WO2020029693A1 - 悬挂式磁悬浮轨道交通系统 - Google Patents

悬挂式磁悬浮轨道交通系统 Download PDF

Info

Publication number
WO2020029693A1
WO2020029693A1 PCT/CN2019/092347 CN2019092347W WO2020029693A1 WO 2020029693 A1 WO2020029693 A1 WO 2020029693A1 CN 2019092347 W CN2019092347 W CN 2019092347W WO 2020029693 A1 WO2020029693 A1 WO 2020029693A1
Authority
WO
WIPO (PCT)
Prior art keywords
suspension
car
rail
bogie
guide
Prior art date
Application number
PCT/CN2019/092347
Other languages
English (en)
French (fr)
Inventor
杨斌
杨杰
邓永芳
张卫华
高涛
Original Assignee
江西理工大学
西南交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西理工大学, 西南交通大学 filed Critical 江西理工大学
Publication of WO2020029693A1 publication Critical patent/WO2020029693A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B3/00Elevated railway systems with suspended vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • B61B13/08Sliding or levitation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to a suspended magnetic levitation rail transit system, and belongs to the technical field of magnetic levitation rail transit.
  • Maglev technology is a new technological innovation in the last century. With the development of electronic technology, control engineering, signal processing technology, electromagnetic theory, and electrodynamics, magnetic levitation technology has made great progress. At the same time, magnetic levitation technology has extensive research and application in transportation, metallurgy, machinery, materials and other fields, such as magnetic levitation trains, magnetic levitation bearings, etc. The research on maglev trains is more technically representative, and the commercial operation of maglev trains has been achieved at home and abroad. Therefore, the development of magnetic levitation technology is of great strategic significance not only to the field of rail transit, but also to social livelihood, economic development, and urban layout.
  • the present invention discloses a suspended magnetic levitation rail transit system, which has the advantages of energy saving and environmental protection, and can alleviate the traffic congestion in large cities to a certain extent. Compared with high-speed rail systems, The advantages of short construction period and low cost are more suitable for the development of small and medium-sized cities and improve the structure of urban public transportation systems.
  • the specific technical solution is as follows:
  • a suspended magnetic levitation rail transportation system includes a track system, a suspension system, a control system, and a car system.
  • the control system includes a drive system, a guidance system, a suspension control system, and the like.
  • the rail system is suspended in the air by a column.
  • the car system is suspended vertically below the track system by a suspension system, and the drive system and the guidance system cooperate to drive the car system forward in the track system.
  • the track system includes a sky beam and an inverted U-shaped holding rail, the opening of the inverted U-shaped holding rail is downward, the top is fixed to the sky beam, and the suspension system is arranged in the inverted U-shaped holding rail, including a suspension bogie,
  • the guide system is disposed between the left and right sides of the suspension bogie and the inner side of the arm on the corresponding side of the inverted U-shaped holding rail,
  • a power-on card is provided between the pillar and the arm of the inverted U-shaped holding rail.
  • the power-on card provides power for the entire rail suspension system, and its external edge High-voltage wires for track laying.
  • Cross-inductance loops are set between the left and right corners of the top of the inverted U-shaped holding rail and the corresponding outside corners of the pillars.
  • the top of each pillar is provided with a limited height guide wheel.
  • a wheel rail is provided, and the wheel rail is vertically matched with the height-limiting guide wheel;
  • the lower end of the inverted U-shaped holding rail is bent toward the inside to form a platform.
  • the platform is provided with a base, a permanent magnet and a stabilizer.
  • the base is tiled on the platform, and the permanent magnet is tiled on the base.
  • the stabilizing body is located at a corner between the arm of the inverted U-shaped holding rail and the platform, and connects the arm, base and permanent magnet of the U-shaped holding rail;
  • the bottom of the suspension bogie is provided with a hybrid suspension structure on a side facing the permanent magnet, the hybrid suspension structure includes a central permanent magnet, and winding coils are provided on left and right sides of the central permanent magnet;
  • the hybrid suspension structure forms a suspension point with the permanent magnet on the corresponding base.
  • the driving system is arranged in the track system, and includes a motor near the top of the inverted U-shaped holding rail.
  • a lifting frame is provided on the top of the suspension bogie, and an inclined groove is provided above the lifting frame.
  • the left and right sides of the central groove of the motor are symmetrically inclined toward each other.
  • the long stator of the motor is fixed on the top of the inner side of the inverted U-shaped holding rail.
  • the permanent magnet plate of the motor is placed in the central groove of the inclined groove.
  • the car system includes a car body and a plurality of car booms provided on the top of the car body.
  • the top and bottom ends of the car boom are provided with boom catches, and the suspension steering is connected by the boom. Shelves and cars.
  • the top of the upright column transitions to an arc to form a horizontal suspension beam.
  • the sky beam is suspended below the overhanging beam.
  • the bottom of the upright column is in contact with the ground and is fixed to the ground by fixing bolts.
  • a plurality of air springs are arranged between the car booms, the air springs are inclinedly linked from one side of the suspension bogie to the opposite side of the car body, and the middle of the suspension bogie is also provided with air spring buckles (the set-top box's One front and one back), connecting the bogie and the car back and forth (moving direction is forward) from the top of the car boom to the bottom of the other car boom;
  • a car set-top box is provided on the top of the car body.
  • the car set-top box is fixed on the top of the car body through a set-top box control.
  • the car set-top box is provided with a plurality of air springs.
  • the air springs are inclined in the forward direction of the car body.
  • the upper end is connected with the suspension bogie through an air spring buckle.
  • the guiding system includes a guiding mechanical structure and an auxiliary guiding structure.
  • the guiding mechanical structure is provided with a car hanging buckle, and the boom connecting buckle is connected with the car hanging buckle.
  • the guiding mechanical structure includes a group or two Set of triangle suspension frames. When it is a group of triangle suspension frames, the triangle suspension frames are arranged along the track extension direction. Each vertex of the triangle suspension frame is provided with a ball twisted structure, and the two ends of the triangle suspension frame are provided with the track extension direction.
  • a vertical beam, the triangular suspension frame is connected to the center or both sides of the beam, and both ends of each beam are above the suspension point;
  • each vertex of the triangle suspension frame is provided with a ball-twisted structure, and two ends of the triangle suspension frame are provided with Horizontally arranged beams perpendicular to the direction of the track extension.
  • the short sides of the triangular suspension frame opposite to each other share a beam.
  • the triangular suspension frame is connected to the center or both sides of the beam. Both ends of each beam are above the suspension point.
  • the auxiliary guide structure is located between the left and right sides of the suspension bogie and the inside of the left and right arms of the corresponding inverted U-shaped holding rail, and includes an electromagnetic guide structure and a mechanical guide structure.
  • the electromagnetic guide structure includes two A side guide winding coil and a magnetically permeable plate provided inside the arm, the guide winding coil and the magnetically permeable plate are oppositely disposed,
  • the mechanical guide structure includes guide adjustment wheels provided on both sides of the suspension bogie and side wheel rails provided on the inner side of the arm, the guide adjustment wheels and the side wheel rails are oppositely disposed, the guide adjustment wheels and the side portions There are two sets of wheel rails, which are located on the upper and lower sides of the corresponding guide winding coil and magnetically permeable plate, respectively.
  • the gap sensor mainly detects the horizontal gap between the suspension point and the magnetically permeable plate, and provides the controller with real-time gap data to ensure that the steering magnetic force is sufficient to achieve steering.
  • the frame is stable within the safety clearance.
  • Speed sensor The horizontal displacement speed and acceleration of the bogie are fed back to the guidance controller. When the speed or acceleration exceeds a predetermined speed value, the controller pops up the steering wheel in time. When the speed and acceleration are within the electromagnetic adjustable range, the electromagnetic guidance is used. The system completes the guidance adjustment task to ensure the safety of the suspension structure under horizontal interference.
  • Flux sensor Detects the magnetic flux between the electromagnetic permanent magnetic force and the magnetically permeable plate, and is used for real-time feedback to the controller to adjust the guiding force in time.
  • the gap sensor real-time monitoring of the vertical gap between the stator and the mover of the linear motor to provide data parameters for the lifting system.
  • the drive controller controls the vertical position (height) of the mover of the linear motor by controlling the lifting system based on the data of the gap sensor to ensure that the motor stator and mover are in an efficient and safe driving position.
  • the speed measurement and positioning system provides the drive controller with accurate vehicle speed and position information.
  • the drive controller uses the data parameters to make modal judgments (mainly: slip control (such as: starting state), vector control (such as: smooth running) State), direct thrust control (such as: climbing, etc.), the motor switch to complete the free conversion between motor modes.
  • the gap sensor mainly detects the vertical gap between the suspension point and the permanent magnet plate, and provides the gap data to the controller in real time to ensure that the suspension force is sufficient to achieve The bogie is stable in the suspension safety clearance range.
  • Speed sensor The horizontal displacement speed and acceleration of the bogie are fed back to the controller to provide control parameters for the system suspension control algorithm.
  • Flux sensor Detects the magnetic flux between the electromagnetic permanent magnet magnetic force and the permanent magnet plate, and is used for real-time feedback controller to control the suspension position within a safe range in real time.
  • the speed measurement and positioning system uses a dual system positioning structure, that is, the cross-induction loop technology combined with passive magnetic code speed measurement and positioning technology.
  • Cross-induction loop It mainly includes cross-induction loop, receiving coil (vehicle), signal converter (vehicle) and so on. It generates an alternating magnetic field for the AC signal passing through the cross-inductance loop, and the vehicle receiving coil (electromagnetic induction principle) generates an alternating magnetic field. A series of alternating electrical signals, to remove interference processing, amplification, etc., to achieve vehicle positioning by counting the number of electrical signals.
  • Passive magnetic code speed measurement and positioning technology mainly includes passive magnetic code (lay along the railway), magnetic pole encoder, decoder, etc.
  • Cross-induction loop technology provides more accurate speed measurement positioning data. Passive magnetic code speed-measurement positioning technology supplements cross-induction loop technology (redundant design), and corrects the accuracy at a certain distance to avoid cross-induction loop technology. The accumulated error itself affects the accuracy of the data; in addition, it can also ensure normal operation in the case of cross-inductance loop failure.
  • the present invention discloses a novel suspended magnetic levitation rail transit system.
  • the system relates to the field of magnetic levitation rail transportation technology.
  • the system is composed of a supporting column, a sky beam, a traveling system, a suspended car, a sensor detection system, a communication system, and an operation control system.
  • the traveling system is further divided into a bogie and a linear induction drive motor. Wait.
  • the sky beam spans the top of the column, and the permanent magnet magnetic track made of rare earth permanent magnet material is installed in the sky beam, interacts with the permanent magnet group on the bogie, forms a repulsive force, and is controlled by the electromagnetic adjustment system.
  • the linear induction drive motor achieves safe and stable driving with the cooperation of a positioning system.
  • the novel suspended magnetic levitation rail transit system has a small capacity, low cost, and decentralized transportation mode, and is suitable for small and medium-sized urban rail construction, tourist attractions, commercial centers, and transportation junction lines. Its operating mode is similar to that of a subway. Vehicle parking platforms are set at a certain distance. The entire complete track line is also designed as a ring structure, and the vehicle runs on the ring track. Each independently-operated car system is capable of autonomous operation, and at the same time connected to the ground control room via wireless network communication to accept unified dispatch of the ground control system.
  • Car load The car is designed as a double-door structure. When the car runs to the platform and is unloaded, the car sets a short stay time gap.
  • the infrared sensor at the car door detects whether there are passengers waiting on the platform in real time; There are passengers waiting in the area, the car door is opened by itself, people and their belongings are brought into the car, after the car door is closed, the passenger chooses to go to the station through the on-board human-machine interaction interface.
  • the pressure change provided by the pressure sensor provided by the car in the suspension system is monitored and judged in real time, and the safety height of the suspension control is switched in time.
  • the permanent magnets in the hybrid suspension structure provide the main magnetic force, that is, the car under normal passenger loading conditions is completely provided with the suspension force; the electromagnetic adjustment device is responsible for increasing the damping and eliminating vibration to achieve the stability of the suspension gap; the suspension gap Set to a range of safety clearance (for example, a floating clearance between plus and minus 3mm is a safety clearance).
  • the suspension force is provided by the permanent magnet, including no-load and actual load conditions.
  • the control system adjusts the magnetic force of the electromagnetic winding in time to suppress the car instability according to the pressure parameter. The fluctuations cause the car to quickly return to a stable suspension state.
  • the car When the car is in a stable suspension state, its side winding coils are non-conductive, achieving zero-power suspension control, and achieving energy-saving effects. While adjusting the coil's magnetic force by controlling the conduction current of the coil to achieve stable suspension control of each suspension point, the overall car control system adjusts the input compensation of each suspension point in time according to the road condition information and the output parameters of each suspension point to ensure that Multi-point coordinated suspension control of the bogie.
  • the overall controller of the car switches the running mode of the motor in real time according to the data parameters of the car pressure change and data information such as suspension, guidance, and road conditions.
  • the motor starting method can be selected, which can include: direct starting and step-down starting; that is, the direct starting method is selected at no load and light load, and the motor is driven by the larger load.
  • Switch to the step-down start mode realize the energy-saving and stable start of the car; according to the car speed and position information combined with the on-board road condition information database, obtain the front road condition information in a timely manner, and adjust the car's travel speed in time.
  • Speed technology to achieve the speed control of the overall operating system.
  • the operating control modes of the motor are mainly divided into: slip control, vector control, direct thrust control; specifically, at the time of vehicle startup and low speed, the permanent magnet linear Synchronous motors use slip control strategies, while vehicles running at straight speeds on linear sections switch to vector control strategies, and when vehicles are on the up / downhill phase, linear motors switch to direct thrust control strategies.
  • the magnetically permeable plate of the guide structure is composed of silicon steel plate, and forms a magnetic potential loop with the electromagnetic winding coil. Combined with auxiliary guide wheels to achieve stable control on the left and right levels of the bogie.
  • the on-board speed measurement and positioning system provides more accurate car position and speed information for the on-board master controller in real time, and the main controller provides control output parameters for the corresponding control modules (levitation, guidance, drive, etc.) according to the above data parameters.
  • the main controller is connected to the ground control room through the wireless network to realize the information exchange between the vehicle and the ground (including car operating conditions, ground instructions, etc.).
