WO2020027211A1 - 高Mn鋼およびその製造方法 - Google Patents
高Mn鋼およびその製造方法 Download PDFInfo
- Publication number
- WO2020027211A1 WO2020027211A1 PCT/JP2019/030051 JP2019030051W WO2020027211A1 WO 2020027211 A1 WO2020027211 A1 WO 2020027211A1 JP 2019030051 W JP2019030051 W JP 2019030051W WO 2020027211 A1 WO2020027211 A1 WO 2020027211A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel
- hot rolling
- rolling
- temperature
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/021—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
Definitions
- the present invention relates to a high Mn steel which is suitable for structural steel used in an extremely low temperature environment, such as a tank for a liquefied gas storage tank, and which is particularly excellent in toughness at a low temperature, and a method for producing the same.
- Structures such as tanks for liquefied gas storage tanks are used at extremely low temperatures, so using hot-rolled steel sheets for this structure requires not only the strength of the steel sheets but also excellent toughness at extremely low temperatures. Is required. For example, it is necessary for a hot-rolled steel sheet used for a liquefied natural gas storage tank to have excellent toughness in a temperature range lower than the boiling point of liquefied natural gas, ie, ⁇ 164 ° C. If the low-temperature toughness of the steel sheet used for the cryogenic storage tank structure is inferior, there is a possibility that the safety as the cryogenic storage tank structure may not be maintained. is there.
- a hot-rolled steel sheet used for a liquefied natural gas storage tank is also required to have excellent properties on the surface of the steel sheet serving as a base for coating, that is, to have less unevenness on the steel sheet surface.
- Patent Literature 1 proposes a technique in which stacking fault energy is controlled so that low-temperature toughness is excellent and surface unevenness does not occur.
- Patent Document 1 it is possible to provide a high Mn steel having excellent surface quality, which does not cause surface unevenness after processing such as tension.
- the surface roughness of a hot-rolled steel sheet to be manufactured is mentioned. Not. That is, the hot-rolled steel sheet after production is generally shipped after the surface is made uniform by shot blasting. If the surface of the steel sheet after the shot blasting treatment is rough, rust is locally generated, so it is necessary to adjust the surface properties by grinder care or the like, and there has been a problem that productivity is reduced.
- an object of the present invention is to provide a high Mn steel excellent in low-temperature toughness and surface properties. Furthermore, the invention aims to propose an advantageous method for producing such a high Mn steel.
- excellent low-temperature toughness indicates that the absorbed energy vE -196 Charpy impact test at -196 ° C. is 100J or more and brittle fracture surface ratio is less than 10%
- excellent surface texture means that the surface roughness Ra after general shot blasting is 200 ⁇ m or less.
- the inventors conducted intensive studies on high Mn steels with respect to various factors that determine the composition and structure of the steel sheet, and obtained the following findings a to d. a. It has been found that the austenitic steel with a high Mn content has a brittle fracture ratio of 10% or more at low temperatures when a Mn concentration of more than 38.0% by mass is generated, resulting in deterioration of low-temperature toughness. . For this reason, it is effective to reduce the Mn concentration in the Mn-enriched portion to 38.0% by mass or less in order to improve the low-temperature toughness of the high Mn steel.
- the austenite steel having a high Mn content contains more than 5.00% by mass of Cr, descaling at the time of hot rolling becomes insufficient, and the surface roughness Ra after the shot blast treatment is performed on the hot rolled sheet. The surface becomes rougher than 200 ⁇ m. For this reason, in order to improve the surface properties of the high Mn steel, the amount of Cr added needs to be 5.00% by mass or less.
- the present invention has been made by further studying the above findings, and the gist thereof is as follows. 1. In mass%, C: 0.100% or more and 0.700% or less, Si: 0.05% or more and 1.00% or less, Mn: 20.0% or more and 35.0% or less, P: 0.030% or less, S: 0.0070% or less, Al: 0.010% or more and 0.070% or less, Cr: 0.50% to 5.00%, N: 0.0050% or more and 0.0500% or less, O: 0.0050% or less, Ti: 0.005% or less and Nb: 0.005% or less, with the balance having a component composition of Fe and unavoidable impurities and a microstructure having austenite as a base phase, and a Mn-enriched portion in the microstructure.
- Mn concentration is 38.0 wt% or less and KAM average (Kernel average Misorientation) value is not less than 0.3, the yield strength of the absorbed energy vE -196 Charpy impact test at 400MPa or more and -196 ° C. 100 J A high Mn steel having a brittle fracture ratio of less than 10%.
- the component composition further includes, in mass%, Cu: 0.01% or more and 0.50% or less, Mo: 2.00% or less, 2.
- the component composition further includes, in mass%, Ca: 0.0005% or more and 0.0050% or less, 3.
- hot rolling is performed at a rolling end temperature of 800 ° C. or more and a total draft of 20%.
- a method for producing a high Mn steel which performs the above and performs a descaling treatment in the hot rolling.
- the above-mentioned temperature range and temperature are surface temperatures of a steel material or a steel plate, respectively.
- the first hot rolling is performed at a rolling end temperature of 1100 ° C. or more and a total draft. Is performed at 20% or more, a second hot rolling is performed at a rolling end temperature of 700 ° C. or more and less than 950 ° C., and a descaling treatment is performed on the high Mn steel in the second hot rolling. Production method.
- the first hot rolling is performed at a rolling end temperature of 800 ° C. or more and less than 1100 ° C.
- reheating is performed at 1100 ° C or more and 1300 ° C or less
- the second hot rolling is performed at a rolling end temperature of 700 ° C or more and less than 950 ° C.
- the high Mn steel of the present invention greatly contributes to the improvement of safety and life of steel structures used in an extremely low temperature environment, such as a tank for a liquefied gas storage tank, and has a remarkable industrial effect.
- the production method of the present invention does not cause a decrease in productivity and an increase in production cost, so that it is possible to provide a method that is excellent in economic efficiency.
- C 0.100% or more and 0.700% or less
- C is an inexpensive austenite stabilizing element, and is an important element for obtaining austenite. In order to obtain the effect, C needs to be contained at 0.100% or more.
- C is set to 0.100% or more and 0.700% or less. Preferably, it is not less than 0.200% and not more than 0.600%.
- Si acts as a deoxidizing material and is not only necessary for steelmaking, but also has the effect of forming a solid solution in steel and strengthening the steel sheet by solid solution strengthening. .
- the content of Si needs to be 0.05% or more.
