WO2020025456A1 - Brennstoffzellenstack und verfahren zum herstellen eines brennstoffzellenstacks - Google Patents

Brennstoffzellenstack und verfahren zum herstellen eines brennstoffzellenstacks Download PDF

Info

Publication number
WO2020025456A1
WO2020025456A1 PCT/EP2019/070094 EP2019070094W WO2020025456A1 WO 2020025456 A1 WO2020025456 A1 WO 2020025456A1 EP 2019070094 W EP2019070094 W EP 2019070094W WO 2020025456 A1 WO2020025456 A1 WO 2020025456A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell stack
module
stack
end plates
Prior art date
Application number
PCT/EP2019/070094
Other languages
English (en)
French (fr)
Inventor
Felix Wald
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2020025456A1 publication Critical patent/WO2020025456A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04671Failure or abnormal function of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a fuel cell stack and method for producing such a fuel cell stack.
  • the oxidizing agent oxygen from the ambient air is generally used to react with hydrogen to water in the fuel cell and thus to provide electrical power through electrochemical conversion.
  • the fuel cell stack according to the invention comprises at least two fuel cell modules, each with at least two individual cells, each fuel cell module having module end plates on both cell stack outer sides, stack end plates which are arranged on both module stack outer sides of the stacked fuel cell modules, and
  • Fuel cell stack compression means via which the
  • stacked fuel cell modules are clamped to a fuel cell stack.
  • a single cell is understood to mean the usual arrangement of the gas diffusion layers with the membrane between a cathode bipolar plate and an anode bipolar plate.
  • the outside of the cell stack is the free side of the cathode bipolar plate or anode bipolar plate of the cell stack, which is orthogonal to a fuel flow direction
  • the module stack outer sides are accordingly the free sides of the module stack which extend in the same plane.
  • Fuel cell stack compression means is a means which
  • Module end plates can be checked. An examination is therefore not only after All cells can be assembled. As a result, only the cells stacked one on top of the other in the faulty tested module are rejects.
  • the fuel cell stack has module compression means via which the individual cells each
  • a module compression means in the sense of the invention is understood to mean a means which is preferably mechanically connected to both module end plates, so that the entire cell stack can be clamped in between. This prevents the stacked individual cells from shifting towards one another, so that a further possible source of error is avoided. This further reduces the probability of failure of the fuel cell stack.
  • Module compression means tensioning straps. A good tensioning of the fuel cell module can be achieved by tightening straps.
  • the module end plates are made of metal.
  • This metal particularly preferably has good electrical conductivity.
  • Metals have the advantage that they generally have good mechanical stability, so that the module end plates
  • metal is highly available and easy to process.
  • the module end plates are made of graphite.
  • Graphite has the advantage that it is electrically conductive and has low material costs.
  • graphite has a relatively low weight, so that the provision of module end plates made of graphite means that the total weight of such a fuel cell stack is only slightly higher compared to conventionally produced fuel cell stacks.
  • the module end plates are made of electrically conductive plastic.
  • the advantage of plastics is that they are available in large quantities and in different numbers.
  • plastics have low costs and can easily be processed using the injection molding process, for example. As a result, the fuel cell stacks can be produced more economically.
  • plastics have a relatively low weight, so that by providing module end plates made of plastic
  • Total weight of such a fuel cell stack is only slightly higher compared to conventionally manufactured fuel cell stacks.
  • the module end plates are made of the same material as a bipolar plate of the single cell. This can reduce the number of materials required to produce a stack. The storage of such additional materials is therefore omitted, so that the stack can be produced more economically.
  • the module end plates preferably have a thickness of 5 mm-5 cm.
  • a starch in the sense of the invention is understood to be a thickness or extension of the module end plates in the stacking direction. Sufficient stability of the module end plates can be guaranteed in this area.
