WO2020027482A1 - 소거 프로브 기반 염색체 수적이상 검출방법 및 염색체 수적이상 검출용핵산의 조성물 - Google Patents

소거 프로브 기반 염색체 수적이상 검출방법 및 염색체 수적이상 검출용핵산의 조성물 Download PDF

Info

Publication number
WO2020027482A1
WO2020027482A1 PCT/KR2019/009067 KR2019009067W WO2020027482A1 WO 2020027482 A1 WO2020027482 A1 WO 2020027482A1 KR 2019009067 W KR2019009067 W KR 2019009067W WO 2020027482 A1 WO2020027482 A1 WO 2020027482A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
sequence
target
chromosome
control
Prior art date
Application number
PCT/KR2019/009067
Other languages
English (en)
French (fr)
Inventor
이시석
김경탁
양은주
박희경
Original Assignee
주식회사 시선바이오머티리얼스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 시선바이오머티리얼스 filed Critical 주식회사 시선바이오머티리얼스
Priority to CN201980060332.XA priority Critical patent/CN113272444A/zh
Priority to US17/265,102 priority patent/US20220127665A1/en
Publication of WO2020027482A1 publication Critical patent/WO2020027482A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6832Enhancement of hybridisation reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2525/00Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
    • C12Q2525/10Modifications characterised by
    • C12Q2525/107Modifications characterised by incorporating a peptide nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2527/00Reactions demanding special reaction conditions
    • C12Q2527/107Temperature of melting, i.e. Tm
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2531/00Reactions of nucleic acids characterised by
    • C12Q2531/10Reactions of nucleic acids characterised by the purpose being amplify/increase the copy number of target nucleic acid
    • C12Q2531/113PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2537/00Reactions characterised by the reaction format or use of a specific feature
    • C12Q2537/10Reactions characterised by the reaction format or use of a specific feature the purpose or use of
    • C12Q2537/165Mathematical modelling, e.g. logarithm, ratio
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/107Nucleic acid detection characterized by the use of physical, structural and functional properties fluorescence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/10Detection mode being characterised by the assay principle
    • C12Q2565/101Interaction between at least two labels
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to a method for analyzing the presence or absence of abnormality in the target chromosome with sensitivity and a composition for detecting the chromosomal abnormality. More specifically, the control sequence and the chromosome abnormality located on the chromosome not related to the abnormality of the chromosome Amplifying a target nucleotide sequence located on the chromosome associated with the same primer using the same primers, and then analyzing probes having one or two nucleotide sequences different from the control nucleotide sequence or target nucleotide sequence; And a fusion curve of the hybridized reactant by hybridizing with the amplification product by using a scavenging probe having a higher binding force with the amplification product than the analytical probe, using a scavenging probe having a part or all of a target sequencing or a control sequencing hybridization sequence of the analytical probe.
  • the present invention relates to a method for determining abnormalities in chromosome numbers by analyzing.
  • Chromosomal abnormalities are associated with genetic defects and degenerative diseases. Chromosome abnormalities may mean deletion or duplication of chromosomes, deletion or duplication of some of the chromosomes, or breaks, translocations, or inversions within the chromosome. Chromosomal aberrations are one of the disorders of genetic balance and cause fetal death or serious deficiencies of physical and mental state. Down's syndrome, for example, is a common form of more than the number of chromosomes caused by the presence of three chromosomes 21 (trisomy 21). Edwards syndrome (trisomy 18), Patau syndrome (trisomy 13), Turner syndrome (XO), and Klinefelter syndrome (XXY) are also more than chromosome numbers. do.
  • Chromosomal abnormalities can be detected using karyotype, and Fluorescent In Situ Hybridization (FISH).
  • FISH Fluorescent In Situ Hybridization
  • Such detection methods are disadvantageous in terms of time, effort and accuracy.
  • karyotyping requires a lot of time for cell culture.
  • FISH is only available for samples where the nucleic acid sequence and chromosomal location are known.
  • comparative genome hybridization can be used.
  • CGH can detect regions where more than one chromosome occurs by analyzing the whole genome.
  • CGH has a disadvantage in that resolution is lower than FISH.
  • DNA microarrays can be used to detect chromosomal abnormalities.
  • DNA microarray systems can be classified into cDNA microarrays, oligonucleotide microarrays, and genomic microarrays depending on the type of bio-molecules immobilized on the microarray.
  • cDNA microarrays and oligonucleotide microarrays are easy to fabricate, these systems have a limited number of probes immobilized on the microarray, are expensive to fabricate, and difficult to detect chromosomal abnormalities located outside the probes. There is this.
  • genomic DNA microarray systems facilitate the fabrication of probes and detect chromosomal abnormalities in intron regions of chromosomes, as well as extended regions of chromosomes. Difficult to manufacture with water
  • next-generation sequencing techniques have been used for chromosomal abnormalities analysis (Park, H., Kim et al., Nat Genet 2010, 42, 400-405 .; Kidd, JM et al., Nature 2008, 453, 56-64 ).
  • this technique requires high coverage readings for chromosomal abnormalities analysis, and CNV measurements also require independent validation. Therefore, the cost was very high and the results were difficult to understand, which was not suitable as a general genetic search analysis at that time.
  • real-time qPCR is currently used as an advanced technology for quantitative genetic analysis, which includes a wide dynamic range (Weaver, S. et al, Methods 2010, 50, 271-276), threshold cycles and initial targets. This is because linear correlations between the two are reproducibly observed (Deepak, S. et al., Curr Genomics 2007, 8, 234-251).
  • the sensitivity of the qPCR assay is not high enough to distinguish between copy number differences.
  • small changes such as 1.5-fold changes, cannot be reliably measured because of the inherent variables of qPCR-based analysis.
  • multiple temporal iterative analysis is required for reliable identification between samples with similar DNA copies.
  • qPCR is not suitable for multimode analysis.
  • the present inventors have made intensive efforts to solve the above problems and to develop a method for detecting chromosomal abnormalities that can provide high sensitivity and rapid analysis, and thus, amplify both the control sequence and the target sequence, and then control base.
  • the amplification product of the sequence is removed using a scavenging probe, it was confirmed that the analysis result can be obtained with high sensitivity and high speed, and the present invention was completed.
  • Another object of the present invention is to provide a PCR composition for detecting chromosomal abnormalities.
  • the present invention comprises the steps of: a) obtaining DNA from the normal sample and the subject sample, respectively; b) amplifying with a primer capable of amplifying both a control sequence located on a chromosome not associated with an abnormal number of chromosomes and a target sequence located on a chromosome associated with an abnormal number of chromosomes; c) an assay probe capable of hybridizing one or two nucleotide sequences with a sequence different from the control nucleotide or target nucleotide sequence; And a part or all of a sequence hybridizing the assay probe with a target sequence or a control sequence, and hybridizing with the amplification product using an scavenging probe having a higher binding force with the amplification product of step b) than the assay probe. step; And d) analyzing fusion curves of the normal sample and the target sample reactant hybridized in step c) to determine chromosomal abnormalities.
  • the present invention also provides a primer comprising: i) a primer capable of amplifying both a control sequence located on a chromosome not associated with a chromosome abnormality and a target sequence located on a chromosome associated with a chromosome abnormality; ii) an analytical probe capable of hybridizing one or two nucleotide sequences different from the control nucleotide or target nucleotide sequence; And iii) a scavenging probe for detecting chromosomal abnormalities, wherein the assay probe comprises a part or all of a sequence that hybridizes with a target nucleotide sequence or a control nucleotide sequence, and has a higher binding force than the assay probe.
  • the present invention also provides the use of the PCR composition for detecting chromosomal abnormalities.
  • FIG. 1 is a schematic diagram showing that the normal and chromosomal aberrations are erased at the same rate through the use of an erase probe according to the present invention.
  • FIG. 2 is a schematic diagram showing the analytical resolution change according to the erase ratio through the use of an erase probe according to the present invention.
  • Figure 3 is a schematic diagram showing the primer selection conditions for screening the target sequence and amplification of the target sequence according to the present invention.
  • Figure 4 is a schematic showing the real-time PCR conditions (real-time PCR) conditions for determining whether or not more than the chromosome ratio according to the present invention.
  • FIG. 5 is a schematic diagram showing a detection probe and a deletion probe according to the present invention, (A) shows a non-fluorescence cancellation probe that binds to both the target and control sequences, (B) is bound to only the control base sequence Non-fluorescence scavenging probes are shown, and (C) shows fluorescence scavenging probes that bind only to the control base sequence.
  • 11 is a result showing the analytical resolution increase through the use of a non-fluorescent probe for simultaneously erasing the target and control sequences in accordance with the present invention.
  • FIG. 12 is a schematic diagram showing result correction using a fluorescence scavenging probe targeting a control sequence according to the present invention.
  • Figure 14 shows the results of a comparative analysis of the standard and clinical samples.
  • the control base sequence located on the chromosome without chromosomal abnormality is identical to the same primer.
  • the amplification product was removed by a scavenging probe, and after analyzing the melting curve of the amplification product using the analytical probe, it was confirmed that the chromosomal abnormality can be detected with high sensitivity.
  • amplification products may be produced by amplifying specific positions of chromosome 13 and simultaneously amplifying specific positions of chromosomes 3, 6, and 12, and then using an scavenging probe capable of hybridizing with the amplification products.
  • the melting curve is analyzed using the analytical probe, and the values at the perfect match and incomplete hybridization (mismatch) temperature of the normal sample and the target sample are analyzed.
  • FIGS. 1 and 2 chromosome abnormalities can be analyzed with high sensitivity
  • the present invention is,
  • an assay probe capable of hybridizing one or two nucleotide sequences with a sequence different from the control nucleotide or target nucleotide sequence; And a part or all of a sequence hybridizing the assay probe with a target sequence or a control sequence, and hybridizing with the amplification product using an scavenging probe having a higher binding force with the amplification product of step b) than the assay probe. step;
  • step d) analyzing the melting curve of the normal sample and the target sample reactant hybridized in step c) to determine abnormality of chromosome;
  • It relates to a chromosome abnormality detection method comprising a.
  • target sequence refers to any kind of nucleic acid to be detected, and refers to a chromosomal sequence of a different species, subspecies, or variant, or a chromosomal mutation within the same species. Include. It can be characterized by all kinds of DNA including genomic DNA, mitochondrial DNA, viral DNA, or all kinds of RNA including mRNA, ribosomal RNA, non-coding RNA, tRNA, viral RNA, and the like.
  • the target nucleotide sequence is not limited thereto, but may be characterized by a mutant nucleotide sequence including mutations of the nucleotide sequence, wherein the mutation is Single Nucleotide Polymorphism (SNP), insertion (insertion), It may be characterized in that it is selected from the group consisting of deletion, point mutation, fusion mutation, translocation, inversion and loss of heterozygosity (LOH), but is not limited thereto. It doesn't happen.
  • SNP Single Nucleotide Polymorphism
  • insertion insertion
  • LH loss of heterozygosity
  • nucleoside refers to a glycosylamine compound in which a nucleic acid base (nucleobase) is linked to a sugar moiety.
  • Nucleotide means nucleoside phosphate. Nucleotides can be represented using alphabetic letters (letter names) corresponding to their nucleosides, as described in Table 1. For example, A refers to adenosine (nucleosides containing adenine nucleobases), C refers to cytidine, G refers to guanosine, U refers to uridine, and T refers to thymidine (5- Methyl uridine).
  • W refers to A or T / U and S refers to G or C.
  • N denotes a random nucleoside and dNTP means deoxyribonucleoside triphosphate.
  • N can be any of A, C, G, or T / U.
  • oligonucleotide means an oligomer of nucleotides.
  • nucleic acid means a polymer of nucleotides.
  • sequence refers to the nucleotide sequence of an oligonucleotide or nucleic acid. Throughout the specification, whenever an oligonucleotide or nucleic acid is represented by a sequence of letters, the nucleotides are from 5 ' ⁇ 3' order from left to right. Oligonucleotides or nucleic acids may be DNA, RNA, or analogs thereof (eg, phosphorothioate analogs).
  • Oligonucleotides or nucleic acids may also include modified bases and / or backbones (eg, modified phosphate linkages or modified sugar moieties).
  • modified backbones eg, modified phosphate linkages or modified sugar moieties.
  • synthetic backbones that confer stability and / or other advantages to nucleic acids may include phosphorothioate linkages, peptide nucleic acids, locked nucleic acids, xylose nucleic acids, or analogs thereof.
  • nucleic acid refers to a nucleotide polymer and includes known analogs of natural nucleotides that can act in a similar manner (eg, hybridization) to naturally occurring nucleotides unless otherwise defined.
  • nucleic acid is for example genomic DNA; Complementary DNA (cDNA), which is usually the DNA representation of mRNA obtained by reverse transcription or amplification of messenger RNA (mRNA); DNA molecules produced synthetically or by amplification; And any form of DNA or RNA, including mRNA.
  • cDNA Complementary DNA
  • mRNA messenger RNA
  • nucleic acid includes single stranded molecules as well as double or triple stranded nucleic acids.
  • the nucleic acid strands need not be coextensive (ie, the double stranded nucleic acid need not be double stranded along the entire length of both strands).
  • nucleic acid also includes any chemical modification thereof, such as by methylation and / or capping.
  • Nucleic acid modifications may include the addition of chemical groups, including additional charges, polarization rates, hydrogen bonding, electrostatic interactions, and functionality throughout the individual nucleic acid base or nucleic acid. Such modifications include 2 'sugar modification, 5 position pyrimidine modification, 8 position purine modification, modification in cytosine exocyclic amines, substitution of 5-bromo-uracil, backbone modification, isobasic isocytidine and isoguanidine Base modifications, such as combinations of specific base pairs, and the like.
