WO2020029584A1 - 机器人用液压驱动关节 - Google Patents
机器人用液压驱动关节 Download PDFInfo
- Publication number
- WO2020029584A1 WO2020029584A1 PCT/CN2019/078451 CN2019078451W WO2020029584A1 WO 2020029584 A1 WO2020029584 A1 WO 2020029584A1 CN 2019078451 W CN2019078451 W CN 2019078451W WO 2020029584 A1 WO2020029584 A1 WO 2020029584A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cover
- valve
- oil
- central
- ring
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/04—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
- F15B13/0401—Valve members; Fluid interconnections therefor
- F15B13/0406—Valve members; Fluid interconnections therefor for rotary valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J17/00—Joints
- B25J17/02—Wrist joints
- B25J17/0258—Two-dimensional joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/14—Programme-controlled manipulators characterised by positioning means for manipulator elements fluid
- B25J9/146—Rotary actuators
- B25J9/148—Rotary actuators of the oscillating vane-type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/08—Characterised by the construction of the motor unit
- F15B15/12—Characterised by the construction of the motor unit of the oscillating-vane or curved-cylinder type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/20—Other details, e.g. assembly with regulating devices
- F15B15/202—Externally-operated valves mounted in or on the actuator
Definitions
- the present invention relates to the technical field of robotic joints, and in particular to hydraulically driven joints for robots.
- Robot joints are the basic components of a robot, and their performance directly affects the overall performance of the robot.
- electromechanical technologies such as servo drive, control and sensing technology
- robot joints have shown new characteristics and development trends, such as: high torque, high precision, sensitive response, miniaturization, mechatronics, standardization and modularity And other trends to adapt to the development of robotics.
- the existing robot joints basically use servo motors and harmonic reducers or RV reducers.
- RV reducers servo motors and harmonic reducers
- this structure has been widely used in the field of robots, it can not be denied that its torque density ratio is relatively low and the response is not sensitive enough.
- the hydraulic drive has the characteristics of high power density and frequency bandwidth of the valve-controlled servo system, countries around the world are currently vigorously seeking to use the hydraulic valve-controlled servo system for more demanding robot applications.
- the present invention provides a hydraulic drive joint for a robot, which is based on a robot joint that integrates a hydraulic plug-in rotary direct drive valve and a blade swing cylinder, and integrates a hydraulic actuator, an electro-hydraulic servo valve, a position sensor, and a pressure sensor.
- the detection elements are modularly integrated and applied to robot joints, which can not only meet the current development needs of robots, but also expand the applications of robots.
- the hydraulic drive joint for a robot is characterized in that it comprises a screw-inserted rotary direct-drive electro-hydraulic servo valve, a robot swing joint-specific blade swing hydraulic cylinder, and a screw-inserted rotary direct-drive electro-hydraulic servo valve.
- the hydraulic cartridge rotary direct drive valve is inserted into the valve body installation cavity, and the driving motor of the hydraulic cartridge rotary direct drive valve is exposed at The center shaft;
- the area composed of the cylinder body, the side convex ring, the upper cover and the lower cover is divided into a first working cavity and a second working cavity by a side convex blade and a stator, and an inner wall of the valve body installation cavity is provided with a first An oil port and a second oil port;
- the first oil port is connected to the first working chamber through a first built-in pipeline, and the second oil port communicates with the second working chamber through a second built-in pipeline;
- a P channel and a T channel are also provided inside the central rotating shaft, and P and T ports are arranged on the upper end surface of the central rotating shaft;
- the P, T, A, and B ports of the hydraulic plug-in rotary direct-drive valve are arranged according to the corresponding ports of the blade swing cylinder. Under normal operating conditions, the hydraulic oil at port P of the blade swing cylinder passes through the valve.
- the internal pipeline of the hydraulic cartridge rotary direct drive valve communicates with one of the first or second oil ports, and the other of the first or second oil ports passes the hydraulic pressure.
- the internal pipe of the cartridge rotary direct drive valve is connected to the T port of the blade swing cylinder.
- Expansion type pipe joints are respectively inserted into the P and T ports on the upper end surface of the central rotating shaft;
- the hydraulic cartridge rotary direct drive valve includes a driving motor, an upper end cover, a valve core, a valve sleeve, and a lower end cover.
- the driving motor is connected to the valve core, and the valve sleeve is sleeved on the outer periphery of the valve core.
- the upper end cap and the lower end cap are sealed at two axial ends of the valve sleeve, and the valve core has P channels, T channels, A channels, and B channels which are not connected to each other.
- An oil port and a second oil port, and corresponding sides of the first convex cavity and the second working cavity are respectively provided with a third oil port, a fourth oil port, and the third oil port Port communicates with the first working chamber, the fourth oil port communicates with the second working chamber, each third oil port is connected to the first oil port through a first built-in pipeline, and the fourth oil port The port is connected to the second oil port through a second built-in pipeline.
- the lower surface of the upper end cover and the upper surface of the lower end cover are provided with a recessed working oil groove.
- the working edge of the recessed working oil groove is connected to the valve core.
- the working edges projected by the A and B channels work together, and the spools correspond to the P, A, and B channels.
- first oil holes are provided on the outer circumferential surface, and corresponding second oil holes are provided on the outer periphery of the valve sleeve.
- the position and size of the first oil hole and the second oil hole ensure the servo
- the valve can work normally in working condition;
- the valve sleeve is sleeved on the outer circumferential surface of the valve core, and the outer circumferential surface of the valve core and the inner circumferential surface of the valve sleeve are assembled in a radial clearance.
- the valve core includes a central shaft. The upper and lower ends of the central shaft respectively protrude from the corresponding end faces of the valve sleeve, and the upper end cover is installed on the upper end face of the valve sleeve, and at the same time cooperates with the radial clearance of the convex portion of the central shaft.
- the convex part of the upper part is connected to the output end of the DC brushless servo motor after passing through the central through hole.
- An annular groove is provided in a central through hole of the upper end cover, a Gley ring is embedded in the annular groove, and a first step shaft is provided on an upper convex end of the central shaft.
- Both end surfaces of the valve sleeve are respectively fixed to the upper end cover and the lower end cover by axial screws;
- the contours of the working edges projected by the A and B channels of the spool are fan-shaped ring structures, and the working edges of the upper and lower end covers corresponding to the recessed working oil grooves are fan-shaped ring structures.
- the working side of the valve core and the corresponding working side of the upper end cover and the lower end cover are respectively matched to form a zero opening, and the P channel, the T channel, the A channel, and the B channel are isolated from each other, and because of the fan-shaped ring structure, the driving DC has no
- the rotation angle of the brush servo motor and the flow rate form a linear proportional relationship for easy control;
- the driving motor is integrated with a high-precision absolute photoelectric encoder.
- the output shaft of the driving motor is connected to the first step shaft of the valve core through an elastic coupling.
- the driving motor is connected to the upper end cover by screws. End face
- the bottom of the lower end cover is also provided with a mounting positioning notch, which facilitates the radial positioning and installation of the entire valve body and the valve body mounting cavity;
- the upper cover is sleeved on the central rotation shaft and is located on the upper part of the side convex ring
- the lower cover is sleeved on the central rotation shaft and is located on the lower part of the side convex ring
- the sides of the side convex blades and stators are Corresponding equivalent overall outer ring surfaces are sleeved with cylinder bodies, and angular contact ball bearings are respectively installed in the inner grooves of the axially inner ends of the upper and lower covers.