  • the thickness of the module end plates is particularly preferably in the range from 5 mm to 20 mm.
  • the fuel cell stack advantageously consists of 80 to 450 individual cells.
  • Such a fuel cell stack has the advantage that sufficient power can be made available.
  • such a fuel cell stack can be used for most applications.
  • the fuel cell stack particularly preferably consists of 420 to 450
  • a high performance can be provided with such a fuel cell stack.
  • the invention additionally includes a method for producing a
  • Fuel cell stacks in particular of the invention
  • Fuel cell stacks The process includes the steps of Stacking at least two individual cells of the
  • the method for producing a fuel cell stack has the same advantages as the previously described fuel cell stack.
  • the method allows the fuel cell modules to be checked for errors before stacking one on top of the other.
  • Module compression means removed after tightening the stacked fuel cell modules. This allows the weight of the
  • Module compression means can be saved.
  • the invention additionally comprises a motor vehicle with the fuel cell stack according to the invention.
  • the motor vehicle has the same to that
  • Figure 1 sectional view of an embodiment of a single cell of the
  • Figure 2 sectional view of a first embodiment of the
  • Fuel cell stacks according to the invention are fuel cell stacks according to the invention.
  • FIG. 1 shows a sectional view of an exemplary embodiment of an individual cell 5 of a fuel cell stack 10 according to the invention (see FIGS. 2 and 3).
  • the individual cell 5 is formed from a cathode bipolar plate 18 having beads 14.
  • An anode bipolar plate 22 is arranged opposite to the cathode bipolar plate 18, so that the beads 14 are both
  • a layer structure 30 is arranged within the channels 26. This layer structure 30 is shown by way of example on a channel 26.
  • the layer structure 30 consists of a first and a second gas diffusion layer 34, 38, which are separated by a membrane 42. Between the first
  • the gas diffusion layer 34 and the cathode bipolar plate 18 flow the oxygen 46, which is required for the oxidation.
  • Gas diffusion layer 38 and the anode bipolar plate 22 flow the hydrogen 50 preferably used as fuel.
  • sealing material 54 is provided between the membrane 42 and the bipolar plates 18, 22. Most of the errors occur at these points, as previously described.
  • FIG. 2 shows a sectional view of a first exemplary embodiment of the fuel cell stack 10 according to the invention.
  • Three fuel cell modules 58 are exemplary embodiments
  • Each fuel cell module 58 comprises a number of individual cells 5, shown here by way of example with four. Each individual cell 5 is constructed in accordance with FIG. 1. These single cells 5 are
  • Module compression means 74 which with the two module end plates 70 are mechanically connected, the stacked individual cells 5 are clamped together.
  • the fuel cell modules 58 thus formed are stacked on top of one another with the module end plates 70. On the module stack thus formed
  • Module end plate 70 stack end plates 78 arranged. about
  • Fuel cell stack compression means 82 which are mechanically connected to the stack end plates 78, are those stacked on top of one another
  • each fuel cell module 58 is prior to being introduced into the
  • Module stack 76 can be checked for errors. It is therefore no longer necessary to wait until the fuel cell stack 10 has been completely manufactured before it is checked.
  • FIG. 3 shows a sectional view of a second exemplary embodiment of the fuel cell stack 10 according to the invention.
  • Fuel cell stack 10 essentially differs from that
  • the module compression means 74 are removed after the fuel cell modules 58 stacked one on top of the other.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Brennstoffzellenstack (10) und ein Verfahren zum Herstellen eines solchen Brennstoffzellenstacks (10). Der Brennstoffzellenstack (10) umfasst dabei wenigstens zwei Brennstoffzellenmodule (58) mit jeweils wenigstens zwei Einzelzellen (5), wobei jedes Brennstoffzellenmodul (58) Modulendplatten (70) an beiden Zellenstapelaußenseiten (66) aufweist,Stapelendplatten (78), welche an beiden Modulstapelaußenseiten (77) der aufeinandergestapelten Brennstoffzellenmodule (58) angeordnet sind, und Brennstoffzellenstackkompressionsmittel (82) über welche die aufeinandergestapelten Brennstoffzellenmodule (58) zu einem Brennstoffzellenstack (10) verspannt sind.