- Si is set to 0.05% or more and 1.00% or less. Preferably, it is 0.07% or more and 0.50% or less.
- Mn 20.0% or more and 35.0% or less
- Mn is a relatively inexpensive austenite stabilizing element. In the present invention, it is an important element for achieving both strength and low-temperature toughness. In order to obtain the effect, Mn needs to be contained at 20.0% or more. On the other hand, if the content exceeds 35.0%, the low-temperature toughness deteriorates. Therefore, Mn is set to 20.0% or more and 35.0% or less. Preferably, it is 23.0% or more and 32.0% or less.
- P 0.030% or less If P is contained in excess of 0.030%, the low-temperature toughness deteriorates and segregates at the grain boundaries, and becomes a starting point of stress corrosion cracking. For this reason, it is desirable to set the upper limit to 0.030% and reduce as much as possible. Therefore, P is set to 0.030% or less. Incidentally, excessive reduction of P increases the refining cost and is disadvantageous economically. Therefore, it is preferable to set the content to 0.002% or more. Preferably it is 0.005% or more and 0.028% or less, more preferably 0.024% or less.
- S 0.0070% or less Since S deteriorates the low-temperature toughness and ductility of the base material, the upper limit is 0.0070%, and it is desirable to reduce as much as possible. Therefore, S is set to 0.0070% or less. In addition, excessive reduction of S increases refining cost and is disadvantageous economically. Therefore, it is preferable to set the content to 0.0010% or more. Preferably it is 0.0020% or more and 0.0060% or less.
- Al acts as a deoxidizing agent, and is most commonly used in a molten steel deoxidizing process for steel sheets. To obtain such an effect, Al needs to be contained at 0.010% or more. On the other hand, if the content exceeds 0.070%, it is mixed into the weld metal during welding and deteriorates the toughness of the weld metal. Preferably, it is 0.020% or more and 0.060% or less.
- Cr 0.50% or more and 5.00% or less
- Cr is an element that stabilizes austenite when added in an appropriate amount and is effective in improving low-temperature toughness and base metal strength.
- the content of Cr needs to be 0.50% or more.
- the content exceeds 5.00% low-temperature toughness and stress corrosion cracking resistance are reduced due to generation of Cr carbide.
- descaling at the time of hot rolling becomes insufficient, and the surface roughness deteriorates.
- Cr is set to 0.50% or more and 5.00% or less.
- it is 0.60% or more and 4.00% or less, more preferably 0.70% or more and 3.50% or less.
- it is preferably at least 2.00%, and more preferably more than 2.70%.
- N is an austenite stabilizing element and is an element effective for improving low-temperature toughness. To obtain such an effect, N needs to be contained at 0.0050% or more. On the other hand, if the content exceeds 0.0500%, nitrides or carbonitrides are coarsened and toughness is reduced. Therefore, N is set to 0.0050% or more and 0.0500% or less. Preferably, it is 0.0060% or more and 0.0400% or less.
- O 0.0050% or less O deteriorates the low-temperature toughness due to the formation of an oxide. For this reason, O is in a range of 0.0050% or less. Preferably, it is 0.0045% or less. Although the lower limit of the content is not particularly limited, excessive reduction of O increases smelting cost and becomes economically disadvantageous, so that it is preferably 0.0010% or more.
- Ti and Nb are components that are inevitably mixed from raw materials and the like, and Ti and Nb are mixed in a range of more than 0.005% and 0.010% or less and Nb: more than 0.005% and 0.010% or less. Is customary.
- the contents of Ti and Nb are each set to 0.003% or less.
- Ti and Nb may be reduced to 0%, but the load at the time of steel making increases and becomes economically disadvantageous. 0.001% or more.
- the balance other than the above components is iron and inevitable impurities.
- the unavoidable impurities here include H, B, and the like, and a total of 0.01% or less is acceptable.
- the following elements can be contained as necessary in addition to the above essential elements.
- Cu 0.01% or more and 0.50% or less; Mo: 2.00% or less; V: 2.00% or less; W: 2.00% or less.
- Cu is an element that not only increases the strength of a steel sheet by solid solution strengthening, but also improves the mobility of dislocations and the low-temperature toughness. In order to obtain such an effect, it is preferable that Cu is contained at 0.01% or more. On the other hand, if the content exceeds 0.50%, the surface properties deteriorate during rolling. For this reason, Cu is preferably set to 0.01% or more and 0.50% or less. More preferably, the content is 0.02% or more and 0.40% or less. More preferably, it is less than 0.20%.
- Mo, V and W contribute to the stabilization of austenite and to the improvement of the base metal strength.
- Mo, V and W are preferably contained at 0.001% or more, respectively.
- the content exceeds 2.00%, coarse carbonitrides are generated, which may be a starting point of destruction, and also reduce production cost. Therefore, when these alloying elements are contained, their contents are preferably 2.00% or less. More preferably, the content is 0.003% or more and 1.70% or less, and further preferably 1.50% or less.
- Ca 0.0005% to 0.0050%
- Mg 0.0005% to 0.0050%
- REM One or more of 0.0010% to 0.0200%
- the morphological control of inclusions refers to making expanded sulfide-based inclusions into granular inclusions. Through this morphological control of inclusions, the ductility, toughness and sulfide stress corrosion cracking resistance are improved. In order to obtain such effects, it is preferable that Ca and Mg are contained at 0.0005% or more, and REM is contained at 0.0010% or more.
- the content is preferably 0.0005% to 0.0050%, respectively, and when REM is contained, the content is preferably 0.0010% to 0.0200%. More preferably, Ca is 0.0010% to 0.0040%, Mg is 0.0010% to 0.0040%, and REM is 0.0020% to 0.0150%.
- the steel material may cause brittle fracture in a low-temperature environment, and is suitable for use in a low-temperature environment.
- the base phase of the steel material must have an austenitic structure having a face-centered cubic structure (fcc).
- fcc face-centered cubic structure
- using austenite as the base phase means that the austenite phase has an area ratio of 90% or more.
- the balance other than the austenite phase is a ferrite phase or a martensite phase. More preferably, the austenite phase is 95% or more, and may be 100%.
- the Mn concentration in the Mn-enriched portion in the microstructure is 38.0% by mass or less
- the hot rolled steel sheet obtained by hot rolling a steel material having the above-described composition has Mn-enriched portions inevitably generated.
- the Mn-enriched portion is a portion having the highest Mn concentration in the micro-segregated portion.