  • Nucleic acid may be derived from a complete chemical synthesis process, such as solid phase-mediated chemical synthesis, from a biological source, such as through separation from any species producing nucleic acid, or from DNA replication, PCR amplification, reverse transcription. From processes associated with the handling of nucleic acids by molecular biological tools such as, or from combination of these processes.
  • the term “complement” refers to the ability for exact pairing between two nucleotides. That is, if a nucleotide can hydrogen bond with a nucleotide of another nucleic acid at a given position of the nucleic acid, the two nucleic acids are considered to be complementary to each other at that position. Complementarity between two single-stranded nucleic acid molecules with only a portion of the nucleotides bound may be “partial”, or complementarity may be complete when total complementarity is present between single-stranded molecules. The degree of complementarity between nucleic acid strands has a significant impact on the efficiency and strength of hybridization between nucleic acid strands.
  • the term “primer” refers to a short linear oligonucleotide that hybridizes to a target nucleic acid sequence (eg, a DNA template to be amplified) for priming a nucleic acid synthesis reaction.
  • the primer may be an RNA oligonucleotide, a DNA oligonucleotide, or a chimeric sequence.
  • Primers can contain natural, synthetic, or modified nucleotides. Both the upper and lower limits of the primer length are determined experimentally. The lower limit of the primer length is the minimum length required to form a stable duplex after hybridization with a target nucleic acid under nucleic acid amplification reaction conditions.
  • Very short primers do not form a thermothermally stable duplex with the target nucleic acid under these hybridization conditions.
  • the upper limit is usually determined by the possibility of having duplex formation in a region other than the predetermined nucleic acid sequence in the target nucleic acid.
  • suitable primer lengths range from about 3 nucleotides to about 40 nucleotides in length.
  • probe binds to a target nucleic acid of a complementary sequence through one or more types of chemical bonds, generally through complementary base pairing, usually through hydrogen bond formation, thus forming a duplex structure. It is a nucleic acid that can form. Probes bind or hybridize to “probe binding sites”. In particular, the probe may be labeled with a detectable label to facilitate detection of the probe once the probe hybridizes to the probe's complementary target. Alternatively, however, the probe may be unlabeled, but may be detected directly or indirectly by specific binding to the labeled ligand. Probes can vary considerably in size. Generally probes are at least 7-15 nucleotides in length.
  • probes are at least 20, 30 or 40 nucleotides in length. Another probe is somewhat longer and is at least 50, 60, 70, 80, or 90 nucleotides in length. Another probe is even longer and is at least 100, 150, 200 or more nucleotides in length. The probe may also be of any length that is within any range defined by any value of the above values (eg, 15-20 nucleotides in length).
  • hybridization in the present invention means that the double-stranded nucleic acid is formed by hydrogen bonding between single-stranded nucleic acids having a complementary base sequence, is used in a similar sense to annealing (annealing). In a slightly broader sense, hybridization encompasses cases where the sequences between two single strands are perfectly complementary (except when some sequences are not complementary).
  • the amplification can be used without limitation as long as it is a polymerase chain reaction (PCR), preferably, it may be characterized by asymmetric PCR (asymmetric PCR).
  • PCR polymerase chain reaction
  • asymmetric PCR asymmetric PCR
  • the homology of the primer or probe hybridization region of the control base sequence of step b) is homologous enough to complementarily bind the same probe or primer as the primer or probe hybridization region of the target sequence It can be used without limitation, but preferably 80% or more, more preferably 90% or more, and most preferably 95% or more.
  • control base sequence may be characterized by selecting under the conditions disclosed in FIG.
  • the analytical probe of step c) achieves a perfect match or mismatch with the control sequence or the target sequence, if the melting temperature difference occurs to be distinguishable on the analysis graph, although it can be used without limitation, it is preferably 5 ° C or more and 20 ° C or less, more preferably 7 ° C or more and 20 ° C or less, and most preferably 8 ° C or more and 20 ° C or less.
  • the analytical probe of step c) is PNA (Peptide Nucleic Acid), and a reporter and a quencher are coupled to both ends.
  • PNA Peptide Nucleic Acid
  • LNA Locked Nucleic Acid
  • MNA Mopholino Nucleic Acid
  • the basic skeleton is composed of polyamide.
  • PNA has very good affinity and selectivity, and has high stability against nucleases, so it is not degraded by existing restriction enzymes.
  • the thermal and chemical properties and stability is high, there is an advantage that easy storage and not easily decomposed.
  • PNA-DNA binding ability is much better than DNA-DNA binding ability, so that the melting temperature (Tm) is different by about 10 ⁇ 15 °C even for one nucleic acid mismatch. The difference in binding force enables detection of single nucleotide polymorphism (SNP) and insertion / deletion (InDel) nucleic acid changes.
  • the Tm value is also changed according to the difference between the nucleic acid of the PNA probe and the DNA binding to the complementary DNA, thereby facilitating the development of application technology using the same.
  • the PNA probe is analyzed using a hybridization reaction different from the hydrolysis reaction of the TaqMan probe, and similar probes include a molecular beacon probe and a scorpion probe.
  • the PNA probe is not limited but may be characterized in that a reporter or quencher is coupled.
  • the PNA probe including the reporter and the quencher of the present invention hybridizes with the target nucleic acid and generates a fluorescent signal.
  • the PNA probe rapidly melts with the target nucleic acid at an appropriate melting temperature of the probe, thereby extinguishing the fluorescent signal. It is possible to detect the presence or absence of the target nucleic acid through the high resolution melting curve analysis obtained from the fluorescence signal according to.
  • the probe of the present invention may combine a fluorescent material of a reporter and a quencher capable of quenching reporter fluorescence at both ends, and may include an intercalating fluorescent material.
  • the reporter may be one or more selected from the group consisting of FAM (6-carboxyfluorescein), HEX, Texas red, JOE, TAMRA, CY5, CY3, Alexa680, the quencher is TAMRA (6-carboxytetramethyl-rhodamine), BHQ1, Preference is given to using BHQ2 or Dabcyl, but not limited thereto.
  • the intercalating fluorescent material is an acridine homodimer and derivatives thereof, acridine orange and derivatives thereof, 7-aminoactinomycin D (7-AAD) and Derivatives thereof, Actinomycin D and derivatives thereof, ACMA (9-amino-6-chloro-2-methoxyacridine) and derivatives thereof, DAPI and derivatives thereof, dihydroethidium (Dihydroethidium) and derivatives thereof, Ethidium bromide and derivatives thereof, Ethidium homodimer-1 (EthD-1) and derivatives thereof, Ethidium homodimer-2 (EthD-2) and derivatives thereof, ethidium Ethidium monoazide and its derivatives, Hexidium iodide and its derivatives, bisbenzimide (Hoechst 33258) and its derivatives, Hoechst 33342 and its derivatives, arc Hoechst 345 80) and derivatives thereof, hydroxystilbamidine and derivatives thereof,
  • the clearing probe of step c) is a probe for clearing only the amplification products of the target sequence; And it may be characterized in that it is selected from the group consisting of a probe for erasing both the target sequence and the amplification products of the control sequence.
  • the clearing probe of step c) may be characterized in that it hybridizes with the amplification product of the control sequence or the target sequence competitively with the assay probe.
  • the erasing probe may be selected from the group consisting of oligonucleotides, LNA, PNA, and mixtures thereof.
  • the erasing probe of step c) may be characterized in that the amplification product of step b) is erased in an amount of 50 to 90%.
  • the erase probe has a higher Tm value than the assay probe.
  • Fluorescence Melting Curve Analysis As an analysis method of hybridization reaction, Fluorescence Melting Curve Analysis (FMCA) is used, and fluorescence melting curve analysis analyzes the difference in the binding force between the produced product and the injected probe after melting by the melting temperature. .
  • the probe design is very simple, and is produced using 11-18 mer nucleotide sequences containing SNPs. Therefore, in order to design a probe having a desired melting temperature, the Tm value can be adjusted according to the length of the PNA probe, and even a PNA probe of the same length can be adjusted by changing the probe. Since PNA has a higher binding force than DNA and has a high basic Tm value, the PNA can be designed with a shorter length than DNA, so that even adjacent SNPs can be detected.
  • the present invention also relates to a method for detecting multiple chromosome abnormalities, wherein reporters of the assay probes are different using two or more primers, two or more assay probes, and two or more clearance probes.
  • the method for detecting chromosomal abnormalities of the present invention can be applied not only to fetal chromosomal abnormalities but also to chromosomal abnormalities associated with cancer.
  • the present invention provides a primer comprising: i) a primer capable of amplifying both a control sequence located on a chromosome not related to a chromosome abnormality and a target sequence located on a chromosome associated with a chromosome abnormality;
  • an scavenging probe comprising some or all of the sequences that hybridize with the target sequencing or the control sequencing and having a higher binding force than the analytical probe;
  • It relates to a PCR composition for detecting chromosomal abnormality comprising a.
  • Down syndrome for real-time polymerase chain reaction on target sequences and internal control bases of chromosomal aberration syndrome Down syndrome (chromosome 21), Edward syndrome (chromosome 18), Patau syndrome (chromosome 13)) SEQ ID NO: 1-10), Edwards syndrome (SEQ ID NO: 11-20), and primers for Patau syndrome (SEQ ID NO: 21-30) were prepared (Table 2).
  • a bifunctional fluorescent PNA probe (analytical probe) having a melting temperature analysis function was constructed to detect target sequences of chromosomal aberration syndrome.
  • the probe was constructed with a probe such that a region targeting one to two different sequence sites in a control base sequence having 90% or more homology with the target sequence matches the target sequence or the control base sequence.
  • the target sequence and the target sequence are both targeted by one or two different sequence sites in the control sequence having 90% or more homology with the target sequence.
  • Probe to delete is as shown in SEQ ID NOs: 61-66
  • Probe to clear the target sequence (fluorescence) as shown in SEQ ID NO: 67-71
  • Target sequencing probes that combine fluorescence and quencher as shown in SEQ ID NOs: 72-86 It was produced (Table 4).
  • Real-time polymerase chain reaction conditions were used asymmetric PCR (asymmetric PCR) to generate a single stranded target nucleic acid.
  • the conditions of asymmetric PCR are as follows; 2X EyeBio Real-Time FMCA TM Buffer (SeaSunBio Real-Time FMCA TM Buffer, Eye Bio, Korea), 2.5mM MgCl 2 , 200 ⁇ M dNTPs, 1.0U Taq polymerase, 0.05 ⁇ M forward primer , Table 2) and 0.5 ⁇ M reverse primer (Table 2) (asymmetric PCR) was added 1 ⁇ l standard cell line DNA (Table 5), followed by real-time PCR, 0.5 ⁇ l fluorescent PNA probe (Table 3) Melting curve analysis was performed by adding and analysis conditions are as shown in FIG. 4.
  • DNA extracted from trisomy 21 (Down syndrome) standard cell line (Table 5) was mixed with Euploid normal gDNA at a ratio of 5, 10, 20, 30, and 100% to analyze sensitivity. After the primers prepared in and 2 were mixed with the PNA probe, PCR was performed using a CFX96 TM Real-Time system (BIO-RAD, USA).
  • Real-time polymerase chain reaction conditions were used asymmetric PCR (asymmetric PCR) to generate a single stranded target nucleic acid.
  • the conditions of asymmetric PCR are as follows; 2X EyeBio Real-Time FMCA TM Buffer (SeaSunBio Real-Time FMCA TM Buffer, Eye Bio, Korea), 2.5mM MgCl 2 , 200 ⁇ M dNTPs, 1.0U Taq polymerase, 0.05 ⁇ M forward primer , Table 2) and 0.5 ⁇ M reverse primer (Table 2) (asymmetric PCR) was added 1 ⁇ l standard cell line DNA (Table 5) followed by real-time PCR, 0.5 ⁇ l fluorescent PNA probe (Table 3) Melting curve analysis was performed by adding and analysis conditions are as shown in FIG. 4.
  • CFX96 TM Real-Time System (BIO-RAD Corporation) using primers, PNA fluorescent probes, and non-fluorescence scavenging probes prepared in Examples 1, 2, and 3 to increase the analytical resolution of chromosomal aberration syndrome detection of Examples 4 and 5. , USA) was used to perform PCR.
  • Real-time polymerase chain reaction conditions were used asymmetric PCR (asymmetric PCR) to generate a single stranded target nucleic acid.
  • the conditions of asymmetric PCR are as follows; 2X EyeBio Real-Time FMCA TM Buffer (SeaSunBio Real-Time FMCA TM Buffer, Eye Bio, Korea), 2.5mM MgCl 2 , 200 ⁇ M dNTPs, 1.0U Taq polymerase, 0.05 ⁇ M forward primer , Table 2) and 0.5 ⁇ M reverse primer (Table 2) (asymmetric PCR) added 1 ⁇ l standard cell line DNA (Table 5) followed by real-time PCR, followed by 0.5 ⁇ L fluorescent PNA probe (Table 3) , Melting curve analysis was performed by adding a non-fluorescence scavenging probe (Table 4, SEQ ID NOs: 1-11), and the analysis conditions are shown in FIG. 4.
  • CFX96 TM Real-Time System (BIO-RAD) after mixing the primers prepared in Examples 1, 2 and 3, PNA fluorescence assay and scavenging probe to increase the analytical resolution for detecting the chromosomal aberration syndrome of Examples 4 and 5. , USA) was used to perform PCR.
  • Real-time polymerase chain reaction conditions were used asymmetric PCR (asymmetric PCR) to generate a single stranded target nucleic acid.
  • the conditions of asymmetric PCR are as follows; 2X EyeBio Real-Time FMCA TM Buffer (SeaSunBio Real-Time FMCA TM Buffer, Eye Bio, Korea), 2.5mM MgCl 2 , 200 ⁇ M dNTPs, 1.0U Taq polymerase, 0.05 ⁇ M forward primer , Table 2) and 0.5 ⁇ M reverse primer (Table 2) (asymmetric PCR) were added 1 ⁇ l standard cell line DNA (Table 5) followed by real-time PCR, 0.5 ⁇ l fluorescent PNA target probe (Table 3 Melting curve analysis was performed by adding fluorescent PNA scavenging probes (Table 4, SEQ ID NOs: 12-26).
  • the ratio of the target sequence and the control sequence can be analyzed at a high resolution by limiting the same amount of the target sequence and the control sequence in the analysis using the scavenging probe. This is useful because it can detect aberrations of chromosomes (eg, fetal chromosomes in maternal blood, circulating tumor DNA in cancer patients) at high sensitivity and high speed.
  • chromosomes eg, fetal chromosomes in maternal blood, circulating tumor DNA in cancer patients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 표적 염색체의 수적이상 유무를 고민감도로 분석하기 위한 방법 및 염색체 수적이상 검출용 조성물에 관한 것으로, 보다 구체적으로는. 염색체 수 이상과 관련이 없는 염색체 상에 위치한 대조 염기서열과 염색체 수 이상과 관련된 염색체 상에 위치한 표적 염기서열을 모두 증폭할 수 있는 프라이머를 사용하여 증폭한 다음, 상기 대조 염기서열 또는 표적 염기서열과 1 또는 2개의 염기 서열이 상이한 서열과 혼성화할 수 있는 분석 프로브; 및 상기 분석 프로브가 표적 염기서열 또는 대조 염기서열과 혼성화하는 서열의 일부 또는 전부를 포함하고, 상기 분석 프로브보다 상기 증폭산물과 결합력이 높은 소거 프로브를 이용하여 상기 증폭산물과 혼성화시켜, 혼성화된 반응물의 융해곡선을 분석하여 염색체 수적 이상을 판별하는 방법에 관한 것이다. 본 발명에 따른 염색체 수적이상 검출 방법은 일정 비율의 표적 염기서열과 대조 염기서열의 동량을 소거 프로브를 이용하여 분석에서 제한함으로써 표적 염기서열과 대조염기서열의 비율을 높은 해상도로 분석할 수 있고, 이를 사용하면 낮은 비율로 존재하는 염색체(예를 들어 산모의 양수 또는 산모의 혈액 내의 태아 염색체)의 수적이상을 높은 민감도와 빠른 속도로 검출할 수 있어 유용하다.

