WO2022147644A1 - Systems and methods for blind detection budget for physical downlink control channel - Google Patents

Systems and methods for blind detection budget for physical downlink control channel Download PDF

Info

Publication number
WO2022147644A1
WO2022147644A1 PCT/CN2021/070257 CN2021070257W WO2022147644A1 WO 2022147644 A1 WO2022147644 A1 WO 2022147644A1 CN 2021070257 W CN2021070257 W CN 2021070257W WO 2022147644 A1 WO2022147644 A1 WO 2022147644A1
Authority
WO
WIPO (PCT)
Prior art keywords
uss
scs
candidates
cell
indices
Prior art date
Application number
PCT/CN2021/070257
Other languages
French (fr)
Inventor
Jing Shi
Peng Hao
Xingguang WEI
Kai Xiao
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to CN202180062767.5A priority Critical patent/CN116326122A/en
Priority to PCT/CN2021/070257 priority patent/WO2022147644A1/en
Publication of WO2022147644A1 publication Critical patent/WO2022147644A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the disclosure relates generally to wireless communications, including but not limited to systems and methods for determining a blind detection budget for physical downlink control channel (PDCCH) .
  • PDCCH physical downlink control channel
  • the standardization organization Third Generation Partnership Project (3GPP) is currently in the process of specifying a new Radio Interface called 5G New Radio (5G NR) as well as a Next Generation Packet Core Network (NG-CN or NGC) .
  • the 5G NR will have three main components: a 5G Access Network (5G-AN) , a 5G Core Network (5GC) , and a User Equipment (UE) .
  • 5G-AN 5G Access Network
  • 5GC 5G Core Network
  • UE User Equipment
  • the elements of the 5GC also called Network Functions, have been simplified with some of them being software based, and some being hardware based, so that they could be adapted according to need.
  • example embodiments disclosed herein are directed to solving the issues relating to one or more of the problems presented in the prior art, as well as providing additional features that will become readily apparent by reference to the following detailed description when taken in conjunction with the accompany drawings.
  • example systems, methods, devices and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and are not limiting, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of this disclosure.
  • a wireless communication device may determine a blind detection budget for PDCCH for a scheduled cell having a first scheduling cell and a second scheduling cell, according to at least a subcarrier spacing (SCS) of the first scheduling cell and the second scheduling cell.
  • the blind detection budget may comprise a first budget (Mmax) for the scheduled cell, on both the first scheduling cell and the second scheduling cell.
  • the blind detection budget may comprise a second budget (M1max) on the first scheduling cell for the scheduled cell, and a third budget (M2max) on the second scheduling cell for the scheduled cell.
  • the wireless communication device may perform PDCCH blind detection without exceeding the determined blind detection budget.
  • the PDCCH blind detection budget may comprise at least one of monitored PDCCH candidates or non-overlapped control channel elements (CCEs) .
  • the wireless communication device may determine the Mmax according to one of: a first SCS ( ⁇ 1) of the first scheduling cell, a second SCS ( ⁇ 2) of the second scheduling cell, a maximum of the first SCS and the second SCS, or a minimum of the first SCS and the second SCS. In some embodiments, the wireless communication device may determine the M1max or the M2max according to at least one of: the first SCS, the second SCS, a first scaling factor for the first scheduling cell, a second scaling factor for the second scheduling cell.
  • the wireless communication device may determine the Mmax according to:a first SCS ( ⁇ 1) of the first scheduling cell, a second SCS ( ⁇ 2) of the second scheduling cell, a first scaling factor of the first scheduling cell, and a second scaling factor of the second scheduling cell.
  • the first or second scaling factor may be predefined or configured by higher layer signaling.
  • the wireless communication device may allocate the PDCCH candidates for monitoring in a slot with SCS equal to the ⁇ 1.
  • the maximum number of PDCCH candidates for monitoring on the second scheduling cell for the scheduled cell may be equal to the Mmax minus the number of candidates in all common search space (CSS) sets on the first scheduling cell.
  • the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 1 may be according to an order of the USS indices, followed by an order of the slot indices with SCS equal to the ⁇ 2.
  • the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 1 may be according to the order of the slot indices with SCS equal to the ⁇ 2, followed by the order of the USS indices. In some embodiments, the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 1 may be according to the order of the USS indices, wherein a number of candidates in a USS set on the second scheduling cell for the scheduled cell is counted as 2 ⁇ 2- ⁇ 1 multiplied by a number of candidates configured in the USS set.
  • the wireless communication device may allocate the PDCCH candidates for monitoring in a slot with SCS equal to the ⁇ 2.
  • the maximum number of PDCCH candidates for monitoring to USS sets on the second scheduling cell for the scheduled cell may be equal to the Mmax minus a function of a summation of number of candidates in all common search space (CSS) sets on the first scheduling cell.
  • the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 2 may be according to an order of the USS indices.
  • the wireless communication device may allocate PDCCH candidates for monitoring to user equipment (UE) specific search-space (USS) sets, according to USS indices, scheduling cell indices, and slot indices.
  • UE user equipment
  • USS user equipment
  • the wireless communication device may allocate the PDCCH candidates for monitoring in a slot with SCS equal to the ⁇ 1.
  • the maximum number of candidates for monitoring on the second scheduling cell for the scheduled cell may be equal to the Mmax minus number of candidates in all common search space (CSS) sets on the first scheduling cell.
  • the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 1 may be according to an order of the USS indices, followed by an order of the slot indices with SCS equal to the ⁇ 2.
  • the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 1 may be according to an order of scheduling cell indices, followed by the order of the slot indices with SCS equal to the ⁇ 2, followed by the order of the USS indices. In some embodiments, the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 1 may be according to the order of the USS indices, wherein a number of candidates in a USS set on the second scheduling cell for the scheduled cell is counted as 2 ⁇ 2- ⁇ 1 multiplied by a number of candidates in the USS set. In some embodiments, the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 1 may be according to the order of scheduling cell indices, followed by the order of the USS indices.
  • the Mmax minus the number of candidates in all CSSes on the first scheduling cell may be represented as: M max, ⁇ 1 -M1 CSS, ⁇ 1 .
  • the wireless communication device may allocate PDCCH candidates for monitoring in a slot with SCS equal to the ⁇ 2.
  • the maximum number of PDCCH candidates for monitoring to USS sets on the both scheduling cells for the scheduled cell may be equal to the Mmax minus a function of a summation of number of candidates in all common search space (CSS) sets on the first scheduling cell.
  • SCS common search space
  • the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 2 may be according to an order of the USS indices, wherein a number of candidates in a USS set on the first scheduling cell for the scheduled cell is counted as 2 ⁇ 2- ⁇ 1 multiplied by a number of candidates in the USS set.
  • the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 2 may be according to an order of scheduling cell indices, followed by the order of the USS indices. In some embodiments, the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 2 may be according to the order of the USS indices, followed by the order of the slot indices with SCS equal to the ⁇ 1. In some embodiments, the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 2 may be according to the order of scheduling cell indices, followed by the order of the slot indices with SCS equal to the ⁇ 1, then the order of the USS indices. In some embodiments, the Mmax minus the function of the summation of the number of candidates in all CSS sets on the first scheduling cell is represented as:
  • FIG. 1 illustrates an example cellular communication network in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure
  • FIG. 2 illustrates a block diagram of an example base station and a user equipment device, in accordance with some embodiments of the present disclosure
  • FIG. 3 illustrates example values for the maximum number of monitored physical downlink control channel (PDCCH) candidates, in accordance with some embodiments of the present disclosure
  • FIG. 4 illustrates example values for the maximum number of non-overlapped control channel elements (CCEs) , in accordance with some embodiments of the present disclosure
  • FIGs. 5-7 illustrate various approaches for determining a first, second and/or third blind detection budget according to one or more parameters, in accordance with some embodiments of the present disclosure.
  • FIG. 8 illustrates a flow diagram of an example method for determining a blind detection budget for PDCCH, in accordance with an embodiment of the present disclosure.
  • FIG. 1 illustrates an example wireless communication network, and/or system, 100 in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure.
  • the wireless communication network 100 may be any wireless network, such as a cellular network or a narrowband Internet of things (NB-IoT) network, and is herein referred to as “network 100.
  • NB-IoT narrowband Internet of things
  • Such an example network 100 includes a base station 102 (hereinafter “BS 102” ; also referred to as wireless communication node) and a user equipment device 104 (hereinafter “UE 104” ; also referred to as wireless communication device) that can communicate with each other via a communication link 110 (e.g., a wireless communication channel) , and a cluster of cells 126, 130, 132, 134, 136, 138 and 140 overlaying a geographical area 101.
  • the BS 102 and UE 104 are contained within a respective geographic boundary of cell 126.
  • Each of the other cells 130, 132, 134, 136, 138 and 140 may include at least one base station operating at its allocated bandwidth to provide adequate radio coverage to its intended users.
  • the BS 102 may operate at an allocated channel transmission bandwidth to provide adequate coverage to the UE 104.
  • the BS 102 and the UE 104 may communicate via a downlink radio frame 118, and an uplink radio frame 124 respectively.
  • Each radio frame 118/124 may be further divided into sub-frames 120/127 which may include data symbols 122/128.
  • the BS 102 and UE 104 are described herein as non-limiting examples of “communication nodes, ” generally, which can practice the methods disclosed herein. Such communication nodes may be capable of wireless and/or wired communications, in accordance with various embodiments of the present solution.
  • FIG. 2 illustrates a block diagram of an example wireless communication system 200 for transmitting and receiving wireless communication signals (e.g., OFDM/OFDMA signals) in accordance with some embodiments of the present solution.
  • the system 200 may include components and elements configured to support known or conventional operating features that need not be described in detail herein.
  • system 200 can be used to communicate (e.g., transmit and receive) data symbols in a wireless communication environment such as the wireless communication environment 100 of Figure 1, as described above.
  • the System 200 generally includes a base station 202 (hereinafter “BS 202” ) and a user equipment device 204 (hereinafter “UE 204” ) .
  • the BS 202 includes a BS (base station) transceiver module 210, a BS antenna 212, a BS processor module 214, a BS memory module 216, and a network communication module 218, each module being coupled and interconnected with one another as necessary via a data communication bus 220.
  • the UE 204 includes a UE (user equipment) transceiver module 230, a UE antenna 232, a UE memory module 234, and a UE processor module 236, each module being coupled and interconnected with one another as necessary via a data communication bus 240.
  • the BS 202 communicates with the UE 204 via a communication channel 250, which can be any wireless channel or other medium suitable for transmission of data as described herein.
  • system 200 may further include any number of modules other than the modules shown in Figure 2.
  • modules other than the modules shown in Figure 2.
  • Those skilled in the art will understand that the various illustrative blocks, modules, circuits, and processing logic described in connection with the embodiments disclosed herein may be implemented in hardware, computer-readable software, firmware, or any practical combination thereof. To clearly illustrate this interchangeability and compatibility of hardware, firmware, and software, various illustrative components, blocks, modules, circuits, and steps are described generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware, or software can depend upon the particular application and design constraints imposed on the overall system. Those familiar with the concepts described herein may implement such functionality in a suitable manner for each particular application, but such implementation decisions should not be interpreted as limiting the scope of the present disclosure
  • the UE transceiver 230 may be referred to herein as an "uplink" transceiver 230 that includes a radio frequency (RF) transmitter and a RF receiver each comprising circuitry that is coupled to the antenna 232.
  • a duplex switch (not shown) may alternatively couple the uplink transmitter or receiver to the uplink antenna in time duplex fashion.
  • the BS transceiver 210 may be referred to herein as a "downlink" transceiver 210 that includes a RF transmitter and a RF receiver each comprising circuity that is coupled to the antenna 212.
  • a downlink duplex switch may alternatively couple the downlink transmitter or receiver to the downlink antenna 212 in time duplex fashion.
  • the operations of the two transceiver modules 210 and 230 may be coordinated in time such that the uplink receiver circuitry is coupled to the uplink antenna 232 for reception of transmissions over the wireless transmission link 250 at the same time that the downlink transmitter is coupled to the downlink antenna 212. Conversely, the operations of the two transceivers 210 and 230 may be coordinated in time such that the downlink receiver is coupled to the downlink antenna 212 for reception of transmissions over the wireless transmission link 250 at the same time that the uplink transmitter is coupled to the uplink antenna 232. In some embodiments, there is close time synchronization with a minimal guard time between changes in duplex direction.
  • the UE transceiver 230 and the base station transceiver 210 are configured to communicate via the wireless data communication link 250, and cooperate with a suitably configured RF antenna arrangement 212/232 that can support a particular wireless communication protocol and modulation scheme.
  • the UE transceiver 210 and the base station transceiver 210 are configured to support industry standards such as the Long Term Evolution (LTE) and emerging 5G standards, and the like. It is understood, however, that the present disclosure is not necessarily limited in application to a particular standard and associated protocols. Rather, the UE transceiver 230 and the base station transceiver 210 may be configured to support alternate, or additional, wireless data communication protocols, including future standards or variations thereof.
  • LTE Long Term Evolution
  • 5G 5G
  • the BS 202 may be an evolved node B (eNB) , a serving eNB, a target eNB, a femto station, or a pico station, for example.
  • eNB evolved node B
  • the UE 204 may be embodied in various types of user devices such as a mobile phone, a smart phone, a personal digital assistant (PDA) , tablet, laptop computer, wearable computing device, etc.
  • PDA personal digital assistant
  • the processor modules 214 and 236 may be implemented, or realized, with a general purpose processor, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein.
  • a processor may be realized as a microprocessor, a controller, a microcontroller, a state machine, or the like.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by processor modules 214 and 236, respectively, or in any practical combination thereof.
  • the memory modules 216 and 234 may be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • memory modules 216 and 234 may be coupled to the processor modules 210 and 230, respectively, such that the processors modules 210 and 230 can read information from, and write information to, memory modules 216 and 234, respectively.
  • the memory modules 216 and 234 may also be integrated into their respective processor modules 210 and 230.
  • the memory modules 216 and 234 may each include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be executed by processor modules 210 and 230, respectively.
  • Memory modules 216 and 234 may also each include non-volatile memory for storing instructions to be executed by the processor modules 210 and 230, respectively.
  • the network communication module 218 generally represents the hardware, software, firmware, processing logic, and/or other components of the base station 202 that enable bi-directional communication between base station transceiver 210 and other network components and communication nodes configured to communication with the base station 202.
  • network communication module 218 may be configured to support internet or WiMAX traffic.
  • network communication module 218 provides an 802.3 Ethernet interface such that base station transceiver 210 can communicate with a conventional Ethernet based computer network.
  • the network communication module 218 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC) ) .
  • MSC Mobile Switching Center
  • the Open Systems Interconnection (OSI) Model (referred to herein as, “open system interconnection model” ) is a conceptual and logical layout that defines network communication used by systems (e.g., wireless communication device, wireless communication node) open to interconnection and communication with other systems.
  • the model is broken into seven subcomponents, or layers, each of which represents a conceptual collection of services provided to the layers above and below it.
  • the OSI Model also defines a logical network and effectively describes computer packet transfer by using different layer protocols.
  • the OSI Model may also be referred to as the seven-layer OSI Model or the seven-layer model.
  • a first layer may be a physical layer.
  • a second layer may be a Medium Access Control (MAC) layer.
  • MAC Medium Access Control
  • a third layer may be a Radio Link Control (RLC) layer.
  • a fourth layer may be a Packet Data Convergence Protocol (PDCP) layer.
  • PDCP Packet Data Convergence Protocol
  • a fifth layer may be a Radio Resource Control (RRC) layer.
  • a sixth layer may be a Non Access Stratum (NAS) layer or an Internet Protocol (IP) layer, and the seventh layer being the other layer.
  • NAS Non Access Stratum
  • IP Internet Protocol
  • a PDCCH of a primary cell (PCell) and/or primary cell in a secondary cell group (PSCell) can be used to schedule a physical downlink shared channel (PDSCH) and/or physical uplink shared channel (PUSCH) on a secondary cell (SCell) .
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • SCell secondary cell
  • a PDCCH of a SCell may be unable to schedule a PDSCH and/or PUSCH on a PCell/PSCell.
  • Certain systems e.g., NR Rel-16 and/or other systems
  • DSS dynamic spectrum sharing
  • one or more enhancements can be used/introduced to offload/share the PDCCH transmissions of a PCell/PSCell.
  • the one or more enhancements may include a PDCCH of a SCell scheduling a PDSCH and/or PUSCH on a PCell/PSCell.
  • a PDCCH blind decoding budget e.g., a number of times to perform blind detection or PDCCH monitoring
  • the at least two scheduling cells e.g., PCell/PSCell and/or SCell
  • 4G and 5G systems may face/encounter increased demands.
  • 4G and 5G systems may have/use/enable features to support enhanced mobile broadband (eMBB) , ultra-reliable low-latency communication (URLLC) , and/or massive machine-type communication (mMTC) , for instance.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low-latency communication