- the results of measuring the Mn concentration of the Mn-enriched portion and the absorption energy of the Charpy impact test at -196 ° C for the steel sheet obtained by subjecting the steel material having the above-described composition to hot rolling under various conditions are shown in FIG. It is shown in FIG. As shown in the figure, after the steel material having the above-described composition is subjected to hot rolling under appropriate conditions and the Mn concentration in the Mn-enriched portion is set to 38.0% by mass or less, the absorbed energy: 100 J or more is realized.
- the Mn concentration in the Mn-enriched portion is preferably 37.0% by mass or less.
- the lower limit of the Mn concentration in the Mn-enriched portion is not particularly limited, but is preferably 25.0% by mass or more from the viewpoint of securing the stability of austenite.
- the average of the KAM (Kernel Average Misorientation) value is 0.3 or more.
- the KAM value is a visual field of 500 ⁇ m ⁇ 200 ⁇ m for each of the ⁇ and ⁇ depth positions from the surface of the steel sheet after hot rolling.
- EBSD Electro Backscatter Diffraction
- This KAM value reflects a local change in crystal orientation due to dislocation in the structure, and indicates that the higher the KAM value, the larger the orientation difference between the measurement point and the adjacent part.
- the average of the KAM values is 0.3 or more, a large amount of dislocations are accumulated, so that the yield strength is improved. Preferably, it is 0.5 or more.
- the average of the KAM values exceeds 1.3, the toughness may be degraded. Therefore, the average is preferably 1.3 or less.
- a hot-rolled sheet having the above composition and having a Mn concentration of the Mn-enriched portion of 38.0% or less and an average KAM value of 0.3 or more should be descaled at least in the final hot rolling.
- the surface roughness Ra after performing the shot blasting by a general method becomes 200 ⁇ m or less. Because, by performing the descaling, it is possible to suppress the increase of the surface roughness due to the biting of the scale at the time of rolling, and to suppress the occurrence of the cooling unevenness at the time of cooling by the scale, and to make the material surface hardness uniform. This is because an increase in surface roughness during shot blast is suppressed.
- Ra needs to be 200 ⁇ m or less. Preferably it is 150 ⁇ m or less, more preferably 120 ⁇ m or less.
- the lower limit of Ra is not particularly limited, but is preferably 5 ⁇ m or more in order to prevent an increase in maintenance cost.
- Mn diffuses from steel into the steel sheet surface as an oxide called a surface condensate, and precipitates and condenses on the steel sheet surface. Therefore, by setting the Mn concentration in the Mn-enriched portion to 38.0% or less, Ra is increased. : 200 ⁇ m or less can be achieved.
- the high Mn steel according to the present invention can be produced from a molten steel having the above-described composition by a known method using a converter, an electric furnace, or the like. Further, secondary refining may be performed in a vacuum degassing furnace. At this time, in order to limit Ti and Nb that hinder favorable structure control to the above-described range, it is necessary to avoid inevitable mixing from raw materials and the like and take measures to reduce their contents. . For example, by lowering the basicity of the slag in the refining stage, these alloys are concentrated into the slag and discharged to reduce the concentration of Ti and Nb in the final slab product.
- a method of blowing oxygen to oxidize and floating and separating an alloy of Ti and Nb at reflux may be used. Thereafter, a steel material such as a slab having a predetermined size is preferably formed by a known casting method such as a continuous casting method.
- the steel material is heated to a temperature range of 1100 ° C. or more and 1300 ° C. or less, and then hot-rolled.
- the total rolling reduction is 20% or more, and a descaling process is performed in the hot rolling.
- Step material heating temperature 1100 ° C or higher and 1300 ° C or lower
- the temperature control here is based on the surface temperature of the steel material. That is, the heating temperature before rolling is set to 1100 ° C. or higher in order to promote the diffusion of Mn in hot rolling. On the other hand, if the temperature exceeds 1300 ° C., there is a concern that melting of the steel starts, so the upper limit of the heating temperature is 1300 ° C. Preferably, it is 1150 ° C or higher and 1250 ° C or lower.
- the rolling end temperature is 800 ° C or more and the total draft is 20% or more
- the total draft is 30% or more.
- the upper limit of the total rolling reduction is not particularly required, but is preferably 98% or less from the viewpoint of improving the rolling efficiency.
- the total reduction rate is the reduction rate with respect to the thickness of the slab on the first hot rolling entry side at the time when the first hot rolling is completed, and the time when the second hot rolling is completed, respectively. Is the rolling reduction with respect to the thickness of the slab on the second hot rolling entry side.
- the total rolling reduction is at least 20% at the end of the first hot rolling, and the second At the end of hot rolling is preferably 50% or more, and when hot rolling is performed only once, the total draft is preferably 60% or more.
- the rolling end temperature is set to 800 ° C. or higher. This is because if the rolling end temperature is lower than 800 ° C., the melting point of Mn (1246 ° C.) is significantly lower than 2/3, so that Mn cannot be sufficiently diffused.
- the inventors have found that if the rolling end temperature is 800 ° C. or higher, Mn can be sufficiently diffused. This is probably because the Mn diffusion coefficient in austenite is small, and it is considered that rolling in a temperature range of 800 ° C. or more is necessary for sufficient Mn diffusion.
- it is 950 ° C or higher, more preferably 1000 ° C or higher.
- the upper limit of the rolling end temperature is preferably set to 1050 ° C. or less from the viewpoint of securing strength.
- the second hot rolling may be continued as it is, but if it is less than 1100 ° C., reheating at 1100 ° C. or more I do.
- the upper limit of the heating temperature is set to 1300 ° C.
- the temperature control is based on the surface temperature of the steel material.
- the second hot rolling requires at least one pass in a temperature range of 700 ° C. or more and less than 950 ° C. That is, by performing rolling at a rolling rate of less than 950 ° C., preferably a rolling reduction of preferably 10% or more per pass, by performing one or more passes, dislocations introduced in the first rolling hardly recover and are likely to remain. The value can be further increased.
- final pass rolling of one or more passes is performed at a temperature lower than 950 ° C.
- the upper limit of the rolling end temperature is preferably 900 ° C or lower, more preferably 850 ° C or lower.
- the rolling end temperature is lower than 700 ° C, the toughness is deteriorated. Preferably it is 750 ° C or higher.
- the total draft at the end of the second hot rolling is preferably 20% or more, more preferably 50% or more. However, if the reduction is more than 95%, the toughness deteriorates. Therefore, the total reduction at the end of the second hot rolling is preferably 95% or less.
- the total rolling reduction at the end of the second hot rolling is a value calculated using the thickness before the second hot rolling and the thickness after the second hot rolling.