  • the ground control room combines the position of the car on the entire operating line. The reasonable starting time of the current car ensures the safe running distance between the car and the car.
  • Braking The vehicle acquires the set position information in real time.
  • the motor uses a variable frequency speed regulation technology to reduce the speed.
  • the motor control mode switches to slip control to slow down the car's travel speed Achieve stable docking of the car platform.
  • a long stator winding coil can be used to conduct electricity in the reverse direction (professional term: reverse braking strategy) to provide the reverse force relative to the car's travel.
  • the car's internal equipment has an emergency brake button to escape.
  • Soft ladders, smoke alarms and human-machine interface information interaction functions such as playing music, news, etc., etc., improve vehicle safety and service quality, and ensure that passengers have good comfort and experience.
  • the car is suspended below the track, and forms a non-contact connection with the track through magnetic levitation force.
  • it can have less friction, that is, small forward resistance, low energy consumption, low carbon and environmental protection. . It does not occupy the ground area and saves land.
  • the invention has the advantages of strong climbing ability, small turning radius, strong adaptability, safety and reliability, environmental friendliness, light structure, low construction cost, short construction period, small floor space, etc., and is suitable for small-volume, decentralized transportation modes. Especially suitable for small and medium-sized cities, tourist attractions, commercial centers, and transportation junctions.
  • FIG. 1 is a schematic diagram of the overall structure of the present invention.
  • FIG. 2 is an assembly relationship diagram of a track system, a drive system, and a guide system of the present invention.
  • FIG. 3 is a schematic structural diagram of a lower end of an inverted U-shaped holding rail according to the present invention
  • FIG. 4 is a plan view of a six-group suspension bogie of the present invention.
  • FIG. 5 is a plan view of a four-group suspension bogie of the present invention.
  • FIG. 7 is a top view of four suspension points of the present invention.
  • FIG. 8 is a schematic diagram of an inverted U-shaped holding rail structure of the present invention.
  • G1 represents an address line 1 and G2 represents an address line 2;
  • FIG. 10 is a schematic structural diagram of a motor of the present invention.
  • FIG. 11 is a control flowchart of the present invention.
  • FIG. 12 is a right side view of FIG. 1,
  • the specific structure of the present invention is: a suspended magnetic levitation rail transit system.
  • a suspended magnetic levitation rail transit system includes a track system, a suspension system, a control system, and a car system.
  • the control system includes a drive system and a guidance system.
  • Suspension control system The track system is suspended in the air by the pillars.
  • the car system is suspended vertically below the track system by a suspension system.
  • the drive system and the guidance system cooperate to drive the car system forward in the track system.
  • the track system includes a sky beam 2 and an inverted U-shaped holding rail 34.
  • the opening of the inverted U-shaped holding rail 34 is downward, and the top is fixed to the sky beam 2.
  • the suspension system is arranged in the inverted U-shaped holding rail 34, including the suspension bogie 9.
  • the guide system is provided between the left and right sides of the suspension bogie 9 and the inside of the arm 27 on the corresponding side of the inverted U-shaped holding rail 34,
  • a power-on card 5 is provided between the pillar 21 and the arm 27 of the inverted U-shaped holding rail 34, and the power-on card 5 provides power support for the entire system.
  • Cross-induction loops 24 are provided between the left and right corners of the top of the inverted U-shaped holding rail 34 and the corresponding outside corners of the pillar 21, and a limited height guide rail 4 is provided on the top of each pillar 21, and the inverted U-shaped holding rail is provided.
  • a wheel rail 3 is provided at the corresponding position on the top of the 34, and the wheel rail 3 and the height-limiting rail 4 are vertically matched correspondingly;
  • the lower end of the inverted U-shaped holding rail 34 is bent toward the inside to form a platform.
  • the platform is provided with a base 14, a permanent magnet 15, and a stabilizer 28.
  • the base 14 is tiled on the platform, and the permanent magnet 15 is tiled on the base 14.
  • the stabilizer 28 is located at a corner between the arm 27 of the inverted U-shaped holding rail 34 and the platform, and connects the arm 27, the base 14 and the permanent magnet 15 of the U-shaped holding rail;
  • the bottom of the suspension bogie 9 facing the permanent magnet 15 is provided with a hybrid suspension structure 18 including a central permanent magnet 16, and winding coils 17 are provided on the left and right sides of the central permanent magnet 16;
  • the hybrid suspension structure 18 and the permanent magnet 15 on the corresponding base 14 form a suspension point 33.
  • the driving system is arranged in the track system, and includes a motor near the top of the inverted U-shaped holding rail 34.
  • the top of the suspension bogie 9 is provided with a lifting frame 39.
  • the lifting frame 39 is provided with an inclined groove 23 above the center of the inclined groove 23. The left and right sides of the groove are inclined symmetrically toward each other.
  • the long stator 26 of the motor is fixed on the inner top of the inverted U-shaped holding rail 34.
  • the permanent magnet plate 25 of the motor's mover 25 is placed in the central groove of the inclined groove 23.
  • the car system includes a car body 35 and a plurality of car booms 13 provided on the top of the car body 35.
  • the top and bottom ends of the car boom 13 are provided with a boom 13 buckle 10, and the boom 13
  • the suspension bogie 9 is connected to the car.
  • the top of the pillar 36 transitions into a horizontal arc to form a horizontal suspension beam 1.
  • the sky beam 2 is suspended below the suspension beam 1.
  • the bottom of the pillar 36 is in contact with the ground and is fixed to the ground by a fixing bolt 37.
  • a plurality of air springs 12 are provided between the car booms 13.
  • the air springs 12 are inclinedly linked from one side of the suspension bogie 9 to the opposite side of the car body 35, and the middle of the suspension bogie 9 is also provided with air spring 12 buckles. 11 (one each at the front and rear of the set-top box), connecting the bogie and the car back and forth (the direction of travel is front) from the top of the car boom 13 to the bottom of the other car boom 13;
  • a car set-top box is provided on the top of the car body 35.
  • the car set-top box is fixed on the top of the car body 35 through a set-top box control.
  • the car set-top box is provided with a plurality of air springs 12, which are inclined along the forward direction of the car body 35. And its upper end is connected with the suspension bogie 9 through the air spring 12 buckle 11.
  • the guiding system includes a guiding mechanical structure and an auxiliary guiding structure.
  • the guiding mechanical structure is provided with a car hanging buckle 30, a boom 13 connecting buckle 10 is connected to the car hanging connecting buckle 30, and the guiding mechanical structure includes one or two sets of triangles.
  • the suspension frame 29 is a set of triangle suspension frames 29.
  • the triangle suspension frames 29 are arranged along the track extending direction.
  • Each vertex of the triangle suspension frame 29 is provided with a ball-twisted structure 31, and two ends of the triangle suspension frame 29 are provided.
  • Cross beams 32 perpendicular to the direction of the track extension.
  • the triangular suspension frame 29 is connected to the center or both sides of the cross beams 32. Both ends of each cross beam 32 are located above the suspension points 33.
  • Each suspension point is steered by suspension buckles 19 and suspended.
  • Frame 9 is connected.
  • the triangle suspension frame 29 has two groups, one short side of the triangle suspension frame 29 is oppositely arranged and is arranged along the track extension direction.
  • Each vertex of the triangle suspension frame 29 is provided with a ball twisted structure 31.
  • the two ends are provided with horizontally arranged crossbeams 32 perpendicular to the direction of the track extension.
  • the short sides of the triangular suspension frame 29 opposite to each other share a crossbeam 32.
  • the triangular suspension frame 29 is connected to the center or both sides of the crossbeam 32. Both ends are above the suspension point 33;
  • the auxiliary guide structure is located between the left and right sides of the suspension bogie 9 and the inside of the left and right arms 27 of the corresponding inverted U-shaped holding rail 34, and includes an electromagnetic guide structure 20 and a mechanical guide structure.
  • the electromagnetic guide structure 20 includes Guide winding coils 22 on both sides of the bogie 9 and a magnetically permeable plate 7 provided inside the arm 27, the guide winding coils 22 and the magnetically permeable plate 7 are oppositely disposed,
  • the mechanical guide structure includes guide adjustment wheels 8 provided on both sides of the suspension bogie 9 and side wheel rails 6 provided inside the arm 27.
  • the guide adjustment wheels 8 and the side wheel rails 6 are oppositely disposed, the guide adjustment wheels 8 and the side
  • FIG. 1 is a schematic structural diagram of the present invention.
  • the suspended magnetic levitation rail transportation system mainly includes a pillar, a sky beam, a driving system, a steering system, a levitation system, a control system, a detection system, a cabin system, and safety guarantee.
  • System and other structures Among them, the magnetic levitation sky beam 2 structure adopts an inverted concave hoop structure, flying over the top of the column, and the magnetic rail bracket arm beam structure is arranged on both sides thereof, and the two sides are basically L-shaped rail structures.
  • the suspension system and the propulsion system according to the present invention , Guidance system, detection system, etc. are all realized in the concave groove.
  • the system uses a long stator linear induction motor.
  • the long stator of the linear motor is fixed to the upper wall of the concave groove.
  • the side of the long stator facing the mover is provided with a three-phase AC winding 38.
  • the short motor of the linear motor also referred to as a permanent magnet plate
  • the groove structure plays a role of fixing and protecting the composite induction plate.
  • the use of specific motor control in the motor control system promotes the propulsion system to have the ability to suppress the vertical force of the motor from interfering with the suspension system.
  • An armature winding is laid in Tianliang 2 and combined with the moving motor permanent magnet plate on the suspension bogie of the train, the armature winding generates traveling wave magnetic field under the control of the inverter, and forms the electromagnetic traction force in combination with the static magnetic field on the permanent magnet plate. Drag the carriage forward.
  • the linear induction propulsion system can be equipped with a variety of control strategies, such as: multi-modal optimized drive control strategy.
  • the suspension design of the carriage is as follows: The bases on both sides of the inverted U-shaped holding rail are installed with special steel materials and reinforced by spiral nails. The energized windings corresponding to the permanent magnets are energized to generate magnetic force. In contrast to the permanent magnet poles, the entire system is suspended by the repulsive force between the two.
  • the design of the present invention can adopt a variety of structures to achieve suspension. For example, a conventional electromagnetic structure can be used for the suspension structure, or a mixed suspension structure, a superconducting suspension structure, or the like can be used.
  • Adopt multiple groups of independent structures to achieve suspension and guidance It is set in three positions of front, middle and rear of the bogie, and the vehicle guidance system is installed on the side of the suspension structure.
  • the front and rear suspension structures are reinforced by triangular steel plates.
  • the bogie is provided with a plurality of sets of triangular suspension frames. Each end of each frame is connected to the core plate of the beam. The frame can rotate freely relative to the core plate. The middle beam is shared by the front and rear frames. A ball-twisted structure is set at the suspending point of the structure, and is connected and fixed to the vehicle body through a triangular beam.
  • auxiliary guidance structure is suitable for both mechanical guidance and electromagnetic guidance.
  • One is a mechanical guide structure; the system is equipped with protective casters to cooperate with the support arm track.
  • the protection wheel is equipped with an air spring to prevent high-strength impact between the suspension structure and the track beam directly.
  • the other is an electromagnetic guidance system.
  • Suspended electromagnetic guidance structures are installed on the left and right sides of the suspension bogie, and the magnetic force is generated by energizing the electromagnetic windings. It forms a closed magnetic circuit with the side arm rails, and controls the winding current or magnetic flux and other variable control guidance. Force to achieve left and right stability of the suspension bogie.
  • the system uses a two-stage suspension damping design to be placed between the beam and the frame.
  • the suspension control method of the suspension type magnetic levitation running system mainly includes a set of electromagnetic windings next to the permanent magnets at each suspension point of the suspension bogie, so as to achieve electromagnetic adjustment at the suspension point; the vehicle-mounted permanent magnets provide suspension
  • the main suspension force required, the electromagnetic adjustment device is responsible for increasing the damping, eliminating vibration, and achieving the stability of the suspension gap.
  • the suspension transportation system of the present invention adopts a multi-point coordinated control method of the suspension maglev train.
  • the real-time gap detection of each levitation point is based on the gap output of each independent levitation point.
  • the suspension column adopts an independent steel column beam structure.
  • the overall suspension hanging system is supported by a column beam, and the base of the column beam is buried under the ground with cement and concrete, and is reinforced by spiral nails, which promotes a neat and consistent appearance design.
  • a part of the suspension beam 1 on the column beam is fastened to the suspension sky beam 2 through a bearing cable, a screw buckle, and the column beams are arranged at a certain distance to support the suspension sky beam 2.
  • the carriage suspension design adopts an overhead suspension in the air.
  • the suspension beams are mounted on the ground posts to make the maglev suspension structure run on the suspension beams.
  • a suspension link is provided between the carriages and the suspension beams, and an air spring is placed between the suspension rods so that The cabin is more stable.
  • attitude control strategies are loaded in the maglev traveling system.
  • the carriage setting adopts humanized design.
  • the cabin is equipped with a seat for 4 to 8 people, and a luggage locker is arranged under the seat for passengers to place luggage. It can be rounded on the side of the carriage, and it has a structure of wide and narrow from bottom to top.
  • the car door uses automatic doors that open left and right.
  • the vehicle operating parameter detection system is equipped with on-board laser displacement sensors, acceleration sensors, gyroscopes, and inclinometers to detect vehicle suspension height, lateral displacement, vertical acceleration and lateral acceleration, etc .; on-board pressure sensors, etc. to detect suspended weight; ground positioning system Waiting to monitor the speed and position of the vehicle; On-board monitoring sensors combined with the vehicle positioning system to achieve the longitudinal acceleration of the running vehicle.
  • the above system auxiliary equipment can be selected for use according to the actual vehicle design plan and actual needs.
  • the system adopts more advanced carrier cross-induction loop speed measurement and positioning technology to achieve millimeter-level accurate positioning, and cooperates with long stator permanent magnet synchronous linear motors and operation control systems to achieve smooth operation.
  • a passive beacon positioning structure is laid along the track.
  • Its beacon positioning technology is an auxiliary system mainly based on vehicle communication systems, which constitutes a dual system structure of vehicle communication positioning.
  • the cross-inductance loop provides accurate position and speed information, and the auxiliary system calibrates the relative position of the induction loop within a certain distance to avoid the cumulative error of the induction loop at a longer distance and ensure the safety of passengers.
  • Its overall power supply system consists of a composite induction board, as well as contact lines, load cables, hanging strings, and clamps. Shield doors and other equipment are provided at the vehicle platform.
  • auxiliary facilities are mainly equipped with: emergency lighting, emergency stop switch, forced manual cable brake and portable fire extinguisher, fire hammer, escape ladder, lamps and other equipment on the carriage.
  • the present invention may use a variety of suspension strategies and guidance strategies, but in the description section of the drawings, the conventional electromagnetic structure is used to describe the drawings.
