell_0=Floor((70-44)/(2-1))=26;
对于子载波间隔为30KHz的其他辅小区,M_SCell_1=Floor(86/3)=28。
因此,对于载波#1,在子载波间隔为15KHz对应的时隙长度内,终端设备在载波#1上监控的PDCCH候选的最大数目为44。对于载波#4,在子载波间隔为15KHz对应的时隙长度内,终端设备在载波#4上监控的PDCCH候选的最大数目为26。对于载波#2、或载波#3、或载波#5,在子载波间隔为30KHz对应的时隙长度内,终端设备在载波#2、或载波#3、或载波#5上监控的PDCCH候选的最大数目都为28。
因此,在图9的实施例中,当小区#A为主小区时,小区#A的数目#2为44。当小区#A包括载波#1或载波#4时,小区#A的数目#2为26。当小区#A包括载波#2、载波#3、载波#5中的任意一个载波时,小区#A的数目#2为28。
方案1中,根据服务小区的小区类型,即主小区和辅小区来分配数目#1的好处在于,主小区作为终端设备和网络设备进行信令交互的载波,其信息量和重要程度都大于辅小区,终端设备将能力多分配到主小区可以加强信令交互的灵活性和可靠性。
基于场景2,方案2:平均处理的具体实现方式可以是:
W个服务小区中任一服务小区的数目#2可以通过对数目#1进行平均处理所得。
具体地,W个服务小区中任一服务小区的数目#2可以通过对下面的公式取整求得:
Mi_total/W。
如图9所示。由方案1可知,
对于子载波间隔为15KHz的2个载波,在子载波间隔为15KHz对应的时隙长度内:
Mi_total=M0_total=Floor{X0/W*M0*y}=Floor{2/5*44*4}=Floor(70.4)=70。
对于子载波间隔为30KHz的3个载波,在子载波间隔为30KHz对应的时隙长度内:
Mi_total=M1_total=Floor{X1/W*M0*y}=Floor{3/5*36*4}=Floor(86.4)=86。
根据方案2,可以确定这5个载波的数目#2:
对于子载波间隔为15KHz的每个服务小区,M_Cell_0=Floor(70/2)=35;
对于子载波间隔为30KHz的每个服务小区,M_Cell_1=Floor(86/3)=30。
其中,M_Cell_0、M_Cell_1分别表示子载波间隔为15KHz的服务小区的数目#2、子载波间隔为30KHz的服务小区的数目#2。
因此,对于载波#1或载波#4,在子载波间隔为15KHz对应的时隙长度内,终端设备在载波#1或载波#4上监控的PDCCH候选的最大数目为35。对于载波#2、或载波#3、或载波#5,在子载波间隔为30KHz对应的时隙长度内,终端设备在载波#2、或载波#3、或载波#5上监控的PDCCH候选的最大数目都为30。
方案2中,通过对数目#1平均处理,不仅方案简单,且处理复杂度低。
场景3:
W个服务小区中至少一个服务小区的调度方式为跨载波调度,且W个服务小区中的子载波间隔相同。
首先确定W个服务小区的数目#1。在场景3中,确定W个服务小区的数目#1可以采用如场景1中的方法,即,终端设备在W个服务小区上的数目#1可以等于:Mtotal=y*Mi。其中,如前所述y是{4,…,16}中的一个整数。Mi可以根据表3确定。如,服务小区的子载波间隔为15KHz,Mi为44。又如,当服务小区的子载波间隔为30KHz,Mi为36。又如,当服务小区的子载波间隔为60KHz,Mi为22。又如,当服务小区的子载波间隔为120KHz,Mi为20。例如,当服务小区的子载波间隔为15KHz,终端上报的y等于4时,W个服务小区的数目#1为y*M0=4*44=176,其对应的单位时长为15k SCS的一个时隙,即1ms。则当服务小区的子载波间隔为15KHz时,具有相同子载波间隔的W个服务小区在1ms时长内能够监控的PDCCH候选数目#1为176个,其中W可以大于4。
下面,介绍如何确定各个服务小区的数目#2。
方案1:根据服务小区的小区类型确定的具体实现方式可以是:
在场景3中,根据服务小区是主小区还是辅小区,以及该服务小区是否是调度服务小区,来确定各个服务小区的数目#1。
可以通过对以下公式取整确定各个服务小区的数目#2。
对于主小区:
M_PCell=Mi+N_PCell*Floor{(Mtotal-Mi)/(W-1)}
其中,N_PCell表示被主小区跨载波调度的服务小区个数,不包含主小区自身。需要说明的是,在本申请中,用N_PCell表示被主小区跨载波调度的服务小区的个数,在后面的实施例中,为简洁,不再赘述。还需要说明的是,在本申请中,调度的服务小区包括该服务小区自身,跨载波调度的服务小区不包括自身。例如,载波#1跨载波调度载波#2,那么载波#1调度的服务小区为载波#1和载波#2,且调度的服务小区数为2。载波#1跨载波调度的服务小区为载波#2,且跨载波调度的服务小区数为1。在后面实施例中,在不强调其区别时,其所要表达的含义是一致的。
对于调度其它辅小区的辅小区:
M1_SCell=Floor{N_SCell*(Mtotal-M_PCell)/(W-1)}
其中,N_SCell表示被辅小区调度的服务小区个数,包含辅小区自身。需要说明的是,在本申请中,用N_SCell表示被辅小区调度的服务小区的个数,在后面的实施例中,为简洁,不再赘述。
对于被调度的辅小区:
M2_SCell=0。
具体地,图10示出了一具体实施例。如图10所示,假设5个载波聚合的载波数为5,即,W=5。该5个载波分别记为:载波#1、载波#2、载波#3、载波#4、载波#5。载波#1、载波#2、载波#3、载波#4、载波#5的子载波间隔都为15KHz。结合表2和表3可以看出,该5个载波在自己的时隙时间(slot1)内,Mi为44。假设载波#1为主小区中的载波。
假设终端设备上报的y值为4,因此,W个服务小区上的数目#1为:
y*Mi=4*44=176。
根据方案1,各个服务小区的数目#2为:
对于主小区(即载波#1):
M_PCell=Mi+N_PCell*Floor{(Mtotal-Mi)/(W-1)}=44+Floor{(176-44)/(5-1)}=44+33=77;
对于调度其它辅小区的辅小区:
M1_SCell=Floor{N_SCell*(Mtotal-M_PCell)/(W-1)}=3*Floor{(176-44)/(5-1)}=3*33=99;
对于被调度的辅小区:
M2_SCell=0。
因此,通过方案1,对于载波#1,在子载波间隔为15KHz对应的时隙长度内,终端设备在载波#1上监控的PDCCH候选的最大数目为77。对于载波#4,在子载波间隔为15KHz对应的时隙长度内,终端设备在载波#4上监控的PDCCH候选的最大数目为99。对于载波#2、或载波#3、或载波#5,在子载波间隔为15KHz对应的时隙长度内,终端设备在载波#2、或载波#3、或载波#5上监控的PDCCH候选的最大数目都为0。
方案1中,根据服务小区的小区类型,即主小区和辅小区来分配数目#1的好处在于,主小区作为终端设备和网络设备进行信令交互的载波,其信息量和重要程度都大于辅小区,终端设备将能力多分配到主小区可以加强信令交互的灵活性和可靠性。
基于场景3,方案2:平均处理的具体实现方式可以是:
W个服务小区中任一服务小区的数目#2可以通过对数目#1进行平均处理所得。对于被调度的服务小区,其数目#2为0。因此,W个服务小区中任一有调度服务小区的服务小区的数目#2可以通过对下面的公式取整求得:N_Cell*(Mtotal/W)。
其中,N_Cell表示该服务小区调度的服务小区数,包括该服务小区自身。需要说明的是,在本申请中,用N_Cell表示该服务小区调度的服务小区数,在后面的实施例中,为简洁,不再赘述。
具体地,如图10所示。对于调度服务小区:
载波#1的数目#2为:M_Cell=N_Cell*(Mtotal/W)=2*Floor(176/5)=70;
载波#4的数目#2为:M_Cell=N_Cell*(Mtotal/W)=3*Floor(176/5)=105;
载波#2、载波#3、载波#5的数目#2都为0。
方案2中,通过对数目#1平均处理,不仅方案简单,且处理复杂度低。
场景4:
W个服务小区中至少一个服务小区的调度方式为跨载波调度,且至少两个服务小区的子载波间隔不同。其中W可以大于4.
首先确定W个服务小区的数目#1。在场景3中,确定W个服务小区的数目#1可以采用如场景2中的方法,即,终端设备在W个服务小区上的数目#1可以等于:Mi_total=Floor{Xi/W*Mi*y}。其中,如前所述y是{4,…,16}中的一个整数。Mi可以根据表3确定。如,服务小区的子载波间隔为15KHz,Mi为44。又如,当服务小区的子载波间隔为30KHz,Mi为36。又如,当服务小区的子载波间隔为60KHz,Mi为22。又如,当服务小区的子载波间隔为120KHz,Mi为20。
需要说明的是,相对于场景2,场景4中确定W个服务小区的数目#1时,区别在于需要确定当调度服务小区和被调度服务小区的子载波间隔不同时,针对被调度服务小区监控的PDCCH候选的最大数目是按照调度服务小区的Numerology来计算,还是按照被调 度服务小区的Numerology来计算,进一步的,还可以有两种方法。下面结合图11具体说明上述两种方法。
方法A:针对被调度服务小区服务的监控的PDCCH候选的最大数目按照调度服务小区的Numerology来计算。
例如,如图11所示,假设载波聚合的载波个数为5个,分别记为:载波#1、载波#2、载波#3、载波#4、载波#5。载波#1和载波#5的子载波间隔为15KHz。载波#2、载波#3、载波#4的子载波间隔为30KHz。载波#1调度了载波#2,载波#3调度了载波#4。按照方法A,被调度服务小区按照调度服务小区的Numerology来计算在该Numerology下的服务小区数。因此,X0=2+1=3。载波#4的子载波间隔与载波#3的子载波间隔相同,都为30KHz,因此,X1=2。
W=5,假设y=4,根据上述公式可得:
对于子载波间隔为15KHz的3个载波(载波#1、载波#2、载波#5),在子载波间隔为15KHz对应的时隙长度内(即1ms内):
Mi_total=M0_total=Floor{X0/W*M0*y}=Floor{3/5*44*4}=Floor(105.6)=105。
对于子载波间隔为30KHz的2个载波(载波#3、载波#4),在子载波间隔为30KHz对应的时隙长度内(即0.5ms内):
Mi_total=M1_total=Floor{X1/W*M1*y}=Floor{2/5*36*4}=Floor(57.6)=57。
可选的,被调度服务小区的Numerology还可根据min(μ_scheduling,μscheduled),或min(μ_scheduling,μscheduled)来计算,其中μ_scheduling表示调度服务小区对应的μ,μ_scheduled表示被调度服务小区对应的μ,max()表示取最大值,min()表示取最小值。
下面,对确定各个服务小区的数目#2的方式进行介绍。
基于场景4和方法A,方案1:根据服务小区的小区类型确定的具体实现方式可以是:
根据服务小区是主小区还是辅小区,以及该服务小区是否是调度服务小区,来确定各个服务小区的数目#1。
可以通过对以下公式取整确定各个服务小区的数目#2。
对于主小区:
M_PCell=Mi+N_PCell*Floor{(Mi_total_1-Mi)/(Xi_1-1)};
对于与主小区的子载波间隔相同的调度服务小区:
M_SCell_1=N_SCell_1*Floor{(Mi_total_1-Mi)/(Xi_1-1)};
对于与主小区的子载波间隔不同的调度服务小区:
M_SCell_2=N_SCell_2*Floor{(Mi_total_2)/Xi_2};
对于被调度服务小区:
M_SCell_3=0。
其中,
M_PCell表示主小区的数目#2;
M_SCell_1表示与主小区的子载波间隔相同的调度服务小区的数目#2;
M_SCell_2表示与主小区的子载波间隔不同的调度服务小区的数目#2;
M_SCell_3表示被调度服务小区的数目#2。
其中,
N_PCell表示被主小区跨载波调度的服务小区个数,不包含主小区自身;
N_SCell_1、N_SCell_2表示被相应的辅小区调度的服务小区个数,包含辅小区自身。
其中,
Mi_total_1、Mi_total_2分别表示与主小区子载波间隔相同的服务小区的数目#1、与主小区子载波间隔不同的服务小区的数目#1;
Xi_1、Xi_2分别表示与主小区子载波间隔相同的服务小区的小区数、与主小区子载波间隔不同的服务小区的小区数。
以图11为例具体说明上述公式。假设载波#1为主小区中的载波,与主小区的子载波间隔相同的调度服务小区的数目#1用M_SCell_1表示,与主小区的子载波间隔不同的调度服务小区的数目#1用M_SCell_2表示。
关于Xi_1、Xi_2:
按照方法A,被调度服务小区按照调度服务小区的Numerology来计算在该Numerology下的服务小区数。因此,Xi_1=X0=2+1=3。载波#4的子载波间隔与载波#3的子载波间隔相同,都为30KHz,因此,Xi_2=X1=2。
关于Mi_total_1、Mi_total_2:
同样,按照方法A,被调度服务小区按照调度服务小区的Numerology来计算在该Numerology下的服务小区数。载波#4的子载波间隔与载波#3的子载波间隔相同,都为30KHz。如前所述,
对于子载波间隔为15KHz的3个载波(载波#1、载波#2、载波#5),在子载波间隔为15KHz对应的时隙长度内:
Mi_total_1=Mi_total=M0_total=Floor{X0/W*M0*y}=Floor{3/5*44*4}=Floor(105.6)=105。
对于子载波间隔为30KHz的2个载波(载波#3、载波#4),在子载波间隔为30KHz对应的时隙长度内:
Mi_total_2=Mi_total=M1_total=Floor{X1/W*M1*y}=Floor{2/5*36*4}=Floor(57.6)=57。
因此,各个服务小区的数目#2如下。
主小区的数目#2,即载波#1的数目#2:
M_PCell=
Mi+N_PCell*Floor{(Mi_total_1-Mi)/(Xi_1-1)}=44+1*Floor{(105-44)/(3-1)}=74。
其中,N_PCell表示被主小区跨载波调度的服务小区个数,在图11的示例图中,载波#1跨载波调度载波#2,所以N_PCell为1。
对于与主小区的子载波间隔相同的调度服务小区的数目#2,即载波#5的数目#2:
M_SCell_1=N_SCell_1*Floor{(Mi_total_1-Mi)/(Xi_1-1)}=1*Floor{(105-44)/(3-1)}=30。
其中,N_SCell_1表示被载波#5调度的服务小区数,在图11的示例图中,载波#5调度的服务小区数为1,所以N_SCell_1为1。
对于与主小区的子载波间隔不同的调度服务小区的数目#2,即载波#3的数目#2:
M_SCell_2=N_SCell_2*Floor{(Mi_total_2)/(Xi_2-1)}=2*Floor{57/2}=56。
其中,N_SCell_2表示被载波#3调度的服务小区数,在图11的示例图中,载波#3调度的服务小区数为2,即本身和载波#4。所以N_SCell_2为2。
对于被调度服务小区的数目#2,即载波#2和载波#4:
M_SCell_3=0。
因此,被调度服务小区服务的监控的PDCCH候选的最大数目按照调度服务小区的Numerology来计算时,通过方案1,对于载波#1,在子载波间隔为15KHz对应的时隙长度内,终端设备在载波#1上监控的PDCCH候选的最大数目为74。对于载波#5,在子载波间隔为15KHz对应的时隙长度内,终端设备在载波#5上监控的PDCCH候选的最大数目为30。对于载波#3,在子载波间隔为30KHz对应的时隙长度内,终端设备在载波#3上监控的PDCCH候选的最大数目为56。对于载波#2或载波#4,终端设备在载波#2或载波#4上监控的PDCCH候选的最大数目都为0。
方案1中,根据服务小区的小区类型,即主小区和辅小区来分配数目#1的好处在于,主小区作为终端设备和网络设备进行信令交互的载波,其信息量和重要程度都大于辅小区,终端设备将能力多分配到主小区可以加强信令交互的灵活性和可靠性。
基于场景4和方法#A,方案2:平均处理的具体实现方式可以是:
W个服务小区中任一服务小区的数目#2可以通过对数目#1进行平均处理所得。对于被调度的服务小区的数目#2,都为0。
因此,一种可能的实现方式为:W个服务小区中任一调度服务小区的数目#2可以通过对下面的公式取整求得:Mi_total/Xi。
具体地,如图11所示。按照方法A,被调度服务小区按照调度服务小区的Numerology来计算该Numerology的服务小区数。因此,X0=2+1=3。载波#4的子载波间隔与载波#3的子载波间隔相同,都为30KHz,因此,X1=2。
子载波#1或子载波#5的数目#2为:
M_Cell=Floor(M0_total/X0)=Floor(105/3)=35;
子载波#3的数目#2为:
M_Cell=Floor(M1_total/X1)=Floor(57/2)=28。
子载波#2或子载波#4的数目#2都为0。
另一种可能的实现方式为:W个服务小区中任一调度服务小区的数目#2可以通过对下面的公式取整求得:N_Cell*(Mi_total/Xi)。其中,N_Cell表示服务小区调度的该Numerology的服务小区数。
具体地,如图11所示。X0=2+1=3,X1=2。
子载波#1的数目#2为:M_Cell=N_Cell*Floor(M0_total/X0)=2*Floor(105/3)=70;
子载波#5的数目#2为:M_Cell=N_Cell*Floor(M0_total/X0)=1*Floor(105/3)=35;
子载波#3的数目#2为:M_Cell=N_Cell*Floor(M1_total/X1)=2*Floor(57/2)=56。
子载波#2或子载波#4的数目#2都为0。
方案2中,通过对数目#1平均处理,方案简单,处理复杂度低。
方法B:针对被调度服务小区服务的监控的PDCCH候选的最大数目按照被调度服务小区的Numerology来计算。
例如,如图11所示,按照方法B,被调度服务小区按照被调度服务小区的Numerology来计算该Numerology的服务小区数。因此,X1=1+1+1=3。载波#1的子载波间隔与载波#5的子载波间隔相同,都为15KHz,因此,X0=1+1=2。
W=5,假设y=4,根据上述公式可得:
对于子载波间隔为15KHz的2个载波(载波#1、载波#5),在子载波间隔为15KHz对应的时隙长度内:
Mi_total=M0_total=Floor{X0/W*M0*y}=Floor{2/5*44*4}=Floor(70.4)=70。
对于子载波间隔为30KHz的2个载波(载波#2、载波#3、载波#4),在子载波间隔为15KHz对应的时隙长度内:
Mi_total=M1_total=Floor{X1/W*M1*y}=Floor{3/5*36*4}=Floor(86.4)=86。
下面,对确定各个服务小区的数目#2的方式进行介绍。
基于场景4和方法B,方案1:根据服务小区的小区类型确定的具体实现方式可以是:
同样,在场景4中,根据服务小区是主小区还是辅小区,以及该服务小区是否是调度服务小区,来确定各个服务小区的数目#2。
可以通过对以下公式取整确定各个服务小区的数目#2。
对于主小区:
M_PCell=Mi+N_PCell*Floor{(Mi_total_1-Mi)/(Xi_1-1)};
