WO2020024316A1 - 一种车载信息终端 - Google Patents

一种车载信息终端 Download PDF

Info

Publication number
WO2020024316A1
WO2020024316A1 PCT/CN2018/099495 CN2018099495W WO2020024316A1 WO 2020024316 A1 WO2020024316 A1 WO 2020024316A1 CN 2018099495 W CN2018099495 W CN 2018099495W WO 2020024316 A1 WO2020024316 A1 WO 2020024316A1
Authority
WO
WIPO (PCT)
Prior art keywords
processor
car
control
circuit
obd
Prior art date
Application number
PCT/CN2018/099495
Other languages
English (en)
French (fr)
Inventor
吴凯
王丽霞
Original Assignee
深圳市朗仁科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市朗仁科技有限公司 filed Critical 深圳市朗仁科技有限公司
Publication of WO2020024316A1 publication Critical patent/WO2020024316A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3822Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving specially adapted for use in vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]

Definitions

  • the utility model relates to the technical field of vehicle networking, in particular to a vehicle-mounted information terminal.
  • the introduction of the Internet of Things IOT concept has accelerated the process of social information and networking.
  • the Internet of Vehicles is a typical application of the Internet of Things. It uses vehicle-mounted electronic sensing devices to complete information exchange through the network, so that information between vehicles and roads, vehicles and vehicles, and vehicles and people can be interconnected, and vehicles and traffic conditions can be effectively intelligent. monitor.
  • the Internet of Vehicles clarifies the interconnection of vehicles, roads, cities, and people, especially in the management of fire fighting and rescue vehicles. It promotes intelligent management, accurate police, and the information technology industry in fire protection to become more modern, networked, and intelligent. Direction.
  • the Internet of Vehicles focuses more on vehicle-to-vehicle, vehicle-to-person interactive communication, and extracts more vehicle driving parameters and system data to ensure vehicle driving safety, avoid road congestion, and improve collaboration between vehicles.
  • Combat level Different from the traditional intelligent transportation system ITS, the Internet of Vehicles focuses more on vehicle-to-vehicle, vehicle-to-person interactive communication, and extracts more vehicle driving parameters and system data to ensure vehicle driving safety, avoid road congestion, and improve collaboration between vehicles.
  • Automotive safety system is an important part of vehicle information system. With the rapid development of electronic information technology, sensor technology, vehicle network, data communication, computer processing technology and intelligent control technology are widely used in automotive safety systems.
  • the security system products are developing towards highly intelligent, diversified functions, and mobile terminals.
  • an object of the present invention is to provide a vehicle-mounted information terminal.
  • an embodiment of the present invention provides a vehicle-mounted information terminal.
  • the vehicle-mounted information terminal includes:
  • a remote wireless communication module which is in wireless communication connection with a remote server
  • An OBD detection control module which is electrically connected to an OBD interface of the car;
  • a processor which is respectively connected to the remote wireless communication module and the OBD detection control module, and the processor is configured to read the status information of the car through the OBD detection control module, and communicate through the remote wireless communication The module sends the status information of the car to the remote server;
  • the processor is further configured to receive a control instruction of the remote server through the remote wireless communication module, and control the automobile through the OBD detection control module according to the control instruction.
  • the OBD detection control module includes:
  • An unlocking control circuit which is electrically connected to the processor and an OBD interface of the car, respectively.
  • the unlocking control circuit is used to output an unlocking control signal under the control of the processor, and is performed through the OBD interface.
  • a lock-out control circuit which is electrically connected to the processor and an OBD interface of the car, respectively, and the lock-out control circuit is configured to output a lock-out control signal under the control of the processor,
  • the OBD interface performs lock-up control.
  • the OBD detection control module further includes:
  • An ignition start control circuit which is electrically connected to the processor and an OBD interface of the car, respectively.
  • the ignition start control circuit is used to output an ignition start control under the control of the processor.
  • the signal is used to perform ignition start control of the automobile through the OBD interface.
  • the OBD detection control module further includes:
  • a car start detection component the car start detection component is electrically connected to the processor and an OBD interface of the car, and the car start detection component is used to read the status information of the car.
  • the automobile start detection component includes:
  • a key insertion detection circuit which is electrically connected to the processor and an OBD interface of the car, respectively.
  • the key insertion detection circuit is used to read whether the key of the car is inserted through the OBD interface, and The key insertion information is transmitted to the processor;
  • a car lock open detection circuit which is electrically connected to the processor and an OBD interface of a car, respectively, and the car lock open detection circuit is used to read whether a car lock is opened through the OBD interface Information, and transmitting whether the car lock is unlocked to the processor;
  • a car lock close detection circuit which is electrically connected to the processor and an OBD interface of the car, respectively, and the car lock close detection circuit is used to read whether the car lock is closed through the OBD interface Information, and transmitting whether the car lock is closed to the processor;
  • a start-up power detection circuit which is electrically connected to the processor and an OBD interface of the car, respectively, and the start-up power detection circuit is used to read whether the ACC power of the car is turned on through the OBD interface, And transmitting the ACC power on information to the processor;
  • the ON start detection circuit is electrically connected to the processor and the OBD interface of the car, and the ON start detection circuit is used to read whether the ON position of the car is started through the OBD interface Information, and whether the ON file enables information to be transmitted to the processor;
  • the ignition start detection circuit is electrically connected to the processor and the OBD interface of the car, and the ignition start detection circuit is used to read whether the car's ignition is activated through the OBD interface Information, and transmitting whether the ignition is activated to the processor.
  • a safety detection circuit which comprises any one of a light detection circuit, a cover detection circuit or a magnetic detection
  • the light-sensing detection circuit is connected to the processor, and the light-sensing detection circuit is configured to detect the light-induction intensity and transmit the light-induction intensity to the processor;
  • the cover-opening detection circuit is respectively connected to the processor and the housing of the in-vehicle information terminal, and the cover-opening detection circuit is used to detect an open state of the housing of the in-vehicle information terminal, and The opened state of the housing is transmitted to the processor;
  • the magnetic detection circuit is connected to the processor, and the magnetic detection circuit is configured to detect an open state of a housing of the in-vehicle information terminal, and transmit the open state of the housing of the in-vehicle information terminal to the processor.
  • the OBD detection control module further includes:
  • a double-flash control circuit which is electrically connected to the processor and an OBD interface of the car, respectively, and the unlock control circuit is used to output a double-flash control signal under the control of the processor.
  • the OBD interface is used to control the double flashing lights.
  • the OBD detection control module further includes:
  • the whistle control circuit is connected to the electric signal of the processor and the OBD interface of the car, respectively.
  • the whistle control circuit is used to output the whistle control signal under the control of the processor.
  • the OBD interface is used to control the whistle.
  • a power supply circuit which includes a main power circuit and a backup power circuit
  • the main power circuit is respectively connected to the processor and a car battery, and the main power circuit is used to perform voltage stabilization and filtering on the output of the car battery, and output a stable first power, and the first power
  • the output voltage is transmitted to the processor
  • the backup power supply circuit is respectively connected to the processor and the main power supply circuit, and the backup power supply circuit is configured to convert the voltage of the first power supply and output a stable second power supply. The output voltage is transmitted to the processor.
  • a Bluetooth wireless communication module is further included, the Bluetooth wireless communication module is connected to the processor, and the Bluetooth wireless communication module is configured to communicate with a mobile client and receive an operation instruction of the mobile client. And transmitting the operation instruction to the processor, and controlling the car through the OBD detection control module according to the operation instruction.
  • the processor controls the remote wireless communication module to perform data communication with a remote server, and can receive a control instruction sent by the server, and output control through the OBD detection control module according to the control instruction.
  • the control signal is transmitted to the car controller through the car OBD interface, so that the car controller can control the work of the car controller, thereby achieving remote control of the car;
  • the OBD detection control module By reading the vehicle status information output by the vehicle controller, the vehicle status information can be transmitted to a remote server through the wireless communication module, so that the remote server can obtain the vehicle status information in real time, and control the vehicle status information based on the vehicle status information.
  • Car work Achieve car networking and provide security and value-added services for cars. For example, car rental services.