- a steel sheet having excellent surface properties can be produced. It is preferably at least two times, more preferably at least three times.
- the upper limit of the number of times is not particularly limited, but is preferably 20 times or less in terms of operation.
- the cooling rate in the temperature range from (rolling end temperature ⁇ 100 ° C.) or more to 300 ° C. or more and 650 ° C. is specified because the aforementioned temperature range corresponds to the carbide precipitation temperature range. If the cooling is performed excessively, the steel sheet is distorted, and the productivity is reduced. In particular, it is preferable to air-cool steel materials having a thickness of 10 mm or less. Therefore, the upper limit of the cooling start temperature is preferably set to 900 ° C.
- the average cooling rate in the above temperature range is less than 1.0 ° C./s, the formation of precipitates may be promoted. Therefore, the average cooling rate is preferably 1.0 ° C./s or more.
- the upper limit of the average cooling rate is preferably set to 15.0 ° C./s or less.
- the temperature is preferably 5.0 ° C / s or less, more preferably 3.0 ° C / s or less.
- a steel slab having the composition shown in Table 1 was produced by the converter-ladle refining-continuous casting method. Next, the obtained steel slab was subjected to hot rolling according to the conditions shown in Table 2 to obtain a steel plate having a thickness of 6 to 30 mm. The tensile properties, toughness, and microstructure of the obtained steel sheet were evaluated in the following manner.
- Tensile test characteristics A JIS No. 5 tensile test piece was sampled from each of the obtained steel sheets, and a tensile test was performed in accordance with the provisions of JIS Z 2241 (1998) to investigate the tensile test characteristics.
- a yield strength of 400 MPa or more and a tensile strength of 800 MPa or more were determined to be excellent in tensile properties.
- elongation of 40% or more was judged to be excellent in ductility.
- Mn Concentration in Mn-Enriched Part Further, at the EBSD measurement position of the KAM value, an EPMA (Electron Probe Micro Analyzer) analysis was performed to determine the Mn concentration, and the part having the highest Mn concentration was defined as the concentrated part.
- EPMA Electro Probe Micro Analyzer
- Austenite area ratio At the EBSD measurement position, EBSD analysis (measurement step: 0.3 ⁇ m) was performed, and the austenite area ratio was measured from the obtained Phase map.
- the high Mn steel according to the present invention has the above-mentioned target performance (yioned target performance (yioned target performance) (yioned target performance (yioned target performance) (yioned target performance (yioned target performance) (yioned target performance (yioned target performance) (yioned target performance (yioned target performance) (yioned target performance (yioned target performance) (yioned target performance (yioned target performance (yioned target performance (yioned yield strength of the base material is 400 MPa or more, low temperature toughness is 100 J or more in average of absorbed energy (vE ⁇ 196 ), brittle fracture rate is less than 10%, surface roughness (Ra is not more than 200 ⁇ m). On the other hand, in Comparative Examples outside the scope of the present invention, at least one of the yield strength, low-temperature toughness, and surface roughness does not satisfy the above-mentioned target performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
a.高Mn量のオーステナイト鋼は、Mn濃度が38.0質量%超のMn濃化部が生成されると、低温において脆性破面率が10%以上となり、低温靱性の劣化を招くことが判明した。このことから高Mn鋼の低温靱性向上にはMn濃化部のMn濃度を38.0質量%以下にすることが有効である。
1.質量%で、
C:0.100%以上0.700%以下、
Si:0.05%以上1.00%以下、
Mn:20.0%以上35.0%以下、
