WO2020029021A1 - 屏下光学指纹识别装置及电子设备 - Google Patents

屏下光学指纹识别装置及电子设备 Download PDF

Info

Publication number
WO2020029021A1
WO2020029021A1 PCT/CN2018/099003 CN2018099003W WO2020029021A1 WO 2020029021 A1 WO2020029021 A1 WO 2020029021A1 CN 2018099003 W CN2018099003 W CN 2018099003W WO 2020029021 A1 WO2020029021 A1 WO 2020029021A1
Authority
WO
WIPO (PCT)
Prior art keywords
display screen
under
lens
fingerprint
recognition device
Prior art date
Application number
PCT/CN2018/099003
Other languages
English (en)
French (fr)
Inventor
何毅
李可
蒋鹏
汪海翔
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201880001319.2A priority Critical patent/CN109074492B/zh
Priority to EP18915797.7A priority patent/EP3627385B1/en
Priority to PCT/CN2018/099003 priority patent/WO2020029021A1/zh
Priority to US16/667,905 priority patent/US11182585B2/en
Publication of WO2020029021A1 publication Critical patent/WO2020029021A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors

Definitions

  • the present application relates to the technical field of biometrics, and in particular, to an under-screen optical fingerprint identification device and an electronic device using the under-screen optical fingerprint identification device.
  • under-screen optical fingerprint recognition technology based on a periodic microwell array, which has lower imaging clarity, is susceptible to moiré interference, and has a higher cost.
  • the second is a micro-lens-based under-screen optical fingerprint recognition technology, which has improved imaging clarity and lower cost.
  • the above-mentioned optical fingerprint recognition technology under the micro-lens screen also has a certain degree of imaging blurring.
  • the purpose of some embodiments of the present application is to provide an under-screen optical fingerprint identification device and an electronic device using the under-screen optical fingerprint identification device, which can further improve the sharpness of imaging.
  • An embodiment of the present application provides an under-screen optical fingerprint recognition device, including a reflection component, a lens, and a fingerprint sensor; the reflection component, the lens, and the fingerprint sensor are disposed on a fingerprint detection of the under-screen optical fingerprint recognition device.
  • Light path; the lens is disposed on a reflection path of the reflection component, and is used to focus fingerprint light reflected by the reflection component to a fingerprint sensor; wherein the finger is reflected to the display screen and the light path is detected by the fingerprint
  • the incident angle of the fingerprint light entering the fingerprint sensor on the display screen is greater than or equal to a preset angle.
  • An embodiment of the present application further provides an electronic device, which includes the under-screen optical fingerprint recognition device described above.
  • the embodiments of the present application use a light path design of a reflection component, a lens, and a fingerprint sensor, so that the fingerprint light entering the fingerprint sensor through the fingerprint detection light path to participate in imaging is all incident on the display screen with an incident angle greater than or equal to Fingerprint light at an angle.
  • the larger the incident angle of the fingerprint light on the display screen (hereinafter referred to as the angle of the fingerprint light), the greater the difference in the light intensity of the fingerprint light reflected on the surface of the fingerprint ridge and valley.
  • the smaller the angle of the fingerprint light is, the fingerprint of the finger is The smaller the light intensity difference of the fingerprint light reflected on the surface of the ridge valley line, and the difference in light intensity affects the definition of the imaging.
  • the solutions provided in the embodiments of the present application make the fingerprint light participating in the imaging to be fingerprint light of a large angle, so that Can improve the sharpness of imaging.
  • forming a reflection light path by the reflection component is not only conducive to increasing the field of view, but also to reducing the thickness of the device to which the optical fingerprint recognition device under the screen is applied.
  • the reflecting component includes a reflecting mirror, the reflecting mirror is disposed facing the display screen, and a light incident surface of the lens is perpendicular to the display screen.
  • the reflecting mirror and the fingerprint sensor are both disposed parallel to the display screen.
  • At least one of the reflecting mirror and the fingerprint sensor has a preset tilt angle compared to the display screen.
  • an inclination angle of the reflecting mirror or the fingerprint sensor with respect to the display screen is between 0 degrees and 30 degrees.
  • an inclination angle of the reflecting mirror with respect to the display screen is between 5 degrees and 20 degrees.
  • the reflecting mirror and the fingerprint sensor are parallel to each other, and both have the preset tilt angle compared to the display screen.
  • the reflection component includes a first reflection mirror and a second reflection mirror, the first reflection mirror is disposed toward the display screen, and the second reflection mirror is disposed on a reflection path of the first reflection mirror.
  • the lens is disposed on a reflection path of the second reflector, and a light incident surface thereof is disposed in parallel with the display screen.
  • At least one of the first mirror and the second mirror has a preset tilt angle compared to the display screen.
  • the first reflecting mirror and the second reflecting mirror are parallel to each other, and both have the preset tilt angle compared to the display screen.
  • the fingerprint sensor has a preset tilt angle compared to the display screen.
  • the reflecting component includes a reflecting body; at least one side of the reflecting body forms a reflecting mirror; the reflecting component further includes a mounting portion provided on the reflecting body, and the lens passes through The mounting portion is fixed on the mirror body.
  • the mirror body may include two inclined surfaces that are parallel to each other and have a certain inclination angle with respect to the display screen.
  • One of the inclined surfaces is adjacent to the bottom surface of the mirror body and forms a first mirror
  • the other inclined surface is adjacent to the top surface of the mirror body and forms a second mirror, wherein the second mirror is located in a reflection path of the first mirror.
  • a gap is formed in the reflection path of the second mirror body of the mirror body, the gap has a mounting plane parallel to the display screen, and the mounting plane serves as the mounting portion for mounting the mounting surface. lens.
  • the fingerprint sensor is housed inside the notch and is disposed toward the lens, and the photosensitive surface of the fingerprint sensor is parallel to the mounting plane.
  • the lens includes a lens body and an aperture stop.
  • the lens body includes a micro lens or a micro lens group composed of two or more micro lenses.
  • the aperture stop is disposed on a light incident surface of the lens body.
  • FIG. 1 is a schematic structural diagram of an under-screen optical fingerprint recognition device having a reflector and the reflector and the fingerprint sensor are parallel to a display screen according to a first embodiment of the present application;
  • FIG. 2 is a schematic structural diagram of an under-screen optical fingerprint recognition device having a reflecting mirror and the reflecting mirror being tilted relative to the display screen according to the first embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of an under-screen optical fingerprint recognition device having a reflecting mirror and a fingerprint sensor disposed obliquely with respect to a display screen according to the first embodiment of the present application;
  • FIG. 4 is a schematic structural diagram of an under-screen optical fingerprint recognition device having a reflecting mirror and the reflecting mirror and the fingerprint sensor are inclined relative to the display screen according to the first embodiment of the present application;
  • FIG. 5 is a schematic structural diagram of an under-screen optical fingerprint recognition device provided with two reflecting mirrors and a fingerprint sensor in a parallel display screen according to the first embodiment of the present application;
  • FIG. 6 is a schematic structural diagram of an under-screen optical fingerprint recognition device provided with two reflecting mirrors parallel to a display screen according to the first embodiment of the present application;
  • FIG. 7 and 8 are schematic structural diagrams of an under-screen optical fingerprint recognition device in which one of the two mirrors according to the first embodiment of the present application is tilted relative to the display screen;
  • FIG. 9 is a schematic structural diagram of an under-screen optical fingerprint recognition device in which two reflecting mirrors and a fingerprint sensor are inclined relative to a display screen according to the first embodiment of the present application;
  • FIG. 10 is a schematic structural diagram of an under-screen optical fingerprint recognition device according to a second embodiment of the present application.
  • the first embodiment of the present application relates to an under-screen optical fingerprint recognition device.
  • the under-screen optical fingerprint device may be disposed below a display screen (such as a touch display screen), and includes a reflection component, a lens, and a fingerprint sensor.
  • a finger is pressed on the display screen, the excitation light emitted by the light source (such as the display unit of the display screen or the light emitted by the infrared light source below the display screen) is reflected on the surface of the finger and forms the fingerprint light that returns to the display screen; the fingerprint light is on the display