  • mMTC massive machine-type communication
  • the spectrum used for 4G can be reused/repurposed for 5G with DSS.
  • a SCell can include or correspond to a scheduling cell (e.g., to schedule another SCell) and/or a scheduled cell.
  • a PCell/PSCell can include or correspond to a scheduling cell, but may be unable to include or correspond to a scheduled cell.
  • a PCell/PSCell may include or correspond to a scheduled cell and/or a scheduling cell. If the PCell/PSCell corresponds to a scheduled/scheduling cell, a wireless communication device (e.g., a UE, a terminal, and/or a served node) may determine the PDCCH blind decoding budget for the two scheduling cells for a same scheduled cell.
  • a wireless communication device e.g., a UE, a terminal, and/or a served node
  • At least two PDCCH blind decoding/detection budgets may be determined/defined/used.
  • the at least two PDCCH blind decoding/detection budgets may include or and/or or
  • the wireless communication device may monitor (e.g., perform blind detection) up to PDCCH candidates and/or non-overlapped control channel elements (CCEs) per slot on an active downlink (DL) bandwidth part (BWP) with subcarrier configuration spacing (SCS) configuration ⁇ of the scheduling cell.
  • CCEs control channel elements
  • BWP bandwidth part
  • SCS subcarrier configuration spacing
  • the SCS for ⁇ ⁇ 0, 1, 2, 3 ⁇ may include or correspond to a SCS with a value of 15 kHz, 30 kHz, 60 kHz, and/or 120 kHz.
  • CCEs for PDCCH candidates are non-overlapped if the CCEs correspond to different/distinct/separate CORESET indexes and/or different/distinct/separate first symbols for the reception of the respective PDCCH candidates.
  • a wireless communication device is configured with downlink cells with DL BWPs having SCS configuration ⁇ , where the wireless communication device may monitor up to PDCCH candidates and/or non-overlapped CCEs per slot on the active DL BWP of the scheduling cell for each scheduled cell.
  • one or more conditions may determine the number of PDCCH candidates and/or non-overlapped CCEs per slot monitored by the wireless communication device.
  • the one or more conditions may include that a wireless communication device is configured with downlink cells with DL BWPs having SCS configuration ⁇ , where aDL BWP of an activated cell is the active DL BWP of the activated cell, and/or a DL BWP of a deactivated cell is the DL BWP with index provided by firstActiveDownlinkBWP-Id (or other parameters) for the deactivated cell. If the one or more parameters are met/satisfied/fulfilled, the wireless communication device may monitor up to PDCCH candidates and/or non-overlapped CCEs per slot on the active DL BWP (s) of scheduling cell (s) from the downlink cells.
  • the wireless communication device may monitor up to PDCCH candidates and/or non-overlapped CCEs per slot on the active DL BWP with SCS configuration ⁇ of the scheduling cell.
  • a PSCell/PCell can be a scheduled cell and/or a scheduling cell. If the PSCell/PCell is a scheduled/scheduling cell, the total PDCCH blind decoding budget may exceed/surpass PDCCH candidates and/or non-overlapped CCEs per slot.
  • the number of PDCCH candidates for monitoring and/or the number of non-overlapped CCEs per slot can be counted separately for each scheduled cell.
  • the PDCCH candidates are used as examples for representing/calculating/determining a PDCCH blind decoding budget.
  • non-overlapped CCEs instead of PDCCH candidates can be used/applied to represent/calculate/determine the PDCCH blind decoding budget.
  • a set of common search space (CSS) sets with cardinality of I CSS may be denoted/referenced/indicated/represented by S CSS for search space sets within a slot n.
  • a set of UE (or other wireless communication devices) specific search space (USS) sets with cardinality of J CSS may be denoted by S USS for search space sets within a slot n.
  • An ascending order (or other orders) of the search space index may determine the location of USS sets s j , 0 ⁇ j ⁇ J USS , in S USS .
  • the number of counted PDCCH candidates for monitoring for CSS set S CSS may be referenced as In some embodiments, the number of counted PDCCH candidates for monitoring for USS set S USS (j) may be referenced as
  • a wireless communication device may monitor one or more PDCCH candidates requiring a total of non-overlapping CCEs in a slot. The wireless communication device may allocate one or more PDCCH candidates for monitoring to USS sets for the primary cell having an active DL BWP with SCS configuration ⁇ in slot n. The wireless communication device may not be expected to monitor PDCCH transmissions in a USS set without allocated PDCCH candidates for monitoring.
  • the set of non-overlapping CCEs for search space set S USS (j) may be denoted by V CCE (S USS (j) ) .
  • the cardinality of V CCE (S USS (j) ) may be indicated by
  • the non-overlapping CCEs for search space set S USS (j) may be determined based on the allocated PDCCH candidates for monitoring for the CSS sets and/or the allocated PDCCH candidates for monitoring for search space sets S USS (k) , 0 ⁇ k ⁇ j.
  • the following pseudocode describes the process/procedure/steps/operations by which the wireless communication device allocates one or more PDCCH candidates for monitoring:
  • the wireless communication device may determine/calculate/configure the PDCCH blind decoding budget (Mmax) for a scheduled cell with at least two scheduling cells.
  • the PDCCH blind decoding budget (Mmax) may be determined/calculated according to a first scheduling cell (e.g., PCell ( ⁇ 1) ) , a second scheduling cell (e.g., SCell ( ⁇ 2) ) , a scheduling cell with a higher SCS, and/or a scheduling cell with a lower SCS.
  • the wireless communication device may determine the PDCCH blind decoding budget for each of the scheduling cells (e.g., M1max and/or M2max) .
  • the PDCCH blind decoding budget for each of the scheduling cells (e.g., M1max and/or M2max) may be determined based on (or according to) the SCS and/or scaling factor of the at least two scheduling cells.
  • the PCell/PSCell may be configured to be scheduled by the SCell (e.g., cell B) .
  • the PCell/PSCell e.g., cell A
  • the SCell e.g., cell B
  • the SCell may be configured to be a scheduling cell.
  • the SCell e.g., cell B
  • may support scheduling of the PCell/PSCell e.g., cell A
  • the PCell/PSCell may have at least two scheduling cells (e.g., cell A and/or cell B) .
  • the wireless communication device may determine/configure/calculate the PDCCH blind decoding budget on the two scheduling cells for the same scheduled PCell/PSCell (e.g., cell A) .
  • the SCS of cell A e.g., the PCell/PSCell
  • the SCS of cell B e.g., the SCell
  • the values of the SCS may include or correspond to 15 kHz, 30 kHz, 60 kHz and/or 120 kHz.
  • the wireless communication device may determine/calculate the PDCCH blind decoding budget (Mmax) for a scheduled cell with at least two scheduling cells.
  • the wireless communication device may determine/configure the Mmax based on (or according to) the first scheduling cell, the second scheduling cell, the scheduling cell with a higher/greater SCS, and/or the scheduling cell with a lower/smaller SCS.
  • the wireless communication device may determine the Mmax for the scheduled cell A (e.g., the PCell/PSCell) .
  • the Mmax may include or correspond to the maximum number of monitored PDCCH candidates per slot for a DL BWP with SCS configuration ⁇ ⁇ ⁇ 0, 1, 2, 3 ⁇ for a scheduled serving cell.
  • the wireless communication device may determine/configure/calculate the PDCCH blind decoding budget for each of the at least two scheduling cells (e.g., M1max and/or M2max) .
  • the wireless communication device may determine/configure the PDCCH blind decoding budget for each of the at least two scheduling cells by using (or according to) the SCS and/or the scaling factor of each of the two scheduling cells. For instance, the wireless communication device may determine/configure the M1max/M2max for the first scheduling cell A and/or the second scheduling cell B (e.g., the SCell) for the same scheduled cell A.
  • the M1max and/or M2max may include or correspond to the maximum number of monitored PDCCH candidates per slot for a DL BWP with SCS configuration ⁇ ⁇ ⁇ 0, 1, 2, 3 ⁇ on a scheduling cell for a scheduled serving cell.
  • the Mmax is used as an example to determine the PDCCH blind decoding budget.
  • the same principles/operations discussed in connection with the Mmax can apply/pertain/relate to the Cmax
  • Mmax and Cmax (and likewise M1max vs C1max, and/or M2max vs C2max) may be interchangeable and/or equivalent, or one may include the other, or one may substitute for the other.
  • the Cmax may be used to determine the PDCCH blind decoding budget.
  • the embodiments discussed herein use the PCell as an example. However, the same/similar principles/operations discussed in connection with the PCell may apply/pertain to a PSCell.
  • the wireless communication device may determine the PDCCH blind decoding budget (e.g., M1max and/or M2max) for each of the scheduling cells.
  • the PDCCH blind decoding budget of each of the scheduling cells can be determined according to (or by using) the SCS and/or the scaling factor of each of the at least two scheduling cells.
  • ⁇ 1 15 kHz
  • ⁇ 2 30 kHz
  • M1max 17
  • M2max 13
  • ⁇ 1 30 kHz
  • ⁇ 2 15 kHz
  • ⁇ 1 15 kHz
  • ⁇ 2 30 kHz
  • M1max 22
  • M2max 11.
  • ⁇ 1 30 kHz
  • ⁇ 2 15 kHz
  • M1max 18
  • M2max 36.
  • the wireless communication device may determine the PDCCH blind decoding budget (e.g., M1max and/or M2max) for each of the scheduling cells.
  • the PDCCH blind decoding (or monitoring) budget of each of the scheduling cells can be determined according to (or by using) the SCS and/or the scaling factor of each of the at least two scheduling cells.
  • ⁇ 1 15 kHz
  • ⁇ 2 30 kHz
  • ⁇ 1 30 kHz
  • ⁇ 2 15 kHz
  • ⁇ 1 15 kHz
  • ⁇ 2 30 kHz
  • M1max 36
  • M2max 18.
  • ⁇ 1 30 kHz
  • ⁇ 2 15 kHz
  • the wireless communication device may determine the PDCCH blind decoding budget (e.g., M1max and/or M2max) for each of the scheduling cells.
  • the PDCCH blind decoding budget of each of the scheduling cells can be determined according to (or by using) the SCS and/or the scaling factor of each of the at least two scheduling cells.
  • ⁇ 1 15 kHz
  • ⁇ 2 30 kHz
  • ⁇ 1 30 kHz
  • ⁇ 2 15 kHz
  • ⁇ 1 15 kHz
  • ⁇ 2 30 kHz
  • M1max 36
  • the wireless communication device may determine the PDCCH blind decoding budget (e.g., M1max and/or M2max) for each of the scheduling cells.
  • the PDCCH blind decoding budget of each of the scheduling cells can be determined according to (or by using) the SCS and/or the scaling factor of each of the at least two scheduling cells.
  • ⁇ 1 15 kHz
  • ⁇ 2 30 kHz
  • M1max 17
  • ⁇ 1 15 kHz
  • ⁇ 2 30 kHz
  • M1max 22
  • M2max 11.
  • ⁇ 1 30 kHz
  • ⁇ 2 15 kHz
  • the wireless communication device may determine/configure the maximum number of blind detections of a scheduled carrier with at least two scheduling cells.
  • the wireless communication device may determine the maximum number of blind detections of the scheduled carrier by using (or according to) one of the at least two scheduling cells.
  • the wireless communication device may determine the maximum number of blind detections of the scheduled cell on each scheduling cell.
  • the wireless communication device may determine the maximum number of blind detections based on the SCS of the at least two scheduling cells and/or the predefined/configured scaling factor. Therefore, if support is provided for scheduling a PCell by a SCell, the PDCCH blind detection threshold of a scheduled cell with at least two scheduling cells may be unambiguously/clearly determined.
  • the systems and methods presented herein may avoid PDCCH missing detection because a threshold for blind detection on the wireless communication device side is different/separate/distinct from a threshold for blind detection on the wireless communication node (e.g., a ground terminal, a base station, a gNB, an eNB, a transmission-reception point (TRP) , or a serving node) side.
  • a threshold for blind detection on the wireless communication device side is different/separate/distinct from a threshold for blind detection on the wireless communication node (e.g., a ground terminal, a base station, a gNB, an eNB, a transmission-reception point (TRP) , or a serving node) side.
  • a threshold for blind detection on the wireless communication node e.g., a ground terminal, a base station, a gNB, an eNB, a transmission-reception point (TRP) , or a serving node
  • the wireless communication device may determine/calculate/configure the PDCCH blind decoding budget (Mmax) for a scheduled cell with at least two scheduling cells.
  • the PDCCH blind decoding budget (Mmax) may be determined/calculated according to a first scheduling cell and a second scheduling cell.
  • the Mmax may be determined according to the SCS and/or scaling factor of each of the at least two scheduling cells.
  • the PCell/PSCell may be scheduled by the SCell (e.g., cell B) .
  • the PCell/PSCell (e.g., cell A) may support self-scheduling.
  • the SCell (e.g., cell B) may be configured to be a scheduling cell.
  • the SCell (e.g., cell B) may support scheduling of the PCell/PSCell (e.g., cell A) . Therefore, the PCell/PSCell (e.g., cell A) may have at least two scheduling cells (e.g., cell A and/or cell B) .
  • the wireless communication device may determine/configure/calculate the PDCCH blind decoding budget on the two scheduling cells for the same scheduled PCell/PSCell (e.g., cell A) .
  • the SCS of cell A e.g., the PCell/PSCell
  • the SCS of cell B e.g., the SCell
  • the values of the SCS may include or correspond to 15 kHz, 30 kHz, 60 kHz and/or 120 kHz.
  • the wireless communication device may determine/configure the Mmax based on (or according to) the first scheduling cell and the second scheduling cell. For instance, the wireless communication device may determine the Mmax for the scheduled cell A (e.g., the PCell/PSCell) .
  • the Mmax may include or correspond to the maximum number of monitored PDCCH candidates per slot for a DL BWP with SCS configuration ⁇ ⁇ ⁇ 0, 1, 2, 3 ⁇ for a scheduled serving cell.
  • the wireless communication device may determine/configure/calculate the PDCCH blind decoding budget for each of the at least two scheduling cells (e.g., M1max and/or M2max) .
  • the wireless communication device may determine/configure the PDCCH blind decoding budget for each of the at least two scheduling cells by using (or according to) the SCS and/or the scaling factor of each of the two scheduling cells. For instance, the wireless communication device may determine/configure the M1max/M2max for the first scheduling cell A and/or the second scheduling cell B (e.g., the SCell) for the same scheduled cell A.
  • the M1max and/or M2max may include or correspond to the maximum number of monitored PDCCH candidates per slot for a DL BWP with SCS configuration ⁇ ⁇ ⁇ 0, 1, 2, 3 ⁇ on a scheduling cell for a scheduled serving cell.
  • the Mmax is used as an example to determine the PDCCH blind decoding budget.
  • the same principles/operations discussed in connection with the Mmax can apply/pertain/relate to the Cmax Therefore, the Cmax may be used to determine the PDCCH blind decoding budget.
  • the embodiments discussed herein use the PCell as an example. However, the same/similar principles/operations discussed in connection with the PCell may apply/pertain to a PSCell.
  • the wireless communication device may determine/configure the Mmax for a scheduled cell with at least two scheduling cells.
  • the wireless communication device may determine the Mmax by using (or according to) the first scheduling cell and the second scheduling cell.
  • the Mmax may be configured/determined according to (or by using) the SCS and/or the scaling factor of each of the at least two scheduling cells.
  • the scaling factor for the at least two scheduling cells may be configured/predefined as P1 and/or P2 respectively. If ⁇ 1 ⁇ 2, the maximum number of blind detections across slots on the scheduling cell (e.g., the scheduling cell with a larger SCS) may be the same.
  • the wireless communication device may determine/configure the maximum number of blind detections of a scheduled carrier with at least two scheduling cells.
  • the wireless communication device may determine the maximum number of blind detections of the scheduled carrier by using (or according to) both of the at least two scheduling cells.
  • the wireless communication device may determine the maximum number of blind detections of the scheduled cell on each scheduling cell.
  • the wireless communication device may determine the maximum number of blind detections based on the SCS of each of the at least two scheduling cells and/or the corresponding predefined/configured scaling factors. Therefore, if support is provided for scheduling a PCell by a SCell, the PDCCH blind detection threshold of a scheduled cell with at least two scheduling cells may be unambiguously/clearly determined.
  • the systems and methods presented herein may avoid PDCCH missing detection because a threshold for blind detection on the wireless communication device side is different/separate/distinct from a threshold for blind detection on the wireless communication node side.
  • the wireless communication device may determine an overbooking/dropping mechanism.
  • the wireless communication device may determine the overbooking/dropping mechanism if the USS sets used for scheduling a PCell/PSCell ( ⁇ 1) are located on the SCell ( ⁇ 2) and/or only Mmax is defined/configured.
  • the PCell/PSCell e.g., cell A
  • the SCell e.g., cell B
  • the PCell/PSCell e.g., cell A
  • the SCell (e.g., cell B) and/or the PCell/PSCell may be configured to be scheduling cells.
  • the PCell/PSCell may have at least two scheduling cells (e.g., cell A and cell B) .
  • the wireless communication device may determine/configure the PDCCH blind decoding budget on the two scheduling cells for the same scheduled PCell/PSCell (e.g., cell A) .
  • the SCS of cell A e.g., the PCell/PSCell
  • the SCS of cell B e.g., the SCell
  • the values of each of the SCS may include or correspond to 15 kHz, 30 kHz, 60 kHz and/or 120 kHz.
  • Mmax is used as an example to determine the PDCCH blind decoding budget.
  • the same principles/operations discussed in connection with the Mmax can apply/pertain/relate to the Cmax Therefore, the Cmax may be used to determine the PDCCH blind decoding budget.
  • the embodiments discussed herein use the PCell as an example. However, the same/similar principles/operations discussed in connection with the PCell may apply/pertain to a PSCell.
  • UE user equipment
  • USS search-space
  • M1 may indicate/specify/provide the candidates of blind detection on cell A (e.g., PCell/PSCell) for scheduling cell A.
  • the M2 may indicate/specify/provide the candidates of blind detection on cell B (e.g., SCell) for scheduling cell A.
  • the wireless communication device may process PDCCH candidates/USS dropping according to an order of the USS indices, followed by an order of the slot indices with SCS equal to the ⁇ 2.
  • the USS #x in 2 ⁇ 2- ⁇ 1 number of ⁇ 2 slot may be dropped according to (or based on) the ascending order of the slot indices (e.g., Scheme 1-2) .
  • CCS carrier scheduling
  • the search spaces configured on the PCell/PSCell may include the CSS with index 0 (CSS #0) with 6 candidates (or other values) and/or the CSS with index 1 (CSS #1) with 6 candidates (or other values) .
  • the candidates in the USS #3 in 2 ⁇ 2- ⁇ 1 number of ⁇ 2 slot may be dropped. Therefore, the candidates in the USS #3 in slot #2n and/or #2n+1 on the SCell may be dropped (e.g., the candidates are not monitored) .
  • the candidates in the USS #x in 2 ⁇ 2- ⁇ 1 number of ⁇ 2 slot may be dropped according to (or based on) the ascending order of the slot indices. For example, the 6 candidates (or other values) in the USS #3 in slot #2n on the SCell may be accumulated.
  • the wireless communication device may process PDCCH candidates/USS dropping according to the order of the slot indices with SCS equal to the ⁇ 2, followed by the order of the USS indices.
  • the wireless communication device may process PDCCH candidates/USS dropping slot by slot in the 2 ⁇ 2- ⁇ 1 number of ⁇ 2 slots.
  • the wireless communication device may determine/configure the candidates for monitoring in each slot by using the ascending order of USS indices with candidates accumulated.
  • the search spaces configured on the PCell/PSCell may include the CSS with index 0 (CSS #0) with 6 candidates (or other values) and/or the CSS with index 1 (CSS #1) with 6 candidates (or other values) .
  • the USS #2 may include 12 candidates (or other values) and/or a monitoring period of 1 slot.
  • the USS #3 may include 6 candidates (or other values) and/or a monitoring period of 1 slot.
  • the wireless communication device may process PDCCH candidates/USS dropping in ⁇ 2 slot #2n.