- a second Gray ring is installed in the groove; the inner ring of the angular contact bearing at the corresponding position is sleeved on the corresponding position of the central rotating shaft, and the inner ring of the second Gray ring at the corresponding position is sleeved on the central rotating shaft.
- the upper cover and the lower cover are respectively fixed to the corresponding positions of the cylinder body by screws;
- the fixed piece is fixedly connected to the lower cover through a pin, the lower end surface of the fixed piece is closely fitted to the corresponding end surface of the lower cover, and the outer peripheral surface of the fixed piece is closely fitted to the corresponding inner surface of the cylinder body. ,
- the inner surface of the fixed piece is arranged in a clearance fit with the corresponding outer surface of the side convex ring;
- the thickness of the side convex blade is greater than the thickness of the side convex ring.
- the position of the side convex ring and the side convex blade forms a stepped surface.
- the thickness of the stator is the same as the thickness of the side convex blade.
- the upper cover and the lower cover are respectively provided with corresponding inner end protruding rings, and the outer side wall of the inner end protruding ring is in close contact with the fixed piece of the corresponding position and cooperates with the corresponding position of the side convex blade to ensure convenient installation and positioning. reliable;
- the outer surface of the side convex blade is in clearance fit with the corresponding inner surface of the cylinder block, and the upper and lower end surfaces of the side convex blade are in clearance fit with the corresponding surface of the upper and lower cover, respectively;
- the pressure sensor and the angle sensor have corresponding detection signal outputs. And feed it back to the hydraulic plug-in rotary direct drive valve to make a difference comparison with its input signal until it is zero, so that the blade swing hydraulic cylinder special for the robot kinematic joint is rotated to a specified angle and the first working chamber and the second working chamber are maintained at the specified Pressure to achieve precise position control and torque control; conversely, when a negative current signal is input to the hydraulic cartridge rotary direct drive valve, the first working chamber through which the oil flows is the oil outlet and the second working chamber.
- the oil inlet is the same as the control method; it is based on the joint for the robot based on the integration of the hydraulic plug-in rotary direct-drive valve and the blade swing cylinder.
- the detection elements of the hydraulic actuator, electro-hydraulic servo valve, position sensor and pressure sensor are used.
- the modular integrated design is applied to robot joints, which can not only meet the current development needs of robots, but also expand the applications of robots.
- FIG. 4 is a schematic cross-sectional structural schematic view of a hydraulic plug-in rotary direct-drive valve of the present invention
- FIG. 8 is a schematic structural view of the upper end cover of FIG. 4;
- FIG. 9 is a schematic structural view of the lower end cover of FIG. 4;
- Hydraulic cartridge rotary direct drive valve 1 vane swing cylinder 2, angle sensor 3, seal cover 4, pressure sensor 5, flared pipe joint 6, O-ring seal 7, installation positioning gap 8
- the robot uses hydraulically driven joints, as shown in Figures 1-9: It includes a hydraulic plug-in rotary direct-drive valve 1, a blade swing cylinder 2, and a central end of a central rotating shaft 21 of the blade swing cylinder 2 is prefabricated with a valve body mounting cavity 22, and the valve The shape of the body mounting cavity 22 is made according to the shape of the inserted part of the hydraulic cartridge rotary direct drive valve 1.
- the hydraulic cartridge rotary direct drive valve 1 is inserted into the valve body mounting cavity 22, and the hydraulic cartridge rotary direct drive valve 1
- the driving motor 11 is exposed on the central rotating shaft 21;
- the blade swing cylinder 2 further includes an upper cover 23, a cylinder block 24, a stator 25, a lower cover 26, and a side convex blade 27.
- the central rotating shaft 21 is connected to the side convex blade 27 through a side convex ring 28, and the side convex blade 27 is in a zero position.
- a fixed piece 25 is arranged at the lower radial end opposite to the side convex ring 28.
- the inner wall of the fixed piece 25 and the corresponding outer wall of the side convex ring 28 cooperate with each other.
- the fixed piece 25 is independent of the side convex ring 28 and has a radial position. Fixed arrangement.
- the area composed of the cylinder block 24, the side convex ring 28, the upper cover 23, and the lower cover 26 is divided into a first working cavity 29 and a second working cavity 30 by a side convex blade 27 and a stator 25, and a valve body mounting cavity.
- the inner wall of 22 is provided with a first oil port 31 and a second oil port 32; the first oil port 31 is connected to the first working chamber 29 through a first built-in pipe 33, and the second oil port 32 is connected through a second built-in pipe 34
- the second working chamber 30 is further provided with a P channel 35 and a T channel 36 inside the central rotating shaft 21, and an upper end surface of the central rotating shaft 21 is provided with a P port and a T port;
- An angle sensor 3 is fixedly connected to the other end of the central rotating shaft 21, and a sealing cover 4 is installed at the bottom of the lower cover 26.
- the base of the angle cover 3 and the pressure sensor are connected to the center hole of the angle sensor 4 by bolts.
- 5 is fixedly installed in the cavity formed by the sealing cover 4 and the central rotating shaft 21, the pressure sensor 5 is fixedly installed in the central rotating shaft 21, and the sensing joint of the pressure sensor 5 is connected to the first oil port 31 and the second oil port 32,
- the P, T, A, and B ports of the hydraulic cartridge rotary direct drive valve 1 are arranged according to the corresponding ports of the blade swing cylinder 2. Under normal operating conditions, the hydraulic oil of port P of the blade swing cylinder 2 passes the hydraulic cartridge The internal pipeline of the rotary direct drive valve 1 communicates with one of the first port 31 or the second port 32, and the other port of the first port 31 or the second port 32 is rotated by a hydraulic cartridge. The internal pipe of the direct drive valve 1 is connected to the T port of the blade swing cylinder 2.
- Hydraulic plug-in rotary direct-drive valve 1 includes a drive motor 11, an upper end cover 12, a valve core 13, a valve sleeve 14, a lower end cover 15, the drive motor 11 is connected to the valve core 13, and an outer periphery of the valve core 13 is covered with a valve sleeve 14, and an upper end
- the cover 12 and the lower end cover 15 are enclosed at both ends of the valve sleeve 14 in the axial direction.
- the valve core 13 has P channels, T channels, A channels, and B channels that are not connected to each other.
- a first oil port is prefabricated on the valve body mounting cavity 22. 31.
- the second oil port 32 and the two sides of the side vane 27 correspond to the first working cavity 29 and the second working cavity 30, and the third oil port 37, the fourth oil port 38, and the third oil port 37 are respectively provided.
- the fourth oil port 38 is connected to the second working chamber 30
- each third oil port 37 is connected to the first oil port through the first built-in pipeline 33
- the fourth oil port 38 is connected to the second built-in pipeline 34 is connected to the second oil port 32.
- the lower surface of the upper end cover 12 and the upper surface of the lower end cover 15 are provided with a recessed working oil groove 16, and the working edge of the recessed working oil groove 16 and the A and B channels of the valve core 13 are projected. The working side cooperates with each other.
- Corresponding first oil holes 18 are provided on the outer circumferential surface of the valve core 13 corresponding to the P channel, the A channel, and the B channel, and the valve sleeve 1
- the outer periphery of 4 is provided with a corresponding second oil hole 19, and the position and size of the first oil hole 18 and the second oil hole 19 ensure that the servo valve can work normally in the working state;
- the second oil port is connected to the T port of the valve body through the internal passage of the valve body.