  • the incident angle on the screen is greater than or equal to the first preset angle, and the reflective component reflects the fingerprint light passing through the display screen to the lens, and the lens focuses the fingerprint light to the fingerprint sensor.
  • the optical path of the fingerprint light reflected by the finger to the display screen and transmitted to the fingerprint sensor through the reflective component and the lens can be defined as the fingerprint detection light path, and the incident angle of the fingerprint light on the display screen is greater than or equal to the first Set the angle to form a large-angle light, wherein the fingerprint light can enter the fingerprint sensor through the fingerprint detection optical path, and the fingerprint light with an incident angle smaller than a first preset angle (hereinafter also referred to as a small angle light) is not allowed to enter the fingerprint sensor through the fingerprint detection optical path. Therefore, the fingerprint rays participating in the imaging are all large-angle rays, which can improve the definition of imaging. Moreover, the formation of the reflected light path through the reflective component is not only beneficial to increasing the field of view, but also to the equipment using the optical fingerprint recognition device under the screen. Thin.
  • the optical path for fingerprint detection we can start from the relative positions and distances between the display screen, reflective components, and lenses, and the refractive index and thickness of the light propagation medium in the optical path for fingerprint detection.
  • the fingerprint detection optical path so that the realization of the fingerprint detection optical path are all large-angle light participation imaging.
  • the angle of the fingerprint light can be expressed by the incident angle ⁇ of the fingerprint light on the touch display 10, and the angle of the fingerprint light will affect the difference of the light intensity of the fingerprint light reflected on the surface of the fingerprint ridge and valley of the finger 30 Among them, the small difference in light intensity will cause blurry imaging of the fingerprint image. Therefore, reducing the participation of small-angle fingerprint rays in fingerprint image formation can improve imaging clarity.
  • the incident angle of the fingerprint light is designed to be greater than or equal to the first preset angle, where the first preset angle can be obtained according to the required imaging clarity.
  • the larger the first preset angle The clearer the imaging may be, conversely, the smaller the first preset angle is, the more blurred the imaging may be.
  • the first preset angle may take a value within a range of greater than or equal to 20 degrees and less than or equal to 30 degrees, but is not limited thereto.
  • the lens 12 includes a lens body 120 and an aperture stop 121.
  • the lens body 120 may include a micro lens or a micro lens group composed of two or more micro lenses.
  • the aperture stop 121 is disposed on the lens.
  • the under-screen optical fingerprint recognition device may further include a filter 15, which may be disposed in the photosensitive area of the fingerprint sensor 13, and for example, red light or infrared light may be filtered out by the filter 15.
  • the fingerprint sensor 13 can be mounted on an electronic device through a carrier such as a sensor substrate 14. In this embodiment, specific implementations of the fingerprint sensor 13, the filter 15, and the sensor substrate 14 are not limited.
  • the reflecting component may include one reflecting mirror or multiple reflecting mirrors.
  • the number of reflecting mirrors may be an odd number.
  • the number of reflecting mirrors 110 is one, for example.
  • the number of the reflectors may be an even number.
  • the number of the reflectors 110 is, for example, two, but it is not limited thereto.
  • the lens 12 of this embodiment uses a microlens with a diameter of generally millimeters, which is difficult to assemble when it is assembled into an electronic device.
  • the light incident surface of the lens 12 is perpendicular or parallel to the operation surface of the display screen 10, compared to The oblique arrangement of the light incident surface of the lens 12 and the operation surface of the display screen 10 is beneficial to reducing the difficulty of assembling the lens.
  • the relative position of the lens 12 and the display screen 10 is not specifically limited, and the lens 12 may be disposed inclined with respect to the display screen 10.
  • the reflecting mirror 110 may be arranged in parallel with the display screen 10 (as shown in FIG. 1 or FIG. 3), or the reflecting mirror 110 may be arranged inclined with respect to the display screen 10 (As shown in FIG. 2 or FIG. 4), and the inclination angles of the two are greater than 0 degrees and less than or equal to 30 degrees, wherein when the mirror 110 is set with a smaller inclination angle relative to the display screen 10, it is beneficial to avoid small angles Fingerprint light enters the fingerprint optical path.
  • the inclination angle between the lens 12 and the display screen 10 may be an angle greater than or equal to 5 degrees and less than or equal to 20 degrees, which is beneficial to Fingerprint light with a better control angle through fingerprint detection light path participates in imaging.
  • the incident angles of fingerprint rays participating in imaging are all taken in an angle range greater than or equal to 30 degrees and less than or equal to 75 degrees, but it is not limited to this. This can not only ensure the sharpness of the imaging, but also avoid the distortion of the imaging caused by the fingerprint light with an excessive angle.
  • factors such as the relative position and distance of the lens 12 and the fingerprint sensor 13 may also affect the fingerprint light's participation in fingerprint image formation. Therefore, in this embodiment, by selecting an appropriate relative position or distance between the lens 12 and the fingerprint sensor 13, it is possible to control the portion of the fingerprint light that is converged by the lens 12 to the fingerprint sensor 13 to be greater than or equal to the incident angle on the display screen 10. It is equal to the second preset angle, wherein the second preset angle is greater than the first preset angle, that is, the light path design between the lens 12 and the fingerprint sensor 13 allows fingerprint light with a larger incident angle to participate in imaging.
  • the photosensitive surface of the fingerprint sensor 13 and the display screen 10 may be disposed in parallel, or a predetermined inclination between the photosensitive surface of the fingerprint sensor 13 and the touch display screen 10 is provided. Angle, where the predetermined tilt angle is greater than 0 degrees and less than or equal to 30 degrees.
  • the under-screen optical fingerprint recognition device includes a reflecting mirror 110, and the photosensitive surfaces of the reflecting mirror 110 and the fingerprint sensor 13 are arranged parallel to the display screen 10.
  • the reflecting mirror 110 is not It is directly set directly below the fingerprint sensing area of the display screen 10, but is set to a vertical distance away from the fingerprint sensing area of the display screen 10 (for example, the area where the finger 30 is located).
  • the lens 12 is disposed perpendicular to the display screen 10 and the reflecting mirror 110 and is located on the reflection path of the reflecting mirror 110. There is a certain distance between the lens 12 and the reflecting mirror 110 so that the fingerprint light can be transmitted to the reflecting mirror 110 after being reflected.
  • the lens 12 enters its aperture stop 121.
  • the fingerprint sensor 13 is arranged parallel to the display screen 10 and has a certain distance, wherein the photosensitive surface of the fingerprint sensor 13 can face the reflective surface of the reflector 110 and face away from the display surface of the display screen 10; The distance can make the fingerprint light converge to the photosensitive surface of the fingerprint sensor 13 through the lens 120.
  • the propagation path of the first fingerprint ray 21 and the second fingerprint ray 22 at the boundary of the finger 30 in FIG. 1 entering the fingerprint sensor 13 can be seen. Assuming that the second fingerprint ray 22 corresponds to the first preset angle, the incident angle is less than The fingerprint light of the second fingerprint light 22 cannot be reflected by the reflector 110 and converged into the fingerprint sensor 13 through the lens 120. Therefore, using the fingerprint identification device of this embodiment can not only meet the requirements for imaging of large-angle fingerprint light, but also make the design of the optical path and the assembly of the device more difficult.
  • the reflecting mirror 110 is inclined relative to the display screen 10, and the inclination angle between the two is preferably less than 30 degrees, for example, the mirror 110 is rotated away from the lens 12 at an angle within 30 degrees clockwise, so as to have the above-mentioned tilt angle of less than 30 degrees with the display screen 10, and since the lens 12 is perpendicular to the display screen 10, it is rotated Thereafter, the mirror 110 will have a certain inclination angle with the lens 12 at the same time.
  • the inclination angle of the reflecting mirror 110 with respect to the display screen 10 can reduce the incident angle of the fingerprint light reflected by the reflecting mirror 110 on the light incident surface of the lens 12, wherein the above
  • the lens body 120 cannot enter the lens body 120 through the aperture stop 121 and thus cannot participate in imaging.
  • the inclination angle of the above-mentioned reflector 110 can reduce the incident angle of the fingerprint light on the lens 12, by selecting an appropriate inclination angle of the reflector 110 with respect to the touch display screen 10, it is possible to prevent fingerprints with an excessive incident angle on the lens 12 The light enters the lens 12 so as to avoid the above-mentioned fingerprint light with too large incident angle from participating in image distortion caused by imaging.