  • the system of the present invention includes other hardware equipment components such as a propulsion system, a steering system, a suspension system, a monitoring system, and a hardware mechanical structure.
  • the control external equipment adopts an inverted concave holding rail type structure, and the magnetic floating bracket arm rail beam structure is arranged on both sides.
  • the side wall and the bracket arm beam are generally L-shaped rail structure, so that the suspension system, the propulsion system and the guide system according to the present invention , Detection system and other structures are realized in the concave groove.
  • the maglev transportation system is provided with a traction force by a long stator linear induction motor.
  • the long stator of the linear motor is fixed on the upper wall of the recessed groove, and a groove is provided at the corresponding position on the uppermost side of the suspension bogie of the cabin, and the short stator (permanent magnet) of the linear motor is fixed in the groove.
  • the groove structure plays a role of fixing and protecting the permanent magnet.
  • constant slip frequency motor control is selected to promote the propulsion system to have the ability to suppress the vertical force of the motor from interfering with the suspension system.
  • the motor mover of this system uses steel-aluminum composite material, and the stator uses stainless steel.
  • An armature winding is laid in the Tianliang 2 and combined with a copper and aluminum composite induction plate on the suspension bogie of the train, the winding generates a traveling wave magnetic field under the control of the inverter, and induces electromagnetic traction on the induction plate.
  • the present invention provides a multi-mode control method for a linear motor.
  • the basic strategy is as follows: when the suspended maglev train is running on the track, different linear motor drive strategies are provided according to the state of the train. When the train is in the no-load starting state, the slip frequency control is provided; when the train is in a flat load or under Slope running state, switch to vector control by interrupting the program; when it is detected that the train is uphill or turning, switch to direct thrust control.
  • the detection unit detects the state of the train and switches between different control methods, which can realize the multi-modal optimized driving of the suspended magnetic levitation running system, which greatly reduces energy consumption.
  • the suspension of the carriage of the maglev transportation system is as follows:
  • the bases on both sides of the inverted concave holding rail are made of stainless steel for permanent magnets and reinforced by spiral nails.
  • the energized windings corresponding to the permanent magnets are energized to generate magnetic force.
  • the entire system is suspended by the repulsive force between the two.
  • Hybrid suspension structures can be used in urban rail transit systems.
  • Other structures, such as conventional electromagnetic structures and superconducting suspension structures, can be combined with practical application environment, occasions and other factors to develop specific design solutions.
  • the first series suspension is a large-rigidity rubber plate for shock absorption, which is installed between the beam and the tidy, beautiful center plate and side bearing;
  • the secondary suspension is damped by rubber pads and is located between the ball hoist and the frame.
  • the suspension type magnetic levitation rail transportation system adopts an independent suspension control strategy of a suspension bogie and a multi-point coordinated control method of a train to realize real-time stable suspension control of the system.
  • the electromagnetic adjusting device shown in FIG. 2 is installed beside the permanent magnet of the suspension bogie, which mainly includes: a vehicle permanent magnet and an electromagnetic adjusting device.
  • the vehicle-mounted permanent magnets provide the main levitation force required for levitation
  • the electromagnetic adjustment device is responsible for increasing the damping and eliminating vibrations to achieve overall levitation control stability.
  • a set of electromagnetic adjusting devices is installed on each suspension point of the suspended magnetic levitation train, and each group of electromagnetic adjusting devices includes modules such as sensor acquisition, processor, hardware current loop and power drive. Real-time monitoring of load weight, air-gap height, position and speed, electrical parameters, etc. through the sensor acquisition module, and upload to the processor to calculate the control output according to the control algorithm.
  • the hardware current loop generates the PWM control signals required by the driving circuit based on the input-output relationship and the feedback signal, and the driving circuit adjusts the current, magnetic field strength and electromagnetic force of the electromagnet accordingly, thereby achieving the goal of adjusting the floating gap.
  • the electromagnetic adjusting device does not need a static load to maintain a current, and only carries a dynamic load, so it has the significant advantages of low power consumption and high safety.
  • the bogie physical structure of the suspension train 4 to 6 groups of suspension control points are set on a suspension bogie, and a gap sensor is set at each suspension point, and an independent control strategy is adopted.
  • the independent suspension structures are coordinated with each other through input compensation.
  • the output of the independent suspension point is fed back to the controller.
  • the compensation value of each subsystem is determined by the influence factors of the preset subsystems. (It will affect several adjacent groups of subsystems to achieve collaborative control effect)
  • the suspension system and guide structure of the system adopt six independent structures. Its six sets of suspension systems are respectively located in the front, middle and rear rows of the bogie, and a car guidance system is arranged on the corresponding side of the suspension structure. There are a total of six groups of electromagnetic guidance structures. A triangular steel plate is used to reinforce each of the front and rear suspension structures, and bolts are used to restrain the suspension structure and the guide structure.
  • the modularized structure of the steering form makes the steering system have a solid structure, strong flexibility, safer suspension and good maintainability.
  • Two triangular suspension frames are arranged on the bogie of the maglev transportation system. Each end of each frame is connected to the core plate of the beam. The frame can rotate freely relative to the heart plate. The middle beam is shared by the two frames.
  • the suspension point of the structure is designed as a ball-twisted structure, which is connected and fixed to the vehicle body by a triangular beam.
  • the rail auxiliary guide structure of the present invention is applicable to both mechanical guide and electromagnetic guide structures.
  • An electromagnetic guidance system can be used in the urban transportation system.
  • Suspended electromagnetic guidance structures are installed on the left and right sides of the suspension bogie.
  • the magnetic force is generated by the electromagnetic windings. It forms a closed loop magnetic circuit with the L track wall to control the winding current or magnetic flux. Force to achieve left and right stability of the suspension bogie.
  • the system uses self-developed centering adjustment methods and devices, that is, a method and device for correcting the lateral deviation of the suspension bogie, and electromagnetic adjustment devices are installed on both sides of the bogie.
  • the position sensor installed on the bogie is used to detect whether the permanent magnet group deviates from the center position. If the permanent magnet group deviates, the electromagnetic adjustment device on the bogie away from the offset side is triggered by a signal to energize the electromagnetic adjustment device. After being energized, the electromagnetic force attracts the steel structure. The attractive force of the electromagnet is determined by the amount of offset. Under the effect of attraction, the offset of the bogie and the permanent magnet group installed on the bogie is reduced. When the offset is reduced to zero (that is, the magnetic track on the bogie is adjusted to the position centered with the magnetic track fixed on the track), the electromagnet is turned off and the current is adjusted. carry out.
  • a double-layer electromagnetic adjustment design structure is used in the guidance control system to ensure stable guidance control of the suspension system according to the present invention in a running environment such as a slope, a straight line, or a turn.
  • the suspension column adopts a U-shaped independent steel column beam structure.
  • the overall suspension hanging system is supported by a column beam, and the base of the column beam is buried under the ground with cement and concrete, and is reinforced by spiral nails, which promotes a neat and consistent appearance design.
  • a part of the suspension beam 1 on the column beam is fastened to the suspension sky beam 2 through a bearing cable, a screw buckle, and a column beam is arranged between a certain distance to support the suspension sky beam 2.
  • the auxiliary design of the column can be designed and arranged by sponsors, such as display boards, reminder slogans, etc.
  • the suspension design of the carriage adopts an overhead suspension in the air.
  • the suspension beam is lifted by the on-shore pillars to make the maglev suspension structure run on the suspension beam.
  • Parallel suspension rods are connected between the carriage and the suspension beam to stabilize the movement of the carriage parallel and reduce the swing of the carriage.
  • An air spring can be separately installed between the parallel booms to make the crane more stable.
  • the carriage setting adopts humanized design.
  • the cabin is equipped with a seat for 4 to 8 people, and a luggage locker is arranged under the seat for passengers to place luggage. It can be rounded on the side of the carriage, and the structure of the bottom is wide and the top is narrow, which reduces the center of gravity of the carriage.
  • the car doors use automatic doors that open left and right, and shield doors at the corresponding positions of the station platform to ensure the safety of passengers.
  • the cabin painting can be designed by the manufacturer or the merchant by adding LOGO and color.
  • the system introduces the attitude control method of the suspension traveling system based on robust control, and aims at the imbalance of the car's attitude through external power (such as precision spring)
  • This set of car attitude control strategies can effectively suppress the effects of various uncertainties such as non-linearity, coupling and external time-varying interference during the operation of the maglev train, and improve the accuracy and robustness of the attitude control of the suspended maglev train.
  • the suspended vehicle is equipped with multiple sets of monitoring equipment, namely: an IoT-based suspension magnetic suspension train service status acquisition and fusion technology, which mainly includes a parameter detection module, an alarm module, a data fusion module, and Data transmission module.
  • the parameter detection module includes 1) the gap of the suspension system, the temperature of the suspension controller and the magnet repulsion detection. 2) The speed and position detection of the speed measurement positioning system. 3) Current detection of traction braking system and slope inclination detection. 4) Current detection of auxiliary power system. 5) Load detection. 6) Environmental parameter detection, such as temperature, wind speed, noise, light, etc. Among them, the alarm module performs different levels of alarms on the detection of each system parameter exceeding the threshold range.
  • the data fusion module uses multi-sensor fusion technology to fuse various types of sensor data to extract value data.
  • the data is transmitted to the cloud platform via a wireless network, which can facilitate the management and use of the control center and users.
  • the monitoring system integrates the method of detecting the state parameters of the suspended maglev train, reduces the amount of data transmission, and uses modern communication technology to improve the speed and accuracy of the state parameter detection of the maglev train, reduce the occurrence of faults, and also adopt different levels of Early warning and further optimization control and value mining provide a data foundation.
  • the vehicle-mounted network communication system of this suspension system uses AP real-time switching technology in the vehicle-mounted mobile environment to ensure full network coverage during vehicle operation and redundant communication technology for vehicle-mounted network to ensure network communication during vehicle operation. reliability.
  • the sensor equipment mainly includes: the vehicle operating parameter detection system is equipped with a vehicle-mounted laser displacement sensor, acceleration sensor gyroscope, and inclinometer to detect vehicle suspension height, lateral displacement, vertical acceleration and lateral acceleration; vehicle pressure sensors, etc. Detection of suspended weight; ground positioning system, etc. to monitor vehicle running speed and position; on-board monitoring sensors combined with vehicle positioning system to achieve longitudinal acceleration of running vehicles.
  • the above system auxiliary equipment can be selected for use according to the actual vehicle design plan and actual needs.
  • the system uses more advanced carrier cross-induction loop speed measurement and positioning technology.
  • the cross-induction line is laid along the track according to predetermined coding rules to obtain car position and speed information in real time to achieve millimeter-level accurate positioning.
  • the operation control system achieves smooth operation.
  • the system introduces an electromagnetic induction passive beacon positioning technology.
  • the magnetic strip beacon information identification code is laid at a certain distance (about 1 meter) along the track to form a vehicle-mounted communication system, supplemented by magnetic pole identification code technology.
  • the dual-system structure of vehicle speed measurement and positioning is shown in Figure 9.
  • the cross-inductance loop provides accurate position and speed information
  • the auxiliary system calibrates the relative position of the induction loop in a certain distance to avoid the cumulative error of the induction loop at a long distance and ensure the safety of passengers .
  • the on-board magnetic stripe scanning technology has the advantages of simple structure, low cost, high accuracy and easy installation and maintenance.
  • the present invention can be loaded with a suspension magnetic levitation train control technology based on the Internet of Things.
  • the Internet of Things technology is applied to the control architecture of suspended maglev trains to form an effective supplement to existing control methods.
  • various field data such as: suspension height, magnetic field center deviation, vehicle body position, running speed, load weight, side swing, nodding, electrical parameters, environmental parameters, etc.
  • the system uploads field data to the cloud via a wireless module.
  • the powerful cloud database supports data access from the control unit, PC terminal and mobile terminal to cooperate with operation, organization, management and service.
  • the big data functions in the cloud are used for system optimization and value mining.
  • the mobile terminal can cooperate with the operation organization and personalized services through APP and other methods.
  • the control unit monitors the operating status through the fusion of operating data and online analysis. If an abnormal situation occurs, it takes appropriate emergency treatment in time to ensure the safety of the system.
  • the invention can be adapted to a method for controlling an unmanned driving of a suspended magnetic levitation train based on artificial intelligence.
  • the user captures the face image and recognizes the identity of the user through the camera before boarding the vehicle.
  • the system After passing the authentication, the system will retrieve the user's relevant historical data and customer classification, open the door while performing balance management, and intelligently match the air conditioner based on customer portrait technology
  • Environmental settings and multimedia settings such as temperature and light brightness.
  • the control unit After the user gets in the car, he can input the destination through voice or human-machine interface, and the control unit automatically organizes driving tasks according to factors such as running distance, line conditions, and weather conditions.
  • users can perform environment settings and multimedia switching through voice and human-machine interface, such as playing music, listening to news, knowing the weather, etc., and can also reserve hotels and leave messages to customers through the background, enabling passengers to do More meaningful things.
  • the system corrects the results of customer portraits by accurately recording every action of the user in order to provide higher quality services.
  • auxiliary facilities are mainly provided: lamps, batteries, emergency equipment and other facilities.
  • the power supply system uses copper-aluminum composite induction boards independently developed by the cooperative unit, as well as contact wires, load cables, hanging strings, wire clamps and other products.
  • Cars are powered by batteries for emergency lighting.
  • Car emergency equipment is equipped with emergency stop switches, forced manual cable brakes and portable fire extinguishers, fire hammers, escape ladders, etc. Shield doors and other equipment are provided at the vehicle platform.
  • the platform design and configuration are separately designed and constructed according to the actual situation.
  • the technical means disclosed in the solution of the present invention is not limited to the technical means disclosed in the above technical means, but also includes a technical solution composed of any combination of the above technical features.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