  • the wireless communication device may process PDCCH candidates/USS dropping in ⁇ 2 slot #2n+1.
  • the 6 candidates may be accumulated in the USS #3 in slot #2n+1 on the SCell, thereby exceeding the number of remaining candidates. Responsive to exceeding the number of remaining candidates, the USS #3 in slot #2n+1 on the SCell can be dropped.
  • a number of candidates in a USS set on the second scheduling cell e.g., USS #x in SCell
  • a number of candidates configured in the USS set e.g., 2 ⁇ 2- ⁇ 1 *M2_USS#x candidates
  • M1 may indicate/provide/specify the candidates of blind detection on cell A (e.g., PSCell/PCell) for scheduling cell A.
  • the M2 may indicate/specify the candidates of blind detection on cell B (e.g., SCell) for scheduling cell A.
  • the USS #2 may include 12 candidates (or other values) and/or may not exceed the remaining candidates.
  • the search spaces configured on the PCell/PSCell may include the CSS #0 with 6 candidates (or other values) and a slot period of 1 and/or the CSS #1 with 6 candidates (or other values) and a slot period of 1.
  • USS UE specific search space
  • Processing PDCCH candidates/USS dropping in the above-mentioned manner may ensure/guarantee/confirm that the blind detection of a scheduled carrier with at least two scheduling cells is smaller/less than the maximum number of blind detections on the at least two scheduling cells. Furthermore, the blind detection capability of the wireless communication device may be fully/comprehensively used by reserving as many PDCCH candidates/USSs as possible.
  • the wireless communication device may determine an overbooking/dropping mechanism.
  • the wireless communication device may determine the overbooking/dropping mechanism if the USS sets used for scheduling a PCell/PSCell ( ⁇ 1) are located on the PCell/PSCell ( ⁇ 1) and the SCell ( ⁇ 2) and/or only Mmax is defined/configured.
  • the PCell/PSCell e.g., cell A
  • the SCell e.g., cell B
  • the PCell/PSCell e.g., cell A
  • the PCell/PSCell may support self-scheduling.
  • the SCell (e.g., cell B) may be configured to be a scheduling cell, wherein the SCell may support scheduling the PCell/PSCell. Therefore, the PCell/PSCell (e.g., cell A) may have at least two scheduling cells (e.g., cell A and cell B) . In some embodiments, the wireless communication device may determine/configure the PDCCH blind decoding budget on the two scheduling cells for the same scheduled PCell/PSCell (e.g., cell A) . In some embodiments, the SCS of cell A (e.g., the PCell/PSCell) may correspond to ⁇ 1, while the SCS of cell B (e.g., the SCell) may include or correspond to ⁇ 2. The values of each of the SCS may include or correspond to 15 kHz, 30 kHz, 60 kHz and/or 120 kHz.
  • Mmax is used as an example to determine the PDCCH blind decoding budget.
  • the same principles/operations discussed in connection with the Mmax can apply/pertain/relate to the Cmax Therefore, the Cmax may be used to determine the PDCCH blind decoding budget.
  • the embodiments discussed herein use the PCell as an example. However, the same/similar principles/operations discussed in connection with the PCell may apply/pertain to a PSCell.
  • UE user equipment
  • USS user equipment
  • M_USS may include the candidates (M1_USS) of blind detection on cell A (e.g., PCell/PSCell) for scheduling cell A.
  • the M_USS may include the candidates (M2_USS) of blind detection on cell B (e.g., SCell) for scheduling cell A.
  • the wireless communication device may process PDCCH candidates/USS dropping according to an order of the USS indices, followed by an order of the slot indices with SCS equal to the ⁇ 2.
  • the USS #x in 2 ⁇ 2- ⁇ 1 number of ⁇ 2 slot may be dropped according to (or based on) the ascending order of the slot indices (e.g., Scheme 1-2) .
  • the search spaces configured on the PCell/PSCell may include the CSS with index 0 (CSS #0) with 6 candidates (or other values) and/or the CSS with index 1 (CSS #1) with 6 candidates (or other values) .
  • the candidates in the USS #4 in 2 ⁇ 2- ⁇ 1 number of ⁇ 2 slot may be dropped. Therefore, the candidates in the USS #4 in slot #2n and/or #2n+1 on the SCell may be dropped (e.g., the candidates are not monitored) .
  • the candidates in the USS #x in 2 ⁇ 2- ⁇ 1 number of ⁇ 2 slot may be dropped according to (or based on) the ascending order of the slot indices. For example, the 6 candidates (or other values) in the USS #4 in slot #2n on the SCell may be accumulated.
  • the wireless communication device may process PDCCH candidates/USS dropping according to an order of scheduling cell indices, followed by the order of the slot indices with SCS equal to the ⁇ 2, followed by the order of the USS indices.
  • the wireless communication device may process PDCCH candidates/USS dropping on the PCell/PSCell according to (or based on) an ascending order of USS indices.
  • the wireless communication device may process PDCCH candidates/USS dropping on the SCell according to (or based on) an ascending order of USS indices and/or an order of ⁇ 2 slot indices.
  • the wireless communication device may process PDCCH candidates/USS dropping slot by slot on the SCell in the 2 ⁇ 2- ⁇ 1 number of ⁇ 2 slots.
  • the search spaces configured on the PCell/PSCell may include the CSS with index 0 (CSS #0) with 6 candidates (or other values) and/or the CSS with index 1 (CSS #1) with 6 candidates (or other values) .
  • the USS #3 on the SCell may include 12 candidates (or other values) and/or a monitoring period of 1 slot.
  • the USS #4 on the SCell may include 6 candidates (or other values) and/or a monitoring period of 1 slot.
  • the wireless communication device may process PDCCH candidates/USS dropping on the PCell.
  • the wireless communication device may process PDCCH candidates/USS dropping on the SCell in ⁇ 2 slot #2n.
  • the wireless communication device may process PDCCH candidates/USS dropping on the SCell in ⁇ 2 slot #2n+1. The wireless communication device may accumulate the 12 candidates in the USS #3 in slot #2n+1 on the SCell, without exceeding the number of remaining candidates.
  • the wireless communication device may process PDCCH candidates/USS dropping on the SCell according to (or based on) an ascending order of USS indices and/or an order of ⁇ 2 slot indices.
  • the wireless communication device may process PDCCH candidates/USS dropping on the PCell/PSCell according to (or based on) an ascending order of USS indices.
  • a number of candidates in a USS set on the second scheduling cell e.g., USS #x in SCell
  • a number of candidates configured in the USS set e.g., 2 ⁇ 2- ⁇ 1 *M2_USS#x candidates
  • the wireless communication device may process PDCCH candidates/USS dropping according to the scheduling cell indices, followed by the USS indices.
  • the wireless communication device may process PDCCH candidates/USS dropping on the PCell/PSCell according to (or based on) an ascending order of USS indices.
  • the wireless communication device may process PDCCH candidates/USS dropping on the SCell according to (or based on) an ascending order of USS indices.
  • the USS #x in the SCell may count 2 ⁇ 2- ⁇ 1 *M2_USS#x candidates.
  • the wireless communication device may process PDCCH candidates/USS dropping on the SCell according to (or based on) an ascending order of USS indices.
  • the USS #x in the SCell may count 2 ⁇ 2- ⁇ 1 *M2_USS#x candidates.
  • the wireless communication device may process PDCCH candidates/USS dropping on the PCell/PSCell according to (or based on) an ascending order of USS indices.
  • M_USS may include the candidates (M1_USS) of blind detection on cell A (e.g., PSCell/PCell) for scheduling cell A.
  • the M_USS may include the candidates (M2_USS) of blind detection on cell B (e.g., SCell) for scheduling cell A.
  • the USS #x in the PCell/PSCell may count 2 ⁇ 1- ⁇ 2 *M1_USS#x candidates.
  • the search spaces configured for scheduling on the PCell/PSCell may include the CSS with index 0 (CSS #0) on the PCell with 6 candidates (or other values) and/or the CSS with index 1 (CSS #1) on the PCell with 6 candidates (or other values) .
  • the wireless communication device may process PDCCH candidates/USS dropping according to (or based on) the scheduling cell indices, followed by the USS indices.
  • the wireless communication device may process PDCCH candidates/USS dropping on the PCell/PSCell according to (or based on) an ascending order of the USS indices.
  • the USS #x in the PCell/PSCell may count 2 ⁇ 1- ⁇ 2 *M1_USS#x candidates.
  • the wireless communication device may process PDCCH candidates/USS dropping on the SCell according to (or based on) an ascending order of the USS indices.
  • the wireless communication device may process PDCCH candidates/USS dropping on the SCell according to (or based on) an ascending order of the USS indices.
  • the wireless communication device may process PDCCH candidates/USS dropping on the PCell/PSCell according to (or based on) an ascending order of the USS indices.
  • the USS #x in the PCell/PSCell may count 2 ⁇ 1- ⁇ 2 *M1_USS#x candidates.
  • the wireless communication device may process PDCCH candidates/USS dropping according to the USS indices, followed by the order of the slot indices with SCS equal to the ⁇ 1.
  • the wireless communication device may process PDCCH candidates/USS dropping according to the order of scheduling cell indices, followed by the order of the slot indices with SCS equal to the ⁇ 1, then the order of the USS indices.
  • the wireless communication device may process PDCCH candidates/USS dropping on the PCell according to the ascending order of the USS indices and/or the order of the ⁇ 1 slot indices. Secondly, the wireless communication device may process PDCCH candidates/USS dropping on the SCell according to the ascending order of the USS indices.
  • the wireless communication device may process PDCCH candidates/USS dropping on the SCell according to the ascending order of the USS indices.
  • the wireless communication device may process PDCCH candidates/USS dropping on the PCell according to the ascending order of the USS indices and/or the order of the ⁇ 1 slot indices.
  • USS UE specific search space
  • Processing PDCCH candidates/USS dropping in the above-mentioned manner may ensure/guarantee/confirm that the blind detection of a scheduled carrier with at least two scheduling cells is smaller/less than the maximum number of blind detections on the at least two scheduling cells. Furthermore, the blind detection capability of the wireless communication device may be fully/comprehensively used by reserving as many PDCCH candidates/USSs as possible.
  • FIG. 8 illustrates a flow diagram of a method 850 for determining a blind detection budget for PDCCH.
  • the method 850 may be implemented using any of the components and devices detailed herein in conjunction with FIGs. 1–7.
  • the method 850 may include determining a blind detection budget for PDCCH (852) .
  • the method 850 may include performing blind detection without exceeding the budget (854) .
  • a wireless communication device may determine/configure a blind detection budget (e.g., Mmax) for PDCCH for a scheduled cell.
  • the scheduled cell may have a first scheduling cell and a second scheduling cell.
  • the wireless communication device may configure/determine/calculate the blind detection budget according to at least a subcarrier spacing (SCS) of the first scheduling cell and/or the second scheduling cell (e.g., a first scheduling cell (PCell ( ⁇ 1) ) , a second scheduling cell (SCell ( ⁇ 2) ) , a scheduling cell with a higher SCS, a scheduling cell with a lower SCS, and/or a SCS of a scheduling cell) .
  • the blind detection budget may include/comprise at least one of a first budget (Mmax) , a second budget (M1max) , and/or a third budget (M2max) .
  • the first budget may include or correspond to a first budget for the scheduled cell, on both the first scheduling cell and the second scheduling cell.
  • the second budget may include or correspond to a second budget on the first scheduling cell for the scheduled cell.
  • the third budget may include or correspond to a third budget on the second scheduling cell for the scheduled cell.
  • the wireless communication device may determine/configure the Mmax according to a first SCS ( ⁇ 1) of the first scheduling cell (e.g., PCell ( ⁇ 1) ) and/or a second SCS ( ⁇ 2) of the second scheduling cell (e.g., SCell ( ⁇ 2) ) .
  • the wireless communication device may determine/configure the Mmax according to a maximum of the first SCS and the second SCS and/or a minimum of the first SCS and the second SCS.
  • the wireless communication device may determine/configure the M1max and/or the M2max according to at least one of the first SCS and/or the second SCS.
  • the wireless communication device may determine/configure the M1max and/or the M2max according to at least one of a first scaling factor for the first scheduling cell and/or a second scaling factor for the second scheduling cell. In some embodiments, the wireless communication device may determine/configure the Mmax according to a first SCS ( ⁇ 1) of the first scheduling cell and/or a second SCS ( ⁇ 2) of the second scheduling cell. In some embodiments, the wireless communication device may determine/configure the Mmax according to a first scaling factor of the first scheduling cell and/or a second scaling factor of the second scheduling cell.
  • the first scaling factor (e.g., P1) and/or the second scaling factor (e.g., P2) may be predefined and/or configured by using (or according to) higher layer signaling (e.g., radio resource control (RRC) signaling and/or other types of signaling) .
  • RRC radio resource control
  • the wireless communication device may allocate (e.g., overbook and/or process) PDCCH candidates for monitoring to user equipment (UE) specific search-space (USS) sets.
  • the wireless communication device may allocate PDCCH candidates for monitoring according to (or based on) USS indices, slot indices, and/or other information.
  • the wireless communication device may allocate the PDCCH candidates for monitoring in a slot with SCS equal to the ⁇ 1.
  • the maximum number of PDCCH candidates for monitoring on the second scheduling cell for the scheduled cell can be equal to (e.g., include or correspond to) the Mmax minus the number of candidates in all common search space (CSS) sets on the first scheduling cell (e.g., M max, ⁇ 1 -M1 CSS, ⁇ 1 ) .
  • the wireless communication device may allocate the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 1.
  • the allocating of the PDCCH candidates for monitoring may be according to (or based on) an order of the USS indices, followed by an order of the slot indices with SCS equal to the ⁇ 2.
  • the allocating of the PDCCH candidates for monitoring may be according to (or based on) the order of the slot indices with SCS equal to the ⁇ 2, followed by the order of the USS indices. In some embodiments, the allocating of the PDCCH candidates for monitoring may be according to (or based on) the order of the USS indices. A number of candidates in a USS set on the second scheduling cell for the scheduled cell may be counted/calculated as 2 ⁇ 2- ⁇ 1 multiplied by a number of candidates configured in the USS set.
  • the wireless communication device may allocate the PDCCH candidates for monitoring in a slot with SCS equal to the ⁇ 2.
  • the maximum number of PDCCH candidates for monitoring to USS sets on the second scheduling cell for the scheduled cell may be equal to the Mmax minus a function of a summation of number of candidates in all common search space (CSS) sets on the first scheduling cell (e.g., ) .
  • the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 2 may be according to an order of the USS indices and/or other information.
  • the wireless communication device may allocate PDCCH candidates for monitoring to user equipment (UE) specific search-space (USS) sets. The wireless communication device may allocate the PDCCH candidates to the USS according to USS indices, scheduling cell indices, slot indices, and/or other information.
  • UE user equipment
  • USS user equipment
  • the wireless communication device may allocate the PDCCH candidates for monitoring in a slot with SCS equal to the ⁇ 1, e.g., perform overbooking/dropping of PDCCH candidates.
  • the maximum number of candidates for monitoring on the second scheduling cell for the scheduled cell may be equal to (include or correspond to) the Mmax minus number of candidates in all common search space (CSS) sets on the first scheduling cell (e.g., M max, ⁇ 1 -M1 CSS, ⁇ 1 ) .
  • the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 1 may be according to an order of the USS indices, followed by an order of the slot indices with SCS equal to the ⁇ 2.
  • the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 1 may be according to an order of scheduling cell indices, followed by the order of the slot indices with SCS equal to the ⁇ 2, followed by the order of the USS indices.
  • the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 1 may be according to the order of scheduling cell indices, followed by the order of the USS indices.
  • the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 1 may be according to the order of the USS indices and/or other information.
  • a number of candidates in a USS set on the second scheduling cell for the scheduled cell may be counted as 2 ⁇ 2- ⁇ 1 multiplied by a number of candidates in the USS set.
  • the Mmax minus the number of candidates in all CSSes on the first scheduling cell is represented as: M max, ⁇ 1 -M1 CSS, ⁇ 1 .
  • the wireless communication device may allocate PDCCH candidates for monitoring in a slot with SCS equal to the ⁇ 2.
  • the maximum number of PDCCH candidates for monitoring to USS sets on the both scheduling cells for the scheduled cell may be equal to the Mmax minus a function of a summation of number of candidates in all common search space (CSS) sets on the first scheduling cell (e.g., ) .
  • SCS common search space
  • the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 2 may be according to an order of the USS indices and/or other information.
  • a number of candidates in a USS set on the first scheduling cell for the scheduled cell may be counted as 2 ⁇ 1- ⁇ 2 multiplied by a number of candidates in the USS set.
  • the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 2 may be according to an order of scheduling cell indices, followed by the order of the USS indices.
  • the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 2 may be according to the order of the USS indices, followed by the order of the slot indices with SCS equal to the ⁇ 1.
  • the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the ⁇ 2 may be according to the order of scheduling cell indices, followed by the order of the slot indices with SCS equal to the ⁇ 1, then the order of the USS indices.
  • the Mmax minus the function of the summation of the number of candidates in all CSS sets on the first scheduling cell may be represented as:
  • the wireless communication device may perform/execute/conduct PDCCH blind detection.
  • the wireless communication device may perform the PDCCH blind detection without exceeding/surpassing the determined blind detection budget.
  • the PDCCH blind detection budget may comprise/include at least one of monitored PDCCH candidates and/or non-overlapped CCEs.
  • any reference to an element herein using a designation such as “first, “ “second, “ and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
  • any of the various illustrative logical blocks, modules, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software” or a "software module) , or any combination of these techniques.
  • firmware e.g., a digital implementation, an analog implementation, or a combination of the two
  • firmware various forms of program or design code incorporating instructions
  • software or a “software module”
  • IC integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the logical blocks, modules, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device.
  • a general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine.
  • a processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another.
  • a storage media can be any available media that can be accessed by a computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • module refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various modules are described as discrete modules; however, as would be apparent to one of ordinary skill in the art, two or more modules may be combined to form a single module that performs the associated functions according embodiments of the present solution.
  • memory or other storage may be employed in embodiments of the present solution.
  • memory or other storage may be employed in embodiments of the present solution.
  • any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present solution.
  • functionality illustrated to be performed by separate processing logic elements, or controllers may be performed by the same processing logic element, or controller.
  • references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.