Description

Beschreibung
Titel:
Brennstoffzellenstack und Verfahren zum Herstellen eines Brennstoffzellenstacks
Die vorliegende Erfindung betrifft einen Brennstoffzellenstack und Verfahren zum Herstellen eines solchen Brennstoffzellenstacks.
Bei Brennstoffzellensystemen wird in der Regel das Oxidationsmittel Sauerstoff aus der Umgebungsluft benutzt, um in der Brennstoffzelle mit Wasserstoff zu Wasser zu reagieren und damit durch elektrochemische Wandlung eine elektrische Leistung zu liefern.
Stand der Technik
Aus der EP 2 869 376 Al ist es bekannt einen Brennstoffzellenstapel zu bilden, der durch Schichten einer Mehrzahl von zuvor durch Schichten einer Vielzahl von Brennstoffzelleneinheitszellen gebildeten Zellenmodulen zusammengesetzt wird.
Der Hintergrund der Erfindung liegt darin, dass bei einem Brennstoffzellenstack das größte Risiko für einen Fehler bei der Fertigung des Stacks von den
Dichtstellen in der Zelle ausgeht. Obwohl jede einzelne Zelle an sich eine hohe Zuverlässigkeit für die Dichtstellen aufweist, erhöht sich das Gesamtfehlerrisiko bei einer Gesamtzahl von mehreren 1000 Dichtstellen pro Stack deutlich, so dass sich nach Fertigstellung des Brennstoffzellenstacks trotz alledem eine relativ hohe Ausschussrate an fehlerhaften Brennstoffzellenstacks im Bereich von 10% ergibt. Die hohe Ausschussrate an fehlerhaften Brennstoffzellenstacks erhöht dadurch den Preis der fehlerfreien Brennstoffzellenstacks.
Es ist daher die Aufgabe der vorliegenden Erfindung einen Brennstoffzellenstack und ein Verfahren zum Herstellen eines solchen Brennstoffzellenstack anzugeben, mit welchem eine Ausschussrate an fehlerhaften Brennstoffzellenstacks reduziert wird, so dass eine wirtschaftliche Herstellung von Brennstoffzellenstacks möglich ist.
Offenbarung der Erfindung
Die Aufgabe wird durch einen Brennstoffzellenstack mit den Merkmalen nach Anspruch 1 gelöst. Hinsichtlich eines Verfahrens zum Herstellen eines solchen Brennstoffzellenstacks wird auf Anspruch 10 verwiesen. Die jeweils
rückbezogenen abhängigen Ansprüche geben vorteilhafte Weiterbildungen der Erfindung wieder.
Der erfindungsgemäße Brennstoffzellenstack umfasst dabei wenigstens zwei Brennstoffzellenmodule mit jeweils wenigstens zwei Einzelzellen, wobei jedes Brennstoffzellenmodul Modulendplatten an beiden Zellenstapelaußenseiten aufweist, Stapelendplatten, welche an beiden Modulstapelaußenseiten der aufeinandergestapelten Brennstoffzellenmodule angeordnet sind, und
Brennstoffzellenstackkompressionsmittel über welche die
aufeinandergestapelten Brennstoffzellenmodule zu einem Brennstoffzellenstack verspannt sind.
Als Einzelzelle im Sinne der Erfindung wird hierbei die gewöhnliche Anordnung der Gasdiffusionslagen mit der Membran zwischen einer Kathoden- Bipolarplatte und einer Anoden-Bipolarplatte verstanden. Die Zellenstapelaußenseite ist hierbei die freie Seite der Kathoden- Bipolarplatte oder Anoden-Bipolarplatte des Zellenstapels, welche orthogonal zu einer Brennstoffflussrichtung am
Zellenstapel liegt. Die Modulstapelaußenseiten sind dementsprechend die sich in gleicher Ebene erstreckenden freien Seiten des Modulstapels. Das
Brennstoffzellenstackkompressionsmittel ist dabei ein Mittel, welches
vorzugsweise mit beiden Stapelendplatten mechanisch verbunden ist, so dass der gesamte Modulstapel dazwischen verspannbar ist.
Der erfindungsgemäße Aufbau des Brennstoffzellenstacks hat den Vorteil, dass jedes Brennstoffzellenmodul vor dem Aufeinanderstapeln, über die
Modulendplatten geprüft werden kann. Eine Prüfung ist daher nicht erst nach einem Zusammenbau aller Zellen möglich. Dadurch sind lediglich die in dem jeweils fehlerhaft getesteten Modul aufeinandergestapelten Zellen Ausschuss.
Die Kosten für den Ausschuss werden dadurch deutlich reduziert. Zusätzlich wird die Ausfallwahrscheinlichkeit des vollständig zusammengebauten
Brennstoffzellenstacks deutlich reduziert. Dadurch wird die Wirtschaftlichkeit der Herstellung solcher Brennstoffzellenstacks deutlich erhöht.
In einer bevorzugten Ausführung der Erfindung weist der Brennstoffzellenstack Modulkompressionsmittel auf, über welche die Einzelzellen jedes