  • FIG. 1 is a block diagram of a vehicle-mounted information terminal module provided by an embodiment of the utility model
  • FIG. 2 is a schematic structural diagram of a vehicle information terminal processor circuit according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a power supply circuit of a vehicle-mounted information terminal according to an embodiment of the present invention
  • FIG. 4 is a schematic circuit structure diagram of an OBD interface module of a vehicle-mounted information terminal according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a vehicle-mounted information terminal unlocking control circuit according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a lock control circuit of a vehicle-mounted information terminal according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a key insertion detection circuit of a vehicle-mounted information terminal according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a vehicle lock opening detection circuit of an in-vehicle information terminal according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a lock detection circuit of a vehicle-mounted information terminal according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a startup power detection circuit of a vehicle-mounted information terminal according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a vehicle-mounted information terminal ON file start detection circuit provided by an embodiment of the present utility model
  • FIG. 12 is a schematic structural diagram of a vehicle-mounted information terminal ignition gear start detection circuit provided by an embodiment of the present utility model
  • FIG. 13 is a schematic structural diagram of a vehicle-mounted information terminal ignition gear starting control circuit according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a vehicle lid opening detection circuit provided by an embodiment of the utility model
  • FIG. 15 is a schematic structural diagram of a magnetic detection circuit of a vehicle-mounted information terminal according to an embodiment of the present invention.
  • 16 is a schematic structural diagram of a light detection circuit of a vehicle-mounted information terminal according to an embodiment of the present invention.
  • 17 is a schematic structural diagram of a dual-flash control circuit of a vehicle-mounted information terminal according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of a whistle control circuit of a vehicle-mounted information terminal according to an embodiment of the present invention.
  • Bluetooth wireless communication module 103
  • GPS positioning module 104
  • Acceleration sensor module 105
  • OBD detection control module 150
  • OBD interface module 160
  • an embodiment herein means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present invention.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are they independent or alternative embodiments that are mutually exclusive with other embodiments. It is explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • An embodiment of the present invention provides a vehicle-mounted information terminal 10 (T-BOX, Telematics-Box).
  • the vehicle-mounted information terminal 10 is installed in a vehicle and is connected to the vehicle's OBD interface through an OBD interface, so that the vehicle-mounted information terminal 10
  • the information terminal 10 can perform data communication with a car controller in the car, and control the peripherals of the car through the car controller.
  • the in-vehicle information terminal 10 includes: a remote wireless communication module 102, an OBD detection control module 150, and a processor.
  • the remote wireless communication module 102 is wirelessly connected to a remote server 20.
  • the server 20 is connected so that the in-vehicle information terminal 10 can communicate with the remote server 20, for example, transmit control information of a car to the remote server 20, or receive control instructions of the remote server 20.
  • the OBD detection control module 150 is electrically connected to the OBD interface of the car; the OBD detection control module 150 is electrically connected to the OBD interface. On the one hand, the OBD detection control module 150 can detect the OBD interface.
  • the output vehicle status signal for example, whether the vehicle is started or not started.
  • the OBD detection and control module 150 may transmit a control signal through the OBD interface to control the car through the car controller in the car, for example, transmit an unlock or start control signal through the OBD interface.
  • the processor is respectively connected to the remote wireless communication module 102 and the OBD detection control module 150, and the processor is configured to read the status information of the car through the OBD detection control module 150 and communicate through the remote wireless communication
  • the module 102 sends status information of the car to the remote server 20; the processor is further configured to receive a control instruction of the remote server 20 through the remote wireless communication module 102, and pass the The OBD detection control module 150 controls the automobile.
  • the remote wireless communication module 102 is controlled by the processor to perform data communication with the remote server 20, and a control instruction sent by the server can be received, and the control module is detected by the OBD according to the control instruction.
  • 150 output control signal, the control signal is transmitted to the car controller through the car OBD interface, so that the car controller can control the work of the car controller, thereby achieving remote control of the car; on the other hand, through the OBD
  • the detection control module 150 reads the vehicle status information output by the vehicle controller, and can transmit the vehicle status information to the remote server 20 through the wireless communication module, so that the remote server 20 can obtain the vehicle status information in real time, and
  • the vehicle status information controls the operation of the vehicle. Achieve car networking and provide security and value-added services for cars. For example, car rental services.
  • the OBD detection control module 150 includes an unlock control circuit 1511 and a lock control circuit 1510.
  • the unlock control circuit 1511 includes a logic gate driving integrated circuit U4 , Transistor Q27, MOS transistor Q25, and peripheral circuits, the unlock control circuit 1511 is electrically connected to the processor and the OBD interface of the car, respectively, and the unlock control circuit 1511 is used to output unlock under the control of the processor A control signal for unlocking control through the OBD interface.
  • the input terminals (terminals A and B) of the logic gate driving integrated circuit U4 are signal-connected to the two control terminals of the controller (PB8_OPEN_KEY_CTRL1, PB9_OPEN_KEY_CTRL2 signal terminals), and the output of the logic gate driving integrated circuit U4
  • the terminal (Y terminal) is connected to the base of the transistor Q27, the collector of the transistor Q27 is connected to the gate of the MOS transistor Q25, and the drain of the MOS transistor Q25 is connected to the automotive OBD interface signal. (OPEN_KEY_CTRL).
  • the logic gate driving integrated circuit U4 is an AND logic drive, and the logic gate driving integrated circuit U4 outputs a low level to enable the transistor.
  • the collector and emitter of Q27 Since the collector of the transistor is connected to the power supply VDD_3V3 through the resistor R107, the transistor Q27 outputs a high level, and the high level output of the transistor Q27 acts on the MOS transistor Q25.
  • the gate of the MOS transistor Q25 is a high-level controlled conduction (N-channel MOS transistor).
  • the MOS transistor Q25 is in a conducting state. Because the source of the MOS tube Q25 is connected to a reference ground, the drain of the MOS tube Q25 outputs a low level at this time, and the low level is connected to the automotive OBD interface through a signal (OPEN_KEY_CTRL). Control the unlocking operation of the car through the OBD interface and the car controller.
  • the lockout control circuit 1510 includes a logic gate driving integrated circuit U7, a transistor Q45, a MOS transistor Q46, and peripheral circuits.
  • the lockout control circuit 1510 is electrically connected to the processor and the OBD interface of the vehicle, respectively.
  • the lock control circuit 1510 is configured to output a lock control signal under the control of the processor, and perform lock control through the OBD interface.
  • the logic gate drive integrated circuit U7 input terminal A Terminal and terminal B
  • the logic gate drive integrated circuit U7 input terminal are connected to the two control terminals of the controller (PD4_CLOSE_KEY_CTRL1, PD5_CLOSE_KEY_CTRL2 signal terminals)
  • the output terminal (Y terminal) of the logic gate driving integrated circuit U7 is connected to the base of the transistor Q45.
  • the collector of the transistor Q45 is connected to the gate of the MOS transistor Q46, and the drain of the MOS transistor Q46 is connected to the automotive OBD interface signal (CLOSE_KEY_CTRL).
  • CLOSE_KEY_CTRL the automotive OBD interface signal
  • the logic gate driving integrated circuit U47 is an AND logic drive, and the logic gate driving integrated circuit U4 outputs a low level to cause the transistor There is a cutoff between the collector and emitter of Q45.
  • the transistor Q45 Since the collector of the transistor 45 is connected to the power supply VDD_3V3 through the resistor R210, the transistor Q45 outputs a high level, and the high level output of the transistor Q45 acts on the MOS transistor.
  • Q46 because the MOS transistor Q46 is an N-channel transistor.
  • the MOS transistor Q46 is controlled by a high level (N-channel MOS transistor). At this time, the MOS transistor Q46 is in a conducting state, and the source and drain of the N-channel MOS transistor Q46 are electrically connected to each other.
  • the source of the MOS transistor Q46 is connected to a reference ground, at this time, the The drain of the MOS tube Q46 outputs a low level, and the low level is connected to the automobile OBD interface through a signal (CLOSE_KEY_CTRL), and the car locking operation is controlled through the OBD interface and the automobile controller.
  • the OBD detection control module 150 further includes: an ignition start control circuit 1509.
  • the ignition start control circuit 1509 includes a transistor Q12 and a MOS transistor Q10.
  • the base of the transistor Q12 is connected to the resistor R78 via a resistor.
