WO2020026653A1 - スイッチング電源装置の制御装置 - Google Patents

スイッチング電源装置の制御装置 Download PDF

Info

Publication number
WO2020026653A1
WO2020026653A1 PCT/JP2019/025406 JP2019025406W WO2020026653A1 WO 2020026653 A1 WO2020026653 A1 WO 2020026653A1 JP 2019025406 W JP2019025406 W JP 2019025406W WO 2020026653 A1 WO2020026653 A1 WO 2020026653A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
circuit
signal
output
load
Prior art date
Application number
PCT/JP2019/025406
Other languages
English (en)
French (fr)
Inventor
園部 孝二
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201980011098.1A priority Critical patent/CN111684697B/zh
Priority to JP2020534111A priority patent/JP6966001B2/ja
Publication of WO2020026653A1 publication Critical patent/WO2020026653A1/ja
Priority to US16/939,656 priority patent/US11411498B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a control device for a switching power supply, and more particularly to a control device for a current resonance type switching power supply having a function of detecting a standby state and a normal state of a load and reducing power consumption in the standby state.
  • various electric appliances to which power is supplied by the switching power supply generally include a normal mode for performing a normal operation and a standby mode for a standby state.
  • the switching power supply Since the electric equipment having such a standby mode consumes less power in the standby state than in the normal mode, the switching power supply also detects the standby state and reduces the power supply capability. Reduction of power consumption has been performed.
  • the switching power supply device can determine that the electric device as the load has entered the standby mode by receiving a standby control signal from the load (for example, see Patent Document 1).
  • a standby control signal from a load is received by an output voltage detection circuit that detects an output voltage and feeds it back to a control IC (Integrated Circuit), and divides the output voltage. Is switched to the voltage division ratio of the standby mode.
  • the control IC detects a change in the feedback voltage due to the standby control signal, determines that the load has issued a standby instruction, and enters the standby mode.
  • the switching power supply device performs burst control in a standby mode in which a switching period in which switching is performed for a fixed period and a stop period in which switching is stopped for a fixed period are repeated (for example, Patent Document 2). reference).
  • a stop period in the switching operation By providing a stop period in the switching operation, standby power in the standby mode of the switching power supply is significantly reduced.
  • the switching period of the burst control when the switching is stopped and when the switching is started, a sound may be generated depending on the resonance current when the switching operation is stopped or started. That is, when switching is suddenly stopped or started, a transient phenomenon occurs in which the resonance current sharply decreases or increases. This transient phenomenon may cause audible noise in the frequency component of the current flowing in the resonance circuit. The frequency component of the audible noise increases as the resonance current increases, which causes sound.
  • the switching power supply of Patent Document 2 performs soft start and soft end even in intermittent switching in burst control.
  • the switching power supply described above detects a change in the feedback voltage and enters the standby mode, but when exiting the standby mode and returning to the normal mode, the timing is determined based on the change in the feedback voltage.
  • Some switching power supply devices have different feedback response times required for stable operation.If the feedback response time is faster, the change in the feedback voltage in standby mode is faster even when the load is lighter. It may return to normal mode by mistake. In this case, the normal switching without soft start / soft end is started at the moment of returning to the normal mode, so that a transient phenomenon in which the resonance current rapidly increases occurs, and the frequency component of the current flowing in the resonance circuit is generated. However, there is a problem that audible noise is generated.
  • the present invention has been made in view of such a point, and an object of the present invention is to provide a control device for a switching power supply device that avoids returning to the normal mode by mistake while the standby mode should be continued.
  • a control device for a current resonance type switching power supply device for supplying a constant output voltage to a load in order to solve the above-mentioned problems.
  • the control device of the switching power supply device includes a load current detection circuit that outputs a load current signal representing the load current by inputting and averaging a part of the resonance current of the resonance circuit; When a feedback signal and a load current signal that feed back an error are input and the load current signal is lower than a first threshold for determining whether the load is light, and the feedback signal is lower than a second threshold.
  • a standby detection circuit that determines that the load is in the standby mode, and determines that the load is in the normal mode when a period in which the feedback signal is higher than the second threshold continues for more than a predetermined time. I have.
  • the control device of the switching power supply device when in the standby mode, does not switch the signal output from the standby detection circuit to the normal mode even if the feedback signal transiently becomes higher than the second threshold value.
  • FIG. 1 is a circuit diagram illustrating a current resonance type switching power supply device including a control device according to an embodiment of the present invention. It is a figure showing the example of composition of a control device.
  • FIG. 3 is a circuit diagram illustrating a configuration example of a standby detection circuit.
  • FIG. 3 is a circuit diagram illustrating a configuration example of a delay circuit of a standby detection circuit.
  • FIG. 3 is a diagram illustrating input / output waveforms of a delay circuit of a standby detection circuit.
  • FIG. 9 is a diagram illustrating an operation sequence of the standby detection circuit when a feedback response is slow.
  • FIG. 7 is a diagram illustrating an operation sequence of the standby detection circuit when a feedback response is fast.
  • FIG. 1 is a circuit diagram illustrating a current resonance type switching power supply device including a control device according to an embodiment of the present invention
  • FIG. 2 is a diagram illustrating a configuration example of the control device. Note that, in the following description, the same reference numerals may be used for terminal names and voltages and signals at the terminals.
  • the switching power supply device of FIG. 1 has a two-stage configuration including a first converter 10 and a second converter 20.
  • the first converter 10 is a PFC (Power Factor Correction) boost converter
  • the second converter 20 is a DC-DC converter.
  • an example of a half-bridge current resonance converter is shown. .
  • both terminals of the AC power supply AC are connected to the AC input terminal of the diode bridge DB, and the positive output terminal of the diode bridge DB is connected to one terminal of the smoothing capacitor C1.
  • the other terminal of the smoothing capacitor C1 is connected to the negative output terminal of the diode bridge DB.
  • the positive output terminal of the diode bridge DB is connected to one terminal of the inductor Lp, and the other terminal of the inductor Lp is connected to the anode terminal of the diode Dp.
  • the other terminal of the inductor Lp is connected to a drain terminal of a switching element Q which is an N-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • the gate terminal of the switching element Q is connected to the output terminal of the PFC control IC 11, and the source terminal of the switching element Q is connected to the negative output terminal of the diode bridge DB.
  • the cathode terminal of the diode Dp is connected to the positive terminal of the smoothing capacitor Cbulk and the output terminal of the first converter 10, and the negative terminal of the smoothing capacitor Cbulk is connected to the negative output terminal of the diode bridge DB.
  • This first converter 10 performs full-wave rectification on the AC input voltage of the AC power supply AC by the diode bridge DB, and smoothes the pulsating flow that has been subjected to full-wave rectification by the smoothing capacitor C1.
  • This smoothed voltage is boosted by a boosting circuit including the inductor Lp, the switching element Q, the PFC control IC 11, the diode Dp, and the smoothing capacitor Cbulk, and is converted into a boosted DC voltage.
  • the PFC control IC 11 improves the power factor by bringing the average current waveform output from the diode Dp closer to the sine wave of the AC input voltage, and outputs the boosted DC intermediate voltage Vbulk.
  • An output terminal of the first converter 10 is an input terminal of the second converter 20.
  • the two input terminals receiving the intermediate voltage Vbulk are connected to a half-bridge circuit in which a high-side switching element Q1 and a low-side switching element Q2 are connected in series.