Description

소거 프로브 기반 염색체 수적이상 검출방법 및 염색체 수적이상 검출용핵산의 조성물
본 발명은 표적 염색체의 수적이상 유무를 고민감도로 분석하기 위한 방법 및 염색체 수적이상 검출용 조성물에 관한 것으로, 보다 구체적으로는 염색체 수 이상과 관련이 없는 염색체 상에 위치한 대조 염기서열과 염색체 수 이상과 관련된 염색체 상에 위치한 표적 염기서열을 동일한 프라이머를 사용하여 증폭한 다음, 상기 대조 염기서열 또는 표적 염기서열과 1 또는 2개의 염기 서열이 상이한 분석 프로브; 및 분석 프로브의 표적 염기서열 또는 대조 염기서열 혼성화 서열의 일부 또는 전부를 포함하고, 분석 프로브 보다 상기 증폭산물과 결합력이 높은 소거 프로브를 이용하여 상기 증폭산물과 혼성화시켜, 혼성화된 반응물의 융해곡선을 분석하여 염색체 수적 이상을 판별하는 방법에 관한 것이다.
염색체 이상(chromosomal abnormality)은 유전적 결함과 퇴행성 질환과 관련 있다. 염색체 이상은 염색체의 결실 또는 중복, 염색체 중 일부의 결실 또는 중복, 또는 염색체 내의 손상(break), 전위(translocation), 또는 역위(inversion)를 의미하는 것일 수 있다. 염색체 이상은 유전적 균형의 장애 중 하나로, 태아 사망 또는 육체 및 정신 상태의 심각한 결함을 유발한다. 예컨대, 다운증후군(Down's syndrome)은 21번 염색체가 3개 존재하여(trisomy 21) 유발되는 염색체 수 이상의 흔한 형태이다. 에드워드증후군(Edwards syndrome) (trisomy 18), 파타우 증후군(Patau syndrome) (trisomy 13), 터너증후군(Turner syndrome) (XO), 및 클라인펠터 증후군(Klinefelter syndrome) (XXY) 또한 염색체 수 이상에 해당한다.
염색체 이상은 핵형 검사(Karyotype), 및 FISH(Fluorescent In Situ Hybridization)를 사용하여 검출 가능하다. 이러한 검출법은 시간, 노력 및 정확도 측면에서 불리하다. 더욱이, 핵형 검사는 세포 배양에 많은 시간을 요한다. FISH는 핵산 서열과 염색체 위치가 알려진 샘플에 대해서만 사용 가능하다. FISH의 문제점을 회피하기 위하여, 비교유전자보합법(Comparative genome hybridization, CGH)을 사용할 수 있다. CGH는 전체게놈을 분석하여 염색체 수 이상이 발생한 부분을 검출할 수 있다. 그러나, CGH는 FISH와 비교하여 해상도가 낮다는 단점이 있다.
다른 접근으로, DNA 마이크로어레이를 염색체 이상 검출에 사용할 수 있다. DNA 마이크로어레이 시스템은 마이크로어레이 상에 고정된 생체분자(bio-molecules)의 종류에 따라서 cDNA 마이크로어레이, 올리고뉴클레오타이드 마이크로어레이, 및 게놈 마이크로어레이로 분류할 수 있다. cDNA 마이크로어레이와 올리고뉴클레오타이드 마이크로어레이는 제작은 용이하지만, 이들 시스템은 마이크로오레이 상에 고정되는 프로브의 수가 제한적이고, 프로브 제작이 비용이 많이 들며, 프로브 외부에 위치하는 염색체 이상을 검출하기 곤란하다는 단점이 있다.
특히, 게놈 DNA 마이크로어레이 시스템의 경우, 프로브의 제작이 용이하고 염색체의 확장된 영역뿐 아니라 염색체의 인트론 영역에서의 염색체 이상을 검출할 수 있지만, 염색체 내의 위치화 및 기능이 확인된 DNA 단편을 많은 수로 제작하기에 곤란하다.
최근, 차세대 시퀀싱 기술이 염색체 수이상 분석에 사용되고 있다(Park, H., Kim et al., Nat Genet 2010, 42, 400-405.; Kidd, J. M. et al., Nature 2008, 453, 56-64). 그러나 이 기술은 염색체 수이상 분석을 위한 높은 coverage reading을 요구하며, CNV 측정은 독립적인 입증(validation)을 또한 필요로 한다. 따라서 비용이 매우 높고, 결과를 이해하기 어려우므로, 그 당시 일반적인 유전자 검색분석으로서 적절하지 못하였다.
이러한 목적을 위해 실시간 qPCR이 현재 정량적인 유전자 분석용 첨단 기술로서 사용되는데, 이는 넓은 동역학범위(Weaver, S. et al, Methods 2010, 50, 271-276) 및 역치 주기(threshold cycle)와 초기 타겟 양 사이에 선형적인 상관관계가 재현성 있게 관찰되기 때문이다(Deepak, S. et al., Curr Genomics 2007,8, 234-251). 그러나 qPCR 분석의 민감도는 복제수 차이를 구별할 만큼 충분히 높지 않다. 이의 광범위한 동역학 범위에도 불구하고, qPCR 기반 분석의 고유 변수 때문에 1.5배 변화와 같은 작은 변화는 신뢰성 있게 측정되지 못한다. 또한, 유사한 DNA 복제수를 갖는 샘플들 사이의 신뢰성 있는 식별을 위해, 다중 시간적 반복 분석이 요구된다. 나아가, qPCR은 다중모드 분석에 적합하지 않다. 예컨대, 다중 타겟을 검출할 때, 다른 것들로부터 하나의 타겟을 구별하기 위해 각 타겟의 분리 반응이 요구된다(Bustin, S. A., J Mol Endocrinol 2002, 29, 23-39). 또한, 형광 태그의 제한된 이용가능성 및 스펙트럼 겹침 때문에, qPCR은 한 분석당 최고 4개의 타겟만을 분리할 수 있다. 그러나, qPCR에서 성공적인 4중 분석을 위해 매 분석에 형광 태그의 주의 깊은 조합이 필수적이고(Bustin, S. A., J Mol Endocrinol 2002, 29,23-39), 이는 임상적인 진단툴로서 qPCR의 중대한 결점이다.
이에, 본 발명자들은 상기 문제점들을 해결하고, 높은 민감도와 신속한 분석결과를 제공할 수 있는 염색체 수적이상 검출방법을 개발하기 위해 예의 노력한 결과, 대조 염기서열과 표적 염기서열을 모두 증폭시킨 다음, 대조 염기서열의 증폭산물을 소거 프로브를 이용하여 제거할 경우, 높은 민감도와 빠른 속도로 분석결과를 얻을 수 있다는 것을 확인하고, 본 발명을 완성하였다.
발명의 요약
본 발명의 목적은 염색체 수적이상을 검출하는 방법을 제공하는 것이다.
본 발명의 다른 목적은 염색체 수적이상 검출용 PCR 조성물을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 a) 정상시료 및 대상시료에서 DNA를 각각 수득하는 단계; b) 염색체 수 이상과 관련이 없는 염색체 상에 위치한 대조 염기서열과 염색체 수 이상과 관련된 염색체 상에 위치한 표적 염기서열을 모두 증폭할 수 있는 프라이머를 사용하여 증폭하는 단계; c) 상기 대조 염기서열 또는 표적 염기서열과 1 또는 2개의 염기 서열이 상이한 서열과 혼성화할 수 있는 분석 프로브; 및 상기 분석 프로브가 표적 염기서열 또는 대조 염기서열과 혼성화하는 서열의 일부 또는 전부를 포함하고, 상기 분석 프로브보다 상기 b) 단계의 증폭산물과 결합력이 높은 소거 프로브를 이용하여 상기 증폭산물과 혼성화시키는 단계; 및 d) 상기 c) 단계에서 혼성화된 정상시료와 대상시료 반응물의 융해곡선을 분석하여 염색체 수적 이상을 판별하는 단계;를 포함하는 염색체 수적이상 검출방법을 제공한다.
본 발명은 또한, i) 염색체 수 이상과 관련이 없는 염색체 상에 위치한 대조 염기서열과 염색체 수 이상과 관련된 염색체 상에 위치한 표적 염기서열을 모두 증폭할 수 있는 프라이머; ii) 상기 대조 염기서열 또는 표적 염기서열과 1 또는 2개의 염기 서열이 상이한 서열에 혼성화할 수 있는 분석 프로브; 및 iii) 상기 분석 프로브가 표적 염기서열 또는 대조 염기서열과 혼성화하는 서열의 일부 또는 전부를 포함하고, 상기 분석 프로브보다 결합력이 높은 소거 프로브;를 포함하는 염색체 수적이상 검출용 PCR 조성물을 제공한다.
본 발명은 또한, 상기 PCR 조성물의 염색체 수적이상 검출 용도로의 이용을 제공한다.
도 1은 본 발명에 따른 소거 프로브 사용을 통해 정상과 염색체이상이 동일한 비율로 소거됨을 나타낸 모식도이다.
도 2는 본 발명에 따른 소거 프로브 사용을 통해 소거비율에 따른 분석적 해상도 변화를 나타낸 모식도이다
도 3은 본 발명에 따른 표적 염기서열의 선별과 표적 염기서열의 증폭 반응을 위한 프라이머 선별조건을 나타내는 도식이다.
도 4는 본 발명에 따라 염색체 비율 이상의 여부를 판별하기 위한 실시간 중합효소연쇄반응(real-time PCR) 조건을 나타내는 도식이다.
도 5는 본 발명에 따른 검출 프로브와 소거 프로브를 나타낸 모식도로서, (A)는 표적 염기서열 및 대조 염기서열에 모두 결합하는 비형광 소거 프로브를 나타낸 것이고, (B)는 대조 염기서열에만 결합하는 비형광 소거 프로브를 나타낸 것이며, (C)는 대조 염기서열에만 결합하는 형광 소거 프로브를 나타낸 것이다.
도 6은 본 발명에 따른 다운증후군 세포주를 사용하여 분석한 결과로서, (A)와 (B)는 서로 다른 대조 염기서열과 표적 염기서열을 바탕으로 분석한 결과이다.
도 7은 본 발명에 따른 에드워드증후군 세포주를 사용하여 분석한 결과로서, (A)와 (B)는 서로 다른 대조 염기서열과 표적 염기서열을 바탕으로 분석한 결과이다.
도 8은 본 발명에 따른 파타우증후군 세포주를 사용하여 분석한 결과로서, (A)와 (B)는 서로 다른 대조 염기서열과 표적 염기서열을 바탕으로 분석한 결과이다.
도 9는 본 발명에 따른 다운증후군 세포주를 사용한 DNA 비율별 민감도 결과예시로서 (A)와 (B)는 서로 다른 대조 염기서열과 표적 염기서열을 바탕으로 분석한 결과이다.
도 10은 본 발명에 따른 대조 염기서열만을 소거하는 비형광 프로브 사용을 통한 분석적 해상도 상승을 나타낸 결과이다.
도 11은 본 발명에 따른 표적 염기서열과 대조 염기서열을 동시에 소거하는 비형광 프로브 사용을 통한 분석적 해상도 상승을 나타낸 결과이다.
도 12는 본 발명에 따른 대조 염기서열을 표적한 형광 소거 프로브를 이용한 결과값 보정을 나타낸 모식도이다.
도 13은 본 발명에 따른 결과값 보정에 대한 결과 예시이다.