对于与主小区的子载波间隔相同的调度服务小区:
M_SCell_1=N_SCell_1*Floor{(Mi_total_1-Mi)/(Xi_1-1)};
对于与主小区的子载波间隔不同的调度服务小区:
M_SCell_2=N_SCell_2*Floor{(Mi_total_2)/Xi_2};
对于被调度服务小区:
M_SCell_3=0。
其中,
M_PCell表示主小区的数目#2;
M_SCell_1表示与主小区的子载波间隔相同的调度服务小区的数目#2;
M_SCell_2表示与主小区的子载波间隔不同的调度服务小区的数目#2;
M_SCell_3表示被调度服务小区的数目#2。
其中,
N_PCell表示被主小区跨载波调度的服务小区数,不包含主小区自身;
N_SCell_1、N_SCell_2表示相应的辅小区调度的服务小区数,包含辅小区自身。
其中,
Mi_total_1、Mi_total_2分别表示与主小区子载波间隔相同的服务小区的数目#1、与主小区子载波间隔不同的服务小区的数目#1;
Xi_1、Xi_2分别表示与主小区子载波间隔相同的服务小区的小区数、与主小区子载波间隔不同的服务小区的小区数。
以图11为例具体说明上述公式。假设载波#1为主小区中的载波,与主小区的子载波间隔相同的调度服务小区的数目#1用M_SCell_1表示,与主小区的子载波间隔不同的调度服务小区的数目#1用M_SCell_2表示。
关于Xi_1、Xi_2:
按照方法B,被调度服务小区按照被调度服务小区的Numerology来计算在该Numerology下的服务小区数,因此Xi_1=X0_1=1+1=2。载波#2、载波#4的子载波间隔与 载波#3的子载波间隔相同,都为30KHz,因此,Xi_2=X1_2=1+1+1=3。
关于Mi_total_1、Mi_total_2:
同样,按照方法B,被调度服务小区按照被调度服务小区的Numerology来计算在该Numerology下的服务小区数,因此:
对于子载波间隔为15KHz的2个载波(载波#1、载波#5),在子载波间隔为15KHz对应的时隙长度内:
Mi_total_1=Mi_total=M0_total=Floor{X0/W*M0*y}=Floor{2/5*44*4}=70。
对于子载波间隔为30KHz的3个载波(载波#2、载波#3、载波#4),在子载波间隔为30KHz对应的时隙长度内:
Mi_total_2=Mi_total=M1_total=Floor{X1/W*M1*y}=Floor{3/5*36*4}=86。
因此,各个服务小区的数目#2如下。
主小区的数目#2,即载波#1的数目#2:
M_PCell=
Mi+N_PCell*Floor{(Mi_total_1-Mi)/(Xi_1-1)}=44+1*Floor{(70-44)/(2-1)}=26。
其中,N_PCell表示被主小区跨载波调度的服务小区数,在图11的示例图中,载波#1跨载波调度载波#2,所以N_PCell为1。
对于与主小区的子载波间隔相同的调度服务小区的数目#2,即载波#5的数目#2:
M_SCell_1=N_SCell_1*Floor{(Mi_total_1-Mi)/(Xi_1-1)}=1*Floor{(70-44)/(2-1)}=26;
其中,N_SCell_1表示被载波#5调度的载波个数,在图11的示例图中,载波#5调度的载波数为1,所以N_SCell_1为1。
对于与主小区的子载波间隔不同的调度服务小区的数目#2,即载波#3的数目#2:
M_SCell_2=N_SCell_2*Floor{(Mi_total_2)/(Xi_2-1)}=2*Floor{86/3}=56;
其中,N_SCell_2表示被载波#3调度的服务小区数,在图11的示例图中,载波#3调度的服务小区数为2,即本身和载波#4。所以N_SCell_2为2。
对于被调度服务小区的数目#2,即载波#2和载波#4:M_SCell_3=0。
因此,为被调度服务小区服务的监控的PDCCH候选的最大数目按照被调度服务小区的Numerology来计算时,通过方案1,对于载波#1,在子载波间隔为15KHz对应的时隙长度内,终端设备在载波#1上监控的PDCCH候选的最大数目为26。对于载波#5,在子载波间隔为15KHz对应的时隙长度内,终端设备在载波#5上监控的PDCCH候选的最大数目为26。对于载波#3,在子载波间隔为30KHz对应的时隙长度内,终端设备在载波#3上监控的PDCCH候选的最大数目为56。对于载波#2或载波#4,终端设备在载波#2或载波#4上监控的PDCCH候选的最大数目都为0。
方案1中,根据服务小区的小区类型,即主小区和辅小区来分配数目#1的好处在于,主小区作为终端设备和网络设备进行信令交互的载波,其信息量和重要程度都大于辅小区,终端设备将能力多分配到主小区可以加强信令交互的灵活性和可靠性。
基于场景4和方法#B,方案2:平均处理的具体实现方式可以是:
W个服务小区中任一服务小区的数目#2可以通过对数目#1进行平均处理所得。对于被调度服务小区的数目#2,都为0。
因此,一种可能的实现方式为:W个服务小区中任一调度服务小区的数目#2可以通 过对下面的公式取整求得:Mi_total/Xi。
具体地,如图11所示。按照方法B,被调度服务小区按照被调度服务小区的Numerology来计算在该Numerology下的服务小区数,因此,X0=1+1=2,X1=1+1+1=3。
子载波#1或子载波#5的数目#2为:
M_Cell=Floor(M0_total/X0)=Floor(70/2)=35;
子载波#3的数目#2为:
M_Cell=Floor(M1_total/X1)=Floor(86/3)=28。
子载波#2或子载波#4的数目#2都为0。
另一种可能的实现方式为:W个服务小区中任一调度服务小区的数目#2可以通过对下面的公式取整求得:N_Cell*(Mi_total/Xi)。其中,N_Cell表示服务小区调度的服务小区数。
具体地,如图11所示。X0=1+1=2,X1=1+1+1=3。
子载波#1的数目#2为:M_Cell=N_Cell*Floor(M0_total/X0)=2*Floor(70/2)=70;
子载波#5的数目#2为:M_Cell=N_Cell*Floor(M0_total/X0)=1*Floor(70/2)=35;
子载波#3的数目#2为:M_Cell=N_Cell*Floor(M1_total/X1)=2*Floor(86/3)=56。
子载波#2或子载波#4的数目#2都为0。
方案2中,通过对数目#1平均处理,方案简单,处理复杂度低。
上文结合图8至图11详细说明了四种场景下,如何将终端设备在多个服务小区上监控的PDCCH候选的最大总数分配到各个服务小区,即确定终端设备在各个服务小区上监控的PDCCH候选的最大数目。那么当载波聚合中包括跨载波调度的服务小区时,如何确定终端设备在调度服务小区上监控的PDCCH候选的最大数目,下面结合图12和图13具体说明。
当调度服务小区和被调度服务小区有不同的Numerology时,确定调度服务小区的数目#1可以采用与场景2类似方法。其中,在本申请实施例中,不同Numerology和混合Numerology表达的意思一样。需要说明的是,相对于场景2,区别在于在确定调度服务小区的数目#1(即Mtotal)时,先需要确定当为被调度服务小区服务的监控的PDCCH候选的最大数目按照调度服务小区的Numerology来计算(即前述的方法A),还是按照被调度服务小区的Numerology来计算(即前述的方法B)。
首先,跨载波调度的场景至少包括以下几种:
情况1,调度服务小区的子载波间隔小于被调度服务小区的子载波间隔。如图12中的图(1)所示,载波#1的子载波间隔为15KHz,载波#2的子载波间隔为30KHz。载波#1调度载波#2。
情况2,调度服务小区的子载波间隔大于被调度服务小区的子载波间隔。如图12中的图(2)所示,载波#1的子载波间隔为15KHz,载波#2的子载波间隔为30KHz。载波#2调度载波#1。
情况3,调度服务小区和被调度服务小区的子载波间隔相同。
本申请实施例主要考虑情况1和情况2。下面结合两种情况具体说明。
对于情况1,调度服务小区上的一个时隙对应被调度服务小区的多个时隙。
如图12中的图(1),载波#1的时隙长度为载波#2的两倍。在这种情况下,有两种 方法确定为被调度服务小区服务的监控的PDCCH候选的最大数目。
方法A:为被调度服务小区服务的监控的PDCCH候选的最大数目按照调度服务小区的Numerology来计算。
如图12中的图(1),载波#1调度载波#2,为载波#2服务的监控的PDCCH候选的最大数目按照载波#1的Numerology来计算。因此,调度服务小区上监控的PDCCH候选的最大数目为:44+44=88。
通过使用调度服务小区的Numerology来确定为被调度服务小区增加的PDCCH候选的数目,可以避免给调度服务小区增加太多的处理负担,如处理延时、信道估计的复杂度等。
方法B:为被调度服务小区服务的监控的PDCCH候选的最大数目按照被调度服务小区的Numerology来计算。
使用被调度服务小区的Numerology来确定为被调度服务小区增加的PDCCH候选的数目。按照这个原则,由于被调度服务小区的时隙长度小于调度服务小区上的时隙长度,在调度服务小区上的PDCCH候选的数目求和前需要将PDCCH候选的数目统一到相同的时间。调度服务小区对应的时隙长度长,因此要将被调度服务小区上的PDCCH候选的数目转换成多个时隙的PDCCH候选的数目。
具体地,如图12中的图(1),载波#1的时隙长度为载波#2的时隙长度的2倍,因此,在载波#1的时隙长度内,载波#2的PDCCH候选的数目为:36*2=72.因此,调度服务小区上的PDCCH候选的数目为:44+36*2=116。
对于情况2,调度服务小区的子载波间隔大于被调度服务小区的子载波间隔。
使用被调度服务小区的Numerology来确定为被调度服务小区增加的PDCCH候选的数目。按照这个原则,由于被调度服务小区的时隙长度大于调度服务小区上的时隙长度,在调度服务小区上的PDCCH候选的数目求和前,需要将PDCCH候选的数目平均分到调度服务小区时隙长度内。因此要将被调度服务小区上的PDCCH候选的数目转换成调度服务小区上一个时隙的PDCCH候选的数目。
具体地,如图12中的图(2),载波#1的时隙长度为载波#2的时隙长度的2倍,因此,在载波#2的时隙长度内,载波#1的PDCCH候选的数目为:44/2=22.因此,调度服务小区上的PDCCH候选的数目为:36+44/2=58。
调度服务小区上可以有一个或多个被调度服务小区。因此:
对于情况1的方法A,
需要增加的PDCCH候选的数目:Ks*M(μ_scheduling),Ks为被调度服务小区的个数。此时μ_scheduled≥μ_scheduling。
调度服务小区上PDCCH候选的数目为:M(μ_scheduling)+Ks*M(μ_scheduling)。
其中,
M(μ)表示Numerolgy为μ的单载波的PDCCH候选的数目;
μ_scheduling表示调度服务小区对应的μ,μ_scheduled表示被调度服务小区对应的μ。
例如,以图12中的(1)为例。载波#1跨载波调度1个,因此,Ks=1。因此:
需要增加的PDCCH候选的数目:Ks*M(μ_scheduling)=1*44=44。
PDCCH候选的数目为:M(μ_scheduling)+Ks*M(μ_scheduling)=44+44=88。
对于情况1的方法B:
需要增加的PDCCH候选的数目:Ks*M(μk)*2 (μ_scheduled-μ_scheduling)。其中,Ks为被调度服务小区的个数。此时μ_scheduled≥μ_scheduling。需要说明的是这里的μk就是μ_scheduled,适用于后面所有的μk描述。
调度服务小区上PDCCH候选的数目为:M(μ_scheduling)+Ks*M(μk)*2 (μ_scheduled-μ_scheduling)
例如,以图12中的(1)为例。载波#1跨载波调度1个,自身调度的1个,因此,Ks=1。载波#1的子载波间隔为15KHz,载波#2的子载波间隔为30KHz。由表2和表3可以看出,载波#1对应的μ_scheduling=0,载波#2对应的μ_scheduled=1。因此:
需要增加的PDCCH候选的数目:Ks*M(μk)*2 (μ_scheduled-μ_scheduling)=1*36*2 1-0=72。
调度载波上PDCCH候选的数目为:
M(μ_scheduling)+Ks*M(μk)*2 (μ_scheduled-μ_scheduling)=44+1*36*2 1-0=116。
对于情况2:
对每个被调度服务小区需要增加的PDCCH候选的数目为:
M(μ_scheduled)/2 (μ_scheduling-μ_scheduled)。当有K C个被调度服务小区时,需要增加的PDCCH候选的数目为这K C个被调度服务小区上PDCCH候选的数目的和,即:
Figure PCTCN2019099371-appb-000003
因此,调度服务小区上PDCCH候选的数目为:
Figure PCTCN2019099371-appb-000004
Figure PCTCN2019099371-appb-000005
此时μ_scheduled<μ_scheduling。
例如,以图12中的(2)为例。载波#2跨载波调度一个载波,即载波#1。因此:
需要增加的PDCCH候选的数目为:
Figure PCTCN2019099371-appb-000006
因此,调度服务小区上PDCCH候选的数目为:
Figure PCTCN2019099371-appb-000007
假设调度服务小区的Numerology为μ_scheduling,调度服务小区上的Numerology为μ_scheduled或μk。当一个调度服务小区上既有μ_scheduled≥μ_scheduling的被调度服务小区,又有μ_scheduled<μ_scheduling的被调度服务小区,那么调度服务小区上的PDCCH候选的数目为以上情况1和情况2的求和。需要说明的是,此时调度服务小区对应的M(μ_scheduling)只需加一次即可。
对于方法A,调度服务小区上的PDCCH候选的数目为:
Figure PCTCN2019099371-appb-000008
其中,
Ks为被调度服务小区的个数中满足μ_scheduled≥μ_scheduling的载波个数,K C为被调度服务小区中满足μ_scheduled<μ_scheduling的载波个数。
如图13所示,载波#1、载波#2、载波#3聚合。载波#1的子载波间隔为30KHz,其对应μ的为1,Mi=M1=36。载波#2的子载波间隔为15KHz,其对应μ的为0,Mi=M0=44。载波#3的子载波间隔为60KHz,其对应μ的为2,Mi=M2=22。载波#1调度载波#2、载波#3。
因此,对于方法A,调度服务小区上的PDCCH候选的数目为:
Figure PCTCN2019099371-appb-000009
相应的时隙长度为30KHz的子载波间隔所对应的时隙长度,即0.5ms。
对于方法B,调度服务小区上的PDCCH候选的数目为:
Figure PCTCN2019099371-appb-000010
其中K C为所有被调度服务小区的个数。
具体地,如图13所示。对于方法B,调度服务小区上的PDCCH候选的数目为:
Figure PCTCN2019099371-appb-000011
另外,还有一种可以很快地确定调度服务小区上能够监控的PDCCH候选的最大数目的方法。
由于现有终端设备都是从LTE的终端设备演进过来的,原LTE系统中只支持15KHz的子载波间隔。NR的终端设备在LTE终端设备的基础上提高了一定的处理能力,但仍然在一定时间内不能超过一个硬限制。在LTE阶段,当终端设备支持载波聚合后,当聚合的载波个数小于或等于4时,调度服务小区上能够监控的PDCCH候选的最大数目可以与调度的服务小区的个数成正比。以服务小区的子载波间隔为15KHz为例,即可支持调度服务小区上的PDCCH候选的数目为:Ks*M(μ=0)=44*Ks,其中Ks为调度服务小区调度的小区总数,包括调度服务小区自己。此时的时间单元指的是15KHz的子载波间隔的时间单元,即1ms的时隙。当然随着终端设备处理能力的不断提高,原44的值也可以有所增长。例如调度服务小区上能够监控的PDCCH候选的最大数目可以是一个大于或等于44的数目与调度的服务小区个数的乘积,相应的时间单位是1ms。
当所述终端设备支持一个最大数目为X的载波聚合时,可以表示该终端设备支持的能够监控的PDCCH候选的最大数目为X*44,其对应的时间单元为15KHz的子载波间隔的时隙长度(即1ms)。例如终端设备如果支持最大3个载波的聚合,则该终端设备能够监控的PDCCH候选的最大数目为3*44=132,其对应的单位时长为15KHz的子载波间隔的时隙长度(即1ms)。例如终端设备如果支持最大4个载波的聚合,则该终端设备能够监 控的PDCCH候选的最大数目为4*44=176,其对应的单位时长为15KHz的子载波间隔的时隙长度(即1ms)。在这种情况情况下,终端设备能够监控的PDCCH候选的第一数目是根据该终端设备最大可支持的载波个数来确定的,其对应的单位时长为15KHz的子载波间隔的时隙长度(即1ms)。
当聚合的载波个数大于4时,该终端设备支持的能够监控的PDCCH候选的最大数目为y*44,其对应的时间单元为15k SCS的时隙长度(即1ms)。其中y为终端设备监控PDCCH的能力参数。例如,当聚合的载波个数为5时,终端设备上报的y值为4时,表示该终端设备能够监控的PDCCH候选的最大数目为4*44=176,其对应的时间单元为15kSCS的时隙长度(即1ms)。
此外,假设已知调度服务小区上能够监控的PDCCH候选的最大数目,且调度服务小区的调度的服务小区数为R时,如何确定为被调度服务小区服务的PDCCH候选的数目。其中,R大于或等于2。其中,调度服务小区的调度的服务小区包括调度服务小区本身。下面,为简洁,不失一般性,以调度服务小区为小区#1、被小区#1跨载波调度的服务小区为小区#2。假设在小区#1上配置的监控PDCCH候选的数目为数目#A,小区#1上能够为小区#1服务的PDCCH候选的数目为数目#B,小区#1上能够为小区#2服务的PDCCH候选的数目为数目#C。应理解,小区#1可以调度1个或多个服务小区,此处,仅以小区#1调度小区#2为例进行示例性说明。
终端设备接收网络设备在小区#1上配置的PDCCH候选的数目#A;终端设备根据数目#A确定为小区#2服务的PDCCH候选的数目#B。
可选地,终端设备根据数目#A确定为小区#1服务的PDCCH候选的数目#B,终端设备根据数目#B以及以下至少一个参数确定数目#C:PDCCH候选个数折算因子、PDCCH候选个数偏移值、所述第一服务小区的子载波间隔、所述第二服务小区的子载波间隔、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的最大数目、所述第二服务小区在第二单位时长内能够监控的PDCCH候选的最大数目、公共搜索空间CSS的偏移值、被所述第一服务小区调度的服务小区数。
其中,终端设备确定调度服务小区上为各个被调度服务小区服务的PDCCH候选的数目,也可以理解为,终端设备确定调度服务小区上针对各个被调度服务小区的PDCCH候选数目。具体地,以小区#1调度R个服务小区(包括小区#1本身)为例进行示例性说明。假设在小区#1上配置的监控PDCCH候选的数目为数目#A。