  • the fingerprint sensor 13 is inclined relative to the display screen 10, and the inclination angle between the two is preferably between Within 30 degrees, for example, one end of the fingerprint sensor 13 away from the lens 12 is rotated clockwise within a certain angle within 30 degrees.
  • the inclination angle of the fingerprint sensor 13 with respect to the display screen 10 increases, fingerprint rays with an excessive incident angle on the display screen 10 cannot enter the effective photosensitive area of the fingerprint sensor 13 and cannot participate in imaging after passing through the fingerprint detection optical path. . Therefore, by selecting an appropriate inclination angle of the fingerprint sensor 13 with respect to the touch display screen 10, it is possible to prevent fingerprint light with an excessive angle from entering the fingerprint sensor 13, thereby preventing image distortion caused by fingerprint light with an excessive angle from participating in imaging.
  • the reflecting mirror 110 and the fingerprint sensor 13 are both inclined with respect to the display screen 10, and as a kind of In the selected implementation scheme, the reflecting mirror 110 may be disposed in parallel with the photosensitive surface of the fingerprint sensor 13, or the two may also have some smaller tilt angles. Therefore, compared to the tilted setting of only the mirror 110 or the fingerprint sensor 13 with respect to the touch display screen 10 in FIG. 2 or FIG. 3, it is possible to better avoid image distortion caused by fingerprint light with an excessive angle participating in imaging.
  • the reflection component of the under-screen optical fingerprint recognition device includes two reflecting mirrors 110, so that the fingerprint light is reflected twice during the fingerprint detection optical path transmission process.
  • the two reflecting mirrors 110 may be disposed in parallel with the display screen 10, in which the reflecting surface of the first reflecting mirror 110 faces the bottom surface of the display screen 10 to receive the fingerprint light passing through the display screen 10.
  • the two reflecting mirrors 110 are disposed on the reflecting path of the first reflecting mirror, and their reflecting surfaces face the reflecting surface of the first reflecting mirror 110.
  • the lens 12 is disposed on the reflection path of the second reflection, and the lens 12 is disposed parallel to the touch display screen, and the fingerprint sensor 13 is disposed parallel to the display screen 10.
  • the fingerprint light after being reflected by the first reflecting mirror 110, the fingerprint light can enter the lens 12 after being reflected twice by the second reflecting mirror 110, and the lens 12 can further converge the fingerprint light to the fingerprint sensor 13. In this way, it can be ensured that the fingerprint rays participating in the imaging are all large-angle fingerprint rays. At the same time, the double reflection can not only further increase the field of view, but also contribute to the thinning of the device.
  • the difference between the embodiment shown in FIG. 6 and the under-screen optical fingerprint recognition device shown in FIG. 5 is that the two reflecting mirrors 110 are parallel to each other and both of them are inclined relative to the display screen 10.
  • the inclination angle between the two reflecting mirrors 110 and the touch display screen 10 is preferably within 30 degrees.
  • one end of the mirror 110 near the lens 12 is rotated clockwise within a certain angle within 30 degrees. In this way, the inclination angle of the two reflecting mirrors 110 with respect to the display screen 10 can reduce the incident angle of the fingerprint light rays reflected by the two reflecting mirrors 110 on the light incident surface of the lens 12.
  • the tilt angle of the two mirrors 110 needs to be controlled within a certain range to avoid the incident angle of the fingerprint light on the lens 12 If it is reduced to a certain extent, it is impossible to enter the lens body 120 through the aperture stop 121 and thus cannot participate in imaging.
  • the proper inclination angles of the two mirrors 110 with respect to the display screen 10 it is possible to prevent fingerprint rays with too large incident angles at the lens 12 from entering the lens 12, thereby preventing fingerprint rays with too large angles from participating in imaging The image is distorted.
  • FIG. 7 and FIG. 8 The difference between FIG. 7 and FIG. 8 and the under-screen optical fingerprint recognition device shown in FIG. 5 is that one of the two reflecting mirrors 110 is inclined relative to the display screen 10. Specifically, in the embodiment shown in FIG. 7, the first reflecting mirror 110 is tilted relative to the display screen 10, and the second reflecting mirror 110 is still maintained parallel to the display screen 10; in the embodiment shown in FIG. 8 In the embodiment, the first reflecting mirror 110 is maintained in parallel with respect to the display screen 10, and the second reflecting mirror 110 has a certain inclination angle with respect to the display screen 10.
  • fingerprint rays with an excessively large incident angle at the lens 12 can be prevented from entering the lens 12, thereby preventing fingerprint rays with an excessively large angle from participating in the image caused by the imaging distortion.
  • the fingerprint sensor 13 is also inclined relative to the display screen 10, and the inclination angle between the two is preferably The ground is less than 30 degrees.
  • the tilt direction of the photosensitive surface of the fingerprint sensor 13 is opposite to the tilt direction of the two mirrors 110.
  • one end of the fingerprint sensor 13 away from the fingerprint sensing area of the display screen 10 is rotated counterclockwise to a certain angle within 30 degrees.
  • the inclination angle of the fingerprint sensor 13 with respect to the touch display screen 10 can prevent fingerprint light with an excessive angle from entering the effective photosensitive area of the fingerprint sensor 13 and failing to participate in imaging. Therefore, by selecting an appropriate inclination angle of the fingerprint sensor 13 with respect to the display screen 10, it is possible to prevent fingerprint light with an excessive angle from entering the fingerprint sensor 13, thereby preventing image distortion caused by fingerprint light with an excessive angle from participating in imaging.
  • the reflection component, the lens, and the fingerprint sensor can be installed in the electronic device through a structural member, and details are not described herein again.
  • this embodiment can design an optical path formed by a display screen, a reflective component, a lens, and a fingerprint sensor, so that the angles of fingerprint rays participating in imaging through the optical path are all large-angle rays, thereby improving imaging.
  • the reflection of the fingerprint light by the reflection component can not only increase the field of view, but also reduce the thickness of the fingerprint recognition device, which is beneficial to the thinning of electronic equipment.
  • the second embodiment of the present application relates to an under-screen optical fingerprint recognition device.
  • the second embodiment is improved on the basis of the first embodiment.
  • the main improvement is that in the second embodiment, a reflective component structure that is easy to implement and easy to assemble is provided.
  • the reflection component includes a mirror body, at least one side of the mirror body forms a reflection mirror 110, the reflection component further includes a mounting portion formed on the mirror body, and the lens 12 is fixed to the reflection through the mounting portion. On the mirror body.
  • the material of the mirror body is, for example, glass.
  • the mirror body may have one or more reflection planes, and one or more mirrors 110 may be obtained by spraying an optical coating on the one or more reflection planes.
  • the mirror body may include two inclined surfaces parallel to each other and having a certain inclination angle with respect to the display screen, one of which is adjacent to the bottom surface of the mirror body and forms a first The reflecting mirror 110, and the other inclined surface is adjacent to the top surface of the reflecting body and forms a second reflecting mirror 110.
  • the second reflecting mirror 110 is located in the reflecting path of the first reflecting mirror 110, and the reflecting body may form a gap in the reflecting path of the second reflecting mirror 110.
  • the notch has a mounting plane parallel to the display screen, and the mounting plane may be used as The mounting portion is used to mount the lens 12.
  • the fingerprint sensor may be housed inside the notch and disposed toward the lens 12, but it is not limited thereto.
  • this embodiment can not only easily process a single mirror, or multiple parallel or non-parallel mirrors, but also directly fix the lens on The mirror body can greatly reduce the difficulty of lens assembly.
  • a third embodiment of the present application relates to an electronic device including the under-screen optical fingerprint recognition device according to the first or second embodiment.
  • the electronic device is, for example, a smart phone, a tablet computer, or the like, but is not limited thereto.
  • this embodiment can design an optical path formed by a display screen, a reflective component, a lens, and a fingerprint sensor, so that the angles of fingerprint rays participating in imaging through the optical path are all large-angle rays, thereby improving imaging.
  • the reflection of the fingerprint light by the reflection component can not only increase the field of view, but also reduce the thickness of the fingerprint recognition device, which is beneficial to the thinning of electronic equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)