  • the switching elements Q1 and Q2 use an N-channel MOSFET in the illustrated example, other types of switching elements such as an IGBT (Insulated Gate Bipolar Transistor) may be used.
  • a common connection point of the switching elements Q1 and Q2 is connected to one end of a primary winding P1 of the transformer T1, and the other end of the primary winding P1 is connected to a drain terminal of the switching element Q1 via a resonance capacitor Cr.
  • the exciting inductance of the primary winding P1 of the transformer T1 the leakage inductance (leakage inductance) between the primary winding P1 and the secondary windings S1 and S2, and the resonance capacitor Cr constitute a resonance circuit.
  • the resonance circuit is connected in parallel with the switching element Q1, but may be connected in parallel with the switching element Q2.
  • the equivalent circuit of the resonance circuit is expressed as a series circuit of the resonance capacitor Cr, the leakage inductance, and the excitation inductance of the primary winding P1 of the transformer T1.
  • the excitation inductance of the primary winding P1 of the transformer T1 may or may not constitute a resonance reactor of a resonance circuit depending on an operation mode.
  • a reactor other than the transformer may be connected in series to the resonance capacitor Cr as the resonance reactor.
  • the cathode terminals of the diodes D1 and D2 are connected to the positive terminal of the output capacitor Co and the output terminal 21p.
  • the negative terminal of the output capacitor Co is connected to the common connection point of the secondary windings S1 and S2, the output terminal 21n, and the ground.
  • the secondary windings S1 and S2, the diodes D1 and D2, and the output capacitor Co constitute a circuit that rectifies and smoothes an AC voltage generated in the secondary windings S1 and S2 and converts the AC voltage into a DC voltage. Of the output circuit.
  • the output terminals 21p and 21n are connected to a load (not shown).
  • the output terminal 21p is connected to the anode terminal of the light emitting diode of the photocoupler PC1 via the resistor R1, and the cathode terminal of the light emitting diode is connected to the cathode terminal of the shunt regulator SR1.
  • a resistor R2 is connected in parallel to the anode terminal and the cathode terminal at both ends of the light emitting diode.
  • the anode terminal of the shunt regulator SR1 is connected to the ground.
  • the shunt regulator SR1 has a reference terminal connected to a connection point of the resistors R3 and R4 connected in series between the positive terminal of the output capacitor Co and the ground.
  • shunt regulator SR1 a series circuit of a resistor R5 and a capacitor C2 is connected between a reference terminal and a cathode terminal.
  • the shunt regulator SR1 allows a current corresponding to a difference between a built-in reference voltage and a potential obtained by dividing the output voltage Vo (a voltage across the output capacitor Co) to flow through the light emitting diode.
  • the phototransistor of the photocoupler PC1 has a collector terminal connected to the FB terminal of the LLC control IC 22 which is a control device of the second converter 20, an emitter terminal connected to the ground, and a capacitor between the collector terminal and the emitter terminal. C3 is connected.
  • the photocoupler PC1 and the shunt regulator SR1 constitute a circuit that feeds back an error between the output voltage Vo and the reference voltage to the LLC control IC 22.
  • the LLC control IC 22 also has a HO terminal connected to the gate terminal of the high-side switching element Q1, a LO terminal, an IS terminal, a CA terminal, and a CS terminal connected to the gate terminal of the low-side switching element Q2.
  • the IS terminal is connected to a common connection point of a series circuit of the capacitor Cs and the resistor Rs.
  • the series circuit of the capacitor Cs and the resistor Rs is a shunt circuit that is connected in parallel with the resonance capacitor Cr in an AC manner and shunts the resonance current.
  • the current shunted by the shunt circuit is converted into a voltage signal by a current detection resistor Rs and input to the IS terminal of the LLC control IC 22 as a resonance current, that is, a signal representing a load current.
  • One end of a capacitor Cca is connected to the CA terminal, and the other end of the capacitor Cca is connected to the ground.
  • One end of a capacitor Css is connected to the CS terminal, and the other end of the capacitor C
  • the FB terminal is connected to the input terminal of the oscillation circuit 31, and the output terminal of the oscillation circuit 31 is connected to the control circuit 32.
  • the high-side output terminal of the control circuit 32 is connected to the input terminal of the high-side drive circuit 34 via the level shift circuit 33, and the low-side output terminal of the control circuit 32 is connected to the input terminal of the low-side drive circuit 35.
  • the output terminal of the high-side drive circuit 34 is connected to the HO terminal, and the output terminal of the low-side drive circuit 35 is connected to the LO terminal.
  • the IS terminal is connected to the first input terminal of the load current detection circuit 36, and the output terminal of the load current detection circuit 36 is connected to the CA terminal and the first input terminal of the standby detection circuit 37.
  • a signal sw_ctrl output from the control circuit 32 is input to a second input terminal of the load current detection circuit 36.
  • the second input terminal of the standby detection circuit 37 is connected to the FB terminal, and the output terminal of the standby detection circuit 37 is connected to the input terminal of the control circuit 32 for the signal sdymo.
  • the FB terminal is also connected to a first input terminal of the soft start circuit 38, the second input terminal of the soft start circuit 38 is connected to the CS terminal, and the output terminal of the soft start circuit 38 is connected to the oscillation circuit 31. Have been.
  • the current of the photocoupler PC1 changes according to the output voltage Vo.
  • the optical signal emitted from the light emitting diode of the photocoupler PC1 is received by the phototransistor and becomes a feedback voltage (FB terminal voltage).
  • the FB terminal is pulled up to a high potential side by a pull-up resistor or the like (not shown) in the LLC control IC 22, and has a voltage corresponding to the output voltage Vo.
  • the FB terminal is connected to the oscillation circuit 31.
  • the oscillation circuit 31 is, for example, a VCO (Voltage-controlled oscillator), and outputs a signal having an oscillation frequency according to the FB terminal voltage in the normal mode.
  • the oscillation circuit 31 inputs a signal whose oscillation frequency is changed according to the change of the FB terminal voltage to the control circuit 32, and the control circuit 32 controls the output voltage Vo to be constant based on the signal.
  • the load current detection circuit 36 is the same as the load detection circuit shown in FIG. 5 of Patent Document 1, receives a signal corresponding to a resonance current received from a shunt circuit by a capacitor Cs and a resistor Rs at an IS terminal, Based on the signal sw_ctrl, the signal is averaged by the capacitor Cca connected to the CA terminal to output a signal representing the resonance current. Since the magnitude of the resonance current is proportional to the current supplied to the load, the signal at the CA terminal is a voltage signal representing the load current. The voltage signal representing the load current is supplied to the standby detection circuit 37.
  • the standby detection circuit 37 inputs the signal of the CA terminal representing the load current and the signal of the FB terminal representing the output voltage Vo, and when both the load current and the output voltage Vo indicate the values in the standby mode, the standby detection circuit 37 goes high.
  • the level signal sdymo is supplied to the control circuit 32.
  • the control circuit 32 switches the operation of the second converter 20 from the normal mode to the standby mode. In the standby mode, burst control is performed, and the control circuit 32 reduces the number of times of switching, thereby reducing switching loss and improving efficiency.
  • the soft start circuit 38 charges and discharges the capacitor Css of the CS terminal according to the change of the FB terminal voltage for the burst control in the control circuit 32.
  • the voltage at the time of charging / discharging of this capacitor Css (voltage at the CS terminal) is input to the VCO constituting the oscillation circuit 31 instead of the FB terminal voltage, thereby starting switching in the switching period during burst control Also, when switching is stopped, soft start and soft end operations are performed.
  • FIG. 3 is a circuit diagram illustrating a configuration example of a standby detection circuit
  • FIG. 4 is a circuit diagram illustrating a configuration example of a delay circuit of the standby detection circuit
  • FIG. 5 is a diagram illustrating input / output waveforms of the delay circuit of the standby detection circuit.
  • FIG. 6 is a diagram showing an operation sequence of the standby detection circuit when the feedback response is slow
  • FIG. 7 is a diagram showing an operation sequence of the standby detection circuit when the feedback response is fast.
  • the standby detection circuit 37 includes comparators 41 and 42, a delay circuit 43, and a NOR circuit 44, as shown in FIG.