  • a control terminal (PD3_START_OUTPUT_CTRL) of the processor is connected, a collector of the Q12 is connected to a gate of the MOS transistor Q10, a source of the MOS transistor Q10 is connected to a power source VDD_12V, and a drain of the MOS transistor is connected to all
  • the OBD interface module 160 signal (START_OUTPUT end) is connected.
  • the ignition range start control circuit 1509 is electrically connected to the processor and the vehicle's OBD interface, respectively.
  • the ignition range start control circuit 1509 is used to output an ignition range start control signal under the control of the processor.
  • the OBD interface is used to control the ignition of the car.
  • the processor When the processor outputs a high-level signal, the transistor Q12 is turned on, the control terminal of the MOS transistor Q10 is low-level, the MOS transistor Q10 is turned on, and the MOS transistor Q10 outputs a high-level signal. (START_OUTPUT is high).
  • the high level is connected to the automobile OBD interface through a signal (START_OUTPUT), and the ignition operation of the automobile is controlled by the OBD interface and the automobile controller.
  • the OBD detection control module 150 further includes: a car startup detection component, which is electrically connected to the processor and an OBD interface of the car, respectively, and the car startup detection component is used for reading Get the status information of the car. Read the status of the car through the car startup detection component, and transmit the read car status information to the remote server 20 through the remote wireless communication module 102, thereby facilitating the monitoring of the vehicle status of the remote server 20 .
  • the automobile startup detection component includes: a key insertion detection circuit 1503, a car lock open detection circuit 1504, a car lock close detection circuit 1505, and a start power detection.
  • the key insertion detection circuit 1503 includes a zener diode Z4 and a transistor Q13.
  • the key insertion detection circuit 1503 is electrically connected to the processor and the OBD interface of the car, respectively.
  • the key insertion detection circuit 1503 is used to read whether the key of the car is inserted through the OBD interface, and to insert the key Insertion information is transmitted to the processor.
  • the cathode of the zener diode Z4 is connected to the ODB interface module signal (KEY_INPUT_DET), the anode of the zener diode Z4 is connected to the base of the triode Q13, and the collector of the triode Q13 is connected to all
  • the processor signal (PC10_KEY_INPUT end) is connected; when the ODB interface module signal (KEY_INPUT_DET) is high, the transistor Q13 is turned on, and the collector of the transistor Q13 outputs a low level, and all the The low level is connected to the processor.
  • the processor detects the low level.
  • the car lock open detection circuit 1504 includes a zener diode Z6, a transistor Q17, and a transistor Q18.
  • the car lock open detection circuit 1504 is electrically connected to the processor and an OBD interface of the car, respectively.
  • the lock open detection circuit 1504 is used to read whether the car lock is unlocked through the OBD interface, and transmit the information whether the car lock is unlocked to the processor; specifically, the cathode of the Zener diode Z6 and The ODB interface module signal (OPEN_KEY_DET) is connected, the anode of the Zener diode Z6 is connected to the base of the transistor Q17, the collector of the transistor Q17 is connected to the base of the transistor Q18, and the transistor Q18 The collector signal (PD6_OPEN_KEY end) of the collector is connected; when the ODB interface module signal (OPEN_KEY_DET) is high, the transistor Q17 is turned on, and the collector of the transistor Q17 outputs a low level, The low level acts on the base of the transistor Q18, the transistor Q18 is turned off, and the collector of the transistor Q18 outputs a high level, and the high level is connected to the high level via the PD6_OPEN_KEY. Mentioned processor. The processor detects the
  • the car lock close detection circuit 1505 includes a zener diode Z7, a transistor Q19, and a transistor Q20.
  • the car lock close detection circuit 1505 is electrically connected to the processor and the OBD interface of the car, respectively.
  • the lock-off detection circuit 1505 is configured to read whether the car lock is closed through the OBD interface, and transmit the lock-closed information to the processor.
  • the cathode of the zener diode Z7 and The ODB interface module signal (CLOSE_KEY_DET) is connected, the anode of the zener diode Z7 is connected to the base of the transistor Q19, the collector of the transistor Q19 is connected to the base of the transistor Q20, and the transistor Q20
  • the collector signal (PD7_CLOSE_KEY end) of the collector is connected; when the ODB interface module signal (CLOSE_KEY_DET) is high, the transistor Q19 is turned on, and the collector of the transistor Q19 outputs a low level, and The low level acts on the base of the transistor Q20, the transistor Q20 is turned off, the collector of the transistor Q20 outputs a high level, and the high level is connected through the PD7_CLOSE_KEY Said processor.
  • the processor detects the high level.
  • the startup power detection circuit 1506 includes a zener diode Z2, a transistor Q29, and a transistor Q39.
  • the startup power detection circuit 1506 is electrically connected to an OBD interface of the processor and the car, and the startup power detection
  • the circuit 1506 is configured to read whether the ACC power of the car is turned on through the OBD interface, and transmit the information of whether the ACC power is turned on to the processor; specifically, the cathode of the zener diode Z2 and the The ODB interface module signal (V_ACC) connection, the anode of the zener diode Z2 is connected to the base of the transistor Q29, the collector of the transistor Q29 is connected to the base of the transistor Q39, and the The collector signal of the processor (PE1_ACC_TEST end) is connected; when the ODB interface module signal (V_ACC) is high, the transistor Q29 is turned on, and the collector of the transistor Q29 outputs a low level, the low The level acts on the base of the transistor Q39,
  • the ON-start detection circuit 1507 includes a zener diode Z3, a transistor Q48, and a transistor Q49.
  • the ON-start detection circuit 1507 is electrically connected to the processor and the OBD interface of the vehicle, respectively.
  • the gear start detection circuit 1507 is configured to read whether the ON gear of the car is started through the OBD interface and transmit the ON gear start information to the processor.
  • the cathode of the Zener diode Z3 and The ODB interface module signal (ON_DET) is connected, the anode of the zener diode Z3 is connected to the base of the transistor Q48, the collector of the transistor Q48 is connected to the base of the transistor Q49, and the transistor Q49
  • the collector signal (PE2_ON_TEST end) of the collector is connected; when the ODB interface module signal (ON_DET) is high, the transistor Q48 is turned on, and the collector of the transistor Q48 outputs a low level, the The low level acts on the base of the transistor Q49, the transistor Q49 is turned off, the collector of the transistor Q49 outputs a high level, and the high level is connected to the processor through the PE2_ON_TEST.
  • the processor detects the high level.
  • the ignition start detection circuit 1508 includes a zener diode Z5, a transistor Q15, and a transistor Q16.
  • the cathode of the zener diode Z5 is connected to the OBD interface module 160 signal (START_IN).
  • the zener diode The anode of Z5 is connected to the base of the transistor Q15 through a resistor R86, the collector of the transistor Q15 is connected to the base of the transistor Q16, and the output of the transistor Q16 is connected to a signal detection terminal of the processor ( PC11_START_IN) connection, the ignition range start detection circuit 1508 is electrically connected to the processor and the vehicle's OBD interface, and the ignition range start detection circuit 1508 is used to read whether the vehicle's ignition range is activated through the OBD interface Information, and transmitting whether the ignition is activated to the processor.
  • the OBD interface module 160 signal (START_IN) outputs a low level
  • the transistor Q15 is in an off state
  • the transistor Q15 outputs a high level
  • the high level functions At the base of the transistor Q16, the collector and emitter of the transistor Q16 are conducting, and the transistor Q16 outputs a low level (PC11_START_IN is a low level).
  • the OBD interface module 160 signal (START_IN) outputs a high level, the transistor Q15 is on, the transistor Q15 outputs a low level, and the low level functions At the base of the transistor Q16, the collector and emitter of the transistor Q16 are cut off, and the transistor Q16 outputs a high level (PC11_START_IN is high).
  • PC11_START_IN the high and low level of the signal (PC11_START_IN)
  • the processor can detect the ignition gear of the car.
  • the safety detection circuit 110 includes any one of a light detection circuit 1102, a cover detection circuit 1103, or a magnetic detection 1101.
  • the on-board information terminal performs a safety test.
  • the light-sensing detection circuit 1102 includes a phototransistor T1, the light-sensing detection circuit 1102 is connected to the processor, and the light-sensing detection circuit 1102 is configured to detect a light-sensing intensity and convert the light-sensing The intensity is transmitted to the processor; specifically, the emitter of the phototransistor T1 is connected to a reference ground, the collector of the phototransistor T1 is connected to a power source VDD_3V3 through a resistor R122, and the collector is also connected to the processing Device signal (PE5_LIGHT_TEST) connection.