도 14는 표준물질과 임상샘플을 비교 분석한 결과를 나타낸 것이다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서는, 정상시료와 대상시료에서 수득한 DNA에서 염색체 수적 이상이 있을 것으로 예상되는 염색체에 위치한 표적 염기서열과 상동성이 90% 이상이면서 염색체 수적 이상이 없는 염색체에 위치한 대조 염기서열을 동일한 프라이머를 이용하여 증폭한 다음, 증폭 산물을 소거 프로브로 일정량 제거한 다음, 분석 프로브를 이용하여 증폭 산물의 융해곡선을 분석할 경우, 높은 민감도로 염색체 수적이상을 검출할 수 있다는 것을 확인하였다.
즉, 본 발명의 일 실시예에서는, 21번 염색체의 특정위치를 증폭하면서 1번, 4번, 7번 염색체의 특정위치를 동시에 증폭할 수 있는 프라이머, 18번 염색체의 특정위치를 동시에 증폭하면서 1번, 4번, 9번, 15번 염색체의 특정위치를 동시에 증폭할 수 있는 프라이머; 또는 13번 염색체의 특정 위치를 증폭하면서 3번, 6번, 12번 염색체의 특정위치를 동시에 증폭할 수 있는 프라이머를 제조하여 증폭산물을 생산한 다음, 증폭산물과 혼성화 할 수 있는 소거 프로브를 이용하여 증폭산물의 일정비율을 분석 프로브와 결합하지 못하도록 한 다음, 분석 프로브를 이용하여 융해 곡선을 분석하여, 정상시료와 대상시료의 완전혼성화(perfect match)와 불완전 혼성화(mismatch) 온도에서의 값에 대한 비율을 계산할 경우, 높은 민감도로 염색체 수적이상을 분석할 수 있다는 것을 확인하였다(도 1 내지 도 2).
따라서, 본 발명은 일관점에서,
. a) 정상시료 및 대상시료에서 DNA를 각각 수득하는 단계;
b) 염색체 수 이상과 관련이 없는 염색체 상에 위치한 대조 염기서열과 염색체 수 이상과 관련된 염색체 상에 위치한 표적 염기서열을 모두 증폭할 수 있는 프라이머를 사용하여 증폭하는 단계;
c) 상기 대조 염기서열 또는 표적 염기서열과 1 또는 2개의 염기 서열이 상이한 서열과 혼성화할 수 있는 분석 프로브; 및 상기 분석 프로브가 표적 염기서열 또는 대조 염기서열과 혼성화하는 서열의 일부 또는 전부를 포함하고, 상기 분석 프로브보다 상기 b) 단계의 증폭산물과 결합력이 높은 소거 프로브를 이용하여 상기 증폭산물과 혼성화시키는 단계; 및
d) 상기 c) 단계에서 혼성화된 정상시료와 대상시료 반응물의 융해곡선을 분석하여 염색체 수적 이상을 판별하는 단계;
를 포함하는 염색체 수적이상 검출방법에 관한 것이다.
본 발명에서 용어 “표적 염기서열”는 검출하고자 하는 모든 종류의 핵산을 의미하며, 서로 다른 종(species), 아종(subspecies), 또는 변종(variant) 유래의 염색체 염기서열 또는 동일 종 내 염색체 돌연변이를 포함한다. 이는 genomic DNA와 mitochondrial DNA, viral DNA를 포함하는 모든 종류의 DNA 또는 mRNA, ribosomal RNA, non-coding RNA, tRNA, viral RNA 등을 포함하는 모든 종류의 RNA를 특징으로 할 수 있으나 이에 국한되지 않는다.
본 발명에서 표적 염기서열은 이에 한정되는 것은 아니나, 염기서열의 변이를 포함하는 돌연변이 염기서열인 것을 특징으로 할 수 있으며, 상기 돌연변이는 단일 염기다형성(Single Nucleotide Polymorphism, SNP), 삽입(insertion), 결실(deletion), 점 돌연변이(point mutation), 융합 돌연변이(fusion mutation), 전좌(translocation), 역위(inversion) 및 LOH(loss of heterozygosity)로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 용어 "뉴클레오시드"는 핵산 염기(핵염기)가 당 모이어티에 연결된 글리코실아민 화합물을 의미한다. "뉴클레오티드"는 뉴클레오시드 포스페이트를 의미한다. 뉴클레오티드는 표 1에 기재된 것과 같이, 그의 뉴클레오시드에 상응하는 알파벳 문자(문자 명칭)를 사용하여 표시될 수 있다. 예컨대, A는 아데노신(아데닌 핵염기를 함유하는 뉴클레오시드)을 지칭하고, C는 시티딘을 지칭하고, G는 구아노신을 지칭하고, U는 우리딘을 지칭하고, T는 티미딘(5-메틸 우리딘)을 지칭한다. W는 A 또는 T/U를 지칭하고, S는 G 또는 C를 지칭한다. N은 랜덤한 뉴클레오시드를 표시하고, dNTP는 데옥시리보뉴클레오시드 트리포스페이트를 의미한다. N은 A, C, G, 또는 T/U 중 어떤 것도 될 수 있다.
Figure PCTKR2019009067-appb-T000001
본 발명에서 용어 "올리고뉴클레오티드"는 뉴클레오티드의 올리고머를 의미한다. 본원에 사용된 용어 "핵산"은 뉴클레오티드의 중합체를 의미한다. 본원에 사용된 용어 "서열"은 올리고뉴클레오티드 또는 핵산의 뉴클레오티드 서열을 의미한다. 명세서를 통틀어, 올리고뉴클레오티드 또는 핵산이 문자의 서열에 의해 표시될 때마다, 뉴클레오티드는 좌에서 우로 5'→3' 순서이다. 올리고뉴클레오티드 또는 핵산은 DNA, RNA, 또는 그의 유사체(예컨대, 포스포로티오에이트 유사체)일 수 있다. 올리고뉴클레오티드 또는 핵산은 개질된 염기 및/또는 골격(예컨대, 개질된 포스페이트 연결부 또는 개질된 당 모이어티)도 또한 포함할 수 있다. 핵산에 안정성 및/또는 다른 이점을 부여하는 합성 골격의 비-제한적 예시는 포스포로티오에이트 연결부, 펩티드 핵산, 잠금 핵산, 자일로스핵산, 또는 그의 유사체를 포함할 수 있다.
본 발명에서 용어 “핵산”은 뉴클레오티드 폴리머를 지칭하며, 달리 한정되지 않는다면 자연적으로 발생한 뉴클레오티드와 유사한 방식(예컨대, 혼성화)으로 작용할 수 있는 천연 뉴클레오티드의 공지된 유사체(analog)를 포함한다.
용어 핵산은, 예를 들어 유전체 DNA; 상보 DNA(cDNA)(이는 보통 전령 RNA(mRNA)의 역전사 또는 증폭으로 얻어지는 mRNA의 DNA 표현임); 합성으로 또는 증폭으로 생성된 DNA 분자; 및 mRNA를 포함한 임의의 형태의 DNA 또는RNA를 포함한다.
용어 핵산은 단일 가닥 분자뿐만 아니라 이중 또는 삼중 가닥 핵산을 포함한다. 이중 또는 삼중 가닥 핵산에서, 핵산 가닥은 동연(coextensive)일 필요는 없다(즉, 이중 가닥 핵산은 양 가닥의 전체 길이를 따라 이중 가닥일 필요는 없다).
용어 핵산은 또한 메틸화 및/또는 캡핑과 같은 것에 의한 이의 임의의 화학적 개질을 포함한다. 핵산 개질은 개별적인 핵산 염기 또는 핵산 전체에 추가적인 전하, 분극률, 수소 결합, 정전기 상호작용, 및 기능성을 포함하는 화학기의 첨가를 포함할 수 있다. 이러한 개질은 2' 위치 당 개질, 5 위치 피리미딘 개질, 8 위치 퓨린개질, 시토신 환외(exocyclic) 아민에서의 개질, 5-브로모-우라실의 치환, 주쇄 개질, 이소염기 이소시티딘 및 이소구아니딘과 같은 특이 염기 쌍 조합 등과 같은 염기 개질을 포함할 수 있다.
핵산(들)은 고상 매개 화학적 합성(solid phase-mediated chemical synthesis)과 같은 완전한 화학적 합성 과정으로부터, 핵산을 생성하는 임의의 종으로부터 분리를 통해서와 같은 생물학적 공급원으로부터, 또는 DNA 복제, PCR 증폭, 역전사와 같은 분자 생물학 도구에 의한 핵산의 취급과 관련된 과정으로부터, 또는 이들 과정의 결합으로부터 유도될 수 있다.
본 발명에서 용어 “상보”는 2개의 뉴클레오티드 사이의 정확한 쌍형성에 대한 능력을 지칭한다. 즉, 핵산의 주어진 위치에서 뉴클레오티드가 다른 핵산의 뉴클레오티드와 수소 결합을 할 수 있다면, 2개의 핵산은 그 위치에서 서로 상보적인 것으로 여겨진다. 뉴클레오티드의 일부만이 결합하여 2개의 단일 가닥 핵산 분자 사이의 상보성은 “부분적”일 수 있거나, 또는 전체 상보성이 단일 가닥 분자 사이에 존재할 때 상보성은 완전할 수 있다. 핵산 가닥 사이의 상보성의 정도는 핵산 가닥 사이의 혼성화의 효율 및 강도에 상당한 영향을 미친다.
본 발명에서 용어 "프라이머"는 핵산 합성 반응을 프라이밍하기 위한 표적 핵산 서열(예컨대, 증폭될 DNA 주형)에 혼성화되는 짧은 선형 올리고뉴클레오티드를 의미한다. 프라이머는 RNA 올리고뉴클레오티드, DNA 올리고뉴클레오티드, 또는 키메라 서열일 수 있다. 프라이머는 천연, 합성, 또는 개질된 뉴클레오티드를 함유할 수 있다. 프라이머 길이의 상한 및 하한 둘 모두는 실험적으로 결정된다. 프라이머 길이의 하한은 핵산 증폭 반응 조건에서 표적 핵산과의 혼성화 후 안정한 듀플렉스를 형성하는데 필요한 최소 길이이다. 매우 짧은 프라이머(흔히 3 개 뉴클레오티드 미만 길이)는 이러한 혼성화 조건 하에서 표적 핵산과의 열열학적으로 안정한 듀플렉스를 형성하지 않는다. 상한은 표적 핵산에서 미리 결정된 핵산 서열 이외의 영역에서 듀플렉스 형성을 가질 수 있는 가능성에 의해 보통 결정된다. 일반적으로, 적합한 프라이머 길이는 약 3 개 뉴클레오티드 길이 내지 약 40 개 뉴클레오티드 길이의 범위에 있다.
본 발명에서 용어 “프로브”는 하나 이상 유형의 화학 결합을 통하여, 일반적으로 상보적 염기 쌍형성을 통하여, 보통 수소 결합 형성을 통하여 상보적인 서열의 표적 핵산에 결합하고 따라서 이중나선(duplex) 구조를 형성할 수 있는 핵산이다. 프로브는 “프로브 결합 부위”에 결합 또는 혼성화한다. 특히, 일단 프로브가 프로브의 상보적인 표적에 혼성화하면 프로브의 검출을 용이하게 하도록 프로브는 검출가능한 표지로 표지될 수 있다. 그러나 대안적으로, 프로브는 표지화되지 않을 수 있지만, 표지화된 리간드와의 특이적 결합에 의해 직접적으로 또는 간접적으로 검출될 수 있다. 프로브는 크기가 상당히 다양할 수 있다. 일반적으로 프로브는 길이가 적어도 7 내지 15개 뉴클레오티드이다. 다른 프로브는 길이가 적어도 20, 30 또는 40개 뉴클레오티드이다. 또 다른 프로브는 다소 더 길며, 길이가 적어도 50, 60, 70, 80, 또는 90개 뉴클레오티드이다. 또 다른 프로브는 더욱 더 길며, 길이가 적어도 100, 150, 200개 또는 그 이상의 뉴클레오티드이다. 프로브는 또한 상기 값(예컨대, 길이가 15~20개 뉴클레오티드)의 임의의 값으로 한정된 임의의 범위 내에 있는 임의의 길이의 것일 수 있다.