  • the comparator 41 has a non-inverting input terminal connected to the FB terminal, an inverting input terminal receiving a threshold ref2 for determining the output voltage Vo, and outputting a signal fbcomp.
  • the comparator 42 has a CA terminal connected to its non-inverting input terminal, a threshold ref1 for determining whether the load is light load is input to the inverting input terminal, and outputs a signal cacomp.
  • the comparators 41 and 42 are hysteresis comparators.
  • the output terminal of the comparator 41 is connected to the input terminal of the delay circuit 43, receives the signal fbcomp, and outputs the signal fbdelay.
  • the output terminal of the delay circuit 43 is connected to one input terminal of the NOR circuit 44.
  • the output terminal of the comparator 42 is connected to the other input terminal of the NOR circuit 44.
  • An output terminal of the NOR circuit 44 constitutes an output terminal of the standby detection circuit 37, and outputs a signal sdymo to the control circuit 32.
  • the output signal sdymo of the NOR circuit 44 goes to a high level when the input signal fbdelay and the signal cacomp are both at a low level, and otherwise goes to a low level.
  • the delay circuit 43 delays the leading edge of the input signal and outputs the delayed signal, and outputs the trailing edge of the input signal without delay.
  • the delay circuit 43 may be configured as shown in FIG. Can be.
  • the input terminal of the delay circuit 43 is connected to the non-inverting input terminal of the comparator 52 via the resistor 51, and one end of the capacitor 53 is connected to the connection point between the resistor 51 and the non-inverting input terminal of the comparator 52. Connected, and the other end of the capacitor 53 is connected to the ground.
  • Switching elements 54 are connected in parallel to both ends of the capacitor 53.
  • the switching element 54 uses an N-channel MOSFET. One end of the capacitor 53 is connected to the drain terminal of the switching element 54, and the source terminal of the switching element 54 is connected to the ground.
  • the input terminal of the delay circuit 43 is connected to the input terminal of the inverter circuit 55, and the output terminal of the inverter circuit 55 is connected to the gate terminal of the switching element.
  • the reference voltage Vref which is a threshold for determining the delay time together with the time constant of the resistor 51 and the capacitor 53 is input to the inverting input terminal of the comparator 52.
  • the output of the inverter circuit 55 goes low and the switching element 54 is turned off. It is charged by the level signal fbcomp.
  • the comparator 52 outputs a high-level signal fbdelay with a delay of t1 from the input of the high-level signal fbcomp. .
  • the comparator 52 outputs the low-level signal fbdelay without delay at the timing when the capacitor 53 is discharged.
  • the standby detection circuit 37 will be described with reference to FIGS. 6 and 7, from the top, the power Po of the load, the output voltage Vo, the FB terminal voltage, the signals fbcomp and fbdelay input and output by the delay circuit 43, the CA terminal voltage, the signal cacomp output by the comparator 42, and the standby mode. 5 shows changes in the signal sdymo indicating whether or not the signals are present, the signals at the HO terminal and the LO terminal, and the resonance current Icr.
  • the threshold voltage ref_sw to be compared with the voltage of the FB terminal is used for switching between a switching period in which the soft start circuit 38 performs switching for a certain period and a stop period in which switching is stopped for a certain period in burst control in the standby mode. It is.
  • the second converter 20 changes to the normal mode, the standby mode, and the normal mode when the load shifts from the normal mode to the standby mode and then returns to the normal mode.
  • the power Po of the load is initially large in the normal mode in which all functions of the load are operating, then reduced in the standby mode in which only a part of the load functions, and finally increased when returning to the normal mode.
  • the output voltage Vo of the second converter 20 is the target voltage
  • the FB terminal voltage is between the threshold voltage ref_sw and the threshold ref2.
  • the signal fbcomp output from the comparator 41 is at a low level
  • the signal fbdelay output from the delay circuit 43 is also at a low level.
  • the CA terminal voltage maintains a high value because the load current is large in the normal mode, and therefore, the signal cacomp output from the comparator 42 is at the high level. Since the signal fbdelay is at a low level and the signal cacomp is at a high level, the signal sdymo output from the NOR circuit 44 is at a low level.
  • the signals of the HO terminal and the LO terminal output a pulse signal having a frequency corresponding to the FB terminal voltage, and the resonance current Icr becomes a sinusoidal current.
  • the load transits to the standby mode and the power Po decreases to the standby power
  • the charge flowing from the output capacitor Co to the load decreases, the output voltage Vo increases, and the FB terminal voltage correspondingly decreases.
  • the CA terminal voltage also decreases, and when the CA terminal voltage falls below the threshold ref1, the comparator 42 of the standby detection circuit 37 outputs a low-level signal cacomp.
  • the NOR circuit 44 outputs a high-level signal sdymo.
  • the control circuit 32 transits from the normal mode to the standby mode, and changes the switching frequency to the frequency of the standby mode. As a result, a pulse signal having a standby mode frequency is output to the HO terminal of the high-side drive circuit 34 and the LO terminal of the low-side drive circuit 35.
  • burst control in which the switching period and the switching stop period are repeated is performed.
  • the soft start circuit 38 when the FB terminal voltage is higher than the threshold voltage ref_sw, the switching period is set, and the FB terminal voltage is set to the threshold value.
  • the time when the voltage falls below the voltage ref_sw is defined as a switching stop period.
  • the oscillation circuit 31 does not cause excessive overshoot and undershoot at the start and end of the switching period.
  • the switching frequency is determined by the voltage at the time of charging and discharging the capacitor Css.
  • the FB terminal voltage does not reach the threshold value ref2 as shown in FIG. 6, and the comparator 41 of the standby detection circuit 37 outputs the low-level signal. fbcomp is output.
  • the FB terminal voltage may reach the threshold value ref2 as shown in FIG. Is output.
  • the comparator 41 outputs the high-level signal fbcomp, the switching element 54 of the delay circuit 43 is turned off, so that charging of the capacitor 53 by the signal fbcomp is started.
  • the capacitor 53 is discharged at a timing shorter than the delay time t1 and the FB terminal voltage falls below the threshold value ref2.
  • the delay circuit 43 outputs the high-level signal fbdelay. Is not output. That is, even if the FB terminal voltage temporarily exceeds the threshold value ref2, it is possible to prevent the standby mode to be continued from being returned to the normal mode by mistake.
  • the burst control enters a switching period.
  • a high-level signal fbcomp is input to the delay circuit 43.
  • the delay circuit 43 outputs the high-level signal fbdelay after the elapse of the delay time t1 from the input of the high-level signal fbcomp.
  • the standby detection circuit 37 outputs the low-level signal sdymo representing the normal mode. Is output.
  • the LLC control IC 22 outputs a pulse signal of a normal mode frequency to the HO terminal and the LO terminal.
  • the signal fbcomp output from the comparator 41 becomes low level, so that the signal fbdelay output from the delay circuit 43 at this timing also becomes low level. Become. However, at this time, since the signal cacomp output from the comparator 42 is at a high level, the signal sdymo output from the NOR circuit 44 remains at a low level.
  • the standby detection circuit 37 when the CA terminal voltage is lower than the threshold ref1, the signal sdymo does not switch to the normal mode even if the FB terminal voltage transiently becomes higher than the threshold ref2. . Since the signal sdymo is switched to the normal mode only when the state in which the FB terminal voltage is higher than the threshold value ref2 continues for the delay time t1 or more, it is possible to avoid returning to the normal mode by mistake while the standby mode should be continued.
  • First converter 11 PFC control IC Reference Signs List 20 second converter 21p, 21n output terminal 22 LLC control IC 31 Oscillator circuit 32 Control circuit 33 Level shift circuit 34 High side drive circuit 35 Low side drive circuit 36 Load current detection circuit 37 Standby detection circuit 38 Soft start circuit 41, 42 Comparator 43 Delay circuit 44 NOR circuit 51 Resistance 52 Comparator 53 Capacitor 54 Switching element 55 Inverter circuit AC AC power supply C1 Smoothing capacitor C2, C3 capacitor Cbulk Smoothing capacitor Cca capacitor Co Output capacitor Cr Resonance capacitor Cs, Css capacitor D1, D2 Diode DB Diode bridge Dp Diode Lp Inductor P1 Primary winding PC1 Photocoupler Q , Q1, Q2 Switching element R1, R2, R3, R4, R5, Rs Resistance S1, S2 Secondary winding SR1 Shunt regulator T1 Trance