一种悬挂式磁悬浮轨道交通系统,包括轨道系统、悬挂系统、控制系统和轿厢系统,控制系统包括驱动系统、导向系统、悬浮控制系统,轨道系统通过立柱(36)悬于空中,轿厢系统通过悬挂系统悬挂在轨道系统的垂直下方,驱动系统和导向系统协同作用,驱动轿厢系统在轨道系统中运行。

Description

悬挂式磁悬浮轨道交通系统 技术领域
本发明涉及悬挂式磁悬浮轨道交通系统,属于磁悬浮轨道交通技术领域。
背景技术
磁浮技术作为上世纪一项新兴的技术革新,随着电子技术、控制工程、信号处理技术、电磁理论以及电动力学等学科的发展,使得磁浮技术得到了长足的发展。同时,磁浮技术在交通,冶金、机械、材料等领域有着广泛的研究与应用,如磁悬浮列车、磁浮轴承等。其中对磁悬浮列车的研究更具有技术代表性,并且在国内外实现了磁悬浮列车的商业运行。因此,磁悬浮技术的发展不仅是对轨道交通领域有着重要意义,更是对社会民生、经济发展、城市布局等具有重大战略意义。
目前国内轨道交通领域的交通运输方式有很多种类型,如:高铁、地铁等类型。就铁路运输而言,铁路在带来越来越便捷、高效的服务之同时,也消耗了大量的能源。据悉,国家铁路2017年能源消耗折算标准煤高达1621.65万吨,国家铁路化学需氧量排放量1901吨,二氧化硫排放量15817吨。因此,在促进轨道交通的节能减排工作的同时,提出节能环保的新型轨道交通系统无论是对于经济效益还是对于生态环境保护都是非常重要的策略。
另一方面,城市交通拥堵问题一直是城市发展的诟病。以北京、上海和广州为典型的大型都市交通拥堵问题尤其严重,这很大程度上降低了城市运行效率和宜居性。同时,随着中小城市的发展,交通拥堵问题也日益明显。随着国家对建设宜居城市提出了专门论说,宜居城市建设已变成当下我国城市建设的重要目标。因此,建设一套完善地城市轨道交通系统尤为必要,也是彻底解决城市拥堵问题的有效手段。
发明内容
为了解决上述轨道交通领域发展现状存在的问题,本发明公开了一种悬挂式磁悬浮轨道交通系统,具备节能环保等特点的优势,可一定程度地缓解大城市的交通拥堵问题,相比高铁系统,建造周期短、造价低的优势更加适用于中小城市的发展,完善了城市公共交通系统结构。其具体技术方案如下:
悬挂式磁悬浮轨道交通系统,其包括轨道系统、悬挂系统、控制系统和轿厢系统, 所述控制系统包括驱动系统、导向系统、悬浮控制系统等,所述轨道系统通过立柱悬于空中,所述轿厢系统通过悬挂系统悬挂在轨道系统的垂直下方,驱动系统和导向系统协同作用,驱动轿厢系统在轨道系统中前进。
所述轨道系统包括天梁和倒U形抱轨,所述倒U形抱轨的开口向下,顶部与天梁固定,所述悬挂系统设置在倒U形抱轨中,包括悬浮转向架,所述导向系统设置于所述悬浮转向架的左右两侧与倒U形抱轨对应侧的抱臂内侧之间,
所述悬浮转向架靠近左右两侧位置设置有向上伸出的台柱,台柱与倒U形抱轨的抱臂之间设置有通电卡,通电卡为整个轨道吊挂系统的电源供给,其外接沿轨道铺设的高压电线。
倒U形抱轨的顶部左右两侧的拐角处与对应的台柱外侧拐角之间均设置有交叉感应回线,每个台柱的顶部均设置有限高导轮,倒U形抱轨的顶部对应位置设置有轮轨,所述轮轨与限高导轮上下垂直对应配套;
所述倒U形抱轨的下端朝向内侧弯曲,形成一个平台,该平台上设置有底座、永磁体和稳定体,所述底座平铺在平台上,所述永磁体平铺在底座上,所述稳定体位于倒U形抱轨的抱臂与平台之间的转角处,连接U形抱轨的抱臂、底座和永磁体;
所述悬浮转向架的底部朝向永磁体的一侧设置有混合悬浮结构,所述混合悬浮结构包括中心永磁体,所述中心永磁体的左右两侧设置有绕组线圈;
所述混合悬浮结构与对应的底座上的永磁体形成一个悬浮点。
所述驱动系统设置在轨道系统内,包括靠近倒U形抱轨顶部的电机,所述悬浮转向架的顶部设置有升降架,所述升降架的上方设置有斜凹槽,所述斜凹槽的中心凹槽左右两侧对称相向倾斜,所述电机的长定子固定在倒U形抱轨的内侧顶部,电机的动子永磁板置于斜凹槽的中心凹槽内。
所述轿厢系统包括轿厢本体和设置在轿厢本体顶部设置有若干根轿厢吊杆,所述轿厢吊杆的顶端和底端均设置有吊杆接扣,通过吊杆衔接悬浮转向架与轿厢。
所述立柱的顶部朝向一侧弧形过渡形成形成水平的悬挂梁,所述天梁悬挂在悬挂梁下方,所述立柱的底部与地面接触,且通过固定螺栓与地面固定。
所述轿厢吊杆之间设置有若干个空气弹簧,所述空气弹簧从悬浮转向架的一侧倾斜链接到轿厢本体的相对侧,悬浮转向架的中间也设置空气弹簧接扣(机顶盒的前后各一个),连接转向架和轿厢前后(行进方向为前)从轿厢吊杆的顶端连接到另一个轿厢吊杆的底端;
所述轿厢本体的顶部设置有轿厢机顶盒,所述轿厢机顶盒通过机顶盒控件固定在轿厢本体的顶部,轿厢机顶盒设置有若干个空气弹簧,该空气弹簧沿轿厢本体前进方向倾斜,且其上端通过空气弹簧接扣与悬浮转向架连接。
所述导向系统包括导向机械结构和辅助导向结构,所述导向机械结构设置有轿厢吊挂接扣,吊杆接扣与轿厢吊挂接扣连接,所述导向机械结构包括一组或两组三角形悬挂构架,当为一组三角形悬挂构架时,三角形悬挂构架沿轨道延伸方向布置,三角形悬挂构架的每个顶点均设置有球绞结构,在三角形悬挂构架的两端设置有与轨道延伸方向垂直的横梁,所述三角形悬挂构架通过与横梁的中心或者两侧连接,每个横梁的两端均位于悬浮点上方;
当三角形悬挂构架有两组时,三角形悬挂构架的一个短边相对布置,且沿轨道延伸方向布置,三角形悬挂构架的每个顶点均设置有球绞结构,在三角形悬挂构架的两端设置有与轨道延伸方向垂直的水平布置的横梁,三角形悬挂构架相对布置的短边公用一个横梁,所述三角形悬挂构架通过与横梁的中心或者两侧连接,每个横梁的两端均位于悬浮点上方;
所述辅助导向结构位于悬浮转向架的左右两侧与对应的倒U形抱轨的左右两侧抱臂内侧之间,包括电磁导向结构和机械导向结构,电磁导向结构包括设置在悬浮转向架两侧的导向绕组线圈和设置在抱臂内侧的导磁板,所述导向绕组线圈和导磁板相对设置,
所述机械导向结构包括设置在悬浮转向架两侧的导向调整轮和设置在抱臂内侧的侧部轮轨,所述导向调整轮和侧部轮轨相对设置,所述导向调整轮和侧部轮轨有两组,分别位于对应的导向绕组线圈和导磁板的上下两侧。
导向控制系统中有间隙传感器、速度传感器和磁通传感器,功能依次为:间隙传感器主要检测的是悬浮点与导磁板之间的水平间隙,为控制器实时提供间隙数据确保导向磁力足以实现转向架稳定在安全间隙范围。
速度传感器:转向架的水平位移速度以及加速度,反馈至导向控制器,当速度或者加速度超过预定速度值,控制器及时弹出导向轮,当速度和加速度处在电磁可调范围内,则由电磁导向系统完成导向调节任务,确保悬挂结构在水平干扰力下的安全性。
磁通传感器:检测电磁永磁磁力与导磁板之间的磁通量,用于实时反馈控制器,及时调整导向力。
驱动控制系统中,有间隙传感器和升降系统,功能依次为:间隙传感器:实时监 测直线电机的定子与动子之间的垂直间隙,为升降系统提供数据参数。
升降系统:驱动控制器依据间隙传感器的数据通过控制升降系统实现对直线电机的动子垂直位置(高度)的稳定控制,确保电机定子与动子处于高效、安全驱动位置。
另外,由测速定位系统为驱动控制器提供精确地车辆速度和位置信息,驱动控制器由数据参数进行模态判断(主要包括:转差控制(如:启动状态)、矢量控制(如:平稳运行状态)、直接推力控制(如:爬坡等状态),由电机切换开关完成电机模态之间自由转换。
悬浮控制系统中,有间隙传感器、速度传感器和磁通传感器,功能依次为:间隙传感器主要检测的是悬浮点与永磁板之间的垂直间隙,为控制器实时提供间隙数据确保悬浮力足以实现转向架稳定在悬浮安全间隙范围。
速度传感器:转向架的水平位移速度以及加速度,反馈至控制器,为系统悬浮控制算法提供控制参数。
磁通传感器:检测电磁永磁磁力与永磁板之间的磁通量,用于实时反馈控制器,实时控制悬浮位置在安全范围之内。
测速定位系统采用双系统定位结构,即交叉感应回线技术结合无源磁码测速定位技术。
交叉感应回线:主要包含交叉感应回线,接受线圈(车载),信号转换器(车载)等,对交叉感应回线通交流信号产生交变磁场,由车载接受线圈(电磁感应原理)产生一系列交变电信号,对电信号去干扰处理、放大等,通过统计电信号个数实现车辆定位。
无源磁码测速定位技术:主要包含无源磁码(沿铁路沿线铺设)、磁极识码器、解码器等。
由交叉感应回线技术提供较为精准地的测速定位数据,无源磁码测速定位技术作为交叉感应回线技术的补充(缀余设计),在一定距离进行精度矫正,避免对交叉感应回线技术本身存在的误差累计影响数据精度;另外,也可确保在交叉感应回线失效状态下的正常运行。
本发明的工作原理:本发明公开了一种新型悬挂式磁悬浮轨道交通系统。涉及磁悬浮轨道运输技术领域,该系统由支撑立柱、天梁、走行系统、悬挂式轿厢、传感检测系统、通信系统以及运行控制系统等组成,走行系统又分为转向架、直线感应驱动电机等。天梁横跨于立柱顶端,由稀土永磁材料制成的永磁磁轨安装在天梁内,与转向架上的永磁磁组相互作用,形成斥力,并在电磁调节系统的控制下,实现稳定悬浮、无接触 运行,直线感应驱动电机在定位系统的配合下实现安全、平稳行驶。
具体运行如下:
所述一种新型悬挂式磁悬浮轨道交通系统具备小运量,低成本,分散型交通方式,适用于中小城市轨道建设、旅游景区、商业中心及交通枢纽接驳线。其运行模式如同地铁,在一定距离设定车辆停泊站台,整条完整轨道线同设计成环形结构,车辆在环形轨道上运行。每个独立运行的轿厢系统具备自主运行能力,同时通过无线网络通信与地面总控制室连接接受地面总控制系统的统一调度。
轿厢承载:轿厢设计成双开门结构,当轿厢运行至站台且空载状态,轿厢设定短暂停留时间间隙,由轿厢门口红外传感设备实时检测站台是否有乘客等候;如果候车区存在乘客等候,轿厢门则自行打开,人和携带的物件带上轿厢,完毕后,轿厢门关闭,由乘客自行通过车载人机交互界面选择到站点。与此同时,乘客进入轿厢时悬浮系统由轿厢设置的压力传感器提供的压力变化实时监测判断,及时切换悬浮控制安全高度。在此,混合悬浮结构里面的永磁体提供主要磁力,即在正常载客情况下的轿厢完全由永磁体提供悬浮力;电磁调节装置负责增加阻尼、消除震动,达到悬浮间隙的稳定;悬浮间隙设置为一段范围的安全间隙(比如正负3mm之间的悬浮间隙为安全间隙)。具体而言,轿厢平稳运行则由永磁体提供悬浮力,包括空载和实载情况,而当轿厢压力传感器检测压力变化时,控制系统依据压力参数及时调节电磁绕组磁力抑制轿厢不稳定波动,促使轿厢快速恢复平稳悬浮状态,当轿厢在稳定悬浮状态,其侧绕组线圈不导电,实现零功率悬浮控制,达到节能的效果。在通过控制线圈导通电流大小达到调整线圈磁力,实现各悬浮点的稳定悬浮控制的同时,轿厢总控制系统依据路况信息以及各个悬浮点的输出参数,及时调整各悬浮点的输入补偿,保证转向架的多点协同悬浮控制。
在驱动行进方面,由轿厢总控制器根据轿厢压力变化数据参数以及悬浮、导向、路况等数据信息,对电机的运行模态进行实时的切换。具体的讲,启动时,依据压力变化判断车辆负载选择电机的启动方式,其启动可包括:直接起动和降压起动;即空载和较小负载时选择直接起动方式,而较大负载电机驱动切换到降压起动方式;实现轿厢的节能、平稳启动;依据轿厢速度位置信息结合车载路况信息数据库,及时获取前方路况信息,及时调整轿厢行进速度,在此电机采用较为前沿的变频调速技术,实现整体运行系统的速度控制,其中,在电机的运行控制模态主要分为:转差控制,矢量控制,直接推力控制;具体而言,在车辆启动和低速状态下,永磁直线同步电机采用转差控制策略,而车辆在平直路段运速运行直线电机则切换至矢量控制策略,当车辆处在上/下坡阶段直 线电机则切换到直接推力控制策略。
在车辆稳定悬浮控制的同时,其导向结构利用的电磁力的相吸原理,实现轿厢整体的左右稳定以及弯道转弯动作。与悬浮结构稍有不同,导向结构的导磁板由硅钢板组成,与电磁绕组线圈形成磁势回路,由导向线圈结构依据导向位置的速度传感器提供的数据参数及时调整绕组线圈电流提供导向力,结合辅助导向轮实现转向架左右层面上的稳定控制。
由车载测速定位系统实时为车载总控制器提供较为精准地轿厢位置和速度信息,再由总控制器依据上述数据参数对相应地控制模块(悬浮、导向、驱动等)提供控制输出参数。另外,总控制器通过无线网络连接地面总控制室,实现车载与地面之间的信息交换(包括轿厢运行状况、地面指令等。)地面总控制室结合整条运行线路上的轿厢的位置,合理的当下轿厢的启动时间,确保轿厢与轿厢之间的运行安全距离。