Abstract

本申请涉及生物识别技术领域,提供了一种屏下光学指纹识别装置及采用所述屏下光学指纹识别装置的电子设备。该屏下光学指纹识别装置包括反射组件、透镜以及指纹传感器;所述反射组件、所述透镜和所述指纹传感器设置在所述屏下光学指纹识别装置的指纹检测光路;所述透镜设置在所述反射组件的反射路径,用于将所述反射组件反射而来的指纹光线汇聚到指纹传感器;其中,由手指反射至所述显示屏且通过所述指纹检测光路进入所述指纹传感器的指纹光线在所述显示屏上的入射角均大于或者等于预设角度。采用本申请的实施例,可以进一步提高成像的清晰度。

Description

屏下光学指纹识别装置及电子设备 技术领域
本申请涉及生物识别技术领域,特别涉及一种屏下光学指纹识别装置及采用所述屏下光学指纹识别装置的电子设备。
背景技术
随着手机等终端制造产业的高速发展,生物识别技术也越来越受到人们重视,更加便捷的屏下指纹识别技术成为大众所需。已公开的屏下光学指纹识别技术主要有两种。第一种是基于周期性微孔阵列的屏下光学指纹识别技术,该技术成像清晰度较低、易受莫尔条纹干扰且成本较高。第二种是基于微透镜的屏下光学指纹识别技术,该技术成像清晰度有所提升且成本更低。
不过,由于手指的状况不同,例如一些湿度较小的干手指,上述微透镜屏下光学指纹识别技术也存在一定程度的成像模糊现象。
发明内容
本申请部分实施例的目的在于提供一种屏下光学指纹识别装置及采用所述屏下光学指纹识别装置的电子设备,可以进一步提高成像的清晰度。
本申请实施例提供了一种屏下光学指纹识别装置,包括反射组件、透镜以及指纹传感器;所述反射组件、所述透镜和所述指纹传感器设置在所述屏下 光学指纹识别装置的指纹检测光路;所述透镜设置在所述反射组件的反射路径,用于将所述反射组件反射而来的指纹光线汇聚到指纹传感器;其中,由手指反射至所述显示屏且通过所述指纹检测光路进入所述指纹传感器的指纹光线在所述显示屏上的入射角均大于或者等于预设角度。
本申请实施例还提供了一种电子设备,包括如前所述的屏下光学指纹识别装置。
本申请实施例相对于现有技术而言,通过反射组件、透镜和指纹传感器的光路设计,使得通过指纹检测光路进入指纹传感器参与成像的指纹光线均为在显示屏上的入射角大于或者等于预设角度的指纹光线。指纹光线在显示屏上的入射角(下文简称指纹光线的角度)越大则手指的指纹脊谷线表面反射的指纹光线的光强差异越大,反之,指纹光线的角度越小则手指的指纹脊谷线表面反射的指纹光线的光强差异越小,而光强差异影响成像的清晰度,因此,通过本申请实施例提供的方案使得参与成像的指纹光线均为大角度的指纹光线,从而可以提高成像的清晰度。并且,通过反射组件形成反射光路,不仅有利于增大视场,而且有利于应用该屏下光学指纹识别装置的设备的薄型化。
作为一种实施例,所述反射组件包括反射镜,所述反射镜朝向于显示屏设置,且所述透镜的入光面与所述显示屏垂直设置。
作为一种实施例,所述反射镜和所述指纹传感器均平行于所述显示屏设置。
作为一种实施例,所述反射镜和所述指纹传感器至少一个相较于所述显示屏具有预设倾斜角度。
作为一种实施例,所述反射镜或所述指纹传感器相对于所述显示屏的倾 斜角度在0度到30度之间。
作为一种实施例,所述反射镜相对于所述显示屏的倾斜角度在5度到20度之间。
作为一种实施例,所述反射镜和所述指纹传感器相互平行,且二者相较于所述显示屏均具有所述预设倾斜角度。
作为一种实施例,所述反射组件包括第一反射镜和第二反射镜,所述第一反射镜朝向于显示屏设置,所述第二反射镜设置在所述第一反射镜的反射路径;所述透镜设置在所述第二反射镜的反射路径,且其入光面与所述显示屏平行设置。
作为一种实施例,所述第一反射镜和所述第二反射镜至少一个相较于所述显示屏具有预设倾斜角度。
作为一种实施例,所述第一反射镜和所述第二反射镜相互平行,且二者相较于所述显示屏均具有所述预设倾斜角度。
作为一种实施例,所述指纹传感器相较于所述显示屏具有预设的倾斜角度。
作为一种实施例,所述反射组件包括反射镜本体;所述反射镜本体的至少一面形成反射镜;所述反射组件还包括设置于所述反射镜本体上的安装部,所述透镜通过所述安装部固定在所述反射镜本体上。
作为一种实施例,所述反射镜本体可以包括两个相互平行且相较于显示屏具有一定倾斜角度的斜面,其中一个斜面与反射镜本体的底面相邻接并形成第一反射镜,而另一个斜面与反射镜本体的顶面相邻接并形成第二反射镜,其中所述第二反射镜位于所述第一反射镜的反射路径。
作为一种实施例,所述反射镜本体在所述第二反射镜的反射路径形成有缺口,该缺口具有一个平行于显示屏的安装平面,该安装平面作为所述安装部用以安装所述透镜。
作为一种实施例,所述指纹传感器收容在该缺口内部并朝向所述透镜设置,且所述指纹传感器的感光面平行于所述安装平面。
所述透镜包括透镜本体和孔径光阑,所述透镜本体包括一个微透镜或者由两个或多个微透镜组成的微透镜组,所述孔径光阑设置于所述透镜本体的入光面。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是根据本申请第一实施例中的具有一个反射镜且反射镜以及指纹传感器均平行于显示屏的屏下光学指纹识别装置的结构示意图;
图2是根据本申请第一实施例中的具有一个反射镜且反射镜相对显示屏倾斜设置的屏下光学指纹识别装置的结构示意图;
图3是根据本申请第一实施例中的具有一个反射镜且指纹传感器相对显示屏倾斜设置的屏下光学指纹识别装置的结构示意图;
图4是根据本申请第一实施例中的具有一个反射镜且反射镜以及指纹传感器均相对显示屏倾斜设置的屏下光学指纹识别装置的结构示意图;
图5是根据本申请第一实施例中的两个反射镜以及指纹传感器均平行显 示屏设置的屏下光学指纹识别装置的结构示意图;
图6是根据本申请第一实施例中的两个反射镜均平行显示屏设置的屏下光学指纹识别装置的结构示意图;
图7、图8是根据本申请第一实施例中的两个反射镜中的一个反射镜相对显示屏倾斜设置的屏下光学指纹识别装置的结构示意图;
图9是根据本申请第一实施例中的两个反射镜以及指纹传感器均相对显示屏倾斜设置的屏下光学指纹识别装置的结构示意图;
图10是根据本申请第二实施例的屏下光学指纹识别装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请部分实施例进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请第一实施例涉及一种屏下光学指纹识别装置,所述屏下光学指纹装置可以设置在显示屏(比如触摸显示屏)的下方,且其包括:反射组件、透镜以及指纹传感器,当手指按压在显示屏时,光源发出的激励光(比如显示屏的显示单元或者显示屏下方的红外光源发出的光线)在手指表面发生反射并形成返回显示屏的指纹光线;其中,指纹光线在显示屏上的入射角大于或者等于第一预设角度,且反射组件将穿过显示屏指纹光线反射到透镜,透镜将所述指纹光线汇聚到指纹传感器。