Brennstoffzellenmoduls zwischen den Modulendplatten verspannt sind. Als Modulkompressionsmittel im Sinne der Erfindung ist dabei ein Mittel zu verstehen, welches vorzugsweise mit beiden Modulendplatten mechanisch verbunden ist, so dass der gesamte Zellenstapel dazwischen verspannbar ist. Dadurch wird vermieden, dass sich die aufeinandergestapelten Einzelzellen gegenseitig zueinander verschieben, so dass damit eine weitere mögliche Fehlerquelle vermieden wird. Dadurch wird die Ausfallwahrscheinlichkeit des Brennstoffzellenstacks weiter reduziert.
In einer weiteren bevorzugten Ausführung der Erfindung sind die
Modulkompressionsmittel Spannbänder. Durch Spannbänder kann eine gute Verspannung des Brennstoffzellenmodules erzielt werden.
In einer vorteilhaften Ausgestaltung der Erfindung sind die Modulendplatten aus Metall. Dieses Metall weist dabei besonders bevorzugt eine gute elektrische Leitfähigkeit auf. Metalle haben den Vorteil, dass sie in der Regel eine gute mechanische Stabilität aufweisen, so dass die Modulendplatten
dementsprechend dünner ausgebildet werden können. Zudem weist Metall eine hohe Verfügbarkeit und eine gute Verarbeitbarkeit auf.
Alternativ sind die Modulendplatten aus Graphit. Graphit hat den Vorteil, dass es elektrisch leitend ist und geringe Material kosten aufweist. Zusätzlich hat Graphit ein relativ geringes Gewicht, so dass durch das Vorsehen von Modulendplatten aus Graphit das Gesamtgewicht eines solchen Brennstoffzellenstacks, im Vergleich zu herkömmlich hergestellten Brennstoffzellenstacks, nur geringfügig höher ist. Bei einer anderen Alternative sind die Modulendplatten aus elektrisch leitfähigem Kunststoff hergestellt. Kunststoffe haben den Vorteil, dass sie in einer großen Menge und unterschiedlichen Anzahl verfügbar sind. Zudem haben Kunststoffe geringe Kosten und können einfach im Wege des z.B. Spritzgussverfahrens verarbeitet werden. Dadurch können die Brennstoffzellenstacks wirtschaftlicher hergestellt werden. Zudem haben Kunststoffe ein relativ geringes Gewicht, so dass durch das Vorsehen von Modulendplatten aus Kunststoff das
Gesamtgewicht eines solchen Brennstoffzellenstacks, im Vergleich zu herkömmlich hergestellten Brennstoffzellenstacks, nur geringfügig höher ist.
Bei einer weiteren Alternative sind die Modulendplatten aus einem gleichen Material wie eine Bipolarplatte der Einzelzelle hergestellt. Dadurch kann die Anzahl der für die Herstellung eines Stacks benötigten Materialien reduziert werden. Die Lagerung solcher weiteren Materialien entfällt somit, so dass der Stack wirtschaftlicher herstellbar ist.
Vorzugsweise weisen die Modulendplatten eine Stärke von 5mm - 5cm auf. Als Stärke im Sinne der Erfindung wird hierbei eine in Stapelrichtung vorhandene Dicke bzw. Ausdehnung der Modulendplatten verstanden. In diesem Bereich kann eine ausreichende Stabilität der Modulendplatten garantiert werden.
Besonders bevorzugt liegt die Stärke der Modulendplatten im Bereich von 5mm - 20mm.
Vorteilhafterweise besteht der Brennstoffzellenstack leistungsabhängig aus 80 bis 450 Einzelzellen. Ein solcher Brennstoffzellenstack hat den Vorteil, dass eine ausreichende Leistung zur Verfügung stellbar ist. Zusätzlich kann ein solcher Brennstoffzellenstack für die meisten Anwendungen verwendet werden.
Besonders bevorzugt besteht der Brenstoffzellenstack aus 420 bis 450
Einzelzellen. Mit einem solchen Brennstoffzellenstack ist eine hohe Leistung bereitstellbar.
Die Erfindung umfasst zusätzlich ein Verfahren zum Herstellen eines
Brennstoffzellenstacks, insbesondere des erfindungsgemäßen
Brennstoffzellenstacks. Das Verfahren umfasst dabei die Schritte des Aufeinanderstapelns von wenigstens zwei Einzelzellen des
Brennstoffzellenstacks, des Anordnens von Modulendplatten an beiden
Zellenstapelaußenseiten der aufeinandergestapelten Einzelzellen, des
Verspannens der Einzelzellen zwischen den Modulendplatten mittels eines Modulkompressionsmittels zum Bilden eines Brennstoffzellenmoduls, des Prüfens des Brennstoffzellenmoduls auf Fehlerfreiheit, des Aufeinanderstapelns wenigstens zweier derart hergestellter Brennstoffzellenmodule, des Anordnens von Stapelendplatten an beiden Modulstapelaußenseiten, und des Verspannens der aufeinandergestapelten Brennstoffzellenmodule zwischen den
Stapelendplatten mittels eines Brennstoffzellenstackkompressionsmittels.
Das Verfahren zum Herstellen eines Brennstoffzellenstacks hat die gleichen Vorteile wie der zuvor beschriebene Brennstoffzellenstack. Insbesondere sind mit dem Verfahren die Brennstoffzellenmodule vor einem aufeinanderstapeln auf Fehlerfreiheit prüfbar.