P:0.030%以下、
S:0.0070%以下、
Al:0.010%以上0.070%以下、
Cr:0.50%以上5.00%以下、
N:0.0050%以上0.0500%以下、
O:0.0050%以下、
Ti:0.005%以下および
Nb:0.005%以下
を含み、残部がFeおよび不可避的不純物の成分組成とオーステナイトを基地相とするミクロ組織とを有し、該ミクロ組織におけるMn濃化部のMn濃度が38.0質量%以下かつKAM(Kernel Average Misorientation)値の平均が0.3以上であり、降伏強さが400MPa以上および-196℃におけるシャルピー衝撃試験の吸収エネルギーvE-196が100J以上かつ脆性破面率が10%未満である高Mn鋼。
Cu:0.01%以上0.50%以下、
Mo:2.00%以下、
V:2.00%以下および
W:2.00%以下
のうちから選ばれる1種または2種以上を含有する前記1に記載の高Mn鋼。
Ca:0.0005%以上0.0050%以下、
Mg:0.0005%以上0.0050%以下および
REM:0.0010%以上0.0200%以下
のうちから選ばれる1種または2種以上を含有する前記1または2に記載の高Mn鋼。
ここで、前記の温度域および温度は、それぞれ鋼素材または鋼板の表面温度である。
[成分組成]
まず、本発明の高Mn鋼の成分組成とその限定理由について説明する。なお、成分組成における「%」表示は、特に断らない限り「質量%」を意味するものとする。
C:0.100%以上0.700%以下
Cは、安価なオーステナイト安定化元素であり、オーステナイトを得るために重要な元素である。その効果を得るために、Cは0.100%以上の含有を必要とする。一方、0.700%を超えて含有すると、Cr炭化物が過度に生成され、低温靱性が低下する。このため、Cは0.100%以上0.700%以下とする。好ましくは、0.200%以上0.600%以下とする。
Siは、脱酸材として作用し、製鋼上必要であるだけでなく、鋼に固溶して固溶強化により鋼板を高強度化する効果を有する。このような効果を得るために、Siは0.05%以上の含有を必要とする。一方、1.00%を超えて含有すると、低温靭性および溶接性が劣化する。このため、Siは0.05%以上1.00%以下とする。好ましくは、0.07%以上0.50%以下とする。
Mnは、比較的安価なオーステナイト安定化元素である。本発明では、強度と低温靱性を両立するために重要な元素である。その効果を得るために、Mnは20.0%以上の含有を必要とする。一方、35.0%を超えて含有すると、低温靱性が劣化する。このため、Mnは20.0%以上35.0%以下とする。好ましくは、23.0%以上32.0%以下とする。
Pは、0.030%を超えて含有すると、低温靭性が劣化し、また粒界に偏析し、応力腐食割れの発生起点となる。このため、0.030%を上限とし、可能なかぎり低減することが望ましい。したがって、Pは0.030%以下とする。尚、過度のP低減は精錬コストを高騰させ経済的に不利となるため、0.002%以上とすることが望ましい。好ましくは、0.005%以上0.028%以下、さらに好ましくは0.024%以下とする。
Sは、母材の低温靭性や延性を劣化させるため、0.0070%を上限とし、可能なかぎり低減することが望ましい。したがって、Sは0.0070%以下とする。尚、過度のSの低減は精錬コストを高騰させ経済的に不利となるため、0.0010%以上とすることが望ましい。好ましくは0.0020%以上0.0060%以下とする。
Alは、脱酸剤として作用し、鋼板の溶鋼脱酸プロセスに於いて、もっとも汎用的に使われる。このような効果を得るためには、Alは0.010%以上の含有を必要とする。一方、0.070%を超えて含有すると、溶接時に溶接金属部に混入して、溶接金属の靭性を劣化させるため、0.070%以下とする。好ましくは、0.020%以上0.060%以下とする。
Crは、適量の添加でオーステナイトを安定化させ、低温靱性と母材強度の向上に有効な元素である。このような効果を得るためには、Crは0.50%以上の含有を必要とする。一方、5.00%を超えて含有すると、Cr炭化物の生成により、低温靭性および耐応力腐食割れ性が低下する。加えて、熱間圧延時のデスケーリングが不十分になり、表面粗さが劣化する。このため、Crは0.50%以上5.00%以下とする。好ましくは0.60%以上4.00%以下、より好ましくは0.70%以上3.50%以下とする。特に、耐応力腐食割れを向上させるためには、2.00%以上が好ましく、そして2.70%超とすることがさらに好ましい。
Nは、オーステナイト安定化元素であり、低温靱性向上に有効な元素である。このような効果を得るためには、Nは0.0050%以上の含有を必要とする。一方、0.0500%を超えて含有すると、窒化物または炭窒化物が粗大化し、靭性が低下する。このため、Nは0.0050%以上0.0500%以下とする。好ましくは0.0060%以上0.0400%以下とする。
Oは、酸化物の形成により低温靱性を劣化させる。このため、Oは0.0050%以下の範囲とする。好ましくは、0.0045%以下である。含有量の下限値は特に限定されないが、過度のOの低減は製錬コストを高騰させ経済的に不利となるため、0.0010%以上とすることが好ましい。
TiおよびNbは、鋼中で高融点の炭窒化物を形成して結晶粒の粗大化を抑制し、その結果、破壊の起点や亀裂伝播の経路となる。特に、高Mn鋼においては低温靭性を高め、延性を向上するための組織制御の妨げとなるため、意図的に抑制する必要がある。すなわち、TiおよびNbは、原材料などから不可避的に混入する成分であり、Ti:0.005%超0.010%以下およびNb:0.005%超0.010%以下の範囲で混入するのが通例である。そこで、後述する手法などに従って、TiおよびNbの不可避混入を極力回避し、TiおよびNbの含有量を各々0.005%以下に抑制する必要がある。TiおよびNbの含有量を各々0.005%以下に抑制することによって、上記した炭窒化物の悪影響を排除し、優れた低温靭性並びに延性を確保することができる。好ましくは、TiおよびNbの含有量を各々0.003%以下とする。
Cu:0.01%以上0.50%以下、Mo:2.00%以下、V:2.00%以下、W:2.00%以下の1種または2種以上
Ca、MgおよびREMは、介在物の形態制御に有用な元素であり、必要に応じて含有できる。介在物の形態制御とは、展伸した硫化物系介在物を粒状の介在物とすることをいう。この介在物の形態制御を介して、延性、靭性および耐硫化物応力腐食割れ性を向上させる。このような効果を得るためには、CaおよびMgは0.0005%以上、REMは0.0010%以上含有することが好ましい。一方、いずれの元素も多く含有させると、非金属介在物量が増加し、かえって延性、靭性、耐硫化物応力腐食割れ性が低下する場合がある。また、経済的に不利になる場合がある。
このため、CaおよびMgを含有する場合には、それぞれ0.0005%以上0.0050%以下、REMを含有する場合には、0.0010%以上0.0200%以下とすることが好ましい。より好ましくは、Caは0.0010%以上0.0040%以下、Mgは0.0010%以上0.0040%以下、REMは0.0020%以上0.0150%以下とする。
オーステナイトを基地相とするミクロ組織
鋼材の結晶構造が体心立方構造(bcc)である場合、該鋼材は低温環境下で脆性破壊を起こす可能性があるため、低温環境下での使用には適していない。ここに、低温環境下での使用を想定したとき、鋼材の基地相は、結晶構造が面心立方構造(fcc)であるオーステナイト組織であることが必須となる。なお、「オーステナイトを基地相とする」とは、オーステナイト相が面積率で90%以上であることを意味する。オーステナイト相以外の残部は、フェライト相またはマルテンサイト相である。さらに好ましくは、オーステナイト相が95%以上であり、100%であってもよい。
上記した成分組成の鋼素材を熱間圧延して得られる熱延鋼板には、Mn濃化部が不可避に生成する。Mn濃化部とは、ミクロ偏析部の中でMn濃度が最も高い箇所である。Mnを含む鋼素材に熱間圧延を施すと、Mnのバンド状の偏析が生成することにより不可避に生成する。
Mn濃化部のMn濃度の下限値は特に限定されないが、オーステナイトの安定度確保の理由から、25.0質量%以上とすることが好ましい。