- the T port of the valve body corresponds to the T channel of the blade swing cylinder, and then passes through T Port to drain hydraulic oil.
- the lower end cover 15 is installed on the lower end surface of the valve sleeve 14.
- the central blind hole of the lower end cover 15 is fitted with the radial clearance of the bottom convex portion of the central shaft 131.
- the upper end cover 12 and the lower end cover 15 are fixedly connected, and the lower surface of the upper end cover 12 and the upper surface of the lower end cover 15 are provided with a recessed working oil groove 16;
- An annular groove is provided in the central through hole of the upper end cover 12, a Griy ring 20 is embedded in the annular groove, and a first step shaft is provided on the upper convex end of the central shaft 131.
- the radial gap is installed and matched, and the inner wall of the Griy ring 20 is in close contact with the upper end of the central axis corresponding to the location area; the lower convex end of the central axis 131 is provided with a second step axis, and the second step axis is matched with the central blind aperture to the gap;
- the drive motor 11 is integrated with a high-precision absolute photoelectric encoder.
- the output shaft of the drive motor 11 and the first stepped shaft of the valve core are connected by an elastic coupling, and the drive motor 11 is connected to the upper end surface of the upper end cover 12 by screws;
- the bottom of the lower end cover 15 is also provided with a mounting positioning gap 8 to facilitate radial positioning and installation of the entire valve body and the valve body mounting cavity;
- the second Griy ring 40; the inner ring of the angular contact bearing 39 at the corresponding position is set to the corresponding position of the center shaft 21, and the inner ring of the second Gyle ring 40 at the corresponding position is set to the corresponding position of the center shaft 21, and the upper cover 23
- the lower cover 26 is respectively fixed to the corresponding position of the cylinder block 24 by screws;
- the thickness of the side convex blade 27 is greater than the thickness of the side convex ring 28.
- the positions of the side convex ring 28 and the side convex blade 27 form a stepped surface.
- the thickness of the stator 25 is the same as the thickness of the side convex blade 27.
- the upper cover 23 and the lower cover 26 Corresponding inner end protruding rings 41 are provided respectively, and the outer side wall of the inner end protruding ring 41 is in close contact with the fixed piece 25 at the corresponding position, and is matched with the corresponding position of the side convex blade 27 to ensure convenient installation and reliable positioning;
- the upper end face and the lower end face of the cylinder body 24 are respectively provided with end face ring grooves on the inner side of the surface of the upper cover and the lower cover, and the corresponding end face ring grooves are respectively provided with second O-shaped seal rings 42;
- Its working principle is as follows: It is a robot dynamic joint based on the integration of a hydraulic plug-in rotary direct-drive valve and a blade swing cylinder.
- a constant pressure oil source is input from the hydraulic system, and it is connected by a flared pipe joint.
- the screw is fixed, so that the fixed piece drives the cylinder body and the upper cover and the lower cover to rotate together under the action of the pressure oil.
- the hydraulic plug-in rotary direct drive valve has no current input, the oil stops flowing at the P port.