  • the processing Device signal PE5_LIGHT_TEST
  • the processor can determine the light induction intensity by detecting the collector voltage (PE5_LIGHT_TEST) of the phototransistor T1. It can be determined whether the on-board information terminal has been disassembled. For example, when the in-vehicle information terminal is turned on, the light inside the in-vehicle terminal increases, and the light detection circuit 1102 can detect that the in-vehicle information terminal has been turned on.
  • the processor can transmit the information that the information terminal has been opened to a remote server. In addition, the processor can also delete data in the memory through software to avoid information leakage.
  • the cover opening detection circuit 1103 includes a control switch SW1.
  • the cover opening detection circuit 1103 is respectively connected to the processor and the housing of the vehicle-mounted information terminal.
  • the cover opening detection circuit is used to detect all The housing open state of the in-vehicle information terminal is transmitted to the processor.
  • a first end (1) of the control switch SW1 is connected to a housing of a vehicle-mounted information terminal, and a third end (3) of the control switch SW1 is connected to a power source VDD_3V3 through a resistor R11.
  • the second terminal (2) is connected to the reference ground through a resistor R125, and the second terminal (2) of the control switch SW1 is also connected to the processor signal (PE4_OPEN_TEST).
  • PE4_OPEN_TEST When the housing of the in-vehicle information terminal is closed, the third end of the control switch SW1 is connected to the second end, and the signal PE4_OPEN_TEST is at a high level.
  • the third end of the control switch SW1 is connected to the first end, and the signal PE4_OPEN_TEST is at a low level.
  • the processor can determine whether the housing of the in-vehicle information terminal is open.
  • the magnetic detection circuit is connected to the processor, and the magnetic detection circuit is configured to detect an open state of a housing of the in-vehicle information terminal and transmit the open state of the housing of the in-vehicle information terminal to all Mentioned processor.
  • a magnet is provided on the housing of the vehicle-mounted information terminal, and the magnetic detection circuit can detect the strength of the magnet, and can determine whether the housing of the vehicle-mounted information terminal is opened by detecting the strength of the magnet.
  • the processor can transmit the information that the information terminal has been opened to a remote server. In addition, the processor can also delete data in the memory through software to avoid information leakage.
  • the security protection design may also adopt software data anti-lost and / or communication anti-penetration security protection design.
  • the OBD detection control module 150 further includes a double flash control circuit 1501.
  • the double flash control circuit 1501 includes a logic gate driving integrated circuit U15, a MOS transistor Q22, and a peripheral circuit.
  • the dual flash control The circuit 1501 is electrically connected to the processor and the OBD interface of the car, and the unlocking control circuit 1511 is configured to output a double flashing light control signal under the control of the processor, and perform double flashing light through the OBD interface.
  • the logic gate drive integrated circuit U15 (the A and B ends) is signally connected to the two control ends of the controller (PB7_DOUBLE_FLASH_CTRL2, PD13_DOUBLE_FLASH_CTRL1 signal ends), and the logic gate drive integrated circuit U4
  • the output terminal (Y terminal) is connected to the gate of the MOS transistor, and the drain of the MOS transistor Q22 is connected to the automotive OBD interface signal (DOUBLE_FLASH).
  • the logic gate driving integrated circuit U4 is an AND logic driving, and the logic gate driving integrated circuit U4 outputs a high level. Since the MOS transistor Q22 is controlled at a high level (N-channel MOS transistor), at this time, the MOS transistor Q22 is in a conducting state, and the source and the drain of the MOS transistor Q22 are mutually conductive.
  • the drain of the MOS transistor Q22 outputs a low level at this time, and the low level is connected to the automotive OBD interface through a signal (DOUBLE_FLASH),
  • DOUBLE_FLASH a signal
  • the OBD detection control module 150 further includes a whistle control circuit 1502, which includes a logic gate driving integrated circuit U18, a MOS transistor Q43, and peripheral circuits.
  • the whistle control circuit 1502 and the processing respectively And the OBD interface of the car are electrically connected, the whistle control circuit 1502 is configured to output a whistle control signal under the control of the processor, and control the whistle through the OBD interface; specifically, the logic The input terminals (terminal A and terminal B) of the gate driving integrated circuit U18 are connected to the two control terminals of the controller (PA11_WHISTLE_CTRL1, PA12_WHISTLE_CTRL2 signal terminals), and the output terminal (Y terminal) of the logic gate driving integrated circuit U18 is The gate connection of the MOS transistor Q43 is described, and the source of the MOS transistor Q43 is connected to the automotive OBD interface signal (WHISTLE_SWITCH).
  • the logic gate driving integrated circuit U18 is an AND logic drive, and the logic gate driving integrated circuit U18 outputs a high level effect and the Gate of MOS transistor Q43. Since the MOS transistor Q43 is controlled at a high level (N-channel MOS transistor), at this time, the MOS transistor Q43 is in an on state, and the source and drain of the MOS transistor Q43 are mutually conductive. The source of the MOS transistor Q43 is connected to the reference ground. At this time, the drain of the MOS transistor Q43 outputs a low level. The low level is connected to the automotive OBD interface through a signal (WHISTLE_SWITCH). The OBD interface and car controller are used to control the whistle operation of the car.
  • WHISTLE_SWITCH a signal
  • the power supply circuit 109 includes a main power circuit 1091 and a backup power circuit 1092.
  • the main power circuit 1091 includes a fuse F1, a transient suppression diode TV1, an anti-reverse insertion diode D1, a common mode inductor L1, and a filter capacitor C2.
  • the main power circuit 1091 is respectively connected to the processor and a car battery.
  • the main power circuit 1091 is configured to perform voltage stabilization filtering on the output of the car battery, and output a stable first power source.
  • An output voltage of a power source is transmitted to the processor; specifically, one end of the fuse F1 is connected to a car battery, and the other end of the fuse F1 is connected to the anode of the transient suppression diode TV1 and the anti-reverse insertion diode D1.
  • the cathode of the anti-reverse insertion diode D1 is connected to the input terminal of the common mode inductor L1, the output terminal of the common mode inductor L1 is connected to the positive terminal of the filter capacitor C2, and the positive terminal of the filter capacitor C2 is further divided by the resistor R2 and the resistor R5.
  • the processor performs voltage sampling through the PC4_AD_12V terminal, so that the battery voltage can be detected.
  • the backup power supply circuit 1092 includes a power management integrated circuit U2 and a rechargeable battery VBAT1.
  • the backup power supply circuit 1092 is respectively connected to the processor and the main power supply circuit 1091.
  • the backup power supply circuit 1092 is configured to connect the first power supply. Perform voltage conversion, output a stable second power source, and transmit the output voltage of the second power source to the processor.
  • the management integrated circuit U2 converts the first power source at the output end of the main power circuit 1091 into a charging voltage BAT_VIN of the rechargeable battery VBAT1, and charges the rechargeable battery VBAT1. And provide the supply voltage BAT_VIN for each module.
  • the charging voltage BAT_VIN is also connected to the processor PC5_AD_BAT after being divided by resistors R8 and R11, and the processor performs voltage sampling through the PC5_AD_BAT terminal, so that the voltage of the rechargeable battery can be detected.
  • the Bluetooth wireless communication module 103 is configured to communicate with a mobile client and receive operation instructions of the mobile client. And transmitting the operation instruction to the processor, and controlling the car through the OBD detection control module 150 according to the operation instruction. It is convenient for users to control the car through the Bluetooth wireless communication module 103.