Abstract

Presented are systems and methods for determining a blind detection budget for physical downlink control channel (PDCCH). A wireless communication device may determine a blind detection budget for PDCCH for a scheduled cell having a first scheduling cell and a second scheduling cell, according to at least a subcarrier spacing of the first scheduling cell and the second scheduling cell. The blind detection budget may comprise a first budget for the scheduled cell, on both the first scheduling cell and the second scheduling cell. The blind detection budget may comprise a second budget on the first scheduling cell for the scheduled cell, and a third budget on the second scheduling cell for the scheduled cell. The wireless communication device may perform PDCCH blind detection without exceeding the determined blind detection budget. The PDCCH blind detection budget may comprise at least one of monitored PDCCH candidates or non-overlapped control channel elements.

Description

SYSTEMS AND METHODS FOR BLIND DETECTION BUDGET FOR PHYSICAL DOWNLINK CONTROL CHANNEL TECHNICAL FIELD
The disclosure relates generally to wireless communications, including but not limited to systems and methods for determining a blind detection budget for physical downlink control channel (PDCCH) .
BACKGROUND
The standardization organization Third Generation Partnership Project (3GPP) is currently in the process of specifying a new Radio Interface called 5G New Radio (5G NR) as well as a Next Generation Packet Core Network (NG-CN or NGC) . The 5G NR will have three main components: a 5G Access Network (5G-AN) , a 5G Core Network (5GC) , and a User Equipment (UE) . In order to facilitate the enablement of different data services and requirements, the elements of the 5GC, also called Network Functions, have been simplified with some of them being software based, and some being hardware based, so that they could be adapted according to need.
SUMMARY
The example embodiments disclosed herein are directed to solving the issues relating to one or more of the problems presented in the prior art, as well as providing additional features that will become readily apparent by reference to the following detailed description when taken in conjunction with the accompany drawings. In accordance with various embodiments, example systems, methods, devices and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and are not limiting, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of this disclosure.
At least one aspect is directed to a system, method, apparatus, or a computer-readable medium. A wireless communication device may determine a blind detection budget for PDCCH  for a scheduled cell having a first scheduling cell and a second scheduling cell, according to at least a subcarrier spacing (SCS) of the first scheduling cell and the second scheduling cell. The blind detection budget may comprise a first budget (Mmax) for the scheduled cell, on both the first scheduling cell and the second scheduling cell. The blind detection budget may comprise a second budget (M1max) on the first scheduling cell for the scheduled cell, and a third budget (M2max) on the second scheduling cell for the scheduled cell. The wireless communication device may perform PDCCH blind detection without exceeding the determined blind detection budget. The PDCCH blind detection budget may comprise at least one of monitored PDCCH candidates or non-overlapped control channel elements (CCEs) .
In some embodiments, the wireless communication device may determine the Mmax according to one of: a first SCS (μ1) of the first scheduling cell, a second SCS (μ2) of the second scheduling cell, a maximum of the first SCS and the second SCS, or a minimum of the first SCS and the second SCS. In some embodiments, the wireless communication device may determine the M1max or the M2max according to at least one of: the first SCS, the second SCS, a first scaling factor for the first scheduling cell, a second scaling factor for the second scheduling cell. In some embodiments, the wireless communication device may determine the Mmax according to:a first SCS (μ1) of the first scheduling cell, a second SCS (μ2) of the second scheduling cell, a first scaling factor of the first scheduling cell, and a second scaling factor of the second scheduling cell. In some embodiments, the first or second scaling factor may be predefined or configured by higher layer signaling.
In some embodiments, the wireless communication device may allocate the PDCCH candidates for monitoring in a slot with SCS equal to the μ1. In some embodiments, the maximum number of PDCCH candidates for monitoring on the second scheduling cell for the scheduled cell may be equal to the Mmax minus the number of candidates in all common search space (CSS) sets on the first scheduling cell. In some embodiments, the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ1 may be according to an order of the USS indices, followed by an order of the slot indices with SCS equal to the μ2. In some embodiments, the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ1 may be according to the order of the slot indices with SCS equal to the μ2, followed by the order of the USS indices. In some embodiments, the allocating of the PDCCH  candidates for monitoring in the slot with SCS equal to the μ1 may be according to the order of the USS indices, wherein a number of candidates in a USS set on the second scheduling cell for the scheduled cell is counted as 2 μ2-μ1 multiplied by a number of candidates configured in the USS set.
In some embodiments, the wireless communication device may allocate the PDCCH candidates for monitoring in a slot with SCS equal to the μ2. In some embodiments, the maximum number of PDCCH candidates for monitoring to USS sets on the second scheduling cell for the scheduled cell may be equal to the Mmax minus a function of a summation of number of candidates in all common search space (CSS) sets on the first scheduling cell. In some embodiments, the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ2 may be according to an order of the USS indices. In some embodiments, the wireless communication device may allocate PDCCH candidates for monitoring to user equipment (UE) specific search-space (USS) sets, according to USS indices, scheduling cell indices, and slot indices.
In some embodiments, the wireless communication device may allocate the PDCCH candidates for monitoring in a slot with SCS equal to the μ1. In some embodiments, the maximum number of candidates for monitoring on the second scheduling cell for the scheduled cell may be equal to the Mmax minus number of candidates in all common search space (CSS) sets on the first scheduling cell. In some embodiments, the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ1 may be according to an order of the USS indices, followed by an order of the slot indices with SCS equal to the μ2. In some embodiments, the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ1 may be according to an order of scheduling cell indices, followed by the order of the slot indices with SCS equal to the μ2, followed by the order of the USS indices. In some embodiments, the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ1 may be according to the order of the USS indices, wherein a number of candidates in a USS set on the second scheduling cell for the scheduled cell is counted as 2 μ2-μ1 multiplied by a number of candidates in the USS set. In some embodiments, the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ1 may be according to the order of scheduling cell indices, followed by the order of the USS indices.
In some embodiments, the Mmax minus the number of candidates in all CSSes on the first scheduling cell may be represented as: M max, μ1-M1 CSS, μ1. In some embodiments, the wireless communication device may allocate PDCCH candidates for monitoring in a slot with SCS equal to the μ2. In some embodiments, the maximum number of PDCCH candidates for monitoring to USS sets on the both scheduling cells for the scheduled cell may be equal to the Mmax minus a function of a summation of number of candidates in all common search space (CSS) sets on the first scheduling cell. In some embodiments, the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ2 may be according to an order of the USS indices, wherein a number of candidates in a USS set on the first scheduling cell for the scheduled cell is counted as 2 μ2-μ1 multiplied by a number of candidates in the USS set.
In some embodiments, the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ2 may be according to an order of scheduling cell indices, followed by the order of the USS indices. In some embodiments, the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ2 may be according to the order of the USS indices, followed by the order of the slot indices with SCS equal to the μ1. In some embodiments, the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ2 may be according to the order of scheduling cell indices, followed by the order of the slot indices with SCS equal to the μ1, then the order of the USS indices. In some embodiments, the Mmax minus the function of the summation of the number of candidates in all CSS sets on the first scheduling cell is represented as: 
Figure PCTCN2021070257-appb-000001
BRIEF DESCRIPTION OF THE DRAWINGS
Various example embodiments of the present solution are described in detail below with reference to the following figures or drawings. The drawings are provided for purposes of illustration only and merely depict example embodiments of the present solution to facilitate the reader's understanding of the present solution. Therefore, the drawings should not be considered limiting of the breadth, scope, or applicability of the present solution. It should be noted that for clarity and ease of illustration, these drawings are not necessarily drawn to scale.
FIG. 1 illustrates an example cellular communication network in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure;
FIG. 2 illustrates a block diagram of an example base station and a user equipment device, in accordance with some embodiments of the present disclosure;
FIG. 3 illustrates example values for the maximum number of monitored physical downlink control channel (PDCCH) candidates, in accordance with some embodiments of the present disclosure;
FIG. 4 illustrates example values for the maximum number of non-overlapped control channel elements (CCEs) , in accordance with some embodiments of the present disclosure;
FIGs. 5-7 illustrate various approaches for determining a first, second and/or third blind detection budget according to one or more parameters, in accordance with some embodiments of the present disclosure; and
FIG. 8 illustrates a flow diagram of an example method for determining a blind detection budget for PDCCH, in accordance with an embodiment of the present disclosure.
DETAILED DESCRIPTION
1.  Mobile Communication Technology and Environment
FIG. 1 illustrates an example wireless communication network, and/or system, 100 in which techniques disclosed herein may be implemented, in accordance with an embodiment of the present disclosure. In the following discussion, the wireless communication network 100 may be any wireless network, such as a cellular network or a narrowband Internet of things (NB-IoT) network, and is herein referred to as “network 100. ” Such an example network 100 includes a base station 102 (hereinafter “BS 102” ; also referred to as wireless communication node) and a user equipment device 104 (hereinafter “UE 104” ; also referred to as wireless communication device) that can communicate with each other via a communication link 110 (e.g., a wireless communication channel) , and a cluster of  cells  126, 130, 132, 134, 136, 138 and 140 overlaying a geographical area 101. In Figure 1, the BS 102 and UE 104 are contained  within a respective geographic boundary of cell 126. Each of the  other cells  130, 132, 134, 136, 138 and 140 may include at least one base station operating at its allocated bandwidth to provide adequate radio coverage to its intended users.
For example, the BS 102 may operate at an allocated channel transmission bandwidth to provide adequate coverage to the UE 104. The BS 102 and the UE 104 may communicate via a downlink radio frame 118, and an uplink radio frame 124 respectively. Each radio frame 118/124 may be further divided into sub-frames 120/127 which may include data symbols 122/128. In the present disclosure, the BS 102 and UE 104 are described herein as non-limiting examples of “communication nodes, ” generally, which can practice the methods disclosed herein. Such communication nodes may be capable of wireless and/or wired communications, in accordance with various embodiments of the present solution.
FIG. 2 illustrates a block diagram of an example wireless communication system 200 for transmitting and receiving wireless communication signals (e.g., OFDM/OFDMA signals) in accordance with some embodiments of the present solution. The system 200 may include components and elements configured to support known or conventional operating features that need not be described in detail herein. In one illustrative embodiment, system 200 can be used to communicate (e.g., transmit and receive) data symbols in a wireless communication environment such as the wireless communication environment 100 of Figure 1, as described above.
System 200 generally includes a base station 202 (hereinafter “BS 202” ) and a user equipment device 204 (hereinafter “UE 204” ) . The BS 202 includes a BS (base station) transceiver module 210, a BS antenna 212, a BS processor module 214, a BS memory module 216, and a network communication module 218, each module being coupled and interconnected with one another as necessary via a data communication bus 220. The UE 204 includes a UE (user equipment) transceiver module 230, a UE antenna 232, a UE memory module 234, and a UE processor module 236, each module being coupled and interconnected with one another as necessary via a data communication bus 240. The BS 202 communicates with the UE 204 via a communication channel 250, which can be any wireless channel or other medium suitable for transmission of data as described herein.
As would be understood by persons of ordinary skill in the art, system 200 may further include any number of modules other than the modules shown in Figure 2. Those skilled in the art will understand that the various illustrative blocks, modules, circuits, and processing logic described in connection with the embodiments disclosed herein may be implemented in hardware, computer-readable software, firmware, or any practical combination thereof. To clearly illustrate this interchangeability and compatibility of hardware, firmware, and software, various illustrative components, blocks, modules, circuits, and steps are described generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware, or software can depend upon the particular application and design constraints imposed on the overall system. Those familiar with the concepts described herein may implement such functionality in a suitable manner for each particular application, but such implementation decisions should not be interpreted as limiting the scope of the present disclosure
In accordance with some embodiments, the UE transceiver 230 may be referred to herein as an "uplink" transceiver 230 that includes a radio frequency (RF) transmitter and a RF receiver each comprising circuitry that is coupled to the antenna 232. A duplex switch (not shown) may alternatively couple the uplink transmitter or receiver to the uplink antenna in time duplex fashion. Similarly, in accordance with some embodiments, the BS transceiver 210 may be referred to herein as a "downlink" transceiver 210 that includes a RF transmitter and a RF receiver each comprising circuity that is coupled to the antenna 212. A downlink duplex switch may alternatively couple the downlink transmitter or receiver to the downlink antenna 212 in time duplex fashion. The operations of the two  transceiver modules  210 and 230 may be coordinated in time such that the uplink receiver circuitry is coupled to the uplink antenna 232 for reception of transmissions over the wireless transmission link 250 at the same time that the downlink transmitter is coupled to the downlink antenna 212. Conversely, the operations of the two  transceivers  210 and 230 may be coordinated in time such that the downlink receiver is coupled to the downlink antenna 212 for reception of transmissions over the wireless transmission link 250 at the same time that the uplink transmitter is coupled to the uplink antenna 232. In some embodiments, there is close time synchronization with a minimal guard time between changes in duplex direction.
The UE transceiver 230 and the base station transceiver 210 are configured to communicate via the wireless data communication link 250, and cooperate with a suitably configured RF antenna arrangement 212/232 that can support a particular wireless communication protocol and modulation scheme. In some illustrative embodiments, the UE transceiver 210 and the base station transceiver 210 are configured to support industry standards such as the Long Term Evolution (LTE) and emerging 5G standards, and the like. It is understood, however, that the present disclosure is not necessarily limited in application to a particular standard and associated protocols. Rather, the UE transceiver 230 and the base station transceiver 210 may be configured to support alternate, or additional, wireless data communication protocols, including future standards or variations thereof.
In accordance with various embodiments, the BS 202 may be an evolved node B (eNB) , a serving eNB, a target eNB, a femto station, or a pico station, for example. In some embodiments, the UE 204 may be embodied in various types of user devices such as a mobile phone, a smart phone, a personal digital assistant (PDA) , tablet, laptop computer, wearable computing device, etc. The  processor modules  214 and 236 may be implemented, or realized, with a general purpose processor, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein. In this manner, a processor may be realized as a microprocessor, a controller, a microcontroller, a state machine, or the like. A processor may also be implemented as a combination of computing devices, e.g., a combination of a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
Furthermore, the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by  processor modules  214 and 236, respectively, or in any practical combination thereof. The  memory modules  216 and 234 may be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. In this  regard,  memory modules  216 and 234 may be coupled to the  processor modules  210 and 230, respectively, such that the  processors modules  210 and 230 can read information from, and write information to,  memory modules  216 and 234, respectively. The  memory modules  216 and 234 may also be integrated into their  respective processor modules  210 and 230. In some embodiments, the  memory modules  216 and 234 may each include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be executed by  processor modules  210 and 230, respectively.  Memory modules  216 and 234 may also each include non-volatile memory for storing instructions to be executed by the  processor modules  210 and 230, respectively.
The network communication module 218 generally represents the hardware, software, firmware, processing logic, and/or other components of the base station 202 that enable bi-directional communication between base station transceiver 210 and other network components and communication nodes configured to communication with the base station 202. For example, network communication module 218 may be configured to support internet or WiMAX traffic. In a typical deployment, without limitation, network communication module 218 provides an 802.3 Ethernet interface such that base station transceiver 210 can communicate with a conventional Ethernet based computer network. In this manner, the network communication module 218 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC) ) . The terms “configured for, ” “configured to” and conjugations thereof, as used herein with respect to a specified operation or function, refer to a device, component, circuit, structure, machine, signal, etc., that is physically constructed, programmed, formatted and/or arranged to perform the specified operation or function.
The Open Systems Interconnection (OSI) Model (referred to herein as, “open system interconnection model” ) is a conceptual and logical layout that defines network communication used by systems (e.g., wireless communication device, wireless communication node) open to interconnection and communication with other systems. The model is broken into seven subcomponents, or layers, each of which represents a conceptual collection of services provided to the layers above and below it. The OSI Model also defines a logical network and effectively describes computer packet transfer by using different layer protocols. The OSI Model may also be referred to as the seven-layer OSI Model or the seven-layer model. In some embodiments, a  first layer may be a physical layer. In some embodiments, a second layer may be a Medium Access Control (MAC) layer. In some embodiments, a third layer may be a Radio Link Control (RLC) layer. In some embodiments, a fourth layer may be a Packet Data Convergence Protocol (PDCP) layer. In some embodiments, a fifth layer may be a Radio Resource Control (RRC) layer. In some embodiments, a sixth layer may be a Non Access Stratum (NAS) layer or an Internet Protocol (IP) layer, and the seventh layer being the other layer.
Various example embodiments of the present solution are described below with reference to the accompanying figures to enable a person of ordinary skill in the art to make and use the present solution. As would be apparent to those of ordinary skill in the art, after reading the present disclosure, various changes or modifications to the examples described herein can be made without departing from the scope of the present solution. Thus, the present solution is not limited to the example embodiments and applications described and illustrated herein. Additionally, the specific order or hierarchy of steps in the methods disclosed herein are merely example approaches. Based upon design preferences, the specific order or hierarchy of steps of the disclosed methods or processes can be re-arranged while remaining within the scope of the present solution. Thus, those of ordinary skill in the art will understand that the methods and techniques disclosed herein present various steps or acts in a sample order, and the present solution is not limited to the specific order or hierarchy presented unless expressly stated otherwise.
2.  Systems and Methods for Determining a Blind Detection Budget for PDCCH
In certain systems (e.g., 5G mobile communication technology and/or other systems) , a PDCCH of a primary cell (PCell) and/or primary cell in a secondary cell group (PSCell) can be used to schedule a physical downlink shared channel (PDSCH) and/or physical uplink shared channel (PUSCH) on a secondary cell (SCell) . In some embodiments, a PDCCH of a SCell may be unable to schedule a PDSCH and/or PUSCH on a PCell/PSCell. Certain systems (e.g., NR Rel-16 and/or other systems) with dynamic spectrum sharing (DSS) may have restricted/limited/reduced resources for PDCCH transmissions of a PCell/PSCell. Given the restricted resources, one or more enhancements, such as NR PDCCH enhancements for cross-carrier scheduling, can be used/introduced to offload/share the PDCCH transmissions of a  PCell/PSCell. The one or more enhancements may include a PDCCH of a SCell scheduling a PDSCH and/or PUSCH on a PCell/PSCell. In some embodiments, a PDCCH blind decoding budget (e.g., a number of times to perform blind detection or PDCCH monitoring) of the at least two scheduling cells (e.g., PCell/PSCell and/or SCell) may be determined for the same scheduled cell.
Certain systems and/or technologies, such as 4th generation mobile communication technology (4G) Long-Term Evolution (LTE) or LTE-Advanced (LTE-A) and/or 5G, may face/encounter increased demands. As a result, 4G and 5G systems may have/use/enable features to support enhanced mobile broadband (eMBB) , ultra-reliable low-latency communication (URLLC) , and/or massive machine-type communication (mMTC) , for instance. In some embodiments, the spectrum used for 4G can be reused/repurposed for 5G with DSS.
In 5G systems, for example, a SCell can include or correspond to a scheduling cell (e.g., to schedule another SCell) and/or a scheduled cell. A PCell/PSCell can include or correspond to a scheduling cell, but may be unable to include or correspond to a scheduled cell. In some embodiments, a PCell/PSCell may include or correspond to a scheduled cell and/or a scheduling cell. If the PCell/PSCell corresponds to a scheduled/scheduling cell, a wireless communication device (e.g., a UE, a terminal, and/or a served node) may determine the PDCCH blind decoding budget for the two scheduling cells for a same scheduled cell.
In some embodiments, at least two PDCCH blind decoding/detection budgets may be determined/defined/used. The at least two PDCCH blind decoding/detection budgets may include
Figure PCTCN2021070257-appb-000002
or 
Figure PCTCN2021070257-appb-000003
and/or
Figure PCTCN2021070257-appb-000004
or
Figure PCTCN2021070257-appb-000005
For each scheduled cell, the wireless communication device may monitor (e.g., perform blind detection) up to 
Figure PCTCN2021070257-appb-000006
PDCCH candidates and/or
Figure PCTCN2021070257-appb-000007
non-overlapped control channel elements (CCEs) per slot on an active downlink (DL) bandwidth part (BWP) with subcarrier configuration spacing (SCS) configuration μ of the scheduling cell. Referring now to FIG. 3, depicted is the maximum number of monitored PDCCH candidates, 