在本实施例中,由手指反射至显示屏的指纹光线经过反射组件和透镜传输到指纹传感器的光学路径可以定义为指纹检测光路,且指纹光线在显示屏上 的入射角大于或者等于第一预设角度从而形成大角度光线,其中,指纹光线可以通过指纹检测光路进入指纹传感器,而不允许入射角小于第一预设角度的指纹光线(下文亦称小角度光线)通过指纹检测光路进入指纹传感器,从而使得参与成像的指纹光线均为大角度光线,进而可提高成像清晰度,并且通过反射组件形成反射光路不仅有利于增大视场,而且有利于应用该屏下光学指纹识别装置的设备的薄型化。
在实现指纹检测光路时,可以从显示屏、反射组件以及透镜之间的相对位置、相对距离,以及指纹检测光路中的光传播介质的折射率以及厚度等的影响因素出发,综合考虑设计出特定的指纹检测光路,从而通过指纹检测光路实现均为大角度光线参与成像。在实际应用中可以有多种实现指纹检测光路的屏下光学指纹装置的具体结构,本实施例主要举例说明一些较佳的实施例。
请参阅图1,指纹光线的角度可以采用指纹光线在触摸显示屏10上的入射角α进行表示,而指纹光线的角度会影响手指30的指纹脊谷线表面反射的指纹光线的光强差异,其中,该光强差异很小时会造成指纹图像的成像模糊。因此,减小小角度指纹光线参与指纹图像成像可提高成像清晰度。在本实施例中,指纹光线的入射角被设计为大于或者等于第一预设角度,其中第一预设角度可以根据需要的成像清晰度得到,一般而言,第一预设角度越大,成像可能越清晰,反之,第一预设角度越小成像可能越模糊。在实际应用中,第一预设角度可以在大于或者等于20度且小于或者等于30度范围内取值,然不限于此。
请参阅图1至图9,透镜12包括透镜本体120以及孔径光阑121,透镜本体120可以包括一个微透镜或者由两个或多个微透镜组成的微透镜组,孔径光阑121设置于透镜本体120的入光面,参与成像的指纹光线经反射组件110 反射后,首先通过孔径光阑121进入透镜本体120,再经透镜本体120进入指纹传感器13。在实际应用中,屏下光学指纹识别装置还可以包括滤波片15,滤波片15可设置于指纹传感器13的感光区,通过滤波片15可滤除例如红光或者红外光线。指纹传感器13可通过传感器基板14等的载体安装至电子设备中。本实施方式对于指纹传感器13、滤波片15以及传感器基板14等的具体实现方式均不作限制。
反射组件可以包括一个反射镜或者多个反射镜,在一些例子中,反射镜的数量可以为奇数个,请参阅图1至图4,反射镜110的数量例如为1个。在一些例子中,反射镜的数量还可以为偶数个,请参阅图5至图9,反射镜110的个数例如为2个,然不限于此。在实现指纹检测光路时,在反射镜110的个数为奇数时,透镜12的入光面与显示屏10的操作面(即触模面)可以垂直设置,在反射镜110的个数为偶数时,透镜12的入光面与显示屏10的操作面可以平行设置。
本实施例的透镜12采用直径一般是毫米级的微透镜,在装配至电子设备中时装配难度较大,而将透镜12的入光面与显示屏10的操作面垂直或者平行设置,相比透镜12的入光面与显示屏10的操作面倾斜设置而言,有利于降低透镜的装配难度。本实施方式对于透镜12与显示屏10的相对位置不作具体限制,透镜12也可相对显示屏10倾斜设置。
在透镜12与显示屏10之间采用上述垂直或者平行方式设置时,反射镜110可以相对显示屏10平行设置(如图1或图3所示),或者反射镜110可以相对显示屏10倾斜设置(如图2或图4所示),且两者的倾斜角度大于0度且小于或者等于30度,其中,反射镜110相对显示屏10采用较小的倾斜角度设 置时,有利于避免小角度指纹光线进入所述指纹光路。
在一些例子中,在透镜12与显示屏10垂直或者平行设置时,透镜12与显示屏10之间的倾斜角度可以为大于或者等于5度且小于或者等于20度的某个角度,从而有利于通过指纹检测光路控制角度更佳的指纹光线参与成像,例如使得参与成像的指纹光线的入射角均在大于或者等于30度且小于或者等于75度的角度范围内取值,然不限于此。这样既可以保证成像的清晰度,而且可避免角度过大的指纹光线参与成像造成的成像畸变。
在一些例子中,透镜12与指纹传感器13的相对位置、相对距离等因素也会影响指纹光线参与指纹图像成像。因此,在本实施例中,通过选择合适的透镜12与指纹传感器13的相对位置或者相对距离,可以控制由透镜12汇聚到指纹传感器13的这一部分指纹光线为在显示屏10的入射角大于或者等于第二预设角度,其中,第二预设角度大于第一预设角度,即通过透镜12与指纹传感器13之间的光路设计使得具有更大入射角度的指纹光线才能参与成像。在一些例子中,在透镜12与显示屏10垂直或者平行设置时,指纹传感器13的感光面与显示屏10可以平行设置,或者指纹传感器13的感光面与触摸显示屏10之间的具有预定倾斜角度,其中该预定倾斜角度大于0度且小于或者等于30度。
请参阅图1,在图1所示的实施例中,屏下光学指纹识别装置包括一个反射镜110,反射镜110与指纹传感器13的感光面均平行于显示屏10设置,反射镜110并不直接设置在显示屏10的指纹感测区正下方,而是偏离显示屏10的指纹感测区(例如手指30所在区域)垂直投影一定距离设置。透镜12垂直于显示屏10和反射镜110设置,且位于反射镜110的反射路径上,其中透镜12与反射镜110之间具有一定的距离,以使得指纹光线在反射镜110反射之后 可以传输到透镜12并进入其孔径光阑121。指纹传感器13与显示屏10平行设置且具有一定的距离,其中,指纹传感器13的感光面可以朝向反射镜110的反射面,并背离显示屏10的显示面;指纹传感器13与透镜12之间的距离可以使得指纹光线通过透镜120汇聚到指纹传感器13的感光面。
通过图1中的手指30边界处的第一指纹光线21以及第二指纹光线22进入指纹传感器13的传播路径可以看出,假设第二指纹光线22对应于第一预设角度,则入射角度小于第二指纹光线22的指纹光线将无法通过反射镜110反射并经透镜120汇聚进入指纹传感器13。因此,采用本实施例的指纹识别装置不仅可满足大角度指纹光线成像要求,而且光路的设计以及器件的装配难度也更低。
请参阅图2,图2所示的实施例与图1所示的屏下光学指纹识别装置相比区别在于,反射镜110相对显示屏10倾斜设置,且两者之间的倾斜角度优选地小于30度,例如将反射镜110远离透镜12的一端顺时针旋转30度以内的某个角度,从而与显示屏10具有上述小于30度的倾斜角度,且由于透镜12与显示屏10垂直,经过旋转之后反射镜110会同时与透镜12具有一定的倾斜角度。相较于反射镜110与显示屏10平行设置的方案,反射镜110相对显示屏10的倾斜角度可以减小经反射镜110反射后的指纹光线在透镜12的入光面的入射角,其中上述倾斜角度越大,则指纹光线在透镜12的入射角会越小;其中所述反射镜110的倾斜角度需要控制在一定的范围之内,以避免指纹光线在透镜12的入射角减小到一定程度出现无法经孔径光阑121进入透镜本体120,从而无法参与成像。另一方面,由于上述反射镜110的倾斜角度可以减小指纹光线在透镜12的入射角,通过选择合适的反射镜110相对触摸显示屏10的倾斜角度可以 防止在透镜12入射角度过大的指纹光线进入透镜12,从而可避免上述入射角度过大的指纹光线参与成像造成的图像畸变。