Abstract

スタンバイモードを継続すべきなのに誤ってノーマルモードに戻ってしまうことを回避したスイッチング電源装置の制御装置を提供する。 スタンバイ検出回路(37)は、共振電流から求められたCA端子の負荷電流信号が軽負荷であるかどうかを判断する比較器(42)と、FB端子のフィードバック信号が閾値(ref2)より高いかどうかを判断する比較器(41)と、比較器(41)の信号(fbcomp)を一定時間遅延させる遅延回路(43)と、比較器(41)および遅延回路(43)の出力を入力するNOR回路(44)とを備え、軽負荷のときに、フィードバック信号が閾値(ref2)より高い期間が一定時間を越えて継続したときに負荷がスタンバイモードからノーマルモードに戻ったと判断する。

Description

スイッチング電源装置の制御装置
 本発明はスイッチング電源装置の制御装置に関し、特に負荷のスタンバイ状態とノーマル状態とを検出し、スタンバイ状態のときには消費電力を低減させる機能を有する電流共振型のスイッチング電源装置の制御装置に関する。
 現在、スイッチング電源装置によって電源が供給される各種電気機器は、通常動作を行うノーマルモードおよび待機状態となるスタンバイモードを備えていることが一般的である。
 このようなスタンバイモードを備えた電気機器は、その待機状態ではノーマルモードの場合と比較して消費電力が低いため、スイッチング電源装置においてもスタンバイ状態を検出し、電源の供給能力を低減して、消費電力を低減させることが行われている。
 スイッチング電源装置は、その負荷である電気機器がスタンバイモードに入ったことを負荷からスタンバイ制御信号を受けることによって判断することができる(たとえば、特許文献1参照)。この特許文献1に記載のスイッチング電源装置では、負荷からのスタンバイ制御信号は、出力電圧を検出して制御IC(Integrated Circuit)へフィードバックする出力電圧検出回路が受け、出力電圧を分圧する分圧回路の分圧比をスタンバイモードの分圧比に切り替える。これにより、制御ICは、スタンバイ制御信号によるフィードバック電圧の変化を検出して、負荷からスタンバイの指示があったと判断し、スタンバイモードに入るようにしている。
 スイッチング電源装置は、また、スタンバイモードのときに、スイッチングを一定期間行うスイッチング期間と一定期間スイッチングを停止する停止期間とを繰り返すようなバースト制御を行うことも知られている(たとえば、特許文献2参照)。スイッチング動作に停止期間を設けることで、スイッチング電源装置のスタンバイモード時の待機電力は、大幅に削減される。このバースト制御のスイッチング期間において、スイッチングを停止するときおよびスイッチングを開始するときに、スイッチング動作が停止または開始するときの共振電流に依存した音鳴りが発生することがある。すなわち、スイッチングを急激に停止または開始すると共振電流が急激に減少または増加するという過渡現象が生じ、この過渡現象により共振回路に流れている電流の周波数成分に可聴ノイズが発生することがある。この可聴ノイズの周波数成分は、共振電流が大きいほど大きくなり、これが音鳴りの原因になっている。この音鳴りを防ぐために、特許文献2のスイッチング電源では、バースト制御における間欠的なスイッチングでも、ソフトスタート・ソフトエンドを行うようにしている。
特開2017-103889号公報 特開2016-111758号公報
 上記のスイッチング電源装置は、フィードバック電圧の変化を検出してスタンバイモードに入るようにしているが、スタンバイモードを抜けてノーマルモードに戻るときも、そのタイミングをフィードバック電圧の変化に基づいて判断している。スイッチング電源装置の中には、安定動作に必要なフィードバックの応答時間が異なるものがあり、フィードバックの応答時間が早いと、負荷が軽い場合でも、スタンバイモードでのフィードバック電圧の変化が速くなるため、誤ってノーマルモードに戻ることがある。この場合、ノーマルモードに戻った瞬間にソフトスタート・ソフトエンドを行わない通常のスイッチングが開始されるので、共振電流が急激に増加する過渡現象が生じて、共振回路に流れている電流の周波数成分に可聴ノイズが発生するという問題点があった。
 本発明はこのような点に鑑みてなされたものであり、スタンバイモードを継続すべきなのに誤ってノーマルモードに戻ってしまうことを回避したスイッチング電源装置の制御装置を提供することを目的とする。
 本発明では、上記の課題を解決するために、負荷に一定の出力電圧を供給する電流共振型のスイッチング電源装置の制御装置が提供される。このスイッチング電源装置の制御装置は、共振回路の共振電流の一部を入力して平均化することにより負荷電流を表す負荷電流信号を出力する負荷電流検出回路と、出力電圧とその目標電圧との誤差をフィードバックしたフィードバック信号および負荷電流信号を入力し、負荷電流信号が軽負荷かどうかを判断する第1の閾値より低くなっているときであって、フィードバック信号が第2の閾値より低いときに負荷がスタンバイモードにあると判断し、フィードバック信号が第2の閾値より高くなっている期間が一定時間を越えて継続したときに負荷がノーマルモードにあると判断するスタンバイ検出回路と、を備えている。
 上記構成のスイッチング電源装置の制御装置は、スタンバイモードにあるときに、フィードバック信号が過渡的に第2の閾値より高くなっても、スタンバイ検出回路が出力する信号がノーマルモードに切り替わることがないという利点がある。
 本発明の上記および他の目的、特徴および利点は、本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
本発明の実施の形態に係る制御装置を備えた電流共振型のスイッチング電源装置を示す回路図である。 制御装置の構成例を示す図である。 スタンバイ検出回路の構成例を示す回路図である。 スタンバイ検出回路の遅延回路の構成例を示す回路図である。 スタンバイ検出回路の遅延回路の入出力波形を示す図である。 フィードバックの応答が遅い場合のスタンバイ検出回路の動作シーケンスを示す図である。 フィードバックの応答が早い場合のスタンバイ検出回路の動作シーケンスを示す図である。
 以下、本発明の実施の形態について、負荷のスタンバイ状態を外部からの指示を受けることなく制御ICの側で判断するようにした電流共振型のスイッチング電源装置に適用した場合を例に図面を参照して詳細に説明する。なお、図中、同一の符号で示される部分は、同一の構成要素を示している。
 図1は本発明の実施の形態に係る制御装置を備えた電流共振型のスイッチング電源装置を示す回路図、図2は制御装置の構成例を示す図である。なお、以下の説明において、端子名とその端子における電圧、信号などは、同じ符号を用いることがある。
 図1のスイッチング電源装置は、第1のコンバータ10および第2のコンバータ20の二段構成になっている。第1のコンバータ10は、PFC(Power Factor Correction:力率改善)昇圧コンバータであり、第2のコンバータ20は、DC-DCコンバータであり、ここでは、ハーフブリッジ電流共振コンバータの例を示している。