- the pressure sensor and the angle sensor have corresponding detection signals.
- the cavity is for oil inlet, and its control method is the same; it is based on the joint of the robot for the integration of the hydraulic plug-in rotary direct-drive valve and the blade swing cylinder, and the detection elements of the hydraulic actuator, electro-hydraulic servo valve, position sensor and pressure sensor
- Modular integration design and application to robot joints can not only meet the current development needs of robots, but also expand the applications of robots.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Engineering & Computer Science (AREA)
- Robotics (AREA)
- Servomotors (AREA)
- Manipulator (AREA)
- Multiple-Way Valves (AREA)
Abstract
一种机器人用液压驱动关节,包括液压插装式旋转直驱阀(1)、叶片摆动缸(2),叶片摆动缸(2)的中心转轴(21)的中心一端预制有阀体安装腔(22),阀体安装腔(22)的形状根据液压插装式旋转直驱阀(1)的插入部分形状制作,液压插装式旋转直驱阀插(1)装于阀体安装腔(22)内,液压插装式旋转直驱阀(1)的驱动电机(11)外露于中心转轴(21)。该机器人用液压驱动关节不仅可以满足目前机器人的发展需求,也可以拓展机器人的应用场合。
Description
本发明涉及机器人关节的技术领域,具体为机器人用液压驱动关节。
机器人关节是机器人的基础部件,其性能的好坏直接影响机器人的整体性能。随着伺服驱动、控制和传感技术等机电技术的不断发展,机器人关节呈现出新的特征和发展趋势,如:大力矩、高精度、反应灵敏、小型化、机电一体化、标准化和模块化等趋势,以适应机器人技术的发展。目前现有的机器人关节基本都采用伺服电机加谐波减速器或RV减速器,虽然这种结构在机器人领域得到了广泛的运用,但是也不可否认其扭矩密度比相对较低和反应不够灵敏。由于液压驱动具有功率密度大及阀控伺服系统频带宽的特点,因此目前世界各国都在大力探求将液压阀控伺服系统用于要求更高的机器人应用场合。
发明内容
针对上述问题,本发明提供了机器人用液压驱动关节,其基于液压插装式旋转直驱阀与叶片摆动缸集成的机器人用关节,将液压执行器、电液伺服阀、位置传感器及压力传感器的检测元件进行模块化集成设计并应用于机器人关节,其不仅可以满足目前机器人的发展需求,也可以拓展机器人的应用场合。
机器人用液压驱动关节,其特征在于:其包括螺纹插装式旋转直驱电液伺服阀、机器人运动关节专用叶片摆动式液压缸,螺纹插装式旋转直驱电液 伺服阀以下简称液压插装式旋转直驱阀、机器人运动关节专用叶片摆动式液压缸以下简称叶片摆动缸,所述叶片摆动缸的中心转轴的中心一端预制有阀体安装腔,所述阀体安装腔的形状根据所述液压插装式旋转直驱阀的插入部分形状制作,所述液压插装式旋转直驱阀插装于所述阀体安装腔内,所述液压插装式旋转直驱阀的驱动电机外露于所述中心转轴;
所述叶片摆动缸还包括有上盖、缸体、定片、下盖、侧凸叶片,所述中心转轴通过侧凸环连接所述侧凸叶片,所述侧凸叶片处于零位状态下相对于侧凸环的径向另一端布置有定片,所述定片的内壁和所述侧凸环的对应外壁间隙配合,所述定片独立于所述侧凸环、且径向位置固定布置,所述缸体、侧凸环、上盖、下盖所组成的区域被侧凸叶片、定片划分为第一工作腔、第二工作腔,所述阀体安装腔的内壁上设置有第一油口、第二油口;所述第一油口通过第一内置管路连接所述第一工作腔,所述第二油口通过第二内置管路连通所述第二工作腔,所述中心转轴的内部还设置有P通道、T通道,所述中心转轴的上端面布置有P口、T口;
所述中心转轴的另一端固接有角度传感器,所述下盖的底部盖装有密封罩,所述密封罩与所述角度传感器的中心孔通过螺栓连接有角度传感器的基座,压力传感器固装于所述密封罩和中心转轴所形成的空腔内,所述压力传感器固装于所述中心转轴,所述压力传感器的感应接头连接所述第一油口、第二油口,
所述液压插装式旋转直驱阀的P口、T口、A口、B口根据所述叶片摆动缸的对应口布置,正常工作状态下,所述叶片摆动缸的P口液压油通过所述液压插装式旋转直驱阀的内部管路连通所述第一油口或第二油口中的一个油 口,所述第一油口或第二油口中的另一个油口通过所述液压插装式旋转直驱阀的内部管路连通至叶片摆动缸的T口。
其进一步特征在于:
所述中心转轴上端面的P口、T口分别插装有扩口式管接头;
所述液压插装式旋转直驱阀包括驱动电机、上端盖、阀芯、阀套、下端盖,所述驱动电机连接所述阀芯,所述阀芯的外周套装有所述阀套,所述上端盖、下端盖封装于所述阀套的轴向两端,所述阀芯内置有互不连通的P通道、T通道、A通道、B通道,所述阀体安装腔上预制有第一油口、第二油口,所述侧凸叶片的两侧对应于所述第一工作腔、第二工作腔分别设置有对应的第三油口、第四油口,所述第三油口连通所述第一工作腔,所述第四油口连通所述第二工作腔,每个所述第三油口通过第一内置管路连接所述第一油口,所述第四油口通过第二内置管路连接所述第二油口,所述上端盖的下表面、下端盖的上表面设有内凹工作油槽,所述内凹工作油槽的工作边与所述阀芯的A通道、B通道所投影的工作边配合工作,所述阀芯的对应于所述P通道、A通道、B通道的外周环面上分别开设有对应的第一通油孔,所述阀套的外周上设置有对应的第二通油孔,所述第一通油孔、第二通油孔的位置尺寸确保伺服阀在工作状态下可正常工作;
所述阀套套装于所述阀芯的外周环面,所述阀芯的外周环面和所述阀套的内周环面径向间隙配合组装,所述阀芯包括有中心轴,所述中心轴的上、下端分别外凸于所述阀套的对应端面,所述上端盖盖装于所述阀套的上端面、同时与所述中心轴的上凸部分径向间隙配合,中心轴的上凸部分贯穿中心贯穿孔后连接所述直流无刷伺服电机的输出端,所述下端盖盖装于所述阀套的 下端面、同时所述下端盖的中心盲孔与所述中心轴的底部下凸部分径向间隙配合,所述阀套的两端面分别固接所述上端盖、下端盖,所述上端盖的下表面、下端盖的上表面设有内凹工作油槽;
所述上端盖轴向外环周面设有外螺纹,其用于与阀体安装腔的内螺纹连接安装;
所述上端盖的中心贯穿孔内设置有环形沟槽,所述环向沟槽内嵌装有格莱圈,所述中心轴的上凸端设置有第一台阶轴,所述第一台阶轴与所述中心贯穿孔的径向间隙安装配合,所述格莱圈的内壁紧贴所述中心轴的上端对应位置区域;所述中心轴的下凸端设置有第二台阶轴,所述第二台阶轴与中心盲孔径向间隙配合;
所述阀套的两端面分别通过轴向螺钉固接所述上端盖、下端盖;
所述阀芯的A通道、B通道所投影的工作边轮廓为扇形环状结构,所述上端盖、下端盖的对应内凹工作油槽的工作边为扇形环状结构,零位状态下的所述阀芯的工作边与上端盖、下端盖所对应的工作边分别配合形成零开口,且使得P通道、T通道、A通道、B通道互相隔离,且由于为扇形环状结构,驱动直流无刷伺服电机转动角度的大小和流量形成线性比例关系,便于控制;
所述上端盖的外螺纹下部、阀套的轴向外环周面均设置有环形沟槽,每个所述环形沟槽内安装有对应尺寸的O型密封圈,每个O型密封圈分别垂直于中心轴、且相邻的O型密封圈平行状态布置,所述阀体通过O型密封圈插装定位于所述阀体定位腔,确保阀套、上端盖和中心转轴的内壁的密封连接;
所述驱动电机中集成有高精度的绝对式光电编码器,所述驱动电机的输出轴与阀芯的第一台阶轴通过弹性联轴器连接,所述驱动电机通过螺钉连接于上端盖的上端面;
所述下端盖的底部还设置有安装定位缺口,便于整个阀体和阀体安装腔的的径向定位安装;