In einem bevorzugten Ausführungsbeispiel des Verfahrens werden die
Modulkompressionsmittel nach dem Verspannen der aufeinandergestapelten Brennstoffzellenmodule entfernt. Dadurch kann das Gewicht der
Modulkompressionsmittel eingespart werden.
Die Erfindung umfasst zusätzlich ein Kraftfahrzeug mit dem erfindungsgemäßen Brennstoffzellenstack. Das Kraftfahrzeug weist dabei die gleichen zu dem
Brennstoffzellenstack genannten Vorteile auf. Zusätzlich wird der Ausfall eines solchen Kraftfahrzeuges durch einen nachträglichen Ausfall des
Brennstoffzellenstacks reduziert.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigt:
Figur 1 Schnittansicht eines Ausführungsbeispiels einer Einzelzelle des
erfindungsgemäßen Brennstoffzellenstacks,
Figur 2 Schnittansicht eines ersten Ausführungsbeispiels des
erfindungsgemäßen Brennstoffzellenstacks, und Figur 3 Schnitansicht eines zweiten Ausführungsbeispiels des
erfindungsgemäßen Brennstoffzellenstacks.
Figur 1 zeigt eine Schnitansicht eines Ausführungsbeispiels einer Einzelzelle 5 eines erfindungsgemäßen Brennstoffzellenstacks 10 (siehe Figur 2 und 3). Die Einzelzelle 5 ist gebildet aus einer Sicken 14 aufweisenden Kathoden- Bipolarplate 18. Spiegelverkehrt zu der Kathoden- Bipolarplate 18 ist eine Anoden-Bipolarplate 22 angeordnet, so dass sich die Sicken 14 beider
Bipolarplaten 18, 22 gegenüber liegen. Dadurch werden zwischen der
Kathoden- Bipolarplate 18 und der Anoden-Bipolarplate 22 Kanäle 26
ausgebildet. Innerhalb der Kanäle 26 ist ein Schichtaufbau 30 angeordnet. Dieser Schichtaufbau 30 ist beispielhaft an einem Kanal 26 gezeigt. Der Schichtaufbau 30 besteht dabei aus einer ersten und einer zweiten Gasdiffusionslage 34, 38, welche über eine Membran 42 getrennt sind. Zwischen der ersten
Gasdiffusionslage 34 und der Kathoden- Bipolarplate 18 strömt der Sauerstoff 46, welcher für die Oxidation benötigt wird. Zwischen der zweiten
Gasdiffusionslage 38 und der Anoden-Bipolarplate 22 strömt der als Brennstoff vorzugsweise verwendete Wasserstoff 50.
An den Stellen, an denen sich die Sicken 14 der Kathoden- Bipolarplate 18 und der Anoden-Bipolarplate 22 gegenüber liegen, ist zwischen der Membran 42 und den Bipolarplaten 18, 22 Dichtungsmaterial 54 vorgesehen. An diesen Stellen treten, wie zuvor bereits beschrieben, die meisten Fehler auf.
In Figur 2 ist eine Schnitansicht eines ersten Ausführungsbeispiels des erfindungsgemäßen Brennstoffzellenstacks 10 gezeigt. Bei diesem
Ausführungsbeispiel sind beispielhaft drei Brennstoffzellenmodule 58
aufeinander gestapelt. Jedes Brennstoffzellenmodul 58 umfasst dabei eine, hier beispielhaft mit vier dargestellte, Anzahl an Einzelzellen 5. Jede Einzelzellen 5 ist dabei entsprechend der Figur 1 aufgebaut. Diese Einzelzellen 5 sind
aufeinandergestapelt und an dem so gebildeten Zellenstapel 62 sind an
Zellenstapelaußenseiten 66 Modulendplaten 70 angeordnet. Über
Modulkompressionsmitel 74, welche mit den beiden Modulendplaten 70 mechanisch verbunden sind, sind die aufeinandergestapelten Einzelzellen 5 miteinander verspannt.
Die so gebildeten Brennstoffzellenmodule 58 sind mit den Modulendplatten 70 aneinander anliegend aufeinandergestapelt. An dem so gebildeten Modulstapel
76 sind an den beiden Modulstapelaußenseiten 77, an der letzten
Modulendplatte 70, Stapelendplatten 78 angeordnet. Über
Brennstoffzellenstackkompressionsmittel 82, welche mechanisch mit den Stapelendplatten 78 verbunden sind, sind die aufeinandergestapelten
Brennstoffzellenmodule 58 zu einem Brennstoffzellenstack 10 verspannt.
Dadurch ist jedes Brennstoffzellenmodul 58 vor dem Einbringen in den
Modulstapel 76 auf Fehlerfreiheit überprüfbar. Es muss somit nicht mehr mit einer Überprüfung bis zum vollständigen Herstellen des Brennstoffzellenstacks 10 gewartet werden.
In Figur 3 ist eine Schnittansicht eines zweiten Ausführungsbeispiels des erfindungsgemäßen Brennstoffzellenstacks 10 gezeigt. Dieser
Brennstoffzellenstack 10 unterscheidet sich im Wesentlichen von dem
Brennstoffzellenstack 10 aus dem ersten Ausführungsbeispiel dadurch, dass in diesem Brennstoffzellenstack 10 keine Modulkompressionsmittel 74 vorhanden sind. In diesem Ausführungsbeispiel werden die Modulkompressionsmittel 74 nach dem Verspannen der aufeinandergestapelten Brennstoffzellenmodule 58 entfernt.