본 발명에서 용어 “혼성화”는 상보적 염기서열을 가진 단일가닥 핵산들 간 수소결합에 의해 이중가닥 핵산이 형성되는 것을 의미하며, 어닐링(annealing)과 유사한 의미로 사용된다. 다만 조금 더 넓은 의미에서, 혼성화는 두 개의 단일가닥 간 염기서열이 완전히 상보적인 경우(perfect match)와 더불어 예외적으로 일부의 염기서열이 상보적이지 않은 경우(mismatch)까지 포함한다.
본 발명에 있어서, 상기 증폭은 중합효소연쇄반응(polymerase chain reaction, PCR) 이면 제한없이 이용가능하나, 바람직하게는 비대칭 PCR(asymmetric PCR)인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 b) 단계의 대조 염기서열의 프라이머 또는 프로브 혼성화 영역의 상동성은 표적 염기서열의 프라이머 또는 프로브 혼성화 영역과 동일한 프로브 또는 프라이머가 상보적 결합을 할 수 있을 정도의 상동성을 가지면 제한없이 이용가능하나, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상인 것을 특징으로 할 수 있다.
본 발명에서 대조 염기서열은 도 3에 개시된 조건으로 선별하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 c) 단계의 분석 프로브는 대조 염기서열 또는 표적 염기서열과 완전 일치(perfect match) 또는 불일치(mismatch)를 이룰 경우, 융해 온도 차이가 분석 그래프 상 구별할 수 있을 정도로 발생하면 제한 없이 이용가능하나, 바람직하게는 5℃ 이상 20℃ 이하, 더욱 바람직하게는 7℃ 이상 20℃ 이하, 가장 바람직하게는 8℃ 이상 20℃ 이하인 것을 특징으로 할 수 있다.
본 발명에 있어서, c) 단계의 분석 프로브는 PNA(Peptide Nucleic Acid)이고, 양 말단에 리포터(reporter) 및 소광자(quencher)가 결합되어 있는 것을 특징으로 할 수 있다.
본 발명에서 PNA(Peptide Nucleic Acid)는 LNA(Locked nucleic acid), MNA(Mopholino nucleic acid)처럼 유전자 인식 물질의 하나로, 인공적으로 합성하며 기본 골격이 폴리아미드(polyamide)로 구성되어 있다. PNA는 친화도(affinity)와 선택성 (selectivity)이 매우 우수하며, 핵산분해효소에 대한 안정성이 높아 현존하는 제한효소(restriction enzyme)로 분해되지 않는다. 또한 열/화학적으로 물성 및 안정성이 높아 보관이 용이하고 쉽게 분해되지 않는 장점이 있다. 또한 DNA-DNA 결합력 보다 PNA-DNA 결합력이 매우 우수하여 1개의 핵산 불일치(nucleotide mismatch)에도 10~15℃ 가량 융해온도(Tm) 차이가 난다. 이러한 결합력의 차이를 이용하여 SNP(single nucleotide polymorphism) 및 InDel(insertion/deletion) 핵산 변화를 검출할 수 있게 된다.
PNA 프로브의 핵산과 이에 상보적으로 결합하는 DNA의 차이에 따라서도 Tm값의 변화를 나타내어 이를 이용한 응용기술의 개발이 용이하다. PNA 프로브는 TaqMan 프로브의 수화(hydrolysis) 반응과는 다른 혼성화(hybridization) 반응을 이용하여 분석하며, 비슷한 역할을 하는 프로브로는 분자 표지 프로브(molecular beacon probe), 스콜피온 프로브(scorpion probe)가 있다.
본 발명에 있어서 상기 PNA 프로브는 제한되지는 않으나 리포터 또는 소광자가 결합되는 것을 특징으로 할 수 있다. 본 발명의 리포터 및 소광자가 포함된 PNA 프로브는 표적핵산과 혼성화 된 후 형광 신호가 발생하며, 온도가 올라감에 따라 프로브의 적정 융해 온도에서 표적 핵산과 빠르게 융해되어 형광 신호가 소광되며, 이러한 온도 변화에 따른 상기 형광 신호로부터 얻어진 고 해상도의 융해곡선 분석을 통하여 표적핵산의 유무를 검출할 수 있다.
본 발명의 프로브는 양 말단에 리포터와 리포터 형광을 소광할 수 있는 소광자의 형광 물질이 결합할 수 있으며, 인터컬레이팅(intercalating) 형광 물질을 포함할 수 있다. 상기 리포터는 FAM(6-carboxyfluorescein), HEX, Texas red, JOE, TAMRA, CY5, CY3, Alexa680 로 구성되는 군에서 선택되는 하나 이상일 수 있으며, 상기 소광자는 TAMRA(6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 또는 Dabcyl을 사용하는 것이 바람직하지만 이에 한정되는 것은 아니다. 상기 인터컬레이팅 형광 물질은 아크리딘 호모다이머(Acridine homodimer) 및 이의 유도체, 아크리딘 오렌지(Acridine Orange) 및 이의 유도체, 7-아미노액티노마이신 D(7-aminoactinomycin D, 7-AAD) 및 이의 유도체, 액티노마이신 D(Actinomycin D) 및 이의 유도체, 에이씨엠에이(ACMA, 9-amino-6-chloro-2-methoxyacridine) 및 이의 유도체, 디에이피아이(DAPI) 및 이의 유도체, 디하이드로에티듐(Dihydroethidium) 및 이의 유도체, 에티듐 브로마이드(Ethidium bromide) 및 이의 유도체, 에티듐 호모다이머-1(EthD-1) 및 이의 유도체, 에티듐 호모다이머-2(EthD-2) 및 이의 유도체, 에티듐 모노아자이드(Ethidium monoazide) 및 이의 유도체, 헥시디움 아이오다이드(Hexidium iodide) 및 이의 유도체, 비스벤지마이드(bisbenzimide, Hoechst 33258) 및 이의 유도체, 호에크스트 33342(Hoechst 33342) 및 이의 유도체, 호에크스트 34580(Hoechst 34580) 및 이의 유도체, 하이드로옥시스티바미딘(hydroxystilbamidine) 및 이의 유도체, 엘디에스 751(LDS 751) 및 이의 유도체, 프로피디움 아이오다이드(Propidium Iodide, PI)와 이의 유도체 및 사이다이스(Cy-dyes) 유도체로 이루어진 군에서 선택될 수 있다.
본 발명에 있어서, 상기 c) 단계의 소거 프로브는 표적 염기서열의 증폭산물만을 소거하는 프로브; 및 표적 염기서열 및 대조 염기서열의 증폭산물을 모두 소거하는 프로브로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 c) 단계의 소거 프로브는 분석 프로브와 경쟁적으로 대조 염기서열 또는 표적 염기서열의 증폭산물과 혼성화 하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 소거 프로브는 올리고뉴클레오티드, LNA, PNA 및 이들의 혼합으로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 c) 단계의 소거 프로브는 상기 b) 단계의 증폭산물을 50~90% 양으로 소거하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 소거 프로브는 분석 프로브보다 높은 Tm값을 가지는 것을 특징으로 한다.
본 발명에 있어서, 상기 d) 단계의 융해곡선 분석은
a) 정상시료 유전자 증폭 산물의 불완전 혼성화 값/완전 혼성화 값 비율을 계산하는 단계;
b) 대상시료 유전자 증폭 산물의 불완전 혼성화 값/완전 혼성화 값 비율을 계산하는 단계;
c) a)에서 계산한 비율과 b)에서 계산한 비율이 같을 경우, 정상으로 결정하고, 다를 경우 염색체 수 이상으로 결정하는 단계를 포함하는 방법으로 수행하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 융해곡선 분석은
d) 상기 a) 단계와 b) 단계의 비율 계산 시, 소거 프로브에 의한 완전 혼성화 값을 하기의 식으로 보정하는 단계를 추가로 포함하는 것을 특징으로 할 수 있다.
수식 1:
Figure PCTKR2019009067-appb-I000001
혼성화 반응의 분석 방법으로는 형광융해곡선분석(Fluorescence Melting Curve Analysis, FMCA)를 이용하며, 형광융해곡선분석은 PCR 반응 종료 후 생성된 산물과 투입한 프로브 간의 결합력 차이를 융해온도로 구분하여 분석한다. 다른 SNP 검출 프로브와는 다르게 프로브 디자인이 매우 간편하여 SNP를 포함하는 11~18 mer의 염기서열을 이용하여 제작한다. 따라서 원하는 융해온도를 갖는 프로브를 설계하기 위해서는 PNA 프로브의 길이에 따라 Tm값을 조절할 수 있으며, 같은 길이의 PNA 프로브라도 프로브에 변화를 주어 Tm 값을 조절할 수 있다. PNA는 DNA보다 결합력이 우수하여 기본적인 Tm값이 높기 때문에 DNA보다 짧은 길이로 디자인이 가능하여 가깝게 이웃한 SNP라도 검출이 가능하다. 기존의 HRM method는 Tm값의 차이가 약 0.5℃로 매우 작아 추가적인 분석프로그램이나 세밀한 온도변화가 요구되고 2개 이상의 SNP가 나타날 경우 분석이 어렵게 되는 반면, PNA 프로브는 프로브 서열 이외의 SNP에 대해서는 영향을 받지 않아 빠르고 정확한 분석이 가능하다.
본 발명은 또한, 2 종 이상의 프라이머, 2 종 이상의 분석 프로브 및 2 종 이상의 소거 프로브를 사용하고, 분석 프로브의 리포터가 상이한 것을 특징으로 하는 다중 염색체 수적이상 검출방법에 관한 것이다.
당업자에게 있어서, 본 발명의 염색체 수적이상 검출방법은 태아 염색체 이상 검사뿐만 아니라, 암과 관련된 염색체 이상에도 적용될 수 있다는 것은 자명하다.
본 발명은 다른 관점에서, i) 염색체 수 이상과 관련이 없는 염색체 상에 위치한 대조 염기서열과 염색체 수 이상과 관련된 염색체 상에 위치한 표적 염기서열을 모두 증폭할 수 있는 프라이머;