  • FIG. 1 it further includes a CAN data bus and a K bus, which are connected to the processor and the OBD interface module 160, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lock And Its Accessories (AREA)
  • Selective Calling Equipment (AREA)

Abstract

一种车载信息终端(10),包括远程无线通信模块(102)、OBD检测控制模块(150)和处理器,远程无线通信模块(102)与远程服务器(20)无线通信连接;OBD检测控制模块(150)与汽车的OBD接口电信号连接;处理器分别与远程无线通信模块(102)及OBD检测控制模块(150)连接,处理器用于通过OBD检测控制模块(150)读取汽车的状态信息,并通过远程无线通信模块(102)将汽车的状态信息发送至远程服务器(20);处理器还用于通过远程无线通信模块(102)接收远程服务器(20)的控制指令,并根据控制指令通过OBD检测控制模块(150)对汽车进行控制。

Description

一种车载信息终端 技术领域
本实用新型涉及车联网技术领域,尤其涉及一种车载信息终端。
背景技术
物联网IOT概念的提出,加快了社会的信息化和网络化进程。车联网作为物联网的典型应用,利用车载电子传感装置,通过网络完成信息交换,使车与路、车与车、车与人之间的信息互联互通,对车辆和交通状况进行有效的智能监控。车联网明确了车、路、城市与人的互联互通,尤其应用于消防灭火抢险救援车辆管理上,促进了管理智能化、出警精准化和消防信息技术产业向更加现代化、网络化和智能化的方向发展。区别于传统的智能交通系统ITS,车联网更注重车与车、车与人之间的交互通信,通过提取更多车辆行驶参数和系统数据来保障车辆行驶安全、规避道路拥塞、提高车辆间协同作战水平。
汽车安全系统,是车载信息系统的一个重要组成部分,随着电子信息技术的飞速发展,传感器技术、车载网络、数据通讯、计算机处理技术和智能控制技术等被广泛应用于汽车安全系统中,汽车安全系统产品向高度智能化、功能多样化、终端移动化方向发展。
实用新型内容
本实用新型旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本实用新型的一个目的在于提出一种车载信息终端。
为实现上述目的,本实用新型实施例提供一种车载信息终端,所述车载信息终端包括:
远程无线通信模块,所述远程无线通信模块与远程服务器无线通信连接;
OBD检测控制模块,所述OBD检测控制模块与汽车的OBD接口电信号连接;
处理器,所述处理器分别与所述远程无线通信模块及所述OBD检测控制模块连接,所述处理器用于通过所述OBD检测控制模块读取汽车的状态信息,并通过所述远程无线通信模块将所述汽车的状态信息发送至所述远程服务器;
所述处理器还用于通过所述远程无线通信模块接收所述远程服务器的控制指令,并根据所述控制指令通过所述OBD检测控制模块对汽车进行控制。
根据本实用新型的一个实例,所述OBD检测控制模块包括:
开锁控制电路,所述开锁控制电路分别与所述处理器及汽车的OBD接口电信号连接,所述开锁控制电路用于在所述处理器的控制下输出开锁控制信号,通过所述OBD接口进行开锁 控制;
关锁控制电路,所述关锁控制电路分别与所述处理器及汽车的OBD接口电信号连接,所述关锁控制电路用于在所述处理器的控制下输出关锁控制信号,通过所述OBD接口进行关锁控制。
根据本实用新型的一个实例,所述OBD检测控制模块还包括:
点火档启动控制电路,所述点火档启动控制电路分别与所述处理器及汽车的OBD接口电信号连接,所述点火档启动控制电路用于在所述处理器的控制下输出点火档启动控制信号,通过所述OBD接口进行汽车的点火启动控制。
根据本实用新型的一个实例,所述OBD检测控制模块还包括:
汽车启动检测组件,所述汽车启动检测组件分别与所述处理器及汽车的OBD接口电信号连接,所述汽车启动检测组件用于读取汽车的状态信息。
根据本实用新型的一个实例,汽车启动检测组件包括:
钥匙插入检测电路,所述钥匙插入检测电路分别与所述处理器及汽车的OBD接口电信号连接,所述钥匙插入检测电路用于通过所述OBD接口读取汽车的钥匙是否插入信息,并将所述钥匙插入信息传输至所述处理器;
车锁打开检测电路,所述车锁打开检测电路分别与所述处理器及汽车的OBD接口电信号连接,所述车锁打开检测电路用于通过所述OBD接口读取汽车的车锁是否打开信息,并将所述车锁是否打开信息传输至所述处理器;
车锁关闭检测电路,所述车锁关闭检测电路分别与所述处理器及汽车的OBD接口电信号连接,所述车锁关闭检测电路用于通过所述OBD接口读取汽车的车锁是否关闭信息,并将所述车锁是否关闭信息传输至所述处理器;
启动电源检测电路,所述启动电源检测电路分别与所述处理器及汽车的OBD接口电信号连接,所述启动电源检测电路用于通过所述OBD接口读取汽车的ACC电源是否接通信息,并将所述ACC电源是否接通信息传输至所述处理器;
ON档启动检测电路,所述ON档启动检测电路分别与所述处理器及汽车的OBD接口电信号连接,所述ON档启动检测电路用于通过所述OBD接口读取汽车的ON档是否启动信息,并将所述ON档是否启动信息传输至所述处理器;
点火档启动检测电路,所述点火档启动检测电路分别与所述处理器及汽车的OBD接口电信号连接,所述点火档启动检测电路用于通过所述OBD接口读取汽车的点火档是否启动信息,并将所述点火档是否启动信息传输至所述处理器。
根据本实用新型的一个实例,还包括安全检测电路,所述安全检测电路包括光感检测电路、开盖检测电路或磁性检测中的任意一种;
所述光感检测电路与所述处理器连接,所述光感检测电路用于检测光感应强度,并将所述光感应强度传输至所述处理器;
所述开盖检测电路分别与所述处理器及所述车载信息终端的壳体连接,所述开盖检测电路用于检测所述车载信息终端的壳体打开状态,并将所述车载信息终端的壳体打开状态传输至所述处理器;
所述磁性检测电路与所述处理器连接,所述磁性检测电路用于检测所述车载信息终端的壳体打开状态,并将所述车载信息终端的壳体打开状态传输至所述处理器。
根据本实用新型的一个实例,所述OBD检测控制模块还包括:
双闪控制电路,所述双闪控制电路分别与所述处理器及汽车的OBD接口电信号连接,所述开锁控制电路用于在所述处理器的控制下输出双闪灯控制信号,通过所述OBD接口进行双闪灯的控制。
根据本实用新型的一个实例,所述OBD检测控制模块还包括:
鸣笛控制电路,所述鸣笛控制电路分别与所述处理器及汽车的OBD接口电信号连接,所述鸣笛控制电路用于在所述处理器的控制下输出鸣笛控制信号,通过所述OBD接口进行鸣笛的控制。
根据本实用新型的一个实例,还包括供电电源电路,所述供电电源电路包括主电源电路和备用电源电路;
所述主电源电路分别与所述处理器及汽车电瓶连接,所述主电源电路用于将所述汽车电瓶的输出进行稳压滤波,并输出稳定的第一电源,并将所述第一电源的输出电压传输至所述处理器;
所述备用电源电路分别与所述处理器及主电源电路连接,所述备用电源电路用于将所述第一电源进行电压转换,并输出稳定的第二电源,并将所述第二电源的输出电压传输至所述处理器。
根据本实用新型的一个实例,还包括蓝牙无线通信模块,所述蓝牙无线通信模块与所述处理器连接,所述蓝牙无线通信模块用于与移动客户端通信,接收所述移动客户端的操作指令,并将所述操作指令传输至处理器,根据所述操作指令通过所述OBD检测控制模块对汽车进行控制。
本实用新型实例中,一方面,通过所述处理器控制所述远程无线通信模块与远程服 务器进行数据通信,可接收服务器发送的控制指令,根据所述控制指令通过所述OBD检测控制模块输出控制信号,所述控制信号通过所述汽车OBD接口传输至汽车控制器,使得汽车控制器可控制器控制汽车工作,从而实现了对汽车进行远程的控制;另一方面,通过所述OBD检测控制模块读取汽车控制器输出的汽车状态信息,可将所述汽车状态信息通过所述无线通信模块传输至远程服务器,使所述远程服务器可实时获取汽车的状态信息,并根据所述汽车状态信息控制汽车工作。实现汽车联网,为汽车提供安全以及增值服务。例如,汽车租赁服务。