Figure PCTCN2021070257-appb-000008
per slot for a wireless communication device in a DL BWP with SCS configuration μ for operation with a single serving cell. The SCS (e.g., Δf ) may be determined/calculated by using (or according to) SCS=Δf=2 μ×15 [kHz] . For example, the  SCS for μ∈ {0, 1, 2, 3} may include or correspond to a SCS with a value of 15 kHz, 30 kHz, 60 kHz, and/or 120 kHz.
Referring now to FIG. 4, depicted is the maximum number of non-overlapped CCEs 
Figure PCTCN2021070257-appb-000009
for PDCCH candidates per slot for a wireless communication device in a DL BWP with SCS configuration μ for operation with a single serving cell. In some embodiments, CCEs for PDCCH candidates are non-overlapped if the CCEs correspond to different/distinct/separate CORESET indexes and/or different/distinct/separate first symbols for the reception of the respective PDCCH candidates.
If a wireless communication device is configured with
Figure PCTCN2021070257-appb-000010
downlink cells with DL BWPs having SCS configuration μ , where
Figure PCTCN2021070257-appb-000011
the wireless communication device may monitor up to
Figure PCTCN2021070257-appb-000012
PDCCH candidates and/or
Figure PCTCN2021070257-appb-000013
Figure PCTCN2021070257-appb-000014
non-overlapped CCEs per slot on the active DL BWP of the scheduling cell for each scheduled cell. In some embodiments, one or more conditions may determine the number of PDCCH candidates and/or non-overlapped CCEs per slot monitored by the wireless communication device. The one or more conditions may include that a wireless communication device is configured with
Figure PCTCN2021070257-appb-000015
downlink cells with DL BWPs having SCS configuration μ, where
Figure PCTCN2021070257-appb-000016
aDL BWP of an activated cell is the active DL BWP of the activated cell, and/or a DL BWP of a deactivated cell is the DL BWP with index provided by firstActiveDownlinkBWP-Id (or other parameters) for the deactivated cell. If the one or more parameters are met/satisfied/fulfilled, the wireless communication device may monitor up to
Figure PCTCN2021070257-appb-000017
PDCCH candidates and/or 
Figure PCTCN2021070257-appb-000018
non-overlapped CCEs per slot on the active DL BWP (s) of scheduling cell (s) from the
Figure PCTCN2021070257-appb-000019
downlink cells.
For each scheduled cell, the wireless communication device may monitor up to 
Figure PCTCN2021070257-appb-000020
PDCCH candidates and/or
Figure PCTCN2021070257-appb-000021
non-overlapped CCEs per slot on the active DL BWP with SCS configuration μ of the scheduling cell. In some embodiments, a PSCell/PCell can be a scheduled cell and/or a scheduling cell. If the  PSCell/PCell is a scheduled/scheduling cell, the total PDCCH blind decoding budget may exceed/surpass
Figure PCTCN2021070257-appb-000022
PDCCH candidates and/or 
Figure PCTCN2021070257-appb-000023
non-overlapped CCEs per slot. For cross-carrier scheduling, the number of PDCCH candidates for monitoring and/or the number of non-overlapped CCEs per slot can be counted separately for each scheduled cell. In the embodiments discussed herein, the PDCCH candidates are used as examples for representing/calculating/determining a PDCCH blind decoding budget. However, non-overlapped CCEs (instead of PDCCH candidates) can be used/applied to represent/calculate/determine the PDCCH blind decoding budget.
In some embodiments, a set of common search space (CSS) sets with cardinality of I CSS may be denoted/referenced/indicated/represented by S CSS for search space sets within a slot n. A set of UE (or other wireless communication devices) specific search space (USS) sets with cardinality of J CSS may be denoted by S USS for search space sets within a slot n. An ascending order (or other orders) of the search space index may determine the location of USS sets s j, 0≤j<J USS, in S USS. In some embodiments, the number of counted PDCCH candidates for monitoring for CSS set S CSS (i) may be referenced as
Figure PCTCN2021070257-appb-000024
In some embodiments, the number of counted PDCCH candidates for monitoring for USS set S USS (j) may be referenced as
Figure PCTCN2021070257-appb-000025
For the CSS sets, a wireless communication device may monitor one or more PDCCH candidates requiring a total of
Figure PCTCN2021070257-appb-000026
non-overlapping CCEs in a slot. The wireless communication device may allocate one or more PDCCH candidates for monitoring to USS sets for the primary cell having an active DL BWP with SCS configuration μ in slot n. The wireless communication device may not be expected to monitor PDCCH transmissions in a USS set without allocated PDCCH candidates for 
Figure PCTCN2021070257-appb-000027
monitoring.
In some embodiments, the set of non-overlapping CCEs for search space set S USS (j) may be denoted by V CCE (S USS (j) ) . The cardinality of V CCE (S USS (j) ) may be indicated by 
Figure PCTCN2021070257-appb-000028
In some embodiments, the non-overlapping CCEs for search space set S USS (j) may be determined based on the allocated PDCCH candidates for monitoring for the  CSS sets and/or the allocated PDCCH candidates for monitoring for search space sets S USS (k) , 0≤k <j.
The following pseudocode describes the process/procedure/steps/operations by which the wireless communication device allocates one or more PDCCH candidates for monitoring:
Set
Figure PCTCN2021070257-appb-000029
Set
Figure PCTCN2021070257-appb-000030
Set j=0
while
Figure PCTCN2021070257-appb-000031
AND
Figure PCTCN2021070257-appb-000032
allocate
Figure PCTCN2021070257-appb-000033
PDCCH candidates for monitoring to USS set S USS (j)
Figure PCTCN2021070257-appb-000034
Figure PCTCN2021070257-appb-000035
j=j+1;
end while
Various example embodiments of the present disclosure for determining the PDCCH blind decoding budget for a scheduled cell which has two scheduling cells are described below.
A. Embodiment 1
In some embodiments, the wireless communication device may determine/calculate/configure the PDCCH blind decoding budget (Mmax) for a scheduled cell with at least two scheduling cells. The PDCCH blind decoding budget (Mmax) may be determined/calculated according to a first scheduling cell (e.g., PCell (μ1) ) , a second scheduling cell (e.g., SCell (μ2) ) , a scheduling cell with a higher SCS, and/or a scheduling cell with a lower  SCS. Responsive to determining the PDCCH blind decoding budget (Mmax) , the wireless communication device may determine the PDCCH blind decoding budget for each of the scheduling cells (e.g., M1max and/or M2max) . The PDCCH blind decoding budget for each of the scheduling cells (e.g., M1max and/or M2max) may be determined based on (or according to) the SCS and/or scaling factor of the at least two scheduling cells.
In certain scenarios, such as a carrier aggregation scenario, the PCell/PSCell (e.g., cell A) may be configured to be scheduled by the SCell (e.g., cell B) . The PCell/PSCell (e.g., cell A) may support self-scheduling. The SCell (e.g., cell B) may be configured to be a scheduling cell. The SCell (e.g., cell B) may support scheduling of the PCell/PSCell (e.g., cell A) . Therefore, the PCell/PSCell (e.g., cell A) may have at least two scheduling cells (e.g., cell A and/or cell B) . The wireless communication device may determine/configure/calculate the PDCCH blind decoding budget on the two scheduling cells for the same scheduled PCell/PSCell (e.g., cell A) . In some embodiments, the SCS of cell A (e.g., the PCell/PSCell) may correspond to μ1, while the SCS of cell B (e.g., the SCell) may include or correspond to μ2. The values of the SCS may include or correspond to 15 kHz, 30 kHz, 60 kHz and/or 120 kHz.
In some embodiments, the wireless communication device may determine/calculate the PDCCH blind decoding budget
Figure PCTCN2021070257-appb-000036
 (Mmax) for a scheduled cell with at least two scheduling cells. The wireless communication device may determine/configure the Mmax based on (or according to) the first scheduling cell, the second scheduling cell, the scheduling cell with a higher/greater SCS, and/or the scheduling cell with a lower/smaller SCS. For instance, the wireless communication device may determine the Mmax for the scheduled cell A (e.g., the PCell/PSCell) . The Mmax may include or correspond to the maximum number of monitored PDCCH candidates per slot for a DL BWP with SCS configuration μ ∈ {0, 1, 2, 3} for a scheduled serving cell. Furthermore, the wireless communication device may determine/configure/calculate the PDCCH blind decoding budget for each of the at least two scheduling cells (e.g., M1max and/or M2max) . The wireless communication device may determine/configure the PDCCH blind decoding budget for each of the at least two scheduling cells by using (or according to) the SCS and/or the scaling factor of each of the two scheduling cells. For instance, the wireless communication device may determine/configure the M1max/M2max for the first scheduling cell A and/or the second scheduling cell B (e.g., the  SCell) for the same scheduled cell A. The M1max and/or M2max may include or correspond to the maximum number of monitored PDCCH candidates per slot for a DL BWP with SCS configuration μ ∈ {0, 1, 2, 3} on a scheduling cell for a scheduled serving cell. In the embodiments discussed herein, the Mmax is used as an example to determine the PDCCH blind decoding budget. The same principles/operations discussed in connection with the Mmax can apply/pertain/relate to the Cmax
Figure PCTCN2021070257-appb-000037
In this disclosure, Mmax and Cmax (and likewise M1max vs C1max, and/or M2max vs C2max) may be interchangeable and/or equivalent, or one may include the other, or one may substitute for the other. Therefore, the Cmax may be used to determine the PDCCH blind decoding budget. In a similar manner, the embodiments discussed herein use the PCell as an example. However, the same/similar principles/operations discussed in connection with the PCell may apply/pertain to a PSCell.
I.  Method  1
In some embodiments, the wireless communication device may determine/configure the Mmax per slot with SCS = μ1 (e.g., 
Figure PCTCN2021070257-appb-000038
) according to (or based on) cell A (e.g., PCell/PSCell) . For example, as shown in FIG. 5, μ1 and/or μ2 may include or correspond to 15 kHz (e.g., μ1=μ2=15 kHz) or other frequencies, while Mmax may include or correspond to 44 (e.g., Mmax=44) or other values. Referring now to FIG. 6, μ1=15 kHz, μ2= 30 kHz, and/or Mmax=44 (or other values) . Referring now to FIG. 7, μ1=30 kHz, μ2= 15 kHz, and/or Mmax=36 (or other values) . Responsive to determining the Mmax, the wireless communication device may determine the PDCCH blind decoding budget (e.g., M1max and/or M2max) for each of the scheduling cells. The PDCCH blind decoding budget of each of the scheduling cells can be determined according to (or by using) the SCS and/or the scaling factor of each of the at least two scheduling cells.
i. Scheme 1
In some embodiments, the scaling factor for the at least two scheduling cells may be configured/predefined as P1 and/or P2 respectively. If μ1≠μ2, the maximum number of blind detections across slots on the scheduling cell (e.g., the scheduling cell with a larger SCS) may be the same. Therefore, 
Figure PCTCN2021070257-appb-000039
or
Figure PCTCN2021070257-appb-000040
and/or
Figure PCTCN2021070257-appb-000041
Figure PCTCN2021070257-appb-000042
or
Figure PCTCN2021070257-appb-000043
In some embodiments, P1+P2=1. For example, P1 may include or correspond to 0.4 (e.g., P1=0.4) or other values, while P2 may correspond to 0.6 (e.g., P2=0.6) or other values. As shown in FIG. 5, μ1 and/or μ2 may include or correspond to 15 kHz (e.g., μ1=μ2=15 kHz) , M1max=17, and/or M2max=26. As shown in FIG. 6, μ1=15 kHz, μ2=30 kHz, M1max=17, and/or M2max=13. As shown in FIG. 7, μ1=30 kHz, μ2=15 kHz, M1max=14, and/or M2max=43.
ii. Scheme 2
In some embodiments, the scaling factor for the at least two scheduling cells may be configured/predefined as P1 and/or P2 respectively. If the values of P1 and/or P2 correspond to 0.5 (e.g., P1=P2=0.5) , the maximum number of blind detections between the at least two scheduling cells may be evenly/uniformly/similarly distributed. If μ1≠μ2, the maximum number of blind detections across slots on the scheduling cell (e.g., the scheduling cell with a larger SCS) may be the same. Therefore, 
Figure PCTCN2021070257-appb-000044
or
Figure PCTCN2021070257-appb-000045
and/or
Figure PCTCN2021070257-appb-000046
or
Figure PCTCN2021070257-appb-000047
For example, as shown in FIG. 5, μ1 and/or μ2 may include or correspond to 15 kHz (e.g., μ1=μ2=15 kHz) and/or M1max = M2max = 22. As shown in FIG. 6, μ1=15 kHz, μ2=30 kHz, M1max=22, and/or M2max=11. As shown in FIG. 7, μ1=30 kHz, μ2=15 kHz, M1max=18, and/or M2max=36.
II.  Method 2
In some embodiments, the wireless communication device may determine/configure the Mmax per slot with SCS = μ2 (e.g., 
Figure PCTCN2021070257-appb-000048
) according to (or based on) cell B (e.g., SCell) . For example, as shown in FIG. 5, μ1 and/or μ2 may include or correspond to 15 kHz (e.g., μ1=μ2=15 kHz) or other frequencies, while Mmax may include or correspond to 44 (e.g., Mmax=44) or other values. Referring now to FIG. 6, μ1=15 kHz, μ2= 30 kHz, and/or Mmax=36 (or other values) . Referring now to FIG. 7, μ1=30 kHz, μ2= 15 kHz, and/or Mmax=44 (or other values) . Responsive to determining the Mmax, the wireless communication device may determine the PDCCH blind decoding budget (e.g., M1max and/or M2max) for each of the scheduling cells. The PDCCH blind decoding (or monitoring) budget of each of the  scheduling cells can be determined according to (or by using) the SCS and/or the scaling factor of each of the at least two scheduling cells.
i. Scheme 1
In some embodiments, the scaling factor for the at least two scheduling cells may be configured/predefined as P1 and/or P2 respectively. If μ1≠μ2, the maximum number of blind detections across slots on the scheduling cell (e.g., the scheduling cell with a larger SCS) may be the same. Therefore, 
Figure PCTCN2021070257-appb-000049
or
Figure PCTCN2021070257-appb-000050
and/or
Figure PCTCN2021070257-appb-000051
or
Figure PCTCN2021070257-appb-000052
In some embodiments, P1+P2=1. For example, P1 may include or correspond to 0.4 (e.g., P1=0.4) or other values, while P2 may correspond to 0.6 (e.g., P2=0.6) or other values. As shown in FIG. 5, μ1 and/or μ2 may include or correspond to 15 kHz (e.g., μ1=μ2=15 kHz) , M1max=17, and/or M2max=26. As shown in FIG. 6, μ1=15 kHz, μ2=30 kHz, M1max=28, and/or M2max=21. As shown in FIG. 7, μ1=30 kHz, μ2=15 kHz, M1max=8, and/or M2max=26.
ii. Scheme 2
In some embodiments, the scaling factor for the at least two scheduling cells may be configured/predefined as P1 and/or P2 respectively. If the values of P1 and/or P2 correspond to 0.5 (e.g., P1=P2=0.5) , the maximum number of blind detections between the at least two scheduling cells may be evenly/uniformly/similarly distributed. If μ1≠μ2, the maximum number of blind detections across slots on the scheduling cell (e.g., the scheduling cell with a larger SCS) may be the same. Therefore, 
Figure PCTCN2021070257-appb-000053
or
Figure PCTCN2021070257-appb-000054
Figure PCTCN2021070257-appb-000055
and/or
Figure PCTCN2021070257-appb-000056
or
Figure PCTCN2021070257-appb-000057
For example, as shown in FIG. 5, μ1 and/or μ2 may include or correspond to 15 kHz (e.g., μ1=μ2=15 kHz) and/or M1max = M2max = 22. As shown in FIG. 6, μ1=15 kHz, μ2=30 kHz, M1max=36, and/or M2max=18. As shown in FIG. 7, μ1=30 kHz, μ2=15 kHz, M1max=11, and/or M2max=22.
III.  Method 3
In some embodiments, the wireless communication device may determine/configure the Mmax per slot with SCS = max {μ1, μ2} (e.g., 
Figure PCTCN2021070257-appb-000058
) according to (or based on) the maximum SCS of cell A (μ1) and/or cell B (μ2) . For example, as shown in FIG. 5, μ1 and/or μ2 may include or correspond to 15 kHz (e.g., μ1=μ2=15 kHz) or other frequencies, while Mmax per slot with SCS = μ1 may include or correspond to 44 (e.g., Mmax=44 per slot with SCS = μ1) or other values. Referring now to FIG. 6, μ1=15 kHz, μ2= 30 kHz, and/or Mmax=36 per slot with SCS = μ2 (or other values) . Referring now to FIG. 7, μ1=30 kHz, μ2= 15 kHz, and/or Mmax=36 per slot with SCS = μ1 (or other values) . Responsive to determining the Mmax, the wireless communication device may determine the PDCCH blind decoding budget (e.g., M1max and/or M2max) for each of the scheduling cells. The PDCCH blind decoding budget of each of the scheduling cells can be determined according to (or by using) the SCS and/or the scaling factor of each of the at least two scheduling cells.
i. Scheme 1
In some embodiments, the scaling factor for the at least two scheduling cells may be configured/predefined as P1 and/or P2 respectively. If μ1≠μ2, the maximum number of blind detections across slots on the scheduling cell (e.g., the scheduling cell with a larger SCS) may be the same. Therefore, 
Figure PCTCN2021070257-appb-000059
or
Figure PCTCN2021070257-appb-000060
Figure PCTCN2021070257-appb-000061
and/or
Figure PCTCN2021070257-appb-000062
Figure PCTCN2021070257-appb-000063
or
Figure PCTCN2021070257-appb-000064
In some embodiments, P1+P2=1. For example, P1 may include or correspond to 0.4 (e.g., P1=0.4) or other values, while P2 may correspond to 0.6 (e.g., P2=0.6) or other values. As shown in FIG. 5, μ1 and/or μ2 may include or correspond to 15 kHz (e.g., μ1=μ2=15 kHz) , M1max=17, and/or M2max=26. As shown in FIG. 6, μ1=15 kHz, μ2=30 kHz, M1max=28, and/or M2max=21. As shown in FIG. 7, μ1=30 kHz, μ2=15 kHz, M1max=14, and/or M2max=43.
ii. Scheme 2
In some embodiments, the scaling factor for the at least two scheduling cells may be configured/predefined as P1 and/or P2 respectively. If the values of P1 and/or P2 correspond to  0.5 (e.g., P1=P2=0.5) , the maximum number of blind detections between the at least two scheduling cells may be evenly/uniformly/similarly distributed. If μ1≠μ2, the maximum number of blind detections across slots on the scheduling cell (e.g., the scheduling cell with a larger SCS) may be the same. Therefore, 
Figure PCTCN2021070257-appb-000065
Figure PCTCN2021070257-appb-000066
or
Figure PCTCN2021070257-appb-000067
and/or
Figure PCTCN2021070257-appb-000068
Figure PCTCN2021070257-appb-000069
or
Figure PCTCN2021070257-appb-000070
For example, as shown in FIG. 5, μ1 and/or μ2 may include or correspond to 15 kHz (e.g., μ1=μ2=15 kHz) and/or M1max = M2max = 22. As shown in FIG. 6, μ1=15 kHz, μ2=30 kHz, M1max=36, and/or M2max=18. As shown in FIG. 7, μ1=30 kHz, μ2=15 kHz, M1max=18, and/or M2max=36.
IV.  Method 4
In some embodiments, the wireless communication device may determine/configure the Mmax per slot with SCS = min {μ1, μ2} (e.g., 
Figure PCTCN2021070257-appb-000071
) according to (or based on) the minimum SCS of cell A (μ1) and/or cell B (μ2) . For example, as shown in FIG. 5, μ1 and/or μ2 may include or correspond to 15 kHz (e.g., μ1=μ2=15 kHz) or other frequencies, while Mmax per slot with SCS = μ1 may include or correspond to 44 (e.g., Mmax=44 per slot with SCS = μ1) or other values. Referring now to FIG. 6, μ1=15 kHz, μ2= 30 kHz, and/or Mmax=44 per slot with SCS = μ1 (or other values) . Referring now to FIG. 7, μ1=30 kHz, μ2= 15 kHz, and/or Mmax=44 per slot with SCS = μ2 (or other values) . Responsive to determining the Mmax, the wireless communication device may determine the PDCCH blind decoding budget (e.g., M1max and/or M2max) for each of the scheduling cells. The PDCCH blind decoding budget of each of the scheduling cells can be determined according to (or by using) the SCS and/or the scaling factor of each of the at least two scheduling cells.
i. Scheme 1
In some embodiments, the scaling factor for the at least two scheduling cells may be configured/predefined as P1 and/or P2 respectively. If μ1≠μ2, the maximum number of blind detections across slots on the scheduling cell (e.g., the scheduling cell with a larger SCS) may be the same. Therefore, 
Figure PCTCN2021070257-appb-000072
or
Figure PCTCN2021070257-appb-000073
Figure PCTCN2021070257-appb-000074
and/or
Figure PCTCN2021070257-appb-000075
Figure PCTCN2021070257-appb-000076
or
Figure PCTCN2021070257-appb-000077
In some embodiments, P1+P2=1. For example, P1 may include or correspond to 0.4 (e.g., P1=0.4) or other values, while P2 may correspond to 0.6 (e.g., P2=0.6) or other values. As shown in FIG. 5, μ1 and/or μ2 may include or correspond to 15 kHz (e.g., μ1=μ2=15 kHz) , M1max=17, and/or M2max=26. As shown in FIG. 6, μ1=15 kHz, μ2=30 kHz, M1max=17, and/or M2max=13. As shown in FIG. 7, μ1=30 kHz, μ2=15 kHz, M1max=8, and/or M2max=26.
ii. Scheme 2
In some embodiments, the scaling factor for the at least two scheduling cells may be configured/predefined as P1 and/or P2 respectively. If the values of P1 and/or P2 correspond to 0.5 (e.g., P1=P2=0.5) , the maximum number of blind detections between the at least two scheduling cells may be evenly/uniformly/similarly distributed. If μ1≠μ2, the maximum number of blind detections across slots on the scheduling cell (e.g., the scheduling cell with a larger SCS) may be the same. Therefore, 
Figure PCTCN2021070257-appb-000078
Figure PCTCN2021070257-appb-000079
or
Figure PCTCN2021070257-appb-000080
and/or
Figure PCTCN2021070257-appb-000081
Figure PCTCN2021070257-appb-000082
or
Figure PCTCN2021070257-appb-000083
For example, as shown in FIG. 5, μ1 and/or μ2 may include or correspond to 15 kHz (e.g., μ1=μ2=15 kHz) and/or M1max = M2max = 22. As shown in FIG. 6, μ1=15 kHz, μ2=30 kHz, M1max=22, and/or M2max=11. As shown in FIG. 7, μ1=30 kHz, μ2=15 kHz, M1max=11, and/or M2max=22.
In some embodiments, the wireless communication device may determine/configure the maximum number of blind detections of a scheduled carrier with at least two scheduling cells. The wireless communication device may determine the maximum number of blind detections of the scheduled carrier by using (or according to) one of the at least two scheduling cells. The wireless communication device may determine the maximum number of blind detections of the scheduled cell on each scheduling cell. In some embodiments, the wireless communication device may determine the maximum number of blind detections based on the SCS of the at least  two scheduling cells and/or the predefined/configured scaling factor. Therefore, if support is provided for scheduling a PCell by a SCell, the PDCCH blind detection threshold of a scheduled cell with at least two scheduling cells may be unambiguously/clearly determined. The systems and methods presented herein may avoid PDCCH missing detection because a threshold for blind detection on the wireless communication device side is different/separate/distinct from a threshold for blind detection on the wireless communication node (e.g., a ground terminal, a base station, a gNB, an eNB, a transmission-reception point (TRP) , or a serving node) side.
B. Embodiment 2
In some embodiments, the wireless communication device may determine/calculate/configure the PDCCH blind decoding budget (Mmax) for a scheduled cell with at least two scheduling cells. The PDCCH blind decoding budget (Mmax) may be determined/calculated according to a first scheduling cell and a second scheduling cell. In some embodiments, the Mmax may be determined according to the SCS and/or scaling factor of each of the at least two scheduling cells.
In certain scenarios, such as a carrier aggregation scenario, the PCell/PSCell (e.g., cell A) may be scheduled by the SCell (e.g., cell B) . The PCell/PSCell (e.g., cell A) may support self-scheduling. The SCell (e.g., cell B) may be configured to be a scheduling cell. The SCell (e.g., cell B) may support scheduling of the PCell/PSCell (e.g., cell A) . Therefore, the PCell/PSCell (e.g., cell A) may have at least two scheduling cells (e.g., cell A and/or cell B) . The wireless communication device may determine/configure/calculate the PDCCH blind decoding budget on the two scheduling cells for the same scheduled PCell/PSCell (e.g., cell A) . In some embodiments, the SCS of cell A (e.g., the PCell/PSCell) may correspond to μ1, while the SCS of cell B (e.g., the SCell) may include or correspond to μ2. The values of the SCS may include or correspond to 15 kHz, 30 kHz, 60 kHz and/or 120 kHz.
In some embodiments, the wireless communication device may determine/calculate the PDCCH blind decoding budget
Figure PCTCN2021070257-appb-000084
 (Mmax) per slot with SCS = μ1 or per slot with SCS = μ2 for a scheduled cell with at least two scheduling cells. The wireless communication device may determine/configure the Mmax based on (or according to) the first scheduling cell and the second scheduling cell. For instance, the wireless communication device may determine  the Mmax for the scheduled cell A (e.g., the PCell/PSCell) . The Mmax may include or correspond to the maximum number of monitored PDCCH candidates per slot for a DL BWP with SCS configuration μ ∈ {0, 1, 2, 3} for a scheduled serving cell. Furthermore, the wireless communication device may determine/configure/calculate the PDCCH blind decoding budget for each of the at least two scheduling cells (e.g., M1max and/or M2max) . The wireless communication device may determine/configure the PDCCH blind decoding budget for each of the at least two scheduling cells by using (or according to) the SCS and/or the scaling factor of each of the two scheduling cells. For instance, the wireless communication device may determine/configure the M1max/M2max for the first scheduling cell A and/or the second scheduling cell B (e.g., the SCell) for the same scheduled cell A. The M1max and/or M2max may include or correspond to the maximum number of monitored PDCCH candidates per slot for a DL BWP with SCS configuration μ ∈ {0, 1, 2, 3} on a scheduling cell for a scheduled serving cell. In the embodiments discussed herein, the Mmax is used as an example to determine the PDCCH blind decoding budget. The same principles/operations discussed in connection with the Mmax can apply/pertain/relate to the Cmax