KAM値は、熱間圧延後の鋼板の表面から板厚の1/4および1/2の深さ位置のそれぞれについて、500μm×200μmの視野におけるEBSD(Electron Backscatter Diffraction)解析を任意の2視野にわたって行った結果から、結晶粒内の各ピクセルと隣接するピクセルとの方位差の平均値として求められる値である。このKAM値は、組織における転位による局所的結晶方位変化を反映しており、KAM値が高いほど、測定点と隣り合った部位との方位差が大きいことを示している。すなわち、KAM値が高いほど、粒内の局所的な変形度合が高いことを意味するため、圧延後の鋼板においてKAM値が高いほど、転位密度が高いことになる。そして、このKAM値の平均が0.3以上であれば、多量の転位が蓄積されているため、降伏強さが向上する。好ましくは、0.5以上である。一方、KAM値の平均が1.3を超えると靱性が劣化するおそれがあるため、1.3以下とすることが好ましい。
そして、ショットブラスト後の表面粗さRaが200μmを超えると、塗装後の美観が損なわれるだけでなく、へこみ部で局所腐食が進行するため、Raを200μm以下とする必要がある。好ましくは150μm以下、より好ましくは120μm以下である。Raの下限値は特に限定されないが、手入れコストの増加を防ぐため、5μm以上とすることが好ましい。
さらに、Mnは表面濃化物と呼ばれる酸化物として鋼中から鋼板表面に拡散し、鋼板表面に析出・濃化するため、Mn濃化部のMn濃度を38.0%以下とすることによって、Ra:200μm以下を達成できるのである。
[鋼素材加熱温度:1100℃以上1300℃以下]
上記した構成の高Mn鋼を得るためには、1100℃以上1300℃以下の温度域に加熱し、圧延終了温度が800℃以上かつ総圧下率が20%以上の熱間圧延を行うことが重要である。ここでの温度制御は、鋼素材の表面温度を基準とする。
すなわち、熱間圧延にてMnの拡散を促進するために、圧延前の加熱温度は1100℃以上とする。一方、1300℃を超えると鋼の溶解が始まってしまう懸念があるため、加熱温度の上限は1300℃とする。好ましくは、1150℃以上1250℃以下である。
次に、熱間圧延は、まず、圧延終了時の総圧下率を20%以上と高くすることによって、Mnの濃化部と希薄部との距離を縮めてMnの拡散を促進することが重要である。好ましくは、総圧下率を30%以上とする。なお、総圧下率の上限は特に定める必要はないが、圧延能率向上の観点から、98%以下とすることが好ましい。ここで、総圧下率とは、それぞれ、1回目の熱間圧延が終了した時点の1回目の熱間圧延入側のスラブの板厚に対する圧下率、および2回目の熱間圧延が終了した時点の2回目の熱間圧延入側のスラブの板厚に対する圧下率のことであり、熱間圧延を2回行う場合、1回目の熱間圧延終了時は総圧下率が20%以上、2回目の熱間圧延終了時は50%以上が好ましく、熱間圧延が1回のみの場合、総圧下率は60%以上とするのが好ましい。
2回目の熱間圧延は、少なくとも1パス以上を700℃以上950℃未満の温度域にて行う必要がある。すなわち、950℃未満にて好ましくは1パスにつき10%以上の圧延率となる圧延を、1パス以上行うことにより、1回目の圧延で導入された転位が回復しにくく残留しやすくなるため、KAM値をさらに高めることができる。一方、950℃以上の温度領域で仕上げると、結晶粒径が過度に粗大となり所望の降伏強さが得られなくなる。そのため950℃未満で1パス以上の最終仕上圧延を行う。圧延終了温度の上限は好ましくは900℃以下、より好ましくは850℃以下である。
[(圧延終了温度-100℃)以上の温度から300℃以上650℃までの温度域での冷却速度:1.0℃/s以上]
熱間圧延終了後は速やかに冷却を行うことが好ましい。熱間圧延後の鋼板を緩やかに冷却させると析出物の生成が促進され低温靭性の劣化を招く、虞がある。これら析出物の生成は、(圧延終了温度-100℃)以上の温度から300℃以上650℃までの温度域を1.0℃/s以上の冷却速度で冷却することで抑制できる。まず、(圧延終了温度-100℃)以上の温度から300℃以上650℃までの温度域での冷却速度を規定するのは、前述の温度域が炭化物の析出温度域に該当するためである。なお、過度な冷却を行うと鋼板が歪んでしまい、生産性を低下させる。特に、板厚10mm以下の鋼材では空冷するのが好ましい。そのため、冷却開始温度の上限は900℃とすることが好ましい。
転炉-取鍋精錬-連続鋳造法にて、表1に示す成分組成になる鋼スラブを作製した。次いで、得られた鋼スラブを表2に示す条件に従う熱間圧延により6~30mm厚の鋼板とした。得られた鋼板について、引張特性、靭性および組織評価を下記の要領で実施した。
得られた各鋼板より、JIS5号引張試験片を採取し、JIS Z 2241(1998年)の規定に準拠して引張試験を実施し、引張試験特性を調査した。本発明では、降伏強さ400MPa以上および引張強さ800MPa以上を引張特性に優れるものと判定した。さらに、伸び40%以上を延性に優れるものと判定した。
板厚20mmを超える各鋼板の表面から板厚1/4位置、もしくは板厚10mm以上20mm以下の各鋼板の表面から板厚1/2位置の圧延方向と平行な方向から、JIS Z 2202(1998年)の規定に準拠してシャルピーVノッチ試験片を採取し、JIS Z 2242(1998年)の規定に準拠して、各鋼板について3本のシャルピー衝撃試験を実施し、-196℃での吸収エネルギーを求め、母材靭性を評価した。なお、板厚10mm未満の鋼板については、前述のJIS規格に従い、5mmサブサイズのシャルピーVノッチ試験片を採取し、3本のシャルピー衝撃試験を実施し、-196℃での吸収エネルギーを求めた。さらに、その値を1.5倍にして、母材靭性を評価した。本発明では、3本の吸収エネルギー(vE-196)の平均値が100J以上を母材靭性に優れるものとした。なぜなら、100J未満では脆性破面を含むおそれがあるためである。
KAM値
日本電子製走査電子顕微鏡(SEM)JSM-7001Fを用いて、熱間圧延後の鋼板について、圧延方向断面の研磨面における、500μm×200μmの視野におけるEBSD(Electron Backscatter Diffraction)解析(測定ステップ:0.3μm)を、板厚1/4位置および板厚1/2位置のそれぞれにおいて、任意の2視野にわたって行った結果から、結晶粒内の各ピクセルと隣接するピクセルとの方位差(°)の平均値として求めた値の、測定全領域の平均値を平均KAM値とした。
さらに、上記KAM値のEBSD測定位置において、EPMA(Electron Probe Micro Analyzer)分析を行うことによって、Mn濃度を求め、Mn濃度が最も高い所を濃化部とした。
上記EBSD測定位置において、EBSD解析(測定ステップ:0.3μm)を行い、得られたPhase mapから、オーステナイト面積率を測定した。
-196℃でシャルピー衝撃試験を行った後、SEM観察(500倍で10視野)を行い、脆性破面率を測定した。
さらに、熱間圧延後の鋼板に対して、ビッカース硬さ(HV)400以上かつASTM E11ふるいNo.12以上の粒度のブラスト材を用いてショットブラスト処理を施した後の該鋼板表面について、JIS B 0633に則して基準長さ、評価長さを決め表面粗さRaを測定した。ここでは、表面粗さRaが200μm以下を表面性状に優れるものとした。
以上により得られた結果を、表3に示す。
Claims (8)
- 質量%で、
C:0.100%以上0.700%以下、
Si:0.05%以上1.00%以下、
Mn:20.0%以上35.0%以下、
P:0.030%以下、
S:0.0070%以下、
Al:0.010%以上0.070%以下、
Cr:0.50%以上5.00%以下、
N:0.0050%以上0.0500%以下、
O:0.0050%以下、
Ti:0.005%以下および
Nb:0.005%以下
を含み、残部がFeおよび不可避的不純物の成分組成とオーステナイトを基地相とするミクロ組織とを有し、該ミクロ組織におけるMn濃化部のMn濃度が38.0%以下かつKAM(Kernel Average Misorientation)値の平均が0.3以上であり、降伏強さが400MPa以上および-196℃におけるシャルピー衝撃試験の吸収エネルギーvE-196が100J以上かつ脆性破面率が10%未満である高Mn鋼。 - 前記成分組成は、さらに、質量%で、
Cu:0.01%以上0.50%以下、
Mo:2.00%以下、
V:2.00%以下および
W:2.00%以下
のうちから選ばれる1種または2種以上を含有する請求項1に記載の高Mn鋼。 - 前記成分組成は、さらに、質量%で、
Ca:0.0005%以上0.0050%以下、
Mg:0.0005%以上0.0050%以下および
REM:0.0010%以上0.0200%以下