附图说明
图1为本实用新型实施例提供的车载信息终端模块框图;
图2为本实用新型实施例提供的车载信息终端处理器电路结构示意图;
图3为本实用新型实施例提供的车载信息终端供电电源电路结构示意图;
图4为本实用新型实施例提供的车载信息终端OBD接口模块电路结构示意图;
图5为本实用新型实施例提供的车载信息终端开锁控制电路结构示意图;
图6为本实用新型实施例提供的车载信息终端关锁控制电路结构示意图;
图7为本实用新型实施例提供的车载信息终端钥匙插入检测电路结构示意图;
图8为本实用新型实施例提供的车载信息终端车锁打开检测电路结构示意图;
图9为本实用新型实施例提供的车载信息终端车锁关闭检测电路结构示意图;
图10为本实用新型实施例提供的车载信息终端启动电源检测电路结构示意图;
图11为本实用新型实施例提供的车载信息终端ON档启动检测电路结构示意图;
图12为本实用新型实施例提供的车载信息终端点火档启动检测电路结构示意图;
图13为本实用新型实施例提供的车载信息终端点火档启动控制电路结构示意图;
图14为本实用新型实施例提供的车载信息终端开盖检测电路结构示意图;
图15为本实用新型实施例提供的车载信息终端磁性检测电路结构示意图;
图16为本实用新型实施例提供的车载信息终端光感检测电路结构示意图;
图17为本实用新型实施例提供的车载信息终端双闪控制电路结构示意图;
图18为本实用新型实施例提供的车载信息终端鸣笛控制电路结构示意图。
附图标记:
车载信息终端 10;
处理器 101;
远程无线通信模块 102;
蓝牙无线通信模块 103;
GPS定位模块 104;
加速度传感器模块 105;
外部存储器 106;
硬件狗模块 107;
电源能耗控制模块 108;
供电电源电路 109;
主电源电路 1091;
备用电源电路 1092;
安全检测电路 110;
磁性检测电路 1101;
光感检测电路 1102;
开盖检测电路 1103;
串口转CAN模块 120;
K线模块 130;
CAN总线模块 140;
OBD检测控制模块 150;
双闪控制电路 1501;
鸣笛控制电路 1502;
钥匙插入检测电路 1503;
车锁打开检测电路 1504;
车锁关闭检测电路 1505;
启动电源检测电路 1506;
ON档启动检测电路 1507;
点火档启动检测电路 1508;
点火档启动控制电路 1509;
关锁控制电路 1510;
开锁控制电路 1511;
OBD接口模块 160;
壳体 170;
远程服务器 20;
客户端 30;
汽车 40;
汽车OBD接口 401;
汽车控制器 402;
汽车电瓶 403。
本实用新型目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
为了使本技术领域的人员更好地理解本实用新型方案,下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述。除非另有定义,本文所使用的所有的技术和科学术语与属于本实用新型的技术领域的技术人员通常理解的含义相同。本文中在本实用新型的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本实用新型。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本实用新型的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本实用新型实施例提供一种车载信息终端10(T-BOX,Telematics-Box),所述车载信息终端10安装在汽车的内部,并通过OBD接口与汽车的OBD接口相连接,使得所述车载信息终端10可与汽车内的汽车控制器进行数据的通信,通过所述汽车控制器对汽车的外设进行控制。
参阅图1,所述车载信息终端10包括:远程无线通信模块102、OBD检测控制模块150和处理器,所述远程无线通信模块102与远程服务器20无线通信连接;通过所述远程通信模块与远程服务器20连接,使所述车载信息终端10可与远程服务器20进行通信,例如,将汽车的控制信息传输至所述远程服务器20,或接收所述远程服务器20的控制指令。所述OBD检测控制模块150与汽车的OBD接口电信号连接;通过所述OBD检测控制模块150与所述OBD接口电信号连接,一方面,使得所述OBD检测控制模块150可检测所述OBD接口输出的汽车状态信号,例如,汽车处于启动还是未启动状态信息。另一方面,所述OBD检测控制模块150可通过所述OBD接口传输控制信号,以通过汽车内的所述汽车控制器对汽车进行可控制,例如,通过所述OBD接口传输开锁或启动控制信号,使所述汽 车控制器控制开锁或汽车启动。所述处理器分别与所述远程无线通信模块102及所述OBD检测控制模块150连接,所述处理器用于通过所述OBD检测控制模块150读取汽车的状态信息,并通过所述远程无线通信模块102将所述汽车的状态信息发送至所述远程服务器20;所述处理器还用于通过所述远程无线通信模块102接收所述远程服务器20的控制指令,并根据所述控制指令通过所述OBD检测控制模块150对汽车进行控制。
本实用新型实例中,一方面,通过所述处理器控制所述远程无线通信模块102与远程服务器20进行数据通信,可接收服务器发送的控制指令,根据所述控制指令通过所述OBD检测控制模块150输出控制信号,所述控制信号通过所述汽车OBD接口传输至汽车控制器,使得汽车控制器可控制器控制汽车工作,从而实现了对汽车进行远程的控制;另一方面,通过所述OBD检测控制模块150读取汽车控制器输出的汽车状态信息,可将所述汽车状态信息通过所述无线通信模块传输至远程服务器20,使所述远程服务器20可实时获取汽车的状态信息,并根据所述汽车状态信息控制汽车工作。实现汽车联网,为汽车提供安全以及增值服务。例如,汽车租赁服务。
参阅图2、图4、图5和图6,所述OBD检测控制模块150包括:开锁控制电路1511、关锁控制电路1510,参阅图5,所述开锁控制电路1511包括逻辑门驱动集成电路U4、三极管Q27、MOS晶体管Q25以及外围电路,所述开锁控制电路1511分别与所述处理器及汽车的OBD接口电信号连接,所述开锁控制电路1511用于在所述处理器的控制下输出开锁控制信号,通过所述OBD接口进行开锁控制。
具体的,所述逻辑门驱动集成电路U4的输入端(A端和B端)与所述控制器的两控制端信号连接(PB8_OPEN_KEY_CTRL1、PB9_OPEN_KEY_CTRL2信号端),所述逻辑门驱动集成电路U4的输出端(Y端)与所述三极管Q27的基极连接,所述三极管Q27的集电极与与所述MOS晶体管Q25的栅极连接,所述MOS晶体管Q25的漏极与所述汽车OBD接口信号连接(OPEN_KEY_CTRL)。当所述处理器两控制端信号(PB8_OPEN_KEY_CTRL1、PB9_OPEN_KEY_CTRL2信号端)为低电平时,所述逻辑门驱动集成电路U4为与逻辑驱动,所述逻辑门驱动集成电路U4输出低电平使所述三极管Q27集电极和发射极之间截止,由于所述三极管的集电极通过电阻R107与电源VDD_3V3连接,所述三极管Q27输出高电平,所述三极管Q27输出的高电平作用于所述MOS管Q25的栅极,所述MOS管Q25的为高电平控制导通(N沟道MOS管),此时,所述MOS管Q25处导通状态,所述MOS管Q25的源极与漏极之间相互导通,由于所述MOS管Q25源极与参考地连接,此时所述MOS管Q25的漏极输出低电平,所述低电平通过信号 (OPEN_KEY_CTRL)连接至所述汽车OBD接口,通过所述OBD接口以及汽车控制器控制汽车开锁操作。