Claims

Ansprüche
1. Brennstoffzellenstack (10) umfassend:
Wenigstens zwei Brennstoffzellenmodule (58) mit jeweils wenigstens zwei Einzelzellen (5), wobei jedes Brennstoffzellenmodul (58) Modulendplatten (70) an beiden Zellenstapelaußenseiten (66) aufweist,
Stapelendplatten (78), welche an beiden Modulstapelaußenseiten (77) der aufeinandergestapelten Brennstoffzellenmodule (58) angeordnet sind, und
Brennstoffzellenstackkompressionsmittel (82) über welche die
aufeinandergestapelten Brennstoffzellenmodule (58) zu einem
Brennstoffzellenstack (10) verspannt sind.
2. Brennstoffzellenstack (10) nach Anspruch 1, gekennzeichnet durch
Modulkompressionsmittel (74) über welche die Einzelzellen (5) jedes
Brennstoffzellenmoduls (58) zwischen den Modulendplatten (70) verspannt sind.
3. Brennstoffzellenstack (10) nach Anspruch 2, dadurch gekennzeichnet, dass die Modulkompressionsmittel (74) Spannbänder sind.
4. Brennstoffzellenstack (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Modulendplatten (70) aus Metall sind.
5. Brennstoffzellenstack (10) nach einem der Ansprüche 1 bis 3, dadurch
gekennzeichnet, dass die Modulendplatten (70) aus Graphit sind.
6. Brennstoffzellenstack (10) nach einem der Ansprüche 1 bis 3, dadurch
gekennzeichnet, dass die Modulendplatten (70) aus elektrisch leitfähigem Kunststoff hergestellt sind.
7. Brennstoffzellenstack (10) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Modulendplatten (70) aus einem gleichen Material wie eine Bipolarplatte (18, 22) der Einzelzelle (5) hergestellt sind.
8. Brennstoffzellenstack (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Modulendplatten (70) eine Stärke von 5mm - 5cm aufweisen.
9. Brennstoffzellenstack (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Brennstoffzellenstack (10) aus 80 bis 450
Einzelzellen (5) besteht.
10. Verfahren zum Herstellen eines Brennstoffzellenstacks (10), insbesondere eines Brennstoffzellenstacks (10) nach einem der vorherigen Ansprüche, wobei das Verfahren die Schritte umfasst:
Aufeinanderstapeln von wenigstens zwei Einzelzellen (5) des
Brennstoffzellenstacks (10),
Anordnen von Modulendplatten (70) an beiden Zellenstapelaußenseiten (66) der aufeinandergestapelten Einzelzellen (5),
Verspannen der Einzelzellen (5) zwischen den Modulendplatten (70) mittels eines Modulkompressionsmittels (74) zum Bilden eines
Brennstoffzellenmoduls (58),
Prüfen des Brennstoffzellenmoduls (58) auf Fehlerfreiheit,
Aufeinanderstapeln wenigstens zweier derart hergestellter
Brennstoffzellenmodule (58),
Anordnen von Stapelendplatten (78) an beiden Modulstapelaußenseiten (77), und
Verspannen der aufeinandergestapelten Brennstoffzellenmodule (58) zwischen den Stapelendplatten (78) mittels eines
Brennstoffzellenstackkompressionsmittels (82).
11. Verfahren zum Herstellen eines Brennstoffzellenstacks (10) nach Anspruch 10, dadurch gekennzeichnet, dass die Modulkompressionsmittel (74) nach dem Verspannen der aufeinandergestapelten Brennstoffzellenmodule (58) entfernt werden.
12. Kraftfahrzeug mit einem Brennstoffzellenstack (10) nach einem der Ansprüche 1 bis 9.
PCT/EP2019/070094 2018-07-31 2019-07-25 Brennstoffzellenstack und verfahren zum herstellen eines brennstoffzellenstacks WO2020025456A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018212715.8 2018-07-31
DE102018212715.8A DE102018212715A1 (de) 2018-07-31 2018-07-31 Brennstoffzellenstack und Verfahren zum Herstellen eines Brennstoffzellenstacks

Publications (1)

Publication Number Publication Date
WO2020025456A1 true WO2020025456A1 (de) 2020-02-06

Family

ID=67551346

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2019/070094 WO2020025456A1 (de) 2018-07-31 2019-07-25 Brennstoffzellenstack und verfahren zum herstellen eines brennstoffzellenstacks
PCT/EP2019/070456 WO2020025597A2 (de) 2018-07-31 2019-07-30 Brennstoffzellenstack, verfahren zum herstellen eines brennstoffzellenstacks und verfahren zum betreiben eines brennstoffzellenstacks

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/070456 WO2020025597A2 (de) 2018-07-31 2019-07-30 Brennstoffzellenstack, verfahren zum herstellen eines brennstoffzellenstacks und verfahren zum betreiben eines brennstoffzellenstacks