所述上盖套装于所述中心转轴并位于所述侧凸环的上部,所述下盖套装于所述中心转轴并位于所述侧凸环的下部,所述侧凸叶片、定片的所对应的等效整体外环面套装有缸体,所述上盖、下盖的轴向内端的内沟槽内分别安装有角接触球轴承,所述上盖、下盖的轴向外端的内沟槽安装有第二格莱圈;对应位置的所述角接触轴承的内圈套装于所述中心转轴的对应位置,对应位置的所述第二格莱圈的内圈套装于所述中心转轴的对应位置,所述上盖、下盖分别通过螺钉固接于所述缸体的对应位置;
所述定片通过销钉与下盖固定连接,所述定片的下端面和所述下盖的对应端面紧密贴合,所述定片的外周面于所述缸体的对应内表面紧密贴合,所述定片的内表面于所述侧凸环的对应外表面间隙配合布置;
所述侧凸叶片的厚度大于所述侧凸环的厚度,所述侧凸环和所述侧凸叶片的位置形成台阶面,所述定片的厚度和所述侧凸叶片的厚度相同,所述上盖、下盖分别设置有对应的内端凸起环,所述内端凸起环的外侧壁紧贴对应位置的定片、且与侧凸叶片对应位置间隙配合,确保安装方便、定位可靠;
所述侧凸叶片的外表面与所述缸体的对应区域内表面间隙配合,所述侧凸叶片的上、下端面分别和所述上盖、下盖的对应表面间隙配合布置;
所述缸体的上端面、下端面对应于所述上盖、下盖的表面内侧分别设置有端面环槽,对应的所述端面环槽内分别装有第二O型密封圈;
所述上盖的顶部内端通过第一封口凸起扣装于所述中心转轴的对应上部的第一封口槽内;所述下盖的底部内端通过第二封口凸起扣装于所述中心转轴的对应下部的第二封口槽内。
采用本发明后,其是基于液压插装式旋转直驱阀与叶片摆动缸集成的机器人用动关节,由液压系统输入恒压油源,由扩口式管接头接入,并将中心转轴用螺钉固定,使定片在压力油的作用下带动缸体和上盖、下盖一起转动,当液压插装式旋转直驱阀无电流输入时,油液在P口停止流动,此时压力传感器与角度传感器无信号输出;当液压插装式旋转直驱阀有正电流信号输入时,阀芯下旋转一定的角度,此时油液由P口流入液压插装式旋转直驱阀的A口、A通道路工作管路后到达机器人运动关节专用叶片摆动式液压缸的第一工作腔,在压力油的作用下定片带动缸体和上盖、下盖一起转,机器人运动关节专用叶片摆动式液压缸的第二工作腔的油液流出经过液压插装式旋转直驱阀的阀芯B口并通过T口回到油箱,此时压力传感器与角度传感器都有对应的检测信号输出并反馈至液压插装式旋转直驱阀与其输入信号做差值比较直至为零,使机器人运动关节专用叶片摆动式液压缸旋转到指定的角度和第一工作腔与第二工作腔保持指定的压力,从而达到精准的位置控制和力矩控制;反之,当液压插装式旋转直驱阀有负电流信号输入时,油液流经的第一工作腔的为出油、流经第二工作腔的为进油,其控制方式相同;其是基于液压插装式旋转直驱阀与叶片摆动缸集成的机器人用关节,将液压执行器、电液伺服阀、位置传感器及压力传感器的检测元件进行模块化集成设计并应用于机 器人关节,其不仅可以满足目前机器人的发展需求,也可以拓展机器人的应用场合。
图1为本发明的主视图(局部剖视)结构示意图;
图2为本发明的侧视图剖视结构示意图(去除角度传感器、密封罩、压力传感器);
图3为图2的A-A剖结构示意图(去除液压插装式旋转直驱阀);
图4为本发明的液压插装式旋转直驱阀的主视图剖视结构示意图;
图5为图3的阀芯的立体图结构示意图;
图6为图4的阀芯的俯视图结构示意图;
图7为图3的阀套的立体图结构示意图;
图8为图4的上端盖的立体图结构示意图;
图9为图4的下端盖的立体图结构示意图;
图中序号所对应的名称如下:
液压插装式旋转直驱阀1、叶片摆动缸2、角度传感器3、密封罩4、压力传感器5、扩口式管接头6、O型密封圈7、安装定位缺口8
驱动电机11、上端盖12、阀芯13、中心轴131、阀套14、下端盖15、内凹工作油槽16、外螺纹17、第一通油孔18、第二通油孔19、格莱圈20
中心转轴21、阀体安装腔22、上盖23、缸体24、定片25、下盖26、侧凸叶片27、侧凸环28、第一工作腔29、第二工作腔30、第一油口31、第二油口32、第一内置管路33、第二内置管路34、P通道35、T通道36、第三油口37、第四油口38、角接触球轴承39、第二格莱圈40、内端凸起环41、第 二O型密封圈42、第一封口凸起43、第一封口槽44、第二封口凸起45、第二封口槽46。
机器人用液压驱动关节,见图1-图9:其包括液压插装式旋转直驱阀1、叶片摆动缸2,叶片摆动缸2的中心转轴21的中心一端预制有阀体安装腔22,阀体安装腔22的形状根据液压插装式旋转直驱阀1的插入部分形状制作,液压插装式旋转直驱阀插1装于阀体安装腔22内,液压插装式旋转直驱阀1的驱动电机11外露于中心转轴21;
叶片摆动缸2还包括有上盖23、缸体24、定片25、下盖26、侧凸叶片27,中心转轴21通过侧凸环28连接侧凸叶片27,侧凸叶片27处于零位状态下相对于侧凸环28的径向另一端布置有定片25,定片25的内壁和所述侧凸环28的对应外壁间隙配合,定片25独立于侧凸环28、且径向位置固定布置,缸体24、侧凸环28、上盖23、下盖26所组成的区域被侧凸叶片27、定片25划分为第一工作腔29、第二工作腔30,阀体安装腔22的内壁上设置有第一油口31、第二油口32;第一油口31通过第一内置管路33连接第一工作腔29,第二油口32通过第二内置管路34连通第二工作腔30,中心转轴21的内部还设置有P通道35、T通道36,中心转轴21的上端面布置有P口、T口;
中心转轴21的另一端固接有角度传感器3,下盖26的底部盖装有密封罩4,密封罩4的与所述角度传感器的中心孔通过螺栓连接有角度传感器3的基座,压力传感器5固装于密封罩4和中心转轴21所形成的空腔内,压力传感器5固装于中心转轴21,压力传感器5的感应接头连接第一油口31、第二油口32,
液压插装式旋转直驱阀1的P口、T口、A口、B口根据叶片摆动缸2的对应口布置,正常工作状态下,叶片摆动缸2的P口液压油通过液压插装式旋转直驱阀1的内部管路连通第一油口31或第二油口32中的一个油口,第一油口31或第二油口32中的另一个油口通过液压插装式旋转直驱阀1的内部管路连通至叶片摆动缸2的T口。
中心转轴21上端面的P口、T口分别插装有扩口式管接头6;
液压插装式旋转直驱阀1包括驱动电机11、上端盖12、阀芯13、阀套14、下端盖15,驱动电机11连接阀芯13,阀芯13的外周套装有阀套14,上端盖12、下端盖15封装于阀套14的轴向两端,阀芯13内置有互不连通的P通道、T通道、A通道、B通道,阀体安装腔22上预制有第一油口31、第二油口32,侧凸叶片27的两侧对应于第一工作腔29、第二工作腔30分别设置有对应的第三油口37、第四油口38,第三油口37连通第一工作腔29,第四油口38连通第二工作腔30,每个第三油口37通过第一内置管路33连接第一油口,第四油口38通过第二内置管路34连接第二油口32,上端盖12的下表面、下端盖15的上表面设有内凹工作油槽16,内凹工作油槽16的工作边与阀芯13的A通道、B通道所投影的工作边配合工作,阀芯13的对应于P通道、、A通道、B通道的外周环面上分别开设有对应的第一通油孔18,阀套14的外周上设置有对应的第二通油孔19,第一通油孔18、第二通油孔19的位置尺寸确保伺服阀在工作状态下可正常工作;
具体实施时的一种工作状态:阀芯转动时,使得阀套上的对应位置的第二通油孔P口连通阀芯的第一通油孔P口,P通道通过端盖的工作边连通A通道或B通道中的任一通道,然后通过对应的第一通油孔、第二通油孔接入至 第一油口,A通道或B通道中的另一通道通过对应的第一通油孔、第二通油孔接入第二油口,第二油口通过阀体的内部通路接入阀体的T口,阀体的T口对应连接叶片摆动缸的T通道,然后通过T口排出液压油。
阀套14套装于阀芯13的外周环面,阀芯13的外周环面和阀套的内周环面径向间隙配合组装,阀芯13包括有中心轴131,中心轴131的上、下端分别外凸于阀套14的对应端面,上端盖12盖装于阀套14的上端面,同时与中心轴131的上凸部分径向间隙配合,中心轴131的上凸部分贯穿中心贯穿孔后连接驱动电机11的输出端,下端盖15盖装于阀套14的下端面,下端盖15的中心盲孔与中心轴131的底部下凸部分径向间隙配合安装,阀套14的两端面分别固接上端盖12、下端盖15,上端盖12的下表面、下端盖15的上表面设有内凹工作油槽16;
上端盖12轴向外环周面设有外螺纹17,其用于与阀体安装腔22的内螺纹连接安装;
上端盖12的中心贯穿孔内设置有环形沟槽,环向沟槽内嵌装有格莱圈20,中心轴131的上凸端设置有第一台阶轴,第一台阶轴与中心贯穿孔的径向间隙安装配合,格莱圈20的内壁紧贴中心轴的上端对应位置区域;中心轴131的下凸端设置有第二台阶轴,第二台阶轴与中心盲孔径向间隙配合;
阀套14的两端面分别通过轴向螺钉固接上端盖12、下端盖15;