のうちから選ばれる1種または2種以上を含有する請求項1または2に記載の高Mn鋼。 - 請求項1、2または3に記載の成分組成を有する鋼素材を、1100℃以上1300℃以下の温度域に加熱したのち、熱間圧延を、圧延終了温度が800℃以上かつ総圧下率が20%以上にて行うとともに、該熱間圧延においてデスケーリング処理を行う高Mn鋼の製造方法。
- 請求項1、2または3に記載の成分組成を有する鋼素材を、1100℃以上1300℃以下の温度域に加熱したのち、1回目の熱間圧延を、圧延終了温度が1100℃以上かつ総圧下率が20%以上にて行った後、2回目の熱間圧延を、圧延終了温度が700℃以上950℃未満にて行うとともに、該2回目の熱間圧延においてデスケーリング処理を行う高Mn鋼の製造方法。
- 請求項1、2または3に記載の成分組成を有する鋼素材を、1100℃以上1300℃以下の温度域に加熱したのち、1回目の熱間圧延を、圧延終了温度が800℃以上1100℃未満かつ総圧下率が20%以上にて行った後、1100℃以上1300℃以下の再加熱を施し、2回目の熱間圧延を、圧延終了温度が700℃以上950℃未満にて行うとともに、該2回目の熱間圧延においてデスケーリング処理を行う高Mn鋼の製造方法。
- 前記1回目の熱間圧延において、デスケーリング処理を行う請求項5および6に記載の高Mn鋼の製造方法。
- 請求項4から7において、最終の熱間圧延後に、(圧延終了温度-100℃)以上の温度から300℃以上650℃以下の温度域までの平均冷却速度が1.0℃/s以上の冷却処理を行う高Mn鋼の製造方法。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MYPI2021000454A MY192988A (en) | 2018-08-03 | 2019-07-31 | High-mn steel and method for producing same |
JP2019571563A JP6750747B2 (ja) | 2018-08-03 | 2019-07-31 | 高Mn鋼およびその製造方法 |
EP19843919.2A EP3831973A4 (en) | 2018-08-03 | 2019-07-31 | HIGH MANGANESE STEEL AND ITS PRODUCTION PROCESS |
SG11202101056RA SG11202101056RA (en) | 2018-08-03 | 2019-07-31 | HIGH-Mn STEEL AND METHOD OF PRODUCING SAME |
KR1020217002852A KR102492352B1 (ko) | 2018-08-03 | 2019-07-31 | 고 Mn 강 및 그 제조 방법 |
BR112021001434-9A BR112021001434A2 (pt) | 2018-08-03 | 2019-07-31 | aço com alto teor de manganês e método de produção do mesmo |
US17/264,295 US11959157B2 (en) | 2018-08-03 | 2019-07-31 | High-Mn steel and method of producing same |
CN201980050484.1A CN112513307A (zh) | 2018-08-03 | 2019-07-31 | 高Mn钢及其制造方法 |
PH12021550259A PH12021550259A1 (en) | 2018-08-03 | 2021-02-03 | HIGH-Mn STEEL AND METHOD OF PRODUCING SAME |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-147100 | 2018-08-03 | ||
JP2018147100 | 2018-08-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020027211A1 true WO2020027211A1 (ja) | 2020-02-06 |
Family
ID=69231105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/030051 WO2020027211A1 (ja) | 2018-08-03 | 2019-07-31 | 高Mn鋼およびその製造方法 |
Country Status (11)
Country | Link |
---|---|
US (1) | US11959157B2 (ja) |
EP (1) | EP3831973A4 (ja) |
JP (1) | JP6750747B2 (ja) |
KR (1) | KR102492352B1 (ja) |
CN (1) | CN112513307A (ja) |
BR (1) | BR112021001434A2 (ja) |
MY (1) | MY192988A (ja) |
PH (1) | PH12021550259A1 (ja) |
SG (1) | SG11202101056RA (ja) |
TW (1) | TWI716952B (ja) |
WO (1) | WO2020027211A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021033693A1 (ja) * | 2019-08-21 | 2021-02-25 | Jfeスチール株式会社 | 鋼およびその製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113802071A (zh) * | 2021-07-13 | 2021-12-17 | 鞍钢股份有限公司 | 一种强韧性匹配良好的lng储罐用高锰钢板生产方法 |
CN115261743A (zh) * | 2022-06-22 | 2022-11-01 | 河钢股份有限公司 | 一种低成本高锰钢板及其生产方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007126715A (ja) * | 2005-11-04 | 2007-05-24 | Sumitomo Metal Ind Ltd | 高Mn鋼材及びその製造方法 |
JP2017507249A (ja) | 2013-12-25 | 2017-03-16 | ポスコPosco | 表面加工品質に優れた低温用鋼 |
JP2017155300A (ja) * | 2016-03-03 | 2017-09-07 | 新日鐵住金株式会社 | 低温用厚鋼板及びその製造方法 |
WO2018105510A1 (ja) * | 2016-12-08 | 2018-06-14 | Jfeスチール株式会社 | 高Mn鋼板およびその製造方法 |
KR20180074450A (ko) * | 2016-12-23 | 2018-07-03 | 주식회사 포스코 | 극저온용 오스테나이트계 고 망간 강 및 제조방법 |
WO2019044928A1 (ja) * | 2017-09-01 | 2019-03-07 | Jfeスチール株式会社 | 高Mn鋼およびその製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5623259A (en) | 1979-08-03 | 1981-03-05 | Sumitomo Metal Ind Ltd | Nickel-free high manganese cast steel for low temperature use |
JPH0619110B2 (ja) | 1986-05-19 | 1994-03-16 | 株式会社神戸製鋼所 | 極低温用高Mnオ−ステナイトステンレス鋼の製造方法 |
AT412727B (de) | 2003-12-03 | 2005-06-27 | Boehler Edelstahl | Korrosionsbeständige, austenitische stahllegierung |
JP5003785B2 (ja) | 2010-03-30 | 2012-08-15 | Jfeスチール株式会社 | 延性に優れた高張力鋼板およびその製造方法 |
KR101553209B1 (ko) | 2013-12-16 | 2015-09-16 | 문명건 | 신체 접촉 휴대용 치료기 |
KR101647227B1 (ko) | 2014-12-24 | 2016-08-10 | 주식회사 포스코 | 표면 가공 품질이 우수한 저온용 강판 및 그 제조 방법 |