Figure PCTCN2021070257-appb-000085
Therefore, the Cmax may be used to determine the PDCCH blind decoding budget. In a similar manner, the embodiments discussed herein use the PCell as an example. However, the same/similar principles/operations discussed in connection with the PCell may apply/pertain to a PSCell.
In some embodiments, the wireless communication device may determine/configure the Mmax for a scheduled cell with at least two scheduling cells. The wireless communication device may determine the Mmax by using (or according to) the first scheduling cell and the second scheduling cell. The Mmax may be configured/determined according to (or by using) the SCS and/or the scaling factor of each of the at least two scheduling cells. In some embodiments, the scaling factor for the at least two scheduling cells may be configured/predefined as P1 and/or P2 respectively. If μ1≠μ2, the maximum number of blind detections across slots on the scheduling cell (e.g., the scheduling cell with a larger SCS) may be the same. Therefore, 
Figure PCTCN2021070257-appb-000086
per slot with SCS =μ1, or 
Figure PCTCN2021070257-appb-000087
per slot with SCS = μ2. Furthermore, 
Figure PCTCN2021070257-appb-000088
and/or
Figure PCTCN2021070257-appb-000089
may be determined by using (or according to) P1 and/or P2. In some embodiments, P1+P2=1.
I.  Scheme  1
In some embodiments, the scaling factor for the at least two scheduling cells may be configured/predefined as P1=P2 (or other relationships) . If μ1≠μ2 and/or P1=P2, the maximum number of blind detections across slots on the scheduling cell (e.g., the scheduling cell with a larger SCS) may be the same. In some embodiments, P1+P2=1 and/or P1/P2 may correspond to 0.5 (e.g., P1=P2=0.5) . For example, as shown in FIG. 5, μ1 and/or μ2 may include or correspond to 15 kHz (e.g., μ1=μ2=15 kHz) , Mmax = 44, and/or M1max =M2max = 22. As shown in FIG. 6, μ1=15 kHz, μ2=30 kHz, Mmax = 22+36 = 58 per slot with SCS = μ1 or Mmax = 11+18 = 29 per slot with SCS = μ2, M1max = 22, and/or M2max = 18. As shown in FIG. 7, μ1=30 kHz, μ2=15 kHz, Mmax = 18+11 = 29 per slot with SCS = μ1 or Mmax = 36+22 = 58 per slot with SCS = μ2, M1max = 18, and/or M2max = 22.
II.  Scheme 2
In some embodiments, the scaling factor for the at least two scheduling cells may be configured/predefined as P1 and/or P2 respectively. If μ1≠μ2, the maximum number of blind detections across slots on the scheduling cell (e.g., the scheduling cell with a larger SCS) may be the same. For example, P1 may include or correspond to 0.4 (e.g., P1=0.4) or other values, while P2 may correspond to 0.6 (e.g., P2=0.6) or other values. As shown in FIG. 5, μ1 and/or μ2 may include or correspond to 15 kHz (e.g., μ1=μ2=15 kHz) , Mmax = 44, M1max = 17, and/or M2max = 26. As shown in FIG. 6, μ1=15 kHz, μ2=30 kHz, Mmax = 17+42 = 59 per slot with SCS = μ1 or Mmax = 8+21 = 29 per slot with SCS = μ2, M1max = 17, and/or M2max = 21. As shown in FIG. 7, μ1=30 kHz, μ2=15 kHz, Mmax = 14+13 = 27 per slot with SCS = μ1 or Mmax = 28+26 = 54 per slot with SCS = μ2, M1max = 14, and/or M2max = 26.
In some embodiments, the wireless communication device may determine/configure the maximum number of blind detections of a scheduled carrier with at least two scheduling cells. The wireless communication device may determine the maximum number of blind detections of the scheduled carrier by using (or according to) both of the at least two scheduling cells. The wireless communication device may determine the maximum number of blind detections of the scheduled cell on each scheduling cell. In some embodiments, the wireless communication device may determine the maximum number of blind detections based on the SCS of each of the  at least two scheduling cells and/or the corresponding predefined/configured scaling factors. Therefore, if support is provided for scheduling a PCell by a SCell, the PDCCH blind detection threshold of a scheduled cell with at least two scheduling cells may be unambiguously/clearly determined. The systems and methods presented herein may avoid PDCCH missing detection because a threshold for blind detection on the wireless communication device side is different/separate/distinct from a threshold for blind detection on the wireless communication node side.
C. Embodiment 3
In some embodiments, the wireless communication device may determine an overbooking/dropping mechanism. The wireless communication device may determine the overbooking/dropping mechanism if the USS sets used for scheduling a PCell/PSCell (μ1) are located on the SCell (μ2) and/or only Mmax is defined/configured. In certain scenarios, such as a carrier aggregation scenario, the PCell/PSCell (e.g., cell A) may be scheduled by the SCell (e.g., cell B) . The PCell/PSCell (e.g., cell A) may support self-scheduling. The SCell (e.g., cell B) and/or the PCell/PSCell (e.g., cell A) may be configured to be scheduling cells. Therefore, the PCell/PSCell (e.g., cell A) may have at least two scheduling cells (e.g., cell A and cell B) . In some embodiments, the wireless communication device may determine/configure the PDCCH blind decoding budget on the two scheduling cells for the same scheduled PCell/PSCell (e.g., cell A) . In some embodiments, the SCS of cell A (e.g., the PCell/PSCell) may correspond to μ1, while the SCS of cell B (e.g., the SCell) may include or correspond to μ2. The values of each of the SCS may include or correspond to 15 kHz, 30 kHz, 60 kHz and/or 120 kHz.
In some embodiments, the wireless communication device may determine/calculate the PDCCH blind decoding budget
Figure PCTCN2021070257-appb-000090
 (Mmax) per slot with SCS = μ1 or per slot with SCS = μ2 for a scheduled cell (e.g., cell A) with at least two scheduling cells (e.g., cell A with μ1 and/or cell B with μ2) according to, but not limited to, Embodiments 1 and/or 2. In the embodiments discussed herein, the Mmax is used as an example to determine the PDCCH blind decoding budget. The same principles/operations discussed in connection with the Mmax can apply/pertain/relate to the Cmax
Figure PCTCN2021070257-appb-000091
Therefore, the Cmax may be used to determine the PDCCH blind decoding budget. In a similar manner, the embodiments discussed herein use  the PCell as an example. However, the same/similar principles/operations discussed in connection with the PCell may apply/pertain to a PSCell.
In some embodiments, the wireless communication device may process PDCCH candidates/USS dropping per slot with SCS = μ1 or μ2 by USS index and/or slot index. For example, the wireless communication device may allocate the PDCCH candidates for monitoring to user equipment (UE) specific search-space (USS) sets, according to (or based on) USS indices and/or slot indices. The wireless communication device may process the PDCCH candidates/USS dropping if the USS sets used for scheduling the PCell (μ1) are located on the SCell (μ2) and/or only Mmax is defined/configured.
III.  Method 1
In some embodiments, the wireless communication device may process PDCCH candidates/USS dropping per slot with SCS = μ1. For example, the wireless communication device may allocate the PDCCH candidates for monitoring in a slot with SCS equal to the μ1. The maximum number of blind detections for M2 per slot with SCS = μ1 may include or correspond to M max, μ1-M1 CSS, μ1. In some embodiments, M1 may indicate/specify/provide the candidates of blind detection on cell A (e.g., PCell/PSCell) for scheduling cell A. The M2 may indicate/specify/provide the candidates of blind detection on cell B (e.g., SCell) for scheduling cell A.
i. Scheme 1
If μ1≤μ2, the wireless communication device may process PDCCH candidates/USS dropping according to an order of the USS indices, followed by an order of the slot indices with SCS equal to the μ2.
In some embodiments, the order of the USS indices may include or correspond to an ascending order of USS indices. If the USS indices are in ascending order with an accumulation of candidates, the wireless communication device may determine/configure the candidates for monitoring by using/comparing the maximum number of blind detections for M2 per slot with SCS = μ1. In some embodiments, the number of accumulated candidates may be smaller/less than the maximum number of blind detections for M2 per slot with SCS = μ1. If the number of  accumulated candidates does not exceed the maximum number of blind detections for M2 per slot with SCS = μ1, all the candidates in the USS may be monitored. In some embodiments, the number of accumulated candidates, including the candidates in the USS with index “x” (USS #x) , may exceed/surpass the maximum number of blind detections for M2 per slot with SCS = μ1. If the number of accumulated candidates exceeds the maximum number of blind detections for M2 per slot with SCS = μ1, the USS #x in 2 μ2-μ1 number of μ2 slot may all be dropped (e.g., Scheme 1-1) . If the number of accumulated candidates exceeds the maximum number of blind detections for M2 per slot with SCS = μ1, the USS #x in 2 μ2-μ1 number of μ2 slot may be dropped according to (or based on) the ascending order of the slot indices (e.g., Scheme 1-2) .
For example, the cell A (e.g., PCell/PSCell with μ1 = 15 kHz or other values) may support self-scheduling and/or carrier scheduling (CCS) by the cell B (e.g., SCell with μ2 = 30 kHz or other values) . In this example, per slot #n with SCS = μ1 on the PCell/PSCell may include or correspond to two slots (e.g., slot #2n and/or #2n+1) on the SCell. The search spaces configured on the PCell/PSCell may include the CSS with index 0 (CSS #0) with 6 candidates (or other values) and/or the CSS with index 1 (CSS #1) with 6 candidates (or other values) . Therefore, M max, μ1-M1 CSS, μ1=44-6-6=32 per slot with SCS = μ1. Furthermore, the USS #2 with 12 candidates (or other values) and monitoring period of 1 slot may be counted/calculated as 2*12=24 candidates. Therefore, the budget for the remaining candidates, after accumulating the USS #2, may correspond to 32-24 = 8 per slot with SCS = μ1. In addition, the USS #3 with 6 candidates and a monitoring period of 1 slot may be counted as 2*6 = 12 candidates. Therefore, after accumulating the USS #3, the USS #3 with 6 candidates may exceed the budget for the remaining candidates.
According to certain schemes (e.g., scheme 1-1) , the candidates in the USS #3 in 2 μ2-μ1 number of μ2 slot may be dropped. Therefore, the candidates in the USS #3 in slot #2n and/or #2n+1 on the SCell may be dropped (e.g., the candidates are not monitored) . According to other schemes (e.g., scheme 1-2) , the candidates in the USS #x in 2 μ2-μ1 number of μ2 slot may be dropped according to (or based on) the ascending order of the slot indices. For example, the 6 candidates (or other values) in the USS #3 in slot #2n on the SCell may be accumulated. The number of accumulated candidates in the USS #3 in slot #2n on the SCell may be smaller/less than the number of remaining candidates. Therefore, the budget for the remaining  candidates may correspond to 8-6 = 2 per slot with SCS = μ1 (or other values) . Furthermore, 6 candidates (or other values) may be accumulated in the USS #3 in slot #2n+1 on the SCell. The accumulated candidates may exceed the remaining candidates, and as a result, the USS #3 in slot #2n+1 on the SCell can be dropped.
ii. Scheme 2
If μ1≤μ2, the wireless communication device may process PDCCH candidates/USS dropping according to the order of the slot indices with SCS equal to the μ2, followed by the order of the USS indices.
In some embodiments, the wireless communication device may process PDCCH candidates/USS dropping slot by slot in the 2 μ2-μ1 number of μ2 slots. The wireless communication device may determine/configure the candidates for monitoring in each slot by using the ascending order of USS indices with candidates accumulated. The wireless communication device may determine the candidates for monitoring by using/comparing the maximum number of blind detections for M2 per slot with SCS = μ1. In some embodiments, the number of accumulated candidates may be smaller/less than the maximum number of blind detections for M2 per slot with SCS = μ1. If the number of accumulated candidates does not exceed the maximum number of blind detections for M2 per slot with SCS = μ1, the candidates in the USS may be monitored. In some embodiments, the number of accumulated candidates, including the candidates in the USS #x, may exceed the maximum number of blind detections for M2 per slot with SCS = μ1. If the number of accumulated candidates exceeds the maximum number of blind detections for M2 per slot with SCS = μ1, the candidates in the USS #x may not be monitored.
For example, the cell A (e.g., PCell/PSCell with μ1 = 15 kHz or other values) may support self-scheduling and/or CCS by the cell B (e.g., SCell with μ2 = 30 kHz or other values) . In this example, per slot #n with SCS = μ1 on the PCell/PSCell may include or correspond to two slots (e.g., slot #2n and/or #2n+1) on the SCell. The search spaces configured on the PCell/PSCell may include the CSS with index 0 (CSS #0) with 6 candidates (or other values) and/or the CSS with index 1 (CSS #1) with 6 candidates (or other values) . Therefore, M max, μ1-M1 CSS, μ1=44-6-6=32 per slot with SCS = μ1. Furthermore, the USS #2 may include 12  candidates (or other values) and/or a monitoring period of 1 slot. The USS #3 may include 6 candidates (or other values) and/or a monitoring period of 1 slot.
In some embodiments, the wireless communication device may process PDCCH candidates/USS dropping in μ2 slot #2n. The candidates in the USS #2 and/or the USS #3 may be monitored (e.g., not dropped) . Therefore, the budget of the remaining candidates after accumulating the USS #2 and/or the USS #3 in μ2 slot #2n may correspond to 32-12-6 = 14 per slot with SCS = μ1. Furthermore, the wireless communication device may process PDCCH candidates/USS dropping in μ2 slot #2n+1. The wireless communication device may accumulate the 12 candidates in the USS #2 in slot #2n+1 on the SCell, without exceeding the number of remaining candidates. Therefore, the budget of the remaining candidates may include or correspond to 14-12 = 2 per slot with SCS = μ1. Furthermore, the 6 candidates may be accumulated in the USS #3 in slot #2n+1 on the SCell, thereby exceeding the number of remaining candidates. Responsive to exceeding the number of remaining candidates, the USS #3 in slot #2n+1 on the SCell can be dropped.
iii. Scheme 3
If μ1>μ2, the wireless communication device may process PDCCH candidates/USS dropping per slot with SCS = μ1 according to the maximum number of blind detections for M2 per slot with SCS = μ1. A number of candidates in a USS set on the second scheduling cell (e.g., USS #x in SCell) for the scheduled cell is counted as 2 μ2-μ1 multiplied by a number of candidates configured in the USS set (e.g., 2 μ2-μ1*M2_USS#x candidates) .
IV.  Method 2
In some embodiments, the wireless communication device may process PDCCH candidates/USS dropping per slot with SCS = μ2. For example, the wireless communication device may allocate the PDCCH candidates for monitoring in a slot with SCS equal to the μ2. The maximum number of blind detections for M2 per slot with SCS = μ2 may include or correspond to
Figure PCTCN2021070257-appb-000092
or
Figure PCTCN2021070257-appb-000093
Figure PCTCN2021070257-appb-000094
In some embodiments, M1 may indicate/provide/specify the candidates of blind detection on cell A (e.g., PSCell/PCell) for  scheduling cell A. The M2 may indicate/specify the candidates of blind detection on cell B (e.g., SCell) for scheduling cell A. If μ1≤μ2, the maximum number of blind detections for M2 per slot with SCS = μ2 may include or correspond to 2 μ1-μ2×M max, μ1-2 μ1-μ2×M1 CSS, μ1 or M max, μ2-2 μ1-μ2×M1 CSS, μ1. If μ1>μ2, the maximum number of blind detections for M2 per slot with SCS = μ2 is
Figure PCTCN2021070257-appb-000095
Figure PCTCN2021070257-appb-000096
or
Figure PCTCN2021070257-appb-000097
In some embodiments, the wireless communication device may process PDCCH candidates/USS dropping per slot with SCS = μ2 according to the maximum number of blind detections for M2 per slot with SCS = μ2, regardless of whether μ1≤μ2 or μ1>μ2.
In some embodiments, the wireless communication device may process PDCCH candidates/USS dropping per slot with SCS = μ2 by using the maximum number of blind detections for M2 per slot with SCS = μ2. The maximum number of blind detections for M2 per slot with SCS = μ2 may include or correspond to
Figure PCTCN2021070257-appb-000098
Figure PCTCN2021070257-appb-000099
or
Figure PCTCN2021070257-appb-000100
For example, the cell A (e.g., PCell/PSCell with μ1 = 15 kHz or other values) may support self-scheduling and/or CCS by the cell B (e.g., SCell with μ2 = 30 kHz or other values) . In this example, per slot #n with SCS = μ1 on the PCell/PSCell may include or correspond to at least two slots (e.g., slot #2n and/or #2n+1) on the SCell. The search spaces configured on the PCell/PSCell may include the CSS with index 0 (CSS #0) with 6 candidates (or other values) and/or the CSS with index 1 (CSS #1) with 6 candidates (or other values) . Therefore, the maximum number of blind detections for M2 per slot with SCS = μ2 may include or correspond to 22-0.5* (6+6) = 16 per slot with SCS = μ2. The USS #2 may include 12 candidates (or other values) and/or may not exceed the remaining candidates. Responsive to accumulating the USS #2, the budget of the remaining candidates may include or correspond to 16-12 = 4 per slot with SCS = μ2. Furthermore, the 6 candidates in the USS #3 may be accumulated, thereby exceeding the remaining candidates. As a result, the USS #3 in slot #2n on the SCell can be dropped.
In another example, the cell A (e.g., PCell/PSCell with μ1 = 30 kHz or other values) may support self-scheduling and/or CCS by the cell B (e.g., SCell with μ2 = 15 kHz or other values) . In this example, per slot #2n with SCS = μ1 and/or per slot #2n+1with SCS = μ1 on the  PCell/PSCell may include or correspond to slot #n on the SCell. The search spaces configured on the PCell/PSCell may include the CSS #0 with 6 candidates (or other values) and a slot period of 1 and/or the CSS #1 with 6 candidates (or other values) and a slot period of 1. Therefore, the maximum number of blind detections for M2 per slot with SCS = μ2 may include or correspond to 44 - (6+6) - (6+6) = 20 per slot with SCS = μ2. The USS #2 may include 12 candidates (or other values) and/or may not exceed the remaining candidates. Responsive to accumulating the USS #2, the budget of the remaining candidates may include or correspond to 20-12 = 8 per slot with SCS = μ2. Furthermore, the 6 candidates in the USS #3 may be accumulated without exceeding the remaining candidates. Responsive to accumulating the USS #3, the budget of the remaining candidates may include or correspond to 8-6 = 2 per slot with SCS = μ2. Following the accumulation of the 6 candidates in the USS #3, 6 candidates may be accumulated in USS #4, thereby exceeding the remaining candidates. As a result, the USS #4 in slot #n on the SCell can be dropped.
In some embodiments, the wireless communication device may process PDCCH candidates/USS dropping per slot with SCS = μ1 and/or per slot with SCS = μ2 according to (or based on) the USS/slot indices. The wireless communication device may process PDCCH candidates/USS dropping per slot with SCS = μ1 and/or per slot with SCS = μ2 if the UE specific search space (USS) used for a scheduled carrier with at least two scheduling cells is located/included on one of the at least two scheduling cells. Processing PDCCH candidates/USS dropping in the above-mentioned manner may ensure/guarantee/confirm that the blind detection of a scheduled carrier with at least two scheduling cells is smaller/less than the maximum number of blind detections on the at least two scheduling cells. Furthermore, the blind detection capability of the wireless communication device may be fully/comprehensively used by reserving as many PDCCH candidates/USSs as possible.
D. Embodiment 4
In some embodiments, the wireless communication device may determine an overbooking/dropping mechanism. The wireless communication device may determine the overbooking/dropping mechanism if the USS sets used for scheduling a PCell/PSCell (μ1) are located on the PCell/PSCell (μ1) and the SCell (μ2) and/or only Mmax is defined/configured. In  certain scenarios, such as a carrier aggregation scenario, the PCell/PSCell (e.g., cell A) may be scheduled by the SCell (e.g., cell B) . The PCell/PSCell (e.g., cell A) may support self-scheduling. The SCell (e.g., cell B) may be configured to be a scheduling cell, wherein the SCell may support scheduling the PCell/PSCell. Therefore, the PCell/PSCell (e.g., cell A) may have at least two scheduling cells (e.g., cell A and cell B) . In some embodiments, the wireless communication device may determine/configure the PDCCH blind decoding budget on the two scheduling cells for the same scheduled PCell/PSCell (e.g., cell A) . In some embodiments, the SCS of cell A (e.g., the PCell/PSCell) may correspond to μ1, while the SCS of cell B (e.g., the SCell) may include or correspond to μ2. The values of each of the SCS may include or correspond to 15 kHz, 30 kHz, 60 kHz and/or 120 kHz.
In some embodiments, the wireless communication device may determine/calculate the PDCCH blind decoding budget (Mmax) per slot with SCS = μ1 or per slot with SCS = μ2 for a scheduled cell (e.g., cell A) with at least two scheduling cells (e.g., cell A with μ1 and/or cell B with μ2) according to, but not limited to, Embodiments 1 and/or 2. In the embodiments discussed herein, the Mmax is used as an example to determine the PDCCH blind decoding budget. The same principles/operations discussed in connection with the Mmax can apply/pertain/relate to the Cmax
Figure PCTCN2021070257-appb-000101
Therefore, the Cmax may be used to determine the PDCCH blind decoding budget. In a similar manner, the embodiments discussed herein use the PCell as an example. However, the same/similar principles/operations discussed in connection with the PCell may apply/pertain to a PSCell.
In some embodiments, the wireless communication device may process PDCCH candidates/USS dropping per slot with SCS = μ1 or μ2 slot by USS index, scheduling cell index, and/or slot index. For example, the wireless communication device may allocate the PDCCH candidates for monitoring to user equipment (UE) specific search-space (USS) sets, according to (or based on) USS indices, scheduling cell indices, and/or slot indices. The wireless communication device may process the PDCCH candidates/USS dropping if the USS sets used for scheduling the PCell (μ1) are located on the PCell (μ1) and the SCell (μ2) , and/or only Mmax is defined/configured.
V.  Method  1
In some embodiments, the wireless communication device may process PDCCH candidates/USS dropping per slot with SCS = μ1. For example, the wireless communication device may allocate the PDCCH candidates for monitoring in a slot with SCS equal to the μ1. The maximum number of blind detections for M_USS per slot with SCS = μ1 may include or correspond to μ max, μ1-M1 CSS, μ1. In some embodiments, M_USS may include the candidates (M1_USS) of blind detection on cell A (e.g., PCell/PSCell) for scheduling cell A. The M_USS may include the candidates (M2_USS) of blind detection on cell B (e.g., SCell) for scheduling cell A.
i. Scheme 1
If μ1≤μ2, the wireless communication device may process PDCCH candidates/USS dropping according to an order of the USS indices, followed by an order of the slot indices with SCS equal to the μ2.
In some embodiments, the order of the USS indices may include or correspond to an ascending order of USS indices. If the USS indices are in ascending order with an accumulation of candidates, the wireless communication device may determine/configure the candidates for monitoring by using/comparing the maximum number of blind detections for M2 per slot with SCS = μ1. In some embodiments, the number of accumulated candidates may be smaller/less than the maximum number of blind detections for M2 per slot with SCS = μ1. If the number of accumulated candidates does not exceed the maximum number of blind detections for M2 per slot with SCS = μ1, all the candidates in the USS may be monitored. In some embodiments, the number of accumulated candidates, including the candidates in the USS with index “x” (USS #x) , may exceed/surpass the maximum number of blind detections for M2 per slot with SCS = μ1. If the number of accumulated candidates exceeds the maximum number of blind detections for M2 per slot with SCS = μ1, the USS #x in 2 μ2-μ1 number of μ2 slot may all be dropped (e.g., Scheme 1-1) . If the number of accumulated candidates exceeds the maximum number of blind detections for M2 per slot with SCS = μ1, the USS #x in 2 μ2-μ1 number of μ2 slot may be dropped according to (or based on) the ascending order of the slot indices (e.g., Scheme 1-2) .
For example, the cell A (e.g., PCell/PSCell with μ1 = 15 kHz or other values) may support self-scheduling and/or CSC by the cell B (e.g., SCell with μ2 = 30 kHz or other values) .  In this example, per slot #n with SCS = μ1 on the PCell/PSCell may include or correspond to two slots (e.g., slot #2n and/or #2n+1) on the SCell. The search spaces configured on the PCell/PSCell may include the CSS with index 0 (CSS #0) with 6 candidates (or other values) and/or the CSS with index 1 (CSS #1) with 6 candidates (or other values) . Therefore, M max, μ1-M1 CSS, μ1=44-6-6=32 per slot with SCS = μ1. Furthermore, the USS #2 on the PCell/PSCell with 2 candidates (or other values) may be counted/calculated as 2 candidates. Therefore, the budget for the remaining candidates, after accumulating the USS #2, may correspond to 32-2 = 30 per slot with SCS = μ1. In addition, the USS #3 used on the SCell with 12 candidates and a monitoring period of 1 slot may be counted as 2*12 = 24 candidates. Therefore, the budget for the remaining candidates, after accumulating the USS #3, may correspond to 30-24 = 6 per slot with SCS = μ1. In addition, the USS #4 with 6 candidates and a monitoring period of 1 slot may be counted as 2*6 = 12 candidates. Therefore, after accumulating the USS #4, the USS #4 may exceed the budget for the remaining candidates.