刹车(制动):在车辆实时获取设定位置信息,在轿厢进入目的地一定距离有电机采用变频调速技术实现减速,同时电机控制模态切换至转差控制,减缓轿厢行进速度,实现轿厢平稳停靠站台。针对车辆紧急刹车情况,可采用长定子绕组线圈反向导电(专业称为:反接制动策略),提供相对轿厢行进的反向力,另外,轿厢内部设备有紧急制动按钮,逃生软梯,烟雾报警器以及人机界面的信息交互功能(如播放音乐、新闻等)等,提高车辆安全性以及服务质量,确保乘客具有良好地舒适度、体验感。
本发明的有益效果是:
本发明,轿厢悬挂在轨道下方,通过磁悬浮力,与轨道之间呈非接触的连接形式,在轨道中行驶,能够有较小的摩擦力,即前进阻力小,能耗低,低碳环保。且不占用地面面积,节约用地。
本发明具有爬坡能力强、转弯半径小、适应性强、安全可靠、环境友好、结构轻盈、造价低、施工工期短、占地面积小等优点,适合于小运量、分散型交通方式,尤其适用于中小城市、旅游景区、商业中心及交通枢纽接驳线。
本发明具备以下优势:
1.有利于推动稀土、铜铝等相关产业发展和转型升级。如(1)稀土产业(2)铜铝有色金属产业(3)现代制造业(4)旅游观光业等产业
2.为中小运量公共交通提供一种具有自主知识产权的新制式
3.集大成者,有利于带动多领域协同发展,提高创新技术集成能力
4.有利于改善城市公共交通环境、改变人的出行方式。
附图说明
图1是本发明的整体结构示意图,
图2是本发明的轨道系统、驱动系统和导向系统的组装关系图,
图3是本发明的倒U形抱轨的下端结构示意图,
图4是本发明的六组式的悬浮转向架的俯视图,
图5是本发明的四组式的悬浮转向架的俯视图,
图6是本发明的六个悬浮点的俯视图,
图7是本发明的四个悬浮点的俯视图,
图8是本发明的倒U形抱轨结构示意图,
图9是本发明的测速定位系统图,其中,G1表示地址线1,G2表示地址线2;
图10是本发明的电机结构示意图,
图11是本发明的控制流程图,
图12是图1的右侧视图,
附图标记列表:1—悬挂梁,2—天梁,3—轮轨,4—限高导轨,5—通电卡,6—侧部轮轨,7—导磁板,8—导向调整轮,9—悬浮转向架,10—吊杆接扣,11—空气弹簧接扣,12—空气弹簧,13—吊杆,14—底座,15—永磁体,16—中心永磁铁,17—绕组线圈,18—混合悬浮结构,19—承力扣,20—电磁导向结构,21—台柱,22—导向绕组线圈,23—斜凹槽,24—交叉感应回线,25—动子,26—定子,27—抱臂,28—稳定体,29—三角形悬挂构架,30—轿厢吊挂接扣,31—球绞结构,32—横梁,33—悬浮点,34—倒U形抱轨,35—轿厢本体,36—立柱,37—固定螺栓,38—三相交流绕线,39—升降架。
具体实施方式
下面结合附图和具体实施方式,进一步阐明本发明。应理解下述具体实施方式仅用于说明本发明而不用于限制本发明的范围。
结合图1至图8,本发明的具体结构为:悬挂式磁悬浮轨道交通系统,整体来讲,其包括轨道系统、悬挂系统、控制系统和轿厢系统,所述控制系统包括驱动系统、导向系统、悬浮控制系统,轨道系统通过立柱悬于空中,轿厢系统通过悬挂系统悬挂在轨道系统的垂直下方,驱动系统和导向系统协同作用,驱动轿厢系统在轨道系统中前进。
轨道系统包括天梁2和倒U形抱轨34,倒U形抱轨34的开口向下,顶部与天梁 2固定,悬挂系统设置在倒U形抱轨34中,包括悬浮转向架9,导向系统设置于悬浮转向架9的左右两侧与倒U形抱轨34对应侧的抱臂27内侧之间,
悬浮转向架9靠近左右两侧位置设置有向上伸出的台柱21,台柱21与倒U形抱轨34的抱臂27之间设置有通电卡5,通电卡5为整个系统提供电源支撑。
倒U形抱轨34的顶部左右两侧的拐角处与对应的台柱21外侧拐角之间均设置有交叉感应回线24,每个台柱21的顶部均设置有限高导轨4,倒U形抱轨34的顶部对应位置设置有轮轨3,轮轨3与限高导轨4上下垂直对应配套;
倒U形抱轨34的下端朝向内侧弯曲,形成一个平台,该平台上设置有底座14、永磁体15和稳定体28,底座14平铺在平台上,永磁体15平铺在底座14上,稳定体28位于倒U形抱轨34的抱臂27与平台之间的转角处,连接U形抱轨的抱臂27、底座14和永磁体15;
悬浮转向架9的底部朝向永磁体15的一侧设置有混合悬浮结构18,混合悬浮结构18包括中心永磁体16,中心永磁体16的左右两侧设置有绕组线圈17;
混合悬浮结构18与对应的底座14上的永磁体15形成一个悬浮点33。
驱动系统设置在轨道系统内,包括靠近倒U形抱轨34顶部的电机,悬浮转向架9的顶部设置有升降架39,升降架39的上方设置有斜凹槽23,斜凹槽23的中心凹槽左右两侧对称相向倾斜,电机的长定子26固定在倒U形抱轨34的内侧顶部,电机的动子25永磁板置于斜凹槽23的中心凹槽内。
轿厢系统包括轿厢本体35和设置在轿厢本体35顶部设置有若干根轿厢吊杆13,轿厢吊杆13的顶端和底端均设置有吊杆13接扣10,通过吊杆13衔接悬浮转向架9与轿厢。
立柱36的顶部朝向一侧弧形过渡形成水平的悬挂梁1,天梁2悬挂在悬挂梁1下方,立柱36的底部与地面接触,且通过固定螺栓37与地面固定。
轿厢吊杆13之间设置有若干个空气弹簧12,空气弹簧12从悬浮转向架9的一侧倾斜链接到轿厢本体35的相对侧,悬浮转向架9的中间也设置空气弹簧12接扣11(机顶盒的前后各一个),连接转向架和轿厢前后(行进方向为前)从轿厢吊杆13的顶端连接到另一个轿厢吊杆13的底端;
轿厢本体35的顶部设置有轿厢机顶盒,轿厢机顶盒通过机顶盒控件固定在轿厢本体35的顶部,轿厢机顶盒设置有若干个空气弹簧12,该空气弹簧12沿轿厢本体35前进方向倾斜,且其上端通过空气弹簧12接扣11与悬浮转向架9连接。
导向系统包括导向机械结构和辅助导向结构,导向机械结构设置有轿厢吊挂接扣30,吊杆13接扣10与轿厢吊挂接扣30连接,导向机械结构包括一组或两组三角形悬挂构架29,当为一组三角形悬挂构架29时,三角形悬挂构架29沿轨道延伸方向布置,三角形悬挂构架29的每个顶点均设置有球绞结构31,在三角形悬挂构架29的两端设置有与轨道延伸方向垂直的横梁32,三角形悬挂构架29通过与横梁32的中心或者两侧连接,每个横梁32的两端均位于悬浮点33上方;每个悬浮点通过承力扣19与悬浮转向架9连接。
当三角形悬挂构架29有两组时,三角形悬挂构架29的一个短边相对布置,且沿轨道延伸方向布置,三角形悬挂构架29的每个顶点均设置有球绞结构31,在三角形悬挂构架29的两端设置有与轨道延伸方向垂直的水平布置的横梁32,三角形悬挂构架29相对布置的短边公用一个横梁32,三角形悬挂构架29通过与横梁32的中心或者两侧连接,每个横梁32的两端均位于悬浮点33上方;
辅助导向结构位于悬浮转向架9的左右两侧与对应的倒U形抱轨34的左右两侧抱臂27内侧之间,包括电磁导向结构20和机械导向结构,电磁导向结构20包括设置在悬浮转向架9两侧的导向绕组线圈22和设置在抱臂27内侧的导磁板7,所述导向绕组线圈22和导磁板7相对设置,
机械导向结构包括设置在悬浮转向架9两侧的导向调整轮8和设置在抱臂27内侧的侧部轮轨6,导向调整轮8和侧部轮轨6相对设置,导向调整轮8和侧部轮轨6有两组,分别位于对应的导向绕组线圈22和导磁板7的上下两侧。
为了较为详细地阐述该本发明的内容,以下按照城市轨道交通建设为依据进行说明。
图1是本发明的结构示意图,结合附图可见,本悬挂式磁悬浮轨道交通系统,主要由立柱、天梁、驱动系统、转向系统、悬浮系统、控制系统、检测系统、吊厢系统及安全保障系统等结构。其中,磁悬浮天梁2结构采用倒凹型环抱式结构,飞跨于立柱顶端,其两侧设置磁轨托臂梁结构,两侧基本呈L型轨道结构,本发明所述的悬浮系统、推进系统、导向系统、检测系统等均在凹型槽里实现。
、直线电机
系统采用长定子直线感应电机。将直线电机长定子固定于倒凹型槽内上壁,长定子朝向动子的一侧设置有三相交流绕线38,相应地直线电机短动子(也称为永磁体板)安置在吊厢悬浮转向架最上侧的斜凹槽内,凹槽结构对复合感应板起到固定和保护的作 用。在电机控制系统中选用特定电机控制,促使推进系统具备抑制电机垂向力对悬浮系统的干扰能力。在天梁2内铺有电枢绕组,结合列车悬浮转向架上动子永磁板,电枢绕组在逆变器的控制下产生行波磁场,结合永磁板上的静磁场形成电磁牵引力,拖动车厢前行。另外,该套直线感应推进系统可搭载多种控制策略,如:多模态优化驱动控制策略。
、轿厢悬吊设计
车厢悬吊设计如下:在倒U型抱轨的两侧底座采用特殊钢材质安装永磁体并由螺旋钉加固。与永磁体相对应的通电绕组通电产生磁力,与永磁体磁极相反,由两者之间斥力使整个系统悬浮起来。另外,本发明设计可选用多种结构实现悬浮,如悬浮结构可选用常规电磁式结构也可采用混合悬浮结构、超导悬浮结构等。
、悬浮与导向机械结构
采用多组独立结构实现悬浮和导向。分别设置于转向架前、中、后三排位置,在悬浮结构一侧安置车辆导向系统。前后悬浮结构两两之间由三角形钢板加固。
其转向架设置多组三角形悬挂构架,每一构架两端均与横梁的心盘连接,构架可相对心盘自由转动,中间横梁为前后构架共用。构架吊挂支点处设置球绞结构,通过三角梁与车体连接、固定。
其辅助导向结构适用于机械式导向和电磁式导向两种结构。一种是机械导向结构;系统设置了防护脚轮与托臂轨道配合。防护轮安装空气弹簧,防止悬浮结构直接与轨道梁之间高强度冲击。另一种是电磁式导向系统;在悬浮转向架左右两侧安装悬浮电磁导向结构,通过电磁绕组通电产生磁力,与侧壁托臂轨道构成闭合磁路,控制绕组电流或者磁通等变量控制导向力,实现悬浮转向架的左右稳定。在沿轨道两侧一定间隔铺设矫正悬浮转向架调整模块(该模块可包含两种形式:纯机械装置和电磁调整结构)。
为了确保悬浮系统的稳定和轿厢的舒适度,系统采用两级悬挂减震设计分别安置于横梁与构架间。
、悬浮策略
本发明所述的一种悬挂式磁悬浮走行系统悬浮控制方法,主要在悬浮转向架每个悬浮点的永磁体旁设置一组电磁绕组,从而实现在悬浮点的电磁调节作用;车载永磁体提供悬浮所需的主要悬浮力,电磁调节装置负责增加阻尼、消除震动,达到悬浮间隙的稳定。
为了确保磁悬浮列车的运行稳定性,本发明所述的悬挂交通系统采用一种悬挂式 磁悬浮列车的多点协同控制方法,由每个悬浮点的实时间隙检测,依据每个独立悬浮点的间隙输出,反馈至控制器,从而协调控制另外几个/组悬浮控制点。
、悬挂/车厢结构
其悬挂立柱采用独立钢立柱梁结构。整体悬浮吊挂系统由立柱梁支撑,立柱梁底座通过水泥、混泥土填埋于地表下,由螺旋钉加固,促使外观设计整洁一致。立柱梁上部分悬挂梁1通过承力索、螺旋扣与悬挂天梁2紧固,在一定间距安置立柱梁达到支撑起悬浮天梁2的作用。
其车厢悬挂设计采用高架式悬挂于空中,通过陆上立柱架起悬梁,使磁浮悬浮结构运行在悬梁之上,车厢与悬梁之间设置吊杆衔接,并且在吊杆之间安置空气弹簧,使吊厢更加平稳。为了确保整套系统的安全性和稳定性,在磁浮走行系统中加载姿态控制策略。
其车厢设置采用人性化设计。其车厢设置4至8人座位,在座位下方设置行李储物柜,以供乘客放置行李等。在车厢边线均可圆润化处理,由下而上呈现下宽上窄结构。厢门选用左右打开的自动门。
、通信系统(监测系统)
其车载通信系统确保车辆运行过程中通信全覆盖以及冗余通信,保证车辆运行过程中通信可靠性。另外车辆运行参数检测系统配置有车载激光位移传感器、加速度传感器陀螺仪、倾角仪等用于检测车辆悬浮高度、横向位移及垂向加速度和横向加速度等;车载压力传感器等检测悬浮重量;地面定位系统等监控车辆运行速度、位置;车载监控传感器结合车辆定位系统实现运行车辆的纵向加速度。以上系统辅助设备可根据实际车辆设计方案与实际需求自行选择搭载使用。
、列车测速定位技术
系统采用较为先进地载波交叉感应回线测速定位技术,实现毫米级的精确定位,配合长定子永磁同步直线电机和运控系统实现平稳运行。另外,在轨道沿线铺设一种无源信标定位结构。其信标定位技术以车载通信系统为主的一种辅助系统,构成车辆通信定位双系统结构。由交叉感应回线提供精确的位置和速度信息,而辅助系统在一定距离内对感应回线感应相对位置进行校准,避免较远距离下感应回线的累积误差,确保乘客的安全。