ii) 상기 대조 염기서열 또는 표적 염기서열과 1 또는 2개의 염기 서열이 상이한 서열에 혼성화할 수 있는 분석 프로브; 및
iii) 상기 분석 프로브가 표적 염기서열 또는 대조 염기서열과 혼성화하는 서열의 일부 또는 전부를 포함하고, 상기 분석 프로브보다 결합력이 높은 소거 프로브;
를 포함하는 염색체 수적이상 검출용 PCR 조성물에 관한 것이다.
실시예
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: 염색체이상증후군 검출을 위한 프라이머의 제작
염색체이상증후군(다운증후군(21번 염색체), 에드워드증후군(18번 염색체), 파타우증후군(13번 염색체))의 표적 염기서열과 내부 대조염기서열에 대한 실시간 중합효소연쇄반응을 위해 다운증후군(서열번호 1-10), 에드워드증후군(서열번호 11-20), 파타우증후군(서열번호 21-30)에 대한 프라이머를 제작하였다(표 2).
Figure PCTKR2019009067-appb-T000002
실시예 2: 형광 PNA 프로브의 제작
염색체 이상증후군의 표적 염기서열 검출을 위해 융해온도 분석 기능을 동시에 가지는 양기능성 형광 PNA 프로브(분석 프로브)를 제작하였다. 프로브는 표적 염기서열과 90% 이상의 상동성을 가지는 대조 염기서열에서 1 내지 2개가 다른 서열 부위를 표적하는 부위를 표적 염기서열과 일치 또는 대조 염기서열과 일치하도록 프로브로 제작하였다. 표적 염기서열을 포함하는 분석 프로브는 형광(Texas Red)과 소광자를 결합하였다(표 3).
Figure PCTKR2019009067-appb-T000003
실시예 3: 소거 프로브 제작
염색체 이상증후군의 검출에 사용되는 표적 프로브의 분석 해상도를 높이기 위해 표적 염기서열과 90% 이상의 상동성을 가지는 대조 염기서열에서 1 내지 2개가 다른 서열 부위를 표적 하여 표적 염기서열과 대조 염기서열 모두를 소거하는 프로브는 서열번호 61-66과 같이, 표적 염기서열을 소거하는 프로브(무형광)는 서열번호 67-71과 같이, 형광과 소광자가 결합된 표적 염기서열 소거 프로브는 서열번호 72-86과 같이 제작하였다(표 4).
Figure PCTKR2019009067-appb-T000004
실시예 4: 표준세포주를 사용한 PNA 프로브의 검증
삼염색체(Trisomy) 표준세포주(표 5)를 대상으로 실시예 1에서 제작된 프라이머와 실시예 2에서 제작된 PNA 프로브를 혼합한 후 CFX96™ Real-Time 시스템 (BIO-RAD 사, 미국)을 이용하여 PCR을 수행하였다.
실시간 중합효소연쇄반응 실험 조건은 단일가닥 표적핵산을 생성하기 위해 비대칭 PCR (asymmetric PCR)을 이용하였다. 비대칭 PCR의 조건은 다음과 같다; 총 볼륨이 20㎕이 되도록 2X 시선바이오 리얼타임 FMCA™ 버퍼 (SeaSunBio Real-Time FMCA™ buffer, 시선바이오, 한국), 2.5mM MgCl2, 200μM dNTPs, 1.0U Taq polymerase, 0.05μM 순방향 프라이머 (forward primer, 표 2) 및 0.5μM 역방향 프라이머 (reverse primer, 표 2)(asymmetric PCR)에 1㎕ 표준세포주 DNA (표 5)를 첨가한 다음 리얼타임 PCR을 실시한 후, 0.5㎕ 형광 PNA 프로브(표 3)를 첨가하여 융해곡선 분석을 수행하였으며 분석 조건은 도 4와 같다.
Figure PCTKR2019009067-appb-T000005
그 결과 도 6, 7, 8에 개시된 바와 같이, 삼염색체와 정배수체 세포주에서 분석값 (불완전혼성화값/완전혼성화값) 차이가 나타나는 것을 확인하였다.
실시예 5: PNA 프로브 기반 다운증후군 검출의 민감도 비교 분석
삼염색체(Trisomy 21, 다운증후군) 표준 세포주 (표 5)에서 추출한 DNA를 5, 10, 20, 30, 100%의 비율로 정배수체(Euploid) 정상 gDNA에 혼합하여 민감도를 분석하였으며, 실시예 1과 2에서 제작된 프라이머와 PNA 프로브를 혼합한 후 CFX96™ Real-Time 시스템 (BIO-RAD 사, 미국)을 이용하여 PCR을 수행하였다.
실시간 중합효소연쇄반응 실험 조건은 단일가닥 표적핵산을 생성하기 위해 비대칭 PCR (asymmetric PCR)을 이용하였다. 비대칭 PCR의 조건은 다음과 같다; 총 볼륨이 20㎕이 되도록 2X 시선바이오 리얼타임 FMCA™ 버퍼 (SeaSunBio Real-Time FMCA™ buffer, 시선바이오, 한국), 2.5mM MgCl2, 200μM dNTPs, 1.0U Taq polymerase, 0.05μM 순방향 프라이머 (forward primer, 표 2) 및 0.5μM 역방향 프라이머 (reverse primer, 표 2)(asymmetric PCR)에 1㎕ 표준세포주 DNA (표 5)를 첨가한 다음 리얼타임 PCR을 실시한 후, 0.5㎕ 형광 PNA 프로브 (표 3)를 첨가하여 융해곡선 분석을 수행하였으며 분석 조건은 도 4와 같다.
그 결과 5%의 DNA 혼합액에서도 삼염색체(Trisomy 21, 다운증후군)의 분석이 가능한 것을 확인하였다(도 9).
실시예 6: 소거 프로브의 분석 해상도 상승 효과 검증
실시예 4와 5의 염색체이상증후군 검출의 분석적 해상도를 높이기 위해 실시예 1, 2, 3에서 제작된 프라이머, PNA 형광 프로브, 비형광 소거 프로브를 사용하여 CFX96™ Real-Time 시스템 (BIO-RAD 사, 미국)을 이용하여 PCR을 수행하였다.
실시간 중합효소연쇄반응 실험 조건은 단일가닥 표적핵산을 생성하기 위해 비대칭 PCR(asymmetric PCR)을 이용하였다. 비대칭 PCR의 조건은 다음과 같다; 총 볼륨이 20㎕이 되도록 2X 시선바이오 리얼타임 FMCA™ 버퍼(SeaSunBio Real-Time FMCA™ buffer, 시선바이오, 한국), 2.5mM MgCl2, 200μM dNTPs, 1.0U Taq polymerase, 0.05μM 순방향 프라이머(forward primer, 표 2) 및 0.5μM 역방향 프라이머(reverse primer, 표 2)(asymmetric PCR)에 1㎕ 표준세포주 DNA (표 5)를 첨가한 다음 리얼타임 PCR을 실시한 후, 0.5㎕ 형광 PNA 프로브 (표 3), 비형광 소거 프로브 (표 4, 서열번호 1-11)을 첨가하여 융해곡선 분석을 수행하였으며 분석 조건은 도 4와 같다.
분석 프로브를 단독으로 사용한 경우와 분석 프로브와 소거 프로브를 동시 사용한 경우를 같이 비교하였다. 대조 염기서열만을 소거하는 비형광 프로브를 사용한 경우 (정상과 비정상 차이가 1.8배) 기존 분석 프로브만 사용하였던 경우보다 높은 해상도가 나타나는 것을 확인하였다(정상과 비정상 차이가 1.3배, 도 10).
또한 표적 염기서열과 대조 염기서열을 소거하는 비형광 프로브를 사용한 경우에서도 정상과 비정상의 차이가 1.8배로, 기존 분석방법보다(정상과 비정상 차이가 1.4배) 높은 해상도가 나타나는 것을 확인하였다(도 11).
실시예 7: 결과값 보정을 통한 분석 해상도 상승 효과 검증
실시예 4와 5의 염색체이상증후군 검출을 위한 분석적 해상도를 높이기 위해 실시예 1, 2, 3에서 제작된 프라이머, PNA 형광 분석 프로브, 소거 프로브를 혼합한 후 CFX96™ Real-Time 시스템 (BIO-RAD 사, 미국)을 이용하여 PCR을 수행하였다.
실시간 중합효소연쇄반응 실험 조건은 단일가닥 표적핵산을 생성하기 위해 비대칭 PCR(asymmetric PCR)을 이용하였다. 비대칭 PCR의 조건은 다음과 같다; 총 볼륨이 20㎕이 되도록 2X 시선바이오 리얼타임 FMCA™ 버퍼(SeaSunBio Real-Time FMCA™ buffer, 시선바이오, 한국), 2.5mM MgCl2, 200μM dNTPs, 1.0U Taq polymerase, 0.05μM 순방향 프라이머(forward primer, 표 2) 및 0.5μM 역방향 프라이머(reverse primer, 표 2)(asymmetric PCR)에 1㎕ 표준세포주 DNA (표 5)를 첨가한 다음 리얼타임 PCR을 실시한 후, 0.5㎕ 형광 PNA 표적 프로브 (표 3), 형광 PNA 소거 프로브 (표 4, 서열번호 12-26)를 첨가하여 융해곡선 분석을 수행하였으며 분석 조건은 도 4와 같다.
결과값 보정은 대조 염기서열을 표적으로 한 형광 소거 프로브를 이용하여 진행하였고(도 12), 결과값 보정 (불완전혼성화값/완전혼성화값) / (완전혼성화값/소거프로브에 의한 완전 혼성화값)을 통해 보정 전(불완전혼성화값/완전혼성화값)비교하여 분석 해상도(정상과 비정상의 차이)가 증가하는 것을 확인하였다 1.6배 -> 2.3배, 도 13).
실시예 8: 임상샘플을 사용한 다운증후군 검출 검증
정상 산모의 혈액에서 추출된 cfDNA를 삼염색체 표준물질(Trisomy 21, 다운증후군)과 비교 분석하였다. 삼염색체(Trisomy 21, 다운증후군)의 표준물질로는 Seraseq™ Trisomy 21 Aneuploidy Linearity Panel (4-8% Fetal Fraction)과 표준 세포주를 사용하였다. 그 결과 도 16에 나타난 바와 같이, 정상 산모의 cfDNA 결과 값과 삼염색체(Trisomy 21, 다운증후군) 표준물질 4% 와 8%에 서의 결과값이 모두 차이를 보여 염색체이상증후군 검출이 가능한 것을 확인하였다(도 14).
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명에 따른 염색체 수적이상 검출 방법은 일정 비율의 표적 염기서열과 대조 염기서열의 동량을 소거 프로브를 이용하여 분석에서 제한함으로써 표적 염기서열과 대조 염기서열의 비율을 높은 해상도로 분석할 수 있고, 이를 사용하면 낮은 비율로 존재하는 염색체(예를 들어 산모 혈액 내의 태아 염색체, 암 환자 내의 순환종양 DNA)의 수적이상을 높은 민감도와 빠른 속도로 검출할 수 있어 유용하다.
전자파일 첨부하였음.