According to certain schemes (e.g., scheme 1-1) , the candidates in the USS #4 in 2 μ2-μ1 number of μ2 slot may be dropped. Therefore, the candidates in the USS #4 in slot #2n and/or #2n+1 on the SCell may be dropped (e.g., the candidates are not monitored) . According to other schemes (e.g., scheme 1-2) , the candidates in the USS #x in 2 μ2-μ1 number of μ2 slot may be dropped according to (or based on) the ascending order of the slot indices. For example, the 6 candidates (or other values) in the USS #4 in slot #2n on the SCell may be accumulated. The number of accumulated candidates in the USS #4 in slot #2n on the SCell may be smaller/less than the number of remaining candidates. Therefore, the budget for the remaining candidates may correspond to 6-6 = 0 per slot with SCS = μ1 (or other values) . Furthermore, 6 candidates (or other values) may be accumulated in the USS #4 in slot #2n+1 on the SCell. The accumulated candidates may exceed the remaining candidates, and as a result, the USS #4 in slot #2n+1 on the SCell can be dropped.
ii. Scheme 2
If μ1≤μ2, the wireless communication device may process PDCCH candidates/USS dropping according to an order of scheduling cell indices, followed by the order of the slot indices with SCS equal to the μ2, followed by the order of the USS indices.
(a)  Scheme 2-1
Firstly, the wireless communication device may process PDCCH candidates/USS dropping on the PCell/PSCell according to (or based on) an ascending order of USS indices. Secondly, the wireless communication device may process PDCCH candidates/USS dropping on the SCell according to (or based on) an ascending order of USS indices and/or an order of μ2 slot indices.
In some embodiments, the wireless communication device may process PDCCH candidates/USS dropping slot by slot on the SCell in the 2 μ2-μ1 number of μ2 slots. For example, the cell A (e.g., PCell/PSCell with μ1 = 15 kHz or other values) may support self-scheduling and/or CCS by the cell B (e.g., SCell with μ2 = 30 kHz or other values) . In this example, per slot #n with SCS = μ1 on the PCell/PSCell may include or correspond to two slots (e.g., slot #2n and/or #2n+1) on the SCell. The search spaces configured on the PCell/PSCell may include the CSS with index 0 (CSS #0) with 6 candidates (or other values) and/or the CSS with index 1 (CSS #1) with 6 candidates (or other values) . The USS #2 on the PCell/PSCell may include 2 candidates (or other values) . Therefore, M max, μ1-M1 CSS, μ1=44-6-6=32 per slot with SCS = μ1. The USS #3 on the SCell may include 12 candidates (or other values) and/or a monitoring period of 1 slot. The USS #4 on the SCell may include 6 candidates (or other values) and/or a monitoring period of 1 slot. Firstly, the wireless communication device may process PDCCH candidates/USS dropping on the PCell. The candidates in the USS #2 may be monitored (e.g., not dropped) . Therefore, the budget of the remaining candidates, after accumulating USS #2, may include or correspond to 32-2 = 30 per slot with SCS = μ1.
In some embodiments, the wireless communication device may process PDCCH candidates/USS dropping on the SCell in μ2 slot #2n. The candidates in the USS #3 and/or the USS #4 may be monitored (e.g., not dropped) . Therefore, the budget of the remaining candidates after accumulating the USS #3 and/or the USS #4 in μ2 slot #2n may correspond to 30-12-6 = 12 per slot with SCS = μ1. Furthermore, the wireless communication device may process PDCCH candidates/USS dropping on the SCell in μ2 slot #2n+1. The wireless communication device may accumulate the 12 candidates in the USS #3 in slot #2n+1 on the SCell, without exceeding the number of remaining candidates. Therefore, the budget of the remaining candidates may  include or correspond to 12-12 = 0 per slot with SCS = μ1. Furthermore, the 6 candidates may be accumulated in the USS #4 in slot #2n+1 on the SCell, thereby exceeding the number of remaining candidates. Responsive to exceeding the number of remaining candidates, the USS #4 in slot #2n+1 on the SCell can be dropped.
(b)  Scheme 2-2
Firstly, the wireless communication device may process PDCCH candidates/USS dropping on the SCell according to (or based on) an ascending order of USS indices and/or an order of μ2 slot indices. Secondly, the wireless communication device may process PDCCH candidates/USS dropping on the PCell/PSCell according to (or based on) an ascending order of USS indices.
iii. Scheme 3
If μ1>μ2, the wireless communication device may process PDCCH candidates/USS dropping with USS index per slot with SCS = μ1 according to the maximum number of blind detections for M_USS per slot with SCS = μ1. A number of candidates in a USS set on the second scheduling cell (e.g., USS #x in SCell) for the scheduled cell is counted as 2 μ2-μ1 multiplied by a number of candidates configured in the USS set (e.g., 2 μ2-μ1*M2_USS#x candidates) .
iv. Scheme 4
In some embodiments, the wireless communication device may process PDCCH candidates/USS dropping according to the scheduling cell indices, followed by the USS indices.
(a)  Scheme 4-1
Firstly, the wireless communication device may process PDCCH candidates/USS dropping on the PCell/PSCell according to (or based on) an ascending order of USS indices. Secondly, the wireless communication device may process PDCCH candidates/USS dropping on the SCell according to (or based on) an ascending order of USS indices. The USS #x in the SCell may count 2 μ2-μ1*M2_USS#x candidates.
(b)  Scheme 4-2
Firstly, the wireless communication device may process PDCCH candidates/USS dropping on the SCell according to (or based on) an ascending order of USS indices. The USS #x in the SCell may count 2 μ2-μ1*M2_USS#x candidates. Secondly, the wireless communication device may process PDCCH candidates/USS dropping on the PCell/PSCell according to (or based on) an ascending order of USS indices.
VI.  Method 2
In some embodiments, the wireless communication device may process PDCCH candidates/USS dropping per slot with SCS = μ2. The maximum number of blind detections for M_USS per slot with SCS = μ2 may include or correspond to
Figure PCTCN2021070257-appb-000102
Figure PCTCN2021070257-appb-000103
or
Figure PCTCN2021070257-appb-000104
Figure PCTCN2021070257-appb-000105
In some embodiments, M_USS may include the candidates (M1_USS) of blind detection on cell A (e.g., PSCell/PCell) for scheduling cell A. The M_USS may include the candidates (M2_USS) of blind detection on cell B (e.g., SCell) for scheduling cell A. If μ1≤μ2, the maximum number of blind detections for M_USS per slot with SCS = μ2 may include or correspond to 2 μ1-μ2×M max, μ1-2 μ1-μ2×M1 CSS, μ1 or M max, μ2-2 μ1-μ2×M1 CSS, μ1. If μ1>μ2, the maximum number of blind detections for M_USS per slot with SCS = μ2 is
Figure PCTCN2021070257-appb-000106
or
Figure PCTCN2021070257-appb-000107
In some embodiments, the wireless communication device may process PDCCH candidates/USS dropping per slot with SCS = μ2 according to the maximum number of blind detections for M_USS per slot with SCS = μ2, regardless of whether μ1≤μ2 or μ1> 2.
i. Scheme 1
The wireless communication device may process PDCCH candidates/USS dropping per slot with SCS = μ2 according to (or based on) the USS indices. The USS #x in the PCell/PSCell may count 2 μ1-μ2*M1_USS#x candidates. The maximum number of blind detections for M_USS per slot with SCS = μ2 may include or correspond to
Figure PCTCN2021070257-appb-000108
Figure PCTCN2021070257-appb-000109
or
Figure PCTCN2021070257-appb-000110
Figure PCTCN2021070257-appb-000111
For example, the cell A (e.g., PCell/PSCell with μ1 = 15 kHz or other values) may support self-scheduling and/or CCS by the cell B (e.g., SCell with μ2 = 30 kHz or  other values) . In this example, per slot #n with SCS = μ1 on the PCell/PSCell may include or correspond to at least two slots (e.g., slot #2n and/or #2n+1) on the SCell. The search spaces configured for scheduling on the PCell/PSCell may include the CSS with index 0 (CSS #0) on the PCell with 6 candidates (or other values) and/or the CSS with index 1 (CSS #1) on the PCell with 6 candidates (or other values) . The USS #2 on the PCell may include 6 candidates (or other values) . Therefore, the maximum number of blind detections for M_USS per slot with SCS = μ2 may include or correspond to 22-0.5* (6+6+6) = 13 per slot with SCS = μ2. The USS #3 on the SCell may include 12 candidates (or other values) and/or may not exceed the remaining candidates. Responsive to accumulating the USS #3, the budget of the remaining candidates may include or correspond to 13-12 = 1 per slot with SCS = μ2. Furthermore, the 6 candidates in the USS #4 may be accumulated, thereby exceeding the remaining candidates. As a result, the USS #4 in slot #2n on the SCell can be dropped.
ii. Scheme 2
The wireless communication device may process PDCCH candidates/USS dropping according to (or based on) the scheduling cell indices, followed by the USS indices.
(a)  Scheme 2-1
Firstly, the wireless communication device may process PDCCH candidates/USS dropping on the PCell/PSCell according to (or based on) an ascending order of the USS indices. The USS #x in the PCell/PSCell may count 2 μ1-μ2*M1_USS#x candidates. Secondly, the wireless communication device may process PDCCH candidates/USS dropping on the SCell according to (or based on) an ascending order of the USS indices.
(b)  Scheme 2-2
Firstly, the wireless communication device may process PDCCH candidates/USS dropping on the SCell according to (or based on) an ascending order of the USS indices. Secondly, the wireless communication device may process PDCCH candidates/USS dropping on the PCell/PSCell according to (or based on) an ascending order of the USS indices. The USS #x in the PCell/PSCell may count 2 μ1-μ2*M1_USS#x candidates.
iii. Scheme 3
If μ1>μ2, the wireless communication device may process PDCCH candidates/USS dropping according to the USS indices, followed by the order of the slot indices with SCS equal to the μ1.
iv. Scheme 4
The wireless communication device may process PDCCH candidates/USS dropping according to the order of scheduling cell indices, followed by the order of the slot indices with SCS equal to the μ1, then the order of the USS indices.
(a)  Scheme 4-1
Firstly, the wireless communication device may process PDCCH candidates/USS dropping on the PCell according to the ascending order of the USS indices and/or the order of the μ1 slot indices. Secondly, the wireless communication device may process PDCCH candidates/USS dropping on the SCell according to the ascending order of the USS indices.
(b)  Scheme 4-2
Firstly, the wireless communication device may process PDCCH candidates/USS dropping on the SCell according to the ascending order of the USS indices. Secondly, the wireless communication device may process PDCCH candidates/USS dropping on the PCell according to the ascending order of the USS indices and/or the order of the μ1 slot indices.
In some embodiments, the wireless communication device may process PDCCH candidates/USS dropping per slot with SCS = μ1 and/or per slot with SCS = μ2 according to (or based on) the USS/slot/cell indices. The wireless communication device may process PDCCH candidates/USS dropping per slot with SCS = μ1 and/or per slot with SCS = μ2 if the UE specific search space (USS) used for a scheduled carrier with at least two scheduling cells is located/included on the at least two scheduling cells. Processing PDCCH candidates/USS dropping in the above-mentioned manner may ensure/guarantee/confirm that the blind detection of a scheduled carrier with at least two scheduling cells is smaller/less than the maximum number of blind detections on the at least two scheduling cells. Furthermore, the blind detection capability of the wireless communication device may be fully/comprehensively used by reserving as many PDCCH candidates/USSs as possible.
E. Methods for Determining a Blind Detection Budget for PDCCH
FIG. 8 illustrates a flow diagram of a method 850 for determining a blind detection budget for PDCCH. The method 850 may be implemented using any of the components and devices detailed herein in conjunction with FIGs. 1–7. In overview, the method 850 may include determining a blind detection budget for PDCCH (852) . The method 850 may include performing blind detection without exceeding the budget (854) .
Referring now to operation (852) , and in some embodiments, a wireless communication device (e.g., a UE) may determine/configure a blind detection budget (e.g., Mmax) for PDCCH for a scheduled cell. The scheduled cell may have a first scheduling cell and a second scheduling cell. The wireless communication device may configure/determine/calculate the blind detection budget according to at least a subcarrier spacing (SCS) of the first scheduling cell and/or the second scheduling cell (e.g., a first scheduling cell (PCell (μ1) ) , a second scheduling cell (SCell (μ2) ) , a scheduling cell with a higher SCS, a scheduling cell with a lower SCS, and/or a SCS of a scheduling cell) . The blind detection budget may include/comprise at least one of a first budget (Mmax) , a second budget (M1max) , and/or a third budget (M2max) . The first budget may include or correspond to a first budget for the scheduled cell, on both the first scheduling cell and the second scheduling cell. The second budget may include or correspond to a second budget on the first scheduling cell for the scheduled cell. The third budget may include or correspond to a third budget on the second scheduling cell for the scheduled cell.
In some embodiments, the wireless communication device may determine/configure the Mmax according to a first SCS (μ1) of the first scheduling cell (e.g., PCell (μ1) ) and/or a second SCS (μ2) of the second scheduling cell (e.g., SCell (μ2) ) . The wireless communication device may determine/configure the Mmax according to a maximum of the first SCS and the second SCS and/or a minimum of the first SCS and the second SCS. In some embodiments, the wireless communication device may determine/configure the M1max and/or the M2max according to at least one of the first SCS and/or the second SCS. In some embodiments, the wireless communication device may determine/configure the M1max and/or the M2max according to at least one of a first scaling factor for the first scheduling cell and/or a second  scaling factor for the second scheduling cell. In some embodiments, the wireless communication device may determine/configure the Mmax according to a first SCS (μ1) of the first scheduling cell and/or a second SCS (μ2) of the second scheduling cell. In some embodiments, the wireless communication device may determine/configure the Mmax according to a first scaling factor of the first scheduling cell and/or a second scaling factor of the second scheduling cell. The first scaling factor (e.g., P1) and/or the second scaling factor (e.g., P2) may be predefined and/or configured by using (or according to) higher layer signaling (e.g., radio resource control (RRC) signaling and/or other types of signaling) .
In some embodiments, the wireless communication device may allocate (e.g., overbook and/or process) PDCCH candidates for monitoring to user equipment (UE) specific search-space (USS) sets. The wireless communication device may allocate PDCCH candidates for monitoring according to (or based on) USS indices, slot indices, and/or other information. In some embodiments, the wireless communication device may allocate the PDCCH candidates for monitoring in a slot with SCS equal to the μ1. The maximum number of PDCCH candidates for monitoring on the second scheduling cell for the scheduled cell can be equal to (e.g., include or correspond to) the Mmax minus the number of candidates in all common search space (CSS) sets on the first scheduling cell (e.g., M max, μ1-M1 CSS, μ1) . In some embodiments, the wireless communication device may allocate the PDCCH candidates for monitoring in the slot with SCS equal to the μ1. The allocating of the PDCCH candidates for monitoring may be according to (or based on) an order of the USS indices, followed by an order of the slot indices with SCS equal to the μ2. In some embodiments, the allocating of the PDCCH candidates for monitoring may be according to (or based on) the order of the slot indices with SCS equal to the μ2, followed by the order of the USS indices. In some embodiments, the allocating of the PDCCH candidates for monitoring may be according to (or based on) the order of the USS indices. A number of candidates in a USS set on the second scheduling cell for the scheduled cell may be counted/calculated as 2 μ2-μ1 multiplied by a number of candidates configured in the USS set.
In some embodiments, the wireless communication device may allocate the PDCCH candidates for monitoring in a slot with SCS equal to the μ2. The maximum number of PDCCH candidates for monitoring to USS sets on the second scheduling cell for the scheduled cell may be equal to the Mmax minus a function of a summation of number of candidates in all common  search space (CSS) sets on the first scheduling cell (e.g., 
Figure PCTCN2021070257-appb-000112
Figure PCTCN2021070257-appb-000113
) . In some embodiments, the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ2 may be according to an order of the USS indices and/or other information. In some embodiments, the wireless communication device may allocate PDCCH candidates for monitoring to user equipment (UE) specific search-space (USS) sets. The wireless communication device may allocate the PDCCH candidates to the USS according to USS indices, scheduling cell indices, slot indices, and/or other information.
In some embodiments, the wireless communication device may allocate the PDCCH candidates for monitoring in a slot with SCS equal to the μ1, e.g., perform overbooking/dropping of PDCCH candidates. The maximum number of candidates for monitoring on the second scheduling cell for the scheduled cell may be equal to (include or correspond to) the Mmax minus number of candidates in all common search space (CSS) sets on the first scheduling cell (e.g., M max, μ1-M1 CSS, μ1) . The allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ1 (e.g., overbooking/dropping of PDCCH candidates) may be according to an order of the USS indices, followed by an order of the slot indices with SCS equal to the μ2. The allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ1 may be according to an order of scheduling cell indices, followed by the order of the slot indices with SCS equal to the μ2, followed by the order of the USS indices. The allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ1 may be according to the order of scheduling cell indices, followed by the order of the USS indices. The allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ1 may be according to the order of the USS indices and/or other information. A number of candidates in a USS set on the second scheduling cell for the scheduled cell may be counted as 2 μ2-μ1 multiplied by a number of candidates in the USS set.
In some embodiments, the Mmax minus the number of candidates in all CSSes on the first scheduling cell is represented as: M max, μ1-M1 CSS, μ1. In some embodiments, the wireless communication device may allocate PDCCH candidates for monitoring in a slot with SCS equal to the μ2. The maximum number of PDCCH candidates for monitoring to USS sets on the both scheduling cells for the scheduled cell may be equal to the Mmax minus a function of a  summation of number of candidates in all common search space (CSS) sets on the first scheduling cell (e.g., 
Figure PCTCN2021070257-appb-000114
) .
The allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ2 may be according to an order of the USS indices and/or other information. A number of candidates in a USS set on the first scheduling cell for the scheduled cell may be counted as 2 μ1-μ2 multiplied by a number of candidates in the USS set. The allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ2 may be according to an order of scheduling cell indices, followed by the order of the USS indices. The allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ2 may be according to the order of the USS indices, followed by the order of the slot indices with SCS equal to the μ1. The allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ2 may be according to the order of scheduling cell indices, followed by the order of the slot indices with SCS equal to the μ1, then the order of the USS indices. The Mmax minus the function of the summation of the number of candidates in all CSS sets on the first scheduling cell may be represented as: 
Figure PCTCN2021070257-appb-000115
Referring now to operation (854) , and in some embodiments, the wireless communication device may perform/execute/conduct PDCCH blind detection. The wireless communication device may perform the PDCCH blind detection without exceeding/surpassing the determined blind detection budget. The PDCCH blind detection budget may comprise/include at least one of monitored PDCCH candidates and/or non-overlapped CCEs.
While various embodiments of the present solution have been described above, it should be understood that they have been presented by way of example only, and not by way of limitation. Likewise, the various diagrams may depict an example architectural or configuration, which are provided to enable persons of ordinary skill in the art to understand example features and functions of the present solution. Such persons would understand, however, that the solution is not restricted to the illustrated example architectures or configurations, but can be implemented using a variety of alternative architectures and configurations. Additionally, as would be understood by persons of ordinary skill in the art, one or more features of one embodiment can be combined with one or more features of another embodiment described herein.  Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described illustrative embodiments.
It is also understood that any reference to an element herein using a designation such as "first, " "second, " and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
Additionally, a person having ordinary skill in the art would understand that information and signals can be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits and symbols, for example, which may be referenced in the above description can be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
A person of ordinary skill in the art would further appreciate that any of the various illustrative logical blocks, modules, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software" or a "software module) , or any combination of these techniques. To clearly illustrate this interchangeability of hardware, firmware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware or software, or a combination of these techniques, depends upon the particular application and design constraints imposed on the overall system. Skilled artisans can implement the described functionality in various ways for each particular application, but such implementation decisions do not cause a departure from the scope of the present disclosure.
Furthermore, a person of ordinary skill in the art would understand that various illustrative logical blocks, modules, devices, components and circuits described herein can be  implemented within or performed by an integrated circuit (IC) that can include a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, or any combination thereof. The logical blocks, modules, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device. A general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein.
If implemented in software, the functions can be stored as one or more instructions or code on a computer-readable medium. Thus, the steps of a method or algorithm disclosed herein can be implemented as software stored on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another. A storage media can be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
In this document, the term "module" as used herein, refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various modules are described as discrete modules; however, as would be apparent to one of ordinary skill in the art, two or more modules may be combined to form a single module that performs the associated functions according embodiments of the present solution.
Additionally, memory or other storage, as well as communication components, may be employed in embodiments of the present solution. It will be appreciated that, for clarity purposes, the above description has described embodiments of the present solution with  reference to different functional units and processors. However, it will be apparent that any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present solution. For example, functionality illustrated to be performed by separate processing logic elements, or controllers, may be performed by the same processing logic element, or controller. Hence, references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.
Various modifications to the embodiments described in this disclosure will be readily apparent to those skilled in the art, and the general principles defined herein can be applied to other embodiments without departing from the scope of this disclosure. Thus, the disclosure is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the novel features and principles disclosed herein, as recited in the claims below.