 第1のコンバータ10において、交流電源ACの両方の端子は、ダイオードブリッジDBの交流入力端子に接続され、ダイオードブリッジDBの正極出力端子は、平滑コンデンサC1の一方の端子に接続されている。平滑コンデンサC1の他方の端子は、ダイオードブリッジDBの負極出力端子に接続されている。ダイオードブリッジDBの正極出力端子は、また、インダクタLpの一方の端子に接続され、インダクタLpの他方の端子は、ダイオードDpのアノード端子に接続されている。インダクタLpの他方の端子は、また、NチャネルMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)とするスイッチング素子Qのドレイン端子に接続されている。スイッチング素子Qのゲート端子は、PFC制御IC11の出力端子に接続され、スイッチング素子Qのソース端子は、ダイオードブリッジDBの負極出力端子に接続されている。ダイオードDpのカソード端子は、平滑コンデンサCbulkの正極端子および第1のコンバータ10の出力端子に接続され、平滑コンデンサCbulkの負極端子は、ダイオードブリッジDBの負極出力端子に接続されている。
 この第1のコンバータ10は、交流電源ACの交流入力電圧をダイオードブリッジDBで全波整流し、全波整流した脈流を平滑コンデンサC1によって平滑化する。この平滑化された電圧は、インダクタLp、スイッチング素子Q、PFC制御IC11、ダイオードDpおよび平滑コンデンサCbulkによって構成される昇圧回路により昇圧され、昇圧された直流電圧に変換される。このとき、PFC制御IC11は、ダイオードDpから出力される平均電流波形を交流入力電圧の正弦波に近づけて力率を改善し、かつ、昇圧した直流の中間電圧Vbulkを出力する。この第1のコンバータ10の出力端子は、第2のコンバータ20の入力端子となっている。
 第2のコンバータ20にて、中間電圧Vbulkを受ける2つの入力端子は、ハイサイドのスイッチング素子Q1とローサイドのスイッチング素子Q2とを直列接続したハーフブリッジ回路が接続されている。スイッチング素子Q1,Q2は、図示の例では、NチャネルMOSFETを使用しているが、IGBT(Insulated Gate Bipolar Transistor)のような他の形式のスイッチング素子でもよい。
 スイッチング素子Q1,Q2の共通の接続点は、トランスT1の一次巻線P1の一端に接続され、一次巻線P1の他端は、共振コンデンサCrを介してスイッチング素子Q1のドレイン端子に接続されている。ここで、トランスT1の一次巻線P1の励磁インダクタンス、一次巻線P1と二次巻線S1,S2との間にある漏れインダクタンス(リーケージインダクタンス)および共振コンデンサCrは、共振回路を構成している。なお、この実施の形態では、共振回路をスイッチング素子Q1に並列に接続したが、スイッチング素子Q2に並列に接続してもよい。共振回路の等価回路は、共振コンデンサCr、リーケージインダクタンスおよびトランスT1の一次巻線P1の励磁インダクタンスの直列回路として表される。トランスT1の一次巻線P1の励磁インダクタンスは、動作モードによって共振回路の共振リアクトルを構成する場合と構成しない場合とがある。また、共振リアクトルとして、リーケージインダクタンスではなく、トランスとは別のリアクトルを共振コンデンサCrに直列に接続するようにしてもよい。
 トランスT1の二次巻線S1の一端は、ダイオードD1のアノード端子に接続され、二次巻線S2の一端は、ダイオードD2のアノード端子に接続されている。ダイオードD1,D2のカソード端子は、出力コンデンサCoの正極端子および出力端子21pに接続されている。出力コンデンサCoの負極端子は、二次巻線S1,S2の共通の接続点、出力端子21nおよびグランドに接続されている。二次巻線S1,S2、ダイオードD1,D2および出力コンデンサCoは、二次巻線S1,S2に生起された交流電圧を整流・平滑して直流電圧に変換する回路を構成し、スイッチング電源装置の出力回路を構成している。出力端子21p,21nは、図示しない負荷に接続される。
 出力端子21pは、抵抗R1を介してフォトカプラPC1の発光ダイオードのアノード端子に接続され、発光ダイオードのカソード端子は、シャントレギュレータSR1のカソード端子に接続されている。発光ダイオードの両端のアノード端子およびカソード端子には、抵抗R2が並列に接続されている。シャントレギュレータSR1のアノード端子は、グランドに接続されている。シャントレギュレータSR1は、出力コンデンサCoの正極端子とグランドとの間に直列接続された抵抗R3,R4の接続点に接続されたリファレンス端子を有している。シャントレギュレータSR1は、リファレンス端子とカソード端子との間に、抵抗R5およびコンデンサC2の直列回路が接続されている。このシャントレギュレータSR1は、内蔵の基準電圧と出力電圧Vo(出力コンデンサCoの両端電圧)を分圧した電位との差に応じた電流を発光ダイオードに流すものである。フォトカプラPC1のフォトトランジスタは、そのコレクタ端子が第2のコンバータ20の制御装置であるLLC制御IC22のFB端子に接続され、エミッタ端子がグランドに接続され、コレクタ端子およびエミッタ端子間には、コンデンサC3が接続されている。このフォトカプラPC1およびシャントレギュレータSR1は、出力電圧Voと基準電圧との誤差をLLC制御IC22にフィードバックする回路を構成している。
 LLC制御IC22は、また、ハイサイドのスイッチング素子Q1のゲート端子に接続されたHO端子、ローサイドのスイッチング素子Q2のゲート端子に接続されたLO端子、IS端子、CA端子およびCS端子を有している。IS端子は、コンデンサCsおよび抵抗Rsの直列回路の共通接続点に接続されている。コンデンサCsおよび抵抗Rsの直列回路は、交流的に共振コンデンサCrに並列に接続され、共振電流を分流する分流回路である。この分流回路で分流された電流は、電流検出用の抵抗Rsにより電圧信号に変換されてLLC制御IC22のIS端子に共振電流、すなわち、負荷電流を表す信号として入力される。CA端子には、コンデンサCcaの一端が接続され、コンデンサCcaの他端は、グランドに接続されている。CS端子には、コンデンサCssの一端が接続され、コンデンサCssの他端は、グランドに接続されている。
 LLC制御IC22は、図2に示したように、FB端子が発振回路31の入力端子に接続され、発振回路31の出力端子は、制御回路32に接続されている。制御回路32のハイサイド出力端子は、レベルシフト回路33を介してハイサイド駆動回路34の入力端子に接続され、制御回路32のローサイド出力端子は、ローサイド駆動回路35の入力端子に接続されている。ハイサイド駆動回路34の出力端子は、HO端子に接続され、ローサイド駆動回路35の出力端子は、LO端子に接続されている。IS端子は、負荷電流検出回路36の第1入力端子に接続され、この負荷電流検出回路36の出力端子は、CA端子およびスタンバイ検出回路37の第1入力端子に接続されている。負荷電流検出回路36の第2入力端子には、制御回路32から出力される信号sw_ctrlが入力されている。スタンバイ検出回路37の第2入力端子は、FB端子に接続され、スタンバイ検出回路37の出力端子は、制御回路32の信号sdymoの入力端子に接続されている。FB端子は、また、ソフトスタート回路38の第1入力端子に接続され、ソフトスタート回路38の第2入力端子は、CS端子に接続され、ソフトスタート回路38の出力端子は、発振回路31に接続されている。