Claims (14)

  1. a) 정상시료 및 대상시료에서 DNA를 각각 수득하는 단계;
    b) 염색체 수 이상과 관련이 없는 염색체 상에 위치한 대조 염기서열과 염색체 수 이상과 관련된 염색체 상에 위치한 표적 염기서열을 모두 증폭할 수 있는 프라이머를 사용하여 증폭하는 단계;
    c) 상기 대조 염기서열 또는 표적 염기서열과 1 또는 2개의 염기 서열이 상이한 서열과 혼성화할 수 있는 분석 프로브; 및 상기 분석 프로브가 표적 염기서열 또는 대조 염기서열과 혼성화하는 서열의 일부 또는 전부를 포함하고, 상기 분석 프로브보다 상기 b) 단계의 증폭산물과 결합력이 높은 소거 프로브를 이용하여 상기 증폭산물과 혼성화시키는 단계; 및
    d) 상기 c) 단계에서 혼성화된 정상시료와 대상시료 반응물의 융해곡선을 분석하여 염색체 수적 이상을 판별하는 단계;
    를 포함하는 염색체 수적이상의 검출방법.
  2. 제1항에 있어서, 상기 b) 단계의 대조 염기서열의 프라이머 또는 프로브 혼성화 영역은 표적 염기서열의 프라이머 또는 프로브 혼성화 영역과 90% 이상 일치하는 것을 특징으로 하는 염색체 수적이상 검출방법.
  3. 제1항에 있어서, 상기 c) 단계의 분석 프로브는 대조 염기서열 또는 표적염기서열과 완전 일치(perfect match) 또는 불일치(mismatch)를 이룰 경우, 융해 온도 차이가 8℃ 이상인 것을 특징으로 하는 염색체 수적이상 검출방법.
  4. 제1항에 있어서, 상기 c) 단계의 분석 프로브는 PNA(Peptide Nucleic Acid)이고, 양 말단에 리포터(reporter) 및 소광자(quencher)가 결합되어 있는 것을 특징으로 하는 염색체 수적이상 검출방법.
  5. 제4항에 있어서, 상기 리포터 (reporter)는 FAM (6-carboxyfluorescein), Texas red, HEX (2',4',5',7',-tetrachloro- 6-carboxy-4,7-dichlorofluorescein) 및 Cy5로 구성되는 군에서 선택되는 1개 이상인 것을 특징으로 하는 염색체 수적이상 검출방법.
  6. 제4항에 있어서, 상기 소광자 (quencher)는 TAMRA (6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 및 Dabcyl으로 구성되는 군에서 선택되는 1개 이상인 것을 특징으로 하는 염색체 수적이상 검출방법.
  7. 제1항에 있어서, 상기 c) 단계의 소거 프로브는 표적 염기서열의 증폭산물만을 소거하는 프로브; 및 표적 염기서열 및 대조 염기서열의 증폭산물을 모두 소거하는 프로브로 구성된 군에서 선택되는 것을 특징으로 하는 염색체 수적이상 검출방법.
  8. 제7항에 있어서, 상기 c) 단계의 소거 프로브는 분석 프로브와 경쟁적으로 대조 염기서열 또는 표적 염기서열의 증폭산물과 혼성화 하는 것을 특징으로 하는 염색체 수적이상 검출방법.
  9. 제8항에 있어서, 상기 소거 프로브는 올리고뉴클레오티드, LNA, PNA 및 이들의 혼합으로 구성된 군에서 선택되는 것을 특징으로 하는 염색체 수적이상 검출방법.
  10. 제1항에 있어서, 상기 c) 단계의 소거 프로브는 상기 b) 단계의 증폭산물을 50~90% 양으로 소거하는 것을 특징으로 하는 염색체 수적이상 검출방법.
  11. 제1항에 있어서, 상기 d) 단계의 융해곡선 분석은 하기의 방법으로 수행하는 것을 특징으로 하는 염색체 수적이상 검출방법:
    a) 정상시료 유전자 증폭 산물의 불완전 혼성화 값/완전 혼성화 값 비율을 계산하는 단계;
    b) 대상시료 유전자 증폭 산물의 불완전 혼성화 값/완전 혼성화 값 비율을 계산하는 단계;
    c) a)에서 계산한 비율과 b)에서 계산한 비율이 같을 경우, 정상으로 결정하고, 다를 경우 염색체 수 이상으로 결정하는 단계.
  12. 제11항에 있어서,
    d) 상기 a) 단계와 b) 단계의 비율 계산 시, 소거 프로브에 의한 완전 혼성화 값을 하기의 식으로 보정하는 단계:
    수식 1:
    Figure PCTKR2019009067-appb-I000002
  13. 제1항에 있어서, 2 종 이상의 프라이머, 2 종 이상의 분석 프로브 및 2 종 이상의 소거 프로브를 사용하고, 분석 프로브의 리포터가 상이한 것을 특징으로 하는 다중 염색체 수적이상 검출방법.
  14. i) 염색체 수 이상과 관련이 없는 염색체 상에 위치한 대조 염기서열과 염색체 수 이상과 관련된 염색체 상에 위치한 표적 염기서열을 모두 증폭할 수 있는 프라이머;
    ii) 상기 대조 염기서열 또는 표적 염기서열과 1 또는 2개의 염기 서열이 상이한 서열에 혼성화할 수 있는 분석 프로브; 및
    iii) 상기 분석 프로브가 표적 염기서열 또는 대조 염기서열과 혼성화하는 서열의 일부 또는 전부를 포함하고, 상기 분석 프로브보다 결합력이 높은 소거 프로브;
    를 포함하는 염색체 수적이상 검출용 PCR 조성물.
PCT/KR2019/009067 2018-07-31 2019-07-23 소거 프로브 기반 염색체 수적이상 검출방법 및 염색체 수적이상 검출용핵산의 조성물 WO2020027482A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980060332.XA CN113272444A (zh) 2018-07-31 2019-07-23 基于消除探针的检测染色体数目异常的方法和用于检测染色体数目异常的核酸组合物
US17/265,102 US20220127665A1 (en) 2018-07-31 2019-07-23 Elimination probe-based method for detecting numerical chromosomal abnormalities, and nucleic acid composition for detecting numerical chromosomal abnormalities