请参阅图3,图3所示的实施例与图1所示的屏下光学指纹识别装置相比区别在于,指纹传感器13相对显示屏10倾斜设置,且两者之间的倾斜角度优选地在30度以内,例如将指纹传感器13远离透镜12的一端顺时针旋转30度以内的某个角度。这样,随着指纹传感器13相对显示屏10的倾斜角度的增大,在显示屏10入射角度过大的指纹光线在经过所述指纹检测光路之后无法进入指纹传感器13的有效感光区域而无法参与成像。因此,通过选择合适的指纹传感器13相对触摸显示屏10的倾斜角度可以防止角度过大的指纹光线进入指纹传感器13,从而可避免角度过大的指纹光线参与成像造成的图像畸变。
请继续参阅图4,图4所示的实施例与图1所示的屏下光学指纹识别装置相比区别在于,反射镜110以及指纹传感器13均相对显示屏10倾斜设置,并且作为一种可选的实现方案,反射镜110可以与指纹传感器13的感光面是平行设置,或者二者也可以具有一些较小的倾斜角度。因此,相比图2或者图3的只有反射镜110或者指纹传感器13相对触摸显示屏10倾斜设置而言,可以更好地避免角度过大的指纹光线参与成像造成的图像畸变。
请参阅图5,在图5所示的实施例种,屏下光学指纹识别装置的反射组件包括两个反射镜110,从而使得指纹光线在所述指纹检测光路传输过程中进行两次反射。在具体实现上,两个反射镜110可以均与显示屏10平行设置,其中第一个反射镜110的反射面朝向于显示屏10的底面以接收穿过所述显示屏10的指纹光线,第二个反射镜110设置在第一个反射镜的反射路径,且其反射面朝向第一个反射镜110的反射面。透镜12设置于第二次反射的反射路径,且 透镜12平行于触摸显示屏设置,指纹传感器13平行于显示屏10设置。基于上述结构,指纹光线在经过第一个反射镜110的反射之后,可以在第二个反射镜110进行二次反射之后进入透镜12,且透镜12可以进一步将指纹光线汇聚到指纹传感器13。这样,可以确保参与成像的指纹光线均为大角度指纹光线,同时,通过两次反射不仅可以进一步增大视场,而且更有利于设备的薄型化。
请继续参阅图6,图6所示的实施例与图5所示的屏下光学指纹识别装置相比区别在于,两个反射镜110彼此相互平行且二者相对显示屏10均倾斜设置,其中,两个反射镜110与触摸显示屏10之间的倾斜角度优选为30度以内。例如将反射镜110靠近透镜12的一端顺时针旋转30度以内的某个角度。这样,两个反射镜110相对显示屏10的倾斜角度可以减小经两个反射镜110反射后的指纹光线在透镜12的入光面的入射角。其中上述倾斜角度越大,则指纹光线在透镜12的入射角会越小;其中所述两个反射镜110的倾斜角度需要控制在一定的范围之内,以避免指纹光线在透镜12的入射角减小到一定程度就无法经孔径光阑121进入透镜本体120,从而无法参与成像。另一方面,通过选择合适的两个反射镜110相对显示屏10的倾斜角度可以防止在透镜12入射角度过大的指纹光线进入透镜12,从而可避免上述角度过大的指纹光线参与成像造成的图像畸变。
请继续参阅图7和图8,图7和图8与图5所示的屏下光学指纹识别装置相比区别在于,两个反射镜110中的一个相对显示屏10倾斜设置。具体地,在图7所示的实施例中,第一个反射镜110相对于显示屏10倾斜设置,而第二个反射镜110依然维持平行于显示屏10;在图8所示的实施例中,第一个反射镜110相对于显示屏10依然维持平行设置,而第二个反射镜110相较于显示屏 10具有一定的倾斜角度。类似地,通过选择合适的其中一个反射镜110相对显示屏10的倾斜角度可以防止在透镜12的入射角度过大的指纹光线进入透镜12,从而可避免角度过大的指纹光线参与成像造成的图像畸变。
请继续参阅图9,图9所示的实施例与图6所示的屏下光学指纹识别装置相比区别在于,指纹传感器13相对显示屏10也倾斜设置,且两者之间的倾斜角度优选地小于30度。并且,指纹传感器13的感光面倾斜方向与两个反射镜110的倾斜方向相反。例如,将指纹传感器13远离显示屏10的指纹感测区域的一端逆时针旋转30度以内的某个角度。这样,指纹传感器13相对触摸显示屏10的倾斜角度可以使得角度过大的指纹光线会无法进入指纹传感器13的有效感光区域而无法参与成像。因此,通过选择合适的指纹传感器13相对显示屏10的倾斜角度可以防止角度过大的指纹光线进入指纹传感器13,从而可避免角度过大的指纹光线参与成像造成的图像畸变。
需要说明的是,在实际应用中,反射组件、透镜以及指纹传感器均可以通过结构件安装在电子设备中,此处不再赘述。
本实施例相对于现有技术而言,可以通过对显示屏、反射组件、透镜以及指纹传感器形成的光路进行设计,使得通过该光路参与成像的指纹光线的角度均为大角度光线,从而提高成像的清晰度,并且,通过反射组件对指纹光线进行反射,不仅可增大视场,而且可减小指纹识别装置的厚度,有利于电子设备的薄型化。
本申请第二实施例涉及一种屏下光学指纹识别装置。第二实施例在第一实施例的基础上做出改进,主要改进之处在于,在第二实施例中,提供了一种易于实现且易于装配的反射组件结构。
请参阅图10,本实施例中,反射组件包括反射镜本体,反射镜本体的至少一面形成反射镜110,反射组件还包括形成在反射镜本体上的安装部,透镜12通过安装部固定在反射镜本体上。
其中,反射镜本体的材料例如为玻璃,反射镜本体可以具有一个或者多个反射平面,通过在一个或者多个反射平面上喷涂光学涂层即可得到一个或者多个反射镜110。例如,在图10所示的实施例种,反射镜本体可以包括两个相互平行且相较于显示屏具有一定倾斜角度的斜面,其中一个斜面与反射镜本体的底面相邻接并形成第一反射镜110,而另一个斜面与反射镜本体的顶面相邻接并形成第二反射镜110。第二反射镜110位于第一反射镜110的反射路径,且反射镜本体在第二反射镜110的反射路径可以形成有缺口,该缺口具有一个平行于显示屏的安装平面,该安装平面可以作为安装部用以安装透镜12。另外,指纹传感器可以收容在该缺口内部并朝向该透镜12设置,然不限于此。
本实施例与前述实施例相比,通过设计具有多个平面的反射镜本体,不仅可以方便地加工出一个反射镜,或者多个平行或者不平行的反射镜,而且还可以直接将透镜固定在反射镜本体上,从而可大大降低透镜装配难度。
本申请第三实施例涉及一种电子设备,包括如第一或者第二实施例所述的屏下光学指纹识别装置。该电子设备例如是智能手机、平板电脑等,然不限于此。
本实施例相对于现有技术而言,可以通过对显示屏、反射组件、透镜以及指纹传感器形成的光路进行设计,使得通过该光路参与成像的指纹光线的角度均为大角度光线,从而提高成像的清晰度,并且,通过反射组件对指纹光线进行反射,不仅可增大视场,而且可减小指纹识别装置的厚度,有利于电子设 备的薄型化。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (18)