Claims (15)

  1. A method comprising:
    determining, by a wireless communication device, a blind detection budget for physical downlink control channel (PDCCH) for a scheduled cell having a first scheduling cell and a second scheduling cell, according to at least a subcarrier spacing (SCS) of the first scheduling cell and the second scheduling cell, the blind detection budget comprising at least one of:
    a first budget (Mmax) for the scheduled cell, on both the first scheduling cell and the second scheduling cell; or
    a second budget (M1max) on the first scheduling cell for the scheduled cell, and a third budget (M2max) on the second scheduling cell for the scheduled cell; and
    performing, by the wireless communication device, PDCCH blind detection without exceeding the determined blind detection budget, the PDCCH blind detection budget comprising at least one of monitored PDCCH candidates or non-overlapped control channel elements (CCEs) .
  2. The method of claim 1, comprising:
    determining, by the wireless communication device, the Mmax according to one of:
    a first SCS (μ1) of the first scheduling cell,
    a second SCS (μ2) of the second scheduling cell,
    a maximum of the first SCS and the second SCS, or
    a minimum of the first SCS and the second SCS.
  3. The method of claim 2, comprising:
    determining, by the wireless communication device, the M1max or the M2max according to at least one of: the first SCS, the second SCS, a first scaling factor for the first scheduling cell, or a second scaling factor for the second scheduling cell.
  4. The method of claim 1, comprising:
    determining, by the wireless communication device, the Mmax according to:
    a first SCS (μ1) of the first scheduling cell,
    a second SCS (μ2) of the second scheduling cell,
    a first scaling factor of the first scheduling cell, and
    a second scaling factor of the second scheduling cell.
  5. The method of claim 3 or 4, wherein the first or second scaling factor is predefined or configured by higher layer signaling.
  6. The method of claim 2 or 4, comprising:
    allocating, by the wireless communication device, PDCCH candidates for monitoring to user equipment (UE) specific search-space (USS) sets, according to USS indices and slot indices.
  7. The method of claim 6, comprising:
    allocating, by the wireless communication device, the PDCCH candidates for monitoring in a slot with SCS equal to the μ1, wherein:
    the maximum number of PDCCH candidates for monitoring on the second scheduling cell for the scheduled cell is equal to the Mmax minus the number of candidates in all common search space (CSS) sets on the first scheduling cell, and
    the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ1 is according to one of:
    an order of the USS indices, followed by an order of the slot indices with SCS equal to the μ2,
    the order of the slot indices with SCS equal to the μ2, followed by the order of the USS indices, or
    the order of the USS indices, wherein a number of candidates in a USS set on the second scheduling cell for the scheduled cell is counted as 2 μ2-μ1 multiplied by a number of candidates configured in the USS set.
  8. The method of claim 6, comprising:
    allocating, by the wireless communication device, the PDCCH candidates for monitoring in a slot with SCS equal to the μ2, wherein:
    the maximum number of PDCCH candidates for monitoring to USS sets on the second scheduling cell for the scheduled cell is equal to the Mmax minus a function of a summation of number of candidates in all common search space (CSS) sets on the first scheduling cell, and
    the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ2 is according to an order of the USS indices.
  9. The method of claim 2 or 4, comprising:
    allocating, by the wireless communication device, PDCCH candidates for monitoring to user equipment (UE) specific search-space (USS) sets, according to USS indices, scheduling cell indices, and slot indices.
  10. The method of claim 9, comprising:
    allocating, by the wireless communication device, the PDCCH candidates for monitoring in a slot with SCS equal to the μ1, wherein:
    the maximum number of candidates for monitoring on the second scheduling cell for the scheduled cell is equal to the Mmax minus number of candidates in all common search space (CSS) sets on the first scheduling cell, and
    the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ1 is according to one of:
    an order of the USS indices, followed by an order of the slot indices with SCS equal to the μ2,
    an order of scheduling cell indices, followed by the order of the slot indices with SCS equal to the μ2, followed by the order of the USS indices,
    the order of the USS indices, wherein a number of candidates in a USS set on the second scheduling cell for the scheduled cell is counted as 2 μ2-μ1 multiplied by a number of candidates in the USS set, or
    the order of scheduling cell indices, followed by the order of the USS indices.
  11. The method of claim 7 or 10, wherein the Mmax minus the number of candidates in all CSSes on the first scheduling cell is represented as: M max, μ1-M1 CSS, μ1.
  12. The method of claim 9, comprising:
    allocating, by the wireless communication device, PDCCH candidates for monitoring in a slot with SCS equal to the μ2, wherein:
    the maximum number of PDCCH candidates for monitoring to USS sets on the both scheduling cells for the scheduled cell is equal to the Mmax minus a function of a summation of number of candidates in all common search space (CSS) sets on the first scheduling cell, and
    the allocating of the PDCCH candidates for monitoring in the slot with SCS equal to the μ2 is according to one of:
    an order of the USS indices, wherein a number of candidates in a USS set on the first scheduling cell for the scheduled cell is counted as 2 μ1-μ2 multiplied by a number of candidates in the USS set,
    an order of scheduling cell indices, followed by the order of the USS indices,
    the order of the USS indices, followed by the order of the slot indices with SCS equal to the μ1, or
    the order of scheduling cell indices, followed by the order of the slot indices with SCS equal to the μ1, then the order of the USS indices.
  13. The method of claim 8 or 12, wherein the Mmax minus the function of the summation of the number of candidates in all CSS sets on the first scheduling cell is represented as: 
    Figure PCTCN2021070257-appb-100001
    Figure PCTCN2021070257-appb-100002
  14. A non-transitory computer readable medium storing instructions, which when executed by at least one processor, cause the at least one processor to perform the method of any one of claims 1-13.
  15. An apparatus comprising:
    at least one processor configured to perform the method of any one of claims 1-13.
PCT/CN2021/070257 2021-01-05 2021-01-05 Systems and methods for blind detection budget for physical downlink control channel WO2022147644A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180062767.5A CN116326122A (en) 2021-01-05 2021-01-05 System and method for blind detection threshold times of physical downlink control channel
PCT/CN2021/070257 WO2022147644A1 (en) 2021-01-05 2021-01-05 Systems and methods for blind detection budget for physical downlink control channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/070257 WO2022147644A1 (en) 2021-01-05 2021-01-05 Systems and methods for blind detection budget for physical downlink control channel

Publications (1)

Publication Number Publication Date
WO2022147644A1 true WO2022147644A1 (en) 2022-07-14

Family

ID=82357017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070257 WO2022147644A1 (en) 2021-01-05 2021-01-05 Systems and methods for blind detection budget for physical downlink control channel

Country Status (2)

Country Link
CN (1) CN116326122A (en)
WO (1) WO2022147644A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037527A (en) * 2011-09-29 2013-04-10 财团法人工业技术研究院 Method and wireless communication system for providing downlink control signalling for communication apparatus
EP3200382A2 (en) * 2014-09-27 2017-08-02 LG Electronics Inc. Monitoring method by terminal in wireless communication system supporting carrier aggregation and device for same
CN110740479A (en) * 2018-07-20 2020-01-31 维沃移动通信有限公司 method, terminal and network equipment for monitoring PDCCH
CN110830216A (en) * 2018-08-10 2020-02-21 华为技术有限公司 Method and device for determining number of monitoring PDCCH candidates under carrier aggregation
CN111726212A (en) * 2019-03-22 2020-09-29 上海朗帛通信技术有限公司 Method and apparatus in a node used for wireless communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037527A (en) * 2011-09-29 2013-04-10 财团法人工业技术研究院 Method and wireless communication system for providing downlink control signalling for communication apparatus
EP3200382A2 (en) * 2014-09-27 2017-08-02 LG Electronics Inc. Monitoring method by terminal in wireless communication system supporting carrier aggregation and device for same
CN110740479A (en) * 2018-07-20 2020-01-31 维沃移动通信有限公司 method, terminal and network equipment for monitoring PDCCH
CN110830216A (en) * 2018-08-10 2020-02-21 华为技术有限公司 Method and device for determining number of monitoring PDCCH candidates under carrier aggregation
CN111726212A (en) * 2019-03-22 2020-09-29 上海朗帛通信技术有限公司 Method and apparatus in a node used for wireless communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Consideration on reduced PDCCH monitoring", 3GPP DRAFT; R1-2007716, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 17 October 2020 (2020-10-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051939850 *

Also Published As

Publication number Publication date
CN116326122A (en) 2023-06-23

Similar Documents

Publication Publication Date Title
EP2293633B1 (en) Resource allocation method, system and device
WO2021109459A1 (en) Resource determination in wireless communications
CN113424618A (en) Communication method, device and computer readable storage medium
US20230028824A1 (en) Performing resource mapping of inter-cell multi transmission/reception point operation
US11546899B2 (en) System and method for allocating resource blocks
US20230371043A1 (en) System and method for blind detection
WO2021109449A1 (en) Carrier aggregation using component carrier groups
WO2022147644A1 (en) Systems and methods for blind detection budget for physical downlink control channel
US20220400506A1 (en) System and method for determining downlink control information
US11387972B2 (en) System and method for allocating resource blocks
EP4190080A1 (en) System and method for beam failure recovery
WO2023168681A1 (en) Systems and methods for dci field size aligned in cc group
WO2022027263A1 (en) System and method for resource allocation
US20230179384A1 (en) Systems and methods for combinations of the subcarrier spacing of pusch and the subcarrier spacing of prach
WO2022067458A1 (en) Method and device for sounding reference signal indication enhancement
WO2021109480A1 (en) Configurations for resource-saving data transmissions in shared spectrum channel access
WO2021062703A1 (en) Systems and methods for determining parameters for uplink and downlink transmissions in wireless communication networks
WO2023193158A1 (en) System and method of mapping between different types of bandwidth parts
WO2023102764A1 (en) Systems and methods for cross-carrier scheduling
WO2023050243A1 (en) Configuration of resource elements in demodulation reference signals for channel estimation and data transmission
US20230026076A1 (en) Monitoring control channels using higher layer configuration
WO2022151187A1 (en) Systems and methods for determining beam failure recovery information
WO2023193159A1 (en) System and method of mapping between different types of bandwidth parts for resource configuration
US20230239888A1 (en) Systems and methods for parameter estimation
WO2024060251A1 (en) Physical channel structure for sidelink (sl) in unlicensed spectrum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21916702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 17/11/2023 )