阀芯13的A通道、B通道所投影的工作边轮廓为扇形环状结构,上端盖12、下端盖15的对应内凹工作油槽16的工作边为扇形环状结构,零位状态下的阀芯13的工作边与上端盖12、下端盖15所对应的工作边分别配合形成零开口,且使得P通道、T通道、A通道、B通道互相隔离,且由于为扇形环 状结构,驱动直流无刷伺服电机转动角度的大小和流量形成线性比例关系,便于控制;
上端盖12的外螺纹下部、阀套14的轴向外环周面均设置有环形沟槽,每个环形沟槽内安装有对应尺寸的O型密封圈7,每个O型密封圈7分别垂直于中心轴、且相邻的O型密封圈7平行状态布置,阀体通过O型密封圈7插装定位于阀体定位腔22,确保阀套14、上端盖12和中心转轴21的内壁的密封连接;
驱动电机11中集成有高精度的绝对式光电编码器,驱动电机11的输出轴与阀芯的第一台阶轴通过弹性联轴器连接,驱动电机11通过螺钉连接于上端盖12的上端面;
下端盖15的底部还设置有安装定位缺口8,便于整个阀体和阀体安装腔的的径向定位安装;
上盖23套装于中心转轴21并位于侧凸环28的上部,下盖26套装于中心转轴21并位于侧凸环28的下部,侧凸叶片27、定片25的所对应的等效整体外环面套装有缸体24,上盖23、下盖26的轴向内端的内沟槽内分别安装有角接触球轴承39,上盖23、下盖26的轴向外端的内沟槽安装有第二格莱圈40;对应位置的角接触轴承39的内圈套装于中心转轴21的对应位置,对应位置的第二格莱圈40的内圈套装于中心转轴21的对应位置,上盖23、下盖26分别通过螺钉固接于缸体24的对应位置;
定片25通过销钉与下盖26固定连接,定片25的下端面和下盖26的对应端面紧密贴合,定片25的外周面于缸体24的对应内表面紧密贴合,定片25的内表面于侧凸环28的对应外表面间隙配合布置;
侧凸叶片27的厚度大于侧凸环28的厚度,侧凸环28和侧凸叶片27的位置形成台阶面,定片25的厚度和侧凸叶片27的厚度相同,上盖23、下盖26分别设置有对应的内端凸起环41,内端凸起环41的外侧壁紧贴对应位置的定片25、且与侧凸叶片27对应位置间隙配合,确保安装方便、定位可靠;
侧凸叶片27的外表面与缸体24的对应区域内表面间隙配合,侧凸叶片27的上、下端面分别和上盖23、下盖26的对应表面间隙配合布置;
缸体24的上端面、下端面对应于上盖、下盖的表面内侧分别设置有端面环槽,对应的端面环槽内分别装有第二O型密封圈42;
上盖23的顶部内端通过第一封口凸起43扣装于中心转轴21的对应上部的第一封口槽44内;下盖26的底部内端通过第二封口凸起45扣装于中心转轴21的对应下部的第二封口槽46内。
其工作原理如下:其是基于液压插装式旋转直驱阀与叶片摆动缸集成的机器人用动关节,由液压系统输入恒压油源,由扩口式管接头接入,并将中心转轴用螺钉固定,使定片在压力油的作用下带动缸体和上盖、下盖一起转动,当液压插装式旋转直驱阀无电流输入时,油液在P口停止流动,此时压力传感器与角度传感器无信号输出;当液压插装式旋转直驱阀有正电流信号输入时,阀芯下旋转一定的角度,此时油液由P口流入液压插装式旋转直驱阀的A口、A通道路工作管路后到达机器人运动关节专用叶片摆动式液压缸的第一工作腔,在压力油的作用下定片带动缸体和上盖、下盖一起转,机器人运动关节专用叶片摆动式液压缸的第二工作腔的油液流出经过液压插装式旋转直驱阀的阀芯B口并通过T口回到油箱,此时压力传感器与角度传感器都有对应的检测信号输出并反馈至液压插装式旋转直驱阀与其输入信号做差值 比较直至为零,使机器人运动关节专用叶片摆动式液压缸旋转到指定的角度和第一工作腔与第二工作腔保持指定的压力,从而达到精准的位置控制和力矩控制;反之,当液压插装式旋转直驱阀有负电流信号输入时,油液流经的第一工作腔的为出油、流经第二工作腔的为进油,其控制方式相同;其是基于液压插装式旋转直驱阀与叶片摆动缸集成的机器人用关节,将液压执行器、电液伺服阀、位置传感器及压力传感器的检测元件进行模块化集成设计并应用于机器人关节,其不仅可以满足目前机器人的发展需求,也可以拓展机器人的应用场合。
以上对本发明的具体实施例进行了详细说明,但内容仅为本发明创造的较佳实施例,不能被认为用于限定本发明创造的实施范围。凡依本发明创造申请范围所作的均等变化与改进等,均应仍归属于本专利涵盖范围之内。
Claims (10)
- 机器人用液压驱动关节,其特征在于:其包括液压插装式旋转直驱阀、叶片摆动缸,所述叶片摆动缸的中心转轴的中心一端预制有阀体安装腔,所述阀体安装腔的形状根据所述液压插装式旋转直驱阀的插入部分形状制作,所述液压插装式旋转直驱阀插装于所述阀体安装腔内,所述液压插装式旋转直驱阀的驱动电机外露于所述中心转轴;所述叶片摆动缸还包括有上盖、缸体、定片、下盖、侧凸叶片,所述中心转轴通过侧凸环连接所述侧凸叶片,所述侧凸叶片处于零位状态下相对于侧凸环的径向另一端布置有定片,所述定片的内壁和所述侧凸环的对应外壁间隙配合,所述定片独立于所述侧凸环、且径向位置固定布置,所述缸体、侧凸环、上盖、下盖所组成的区域被侧凸叶片、定片划分为第一工作腔、第二工作腔,所述阀体安装腔的内壁上设置有第一油口、第二油口;所述第一油口通过第一内置管路连接所述第一工作腔,所述第二油口通过第二内置管路连通所述第二工作腔,所述中心转轴的内部还设置有P通道、T通道,所述中心转轴的上端面布置有P口、T口;所述中心转轴的另一端固接有角度传感器,所述下盖的底部盖装有密封罩,所述密封罩与所述角度传感器的中心孔通过螺栓连接有角度传感器的基座,压力传感器固装于所述密封罩和中心转轴所形成的空腔内,所述压力传感器固装于所述中心转轴,所述压力传感器的感应接头连接所述第一油口、第二油口,所述液压插装式旋转直驱阀的P口、T口、A口、B口根据所述叶片摆动缸的对应口布置,正常工作状态下,所述叶片摆动缸的P口液压油通过所述液压插装式旋转直驱阀的内部管路连通所述第一油口或第二油口中的一个油 口,所述第一油口或第二油口中的另一个油口通过所述液压插装式旋转直驱阀的内部管路连通至叶片摆动缸的T口。
- 如权利要求1所述的机器人用液压驱动关节,其特征在于:所述中心转轴上端面的P口、T口分别插装有扩口式管接头。
- 如权利要求1所述的机器人用液压驱动关节,其特征在于:所述液压插装式旋转直驱阀包括驱动电机、上端盖、阀芯、阀套、下端盖,所述驱动电机连接所述阀芯,所述阀芯的外周套装有所述阀套,所述上端盖、下端盖封装于所述阀套的轴向两端,所述阀芯内置有互不连通的P通道、T通道、A通道、B通道,所述阀体安装腔上预制有第一油口、第二油口,所述侧凸叶片的两侧对应于所述第一工作腔、第二工作腔分别设置有对应的第三油口、第四油口,所述第三油口连通所述第一工作腔,所述第四油口连通所述第二工作腔,每个所述第三油口通过第一内置管路连接所述第一油口,所述第四油口通过第二内置管路连接所述第二油口,所述上端盖的下表面、下端盖的上表面设有内凹工作油槽,所述内凹工作油槽的工作边与所述阀芯的A通道、B通道所投影的工作边配合工作,所述阀芯的对应于所述P通道、A通道、B通道的外周环面上分别开设有对应的第一通油孔,所述阀套的外周上设置有对应的第二通油孔,所述第一通油孔、第二通油孔的位置尺寸确保伺服阀在工作状态下可正常工作。
- 如权利要求3所述的机器人用液压驱动关节,其特征在于:所述阀套套装于所述阀芯的外周环面,所述阀芯的外周环面和所述阀套的内周环面径向间隙配合组装,所述阀芯包括有中心轴,所述中心轴的上、下端分别外凸于所述阀套的对应端面,所述上端盖盖装于所述阀套的上端面、同时与所述 中心轴的上凸部分径向间隙配合,中心轴的上凸部分贯穿中心贯穿孔后连接所述直流无刷伺服电机的输出端,所述下端盖盖装于所述阀套的下端面、同时所述下端盖的中心盲孔与所述中心轴的底部下凸部分径向间隙配合,所述阀套的两端面分别固接所述上端盖、下端盖,所述上端盖的下表面、下端盖的上表面设有内凹工作油槽。
- 如权利要求3所述的机器人用液压驱动关节,其特征在于:所述上端盖轴向外环周面设有外螺纹,其用于与阀体安装腔的内螺纹连接安装。
- 如权利要求4所述的机器人用液压驱动关节,其特征在于:所述上端盖的中心贯穿孔内设置有环形沟槽,所述环向沟槽内嵌装有格莱圈,所述中心轴的上凸端设置有第一台阶轴,所述第一台阶轴与所述中心贯穿孔的径向间隙安装配合,所述格莱圈的内壁紧贴所述中心轴的上端对应位置区域;所述中心轴的下凸端设置有第二台阶轴,所述第二台阶轴与所述下端盖的中心盲孔径向间隙配合。