、其他硬件设备
其整体供电系统由复合感应板,以及接触线,承力索、吊弦、线夹等结构组成。 在车辆站台设置有屏蔽门和其他设备。
其他硬件附属设施主要设置有:在车厢上配备应急照明、紧急停车开关、强制人工拉索式制动及便携式灭火器、消防锤、逃生软梯、灯具等设备。
在上述本发明内容中该本发明可选用多种悬浮策略和导向策略,但是附图说明章节中以均以常规电磁结构进行附图说明。
也可以理解为本发明系统包括推进系统、转向系统、悬浮系统、监测系统及硬件机械结构等其他硬件设备部件。其控制外部设备采用倒凹型抱轨式结构,两侧设置磁浮托臂轨道梁结构,其侧壁与托臂梁大致呈L型轨道结构,使得本发明所述的悬浮系统、推进系统、导向系统、检测系统等结构均在凹型槽里实现。
如附图2所示,磁浮交通系统由长定子直线感应电机提供系统牵引力。将直线电机长定子固定于倒凹型槽内上壁,在吊厢悬浮转向架最上侧的相对应位置设置凹槽,将直线电机短定子(永磁体)固定在凹槽内。该凹槽结构对永磁体起到固定和保护的作用。在电机控制系统中选用恒转差频率电机控制,促使推进系统具备抑制电机垂向力对悬浮系统的干扰能力。另外,该系统电机动子选用钢铝复合材料,定子选用不锈钢材。在天梁2内铺有电枢绕组,结合列车悬浮转向架上铜、铝复合感应板,绕组在逆变器的控制下产生行波磁场,在感应板上感应出电磁牵引力。
在电机推进系统控制策略上,本发明提供了一种直线电机多模态的控制方法。基本策略如下:悬挂式磁悬浮列车在轨道上运行时,根据列车所处状态提供不同的直线电机驱动策略,当列车处于空载启动状态时,提供转差频率控制;当列车处于平直负载或下坡运行状态,通过中断程序切换到矢量控制;当检测到列车处于上坡或转弯状态,切换到直接推力控制。通过检测单元检测列车所处状态,切换不同的控制方法,可以实现悬挂式磁悬浮走行系统的多模态优化驱动,大大降低能耗。
磁浮交通系统的车厢悬吊设计如下:在倒凹型抱轨的两侧底座采用不锈钢材质安装永磁体并由螺旋钉加固。与永磁体相对应的通电绕组通电产生磁力,与永磁体磁极相反,由两者之间斥力使整个系统悬浮起来。在城市轨道交通系统中可选用混合悬浮结构。其它结构如常规电磁式结构、超导悬浮结构等可结合实际应用环境、场合等因素可制定具体设计方案。
为了提高该磁浮交通系统的舒适性和稳定性,其悬浮系统采用两级悬挂减震设计:一系悬挂为大刚度橡胶板减震,设置在横梁与观整洁、美心盘及旁承间;二系悬挂为橡胶垫减震,设置在球绞与构架间。
本发明所述的一种悬挂式磁悬浮轨道交通系统采用悬浮转向架独立悬浮控制策略结合列车多点协同控制方法,实现该系统的实时稳定悬浮控制。
具体悬浮控制的实施方法如下:
在悬浮转向架永磁体旁安装如附图2所示的电磁调节装置,主要包含:车载永磁体和电磁调节设备。其中,车载永磁体提供悬浮所需的主要悬浮力,电磁调节装置负责增加阻尼、消除震动,达到整体悬浮控制稳定。在机械结构上,在悬挂式磁悬浮列车每个悬浮点上安装一组电磁调节装置,而每组电磁调节装置包括传感采集、处理器、硬件电流环和功率驱动等模块。通过传感采集模块对负载重量、气隙高度、位置与速度、电参数等进行实时监测,并上传至处理器按照控制算法计算控制输出。硬件电流环基于输入输出关系和反馈信号生成驱动电路需要的PWM控制信号,驱动电路随之调整电磁铁的电流、磁场强度及电磁力,从而达到悬浮间隙调节的目标。本悬浮控制方法中电磁调节装置不需要静载荷维持电流,仅承载动载荷,因此具有功耗低、安全性高的显著优点。
在转向架的多点协同控制方法上,依据悬浮列车的转向架物理结构,在一个悬浮转向架上设置4至6组悬浮控制点,并在每个悬浮点设置间隙传感器,采用独立控制策略。各独立悬浮结构之间通过输入补偿方式进行相互之间协同控制(独立悬浮点的输出反馈至控制器由预设子系统互相之间的影响因子确定各子系统的补偿值,如此各子系统输出皆会影响到相邻几组子系统,达到协同控制效果)
针对应用于城市结构较复杂的环境,该系统的悬浮系统和导向结构采用六组独立结构。其六组悬浮系统分别设置于转向架前、中、后三排位置,在悬浮结构相应一侧安置轿厢导向系统,共六组电磁导向结构。前后悬浮结构两两之间各有一个三角形钢板加固,在悬浮结构和导向结构之间由螺栓禁锢。其模块化结构相连的转向形式使得转向系统具有结构坚固、灵活性强,悬浮更加安全、良好的可维修性。
在磁浮交通系统转向架上设置2件三角形悬挂构架,每一构架两端均与横梁的心盘连接,构架可相对心盘自由转动,中间横梁为两构架共用。构架吊挂支点处设计为球绞结构,通过三角梁与车体连接、固定。
如附图2所示,本发明的车轨辅助导向结构适用于机械式导向和电磁式导向两种结构。在城市交通系统中可选用电磁式导向系统,在悬浮转向架左右两侧安装悬浮电磁导向结构,通过电磁绕组通电产生磁力,与L轨道壁构成闭环磁路,控制绕组电流或者磁通等控制导向力,实现悬浮转向架的左右稳定。
为了避免导向系统控制出现的误差累计,该系统采用自主研发的对中调整方式及 装置,即:一种具有矫正悬浮转向架侧向偏离的方法及装置,在转向架两侧安装有电磁调整装置,通过安装在转向架上的位置传感器检测永磁磁组是否偏离中心位置,若永磁磁组发生偏离,则通过信号触发转向架上远离偏移侧电磁调整装置,使其通电,电磁调整装置通电后产生电磁力对钢结构吸引作用,电磁铁的吸引力大小由偏移量的大小决定,在吸引力的作用下转向架及安装在转向架上的永磁组偏移量减小,当偏移量减小为零(即转向架上的磁轨调整为和固定在轨道上的磁轨对中的位置)时,断开电磁铁通电,此时永磁磁组的侧向偏移调整完成。
在导向控制系统中采用双层电磁调整设计结构,确保本发明所述悬浮系统在坡道、直线、转弯等运行环境下的稳定导向控制。
如附图2所示,悬挂立柱采用U型独立钢立柱梁结构。整体悬浮吊挂系统由立柱梁支撑,立柱梁底座通过水泥、混泥土填埋于地表下,由螺旋钉加固,促使外观设计整洁一致。立柱梁上部分悬挂梁1通过承力索、螺旋扣与悬挂天梁2紧固,并在一定间距之间安置立柱梁支撑起悬浮天梁2。另外,在不影响立柱梁承重的情况下,立柱辅助设计可由赞助商等自行设计安置,如展板、提示标语等。
车厢悬挂设计采用高架式悬挂于空中,通过陆上立柱架起悬梁,使磁浮悬浮结构运行在悬梁之上,车厢与悬梁之间设置平行吊杆衔接,稳定运行车厢平行、减小车厢晃动,并且在平行吊杆之间可另行安置空气弹簧,使吊厢更加平稳。
其车厢设置采用人性化设计。其车厢设置4至8人座位,在座位下方设置行李储物柜,以供乘客放置行李等。在车厢边线均可圆润化处理,由下而上呈现下宽上窄结构,降低车厢重心。厢门选用左右打开的自动门、车站站台相对应位置设置屏蔽门,确保乘客的安全。另外,车厢涂装可由厂商或商家自行设计,添加LOGO、色彩等。
为了实时确保轿厢及走行系统的稳定性、安全性及客户的舒适感,该系统引入基于鲁棒控制的悬浮走行系统的姿态控制方法,针对轿厢姿态失衡,通过外动力(如精度弹簧)对轿厢与磁轨间四个悬挂点的间隙大小进行一次实时调节,再通过传感器对轿厢与磁轨间四个悬挂点的间隙大小的数据采集来判断轿厢姿态角,生成控制补偿信号,进而调整电磁悬浮力进行二次协同控制达到轿厢姿态控制。本套轿厢姿态控制策略可以有效地抑制磁悬浮列车运行过程中的非线性、耦合和外部时变干扰等多种不确定性的影响,提高悬挂式磁悬浮列车姿态控制的精度及鲁棒性。
为了确保车辆运行的安全、精确性,悬浮车辆配置多组监控设备,即:一种基于物联网的悬挂式磁悬浮列车服役状态采集与融合技术,主要包括参数检测模块、报警模 块、数据融合模块和数据传输模块。其中参数检测模块包括1)悬浮系统的间隙、悬浮控制器温度和磁铁斥力检测。2)测速定位系统的运行速度和位置检测。3)牵引制动系统的电流检测、爬坡倾角检测。4)辅助电源系统的电流检测。5)载荷检测。6)环境参数检测,如温度、风速、噪声、光照等。其中报警模块是对各系统参数检测超过阈值范围进行不同级别的报警。数据融合模块采用多传感器融合技术,对各类传感器数据进行融合提取价值数据,经过无线网络将数据传输到云平台上,可方便控制中心和用户管理与使用。该套监控系统集成了悬挂式磁悬浮列车状态参数检测方法,减少数据传输量,采用现代通信技术,提高对磁悬浮列车状态参数检测的快速性和准确性,减少故障的发生,也为采取不同级别的预警和进一步的优化控制与价值挖掘提供了数据基础。
由于适应于城市轨道建设系统,该套悬浮系统的车载网络通信系统选用车载移动环境下AP实时切换技术,保证车辆运行过程中网络全覆盖以及车载网络冗余通信技术,保证车辆运行过程中网络通信可靠性。在传感器设备中主要包含有:车辆运行参数检测系统配置有车载激光位移传感器、加速度传感器陀螺仪、倾角仪等用于检测车辆悬浮高度、横向位移及垂向加速度和横向加速度等;车载压力传感器等检测悬浮重量;地面定位系统等监控车辆运行速度、位置;车载监控传感器结合车辆定位系统实现运行车辆的纵向加速度。以上系统辅助设备可根据实际车辆设计方案与实际需求自行选择搭载使用。
系统采用较为先进地载波交叉感应回线测速定位技术,沿轨道按预定编码规律铺设交叉感应线,实时获取轿厢位置和速度信息,实现毫米级的精确定位,配合长定子永磁同步直线电机和运控系统实现平稳运行。另外,该系统引入一种电磁感应式无源信标定位技术,在轨道沿线一定间距(约1米)铺设磁条信信息标识码,构成以车载通信系统为主,以磁极标识码技术为辅的车辆测速、定位为一体的双系统结构,如图9所示。具体的讲:由交叉感应回线提供精确的位置和速度信息,而辅助系统在一定距离内对感应回线感应相对位置进行校准,避免较远距离下感应回线的累积误差,确保乘客的安全。其中,车载磁条扫码技术具有结构简单、成本低、精度高易于安装维护等优势。
针对该悬浮系统的大数据特性,所述本发明可加载基于物联网的悬挂式磁悬浮列车控制技术。将物联网技术运用到悬挂式磁悬浮列车的控制架构中,以形成对现有控制方式的有效补充。首先基于智能前端系统进行各种现场数据(例如:悬浮高度、磁场中心偏差、车体位置、运行速度、负载重量、侧摆、点头、电参数、环境参数等)的采集与预处理。系统通过无线模块将现场数据上传至云端。通过功能强大的云数据库支撑来 自控制单元、PC端以及移动终端的数据访问,以配合运行、组织、管理和服务。同时,利用云端的大数据功能,进行系统优化与价值挖掘。为了丰富控制手段,在移动终端可以通过APP等方式配合实施运行组织和个性化服务。控制单元通过对运行数据的融合与在线分析进行运行状态监控,若出现异常情况,及时采取相应的应急处理,确保系统的安全。
在现代城市智能化建设中,所述本发明可适应于基于人工智能的悬挂式磁悬浮列车无人驾驶控制方法。主要采用基于人工智能技术进行悬挂式磁悬浮列车的运行、组织、管理和服务,实现智能化无人驾驶和人车友好交互。用户在上车前通过摄像头进行人脸图像抓取和身份识别,认证通过后系统会调取用户的相关历史数据和客户分类情况,进行余额管理的同时打开车门,并基于客户画像技术智能匹配空调温度、灯光亮度等环境设置和多媒体设置。用户上车后可以通过语音或者人机界面输入目的地,控制单元根据运行距离、线路条件、天气状况等因素,自动组织行车任务。行车期间,用户可以通过语音和人机界面进行环境设置和多媒体切换,例如播放音乐、听取新闻、了解天气等等,也可以通过后台预约酒店、给客户留言等,使得乘客能在乘坐过程中做更多有意义的事情。同时,系统通过对用户每一次行为的准确记录,修正客户画像结果,以便提供更高质量的服务。
其他硬件附属设施主要设置有:灯具、电池、应急设备等设施。其中,其供电系统选用合作单位自主开发的铜铝复合感应板,以及接触线,承力索、吊弦、线夹等系列产品。在车厢上采用蓄电池供电方式,以供紧急照明等;车厢应急设备配备有紧急停车开关、强制人工拉索式制动及便携式灭火器、消防锤、逃生软梯等。在车辆站台设置有屏蔽门和其他设备。站台设计与配置根据实际情况另行设计、建造。
为了具体阐述该本发明的具体实施方式,以上零部件及设备存在较为详细地描述,但并不代表本产品的具体化。在上述包括:直线电机感应板、导电线,导向结构的选用,系统控制器及车载设备等均可根据具体营运环境、场合等选取较为合理地具体方案。
本发明方案所公开的技术手段不仅限于上述技术手段所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (7)