终端设备确定调度服务小区上为各个被调度服务小区服务的PDCCH候选的数目,步骤可以如下:
目前,小区在配置一个小区的搜索空间(包括PDCCH候选个数)时,并没有考虑到跨载波调度的情况,因此其参数的配置受限于单小区的情况。因此在进行针对各个被调度小区的PDCCH候选的数目分配前,需要将监控的PDCCH的数目扩展到多个小区的PDCCH的数目。
首先,将在小区#1上配置的监控PDCCH候选的数目#A乘以被调度的服务小区的个数R。假设数目#A与R的乘积为K,因此可以得到总共K个监控的PDCCH候选的数目。
然后,终端可以根据如下的方式将K个监控的PDCCH候选的数目分配到小区#1和被小区#1跨载波调度的服务小区。
具体地,以小区#1调度小区#2为例进行说明。
当小区#1和小区#2的子载波间隔相同时:
一种可能的实现方式是,根据小区的类型(即,主小区和辅小区)来确定为小区#1服务的PDCCH候选的数目、为小区#2服务的PDCCH候选的数目。具体地,可以参考上述基于场景1至场景4中任一场景下的方案1中,对于子载波间隔相同的主小区和辅小区,如何确定各自的PDCCH候选的数目#2的具体实现方式,此处为简洁,不再赘述。
另一种可能的实现方式是,采用直接平分的方式来确定为小区#1服务的PDCCH候选的数目、为小区#2服务的PDCCH候选的数目。具体地,可以参考上述基于场景1至场景4中任一场景下的方案2中,对于子载波间隔相同的主小区和辅小区,如何确定各自的PDCCH候选的数目#2的具体实现方式,此处为简洁,不再赘述。
当小区#1和小区#2的子载波间隔不相同时:
一种可能的实现方式是,根据小区的类型(即,主小区和辅小区)来确定为小区#1服务的PDCCH候选的数目、为小区#2服务的PDCCH候选的数目。具体地,可以参考上述基于场景1至场景4中任一场景下的方案1中,对于子载波间隔不同的主小区和辅小区,如何确定各自的PDCCH候选的数目#2的具体实现方式,此处为简洁,不再赘述。
另一种可能的实现方式是,采用直接平分的方式来确定为小区#1服务的PDCCH候选的数目、为小区#2服务的PDCCH候选的数目。具体地,可以参考上述基于场景1至场景4中任一场景下的方案2中,对于子载波间隔不同的主小区和辅小区,如何确定各自的PDCCH候选的数目#2的具体实现方式,此处为简洁,不再赘述。
此外,在考虑主小区上的能够监控的PDCCH候选的数目时,还可以额外考虑增加公共搜索空间的PDCCH候选的数目。使得主小区上能监控比其他辅小区更多的PDCCH候选的数目。
上文,结合图7至图13描述了如何确定载波聚合下,各个载波上的PDCCH候选的最大数目,以及当有跨载波调度时,如何确定在调度服务小区上为调度服务小区和被调度服务小区服务的PDCCH候选的数目。下面,提供另一种确定被调度服务小区的候选PDCCH数目的方法。
终端设备获取调度服务小区的搜索空间集合的配置信息,所述搜索空间集合的配置信息包括候选控制信道数量的配置信息;终端设备获取跨载波调度指示信息,所述跨载波调度指示信息包括被调度服务小区的索引信息;所述终端设备根据所述候选控制信道数量的配置信息和所述被调度服务小区的索引信息确定每个被调度服务小区的候选控制信道数量。
可选地,终端设备根据被调度服务小区的子载波间隔确定每个被调度服务小区的候选控制信道数量。
可选地,被调度服务小区的候选控制信道数量满足,N*M (L) X0*p,其中,M (L) X0为所述候选控制信道数量的配置信息配置的聚合等级为L的候选控制信道的数量;Q为与被调度服务小区具有相同子载波间隔的服务小区的数量,Q个服务小区包括被调度服务小区和/或调度服务小区;N为包括调度服务小区和被调度服务小区的服务小区个数,p为与被调度服务小区的子载波间隔有关的实数或与终端设备盲检性能有关的实数。
可选地,所述被调度服务小区的候选控制信道数量满足,Q/N*M (L) X0*p,其中,M (L) X0 为所述候选控制信道数量的配置信息配置的聚合等级为L的候选控制信道的数量,Q为与被调度服务小区具有相同子载波间隔的载波的数量,Q个服务小区包括被调度服务小区和/或调度服务小区;N为包括调度服务小区和被调度服务小区的服务小区个数,p为与被调度服务小区的子载波间隔有关的实数或与终端设备盲检性能有关的实数。
可选地,p可以为终端设备上报的可支持的调度参数的数量,p为大于4的正整数;或者,p可以为调度参数的子载波间隔大小与被调度参数子载波间隔大小的比值,p为2的整数倍。
本申请实施例中,终端设备获取调度服务小区的搜索空间集合的配置信息,其中,候选控制信道数量的配置信息指示聚合等级为L的候选PDCCH数量为M (L) X0;终端设备配置了跨载波调度的配置信息,所述跨载波调度的配置信息包括被调度服务小区的索引信息,例如,跨载波配置信息包括的被调度服务小区的索引(identity,ID)信息,该索引信息包括{1,2,3,4},即,被调度服务小区的数量为4个,且这4个服务小区的ID分别为1,2,3,4,其中,被调度载波的载波不包括调度载波。
在一种可行的实施方式中,终端设备根据候选控制信道数量的配置信息和所述调度服务小区的索引信息确定每个被调度服务小区的候选控制信道数量,还包括,根据所述被调度服务小区的子载波间隔确定每个被调度服务小区的候选控制信道数量;
具体的,被调度服务小区包括X1,X2,X3,X4,其中,调度服务小区上配置聚合等级为L的候选PDCCH数量为M (L) X0,而且,被调度服务小区的子载波间隔为15kHz,被调度服务小区X1,X2的子载波间隔为15kHz;被调度服务小区X3,X4的子载波间隔为30kHz;被调度服务小区的聚合等级L,候选PDCCH的数量满足,Q/N*M (L) X0*p,其中,Q为与被调度服务小区具有相同子载波间隔的服务小区的数量,其中,Q个服务小区包括被调度服务小区和/或调度服务小区;N为包括调度服务小区和被调度服务小区的服务小区个数,p为与被调度服务小区的子载波间隔有关的实数或与终端设备盲检性能有关的实数。
在申请实施例中,假设被调度服务小区X1上的候选PDCCH的数量为,3/5*M (L) X0*p;被调度服务小区X2上的候选PDCCH的数量为,3/5*M (L) X0*p;被调度服务小区X3上的候选PDCCH的数量为,2/5·M (L) X0·p;被调度服务小区X2上的候选PDCCH的数量为,2/5*M (L) X0*p。
或者,被调度服务小区的聚合等级L,候选PDCCH的数量满足,N*M (L) X0*p,其中,Q为与被调度服务小区具有相同子载波间隔的服务小区的数量,其中,Q个服务小区包括被调度服务小区和/或调度服务小区;N为包括调度服务小区和被调度服务小区的服务小区个数,p为与被调度服务小区的子载波间隔有关的实数或与终端设备盲检性能有关的实数。
在本例子中,被调度服务小区X1上的候选PDCCH的数量为,5*M (L) X0*p;被调度服务小区X2上的候选PDCCH的数量为,5*M (L) X0*p;被调度服务小区X3上的候选PDCCH的数量为5*M (L) X0*p;被调度服务小区X2上的候选PDCCH的数量为,5*M (L) X0*p。
p可以为终端设备上报的可支持的调度服务小区的数量,取值为大于4的正整数;或者,p可以为调度服务小区的子载波间隔大小与被调度服务小区子载波间隔大小的比值;例如,若调度服务小区的子载波间隔的大小为15kHz,被调度服务小区的子载波间隔的大 小为30kHz,则p的取值为15/30=0.5。
上文,结合图7至图13描述了如何确定载波聚合下,各个载波上的PDCCH候选的最大数目,以及当有跨载波调度时,如何确定在调度服务小区上为调度服务小区和被调度服务小区服务的PDCCH候选的数目。下面描述如何确定各个载波上的非重叠CCE的最大数目。CCE个数的大小和PDCCH候选的最大数目有直接的联系,因此确定非重叠CCE的数目的方法与确定PDCCH候选的最大数目的方法类似。此处,为了简洁,不再详细描述。
网络设备获取终端设备在T个服务小区上能够监控的非重叠CCE的第一数目,其中,T为大于或等于2的整数;
网络设备配置终端设备在第一服务小区上监控的非重叠CCE的第二数目,所述第二数目是所述网络设备根据所述终端设备在所述第一服务小区上能够监控的非重叠CCE的第三数目确定的,所述第三数目是所述网络设备根据所述第一数目确定的,所述第一服务小区属于所述T个服务小区。
同图7至图13中的实施例类似,仍用数目#1来表示终端设备在多个服务小区上共监控的非重叠CCE的最大数目。用数目#2来表示载波聚合场景下,终端设备在一个服务小区上监控的非重叠CCE的最大数目。用数目#3来表示在单载波时,终端设备在单位时长内、在一个服务小区上监控的非重叠CCE的最大数目。其中,单位时长可以为该服务小区的子载波间隔对应的时隙长度。数目#3可以通过表4来确定。
在本申请实施例中,假设网络设备为终端设备配置W个服务小区,即载波聚合在载波数为W。W个服务小区包括T个服务小区,W为大于或等于T的整数。确定数目#2至少包括两种方案,方案1是根据服务小区的小区类型确定,该小区类型包括:主小区和辅小区。方案2是通过对数目#1进行平均处理确定。
本申请实施例中,仍根据W个服务小区中的服务小区的子载波间隔是否相同,和/或,调度方式为自调度还是跨载波调度,分为四个场景,下面结合不同的场景具体说明上述两种方案。
场景1:
W个服务小区的调度方式均为自调度,且W个服务小区的子载波间隔相同。
此时,方案1:根据服务小区的小区类型确定的具体实现方式可以是:
可选地,所述T个服务小区包括至少一个辅小区,当所述T个服务小区的子载波间隔参数相同,小区#A为主小区时,网络设备根据主小区的数目#2和T个服务小区的数目#1确定终端设备在辅小区上能够监控的PDCCH候选的数目。
具体地,可以通过对以下公式取整确定主小区的数目#2、辅小区的数目#2。其中,取整方式可以用向下取整,可表示为:Floor()。
M_PCell=Mi;
M_SCell=Floor{(Mtotal-M_PCell)/(W-1)}。
其中,
M_PCell表示主小区的数目#2。需要说明的是,在本申请中,用M_PCell表示主小区的数目#2,在后面的实施例中,为简洁,不再赘述。
Mi表示主小区的数目#3。例如,当i=0时,Mi=M0=56;当i=1时,Mi=M1=56;当 i=2时,Mi=M2=48;当i=3时,Mi=M3=32。
M_SCell表示任一辅小区的数目#2。需要说明的是,在本申请中,用M_SCell表示任一辅小区的数目#2,在后面的实施例中,为简洁,不再赘述。
Mtotal表示W个服务小区的数目#1。
当然,任何可以取整的方式都属于本申请实施例的保护范围。例如,除了上述的向下取整,可表示为:Floor(),或,数学符号
Figure PCTCN2019099371-appb-000012
取整方式还可以为向上取整,可表示为:ceil(),或,数学符号
Figure PCTCN2019099371-appb-000013
还可以用四舍五入的方式进行取整,可表示为:round()。
此外,在本申请实施例中,假设对类似于:A+B*C的这种公式作向下取整,关于取整的方式可以有多种,例如可以是:Floor{A+B*C},或也可以是A+Floor{B*C}。本申请实施例对此不作限定,任何可以取整的方式都属于本申请实施例的保护范围。下面,为简洁,不再一一赘述。
另外,关于Mtotal的计算方式,在场景1中,终端设备在W个服务小区上的数目#1可以等于:y*Mi。其中,如前所述y为终端设备上报的盲检能力的参数,可以是{4,…,16}中的一个整数。Mi可以根据表4确定。如,当主小区的子载波间隔为15KHz,Mi为56。又如,当主小区的子载波间隔为30KHz,Mi为56。又如,当主小区的子载波间隔为60KHz,Mi为48。又如,当主小区的子载波间隔为120KHz,Mi为32。
具体地,如图8所示,假设5个载波聚合的载波数为5,即,W=5。该5个载波分别记为:载波#1、载波#2、载波#3、载波#4、载波#5。载波#1、载波#2、载波#3、载波#4、载波#5的子载波间隔都为15KHz。结合表2和表4可以看出,该5个载波在自己的时隙时间(slot1)内,Mi为56。假设载波#1为主小区中的载波。
假设终端设备上报的y值为4,因此,W个服务小区上的数目#1为:Mtotal=y*Mi=4*56=224。
因此,各个服务小区的数目#2为:
主小区的数目#2为:M_PCell=Mi=56;
辅小区的数目#2为:M_SCell=Floor{(Mtotal-M_PCell)/(W-1)}=Floor{(224-56)/4}=42。
因此,当小区#A为主小区时,小区#A的数目#2为56。当小区#A为辅小区时,小区#A的数目#2为42。
应理解,上述以取整方式为向下取整为例进行示例性说明,此处也可以用其他取整方式、例如,上述提到的向上取整,或,四舍五入。
方案1中,根据服务小区的小区类型,即主小区和辅小区来分配数目#1的好处在于,主小区作为终端设备和网络设备进行信令交互的载波,其信息量和重要程度都大于辅小区,终端设备将能力多分配到主小区可以加强信令交互的灵活性和可靠性。
基于场景1,方案2:平均处理的具体实现方式可以是:
W个服务小区中任一服务小区的数目#2可以通过对数目#1进行平均处理所得。
具体地,W个服务小区中任一服务小区的数目#2可以通过对下面的公式取整求得:Mtotal/W。
如图8所示。由方案1可知,W个服务小区上的数目#1为:
y*Mi=4*56=224。
因此,小区#A的数目#2为:Floor{Mtotal/W}=Floor{224/5}=44。
同样,在方案2中,取整方式还可以是其他取整方式。
例如,还可以使用向上取整的方式,此时,小区#A的数目#2为:ceil(Mtotal/W)=ceil(224/5)=45。
又如,还可以使用四舍五入的方式,此时小区#A的数目#2为:round(Mtotal/W)=round(224/5)=45。
关于取整方式的说明,已经在前述进行说明,因此不再赘述。在本申请下面的实施例中,均以向下取整的方式为例进行示例性说明。
应理解,在本申请实施例中,并不限定公式的表示形式,任何和公式所要表达思想类似的公式都属于本申请实施例的保护范围。下面为简洁,不再赘述。
方案2中,通过对数目#1平均处理,不仅方案简单,且处理复杂度低。
场景2:
W个服务小区的调度方式均为自调度,且W个服务小区中至少两个服务小区的子载波间隔不同。
此时,方案1:根据服务小区的小区类型确定的具体实现方式可以是:
W个服务小区中至少两个服务小区的子载波间隔不同,因此,可以将W个服务小区中子载波间隔或Numerology相同的服务小区分为一组。一组服务小区对应一个数目#1。分别确定每组服务小区中的服务小区的数目#2。
根据方案1,主小区的数目#2等于主小区的数目#3。
关于辅小区,存在两种可能,辅小区是否与主小区在同一个服务小区组:
对于与主小区在同一个服务小区组的辅小区,该辅小区的数目#2可以在该组服务小区的数目#1减去主小区的数目#2后,再平均分配到各辅小区。
对于与主小区不在同一个服务小区组的辅小区,以服务小区组为对象,直接对所有辅小区进行平均。
例如,计算主小区和辅小区的数目#2,使用伪代码可以表示为:
M_PCell=Mi;
If SCell Numerology=i,M_SCell=Floor((Mi_total-M_Pcell)/(Xi-1));
Else if SCell Numerology!=i,M_SCell=Floor(Mi_total/Xi)。
其中,
假设Numerology为i,Mi={56,56,48,32}for i={0,1,2,3}。具体地,i=0时,Mi=56;i=1时,Mi=56;i=2时,Mi=48;i=3时,Mi=32。
M_PCell表示主小区的数目#2。
M_SCell表示辅小区的数目#2。
Mi_total表示Numerology为i的服务小区的数目#1。Mi_total表示Numerology为i的服务小区的数目#1。需要说明的是,在本申请中,用Mi_total表示Numerology为i的服务小区的数目#1,在后面的实施例中,为简洁,不再赘述。
Xi表示Numerology为i的服务小区数。要说明的是,在本申请中,用Xi表示Numerology为i的服务小区数,在后面的实施例中,为简洁,不再赘述。
假设W个服务小区中包括两种子载波间隔,因此将W个服务小区分为两组:小区组#1和小区组#2。小区组#1包括主小区,以及与主小区的子载波间隔相同的辅小区。小区 组#2包括与主小区的子载波间隔不同的辅小区。
可以通过对以下公式取整,如,向下取整,分别确定主小区的数目#2、小区组#1中的辅小区的数目#2、小区组#2中的辅小区的数目#2。
M_PCell=Mi;
M1_SCell=Floor{(Mi_total_1-M_PCell)/Xi_1};
M2_SCell=Floor{Mi_total_2/Xi_2}。
其中,
M_PCell表示主小区的数目#2。
M1_SCell表示小区组#1中的任一辅小区的数目#2,其对应的时隙长度为小区组#1的子载波间隔对应的时隙长度。
M2_SCell表示小区组#2中的任一辅小区的数目#2,其对应的时隙长度为小区组#2的子载波间隔对应的时隙长度。
Mi表示主小区的数目#3。例如,当i=0时,Mi=M0=56;当i=1时,Mi=M1=56;当i=2时,Mi=M2=48;当i=3时,Mi=M3=32。
Mi_total_1表示小区组#1的数目#1。
Mi_total_1表示小区组#2的数目#1。
Xi_1、Xi_2分别表示小区#1、小区#2中的服务小区的个数。
关于W个服务小区的数目#1的计算方式,在场景2中,将子载波间隔相同的服务小区分为一组,因此W个服务小区中,一组服务小区对应一个数目#1。且每组服务小区的数目#1可以通过下述公式表示:Mi_total=Floor{Xi/W*Mi*y}。
具体地,图9示出了一具体实施例。如图9所示,假设载波聚合的载波数为5,分别记为:载波#1、载波#2、载波#3、载波#4、载波#5。将该5个服务小区分为两组。其中,假设小区组#1包括载波#1和载波#4,载波#1和载波#4的子载波间隔为15KHz,Xi_1=X0_1=2。假设小区组#2包括载波#2、载波#3、载波#5,载波#2、载波#3、载波#5的子载波间隔为30KHz,Xi_2=X1_2=3。结合表2和表4可以看出,载波#1和载波#4在自己的时隙时间(slot)内,监控的非重叠CCE的最大数目为56;载波#2、载波#3、载波#5在自己的时隙时间(slot)内,监控的非重叠CCE的最大数目为56。假设载波#1为主小区中的载波。
因此,W=5,假设y=4,根据上述公式可得:
对于子载波间隔为15KHz的2个载波,在子载波间隔为15KHz对应的时隙长度内:
Mi_total=M0_total=Floor{X0/W*M0*y}=Floor{2/5*56*4}=Floor(89.6)=89。
对于子载波间隔为30KHz的3个载波,在子载波间隔为30KHz对应的时隙长度内:
Mi_total=M1_total=Floor{X1/W*M1*y}=Floor{3/5*56*4}=Floor(134.4)=134。
根据方案1,可以确定这5个载波的数目#2:
对于主小区,M_PCell=M0=56;
对于子载波间隔为15KHz的其他辅小区,M_SCell_0=Floor((89-56)/(2-1))=33;
对于子载波间隔为30KHz的其他辅小区,M_SCell_1=Floor(134/3)=44。