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0089224 2018-07-31
KR1020180089224A KR102079963B1 (ko) 2018-07-31 2018-07-31 소거 프로브 기반 염색체 수적이상 검출방법 및 염색체 수적이상 검출용핵산의 조성물

Publications (1)

Publication Number Publication Date
WO2020027482A1 true WO2020027482A1 (ko) 2020-02-06

Family

ID=69232005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009067 WO2020027482A1 (ko) 2018-07-31 2019-07-23 소거 프로브 기반 염색체 수적이상 검출방법 및 염색체 수적이상 검출용핵산의 조성물

Country Status (4)

Country Link
US (1) US20220127665A1 (ko)
KR (1) KR102079963B1 (ko)
CN (1) CN113272444A (ko)
WO (1) WO2020027482A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140091944A (ko) * 2013-01-14 2014-07-23 주식회사 시선바이오머티리얼스 내부컨트롤 및 리포터 및 소광자가 결합된 pna 프로브를 이용한 용융곡선 분석방법, 이를 이용한 표적핵산 검출방법 및 표적핵산 검출 키트
KR20150017525A (ko) * 2013-08-07 2015-02-17 주식회사 시선바이오머티리얼스 차세대 염기서열 분석법을 이용한 체성돌연변이 검출방법
KR20170009445A (ko) * 2015-07-17 2017-01-25 주식회사 시선바이오머티리얼스 Pna 프로브를 이용한 성별 판별 및 클라인펠터 증후군의 진단 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140091944A (ko) * 2013-01-14 2014-07-23 주식회사 시선바이오머티리얼스 내부컨트롤 및 리포터 및 소광자가 결합된 pna 프로브를 이용한 용융곡선 분석방법, 이를 이용한 표적핵산 검출방법 및 표적핵산 검출 키트
KR20150017525A (ko) * 2013-08-07 2015-02-17 주식회사 시선바이오머티리얼스 차세대 염기서열 분석법을 이용한 체성돌연변이 검출방법
KR20170009445A (ko) * 2015-07-17 2017-01-25 주식회사 시선바이오머티리얼스 Pna 프로브를 이용한 성별 판별 및 클라인펠터 증후군의 진단 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DUOSE, D. Y. -§: "Configuring robust DNA strand displacement reactions for in situ molecular analyses", NUCLEIC ACIDS RESEARCH, 2012, XP002715512 *
LOU, J.: "Rapid and simultaneous detection of common aneuploidies by quadruplex real-time polymerase chain reaction combined with melting curve analysis", PLOS ONE, 27 February 2017 (2017-02-27), XP055682026 *

Also Published As

Publication number Publication date
US20220127665A1 (en) 2022-04-28
CN113272444A (zh) 2021-08-17
KR102079963B1 (ko) 2020-02-21
KR20200013955A (ko) 2020-02-10

Similar Documents

Publication Publication Date Title
US11345958B2 (en) Methods for performing multiplexed real-time PCR
Mouritzen et al. Single nucleotide polymorphism genotyping using locked nucleic acid (LNA™)
EP0843735B2 (en) Glycosylase mediated detection of known nucleotide sequences
EP2129797B1 (en) Nucleic acid detection
US7223536B2 (en) Methods for detecting single nucleotide polymorphisms
WO2017030322A1 (ko) 바이러스성 출혈성 패혈증 바이러스의 지역 특이적 유전형 판별용 프로브 및 그 용도
US11198903B2 (en) Methods for performing multiplexed real-time PCR
JP5239853B2 (ja) 変異遺伝子の検出方法
WO2020153764A1 (ko) 태그서열 snp를 이용한 단일 검출 프로브 기반 다중 표적 검출방법
CN111996244B (zh) 一种单核苷酸多态性检测用组合物及其应用
CN117535386A (zh) 一种用于检测基因多态性的荧光淬灭pcr方法及其应用
US6753141B2 (en) Simultaneous screening and identification of sequence alterations from amplified target
WO2020027482A1 (ko) 소거 프로브 기반 염색체 수적이상 검출방법 및 염색체 수적이상 검출용핵산의 조성물
WO2018016683A1 (ko) 다중 증폭 이중 시그널 증폭에 의한 타겟 핵산 서열의 검출 방법
WO2019231287A1 (ko) 회전환 증폭을 이용한 표적핵산 검출 방법 및 표적핵산 검출용 조성물
Holland et al. Short tandem repeat loci: application to forensic and human remains identification
WO2019098512A1 (ko) 핵산의 대립형질 특이적 프라이머 및 이를 이용한 유전형 판별 방법
Luo et al. Genotyping mitochondrial DNA single nucleotide polymorphisms by PCR ligase detection reactions
JPWO2006070666A1 (ja) 遺伝子多型の同時検出方法
WO2024014734A1 (ko) 특이도 및 민감도가 향상된 qpcr 방법 및 킷트
WO2022203297A1 (ko) 가이드 프로브 및 클램핑 프로브를 이용한 표적핵산 증폭방법 및 이를 포함하는 표적핵산 증폭용 조성물
WO2022114720A1 (ko) 높은 특이도의 표적핵산 증폭방법 및 이를 이용한 표적핵산 증폭용 조성물
WO2016104949A1 (ko) Pna 프로브를 이용한 인공합성 올리고의 품질보증 방법
Dahl et al. Methods for detection of subtle mutations in cancer genomes
WO2023107682A1 (en) Methods for the detection of a nucleic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844242

Country of ref document: EP

Kind code of ref document: A1