  1. 悬挂式磁悬浮轨道交通系统,其特征在于,其包括轨道系统、悬挂系统、控制系统和轿厢系统,所述控制系统包括驱动系统、导向系统、悬浮控制系统等,所述轨道系统通过立柱悬于空中,所述轿厢系统通过悬挂系统悬挂在轨道系统的垂直下方,驱动系统和导向系统协同作用,驱动轿厢系统在轨道系统中前进。
  2. 根据权利要求1所述的悬挂式磁悬浮轨道交通系统,其特征在于所述轨道系统包括
    天梁和倒U形抱轨,所述倒U形抱轨的开口向下,顶部与天梁固定,所述悬挂系统设置在倒U形抱轨中,包括悬浮转向架,所述导向系统设置于所述悬浮转向架的左右两侧与倒U形抱轨对应侧的抱臂内侧之间,
    所述悬浮转向架靠近左右两侧位置设置有向上伸出的台柱,台柱与倒U形抱轨的抱臂之间设置有通电卡,倒U形抱轨的顶部左右两侧的拐角处与对应的台柱外侧拐角之间均设置有交叉感应回线,每个台柱的顶部均设置有限高导轮,倒U形抱轨的顶部对应位置设置有轮轨,所述轮轨与限高导轮上下垂直对应配套;
    所述倒U形抱轨的下端朝向内侧弯曲,形成一个平台,该平台上设置有底座、永磁体和稳定体,所述底座平铺在平台上,所述永磁体平铺在底座上,所述稳定体位于倒U形抱轨的抱臂与平台之间的转角处,连接U形抱轨的抱臂、底座和永磁体;
    所述悬浮转向架的底部朝向永磁体的一侧设置有混合悬浮结构,所述混合悬浮结构包括中心永磁体,所述中心永磁体的左右两侧设置有绕组线圈;
    所述混合悬浮结构与对应的底座上的永磁体形成一个悬浮点。
  3. 根据权利要求2所述的悬挂式磁悬浮轨道交通系统,其特征在于所述驱动系统设置在轨道系统内,包括靠近倒U形抱轨顶部的电机,所述悬浮转向架的顶部设置有升降架,所述升降架的上方设置有斜凹槽,所述斜凹槽的中心凹槽左右两侧对称相向倾斜,所述电机的长定子固定在倒U形抱轨的内侧顶部,电机的动子永磁板置于斜凹槽的中心凹槽内。
  4. 根据权利要求2所述的悬挂式磁悬浮轨道交通系统,其特征在于所述轿厢系统包括轿厢本体和设置在轿厢本体顶部设置有若干根轿厢吊杆,所述轿厢吊杆的顶端和底端均设置有吊杆接扣,通过吊杆衔接悬浮转向架与轿厢。
  5. 根据权利要求2所述的悬挂式磁悬浮轨道交通系统,其特征在于所述立柱的顶部朝向一侧弧形过渡形成水平的悬挂梁,所述天梁悬挂在悬挂梁下方,所述立柱的底部 与地面接触,且通过固定螺栓与地面固定。
  6. 根据权利要求4所述的悬挂式磁悬浮轨道交通系统,其特征在于所述轿厢吊杆之间
    设置有若干个空气弹簧,所述空气弹簧从悬浮转向架的一侧倾斜链接到轿厢本体的相对侧;
    所述轿厢本体的顶部设置有轿厢机顶盒,所述轿厢机顶盒通过机顶盒控件固定在轿厢本体的顶部,轿厢机顶盒设置有若干个空气弹簧,该空气弹簧沿轿厢本体前进方向倾斜,且其上端通过空气弹簧接扣与悬浮转向架连接。
  7. 根据权利要求4所述的悬挂式磁悬浮轨道交通系统,其特征在于所述导向系统包括导向机械结构和辅助导向结构,所述导向机械结构设置有轿厢吊挂接扣,吊杆接扣与轿厢吊挂接扣连接,所述导向机械结构包括一组或两组三角形悬挂构架,当为一组三角形悬挂构架时,三角形悬挂构架沿轨道延伸方向布置,三角形悬挂构架的每个顶点均设置有球绞结构,在三角形悬挂构架的两端设置有与轨道延伸方向垂直的横梁,所述三角形悬挂构架通过与横梁的中心或者两侧连接,每个横梁的两端均位于悬浮点上方;
    当三角形悬挂构架有两组时,三角形悬挂构架的一个短边相对布置,且沿轨道延伸方向布置,三角形悬挂构架的每个顶点均设置有球绞结构,在三角形悬挂构架的两端设置有与轨道延伸方向垂直的水平布置的横梁,三角形悬挂构架相对布置的短边公用一个横梁,所述三角形悬挂构架通过与横梁的中心或者两侧连接,每个横梁的两端均位于悬浮点上方;
    所述辅助导向结构位于悬浮转向架的左右两侧与对应的倒U形抱轨的左右两侧抱臂内侧之间,包括电磁导向结构和机械导向结构,电磁导向结构包括设置在悬浮转向架两侧的导向绕组线圈和设置在抱臂内侧的导磁板,所述导向绕组线圈和导磁板相对设置,
    所述机械导向结构包括设置在悬浮转向架两侧的导向调整轮和设置在抱臂内侧的侧部轮轨,所述导向调整轮和侧部轮轨相对设置,所述导向调整轮和侧部轮轨有两组,分别位于对应的导向绕组线圈和导磁板的上下两侧。
PCT/CN2019/092347 2018-08-06 2019-06-21 悬挂式磁悬浮轨道交通系统 WO2020029693A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810884768.8 2018-08-06
CN201810884768.8A CN109131370B (zh) 2018-08-06 2018-08-06 悬挂式磁悬浮轨道交通系统