因此,对于载波#1,在子载波间隔为15KHz对应的时隙长度内,终端设备在载波#1上监控的非重叠CCE的最大数目为56。对于载波#4,在子载波间隔为15KHz对应的时隙 长度内,终端设备在载波#4上监控的非重叠CCE的最大数目为33。对于载波#2、或载波#3、或载波#5,在子载波间隔为30KHz对应的时隙长度内,终端设备在载波#2、或载波#3、或载波#5上监控的非重叠CCE的最大数目都为44。
因此,在图9的实施例中,当小区#A为主小区时,小区#A的数目#2为56。当小区#A包括载波#1或载波#4时,小区#A的数目#2为33。当小区#A包括载波#2、载波#3、载波#5中的任意一个载波时,小区#A的数目#2为44。
方案1中,根据服务小区的小区类型,即主小区和辅小区来分配数目#1的好处在于,主小区作为终端设备和网络设备进行信令交互的载波,其信息量和重要程度都大于辅小区,终端设备将能力多分配到主小区可以加强信令交互的灵活性和可靠性。
基于场景2,方案2:平均处理的具体实现方式可以是:
W个服务小区中任一服务小区的数目#2可以通过对数目#1进行平均处理所得。
具体地,W个服务小区中任一服务小区的数目#2可以通过对下面的公式取整求得:
Mi_total/W。
如图9所示。由方案1可知,
对于子载波间隔为15KHz的2个载波,在子载波间隔为15KHz对应的时隙长度内:
Mi_total=M0_total=Floor{X0/W*M0*y}=Floor{2/5*56*4}=Floor(89.6)=89。
对于子载波间隔为30KHz的3个载波,在子载波间隔为30KHz对应的时隙长度内:
Mi_total=M1_total=Floor{X1/W*M0*y}=Floor{3/5*56*4}=Floor(134.4)=134。
根据方案2,可以确定这5个载波的数目#2:
对于子载波间隔为15KHz的每个服务小区,M_Cell_0=Floor(89/2)=44;
对于子载波间隔为30KHz的每个服务小区,M_Cell_1=Floor(134/3)=44。
其中,M_Cell_0、M_Cell_1分别表示子载波间隔为15KHz的服务小区的数目#2、子载波间隔为30KHz的服务小区的数目#2。
因此,对于载波#1或载波#4,在子载波间隔为15KHz对应的时隙长度内,终端设备在载波#1或载波#4上监控的非重叠CCE的最大数目为44。对于载波#2、或载波#3、或载波#5,在子载波间隔为30KHz对应的时隙长度内,终端设备在载波#2、或载波#3、或载波#5上监控的非重叠CCE的最大数目都为44。
方案2中,通过对数目#1平均处理,不仅方案简单,且处理复杂度低。
场景3:
W个服务小区中至少一个服务小区的调度方式为跨载波调度,且W个服务小区中的子载波间隔相同。
首先确定W个服务小区的数目#1。在场景3中,确定W个服务小区的数目#1可以采用如场景1中的方法,即,终端设备在W个服务小区上的数目#1可以等于:Mtotal=y*Mi。其中,如前所述y是{4,…,16}中的一个整数。Mi可以根据表4确定。如,服务小区的子载波间隔为15KHz,Mi为56。又如,当服务小区的子载波间隔为30KHz,Mi为56。又如,当服务小区的子载波间隔为60KHz,Mi为48。又如,当服务小区的子载波间隔为120KHz,Mi为32。例如,当服务小区的子载波间隔为15KHz,终端设备上报的y等于4时,W个服务小区的数目#1为y*M0=4*56=224,其对应的单位时长为15KHz的子载波间隔的一个时隙,即1ms。则当服务小区的子载波间隔为15KHz时,具有相同子载波间隔 的W个服务小区在1ms时长内能够监控的PDCCH候选的数目(即,数目#1)为224个,其中W可以大于4。
下面,介绍如何确定各个服务小区的数目#2。
方案1:根据服务小区的小区类型确定的具体实现方式可以是:
在场景3中,根据服务小区是主小区还是辅小区,以及该服务小区是否是调度服务小区,来确定各个服务小区的数目#1。
可以通过对以下公式取整确定各个服务小区的数目#2。
对于主小区:
M_PCell=Mi+N_PCell*Floor{(Mtotal-Mi)/(W-1)}
其中,N_PCell表示被PCell跨载波调度的服务小区个数,不包含主小区自身。需要说明的是,在本申请中,用N_PCell表示被主小区跨载波调度的服务小区的个数,在后面的实施例中,为简洁,不再赘述。
对于调度其它辅小区的辅小区:
M1_SCell=Floor{N_SCell*(Mtotal-M_PCell)/(W-1)}
其中,N_SCell表示辅小区调度的服务小区个数,包含辅小区自身。需要说明的是,在本申请中,用N_SCell表示被辅小区调度的服务小区的个数,在后面的实施例中,为简洁,不再赘述。
对于被调度的辅小区:
M2_SCell=0。
具体地,图10示出了一具体实施例。如图10所示,假设5个载波聚合的载波数为5,即,W=5。该5个载波分别记为:载波#1、载波#2、载波#3、载波#4、载波#5。载波#1、载波#2、载波#3、载波#4、载波#5的子载波间隔都为15KHz。结合表2和表4可以看出,该5个载波在自己的时隙时间(slot1)内,Mi为56。假设载波#1为主小区中的载波。
假设终端设备上报的y值为4,因此,W个服务小区上的数目#1为:
y*Mi=4*56=224。
根据方案1,各个服务小区的数目#2为:
对于主小区(即载波#1):
M_PCell=Mi+N_PCell*Floor{(Mtotal-Mi)/(W-1)}=56+Floor{(224-56)/(5-1)}=56+42=98;
对于调度其它辅小区的辅小区:
M1_SCell=Floor{N_SCell*(Mtotal-M_PCell)/(W-1)}=3*Floor{(224-56)/(5-1)}=3*42=126;
对于被调度的辅小区:
M2_SCell=0。
因此,通过方案1,对于载波#1,在子载波间隔为15KHz对应的时隙长度内,终端设备在载波#1上监控的非重叠CCE的最大数目为98。对于载波#4,在子载波间隔为15KHz对应的时隙长度内,终端设备在载波#4上监控的非重叠CCE的最大数目为126。对于载波#2、或载波#3、或载波#5,在子载波间隔为15KHz对应的时隙长度内,终端设备在载波#2、或载波#3、或载波#5上监控的非重叠CCE的最大数目都为0。
方案1中,根据服务小区的小区类型,即主小区和辅小区来分配数目#1的好处在于, 主小区作为终端设备和网络设备进行信令交互的载波,其信息量和重要程度都大于辅小区,终端设备将能力多分配到主小区可以加强信令交互的灵活性和可靠性。
基于场景3,方案2:平均处理的具体实现方式可以是:
W个服务小区中任一服务小区的数目#2可以通过对数目#1进行平均处理所得。对于被调度的服务小区,其数目#2为0。因此,W个服务小区中任一有调度载波的服务小区的数目#2可以通过对下面的公式取整求得:N_Cell*(Mtotal/W)。
其中,N_Cell表示该服务小区调度的服务小区数,包括该服务小区自身。需要说明的是,在本申请中,用N_Cell表示该服务小区调度的服务小区数,在后面的实施例中,为简洁,不再赘述。
具体地,如图10所示。对于调度载波:
载波#1的数目#2为:M_Cell=N_Cell*(Mtotal/W)=2*Floor(224/5)=89;
载波#4的数目#2为:M_Cell=N_Cell*(Mtotal/W)=3*Floor(224/5)=134;
载波#2、载波#3、载波#5的数目#2都为0。
方案2中,通过对数目#1平均处理,不仅方案简单,且处理复杂度低。
场景4:
W个服务小区中至少一个服务小区的调度方式为跨载波调度,且至少两个服务小区的子载波间隔不同。其中W可以大于4。
首先确定W个服务小区的数目#1。在场景3中,确定W个服务小区的数目#1可以采用如场景2中的方法,即,终端设备在W个服务小区上的数目#1可以等于:Mi_total=Floor{Xi/W*Mi*y}。其中,如前所述y是{4,…,16}中的一个整数。Mi可以根据表4确定。如,服务小区的子载波间隔为15KHz,Mi为56。又如,当服务小区的子载波间隔为30KHz,Mi为56。又如,当服务小区的子载波间隔为60KHz,Mi为48。又如,当服务小区的子载波间隔为120KHz,Mi为32。
需要说明的是,相对于场景2,场景4中确定W个服务小区的数目#1时,区别在于需要确定当调度服务小区和被调度服务小区的子载波间隔不同时,为被调度服务小区服务的监控的非重叠CCE的最大数目是按照调度服务小区的Numerology来计算,还是按照被调度服务小区的Numerology来计算,进一步的,还可以有两种方法。下面结合图11具体说明上述两种方法。
方法A:为被调度服务小区服务的监控的非重叠CCE的最大数目按照调度服务小区的Numerology来计算。
例如,如图11所示,假设载波聚合的载波数为5,分别记为:载波#1、载波#2、载波#3、载波#4、载波#5。载波#1和载波#5的子载波间隔为15KHz。载波#2、载波#3、载波#4的子载波间隔为30KHz。载波#1调度了载波#2,载波#3调度了载波#4。按照方法A,被调度服务小区按照调度服务小区的Numerology来计算在该Numerology下的服务小区数。因此,X0=2+1=3。载波#4的子载波间隔与载波#3的子载波间隔相同,都为30KHz,因此,X1=2。
W=5,假设y=4,根据上述公式可得:
对于子载波间隔为15KHz的3个载波(载波#1、载波#2、载波#5),在子载波间隔为15KHz对应的时隙长度内(即1ms内):
Mi_total=M0_total=Floor{X0/W*M0*y}=Floor{3/5*56*4}=Floor(134.4)=134。
对于子载波间隔为30KHz的2个载波(载波#3、载波#4),在子载波间隔为30KHz对应的时隙长度内(即0.5ms内):
Mi_total=M1_total=Floor{X1/W*M1*y}=Floor{2/5*56*4}=Floor(89.6)=89。
可选的,被调度服务小区的Numerology还可根据min(μ_scheduling,μscheduled),或min(μ_scheduling,μscheduled)来计算,其中μ_scheduling表示调度服务小区对应的μ,μ_scheduled表示被调度服务小区对应的μ,max()表示取最大值,min()表示取最小值。
下面,对确定对各个服务小区的数目#2的方式进行介绍。
基于场景4和方法A,方案1:根据服务小区的小区类型确定的具体实现方式可以是:
根据服务小区是主小区还是辅小区,以及该服务小区是否是调度服务小区,来确定各个服务小区的数目#1。
可以通过对以下公式取整确定各个服务小区的数目#2。
对于主小区:
M_PCell=Mi+N_PCell*Floor{(Mi_total_1-Mi)/(Xi_1-1)};
对于与主小区的子载波间隔相同的调度服务小区:
M_SCell_1=N_SCell_1*Floor{(Mi_total_1-Mi)/(Xi_1-1)};
对于与主小区的子载波间隔不同的调度服务小区:
M_SCell_2=N_SCell_2*Floor{(Mi_total_2)/Xi_2};
对于被调度服务小区:
M_SCell_3=0。
其中,
M_PCell表示主小区的数目#2;
M_SCell_1表示与主小区的子载波间隔相同的调度服务小区的数目#2;
M_SCell_2表示与主小区的子载波间隔不同的调度服务小区的数目#2;
M_SCell_3表示被调度服务小区的数目#2。
其中,
N_PCell表示被主小区跨载波调度的服务小区个数,不包含主小区自身;
N_SCell_1、N_SCell_2表示相应的辅小区调度的服务小区个数,包含辅小区自身。
其中,
Mi_total_1、Mi_total_2分别表示与主小区子载波间隔相同的服务小区的数目#1、与主小区子载波间隔不同的服务小区的数目#1;
Xi_1、Xi_2分别表示与主小区子载波间隔相同的服务小区的小区数、与主小区子载波间隔不同的服务小区的小区数。
以图11为例具体说明上述公式。假设载波#1为主小区中的载波,与主小区的子载波间隔相同的调度载波的数目#1用M_SCell_1表示,与主小区的子载波间隔不同的调度载波的数目#1用M_SCell_2表示。
关于Xi_1、Xi_2:
按照方法A,被调度载波按照调度载波的Numerology来计算,即意味着载波#2的子载波间隔当作载波#1的子载波间隔15KHz。因此,Xi_1=X0=2+1=3。载波#4的子载波间 隔与载波#3的子载波间隔相同,都为30KHz,因此,Xi_2=X1=2。
关于Mi_total_1、Mi_total_2:
同样,按照方法A,被调度载波按照调度载波的Numerology来计算,即意味着载波#2的子载波间隔当作载波#1的子载波间隔15KHz。载波#4的子载波间隔与载波#3的子载波间隔相同,都为30KHz。如前所述,
对于子载波间隔为15KHz的3个载波(载波#1、载波#2、载波#5),在子载波间隔为15KHz对应的时隙长度内:
Mi_total_1=Mi_total=M0_total=Floor{X0/W*M0*y}=Floor{3/5*56*4}=Floor(134.4)=134。
对于子载波间隔为30KHz的2个载波(载波#3、载波#4),在子载波间隔为30KHz对应的时隙长度内:
Mi_total_2=Mi_total=M1_total=Floor{X1/W*M1*y}=Floor{2/5*56*4}=Floor(89.6)=89。
因此,各个服务小区的数目#2如下。
主小区的数目#2,即载波#1的数目#2:
M_PCell=
Mi+N_PCell*Floor{(Mi_total_1-Mi)/(Xi_1-1)}=56+1*Floor{(134-56)/(3-1)}=95。
其中,N_PCell表示被主小区跨载波调度的服务小区个数,在图11的示例图中,载波#1跨载波调度载波#2,所以N_PCell为1。
对于与主小区的子载波间隔相同的调度服务小区的数目#2,即载波#5的数目#2:
M_SCell_1=N_SCell_1*Floor{(Mi_total_1-Mi)/(Xi_1-1)}=1*Floor{(134-56)/(3-1)}=39。
其中,N_SCell_1表示被载波#5调度的服务小区数,在图11的示例图中,载波#5调度的服务小区数为1,所以N_SCell_1为1。
对于与主小区的子载波间隔不同的调度服务小区的数目#2,即载波#3的数目#2:
M_SCell_2=N_SCell_2*Floor{(Mi_total_2)/(Xi_2-1)}=2*Floor{89/2}=88。
其中,N_SCell_2表示被载波#3调度的服务小区数,在图11的示例图中,载波#3调度的服务小区数为2,即本身和载波#4。所以N_SCell_2为2。
对于被调度载波的数目#2,即载波#2和载波#4:
M_SCell_3=0。
因此,被调度服务小区服务的监控的非重叠CCE的最大数目按照调度服务小区的Numerology来计算时,通过方案1,对于载波#1,在子载波间隔为15KHz对应的时隙长度内,终端设备在载波#1上监控的非重叠CCE的最大数目为95。对于载波#5,在子载波间隔为15KHz对应的时隙长度内,终端设备在载波#5上监控的非重叠CCE的最大数目为39。对于载波#3,在子载波间隔为30KHz对应的时隙长度内,终端设备在载波#3上监控的非重叠CCE的最大数目为88。对于载波#2或载波#4,终端设备在载波#2或载波#4上监控的非重叠CCE的最大数目都为0。
方案1中,根据服务小区的小区类型,即主小区和辅小区来分配数目#1的好处在于,主小区作为终端设备和网络设备进行信令交互的载波,其信息量和重要程度都大于辅小区,终端设备将能力多分配到主小区可以加强信令交互的灵活性和可靠性。
基于场景4和方法A,方案2:平均处理的具体实现方式可以是:
W个服务小区中任一服务小区的数目#2可以通过对数目#1进行平均处理所得。对于被调度的服务小区的数目#2,都为0。
因此,一种可能的实现方式为:W个服务小区中任一调度服务小区的数目#2可以通过对下面的公式取整求得:Mi_total/Xi。
具体地,如图11所示。按照方法A,被调度服务小区按照调度服务小区的Numerology来计算该Numerology的服务小区数。因此,X0=2+1=3。载波#4的子载波间隔与载波#3的子载波间隔相同,都为30KHz,因此,X1=2。
子载波#1或子载波#5的数目#2为:
M_Cell=Floor(M0_total/X0)=Floor(134/3)=44;
子载波#3的数目#2为:
M_Cell=Floor(M1_total/X1)=Floor(89/2)=44。
子载波#2或子载波#4的数目#2都为0。
另一种可能的实现方式为:W个服务小区中任一调度服务小区的数目#2可以通过对下面的公式取整求得:N_Cell*(Mi_total/Xi)。其中,N_Cell表示服务小区调度的该Numerology的服务小区数。
具体地,如图11所示。X0=2+1=3,X1=2。
子载波#1的数目#2为:M_Cell=N_Cell*Floor(M0_total/X0)=2*Floor(134/3)=88;
子载波#5的数目#2为:M_Cell=N_Cell*Floor(M0_total/X0)=1*Floor(134/3)=44;
子载波#3的数目#2为:M_Cell=N_Cell*Floor(M1_total/X1)=2*Floor(89/2)=88。
子载波#2或子载波#4的数目#2都为0。
方案2中,通过对数目#1平均处理,方案简单,处理复杂度低。
方法B:为被调度服务小区服务的监控的非重叠CCE的最大数目按照被调度服务小区的Numerology来计算。
例如,如图11所示,按照方法B,被调度服务小区按照被调度服务小区的Numerology来计算在该Numerology下的服务小区数。因此,X1=1+1+1=3。载波#1的子载波间隔与载波#5的子载波间隔相同,都为15KHz,因此,X0=1+1=2。
W=5,假设y=4,根据上述公式可得:
对于子载波间隔为15KHz的2个载波(载波#1、载波#5),在子载波间隔为15KHz对应的时隙长度内:
Mi_total=M0_total=Floor{X0/W*M0*y}=Floor{2/5*56*4}=Floor(89.6)=89。
对于子载波间隔为30KHz的2个载波(载波#2、载波#3、载波#4),在子载波间隔为15KHz对应的时隙长度内:
Mi_total=M1_total=Floor{X1/W*M1*y}=Floor{3/5*56*4}=Floor(134.4)=134。
下面,对确定各个服务小区的数目#2的方式进行介绍。
基于场景4和方法B,方案1:根据服务小区的小区类型确定的具体实现方式可以是:
同样,在场景4中,根据服务小区是主小区还是辅小区,以及该服务小区是否是调度载波,来确定各个服务小区的数目#2。
可以通过对以下公式取整确定各个服务小区的数目#2。
对于主小区:
M_PCell=Mi+N_PCell*Floor{(Mi_total_1-Mi)/(Xi_1-1)};
对于与主小区的子载波间隔相同的调度服务小区:
M_SCell_1=N_SCell_1*Floor{(Mi_total_1-Mi)/(Xi_1-1)};
对于与主小区的子载波间隔不同的调度服务小区:
M_SCell_2=N_SCell_2*Floor{(Mi_total_2)/Xi_2};
对于被调度服务小区:
M_SCell_3=0。
其中,
M_PCell表示主小区的数目#2;
M_SCell_1表示与主小区的子载波间隔相同的调度服务小区的数目#2;
M_SCell_2表示与主小区的子载波间隔不同的调度服务小区的数目#2;
M_SCell_3表示被调度服务小区的数目#2。
其中,