参阅图6,所述关锁控制电路1510包括逻辑门驱动集成电路U7、三极管Q45、MOS晶体管Q46以及外围电路,所述关锁控制电路1510分别与所述处理器及汽车的OBD接口电信号连接,所述关锁控制电路1510用于在所述处理器的控制下输出关锁控制信号,通过所述OBD接口进行关锁控制;具体的,所述逻辑门驱动集成电路U7的输入端(A端和B端)与所述控制器的两控制端信号连接(PD4_CLOSE_KEY_CTRL1、PD5_CLOSE_KEY_CTRL2信号端),所述逻辑门驱动集成电路U7的输出端(Y端)与所述三极管Q45的基极连接,所述三极管Q45的集电极与所述MOS晶体管Q46的栅极连接,所述MOS晶体管Q46的漏极与所述汽车OBD接口信号连接(CLOSE_KEY_CTRL)。当所述处理器两控制端信号(PD4_CLOSE_KEY_CTRL1、PD5_CLOSE_KEY_CTRL2信号端)为低电平时,所述逻辑门驱动集成电路U47为与逻辑驱动,所述逻辑门驱动集成电路U4输出低电平使所述三极管Q45集电极和发射极之间截止,由于所述三极管45的集电极通过电阻R210与电源VDD_3V3连接,所述三极管Q45输出高电平,所述三极管Q45输出的高电平作用于所述MOS管Q46,由于所述MOS管Q46为N沟道晶体管。所述MOS管Q46的为高电平控制导通(N沟道MOS管)。此时,所述MOS管Q46处导通状态,所述N沟道MOS管Q46的源极与漏极之间相互导通,由于所述MOS管Q46源极与参考地连接,此时所述MOS管Q46的漏极输出低电平,所述低电平通过信号(CLOSE_KEY_CTRL)连接至所述汽车OBD接口,通过所述OBD接口以及汽车控制器控制汽车关锁操作。
参阅图13,所述OBD检测控制模块150还包括:点火档启动控制电路1509,所述点火档启动控制电路1509包括三极管Q12和MOS晶体管Q10,所述三极管Q12的基极通过电阻R78与所述处理器的一控制端(PD3_START_OUTPUT_CTRL)连接,所述Q12的集电极与所述MOS晶体管Q10的栅极连接,所述MOS晶体管Q10的源极与电源VDD_12V连接,所述MOS晶体管的漏极与所述OBD接口模块160信号(START_OUTPUT端)连接。所述点火档启动控制电路1509分别与所述处理器及汽车的OBD接口电信号连接,所述点火档启动控制电路1509用于在所述处理器的控制下输出点火档启动控制信号,通过所述OBD接口进行汽车的点火启动控制。具体的所述处理器输出高电平信号时,所述三极管Q12导通,所述MOS晶体管Q10控制端为低电平,所述MOS晶体管Q10导通,所述MOS晶体管Q10输出高电平信号(START_OUTPUT为高电平)。所述高电平通过信号(START_OUTPUT)连接至所述汽车OBD接口,通过所述OBD接口以及汽车控制器控制 汽车点火档启动控制操作。
继续参阅图1,所述OBD检测控制模块150还包括:汽车启动检测组件,所述汽车启动检测组件分别与所述处理器及汽车的OBD接口电信号连接,所述汽车启动检测组件用于读取汽车的状态信息。通过所述汽车启动检测组件对汽车的状态进行读取,并将读取的所述汽车状态信息通过所述远程无线通信模块102传输至远程服务器20,从而方便所述远程服务器20车辆状态进行监控。
在本实用新型的一个实施中,参阅图1及图7至图12,所述汽车启动检测组件包括:钥匙插入检测电路1503、车锁打开检测电路1504、车锁关闭检测电路1505、启动电源检测电路1506、ON档启动检测电路1507和点火档启动检测电路1508。
参阅图7,所述钥匙插入检测电路1503包括稳压二极管Z4和三极管Q13。所述钥匙插入检测电路1503分别与所述处理器及汽车的OBD接口电信号连接,所述钥匙插入检测电路1503用于通过所述OBD接口读取汽车的钥匙是否插入信息,并将所述钥匙插入信息传输至所述处理器。具体的,所述稳压二极管Z4的阴极与所述ODB接口模块信号(KEY_INPUT_DET)连接,所述稳压二极管Z4的阳极与所述三极管Q13的基极连接,所述三极管Q13的集电极与所述处理器信号(PC10_KEY_INPUT端)连接;当所述ODB接口模块信号(KEY_INPUT_DET)为高电平时,所述三极管Q13导通,所述三极管Q13的集电极输出低电平,通过所述PC10_KEY_INPUT将所述低电平连接至所述处理器。所述处理器对所述低电平进行检测。
参阅图8,所述车锁打开检测电路1504包括稳压二极管Z6、三极管Q17和三极管Q18,所述车锁打开检测电路1504分别与所述处理器及汽车的OBD接口电信号连接,所述车锁打开检测电路1504用于通过所述OBD接口读取汽车的车锁是否打开信息,并将所述车锁是否打开信息传输至所述处理器;具体的,所述稳压二极管Z6的阴极与所述ODB接口模块信号(OPEN_KEY_DET)连接,所述稳压二极管Z6的阳极与所述三极管Q17的基极连接,所述三极管Q17的集电极与所述三极管Q18的基极连接,所述三极管Q18的集电极所述处理器信号(PD6_OPEN_KEY端)连接;当所述ODB接口模块信号(OPEN_KEY_DET)为高电平时,所述三极管Q17导通,所述三极管Q17的集电极输出低电平,所述低电平作用在所述三极管Q18的基极,所述三极管Q18截止,所述三极管Q18的集电极输出高电平,通过所述PD6_OPEN_KEY将所述高电平连接至所述处理器。所述处理器对所述高电平进行检测。
参阅图9,所述车锁关闭检测电路1505包括稳压二极管Z7、三极管Q19和三极管 Q20,所述车锁关闭检测电路1505分别与所述处理器及汽车的OBD接口电信号连接,所述车锁关闭检测电路1505用于通过所述OBD接口读取汽车的车锁是否关闭信息,并将所述车锁是否关闭信息传输至所述处理器;具体的,所述稳压二极管Z7的阴极与所述ODB接口模块信号(CLOSE_KEY_DET)连接,所述稳压二极管Z7的阳极与所述三极管Q19的基极连接,所述三极管Q19的集电极与所述三极管Q20的基极连接,所述三极管Q20的集电极所述处理器信号(PD7_CLOSE_KEY端)连接;当所述ODB接口模块信号(CLOSE_KEY_DET)为高电平时,所述三极管Q19导通,所述三极管Q19的集电极输出低电平,所述低电平作用在所述三极管Q20的基极,所述三极管Q20截止,所述三极管Q20的集电极输出高电平,通过所述PD7_CLOSE_KEY将所述高电平连接至所述处理器。所述处理器对所述高电平进行检测。
参阅图10、所述启动电源检测电路1506包括稳压二极管Z2、三极管Q29和三极管Q39,所述启动电源检测电路1506分别与所述处理器及汽车的OBD接口电信号连接,所述启动电源检测电路1506用于通过所述OBD接口读取汽车的ACC电源是否接通信息,并将所述ACC电源是否接通信息传输至所述处理器;具体的,所述稳压二极管Z2的阴极与所述ODB接口模块信号(V_ACC)连接,所述稳压二极管Z2的阳极与所述三极管Q29的基极连接,所述三极管Q29的集电极与所述三极管Q39的基极连接,所述三极管Q39的集电极所述处理器信号(PE1_ACC_TEST端)连接;当所述ODB接口模块信号(V_ACC)为高电平时,所述三极管Q29导通,所述三极管Q29的集电极输出低电平,所述低电平作用在所述三极管Q39的基极,所述三极管Q39截止,所述三极管Q39的集电极输出高电平,通过所述PE1_ACC_TEST将所述高电平连接至所述处理器。所述处理器对所述高电平进行检测。
参阅图11、所述ON档启动检测电路1507包括稳压二极管Z3、三极管Q48和三极管Q49,所述ON档启动检测电路1507分别与所述处理器及汽车的OBD接口电信号连接,所述ON档启动检测电路1507用于通过所述OBD接口读取汽车的ON档是否启动信息,并将所述ON档是否启动信息传输至所述处理器;具体的,所述稳压二极管Z3的阴极与所述ODB接口模块信号(ON_DET)连接,所述稳压二极管Z3的阳极与所述三极管Q48的基极连接,所述三极管Q48的集电极与所述三极管Q49的基极连接,所述三极管Q49的集电极所述处理器信号(PE2_ON_TEST端)连接;当所述ODB接口模块信号(ON_DET)为高电平时,所述三极管Q48导通,所述三极管Q48的集电极输出低电平,所述低电平作用在所述三极管Q49的基极,所述三极管Q49截止,所述三极管Q49的集电极输出高电平,通 过所述PE2_ON_TEST将所述高电平连接至所述处理器。所述处理器对所述高电平进行检测。