- 如权利要求3所述的机器人用液压驱动关节,其特征在于:所述阀芯的A通道、B通道所投影的工作边轮廓为扇形环状结构,所述上端盖、下端盖的对应内凹工作油槽的工作边为扇形环状结构,零位状态下的所述阀芯的工作边与上端盖、下端盖所对应的工作边分别配合形成零开口,且使得P通道、T通道、A通道、B通道互相隔离。
- 如权利要求1所述的机器人用液压驱动关节,其特征在于:所述上盖套装于所述中心转轴并位于所述侧凸环的上部,所述下盖套装于所述中心转轴并位于所述侧凸环的下部,所述侧凸叶片、定片的所对应的等效整体外环面套装有缸体,所述上盖、下盖的轴向内端的内沟槽内分别安装有角接触球 轴承,所述上盖、下盖的轴向外端的内沟槽安装有第二格莱圈;对应位置的所述角接触轴承的内圈套装于所述中心转轴的对应位置,对应位置的所述第二格莱圈的内圈套装于所述中心转轴的对应位置,所述上盖、下盖分别通过螺钉固接于所述缸体的对应位置。
- 如权利要求8所述的机器人用液压驱动关节,其特征在于:所述定片通过销钉与下盖固定连接,所述定片的下端面和所述下盖的对应端面紧密贴合,所述定片的外周面于所述缸体的对应内表面紧密贴合,所述定片的内表面于所述侧凸环的对应外表面间隙配合布置。
- 如权利要求8所述的机器人用液压驱动关节,其特征在于:所述侧凸叶片的厚度大于所述侧凸环的厚度,所述侧凸环和所述侧凸叶片的位置形成台阶面,所述定片的厚度和所述侧凸叶片的厚度相同,所述上盖、下盖分别设置有对应的内端凸起环,所述内端凸起环的外侧壁紧贴对应位置的定片、且与侧凸叶片对应位置间隙配合。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/646,004 US11434938B2 (en) | 2018-08-09 | 2019-03-18 | Hydraulically driven joint for robot |
JP2020504167A JP6868745B2 (ja) | 2018-08-09 | 2019-03-18 | ロボット用の油圧駆動関節 |
DE212019000101.7U DE212019000101U1 (de) | 2018-08-09 | 2019-03-18 | Hydraulisch angetriebenes Gelenk für Roboter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810901525.0A CN108608459B (zh) | 2018-08-09 | 2018-08-09 | 机器人用液压驱动关节 |
CN201810901525.0 | 2018-08-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020029584A1 true WO2020029584A1 (zh) | 2020-02-13 |
Family
ID=63666993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/078451 WO2020029584A1 (zh) | 2018-08-09 | 2019-03-18 | 机器人用液压驱动关节 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11434938B2 (zh) |
JP (1) | JP6868745B2 (zh) |
CN (1) | CN108608459B (zh) |
DE (1) | DE212019000101U1 (zh) |
WO (1) | WO2020029584A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111843989A (zh) * | 2020-06-19 | 2020-10-30 | 太原理工大学 | 一种液压作动器驱动的机器人手腕单元 |
CN113511282A (zh) * | 2021-06-30 | 2021-10-19 | 上海微电机研究所(中国电子科技集团公司第二十一研究所) | 足式机器人用髋关节和足式机器人 |
CN115898990A (zh) * | 2023-01-05 | 2023-04-04 | 中国人民解放军国防科技大学 | 一种仿生关节驱动液压系统 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108775302B (zh) * | 2018-08-09 | 2024-07-12 | 江苏钧微动力科技有限公司 | 机器人运动关节专用叶片摆动式液压缸 |
CN108608459B (zh) | 2018-08-09 | 2020-07-28 | 江苏钧微动力科技有限公司 | 机器人用液压驱动关节 |
CN109366520A (zh) * | 2018-12-24 | 2019-02-22 | 江苏正贸仓储设备制造有限公司 | 一种工业机器人液压驱动关节 |
CN110253601B (zh) * | 2019-06-12 | 2022-05-24 | 广东技术师范大学天河学院 | 一种全液力仿人形机械手 |
CN110242636B (zh) * | 2019-06-19 | 2021-02-02 | 东莞市贺尔碧格自动化科技有限公司 | 一种自动化机器人应用的翻转装置 |
DE102019211443B4 (de) * | 2019-07-31 | 2021-03-04 | Festo Se & Co. Kg | Drehantriebsvorrichtung und damit ausgestatteter Roboterarm eines Roboters |
CN110561485B (zh) * | 2019-09-03 | 2021-12-31 | 江苏壹利特机器人科技有限公司 | 一种用于工业机器人手臂内部转轴的连接固定装置 |
CN110962156B (zh) * | 2019-12-25 | 2022-10-18 | 哈尔滨工业大学 | 一种走油摆动缸一体化关节 |
CN112283197A (zh) * | 2020-11-23 | 2021-01-29 | 威海凯特液压技术有限公司 | 一种增加备用油口的摆动油缸 |
CN113263520B (zh) * | 2021-06-24 | 2023-03-14 | 武汉科技大学 | 一种可连续旋转的被动随动液压机器人回转关节 |
CN113263521A (zh) * | 2021-06-28 | 2021-08-17 | 武汉科技大学 | 一种多级刚度可调的被动柔顺摆动关节 |
CN113370202A (zh) * | 2021-07-08 | 2021-09-10 | 武汉科技大学 | 一种双叶片液压伺服柔顺驱动器 |
CN114233718B (zh) * | 2021-12-29 | 2023-06-30 | 北京第二机床厂有限公司 | 测量定位的旋转驱动装置 |
CN115106739B (zh) * | 2022-07-12 | 2024-01-23 | 核工业西南物理研究院 | 一种耐高剂量γ辐照的电液协同操作臂 |
CN116079780A (zh) * | 2023-01-04 | 2023-05-09 | 之江实验室 | 一种集成化随动式机器人液压关节轴和机器人 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6392802A (ja) * | 1986-10-07 | 1988-04-23 | Torukaa:Kk | 直動シリンダ−を内蔵した中間停止機構付ロ−タリ−アクチユエ−タ |
CN2931013Y (zh) * | 2006-05-18 | 2007-08-08 | 扬州大学 | 三自由度解耦型仿肩关节 |
WO2015007943A1 (en) * | 2013-07-19 | 2015-01-22 | Timaco Oy | Pressure medium operated actuator |
CN108608459A (zh) * | 2018-08-09 | 2018-10-02 | 江苏钧微动力科技有限公司 | 机器人用液压驱动关节 |
CN208841446U (zh) * | 2018-08-09 | 2019-05-10 | 江苏钧微动力科技有限公司 | 机器人用液压驱动关节 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58178001A (ja) * | 1982-04-12 | 1983-10-18 | ム−グ・インコ−ポレ−テツド | 回転アクチユエ−タ及びアクチユエ−タ組立体 |