N_PCell表示被主小区跨载波调度的服务小区数,不包含主小区自身;
N_SCell_1、N_SCell_2表示相应的辅小区调度的服务小区数,包含辅小区自身。
其中,
Mi_total_1、Mi_total_2分别表示与主小区子载波间隔相同的服务小区的数目#1、与主小区子载波间隔不同的服务小区的数目#1;
Xi_1、Xi_2分别表示与主小区子载波间隔相同的服务小区的小区数、与主小区子载波间隔不同的服务小区的小区数。
以图11为例具体说明上述公式。假设载波#1为主小区中的载波,与主小区的子载波间隔相同的调度载波的数目#1用M_SCell_1表示,与主小区的子载波间隔不同的调度载波的数目#1用M_SCell_2表示。
关于Xi_1、Xi_2:
按照方法B,被调度服务小区按照被调度服务小区的Numerology来计算在该Numerology下的服务小区数,因此Xi_1=X0_1=1+1=2。载波#2、载波#4的子载波间隔与载波#3的子载波间隔相同,都为30KHz,因此,Xi_2=X1_2=1+1+1=3。
关于Mi_total_1、Mi_total_2:
同样,按照方法B,被调度服务小区按照被调度服务小区的Numerology来计算在该Numerology下的服务小区数,因此:
对于子载波间隔为15KHz的2个载波(载波#1、载波#5),在子载波间隔为15KHz对应的时隙长度内:
Mi_total_1=Mi_total=M0_total=Floor{X0/W*M0*y}=Floor{2/5*56*4}=89。
对于子载波间隔为30KHz的3个载波(载波#2、载波#3、载波#4),在子载波间隔为30KHz对应的时隙长度内:
Mi_total_2=Mi_total=M1_total=Floor{X1/W*M1*y}=Floor{3/5*56*4}=134。
因此,各个服务小区的数目#2如下。
主小区的数目#2,即载波#1的数目#2:
M_PCell=
Mi+N_PCell*Floor{(Mi_total_1-Mi)/(Xi_1-1)}=56+1*Floor{(89-56)/(2-1)}=89。
其中,N_PCell表示被主小区跨载波调度的服务小区数,在图11的示例图中,载波#1跨载波调度载波#2,所以N_PCell为1。
对于与主小区的子载波间隔相同的调度服务小区的数目#2,即载波#5的数目#2:
M_SCell_1=N_SCell_1*Floor{(Mi_total_1-Mi)/(Xi_1-1)}=1*Floor{(89-56)/(2-1)}=33;
其中,N_SCell_1表示被载波#5调度的服务小区数,在图11的示例图中,载波#5调度的服务小区数为1,所以N_SCell_1为1。
对于与主小区的子载波间隔不同的调度服务小区的数目#2,即载波#3的数目#2:
M_SCell_2=N_SCell_2*Floor{(Mi_total_2)/(Xi_2-1)}=2*Floor{134/3}=88;
其中,N_SCell_2表示被载波#3调度的服务小区数,在图11的示例图中,载波#3调度的服务小区数为2,即本身和载波#4。所以N_SCell_2为2。
对于被调度服务小区的数目#2,即载波#2和载波#4:M_SCell_3=0。
因此,为被调度服务小区服务的监控的非重叠CCE的最大数目按照被调度服务小区的Numerology来计算时,通过方案1,对于载波#1,在子载波间隔为15KHz对应的时隙长度内,终端设备在载波#1上监控的非重叠CCE的最大数目为89。对于载波#5,在子载波间隔为15KHz对应的时隙长度内,终端设备在载波#5上监控的非重叠CCE的最大数目为33。对于载波#3,在子载波间隔为30KHz对应的时隙长度内,终端设备在载波#3上监控的非重叠CCE的最大数目为88。对于载波#2或载波#4,终端设备在载波#2或载波#4上监控的非重叠CCE的最大数目都为0。
方案1中,根据服务小区的小区类型,即主小区和辅小区来分配数目#1的好处在于,主小区作为终端设备和网络设备进行信令交互的载波,其信息量和重要程度都大于辅小区,终端设备将能力多分配到主小区可以加强信令交互的灵活性和可靠性。
基于场景4和方法#B,方案2:平均处理的具体实现方式可以是:
W个服务小区中任一服务小区的数目#2可以通过对数目#1进行平均处理所得。对于被调度的服务小区的数目#2,都为0。
因此,一种可能的实现方式为:W个服务小区中任一调度服务小区的数目#2可以通过对下面的公式取整求得:Mi_total/Xi。
具体地,如图11所示。按照方法B,被调度服务小区按照被调度服务小区的Numerology来计算在该Numerology下的服务小区数,因此,X0=1+1=2,X1=1+1+1=3。
子载波#1或子载波#5的数目#2为:
M_Cell=Floor(M0_total/X0)=Floor(89/2)=44;
子载波#3的数目#2为:
M_Cell=Floor(M1_total/X1)=Floor(134/3)=44。
子载波#2或子载波#4的数目#2都为0。
另一种可能的实现方式为:W个服务小区中任一调度服务小区的数目#2可以通过对下面的公式取整求得:N_Cell*(Mi_total/Xi)。其中,N_Cell表示服务小区调度的服务小区数。
具体地,如图11所示。X0=1+1=2,X1=1+1+1=3。
子载波#1的数目#2为:M_Cell=N_Cell*Floor(M0_total/X0)=2*Floor(89/2)=88;
子载波#5的数目#2为:M_Cell=N_Cell*Floor(M0_total/X0)=1*Floor(89/2)=44;
子载波#3的数目#2为:M_Cell=N_Cell*Floor(M1_total/X1)=2*Floor(134/3)=88。
子载波#2或子载波#4的数目#2都为0。
方案2中,通过对数目#1平均处理,方案简单,处理复杂度低。
上文结合图8至图11详细说明了四种场景下,如何将终端设备在多个服务小区上监控的非重叠CCE的最大总数分配到各个服务小区,即确定终端设备在各个服务小区上监控的非重叠CCE的最大数目。需要说明的是,确定各个服务小区上监控的非重叠CCE的最大数目的方法和确定PDCCH候选的最大数目的方法相似,此处,未详细描述的地方,请参考上述关于确定PDCCH候选的最大数目的实施例。
下面仍结合图12和图13说明,在载波聚合时,如何确定终端设备在调度服务小区上监控的非重叠CCE的最大数目。
当调度载波和被调度载波有不同的Numerology时,确定调度载波的数目#1可以采用与场景2类似方法。其中,在本申请实施例中,不同Numerology和混合Numerology表达的意思一样。需要说明的是,相对于场景2,区别在于在确定调度载波的数目#1(即Mtotal)时,先需要确定当为被调度载波服务的监控的非重叠CCE的最大数目按照调度载波的Numerology来计算(即前述的方法A),还是按照被调度载波的Numerology来计算(即前述的方法B)。
下面结合上述提到的情况1和情况2这两种情况具体说明。
对于情况1,调度载波上的一个时隙对应被调度载波的多个时隙。
如图12中的图(1),载波#1的时隙长度为载波#2的两倍。在这种情况下,有两种方法确定为被调度载波服务的监控的非重叠CCE的最大数目。
方法A:针对被调度载波服务的监控的非重叠CCE的最大数目按照调度载波的Numerology来计算。
如图12中的图(1),载波#1调度载波#2,为载波#2服务的监控的非重叠CCE的最大数目按照载波#1的Numerology来计算。因此,调度载波上监控的非重叠CCE的最大数目为:56+56=112。
通过使用调度载波的Numerology来确定为被调度载波增加的非重叠CCE的数目,可以避免给调度载波增加太多的处理负担,如处理延时、信道估计的复杂度等。
方法B:针对被调度载波服务的监控的非重叠CCE的最大数目按照被调度载波的Numerology来计算。
使用被调度载波的Numerology来确定为被调度载波增加的非重叠CCE的数目。按照这个原则,由于被调度载波的时隙长度小于调度载波上的时隙长度,在调度载波上的非重叠CCE的数目求和前需要将非重叠CCE的数目统一到相同的时间。调度载波对应的时隙长度长,因此要将被调度载波上的非重叠CCE的数目转换成多个时隙的非重叠CCE的数目。
具体地,如图12中的图(1),载波#1的时隙长度为载波#2的时隙长度的2倍,因此,在载波#1的时隙长度内,载波#2的非重叠CCE的数目为:56*2=112。因此,调度载波上的非重叠CCE的数目为:56+56*2=168。
对于情况2,调度载波的子载波间隔大于被调度载波的子载波间隔。
使用被调度载波的Numerology来确定为被调度载波增加的非重叠CCE的数目。按照这个原则,由于被调度载波的时隙长度大于调度载波上的时隙长度,在调度载波上的非重叠CCE的数目求和前,需要将非重叠CCE的数目平均分到调度载波时隙长度内。因此要将被调度载波上的非重叠CCE的数目转换成调度载波上一个时隙的非重叠CCE的数目。
具体地,如图12中的图(2),载波#1的时隙长度为载波#2的时隙长度的2倍,因此,在载波#2的时隙长度内,载波#1的非重叠CCE的数目为:56/2=28。因此,调度载波上的非重叠CCE的数目为:56+56/2=84。
调度载波上可以有一个或多个被调度载波。因此:
对于情况1的方法A,
需要增加的非重叠CCE的数目:Ks*M(μ_scheduling),Ks为被调度载波的个数。此时μ_scheduled≥μ_scheduling。
调度载波上非重叠CCE的数目为:M(μ_scheduling)+Ks*M(μ_scheduling)。
其中,
M(μ)表示Numerolgy为μ的单载波的非重叠CCE的数目;
μ_scheduling表示调度载波对应的μ,μ_scheduled表示被调度载波对应的μ。
例如,以图12中的(1)为例。载波#1跨载波调度1个,因此,Ks=1。因此:
需要增加的非重叠CCE的数目:Ks*M(μ_scheduling)=1*56=56。
非重叠CCE的数目为:M(μ_scheduling)+Ks*M(μ_scheduling)=56+56=112。
对于情况1的方法B:
需要增加的非重叠CCE的数目:Ks*M(μk)*2 (μ_scheduled-μ_scheduling)。其中,Ks为被调度载波的个数。此时μ_scheduled≥μ_scheduling。需要说明的是这里的μk就是μ_scheduled,适用于后面所有的μk描述。
调度载波上非重叠CCE的数目为:M(μ_scheduling)+Ks*M(μk)*2 (μ_scheduled-μ_scheduling)
例如,以图12中的(1)为例。载波#1跨载波调度1个,自身调度的1个,因此,Ks=1。载波#1的子载波间隔为15KHz,调度载波#2的子载波间隔为30KHz。由表2和表4可以看出,载波#1对应的μ_scheduling=0,载波#2对应的μ_scheduled=1。因此:
需要增加的非重叠CCE的数目:Ks*M(μk)*2 (μ_scheduled-μ_scheduling)=1*56*2 1-0=112。
调度载波上非重叠CCE的数目为:
M(μ_scheduling)+Ks*M(μk)*2 (μ_scheduled-μ_scheduling)=56+1*56*2 1-0=168。
对于情况2:
对每个被调度载波需要增加的非重叠CCE的数目为:
M(μ_scheduled)/2 (μ_scheduling-μ_scheduled)。当有K C个被调度载波时,需要增加的非重叠CCE的数目为这K C个被调度载波上非重叠CCE的数目的和,即:
Figure PCTCN2019099371-appb-000014
因此,调度载波上非重叠CCE的数目为:
Figure PCTCN2019099371-appb-000015
此时μ_scheduled<μ_scheduling。
例如,以图12中的(2)为例。载波#2跨载波调度一个载波,即载波#1。因此:
需要增加的非重叠CCE的数目为:
Figure PCTCN2019099371-appb-000016
因此,调度载波上非重叠CCE的数目为:
Figure PCTCN2019099371-appb-000017
假设调度载波的Numerology为μ_scheduling,调度载波上的Numerology为μ_scheduled或μk。当一个调度载波上既有μ_scheduled≥μ_scheduling的被调度载波,又有μ_scheduled<μ_scheduling的被调度载波,那么调度载波上的非重叠CCE的数目为以上情况1和情况2的求和。需要说明的是,此时调度服务小区对应的M(μ_scheduling)只需加一次即可。
对于方法A,调度服务小区上的非重叠CCE的数目为:
Figure PCTCN2019099371-appb-000018
其中,
Ks为被调度服务小区的个数中满足μ_scheduled≥μ_scheduling的载波个数,K C为被调度载波中满足μ_scheduled<μ_scheduling的载波个数。
如图13所示,载波#1、载波#2、载波#3聚合。载波#1的子载波间隔为30KHz,其对应μ的为1,Mi=M1=56。载波#2的子载波间隔为15KHz,其对应μ的为0,Mi=M0=56。载波#3的子载波间隔为60KHz,其对应μ的为2,Mi=M2=48。载波#1调度载波#2、载波#3。
因此,对于方法A,调度服务小区上的非重叠CCE的数目为:
Figure PCTCN2019099371-appb-000019
相应的时隙长度为30KHz的子载波间隔所对应的时隙长度,即0.5ms。
对于方法B,调度服务小区上的非重叠CCE的数目为:
Figure PCTCN2019099371-appb-000020
其中K C为所有被调度服务小区的个数。
具体地,如图13所示。对于方法B,调度服务小区上的非重叠CCE的数目为:
Figure PCTCN2019099371-appb-000021
另外,同样还有一种可以很快地确定调度服务小区上能够监控的非重叠CCE的最大数目的方法。
由于现有终端设备都是从LTE的终端设备演进过来的,原LTE系统中只支持15KHz的子载波间隔。NR的终端设备在LTE终端设备的基础上提高了一定的处理能力,但仍然在一定时间内不能超过一个硬限制。在LTE阶段,当终端设备支持载波聚合后,当聚合的载波个数小于或等于4时,调度服务小区上能够监控的非重叠CCE的最大数目可以与调度的服务小区的个数成正比。以服务小区的子载波间隔为15KHz为例,即可支持调度服务小区上的非重叠CCE的数目为:Ks*M(μ=0)=56*Ks,其中Ks为调度服务小区调度的小区总数,包括调度服务小区自己。此时的时间单元指的是15KHz的子载波间隔的时间单元,即1ms的时隙。当然随着终端设备处理能力的不断提高,原56的值也可以有所增长。例如调度服务小区上能够监控的非重叠CCE的最大数目可以是一个大于或等于56的数目与调度的服务小区个数的乘积,相应的时间单位是1ms。
当所述终端设备支持一个最大数目为X的载波聚合时,可以表示该终端设备支持的能够监控的非重叠CCE的最大数目为X*56,其对应的时间单元为15KHz的子载波间隔的时隙长度(即1ms)。例如终端设备如果支持最大3个载波的聚合,则该终端设备能够监控的非重叠CCE的最大数目为3*56=168,其对应的单位时长为15KHz的子载波间隔的时隙长度(即1ms)。例如终端设备如果支持最大4个载波的聚合,则该终端设备能够监控的非重叠CCE的最大数目为4*56=224,其对应的单位时长为15KHz的子载波间隔的时隙长度(即1ms)。在这种情况情况下,终端设备能够监控的非重叠CCE的第一数目是根据该终端设备最大可支持的载波个数来确定的,其对应的单位时长为15KHz的子载波间隔的时隙长度(即1ms)。
当聚合的载波个数大于4时,该终端设备支持的能够监控的非重叠CCE的最大数目为y*56,其对应的时间单元为15KHz的子载波间隔的时隙长度(即1ms)。其中y为终端设备监控PDCCH的能力参数。例如,当聚合的载波个数为5时,终端设备上报的y值为4时,表示该终端设备能够监控的非重叠CCE的最大数目为4*56=224,其对应的时间单元为15KHz的子载波间隔的时隙长度(即1ms)。
此外,假设已知调度服务小区上能够监控的非重叠CCE的最大数目,且调度服务小区的调度的服务小区数为R时,如何确定为被调度服务小区服务的非重叠CCE的数目。其中,R大于或等于2。其中,调度服务小区的调度的服务小区包括调度服务小区本身。下面,为简洁,不失一般性,以调度服务小区为小区#1、被小区#1跨载波调度的服务小区为小区#2。假设在小区#1上配置的监控非重叠CCE的数目为数目#A,小区#1上能够为小区#1服务的非重叠CCE的数目为数目#B,小区#1上能够为小区#2服务的非重叠CCE的数目为数目#C。应理解,小区#1可以调度1个或多个服务小区,此处,仅以小区#1调度小区#2为例进行示例性说明。
终端设备接收网络设备在小区#1上配置的非重叠CCE的数目#A;终端设备根据数目#A确定为小区#2服务的非重叠CCE的数目#B。
可选地,终端设备根据数目#A确定为小区#1服务的非重叠CCE的数目#B,终端设备根据数目#B以及以下至少一个参数确定数目#C:非重叠CCE个数折算因子、非重叠CCE个数偏移值、所述第一服务小区的子载波间隔、所述第二服务小区的子载波间隔、所 述第一服务小区在第一单位时长内能够监控的非重叠CCE的最大数目、所述第二服务小区在第二单位时长内能够监控的非重叠CCE的最大数目、公共搜索空间CSS的偏移值、被所述第一服务小区调度的服务小区数。
其中,终端设备确定调度服务小区上为各个被调度服务小区服务的非重叠CCE的数目,也可以理解为,终端设备确定调度服务小区上针对各个被调度服务小区的非重叠CCE的数目。具体地,以小区#1调度R个服务小区(包括小区#1本身)为例进行示例性说明。假设在小区#1上配置的监控非重叠CCE的数目为数目#A。
终端设备确定调度服务小区上为各个被调度服务小区服务的非重叠CCE的数目,步骤可以如下:
目前,小区在配置一个小区的搜索空间(包括非重叠CCE个数)时,并没有考虑到跨载波调度的情况,因此其参数的配置受限于单小区的情况。因此在进行针对各个被调度小区的非重叠CCE的数目分配前,需要将监控的非重叠CCE的数目扩展到多个小区的非重叠CCE的数目。
首先,将在小区#1上配置的监控非重叠CCE的数目#A乘以被调度的服务小区的个数R。假设数目#A与R的乘积为K,因此可以得到总共K个监控的非重叠CCE的数目。
然后,终端可以根据如下的方式将K个监控的非重叠CCE的数目分配到小区#1和被小区#1跨载波调度的服务小区。
具体地,以小区#1调度小区#2为例进行说明。
当小区#1和小区#2的子载波间隔相同时:
一种可能的实现方式是,根据小区的类型(即,主小区和辅小区)来确定为小区#1服务的非重叠CCE的数目、为小区#2服务的非重叠CCE的数目。具体地,可以参考上述基于场景1至场景4中任一场景下的方案1中,对于子载波间隔相同的主小区和辅小区,如何确定各自的非重叠CCE的数目#2的具体实现方式,此处为简洁,不再赘述。
另一种可能的实现方式是,采用直接平分的方式来确定为小区#1服务的非重叠CCE的数目、为小区#2服务的非重叠CCE的数目。具体地,可以参考上述基于场景1至场景4中任一场景下的方案2中,对于子载波间隔相同的主小区和辅小区,如何确定各自的非重叠CCE的数目#2的具体实现方式,此处为简洁,不再赘述。
当小区#1和小区#2的子载波间隔不相同时:
一种可能的实现方式是,根据小区的类型(即,主小区和辅小区)来确定为小区#1服务的非重叠CCE的数目、为小区#2服务的非重叠CCE的数目。具体地,可以参考上述基于场景1至场景4中任一场景下的方案1中,对于子载波间隔不同的主小区和辅小区,如何确定各自的非重叠CCE的数目#2的具体实现方式,此处为简洁,不再赘述。
另一种可能的实现方式是,采用直接平分的方式来确定为小区#1服务的非重叠CCE的数目、为小区#2服务的非重叠CCE的数目。具体地,可以参考上述基于场景1至场景4中任一场景下的方案2中,对于子载波间隔不同的主小区和辅小区,如何确定各自的非重叠CCE的数目#2的具体实现方式,此处为简洁,不再赘述。
此外,在考虑主小区上的能够监控的非重叠CCE的数目时,还可以额外考虑增加公共搜索空间的非重叠CCE的数目。使得主小区上能监控比其他辅小区更多的非重叠CCE的数目。
上文介绍了多个载波聚合时,如何将终端设备在多个载波上监控的PDCCH候选的最大总数或非重叠CCE的最大总数分配到各个载波上,下面结合DCI大小(size)分析PDCCH候选的最大数目。
网络设备确定终端设备在第一服务小区上不同大小的DCI格式对应的PDCCH候选的数目,第一服务小区跨载波调度第二服务小区,其中,第二服务小区对应的不同DCI大小的个数为K1,K1为小于或等于4的整数;网络设备根据K1,配置终端设备在第一服务小区为第二服务小区监控的PDCCH候选的数目。
可选地,第一服务小区对应的不同DCI大小的个数为K2或第一阈值,K2小于或等于第一阈值,K2是根据以下至少一个参数确定的:K1、第一服务小区调度的服务小区数、第一服务小区在第一单位时长内能够监控的PDCCH候选的第一数目、第一服务小区的子载波间隔、第二服务小区的子载波间隔;或,网络设备根据K2或第一阈值,配置终端设备在第一服务小区上监控的PDCCH候选的数目。
具体地,针对调度服务小区和被调度服务小区,对应的DCI size不同。下面,为理解,先简述一下DCI格式(format)。
DCI format,用于定义控制信息域(field)位于DCI中的位置。为便于理解,先结合表5简单介绍一下DCI format。
DCI size,可以理解为DCI包括的信息比特的多少,若DCI包括W个信息比特,则DCI size为W。或者,DCI size可以理解为DCI包括的信息比特数与循环冗余校验码长度的和。例如,DCI包括W个信息比特,循环冗余校验码长度为L,则DCI size等于W+L的值。DCI size的个数会直接影响到PDCCH候选的数目,相同搜索空间内DCI size相同的PDCCH看做是一个PDCCH candidate。在单载波情况下,终端设备每个时隙最多支持4种不同DCI sizes的PDCCH监控,即终端设备检测的总DCI size不能超过4个。且,终端设备检测的在循环冗余校验码上加扰的C-RNTI的DCI size不能超过3个。
网络设备在控制终端设备监控的PDCCH候选的数目时,需要同时考虑到终端设备对不同DCI sizes的监控配置。下面结合表6从聚合载波不配置跨载波调度和聚合载波配置跨载波调度这两种情况出发,进行描述。表6中不同的列表示不同的DCI size,不同的行对应不同的DCI format。
对于主小区,可能的DCI size和可能出现的DCI format包括了整张表的内容。
对于自调度的辅小区,表6中,“任一BWP中的CSS”可以不出现,即列1中,DCI format 0-0、以及列1中,DCI format 1-0可以不出现。
对于被调度的辅小区,表6中,“任一BWP中的CSS”也可以不出现,即在列1中,DCI format 0-0、以及列1中,DCI format 1-0可以不出现。此外,由于DCI format 2-X系列属于终端设备组PDCCH,被调度载波的相关信息可以通过其他载波进行发送,因此对于被调度的SCell,除了列1中,DCI format 0-0、以及列1中,DCI format 1-0可以不出现之外,列2、列5、列6中的DCI format也可以不出现,此外,列1中的DCI format 2-2、以及列1中的DCI format 2-3也可以不出现。从表格中剩下的内容可以看出,对于一个被调度的辅小区而言,其可能的DCI size可以有两种,因此对于被调度的辅小区而言,用于该辅小区调度的DCI size的个数(也可以理解为种类)可以只有2种,列3和列4。通过 定义用于被调度的辅小区调度的DCI size的个数可以只有2种,可以减少PDCCH的盲检次数,也可以降低Polar编码的译码复杂度。
表5
Figure PCTCN2019099371-appb-000022
表6
Figure PCTCN2019099371-appb-000023
Figure PCTCN2019099371-appb-000024
当一个调度载波上,有N个被调度服务小区时(不包括调度服务小区自身),假设每个被调度服务小区最多有2种DCI size,则调度服务小区上需要支持的DCI size的个数有:4+2*N。
由于终端设备处理能力的限制,随着被调度服务小区个数的增加,终端设备在一个调度服务小区上可能并不能满足DCI size个数的线性增长。因此,一种可能的实现方式是,设置一个阈值(即第一阈值的一例)。该阈值可以是预配置的,也可以是根据终端设备的能力独立配置的,本申请实施例对此不作限定。当被调度服务小区个数大于该阈值时,调度服务小区上可支持的DCI size个数就不线性增长了。另一种可能的实现方式是,每个调度服务小区上可以有一个最大支持的DCI size的个数。例如,一个服务小区上最大可支持的DCI size个数为10,当调度服务小区个数N=<3时,该服务小区上可支持的DCI size个数可以随着被调度服务小区的个数线性增长,当N>3时,该载波上不再增加新的DCI size个数。可以将新增的DCI size与已有的最接近的DCI size进行统一。
例如:已支持10种DCI size,分别为10比特、15比特、20比特、25比特、30比特,40比特、50比特、60比特、70比特、80比特,当新增的被调度服务小区对应的DCI size为32比特时,选择将已有的30比特的DCI size进行对其(去掉2比特的DCI信息)。
具体地,如图14所示,载波#1作为调度载波,调度自己的时候可支持的DCI size个数最大为4,当载波#1支持调度载波#2和载波#3后,为了不影响调度的灵活性,需要在载波#1上增加可支持的DCI size个数,根据以上的分析每增加一个被调度服务小区,最多增加2个DCI size,则图中载波#1支持的最大DCI size个数为4+2+2=8个。
终端设备在被调度服务小区上可以不检测DCI。
终端设备配置的服务小区个数可能会小于终端设备最大可支持的服务小区个数,那么当终端设备配置的服务小区个数小于终端设备最大可支持的服务小区个数时,如何确定数目#1和分配该数目#1。下面结合图15具体描述。其中,如前所述,该数目#1用于表示终端设备在多个服务小区上监控的PDCCH候选的最大数目,或,终端设备在多个服务小区上监控的非重叠CCE的最大数目。
上文的实施例中,终端设备处理架构是基于每个服务小区都有独立的处理能力,各个服务小区的处理互相独立。随着终端设备处理能力的提升,处理架构的演进,终端设备对多服务小区的处理能力可能会成为一种可共享的池(pool)资源,即这些处理能力可以被多个服务小区所共享。在这种新的处理架构下,对数目#1的定义可以有如下的方法。
终端设备可支持的服务小区个数或终端设备上报的支持的PDCCH或非重叠CCE的能力信息,可以代表一种可共享的处理能力信息。假设终端设备可支持X个载波聚合,网络设备配置的聚合载波个数为T,当T<=X时,终端设备可支持的总PDCCH或非重叠CCE的能力可以分配到配置的X个载波上。
具体地,如图15所示。以确定PDCCH候选的数目为例,假设载波#1、载波#2、载波#3聚合,即,实际配置的载波数T为3。载波#1、载波#2、载波#3的Numerology都为0,子载波间隔为15KHz。假设X=4,则在所配置的3个载波上,每个载波的数目#2=Floor(X*Mi/T)=Floor(4*44/3)=58。
上文结合图1至图15对本申请实施例的配置参数的方法做了详细说明。
基于上述技术方案,在已知多个服务小区的PDCCH或非重叠CCE的最大数目(即数目#1)时,可以根据主小区和辅小区的特征进行数目#1的分配。从而主小区作为终端设备和网络设备进行信令交互的服务小区,其信息量和重要程度都大于辅小区,将PDCCH候选的数目多分配到主小区,可以加强信令交互的灵活性和可靠性。或,也可以根据调度服务小区的个数平均分配。平均分配的方案简单,理复杂度低。
基于上述技术方案,对于被调度的辅小区而言,用于该辅小区调度的DCI size的个数(即种类)可以小于或等于4种,例如可以有2种。从而可以减少PDCCH的盲检次数,也可以降低Polar编码的译码复杂度。
基于上述技术方案,可以将终端设备对多载波的处理能力作为一种共享的pool资源,从而提高整体通信效率。
需要说明的是,在本申请实施例中,任何可以取整的方式都属于本申请实施例的保护范围。例如,向下取整、向上取整、四舍五入等等,上述仅以向下取整为例进行说明。
还需要说明的是,任何可以取整的方式都属于本申请实施例的保护范围。例如,假设对类似于:A+B*C的这种公式作向下取整,可以是:Floor{A+B*C},或也可以是A+Floor{B*C}。
还需要说明的是,在本申请实施例中,并不限定公式的表示形式,任何和公式所要表达思想类似的公式都属于本申请实施例的保护范围。
应理解,在本申请的各实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以下,结合图16至图19对本申请实施例的配置参数的装置进行描述。由于装置实施例可以执行上述方法,因此未详细描述的部分可以参见前面各方法实施例。
以下,结合图16至图19对本申请实施例的配置参数的装置进行描述。由于装置实施例可以执行上述方法,因此未详细描述的部分可以参见前面各方法实施例。
图16为本申请实施例提供的配置参数的装置20的示意图,如图16所示,该装置20可以包括处理单元21和收发单元22。
在一种可能的设计中,该装置20可以为网络设备或配置于网络设备中的芯片。
一种可能的设计中,收发单元22用于:获取终端设备在T个服务小区上能够监控的物理下行控制信道PDCCH候选的第一数目,其中,T为大于或等于2的整数;
处理单元21用于:配置所述终端设备在第一服务小区上监控的PDCCH候选的第二数目,所述第二数目是所述网络设备根据所述终端设备在所述第一服务小区上能够监控的PDCCH候选的第三数目确定的,所述第三数目是所述网络设备根据所述第一数目确定的,所述第一服务小区属于所述T个服务小区。
在另一种可能的设计中,该装置20可以为终端设备或配置于终端设备中的芯片。
一种可能的设计中,收发单元22用于:获取在第一服务小区上监控的物理下行控制信道PDCCH候选的第二数目,所述第二数目是网络设备根据所述终端设备在所述第一服务小区上能够监控的PDCCH候选的第三数目确定的,所述第三数目是所述网络设备根据第一数目确定的,所述第一数目为所述终端设备在T个服务小区上能够监控的PDCCH候选的数目,所述第一服务小区属于所述T个服务小区,其中,T为大于或等于2的整数;
处理单元21用于:根据所述第二数目监控PDCCH。
可选地,处理单元21具体用于:根据所述第一数目与以下至少一个参数确定的:所述网络设备为所述终端设备配置的服务小区的总数、所述T、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述第一服务小区调度的服务小区数、主小区在第二单位时长内能够监控的PDCCH候选的第五数目。
可选地,处理单元21具体用于:通过对所述第一最大数目进行平均处理得到所述第二最大数目。
可选地,所述第三数目是所述网络设备根据所述第一数目确定的,包括:所述第三数目为通过对所述第一数目进行平均处理所得。
可选地,当所述T个服务小区的子载波间隔参数相同,所述第三数目为对以下公式取整得到:N1*Q/T;其中,Q表示:所述第一数目;N1表示:所述第一服务小区调度的服务小区数,N1为大于或等于1的整数。
可选地,该方法还包括:所述T个服务小区包括至少一个辅小区,当所述T个服务小区的子载波间隔参数相同,且所述第一服务小区为主小区时,处理单元21具体用于:根据所述第三数目和所述第一数目确定所述终端设备在所述至少一个辅小区上能够监控的PDCCH候选的第六数目。
可选地,所述第三数目是所述网络设备根据:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、被所述第一服务小区跨载波调度的服务小区数、以及所述第一数目确定的。
可选地,所述第三数目为:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目与所述网络设备根据所述终端设备在第二服务小区上能够监控的PDCCH候选的第六数目之和,所述第二服务小区为被所述第一服务小区跨载波调度的服务小区。
可选地,当所述第一服务小区为主小区时,所述第三数目为对以下公式进行取整得到:M+N2*{(Q-M)/(T-1)};其中,M表示:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目;N2表示:被所述第一服务小区跨载波调度的服务小区数,N2为大于或等于0的整数;Q表示:所述第一数目。
可选地,所述终端设备共配置有W个服务小区,所述W个服务小区包括所述T个服务小区,当所述第一服务小区为辅小区时,所述第三数目是所述网络设备根据所述第一数目确定的,包括:若所述第一服务小区的子载波间隔参数与所述W个服务小区中主小区的子载波间隔参数相同,所述第三数目是所述处理单元21根据:所述第一服务小区调度的服务小区数、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述第一数目、以及所述T确定的;或,若所述第一服务小区的子载波间隔参数与所述W个服务小区中主小区的子载波间隔参数不同,所述第三数目是所述处理单元21根据:所述第一服务小区调度的服务小区数、所述第一数目、以及所述T确定的。
可选地,所述终端设备共配置有W个服务小区,所述W个服务小区包括所述T个服务小区,当所述第一服务小区为辅小区时,若所述第一服务小区的子载波间隔参数与所述W个服务小区中主小区的子载波间隔参数相同,所述第三数目为对以下公式进行取整得到:N1*(Q-M)/(T-1);或者,若所述第一服务小区的子载波间隔参数与所述W个服务小区中主小区的子载波间隔参数不同,所述第三数目为对以下公式进行取整得到:N1*Q/T;其中,M表示:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目;N1表示:所述第一服务小区调度的服务小区数,N1为大于或等于1的整数;Q表示:所述第一数目。
可选地,所述T个服务小区中包括第三服务小区,所述第一服务小区跨载波调度所述第三服务小区,当所述第三服务小区与所述第一服务小区的子载波间隔参数不同时,所述第一数目根据所述终端设备监控PDCCH候选的能力参数,以及以下至少一个参数确定:所述T、所述网络设备为所述终端设备配置的服务小区的总数、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述第一服务小区的子载波间隔、所述第三服务小区的子载波间隔、所述第三服务小区在第三单位时长内能够监控的PDCCH候选的第七数目。
可选地,所述终端设备共配置有W个服务小区,所述W个服务小区包括所述T个服务小区,当所述T个服务小区中包括第三服务小区,所述第三服务小区与所述第一服务小 区的子载波间隔参数不同时,所述第一服务小区跨载波调度所述第三服务小区;所述第一数目为对以下公式取整得到:(T/W)*M*y;其中,M表示:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目;y表示:所述终端设备监控PDCCH候选的能力参数。
可选地,所述T个服务小区包括第三服务小区,所述第一服务小区跨载波调度所述第三服务小区,当所述第三服务小区与所述第一服务小区的子载波间隔参数相同时,所述第一数目是根据:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述终端设备监控PDCCH候选的能力参数确定的。
可选地,所述T个服务小区的子载波间隔参数相同,且所述T个服务小区中至少一个服务小区的调度方式为跨载波调度,所述第一数目为:y*M,其中,M表示:主小区在第二单位时长内能够监控的PDCCH候选的第五数目;y表示:所述终端设备监控PDCCH候选的能力参数。
可选地,所述T个服务小区中至少一个服务小区的调度方式为跨载波调度,所述终端设备在跨载波调度的服务小区上能够监控的PDCCH候选的最大数目为:N3*y*M’,所述M’是根据第四单位时长内,所述终端设备在被跨载波调度的服务小区上能够监控的PDCCH候选的最大数目,和所述终端设备在所述跨载波调度的服务小区上能够监控的PDCCH候选的最大数目确定的,其中,所述第四单位时长为:所述跨载波调度的服务小区的子载波间隔参数对应的时隙长度,或,所述被跨载波调度的服务小区的子载波间隔参数对应的时隙长度,其中,N3表示:所述跨载波调度的服务小区调度的服务小区数,N3为大于或等于1的整数;y表示:所述终端设备监控PDCCH候选的能力参数。
可选地,当所述第一服务小区跨载波调度第四服务小区时,所述终端设备在所述第一服务小区上针对所述第四服务小区能够监控的PDCCH候选的第八数目包括:不同大小的下行控制信息DCI格式对应的PDCCH候选的数目,且所述第四服务小区对应的不同DCI大小的个数小于或等于4,所述第四服务小区属于所述T个服务小区;所述网络设备配置所述终端设备在第一服务小区上监控的PDCCH候选的第二数目,包括:所述网络设备根据所述第四服务小区对应的不同DCI大小的个数,配置所述终端设备在所述第一服务小区上监控的PDCCH候选的第二数目。
可选地,所述第一服务小区对应的不同DCI大小的个数为K2或第一阈值,所述K2小于或等于所述第一阈值,所述K2是根据以下至少一个参数确定的:所述K1、所述第一服务小区调度的服务小区数、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述第一服务小区的子载波间隔、所述第四服务小区的子载波间隔。
可选地,K2=4+K1*t,其中,t为被所述第一服务小区跨载波调度的服务小区数;所述网络设备配置所述终端设备在第一服务小区上监控的PDCCH候选的第二数目,包括:所述网络设备根据所述第一服务小区对应的不同DCI大小的个数,配置所述终端设备在所述第一服务小区上监控的PDCCH候选的第二数目。
可选地,所述第四服务小区对应的不同大小的DCI格式的个数为2。
其中,以上列举的装置20中各模块或单元的功能和动作仅为示例性说明,装置20中各模块或单元可以用于执行上述方法中网络设备/终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置20所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
另一种可能的设计中,该装置20可以为终端设备或配置于终端设备中的芯片。
另一种可能的设计中,收发单元22用于:接收网络设备在第一服务小区上配置的物理下行控制信道PDCCH候选的第一数目;
处理单元21用于:根据所述第一数目确定为第二服务小区服务的PDCCH候选的第二数目,所述第二服务小区是被所述第一服务小区调度的小区。