JP6693217B2 (ja) | 2015-04-02 | 2020-05-13 | 日本製鉄株式会社 | 極低温用高Mn鋼材 |
KR101940874B1 (ko) | 2016-12-22 | 2019-01-21 | 주식회사 포스코 | 저온인성 및 항복강도가 우수한 고 망간 강 및 제조 방법 |
CN107177786B (zh) * | 2017-05-19 | 2018-12-21 | 东北大学 | 一种lng储罐用高锰中厚板的设计及其制造方法 |
-
2019
- 2019-07-31 US US17/264,295 patent/US11959157B2/en active Active
- 2019-07-31 WO PCT/JP2019/030051 patent/WO2020027211A1/ja unknown
- 2019-07-31 MY MYPI2021000454A patent/MY192988A/en unknown
- 2019-07-31 BR BR112021001434-9A patent/BR112021001434A2/pt not_active Application Discontinuation
- 2019-07-31 JP JP2019571563A patent/JP6750747B2/ja active Active
- 2019-07-31 CN CN201980050484.1A patent/CN112513307A/zh active Pending
- 2019-07-31 KR KR1020217002852A patent/KR102492352B1/ko active IP Right Grant
- 2019-07-31 EP EP19843919.2A patent/EP3831973A4/en active Pending
- 2019-07-31 SG SG11202101056RA patent/SG11202101056RA/en unknown
- 2019-08-02 TW TW108127596A patent/TWI716952B/zh active
-
2021
- 2021-02-03 PH PH12021550259A patent/PH12021550259A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007126715A (ja) * | 2005-11-04 | 2007-05-24 | Sumitomo Metal Ind Ltd | 高Mn鋼材及びその製造方法 |
JP2017507249A (ja) | 2013-12-25 | 2017-03-16 | ポスコPosco | 表面加工品質に優れた低温用鋼 |
JP2017155300A (ja) * | 2016-03-03 | 2017-09-07 | 新日鐵住金株式会社 | 低温用厚鋼板及びその製造方法 |
WO2018105510A1 (ja) * | 2016-12-08 | 2018-06-14 | Jfeスチール株式会社 | 高Mn鋼板およびその製造方法 |
KR20180074450A (ko) * | 2016-12-23 | 2018-07-03 | 주식회사 포스코 | 극저온용 오스테나이트계 고 망간 강 및 제조방법 |
WO2019044928A1 (ja) * | 2017-09-01 | 2019-03-07 | Jfeスチール株式会社 | 高Mn鋼およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3831973A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021033693A1 (ja) * | 2019-08-21 | 2021-02-25 | Jfeスチール株式会社 | 鋼およびその製造方法 |
JPWO2021033693A1 (ja) * | 2019-08-21 | 2021-09-13 | Jfeスチール株式会社 | 鋼およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3831973A4 (en) | 2021-07-21 |
JP6750747B2 (ja) | 2020-09-02 |
CN112513307A (zh) | 2021-03-16 |
TWI716952B (zh) | 2021-01-21 |
MY192988A (en) | 2022-09-20 |
SG11202101056RA (en) | 2021-03-30 |
TW202012651A (zh) | 2020-04-01 |
KR20210027412A (ko) | 2021-03-10 |
BR112021001434A2 (pt) | 2021-04-27 |
US11959157B2 (en) | 2024-04-16 |
PH12021550259A1 (en) | 2021-10-11 |
US20210301378A1 (en) | 2021-09-30 |
KR102492352B1 (ko) | 2023-01-27 |
JPWO2020027211A1 (ja) | 2020-08-06 |
EP3831973A1 (en) | 2021-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2617853B1 (en) | High-strength hot-rolled steel sheet having superior fatigue resistance properties and method for producing same | |
JP7063364B2 (ja) | 高Mn鋼 | |
WO2011105385A1 (ja) | 曲げ性に優れた超高強度冷延鋼板 | |
JPWO2018199145A1 (ja) | 高Mn鋼およびその製造方法 | |
KR20120023129A (ko) | 고강도 강판 및 그 제조 방법 | |
EP3722448B1 (en) | High-mn steel and method for manufacturing same | |
WO2017168957A1 (ja) | 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 | |
WO2021106368A1 (ja) | 鋼板およびその製造方法 | |
JP6954475B2 (ja) | 高Mn鋼およびその製造方法 | |
WO2020027211A1 (ja) | 高Mn鋼およびその製造方法 | |
JP6856083B2 (ja) | 高Mn鋼およびその製造方法 | |
JP7272438B2 (ja) | 鋼材およびその製造方法、ならびにタンク | |
JP5151510B2 (ja) | 低温靭性、亀裂伝搬停止特性に優れた高張力鋼の製造方法 | |
WO2019168172A1 (ja) | 高Mn鋼およびその製造方法 | |
WO2021033693A1 (ja) | 鋼およびその製造方法 | |
JP6947330B2 (ja) | 鋼およびその製造方法 | |
JP7273298B2 (ja) | 低温靱性に優れる圧力容器用鋼板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019571563 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19843919 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20217002852 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112021001434 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2019843919 Country of ref document: EP Effective date: 20210303 |
|
ENP | Entry into the national phase |
Ref document number: 112021001434 Country of ref document: BR Kind code of ref document: A2 Effective date: 20210126 |