 この第2のコンバータ20では、出力電圧Voに応じてフォトカプラPC1の電流が変化する。フォトカプラPC1の発光ダイオードが発する光信号は、フォトトランジスタによって受光され、フィードバック電圧(FB端子電圧)となる。FB端子は、LLC制御IC22内で、図示しないプルアップ抵抗などにより高電位側にプルアップされていて、出力電圧Voに応じた値の電圧になっている。
 FB端子は、発振回路31に接続されている。この発振回路31は、たとえば、VCO(Voltage-controlled oscillator:電圧制御発振器)であり、ノーマルモードではFB端子電圧に応じた発振周波数の信号を出力する。発振回路31はFB端子電圧の変化に応じて発振周波数を変化させた信号を制御回路32に入力し、制御回路32はこれに基づき出力電圧Voが一定の電圧になるように制御する。
 負荷電流検出回路36は、特許文献1の図5に示されている負荷検出回路と同じものであり、IS端子にコンデンサCsおよび抵抗Rsによる分流回路から受けた共振電流に相当する信号を受け、信号sw_ctrlに基づき当該信号をCA端子に接続されたコンデンサCcaで平均化させることにより、共振電流を表す信号を出力する。共振電流の大きさは、負荷に供給する電流に比例するので、CA端子の信号は、負荷電流を表す電圧信号となる。この負荷電流を表す電圧信号は、スタンバイ検出回路37に供給される。
 スタンバイ検出回路37は、負荷電流を表すCA端子の信号と、出力電圧Voを表すFB端子の信号とを入力し、負荷電流および出力電圧Voの両方がスタンバイモード時の値を示したとき、ハイレベルの信号sdymoを制御回路32に供給する。制御回路32は、スタンバイ検出回路37からハイレベルの信号sdymoを受けると、第2のコンバータ20の動作をノーマルモードからスタンバイモードに切り替える。なお、スタンバイモードになるとバースト制御を行い、制御回路32がスイッチング回数を削減することでスイッチング損失を低減し、効率を向上させている。
 ソフトスタート回路38は、制御回路32でのバースト制御のために、FB端子電圧の変化に応じてCS端子のコンデンサCssを充放電する。バースト制御時は、発振回路31を構成するVCOに、FB端子電圧の代わりにこのコンデンサCssの充放電時の電圧(CS端子の電圧)を入力することで、バースト制御時のスイッチング期間におけるスイッチング開始およびスイッチング停止時に、ソフトスタートおよびソフトエンドの動作を行っている。
 図3はスタンバイ検出回路の構成例を示す回路図、図4はスタンバイ検出回路の遅延回路の構成例を示す回路図、図5はスタンバイ検出回路の遅延回路の入出力波形を示す図である。図6はフィードバックの応答が遅い場合のスタンバイ検出回路の動作シーケンスを示す図、図7はフィードバックの応答が早い場合のスタンバイ検出回路の動作シーケンスを示す図である。
 スタンバイ検出回路37は、図3に示したように、比較器41,42と、遅延回路43と、NOR回路44とを備えている。比較器41は、その非反転入力端子にFB端子が接続され、反転入力端子には、出力電圧Voを判定するための閾値ref2が入力され、信号fbcompを出力する。比較器42は、その非反転入力端子にCA端子が接続され、反転入力端子には、負荷が軽負荷かどうかを判定するための閾値ref1が入力され、信号cacompを出力する。なお、比較器41,42は、ヒステリシスコンパレータであることが望ましい。比較器41の出力端子は、遅延回路43の入力端子に接続され、信号fbcompを入力して信号fbdelayを出力する。遅延回路43の出力端子は、NOR回路44の一方の入力端子に接続されている。比較器42の出力端子は、NOR回路44の他方の入力端子に接続されている。NOR回路44の出力端子は、スタンバイ検出回路37の出力端子を構成し、信号sdymoを制御回路32に出力する。NOR回路44の出力信号sdymoは、入力される信号fbdelayおよび信号cacompがともにローレベルのときハイレベルになり、それ以外の場合はローレベルになる。
 遅延回路43は、入力信号の立ち上がり前縁を遅らせて出力し、入力信号の立ち下がり後縁に対しては、遅らせることなく出力するもので、たとえば、図4に示したような構成にすることができる。
 すなわち、遅延回路43の入力端子は、抵抗51を介して比較器52の非反転入力端子に接続され、抵抗51と比較器52の非反転入力端子との接続点には、コンデンサ53の一端が接続され、コンデンサ53の他端は、グランドに接続されている。コンデンサ53の両端にはスイッチング素子54が並列に接続されている。このスイッチング素子54は、この実施の形態では、NチャネルMOSFETが使われている。コンデンサ53の一端は、スイッチング素子54のドレイン端子に接続され、スイッチング素子54のソース端子は、グランドに接続されている。遅延回路43の入力端子は、また、インバータ回路55の入力端子に接続され、インバータ回路55の出力端子は、スイッチング素子54のゲート端子に接続されている。そして、比較器52の反転入力端子には、抵抗51およびコンデンサ53の時定数とともに遅延時間を決めるための閾値である基準電圧Vrefが入力されている。
 遅延回路43は、図5に示したように、その入力端子にローレベルの信号fbcompが入力されていると、インバータ回路55の出力がハイレベルとなっているためスイッチング素子54がオンして、コンデンサ53の電荷は放電されている。このため、比較器52は、ローレベルの信号fbdelayを出力する。
 次に、入力端子にハイレベルの信号fbcompが入力されると、インバータ回路55の出力がローレベルとなってスイッチング素子54がオフするので、コンデンサ53は、抵抗51を介して入力されているハイレベルの信号fbcompによって充電される。このコンデンサ53の端子電圧が徐々に上昇し、所定時間経過後に基準電圧Vrefを超えると、比較器52は、ハイレベルの信号fbcompの入力から遅延時間t1だけ遅れてハイレベルの信号fbdelayを出力する。
 次に、遅延回路43の入力端子にローレベルの信号fbcompが入力されると、インバータ回路55の出力がハイレベルとなってスイッチング素子54をオンし、コンデンサ53の電荷を瞬間的に放電する。これにより、比較器52は、コンデンサ53が放電されたタイミングで遅れることなくローレベルの信号fbdelayを出力する。
 次に、図6および図7を参照しながらスタンバイ検出回路37の動作について説明する。図6および図7において、上から、負荷の電力Po、出力電圧Vo、FB端子電圧、遅延回路43が入出力する信号fbcomp,fbdelay、CA端子電圧、比較器42が出力する信号cacomp、スタンバイモードか否かを示す信号sdymo、HO端子およびLO端子の信号および共振電流Icrの変化を示している。なお、FB端子の電圧と比較される閾値電圧ref_swは、スタンバイモードでのバースト制御において、ソフトスタート回路38が一定期間スイッチングを行うスイッチング期間と一定期間スイッチングを停止する停止期間とを切り替えるためのものである。