Country Status (5)

Country Link
US (1) US11652229B2 (de)
JP (1) JP7150133B2 (de)
CN (1) CN112514125A (de)
DE (2) DE102018212715A1 (de)
WO (2) WO2020025456A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021203561A1 (de) 2021-04-12 2022-10-13 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzellenvorrichtung und Unterbaugruppe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281681A (ja) * 1988-04-15 1989-11-13 Hitachi Ltd 燃料電池スタツク
EP1291951A2 (de) * 2001-09-11 2003-03-12 Matsushita Electric Industrial Co., Ltd. Polymerelektrolytbrennstoffzelle
EP2869376A1 (de) 2012-07-02 2015-05-06 Nissan Motor Co., Ltd. Brennstoffzellenstapel
JP2016062852A (ja) * 2014-09-22 2016-04-25 本田技研工業株式会社 燃料電池スタックの組み立て方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113955U (ja) * 1984-01-10 1985-08-01 株式会社 富士電機総合研究所 燃料電池
JP2500880B2 (ja) 1991-08-30 1996-05-29 株式会社日立製作所 燃料電池
JP3066736B2 (ja) 1997-02-28 2000-07-17 溶融炭酸塩型燃料電池発電システム技術研究組合 燃料電池スタック
US6503649B1 (en) * 2000-04-03 2003-01-07 Convergence, Llc Variable fuel cell power system for generating electrical power
US6946210B2 (en) * 2000-11-27 2005-09-20 Protonex Technology Corporation Electrochemical polymer electrolyte membrane cell stacks and manufacturing methods thereof
US20040046526A1 (en) * 2002-09-06 2004-03-11 Richards William R. Modular fuel cell
US7163761B2 (en) * 2002-11-14 2007-01-16 3M Innovative Properties Company Fuel cell stack
JP2004214123A (ja) * 2003-01-08 2004-07-29 Mitsubishi Heavy Ind Ltd 積層型燃料電池及びその保守方法
CN100361340C (zh) * 2003-07-18 2008-01-09 上海神力科技有限公司 一种集成式燃料电池堆的控制连接方法
JP2005093349A (ja) * 2003-09-19 2005-04-07 Nissan Motor Co Ltd 燃料電池の冷却構造
KR20050045070A (ko) * 2003-11-10 2005-05-17 현대자동차주식회사 연료전지 스택 체결장치
JP4956890B2 (ja) * 2003-11-25 2012-06-20 トヨタ自動車株式会社 燃料電池
US20050221149A1 (en) * 2004-03-30 2005-10-06 Sanyo Electric Co., Ltd. Fuel cell stack
JP5109277B2 (ja) 2006-03-30 2012-12-26 トヨタ自動車株式会社 マルチセルモジュールおよび燃料電池スタック
JP2009086043A (ja) 2007-09-27 2009-04-23 Sato Knowledge & Intellectual Property Institute 封緘用ラベル
JP2010238567A (ja) * 2009-03-31 2010-10-21 Toyota Motor Corp 燃料電池システム
FR2945377B1 (fr) * 2009-05-11 2011-07-22 Commissariat Energie Atomique Pile a combustible a encombrement reduit.
GB201001972D0 (en) 2010-02-08 2010-03-24 Afc Energy Plc Cell stack system
US9112219B2 (en) * 2010-07-21 2015-08-18 Delphi Technologies, Inc. Multiple stack fuel cell system with shared plenum
DK2434570T3 (da) * 2010-09-22 2018-01-29 Siemens Ag Elektrokemisk batteri og fremgangsmåde til fjernelse af celler fra et sådant batteri
KR20130036884A (ko) * 2011-10-05 2013-04-15 삼성에스디아이 주식회사 고체산화물 연료전지 스택 및 이를 구비한 연료전지 모듈
KR101775547B1 (ko) * 2013-01-16 2017-09-06 삼성에스디아이 주식회사 이종 셀을 포함하는 배터리 팩 및 이를 포함하는 전력 장치
KR101829093B1 (ko) * 2014-10-22 2018-03-29 주식회사 엘지화학 배터리 시스템의 냉각 공기 흐름 제어 시스템 및 방법
CA2989410C (en) 2015-06-19 2023-10-24 Ballard Power Systems Inc. Fuel cell stack with compression bands along the planar surfaces of the stack
BR112018001872B1 (pt) * 2015-07-28 2022-05-10 Nissan Motor Co., Ltd Sistema de célula de combustível