可选地,处理单元21用于:根据所述第一数目确定在所述第一服务小区上针对所述第一服务小区的PDCCH候选的第三数目,且处理单元21用于:根据所述第三数目,以及以下至少一个参数,确定针对第二服务小区服务的PDCCH候选的第二数目:PDCCH候选个数折算因子、PDCCH候选个数偏移值、所述第一服务小区的子载波间隔、所述第二服务小区的子载波间隔、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的最大数目、所述第二服务小区在第二单位时长内能够监控的PDCCH候选的最大数目、公共搜索空间CSS的偏移值、被所述第一服务小区调度的服务小区数。
其中,以上列举的装置20中各模块或单元的功能和动作仅为示例性说明,装置20中各模块或单元可以用于执行上述方法中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置20所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图17为本申请实施例提供的配置参数的装置30的示意图,如图17所示,该装置30可以为网络设备(例如,上述网络设备),也可以为芯片或电路,如可设置于网络设备内的芯片或电路。其中,该网络设备对应上述方法中的网络设备(例如,上述网络设备)。或者,该装置30可以为终端设备设备(例如,上述终端设备设备),也可以为芯片或电路,如可设置于终端设备设备内的芯片或电路。其中,该终端设备设备对应上述方法中的终端设备设备(例如,上述终端设备设备)
该装置30可以包括处理器31(即,处理单元的一例)和存储器32。该存储器32用于存储指令,该处理器31用于执行该存储器32存储的指令,以使该装置30实现前述方法中网络设备(例如,网络设备)执行的步骤。
进一步的,该装置30还可以包括输入口33(即,通信单元的一例)和输出口33(即,处理单元的另一例)。
再进一步的,该处理器31、存储器32、输入口33和输出口34可以通过内部连接通路互相通信,传递控制和/或数据信号。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的网络设备。即将实现处理器31、输入口33和输出口34功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器31、输入口33和输出口34的功能。
该存储器32用于存储计算机程序。
一种可能的设计中,在本申请实施例中,该处理器31可以用于从该存储器32中调用并运行该计算计程序,获取终端设备在T个服务小区上能够监控的物理下行控制信道PDCCH候选的第一数目,其中,T为大于或等于2的整数;配置所述终端设备在第一服 务小区上监控的PDCCH候选的第二数目,所述第二数目是所述网络设备根据所述终端设备在所述第一服务小区上能够监控的PDCCH候选的第三数目确定的,所述第三数目是所述网络设备根据所述第一数目确定的,所述第一服务小区属于所述T个服务小区。
其中,以上列举的装置30中各模块或单元的功能和动作仅为示例性说明,装置30中各模块或单元可以用于执行上述方法网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置30所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
另一种可能的设计中,在本申请实施例中,该处理器31可以用于从该存储器32中调用并运行该计算计程序,获取在第一服务小区上监控的物理下行控制信道PDCCH候选的第二数目,所述第二数目是网络设备根据所述终端设备在所述第一服务小区上能够监控的PDCCH候选的第三数目确定的,所述第三数目是所述网络设备根据第一数目确定的,所述第一数目为所述终端设备在T个服务小区上能够监控的PDCCH候选的数目,所述第一服务小区属于所述T个服务小区,其中,T为大于或等于2的整数;根据所述第二数目监控PDCCH。
其中,以上列举的装置30中各模块或单元的功能和动作仅为示例性说明,装置30中各模块或单元可以用于执行上述方法终端设备设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置30所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
又一种可能的设计中,在本申请实施例中,该处理器31可以用于从该存储器32中调用并运行该计算计程序,接收网络设备在第一服务小区上配置的物理下行控制信道PDCCH候选的第一数目;根据所述第一数目确定为第二服务小区服务的PDCCH候选的第二数目,所述第二服务小区是被所述第一服务小区调度的小区。
其中,以上列举的装置30中各模块或单元的功能和动作仅为示例性说明,装置30中各模块或单元可以用于执行上述方法终端设备设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置30所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图18为本申请实施例提供的一种网络设备40的结构示意图,可以用于实现上述方法中的网络设备(例如,网络设备)的功能。网络设备40包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)401和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)402。所述RRU 401可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线4011和射频单元4012。所述RRU401部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU 402部分主要用于进行基带处理,对网络设备进行控制等。所述RRU 401与BBU 402可以是物理上设置在一起,也可以物理上分离设置的,即分布式网络设备。
所述BBU 402为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处 理功能,如信道编码,复用,调制,扩频等等。例如该BBU(处理单元)402可以用于控制网络设备40执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 402可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE系统,或5G系统),也可以分别支持不同接入制式的无线接入网。所述BBU 402还包括存储器4021和处理器4022。所述存储器4021用以存储必要的指令和数据。例如存储器4021存储上述实施例中的码本等。所述处理器4022用于控制网络设备进行必要的动作,例如用于控制网络设备执行上述方法实施例中关于网络设备的操作流程。所述存储器4021和处理器4022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在一种可能的实施方式中,随着片上系统(System-on-chip,SoC)技术的发展,可以将402部分和401部分的全部或者部分功能由SoC技术实现,例如由一颗网络设备功能芯片实现,该网络设备功能芯片集成了处理器、存储器、天线接口等器件,网络设备相关功能的程序存储在存储器中,由处理器执行程序以实现网络设备的相关功能。可选的,该网络设备功能芯片也能够读取该芯片外部的存储器以实现网络设备的相关功能。
应理解,图18示例的网络设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的网络设备结构的可能。
根据本申请实施例提供的方法,本申请实施例还提供一种参数确定的系统,其包括前述的网络设备和一个或多于一个终端设备。
图19是本申请实施例提供的终端设备50的结构示意图。如图19所示,该终端设备50包括处理器51和收发器52。可选地,该终端设备50还包括存储器53。其中,处理器51、收发器52和存储器53之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器53用于存储计算机程序,该处理器51用于从该存储器53中调用并运行该计算机程序,以控制该收发器52收发信号。
上述处理器51和存储器53可以合成一个处理装置,处理器51用于执行存储器53中存储的程序代码来实现上述功能。具体实现时,该存储器53也可以集成在处理器51中,或者独立于处理器51。
上述终端设备还可以包括天线54,用于将收发器52输出的下行数据或下行控制信令通过无线信号发送出去。
具体地,该终端设备50可对应于根据本申请实施例的参数确定的方法中的终端设备,该终端设备50可以包括用于执行上述方法实施例中终端设备执行的方法的模块。具体地,该存储器53用于存储程序代码,使得处理器51在执行该程序代码时,执行上述方法实施例中终端设备执行的方法,各模块执行上述相应步骤的具体过程中已经详细说明,为了简洁,在此不再赘述。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的 处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种配置参数的方法,其特征在于,包括:
    网络设备获取终端设备在T个服务小区上能够监控的物理下行控制信道PDCCH候选的第一数目,其中,T为大于或等于2的整数;
    所述网络设备配置所述终端设备在第一服务小区上监控的PDCCH候选的第二数目,所述第二数目是所述网络设备根据所述终端设备在所述第一服务小区上能够监控的PDCCH候选的第三数目确定的,所述第三数目是所述网络设备根据所述第一数目确定的,所述第一服务小区属于所述T个服务小区。
  2. 根据权利要求1所述的方法,其特征在于,所述第三数目是所述网络设备根据所述第一数目确定的,包括:
    所述第三数目是所述网络设备根据所述第一数目与以下至少一个参数确定的:
    所述网络设备为所述终端设备配置的服务小区的总数、所述T、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述第一服务小区调度的服务小区数、主小区在第二单位时长内能够监控的PDCCH候选的第五数目。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第三数目是所述网络设备根据所述第一数目确定的,包括:
    所述第三数目为通过对所述第一数目进行平均处理所得。
  4. 根据权利要求3所述的方法,其特征在于,当所述T个服务小区的子载波间隔参数相同时,
    所述第三数目为对以下公式取整得到:
    N1*Q/T;其中,
    Q表示:所述第一数目;
    N1表示:所述第一服务小区调度的服务小区数,N1为大于或等于1的整数。
  5. 根据权利要求1或2所述的方法,其特征在于,所述T个服务小区包括至少一个辅小区,所述方法还包括:
    当所述T个服务小区的子载波间隔参数相同,且所述第一服务小区为主小区时,
    所述网络设备根据所述第三数目和所述第一数目确定所述终端设备在所述至少一个辅小区上能够监控的PDCCH候选的第六数目。
  6. 根据权利要求5所述的方法,其特征在于,所述第三数目是所述网络设备根据所述第一数目确定的,包括:
    所述第三数目是所述网络设备根据:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、被所述第一服务小区跨载波调度的服务小区数、以及所述第一数目确定的。
  7. 根据权利要求5或6所述的方法,其特征在于,所述终端设备共配置有W个服务小区,所述W个服务小区包括所述T个服务小区,
    当所述第一服务小区为辅小区时,所述第三数目是所述网络设备根据所述第一数目确定的,包括:
    若所述第一服务小区的子载波间隔参数与所述W个服务小区中主小区的子载波间隔参数相同,所述第三数目是所述网络设备根据:所述第一服务小区调度的服务小区数、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述第一数目、以及所述T确定的;或
    若所述第一服务小区的子载波间隔参数与所述W个服务小区中主小区的子载波间隔参数不同,所述第三数目是所述网络设备根据:所述第一服务小区调度的服务小区数、所述第一数目、以及所述T确定的。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述T个服务小区中包括第三服务小区,所述第一服务小区跨载波调度所述第三服务小区,
    当所述第三服务小区与所述第一服务小区的子载波间隔参数不同时,所述第一数目根据所述终端设备监控PDCCH候选的能力参数,以及以下至少一个参数确定:
    所述T、所述网络设备为所述终端设备配置的服务小区的总数、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述第一服务小区的子载波间隔、所述第三服务小区的子载波间隔、所述第三服务小区在第三单位时长内能够监控的PDCCH候选的第七数目。
  9. 根据权利要求1至8所述的方法,其特征在于,所述T个服务小区包括第三服务小区,所述第一服务小区跨载波调度所述第三服务小区,当所述第三服务小区与所述第一服务小区的子载波间隔参数相同时,
    所述第一数目是根据:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述终端设备监控PDCCH候选的能力参数确定的。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,当所述第一服务小区跨载波调度第四服务小区时,
    所述终端设备在所述第一服务小区上针对所述第四服务小区能够监控的PDCCH候选的第八数目包括:不同大小的下行控制信息DCI格式对应的PDCCH候选的数目,且所述第四服务小区对应的不同DCI大小的个数小于或等于4,所述第四服务小区属于所述T个服务小区,
    所述网络设备配置所述终端设备在第一服务小区上监控的PDCCH候选的第二数目,包括:
    所述网络设备根据所述第四服务小区对应的不同DCI大小的个数,配置所述终端设备在所述第一服务小区上监控的PDCCH候选的第二数目。
  11. 一种监控方法,其特征在于,包括:
    终端设备获取在第一服务小区上监控的物理下行控制信道PDCCH候选的第二数目,所述第二数目是网络设备根据所述终端设备在所述第一服务小区上能够监控的PDCCH候选的第三数目确定的,所述第三数目是所述网络设备根据第一数目确定的,所述第一数目为所述终端设备在T个服务小区上能够监控的PDCCH候选的数目,所述第一服务小区属于所述T个服务小区,其中,T为大于或等于2的整数;
    所述终端设备根据所述第二数目监控PDCCH。
  12. 根据权利要求11所述的方法,其特征在于,所述第三数目是所述网络设备根据所述第一数目确定的,包括:
    所述第三数目是所述网络设备根据所述第一数目与以下至少一个参数确定的:
    所述网络设备为所述终端设备配置的服务小区的个数、所述T、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述第一服务小区调度的服务小区数、主小区在第二单位时长内能够监控的PDCCH候选的第五数目。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第三数目是所述网络设备根据所述第一数目确定的,包括:
    所述第三数目为通过对所述第一数目进行平均处理所得。
  14. 根据权利要求13所述的方法,其特征在于,当所述T个服务小区的子载波间隔参数相同时,
    所述第三数目为对以下公式取整得到:
    N1*Q/T;其中,
    Q表示:所述第一数目;
    N1表示:所述第一服务小区调度的服务小区数,N1为大于或等于1的整数。
  15. 根据权利要求11或12所述的方法,其特征在于,所述T个服务小区包括至少一个辅小区,所述方法还包括:
    当所述T个服务小区的子载波间隔参数相同,且所述第一服务小区为主小区时,
    所述网络设备根据所述第三数目和所述第一数目确定所述终端设备在所述至少一个辅小区上能够监控的PDCCH候选的第六数目。
  16. 根据权利要求15所述的方法,其特征在于,所述第三数目是所述网络设备根据所述第一数目确定的,包括:
    所述第三数目是所述网络设备根据:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、被所述第一服务小区跨载波调度的服务小区数、以及所述第一数目确定的。
  17. 根据权利要求15或16所述的方法,其特征在于,所述终端设备共配置有W个服务小区,所述W个服务小区包括所述T个服务小区,
    当所述第一服务小区为辅小区时,所述第三数目是所述网络设备根据所述第一数目确定的,包括:
    若所述第一服务小区的子载波间隔参数与所述W个服务小区中主小区的子载波间隔参数相同,所述第三数目是所述网络设备根据:所述第一服务小区调度的服务小区的总数、所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述第一数目、以及所述T确定的;或
    若所述第一服务小区的子载波间隔参数与所述W个服务小区中主小区的子载波间隔参数不同,所述第三数目是所述网络设备根据:所述第一服务小区调度的服务小区数、所述第一数目、以及所述T确定的。
  18. 根据权利要求11至17中任一项所述的方法,其特征在于,所述T个服务小区中包括第三服务小区,所述第一服务小区跨载波调度所述第三服务小区,
    当所述第三服务小区与所述第一服务小区的子载波间隔参数不同时,所述第一数目根据所述终端设备监控PDCCH候选的能力参数,以及以下至少一个参数确定:
    所述T、所述网络设备为所述终端设备配置的服务小区的个数、所述第一服务小区在 第一单位时长内能够监控的PDCCH候选的第四数目、所述第一服务小区的子载波间隔、所述第三服务小区的子载波间隔、所述第三服务小区在第三单位时长内能够监控的PDCCH候选的第七数目。
  19. 根据权利要求11至18中任一项所述的方法,其特征在于,所述T个服务小区包括第三服务小区,所述第一服务小区跨载波调度所述第三服务小区,当所述第三服务小区与所述第一服务小区的子载波间隔参数相同时,
    所述第一数目是根据:所述第一服务小区在第一单位时长内能够监控的PDCCH候选的第四数目、所述终端设备监控PDCCH候选的能力参数确定的。
  20. 根据权利要求11至19中任一项所述的方法,其特征在于,当所述第一服务小区跨载波调度第四服务小区时,
    所述终端设备在所述第一服务小区上为所述第四服务小区能够监控的PDCCH候选的第八数目包括:不同大小的下行控制信息DCI格式对应的PDCCH候选的数目,且所述第四服务小区对应的不同DCI大小的个数小于或等于4,所述第四服务小区属于所述T个服务小区。
  21. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述通信装置执行权利要求1至10中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行权利要求1至10中任一项所述的方法。