 スタンバイ検出回路37の動作説明においては、負荷がノーマルモードからスタンバイモードに移行し、その後、ノーマルモードへ復帰するときに、第2のコンバータ20がノーマルモード、スタンバイモードおよびノーマルモードに変化する場合を例に説明する。負荷の電力Poは、最初、負荷の全機能が動作しているノーマルモードで大きく、その後、負荷の一部しか機能しないスタンバイモードでは小さくなり、そして最後にノーマルモードに復帰すると、再び大きくなる。
 また、フィードバックの応答が遅い場合は、図6に示したように、出力電圧Voの変化に対するFB端子電圧の変化が小さく、フィードバックの応答が早い場合は、図7に示したように、出力電圧Voの変化に対するFB端子の電圧の変化が大きくなっている。
 まず、負荷がノーマルモードで動作しているとき、第2のコンバータ20の出力電圧Voは、目標電圧となっていて、FB端子電圧は、閾値電圧ref_swと閾値ref2との間にあるとする。このとき、スタンバイ検出回路37では、比較器41が出力する信号fbcompは、ローレベルであり、遅延回路43が出力する信号fbdelayもローレベルである。CA端子電圧は、ノーマルモードでは負荷電流が大きいので、高い値を維持しており、したがって、比較器42が出力する信号cacompは、ハイレベルになっている。信号fbdelayがローレベルで信号cacompがハイレベルであるので、NOR回路44が出力する信号sdymoは、ローレベルである。このとき、HO端子およびLO端子の信号は、FB端子電圧に応じた周波数のパルス信号を出力し、共振電流Icrは、正弦波状の電流となる。
 次に、負荷がスタンバイモードに遷移してその電力Poが待機電力まで低下すると、出力コンデンサCoから負荷に流れる電荷が減少して出力電圧Voが上昇し、それに対応してFB端子電圧が低下していく。このとき、CA端子電圧も低下していき、CA端子電圧が閾値ref1を下回ると、スタンバイ検出回路37の比較器42は、ローレベルの信号cacompを出力する。このとき、遅延回路43が出力する信号fbdelayもローレベルであるので、NOR回路44は、ハイレベルの信号sdymoを出力する。制御回路32は、ハイレベルの信号sdymoが入力されると、ノーマルモードからスタンバイモードに遷移し、スイッチング周波数をスタンバイモードの周波数に変更する。これにより、ハイサイド駆動回路34のHO端子およびローサイド駆動回路35のLO端子には、スタンバイモードの周波数のパルス信号が出力される。
 このスタンバイモードの期間では、スイッチング期間とスイッチング停止期間とを繰り返すバースト制御が行われており、ソフトスタート回路38では、FB端子電圧が閾値電圧ref_swより高いときをスイッチング期間とし、FB端子電圧が閾値電圧ref_swを下回るときをスイッチング停止期間としている。発振回路31では、このスイッチング期間の開始および終了時に過大なオーバシュートおよびアンダーシュートを起こさないようにしている。スイッチング期間においては、上述のように、コンデンサCssの充放電時の電圧でスイッチング周波数を決めている。
 このスタンバイモードの期間において、フィードバックの応答が遅い場合は、図6に示したように、FB端子電圧が閾値ref2に達することはないので、スタンバイ検出回路37の比較器41は、ローレベルの信号fbcompを出力している。一方、フィードバックの応答が早い場合は、図7に示したように、FB端子電圧が閾値ref2に達することがあるので、FB端子電圧が閾値ref2を越えている期間、比較器41は、ハイレベルの信号fbcompを出力している。比較器41がハイレベルの信号fbcompを出力すると、遅延回路43では、スイッチング素子54がオフされることで、信号fbcompによるコンデンサ53への充電が開始される。ただし、FB端子電圧が閾値ref2を越えている期間は、遅延時間t1より短く、FB端子電圧が閾値ref2を下回ったタイミングでコンデンサ53が放電されるので、遅延回路43は、ハイレベルの信号fbdelayを出力することはない。すなわち、FB端子電圧が一時的にせよ閾値ref2を上回るようなことがあっても、継続すべきスタンバイモードから誤ってノーマルモードに戻ってしまうことを回避することができる。
 次に、負荷がスタンバイモードからノーマルモードに復帰すると、負荷が瞬間的に重くなることで出力電圧Voが低下し、それに伴ってFB端子電圧が上昇する。FB端子電圧がバースト制御の閾値電圧ref_swを上回ると、バースト制御は、スイッチング期間に入る。
 FB端子電圧がさらに上昇して閾値ref2を上回ると、遅延回路43にはハイレベルの信号fbcompが入力される。遅延回路43は、ハイレベルの信号fbcompが入力されてから遅延時間t1の期間経過後にハイレベルの信号fbdelayを出力するので、このとき、スタンバイ検出回路37は、ノーマルモードを表すローレベルの信号sdymoを出力する。これにより、LLC制御IC22は、HO端子およびLO端子にノーマルモードの周波数のパルス信号を出力するようになる。
 ノーマルモードに戻ることで、負荷電流が増え、CA端子電圧も増えるようになる。CA端子電圧が閾値ref1を上回ると、比較器42が出力する信号cacompは、ハイレベルになる。しかし、このとき、遅延回路43は、ハイレベルの信号fbdelayを出力しているので、NOR回路44が出力する信号sdymoは、ローレベルのままである。
 その後、出力電圧Voが上昇してFB端子電圧が閾値ref2を下回ると、比較器41が出力する信号fbcompは、ローレベルになるので、このタイミングで遅延回路43が出力する信号fbdelayもローレベルになる。しかし、このとき、比較器42が出力する信号cacompは、ハイレベルであるので、NOR回路44が出力する信号sdymoは、ローレベルのままである。
 以上のように、このスタンバイ検出回路37によれば、CA端子電圧が閾値ref1より低いときに、FB端子電圧が過渡的に閾値ref2より高くなっても、信号sdymoがノーマルモードに切り替わることがない。FB端子電圧が閾値ref2より高い状態が遅延時間t1以上継続して初めて信号sdymoがノーマルモードに切り替わるので、スタンバイモードを継続すべきなのに誤ってノーマルモードに戻ってしまうことが回避される。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
 10 第1のコンバータ
 11 PFC制御IC
 20 第2のコンバータ
 21p,21n 出力端子
 22 LLC制御IC
 31 発振回路
 32 制御回路
 33 レベルシフト回路
 34 ハイサイド駆動回路
 35 ローサイド駆動回路
 36 負荷電流検出回路
 37 スタンバイ検出回路
 38 ソフトスタート回路
 41,42 比較器
 43 遅延回路
 44 NOR回路
 51 抵抗
 52 比較器
 53 コンデンサ
 54 スイッチング素子
 55 インバータ回路
 AC 交流電源
 C1 平滑コンデンサ
 C2,C3 コンデンサ
 Cbulk 平滑コンデンサ
 Cca コンデンサ
 Co 出力コンデンサ
 Cr 共振コンデンサ
 Cs,Css コンデンサ
 D1,D2 ダイオード
 DB ダイオードブリッジ
 Dp ダイオード
 Lp インダクタ
 P1 一次巻線
 PC1 フォトカプラ
 Q,Q1,Q2 スイッチング素子
 R1,R2,R3,R4,R5,Rs 抵抗
 S1,S2 二次巻線
 SR1 シャントレギュレータ
 T1 トランス