Publications (1)

Publication Number Publication Date
WO2020029693A1 true WO2020029693A1 (zh) 2020-02-13

Family

ID=64791737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092347 WO2020029693A1 (zh) 2018-08-06 2019-06-21 悬挂式磁悬浮轨道交通系统

Country Status (2)

Country Link
CN (1) CN109131370B (zh)
WO (1) WO2020029693A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114312864A (zh) * 2022-01-04 2022-04-12 中车株洲电力机车有限公司 一种吊挂式悬浮架及磁浮车辆系统

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109131370B (zh) * 2018-08-06 2019-06-21 江西理工大学 悬挂式磁悬浮轨道交通系统
CN110329082A (zh) * 2019-06-17 2019-10-15 山西中海威轨道交通工程有限公司 一种悬挂式磁浮列车的分离式三轨悬浮与驱动系统
CN110306386B (zh) * 2019-06-17 2024-01-30 山西中海威轨道交通工程有限公司 一种基于倒e形悬浮轨的独轨制悬挂式电磁悬浮列车系统
CN110258205A (zh) * 2019-06-27 2019-09-20 江西理工大学 一种悬挂式永磁磁浮道岔系统
CN110323970A (zh) * 2019-08-08 2019-10-11 广东电网有限责任公司 一种电力线路悬浮舱
CN112519804B (zh) * 2019-09-18 2022-03-29 江西理工大学 一种悬挂式混合磁悬浮轨道交通系统
CN110901410B (zh) * 2019-10-29 2021-11-26 北京机械设备研究所 一种高温超导高速磁悬浮列车的磁悬浮牵引装置
CN110758421B (zh) * 2019-11-14 2020-12-18 江西理工大学 适用于空中轨道交通系统的车辆检修车
CN111005272B (zh) * 2019-12-02 2021-06-22 江西理工大学 一种基于悬挂式磁悬浮轨道交通系统的轨道维护设备
CN111845828B (zh) * 2020-06-28 2021-07-23 江西理工大学 一种悬挂式永磁悬浮列车转向架
CN112078375B (zh) * 2020-09-18 2021-12-31 同济大学 抑制磁浮列车悬浮系统横向冲击干扰的控制方法和系统
CN112960008B (zh) * 2021-02-07 2022-08-02 江西理工大学 永磁磁浮轨道交通转向架及轨道机械结构
CN113060009A (zh) * 2021-04-29 2021-07-02 福建师范大学 一种单轨高温超导磁悬浮列车
CN113525099B (zh) * 2021-07-12 2022-08-05 同济大学 一种悬浮电磁铁运动控制方法、系统及存储介质
CN114194254A (zh) * 2021-11-18 2022-03-18 中车长江运输设备集团有限公司 一种悬臂式单轨车辆的定位方法及位置处理器
CN114132185A (zh) * 2021-11-25 2022-03-04 江西理工大学 一种稀土永磁悬浮轨道稳定性提升系统及方法
CN113997796B (zh) * 2021-11-30 2023-08-18 中车长春轨道客车股份有限公司 一种列车控制方法和相关装置
CN114261287B (zh) * 2022-01-13 2024-01-26 江西理工大学 一种永磁-高温超导磁悬浮轨道交通系统
CN115215266B (zh) * 2022-07-22 2023-09-08 东莞建晖纸业有限公司 一种巷道型单轨式磁悬浮堆垛机
CN117163096B (zh) * 2023-09-08 2024-02-20 山东锣响汽车制造有限公司 一种悬挂式列车的多点协同导向控制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094173A (en) * 1990-03-02 1992-03-10 Hitachi, Ltd. Superconducting magnetic levitated train, train system method of controlling the same, and superconducting coil for magnetic levitated train
CN203567718U (zh) * 2012-11-20 2014-04-30 葛大力 一种悬挂式单轨快速公交系统的道岔转向机构
CN207631021U (zh) * 2017-12-04 2018-07-20 中车株洲电力机车有限公司 一种小型化吊挂式磁浮车辆与轨道结构
CN109131370A (zh) * 2018-08-06 2019-01-04 江西理工大学 悬挂式磁悬浮轨道交通系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR93421E (fr) * 1966-01-19 1969-03-28 Barthalon Maurice Transporteur a véhicule suspendu.
US4307668A (en) * 1980-05-19 1981-12-29 Vinson Roy D Transportation system unitizing permanent magnets for levitation of a vehicle
CN1111123C (zh) * 2000-04-04 2003-06-11 李岭群 管道真空永磁补偿式悬浮列车-高架路-站系统
EP1279579B1 (en) * 2001-07-26 2008-05-28 Konkan Railway Corporation Ltd A suspended vehicles transportation system
CN102059956B (zh) * 2010-12-21 2012-11-07 西南交通大学 一种磁浮列车悬浮单元结构
CN102320311A (zh) * 2011-07-04 2012-01-18 中国人民解放军国防科学技术大学 磁浮列车车辆及其转向操纵机构
CN106347168A (zh) * 2016-11-23 2017-01-25 西南交通大学 一种超导磁浮车转向架
CN107985328A (zh) * 2017-11-29 2018-05-04 中建空列(北京)科技有限公司 悬挂式空中轨道列车
CN108237948B (zh) * 2018-01-10 2020-09-29 西南交通大学 一种悬挂磁浮车轨道结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094173A (en) * 1990-03-02 1992-03-10 Hitachi, Ltd. Superconducting magnetic levitated train, train system method of controlling the same, and superconducting coil for magnetic levitated train
CN203567718U (zh) * 2012-11-20 2014-04-30 葛大力 一种悬挂式单轨快速公交系统的道岔转向机构
CN207631021U (zh) * 2017-12-04 2018-07-20 中车株洲电力机车有限公司 一种小型化吊挂式磁浮车辆与轨道结构
CN109131370A (zh) * 2018-08-06 2019-01-04 江西理工大学 悬挂式磁悬浮轨道交通系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114312864A (zh) * 2022-01-04 2022-04-12 中车株洲电力机车有限公司 一种吊挂式悬浮架及磁浮车辆系统

Also Published As

Publication number Publication date
CN109131370B (zh) 2019-06-21
CN109131370A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2020029693A1 (zh) 悬挂式磁悬浮轨道交通系统
WO2020029714A1 (zh) 悬挂式磁悬浮列车的悬浮控制方法
CN109056431B (zh) 悬挂式永磁磁浮轨道交通机械结构
CN108973768B (zh) 悬挂式磁悬浮列车系统的导向控制方法
EP2977285B1 (en) Personalised elevated urban transport
CN109532868B (zh) 一种微轨交通系统
US20220274632A1 (en) System and Method of Transporting Objects
CN107554534A (zh) 一种新能源空地两用共享空中轨道交通系统及运行方法
US10358147B2 (en) Personalized elevated urban transport
CN107953904A (zh) 一种车辆停靠控制方法及站级控制系统
CN110576752A (zh) 个人自动控制轻型可变轨磁悬浮轨道交通系统
CN109795332A (zh) 悬挂式磁浮交通轨道系统、悬浮架系统、磁浮车辆及磁浮系统
CN201125128Y (zh) 用于轮胎式集装箱龙门起重机的双丁型结构滑触线系统
CN202966295U (zh) 空轨吊挂电车
CN109131369A (zh) 一种吊挂式高温超导磁浮交通系统
CN114261287A (zh) 一种永磁-高温超导磁悬浮轨道交通系统
CN109795333A (zh) 一种悬挂式磁浮交通轨道系统、悬浮架系统、磁浮车辆及磁浮系统
CN112498400B (zh) 一种无人驾驶多式联运钢轨车及多式联运复合轨道系统
CN208439251U (zh) 一种吊挂式高温超导磁浮交通系统
CN111572362A (zh) 一种轮轨式磁悬浮车辆系统及其应用
CN108974055B (zh) 悬挂式磁悬浮列车系统多模态优化驱动控制方法
CN217281886U (zh) 一种适用于狭小空间的作业车
CN213705238U (zh) 大型货场、集装箱柔性移动接触网
CN212242980U (zh) 一种轮轨式磁悬浮车辆系统
CN216155257U (zh) 一种曳引施工升降机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847398

Country of ref document: EP

Kind code of ref document: A1