  23. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的设备执行权利要求1至10中任一项所述的方法。
  24. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述通信装置执行权利要求11至20中任一项所述的监控方法。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行权利要求11至20中任一项所述的监控方法。
  26. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的通信设备执行权利要求11至20中任一项所述的监控方法。
PCT/CN2019/099371 2018-08-10 2019-08-06 确定载波聚合下监控pdcch候选数目的方法和装置 WO2020029945A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810912238.XA CN110830216B (zh) 2018-08-10 2018-08-10 确定载波聚合下监控pdcch候选数目的方法和装置
CN201810912238.X 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020029945A1 true WO2020029945A1 (zh) 2020-02-13

Family

ID=69414512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099371 WO2020029945A1 (zh) 2018-08-10 2019-08-06 确定载波聚合下监控pdcch候选数目的方法和装置

Country Status (2)

Country Link
CN (1) CN110830216B (zh)
WO (1) WO2020029945A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021190400A1 (en) * 2020-03-21 2021-09-30 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
WO2021202976A1 (en) * 2020-04-02 2021-10-07 Qualcomm Incorporated Search space configurations for multi-component carrier scheduling
CN113498066A (zh) * 2020-03-21 2021-10-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113572713A (zh) * 2020-04-29 2021-10-29 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置
WO2022031950A1 (en) * 2020-08-05 2022-02-10 Idac Holdings, Inc. Methods and apparatus for dynamic spectrum sharing
WO2022084552A1 (en) * 2020-10-23 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Physical downlink control channel limit handling for enhanced cross-carrier scheduling
US20220294597A1 (en) * 2021-03-10 2022-09-15 Qualcomm Incorporated Cell-group slot format indication (sfi)
US20230156761A1 (en) * 2019-07-24 2023-05-18 Samsung Electronics Co., Ltd. Control signaling design for improved resource utilization

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113364566B (zh) * 2020-03-03 2024-04-09 联发科技(新加坡)私人有限公司 用于移动通信中的载波聚合的pdcch监控增强的方法和装置
CN113498072B (zh) * 2020-03-18 2023-03-31 北京紫光展锐通信技术有限公司 Pdcch候选和非重叠cce的监听个数的确定方法、装置以及设备
CN113453349B (zh) * 2020-03-27 2022-06-21 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113498185A (zh) * 2020-04-07 2021-10-12 维沃移动通信有限公司 监测数量的确定方法及装置、通信设备
CN112437488B (zh) * 2020-04-08 2022-03-29 上海移远通信技术股份有限公司 一种被用于无线通信的节点中的方法和装置
WO2021203324A1 (en) * 2020-04-08 2021-10-14 Apple Inc. SCell Dormancy Reliability Improvement
CN113518343B (zh) * 2020-04-09 2023-05-02 维沃移动通信有限公司 最大pdcch处理能力分配方法、终端设备及网络设备
US20230217460A1 (en) * 2020-06-19 2023-07-06 Lenovo (Beijing) Limited Apparatus and methods of span level tdm pdcch transmission
WO2022027384A1 (en) * 2020-08-05 2022-02-10 Apple Inc. Systems and methods for pdcch monitoring in new radio
WO2022027508A1 (zh) * 2020-08-06 2022-02-10 华为技术有限公司 一种资源调度方法及通信装置
CN114071747A (zh) * 2020-08-07 2022-02-18 维沃移动通信有限公司 信息确定方法、信息发送方法及终端
CN116097821A (zh) * 2020-08-07 2023-05-09 中兴通讯股份有限公司 无线设备的控制信道约束
WO2022147644A1 (en) * 2021-01-05 2022-07-14 Zte Corporation Systems and methods for blind detection budget for physical downlink control channel
CN114765858A (zh) * 2021-01-15 2022-07-19 中国移动通信有限公司研究院 信道检测的方法、装置、终端、基站及存储介质
CN115190609A (zh) * 2021-04-02 2022-10-14 华为技术有限公司 下行控制信息传输方法及相关装置
CN116095853A (zh) * 2021-11-05 2023-05-09 华为技术有限公司 一种通信方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368871A (zh) * 2011-11-10 2012-03-07 电信科学技术研究院 一种pdcch资源的配置应用方法及装置
WO2013022451A1 (en) * 2011-08-11 2013-02-14 Research In Motion Limited Performing random access in carrier aggregation
CN104823475A (zh) * 2012-11-27 2015-08-05 Lg电子株式会社 在无线通信系统中监视下行链路控制信道的方法及其装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932024A (zh) * 2009-06-24 2010-12-29 华为技术有限公司 下行控制信息发送方法和装置
CN102014494B (zh) * 2009-09-29 2012-07-04 电信科学技术研究院 一种下行调度信息的配置方法及装置
CN102056185B (zh) * 2009-10-31 2014-12-10 华为技术有限公司 信道盲检测方法、分配方法和装置
JP5597721B2 (ja) * 2009-12-17 2014-10-01 エルジー エレクトロニクス インコーポレイティド チャンネルブロッキングを回避するための方法及び装置
US8867519B2 (en) * 2010-04-07 2014-10-21 Lg Electronics Inc. PDCCH monitoring method and apparatus in a carrier junction system
US9276722B2 (en) * 2010-05-05 2016-03-01 Qualcomm Incorporated Expanded search space for R-PDCCH in LTE-A
US20110292891A1 (en) * 2010-05-26 2011-12-01 Industrial Technology Research Institute Control channel allocation method, control channel searching method and communication apparatus using the same
CN101860896B (zh) * 2010-06-13 2016-06-15 中兴通讯股份有限公司 一种确定用户专有搜索空间的方法和装置
CN102164416B (zh) * 2011-05-03 2014-04-16 电信科学技术研究院 一种数据传输的方法、系统和设备
CN106301674B (zh) * 2015-05-22 2019-11-29 中国移动通信集团公司 一种聚合载波的盲检方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013022451A1 (en) * 2011-08-11 2013-02-14 Research In Motion Limited Performing random access in carrier aggregation
CN102368871A (zh) * 2011-11-10 2012-03-07 电信科学技术研究院 一种pdcch资源的配置应用方法及装置
CN104823475A (zh) * 2012-11-27 2015-08-05 Lg电子株式会社 在无线通信系统中监视下行链路控制信道的方法及其装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HTC: "Discussion on EPDCCH Sets and Number of EPDCCH Decoding Candidates", 3GPP TSG-RAN WG1 MEETING #70BIS, R1-124352, 29 September 2012 (2012-09-29), XP050662249 *
QUALCOMM INCORPORATED: "Draft CR on Limiting the Maximum Number of PDCCH De- coding Candidates for LAA", 3GPP TSG-RAN MEETING #88 R1-1703513, 15 February 2017 (2017-02-15), XP051222054 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230156761A1 (en) * 2019-07-24 2023-05-18 Samsung Electronics Co., Ltd. Control signaling design for improved resource utilization
WO2021190400A1 (en) * 2020-03-21 2021-09-30 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
CN113498066A (zh) * 2020-03-21 2021-10-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113498066B (zh) * 2020-03-21 2022-06-17 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021202976A1 (en) * 2020-04-02 2021-10-07 Qualcomm Incorporated Search space configurations for multi-component carrier scheduling
US11792812B2 (en) 2020-04-02 2023-10-17 Qualcomm Incorporated Search space configurations for multi-component carrier scheduling
CN113572713A (zh) * 2020-04-29 2021-10-29 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置
WO2022031950A1 (en) * 2020-08-05 2022-02-10 Idac Holdings, Inc. Methods and apparatus for dynamic spectrum sharing
TWI811755B (zh) * 2020-08-05 2023-08-11 美商內數位專利控股公司 用於動態頻譜共用之方法及設備
JP7481573B2 (ja) 2020-08-05 2024-05-10 インターデイジタル パテント ホールディングス インコーポレイテッド 動的スペクトル共有のための方法及び装置
WO2022084552A1 (en) * 2020-10-23 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Physical downlink control channel limit handling for enhanced cross-carrier scheduling
US20220294597A1 (en) * 2021-03-10 2022-09-15 Qualcomm Incorporated Cell-group slot format indication (sfi)

Also Published As

Publication number Publication date
CN110830216A (zh) 2020-02-21
CN110830216B (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2020029945A1 (zh) 确定载波聚合下监控pdcch候选数目的方法和装置
US11528090B2 (en) Parameter determining method, monitoring method, and communications apparatus
US11910417B2 (en) Base station device, terminal device, and communication method
EP3437237B1 (en) User equipments, base stations and methods for pusch transmission
US10735170B2 (en) ACK/NACK feedback method and user equipment
US20170019915A1 (en) User equipments, base stations and methods for license assisted access (laa)
EP3897005A1 (en) Communication method and apparatus
JP7249785B2 (ja) 端末装置、基地局装置、および通信方法
JP6917403B2 (ja) 基地局装置、端末装置および通信方法
US10129880B2 (en) Aggregation groups for aggregating heterogeneous carriers
JP2022550428A (ja) 情報確定方法、情報調整方法、閾値使用方法、端末、及び基地局
US10959119B2 (en) Method and apparatus for configuring measurement gap for performing measurement in wireless communication system
US11876750B2 (en) Method and apparatus for determining channel access procedure in wireless communication system
JP6963586B2 (ja) 基地局装置、端末装置、および通信方法
WO2020203427A1 (ja) 基地局装置、端末装置、および、通信方法
WO2021066133A1 (ja) 端末装置、基地局装置、および、通信方法
JP2020182115A (ja) 基地局装置、端末装置、および、通信方法
WO2020088423A1 (zh) 一种通信方法及装置
JP2022025801A (ja) 端末装置、基地局装置、および、通信方法
JP2021029009A (ja) 基地局装置、端末装置、および、通信方法
WO2020218348A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
JP2022011324A (ja) 端末装置、基地局装置、および、通信方法
WO2022025038A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020195531A1 (ja) 基地局装置、端末装置、および、通信方法
WO2021029402A1 (ja) 基地局装置、端末装置、および、通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846610

Country of ref document: EP

Kind code of ref document: A1