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281681A (ja) * 1988-04-15 1989-11-13 Hitachi Ltd 燃料電池スタツク
JP2554126B2 (ja) * 1988-04-15 1996-11-13 株式会社日立製作所 燃料電池スタツク
EP1291951A2 (de) * 2001-09-11 2003-03-12 Matsushita Electric Industrial Co., Ltd. Polymerelektrolytbrennstoffzelle
EP2869376A1 (de) 2012-07-02 2015-05-06 Nissan Motor Co., Ltd. Brennstoffzellenstapel
JP2016062852A (ja) * 2014-09-22 2016-04-25 本田技研工業株式会社 燃料電池スタックの組み立て方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASGHARI S ET AL: "Design and manufacturing of end plates of a 5kW PEM fuel cell", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, ELSEVIER SCIENCE PUBLISHERS B.V., BARKING, GB, vol. 35, no. 17, 28 February 2010 (2010-02-28), pages 9291 - 9297, XP028362209, ISSN: 0360-3199, [retrieved on 20100310], DOI: 10.1016/J.IJHYDENE.2010.02.135 *
PADHY B R ET AL: "Performance of DMFC with SS 316 bipolar/end plates", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 153, no. 1, 23 January 2006 (2006-01-23), pages 125 - 129, XP027937458, ISSN: 0378-7753, [retrieved on 20060123] *

Also Published As

Publication number Publication date
JP7150133B2 (ja) 2022-10-07
US20210305615A1 (en) 2021-09-30
WO2020025597A3 (de) 2020-05-14
JP2022515948A (ja) 2022-02-24
US11652229B2 (en) 2023-05-16
DE102018212715A1 (de) 2020-02-06
WO2020025597A2 (de) 2020-02-06
CN112514125A (zh) 2021-03-16
DE112019003821A5 (de) 2021-04-15

Similar Documents

Publication Publication Date Title
DE102011007378A1 (de) Brennstoffzellenstapel mit einer Wasserablaufanordnung
DE102014221351A1 (de) Brennstoffzelle
DE102013206317A1 (de) Brennstoffzellenstapel
DE102014210358A1 (de) Brennstoffzellenstapel mit einer dummyzelle
DE102013204308A1 (de) Bipolarplatte für eine Brennstoffzelle, Brennstoffzelle und Verfahren zur Herstellung der Bipolarplatte
DE102019213723A1 (de) Brennstoffzelle und Verfahren zu deren Herstellung
DE102019218380A1 (de) Brennstoffzellenanordnung und Verfahren zur Herstellung einer Brennstoffzellenanordnung
DE102015214517A1 (de) Bipolarplatte und Membran-Elektroden-Einheit für eine in einem Brennstoffzellenstapel angeordnete Brennstoffzelle, Brennstoffzelle und Brennstoffzellenstapel
WO2020074169A1 (de) Verfahren zum abdichten einer brennstoffzelle
WO2020025456A1 (de) Brennstoffzellenstack und verfahren zum herstellen eines brennstoffzellenstacks
DE102016202481A1 (de) Brennstoffzellenstapel und Verfahren zum Herstellen eines solchen Brennstoffzellenstapels
DE102018213155A1 (de) Brennstoffzelle sowie Brennstoffzellenstapel
DE102020128317A1 (de) Bipolarplatte, Brennstoffzelle sowie Brennstoffzellenstapel
DE102013209378B4 (de) Brennstoffzellenstapel zum Verhindern der Verschlechterung einer Endzelle
DE102020106091A1 (de) Bausatz für einen Brennstoffzellenstapel und Verfahren zur Herstellung eines Brennstoffzellenstapels
DE102020213123A1 (de) Membran-Elektroden-Einheit für eine elektrochemische Zelle und Verfahren zur Herstellung einer Membran-Elektroden-Einheit
WO2020074168A1 (de) Verfahren zum abdichten einer brennstoffzelle
DE102019133091A1 (de) Brennstoffzellenvorrichtung, Kraftfahrzeug mit einer Brennstoffzellenvorrichtung und Verfahren zum Betreiben einer Brennstoffzellenvorrichtung
DE102018212880A1 (de) Bipolarplatte für eine Brennstoffzelle sowie Brennstoffzellenstapel
DE102020212103A1 (de) Brennstoffzellenanordnung und Verfahren zur Herstellung einer Brennstoffzellenanordnung
DE102020212104A1 (de) Brennstoffzellenanordnung und Verfahren zur Herstellung einer Brennstoffzellenanordnung
DE102015201408A1 (de) Brennstoffzellenstapel und Verfahren zur Herstellung eines Brennstoffzellenstapels
DE102016111794A1 (de) Membran-Elektroden-Anordnung, Brennstoffzellenstapel und Verfahren zum Herstellen einer Membran-Elektroden-Anordnung
DE102020128584A1 (de) Verfahren zur Fertigung eines eine Mehrzahl von Brennstoffzellen aufweisenden Brennstoffzellenstapels, Brennstoffzelle sowie Brennstoffzellenstapel
DE102020114460A1 (de) Bipolarplatte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750078

Country of ref document: EP

Kind code of ref document: A1