DE3608782A1 (de) * | 1986-03-15 | 1987-09-24 | Thyssen Industrie | Drehgelenk mit durchstroemkanaelen |
CN2620121Y (zh) * | 2003-03-21 | 2004-06-09 | 朱兴龙 | 液压伺服关节 |
US9351855B2 (en) * | 2008-06-16 | 2016-05-31 | Ekso Bionics, Inc. | Powered lower extremity orthotic and method of operation |
US20110196509A1 (en) * | 2009-02-27 | 2011-08-11 | Ut-Battelle, Llc | Hydraulic apparatus with direct torque control |
CN104179746B (zh) * | 2014-08-15 | 2016-04-13 | 武汉科技大学 | 一种可连续旋转的自伺服液压机器人关节 |
JP6392802B2 (ja) | 2016-03-03 | 2018-09-19 | Necプラットフォームズ株式会社 | 無線通信装置、位置情報通知システムおよび位置情報送信方法、並びにコンピュータ・プログラム |
CN106737827B (zh) * | 2017-01-17 | 2020-02-14 | 武汉科技大学 | 一种转角自伺服被动柔顺液压机器人关节 |
CN107116572B (zh) * | 2017-04-24 | 2019-07-23 | 武汉科技大学 | 一种被动随动液压机器人回转关节 |
-
2018
- 2018-08-09 CN CN201810901525.0A patent/CN108608459B/zh active Active
-
2019
- 2019-03-18 JP JP2020504167A patent/JP6868745B2/ja active Active
- 2019-03-18 DE DE212019000101.7U patent/DE212019000101U1/de active Active
- 2019-03-18 US US16/646,004 patent/US11434938B2/en active Active
- 2019-03-18 WO PCT/CN2019/078451 patent/WO2020029584A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6392802A (ja) * | 1986-10-07 | 1988-04-23 | Torukaa:Kk | 直動シリンダ−を内蔵した中間停止機構付ロ−タリ−アクチユエ−タ |
CN2931013Y (zh) * | 2006-05-18 | 2007-08-08 | 扬州大学 | 三自由度解耦型仿肩关节 |
WO2015007943A1 (en) * | 2013-07-19 | 2015-01-22 | Timaco Oy | Pressure medium operated actuator |
CN108608459A (zh) * | 2018-08-09 | 2018-10-02 | 江苏钧微动力科技有限公司 | 机器人用液压驱动关节 |
CN208841446U (zh) * | 2018-08-09 | 2019-05-10 | 江苏钧微动力科技有限公司 | 机器人用液压驱动关节 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111843989A (zh) * | 2020-06-19 | 2020-10-30 | 太原理工大学 | 一种液压作动器驱动的机器人手腕单元 |
CN113511282A (zh) * | 2021-06-30 | 2021-10-19 | 上海微电机研究所(中国电子科技集团公司第二十一研究所) | 足式机器人用髋关节和足式机器人 |
CN115898990A (zh) * | 2023-01-05 | 2023-04-04 | 中国人民解放军国防科技大学 | 一种仿生关节驱动液压系统 |
CN115898990B (zh) * | 2023-01-05 | 2023-05-23 | 中国人民解放军国防科技大学 | 一种仿生关节驱动液压系统 |
Also Published As
Publication number | Publication date |
---|---|
US20200206960A1 (en) | 2020-07-02 |
CN108608459B (zh) | 2020-07-28 |
CN108608459A (zh) | 2018-10-02 |
US11434938B2 (en) | 2022-09-06 |
DE212019000101U1 (de) | 2020-02-20 |
JP2020532435A (ja) | 2020-11-12 |
JP6868745B2 (ja) | 2021-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020029584A1 (zh) | 机器人用液压驱动关节 | |
CN108098826A (zh) | 一种大型工业机器人液压伺服关节 | |
CN106737827B (zh) | 一种转角自伺服被动柔顺液压机器人关节 | |
CN103438243B (zh) | 一种双阀芯相向旋转增量式电液数字流量控制阀 | |
CN107605844B (zh) | 一种旋转液压缸 | |
US20150041689A1 (en) | Fluid-Actuated Butterfly Valve | |
CN109483589B (zh) | 一种易于加工的液压转角自伺服柔顺驱动器 | |
WO2024164768A1 (zh) | 数字液压缸 | |
US4495856A (en) | Rotary actuator | |
CN108775302B (zh) | 机器人运动关节专用叶片摆动式液压缸 | |
CN208841446U (zh) | 机器人用液压驱动关节 | |
CN109458372A (zh) | 一种带谐波减速机的螺纹插装式旋转直驱电液伺服阀 | |
CN208885678U (zh) | 机器人运动关节专用叶片摆动式液压缸 | |
WO2020057072A1 (zh) | 带谐波减速机的螺纹插装式旋转直驱电液伺服阀 | |
CN109578361B (zh) | 一种新型螺纹插装式旋转直驱电液伺服阀 | |
CN208634124U (zh) | 螺纹插装式旋转直驱电液伺服阀 | |
CN108757619B (zh) | 螺纹插装式旋转直驱电液伺服阀 | |
CN111520500A (zh) | 一种球阀 | |
CN207363991U (zh) | 一种旋转液压缸 | |
WO2018108039A1 (zh) | 摆线液压马达 | |
AU2005203166A1 (en) | A Combined Floating S. Seal System | |
CN207583859U (zh) | 转叶式舵机静压油封 | |
CN108443260B (zh) | 片状式机器人专用叶片摆动液压缸 | |
CN211951627U (zh) | 基于伺服电机驱动的先导式比例插装阀 | |
CN214946595U (zh) | 一种液压介质通道用控制阀 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020504167 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19846642 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19846642 Country of ref document: EP Kind code of ref document: A1 |