Claims (5)

  1.  負荷に一定の出力電圧を供給する電流共振型のスイッチング電源装置の制御装置であって、
     共振回路の共振電流の一部を入力して平均化することにより負荷電流を表す負荷電流信号を出力する負荷電流検出回路と、
     前記出力電圧とその目標電圧との誤差をフィードバックしたフィードバック信号および前記負荷電流信号を入力し、前記負荷電流信号が軽負荷かどうかを判断する第1の閾値より低くなっているときであって、前記フィードバック信号が第2の閾値より低いときに前記負荷がスタンバイモードにあると判断し、前記フィードバック信号が前記第2の閾値より高くなっている期間が一定時間を越えて継続したときに前記負荷がノーマルモードにあると判断するスタンバイ検出回路と、
     を備えたスイッチング電源装置の制御装置。
  2.  前記スタンバイ検出回路は、非反転入力端子に前記負荷電流信号を入力し、反転入力端子に前記第1の閾値を入力した第1の比較器と、非反転入力端子に前記フィードバック信号を入力し、反転入力端子に前記第2の閾値を入力した第2の比較器と、入力端子に前記第2の比較器の出力端子を接続して前記第2の比較器の出力信号を前記一定時間遅延させる遅延回路と、入力端子に前記遅延回路の出力端子および前記第1の比較器の出力端子が接続され出力端子には前記スタンバイモードにあるかどうかを指示する信号を出力するNOR回路とを有する請求項1記載のスイッチング電源装置の制御装置。
  3.  前記遅延回路は、一方の端子が前記第2の比較器の出力信号を受ける入力端子に接続された抵抗と、一方の端子が前記抵抗の他方の端子に接続され、他方の端子がグランドに接続されたコンデンサと、非反転入力端子が前記抵抗の他方の端子に接続され、反転入力端子に遅延時間を決めるための基準電圧が入力される第3の比較器と、入力端子が前記抵抗の一方の端子に接続されたインバータ回路と、前記コンデンサに並列に接続されて前記インバータ回路の出力信号によってオン・オフされるスイッチング素子とを有する請求項2記載のスイッチング電源装置の制御装置。
  4.  前記スタンバイ検出回路から前記負荷が前記スタンバイモードにあることを指示する信号が出力されると、スイッチングを一定期間行うスイッチング期間と一定期間スイッチングを停止する停止期間とを繰り返すバースト制御を行う制御回路を備えている請求項1記載のスイッチング電源装置の制御装置。
  5.  前記制御回路が前記バースト制御を行っているとき、前記スイッチング期間のスイッチング開始時およびスイッチング停止時にソフトスタートおよびソフトエンドの動作をさせるソフトスタート回路を備えている請求項4記載のスイッチング電源装置の制御装置。
PCT/JP2019/025406 2018-08-02 2019-06-26 スイッチング電源装置の制御装置 WO2020026653A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980011098.1A CN111684697B (zh) 2018-08-02 2019-06-26 开关电源装置的控制装置
JP2020534111A JP6966001B2 (ja) 2018-08-02 2019-06-26 スイッチング電源装置の制御装置
US16/939,656 US11411498B2 (en) 2018-08-02 2020-07-27 Controller of switching power supply apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-145686 2018-08-02
JP2018145686 2018-08-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/939,656 Continuation US11411498B2 (en) 2018-08-02 2020-07-27 Controller of switching power supply apparatus

Publications (1)

Publication Number Publication Date
WO2020026653A1 true WO2020026653A1 (ja) 2020-02-06

Family

ID=69230954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025406 WO2020026653A1 (ja) 2018-08-02 2019-06-26 スイッチング電源装置の制御装置

Country Status (4)

Country Link
US (1) US11411498B2 (ja)
JP (1) JP6966001B2 (ja)
CN (1) CN111684697B (ja)
WO (1) WO2020026653A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112638001A (zh) * 2020-12-25 2021-04-09 深圳市裕富照明有限公司 智能灯具供电控制电路及智能灯具

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7200727B2 (ja) * 2019-02-14 2023-01-10 富士電機株式会社 スイッチング電源の制御装置
CN112701884B (zh) * 2021-01-27 2022-02-22 茂睿芯(深圳)科技有限公司 开关电源的原边控制电路及开关电源
WO2023066235A1 (en) * 2021-10-19 2023-04-27 Shanghai United Imaging Healthcare Co., Ltd. Apparatus for supplying power and medical device
CN114070035B (zh) * 2021-11-12 2023-12-26 上海联影医疗科技股份有限公司 一种供电装置以及医疗设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110037A (ja) * 2008-10-28 2010-05-13 Fuji Electric Systems Co Ltd スイッチング電源制御回路
JP2017103889A (ja) * 2015-12-01 2017-06-08 富士電機株式会社 スイッチング電源装置
JP2017229209A (ja) * 2016-06-24 2017-12-28 富士電機株式会社 スイッチング電源装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674274B2 (en) * 2001-02-08 2004-01-06 Linear Technology Corporation Multiple phase switching regulators with stage shedding
US7304464B2 (en) * 2006-03-15 2007-12-04 Micrel, Inc. Switching voltage regulator with low current trickle mode
JP5179893B2 (ja) 2008-02-05 2013-04-10 新電元工業株式会社 スイッチング電源
JP4728360B2 (ja) * 2008-03-03 2011-07-20 株式会社リコー 電源回路
CN102742137A (zh) * 2009-11-30 2012-10-17 松下电器产业株式会社 电源装置及其控制方法
JP2014060895A (ja) 2012-09-19 2014-04-03 Minebea Co Ltd 電源装置
JP6323258B2 (ja) * 2014-08-29 2018-05-16 サンケン電気株式会社 電流共振型電源装置
JP6402610B2 (ja) 2014-12-03 2018-10-10 富士電機株式会社 スイッチング電源装置、スイッチング電源装置の制御方法およびスイッチング電源装置の制御回路
JP6631277B2 (ja) * 2016-01-28 2020-01-15 富士電機株式会社 スイッチング電源装置
JP6665573B2 (ja) * 2016-02-17 2020-03-13 富士電機株式会社 スイッチング電源装置
US9979297B2 (en) * 2016-08-08 2018-05-22 Sanken Electric Co., Ltd. Current resonant power supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110037A (ja) * 2008-10-28 2010-05-13 Fuji Electric Systems Co Ltd スイッチング電源制御回路
JP2017103889A (ja) * 2015-12-01 2017-06-08 富士電機株式会社 スイッチング電源装置
JP2017229209A (ja) * 2016-06-24 2017-12-28 富士電機株式会社 スイッチング電源装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112638001A (zh) * 2020-12-25 2021-04-09 深圳市裕富照明有限公司 智能灯具供电控制电路及智能灯具
CN112638001B (zh) * 2020-12-25 2022-07-29 深圳市裕富照明有限公司 智能灯具供电控制电路及智能灯具

Also Published As

Publication number Publication date
US20200358360A1 (en) 2020-11-12
CN111684697A (zh) 2020-09-18
JP6966001B2 (ja) 2021-11-10
JPWO2020026653A1 (ja) 2021-02-15
CN111684697B (zh) 2023-08-01
US11411498B2 (en) 2022-08-09

Similar Documents

Publication Publication Date Title
US10158282B1 (en) Switching power supply device
WO2020026653A1 (ja) スイッチング電源装置の制御装置
CN108604860B (zh) Pfc转换器、led驱动器和相关方法
JP4748197B2 (ja) 電源装置
US9929661B2 (en) Switching power supply apparatus
US7492615B2 (en) Switching power supply
US20170155335A1 (en) Secondary side controlled control circuit for power converter with synchronous rectifier
US10910942B2 (en) Power factor improvement circuit and switching power supply device using same
US11437913B2 (en) Switching control circuit and power supply circuit
US11233448B2 (en) Switching control circuit and switching control method
US7813151B2 (en) Variable-mode converter control circuit and half-bridge converter having the same
US11336170B2 (en) Frequency setting in a power supply device, power supply control device, and power supply control method
US11735994B2 (en) Integrated circuit and power supply circuit
WO2020202760A1 (ja) スイッチング制御回路、電源回路
US20230009994A1 (en) Integrated circuit and power supply circuit
US11705819B2 (en) Integrated circuit and power supply circuit
US11705802B2 (en) Integrated circuit and power supply circuit
JP7400188B2 (ja) 制御装置
JP6810150B2 (ja) スイッチング電源装置および半導体装置
US20230010211A1 (en) Integrated circuit and power supply circuit
US11699956B2 (en) Cycle-by-cycle reverse current limiting in ACF converters
JP7141916B2 (ja) 電源制御装置、およびllc共振コンバータ
JP7291604B2 (ja) 電源制御装置、および電源回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534111

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843412

Country of ref document: EP

Kind code of ref document: A1