  1. 一种屏下光学指纹识别装置,应用于电子设备的显示屏下方,其特征在于,所述屏下光学指纹识别装置包括:反射组件、透镜以及指纹传感器;
    所述反射组件、所述透镜和所述指纹传感器设置在所述屏下光学指纹识别装置的指纹检测光路;所述透镜设置在所述反射组件的反射路径,用于将所述反射组件反射而来的指纹光线汇聚到指纹传感器;
    其中,由手指反射至所述显示屏且通过所述指纹检测光路进入所述指纹传感器的指纹光线在所述显示屏上的入射角均大于或者等于预设角度。
  2. 如权利要求1所述的屏下光学指纹识别装置,其特征在于,所述反射组件包括反射镜,所述反射镜朝向于显示屏设置,且所述透镜的入光面与所述显示屏垂直设置。
  3. 如权利要求2所述的屏下光学指纹识别装置,其特征在于,所述反射镜和所述指纹传感器均平行于所述显示屏设置。
  4. 如权利要求2所述的屏下光学指纹识别装置,其特征在于,所述反射镜和所述指纹传感器至少一个相较于所述显示屏具有预设倾斜角度。
  5. 如权利要求4所述的屏下光学指纹识别装置,其特征在于,所述反射镜或所述指纹传感器相对于所述显示屏的倾斜角度在0度到30度之间。
  6. 如权利要求5所述的屏下光学指纹识别装置,其特征在于,所述反射镜相对于所述显示屏的倾斜角度在5度到20度之间。
  7. 如权利要求4所述的屏下光学指纹识别装置,其特征在于,所述反射镜和所述指纹传感器相互平行,且二者相较于所述显示屏均具有所述预设倾斜角度。
  8. 如权利要求1所述的屏下光学指纹识别装置,其特征在于,所述反射组件包括第一反射镜和第二反射镜,所述第一反射镜朝向于显示屏设置,所述第二反射镜设置在所述第一反射镜的反射路径;所述透镜设置在所述第二反射镜的反射路径,且其入光面与所述显示屏平行设置。
  9. 如权利要求8所述的屏下光学指纹识别装置,其特征在于,所述第一反射镜和所述第二反射镜至少一个相较于所述显示屏具有预设倾斜角度。
  10. 如权利要求9所述的屏下光学指纹识别装置,其特征在于,所述第一反射镜和所述第二反射镜相互平行,且二者相较于所述显示屏均具有所述预设倾斜角度。
  11. 如权利要求10所述的屏下光学指纹识别装置,其特征在于,所述指纹传感器相较于所述显示屏具有预设的倾斜角度。
  12. 如权利要求1所述的屏下光学指纹识别装置,其特征在于,所述反射组件包括反射镜本体;
    所述反射镜本体的至少一面形成反射镜;
    所述反射组件还包括设置于所述反射镜本体上的安装部,所述透镜通过所述安装部固定在所述反射镜本体上。
  13. 如权利要求12所述的屏下光学指纹识别装置,其特征在于,所述反射镜本体可以包括两个相互平行且相较于显示屏具有一定倾斜角度的斜面,其中一个斜面与反射镜本体的底面相邻接并形成第一反射镜,而另一个斜面与反射镜本体的顶面相邻接并形成第二反射镜,其中所述第二反射镜位于所述第一反射镜的反射路径。
  14. 如权利要求13所述的屏下光学指纹识别装置,其特征在于,所述反射镜本体在所述第二反射镜的反射路径形成有缺口,该缺口具有一个平行于显示屏的安装平面,该安装平面作为所述安装部用以安装所述透镜。
  15. 如权利要求14所述的屏下光学指纹识别装置,其特征在于,所述指纹传感器收容在该缺口内部并朝向所述透镜设置,且所述指纹传感器的感光面平行于所述安装平面。
  16. 如权利要求1至15中任一项所述的屏下光学指纹识别装置,其特征在于,所述透镜包括透镜本体和孔径光阑,所述透镜本体包括一个微透镜或者由两个或多个微透镜组成的微透镜组,所述孔径光阑设置于所述透镜本体的入光面。
  17. 如权利要求1所述的屏下光学指纹识别装置,其特征在于,所述预设角度在大于或者等于20度且小于或者等于30度范围内。
  18. 一种电子设备,其特征在于,包括如权利要求1至17中任一项所述的屏下光学指纹识别装置。
PCT/CN2018/099003 2018-08-06 2018-08-06 屏下光学指纹识别装置及电子设备 WO2020029021A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880001319.2A CN109074492B (zh) 2018-08-06 2018-08-06 屏下光学指纹识别装置及电子设备
EP18915797.7A EP3627385B1 (en) 2018-08-06 2018-08-06 Under-screen optical fingerprint identification device and electronic device
PCT/CN2018/099003 WO2020029021A1 (zh) 2018-08-06 2018-08-06 屏下光学指纹识别装置及电子设备
US16/667,905 US11182585B2 (en) 2018-08-06 2019-10-30 Under-screen optical fingerprint identification device and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/099003 WO2020029021A1 (zh) 2018-08-06 2018-08-06 屏下光学指纹识别装置及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/667,905 Continuation US11182585B2 (en) 2018-08-06 2019-10-30 Under-screen optical fingerprint identification device and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2020029021A1 true WO2020029021A1 (zh) 2020-02-13

Family

ID=64789312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099003 WO2020029021A1 (zh) 2018-08-06 2018-08-06 屏下光学指纹识别装置及电子设备

Country Status (4)

Country Link
US (1) US11182585B2 (zh)
EP (1) EP3627385B1 (zh)
CN (1) CN109074492B (zh)
WO (1) WO2020029021A1 (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020037683A1 (zh) 2018-08-24 2020-02-27 深圳市汇顶科技股份有限公司 背光模组、屏下指纹识别方法、装置和电子设备
CN109313703B (zh) 2018-08-15 2022-02-08 深圳市汇顶科技股份有限公司 屏下光学指纹识别系统、背光模组、显示屏幕及电子设备
CN110896433A (zh) * 2018-09-12 2020-03-20 上海耕岩智能科技有限公司 一种应用于屏下图像成像的光源驱动方法、存储介质和电子设备
EP3786834B1 (en) 2018-12-13 2022-12-07 Shenzhen Goodix Technology Co., Ltd. Fingerprint recognition device and electronic apparatus
WO2020133378A1 (zh) 2018-12-29 2020-07-02 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN109685034B (zh) * 2019-01-02 2021-01-26 京东方科技集团股份有限公司 指纹识别模组及显示装置
CN110785771B (zh) * 2019-01-22 2023-09-08 深圳市汇顶科技股份有限公司 屏下光学指纹识别系统、指纹识别显示装置及电子设备
CN109863506B (zh) * 2019-01-22 2022-03-29 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
EP3709211A1 (en) * 2019-01-22 2020-09-16 Shenzhen Goodix Technology Co., Ltd. Under-screen fingerprint recognition system, liquid crystal display screen fingerprint recognition apparatus and electronic device
CN111095273B (zh) * 2019-01-22 2022-05-03 深圳市汇顶科技股份有限公司 生物特征识别的装置
CN109863508B (zh) * 2019-01-23 2023-05-26 深圳市汇顶科技股份有限公司 Lcd屏下指纹识别模组、lcd装置和终端设备
CN111860452B (zh) * 2019-02-02 2022-03-04 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN111597865B (zh) * 2019-02-20 2024-07-02 华为技术有限公司 屏组件及电子设备
CN110062902A (zh) * 2019-03-04 2019-07-26 深圳市汇顶科技股份有限公司 模组结构及电子设备
WO2020181489A1 (zh) * 2019-03-12 2020-09-17 深圳市汇顶科技股份有限公司 指纹识别装置、指纹识别方法和电子设备
CN111950335B (zh) * 2019-05-17 2023-07-21 荣耀终端有限公司 叠层结构、显示面板及电子装置
CN110210353A (zh) * 2019-05-23 2019-09-06 上海思立微电子科技有限公司 光学指纹识别装置、电子设备、补光方法及存储介质
WO2021003877A1 (zh) * 2019-07-09 2021-01-14 南昌欧菲生物识别技术有限公司 显示装置及电子设备
CN111183429B (zh) * 2019-07-10 2022-08-30 深圳市汇顶科技股份有限公司 指纹识别的方法、装置和电子设备
CN111108510B (zh) * 2019-07-12 2021-04-16 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
WO2021022560A1 (zh) * 2019-08-08 2021-02-11 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN111095274B (zh) * 2019-07-25 2023-10-24 深圳市汇顶科技股份有限公司 屏下指纹识别模组、lcd光学指纹识别系统及电子设备
CN111052141B (zh) 2019-08-02 2022-08-02 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN110728250A (zh) * 2019-10-21 2020-01-24 云谷(固安)科技有限公司 指纹识别装置、方法、显示面板和电子设备
CN110945527B (zh) * 2019-10-25 2023-09-12 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN110781848B (zh) * 2019-10-30 2022-05-20 Oppo广东移动通信有限公司 屏下指纹识别装置、电子设备
CN110796097B (zh) * 2019-10-30 2022-08-30 Oppo广东移动通信有限公司 屏下光学指纹模组、显示屏组件和电子设备
WO2021147012A1 (zh) * 2020-01-22 2021-07-29 深圳市汇顶科技股份有限公司 光学指纹识别装置及电子设备
JPWO2021200827A1 (zh) * 2020-04-02 2021-10-07
CN111399271A (zh) * 2020-04-20 2020-07-10 Oppo广东移动通信有限公司 电子装置
CN113743152B (zh) * 2020-05-27 2024-04-16 京东方科技集团股份有限公司 纹路识别装置
CN113743158A (zh) * 2020-05-28 2021-12-03 Oppo广东移动通信有限公司 屏下识别组件以及电子设备
TWI751599B (zh) 2020-07-03 2022-01-01 大立光電股份有限公司 光學指紋辨識系統及光學指紋辨識裝置
TWI761898B (zh) 2020-07-30 2022-04-21 大立光電股份有限公司 光學指紋辨識系統及光學指紋辨識裝置
CN112486445A (zh) * 2020-11-30 2021-03-12 维沃移动通信有限公司 一种电子设备及操作方法
WO2022193324A1 (zh) * 2021-03-19 2022-09-22 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN114612948A (zh) * 2022-03-07 2022-06-10 华为技术有限公司 指纹识别模组及显示终端
DE102022115810A1 (de) * 2022-06-24 2024-01-04 IDloop GmbH Vorrichtung zur kontaktlosen aufnahme von biometriedaten von hautbereichen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107004130A (zh) * 2015-06-18 2017-08-01 深圳市汇顶科技股份有限公司 用于屏幕上指纹感应的屏幕下光学传感器模块
CN207182338U (zh) * 2017-09-15 2018-04-03 南昌欧菲生物识别技术有限公司 光学指纹识别组件和电子装置
CN207182353U (zh) * 2017-09-15 2018-04-03 南昌欧菲生物识别技术有限公司 光学指纹识别组件和电子装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020131624A1 (en) * 2000-08-11 2002-09-19 Yury Shapiro Fingerprint imaging device with fake finger detection
US10410033B2 (en) * 2015-06-18 2019-09-10 Shenzhen GOODIX Technology Co., Ltd. Under-LCD screen optical sensor module for on-screen fingerprint sensing
KR20180050600A (ko) * 2016-10-01 2018-05-15 선전 구딕스 테크놀로지 컴퍼니, 리미티드 지문 캡처링 장치
CN207182344U (zh) * 2017-09-15 2018-04-03 南昌欧菲生物识别技术有限公司 指纹识别组件和电子装置
CN108009533A (zh) * 2018-01-04 2018-05-08 敦捷光电股份有限公司 光学指纹辨识系统
US10803286B2 (en) * 2018-07-25 2020-10-13 Shenzhen GOODIX Technology Co., Ltd. Under-screen optical fingerprint sensor based on optical imaging with an optical axis off-normal to the display screen surface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107004130A (zh) * 2015-06-18 2017-08-01 深圳市汇顶科技股份有限公司 用于屏幕上指纹感应的屏幕下光学传感器模块
CN207182338U (zh) * 2017-09-15 2018-04-03 南昌欧菲生物识别技术有限公司 光学指纹识别组件和电子装置
CN207182353U (zh) * 2017-09-15 2018-04-03 南昌欧菲生物识别技术有限公司 光学指纹识别组件和电子装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3627385A4 *

Also Published As

Publication number Publication date
EP3627385A4 (en) 2020-07-01
US20200065550A1 (en) 2020-02-27
CN109074492A (zh) 2018-12-21
EP3627385B1 (en) 2023-07-05
EP3627385A1 (en) 2020-03-25
CN109074492B (zh) 2022-08-26
US11182585B2 (en) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2020029021A1 (zh) 屏下光学指纹识别装置及电子设备
USRE43842E1 (en) Panoramic imaging system
JP6368760B2 (ja) 結像レンズ
US11238262B2 (en) Fingerprint identification module and display device
KR20120068177A (ko) 렌즈 조립체
US20100302344A1 (en) Establishing eye contact in video conferencing
CN208737486U (zh) 屏下光学指纹识别装置及电子设备
CN110945527B (zh) 指纹识别装置和电子设备
US20230028802A1 (en) Lens assembly, optical unit and electronic device
TWI400550B (zh) 鏡頭模組及採用該鏡頭模組的相機模組
TW202405482A (zh) 稜鏡與光學成像系統
US5181108A (en) Graphic input device with uniform sensitivity and no keystone distortion
KR20120069406A (ko) 입사광의 입사각 보정기능을 갖는 광 이미지 변조기 및 이를 포함하는 광학장치
CN109031849B (zh) 液晶透镜及采用该液晶透镜的成像装置
TW508474B (en) System and method for improvement of asymmetric projection illumination
US8089466B2 (en) System and method for performing optical navigation using a compact optical element
CN110955083B (zh) 显示装置
US20230161140A1 (en) Contactless type optical device
US11747717B2 (en) Camera module
WO2020088057A1 (zh) 投影模组、成像装置及电子装置
CN214795271U (zh) 棱镜、光学镜组、摄像头模组及电子设备
US6912300B1 (en) Irregular pattern reader
US20220229269A1 (en) Imaging lens assembly and optical verification system
TWI777542B (zh) 成像鏡頭與電子裝置
WO2020001255A1 (zh) 光转向机构以及带有光转向机构的摄像单元及其应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018915797

Country of ref document: EP

Effective date: 20191101

NENP Non-entry into the national phase

Ref country code: DE