参阅图12、所述点火档启动检测电路1508包括稳压二极管Z5,三极管Q15和三极管Q16,所述稳压二极管Z5的阴极与所述OBD接口模块160信号(START_IN)连接,所述稳压二极管Z5的阳极通过电阻R86与所述三极管Q15的基极连接,所述三极管Q15的集电极与所述三极管Q16的基极,所述三极管Q16的输出端与所述处理器的一信号检测端(PC11_START_IN)连接,所述点火档启动检测电路1508分别与所述处理器及汽车的OBD接口电信号连接,所述点火档启动检测电路1508用于通过所述OBD接口读取汽车的点火档是否启动信息,并将所述点火档是否启动信息传输至所述处理器。具体的,汽车的点火档为未启动时,所述OBD接口模块160信号(START_IN)输出低电平,所述三极管Q15为截止状态,所述三极管Q15输出高电平,所述高电平作用于所述三极管Q16的基极,所述三极管Q16集电极与发射极之间导通,所述三极管Q16输出低电平(PC11_START_IN为低电平)。
当所述汽车的点火档为启动时,所述OBD接口模块160信号(START_IN)输出高电平,所述三极管Q15为导通状态,所述三极管Q15输出低电平,所述低电平作用于所述三极管Q16的基极,所述三极管Q16集电极与发射极之间截止,所述三极管Q16输出高电平(PC11_START_IN为高电平)。通过所述信号(PC11_START_IN)高低电平,所述处理器可对所述汽车的点火档进行检测。
参阅图1,还包括安全检测电路110,所述安全检测电路110包括光感检测电路1102、开盖检测电路1103或磁性检测1101中的任意一种;通过所述安全检测电路110分别对所述车载信息终端进行安全的检测。
参阅图16,所述光感检测电路1102包括光敏三极管T1,所述光感检测电路1102与所述处理器连接,所述光感检测电路1102用于检测光感应强度,并将所述光感应强度传输至所述处理器;具体的,所述光敏三极管T1的发射极与参考地连接,所述光敏三极管T1的集电极与通过电阻R122与电源VDD_3V3连接,所述集电极还与所述处理器信号(PE5_LIGHT_TEST)连接。当光强度增大时,所述光敏三极管T1相对导通,所述光敏三极管T1上的电流增大,使得所述电阻R122的分压增大,所述光敏三极管T1的集电极电压降低。所述处理器通过检测所述光敏三极管T1的集电极电压(PE5_LIGHT_TEST)可判断光感应强度。可判断所述车载信息终端是否有被拆卸。例如,所述车载信息终端被打开时,所述车载终端内地的光亮则会增大,所述光感检测电路1102则可检测所述车载信息终端已 被打开。可通所述处理器将所述载信息终端已被打开信息传输至远程服务器。另外,所述处理器还可通过软件将存储器内的数据删除,避免信息泄漏。
参阅图14,所述开盖检测电路1103包括控制开关SW1,所述开盖检测电路1103分别与所述处理器及所述车载信息终端的壳体连接,所述开盖检测电路用于检测所述车载信息终端的壳体打开状态,并将所述车载信息终端的壳体打开状态传输至所述处理器。
具体的,所述控制开关SW1的第一端(1)与车载信息终端的壳体连接,所述控制开关SW1的第三端(3)通过电阻R11与电源VDD_3V3连接,所述控制开关SW1的第二端(2)通过电阻R125与参考地连接,所述控制开关SW1的第二端(2)还与所述处理器信号(PE4_OPEN_TEST)连接。当所述车载信息终端的壳体闭合时,所述控制开关SW1的第三端与所述第二端连接,所述信号PE4_OPEN_TEST为高电平。当所述车载信息终端的壳体打开时,所述控制开关SW1的第三端与所述第一端连接,所述信号PE4_OPEN_TEST为低电平。所述处理器通过检测所述PE4_OPEN_TEST的高低电平,则可判断所述车载信息终端的壳体是否打开。
参阅图15,所述磁性检测电路与所述处理器连接,所述磁性检测电路用于检测所述车载信息终端的壳体打开状态,并将所述车载信息终端的壳体打开状态传输至所述处理器。所述车载信息终端的壳体上设有磁铁,所述磁性检测电路可检测所述磁铁的强度,通过检测所述磁铁强度可判断所述车载信息终端的壳体是否被打开。可通所述处理器将所述载信息终端已被打开信息传输至远程服务器。另外,所述处理器还可通过软件将存储器内的数据删除,避免信息泄漏。
可选的,安全保护设计除了采用硬件电路安全检查进行保护外,还可以采用软件数据防丢和/或通信防渗透安全保护设计。
参阅图1和图17,所述OBD检测控制模块150还包括:双闪控制电路1501,所述双闪控制电路1501包括逻辑门驱动集成电路U15、MOS晶体管Q22以及外围电路,所述双闪控制电路1501分别与所述处理器及汽车的OBD接口电信号连接,所述开锁控制电路1511用于在所述处理器的控制下输出双闪灯控制信号,通过所述OBD接口进行双闪灯的控制;具体的,所述逻辑门驱动集成电路U15的输入端(A端和B端)与所述控制器的两控制端信号连接(PB7_DOUBLE_FLASH_CTRL2、PD13_DOUBLE_FLASH_CTRL1信号端),所述逻辑门驱动集成电路U4的输出端(Y端)与所述MOS晶体管的栅极连接,所述MOS晶体管Q22的漏极与所述汽车OBD接口信号连接(DOUBLE_FLASH)。当所述处理器两控制端信号(PB7_DOUBLE_FLASH_CTRL2、PD13_DOUBLE_FLASH_CTRL1信号 端)为高电平时,所述逻辑门驱动集成电路U4为与逻辑驱动,所述逻辑门驱动集成电路U4输出高电平。由于所述MOS管Q22的为高电平控制导通(N沟道MOS管),此时,所述MOS管Q22处导通状态,所述MOS管Q22的源极与漏极之间相互导通,由于所述MOS管Q22源极与参考地连接,此时所述MOS管Q22的漏极输出低电平,所述低电平通过信号(DOUBLE_FLASH)连接至所述汽车OBD接口,通过所述OBD接口以及汽车控制器控制汽车的双闪灯开灯操作。
参阅图1和图18,所述OBD检测控制模块150还包括:鸣笛控制电路1502,包括逻辑门驱动集成电路U18、MOS晶体管Q43以及外围电路,所述鸣笛控制电路1502分别与所述处理器及汽车的OBD接口电信号连接,所述鸣笛控制电路1502用于在所述处理器的控制下输出鸣笛控制信号,通过所述OBD接口进行鸣笛的控制;具体的,所述逻辑门驱动集成电路U18的输入端(A端和B端)与所述控制器的两控制端信号连接(PA11_WHISTLE_CTRL1、PA12_WHISTLE_CTRL2信号端),所述逻辑门驱动集成电路U18的输出端(Y端)所述MOS晶体管Q43的栅极连接,所述MOS晶体管Q43的源极与所述汽车OBD接口信号连接(WHISTLE_SWITCH)。当所述处理器两控制端信号(PA11_WHISTLE_CTRL1、PA12_WHISTLE_CTRL2信号端)为高电平时,所述逻辑门驱动集成电路U18为与逻辑驱动,所述逻辑门驱动集成电路U18输出高电平作用与所述MOS管Q43的栅极。由于所述MOS管Q43的为高电平控制导通(N沟道MOS管),此时,所述MOS管Q43处导通状态,所述MOS管Q43的源极与漏极之间相互导通,由于所述MOS管Q43源极与参考地连接,此时所述MOS管Q43的漏极输出低电平,所述低电平通过信号(WHISTLE_SWITCH)连接至所述汽车OBD接口,通过所述OBD接口以及汽车控制器控制汽车的鸣笛操作。
参阅图1和图3,还包括供电电源电路109,所述供电电源电路109包括主电源电路1091和备用电源电路1092。所述主电源电路1091包括保险丝F1,瞬态抑制二极管TV1,防反插二极管D1、共模电感L1和滤波电容C2。所述主电源电路1091分别与所述处理器及汽车电瓶连接,所述主电源电路1091用于将所述汽车电瓶的输出进行稳压滤波,并输出稳定的第一电源,并将所述第一电源的输出电压传输至所述处理器;具体的,所述保险丝F1一端与汽车电瓶连接,所述保险丝F1另一端与所述瞬态抑制二极管TV1及防反插二极管D1阳极连接,所述防反插二极管D1阴极与所述共模电感L1输入端连接,所述共模电感L1输出端与所述和滤波电容C2正端连接,滤波电容C2正端还通过电阻R2和电阻R5分压后与所述处理器(PC4_AD_12V端)连接。所述处理器通过所述PC4_AD_12V端进行电压 采样,从而可对所述电瓶电压进行检测。
所述备用电源电路1092包括电源管理集成电路U2和充电电池VBAT1,所述备用电源电路1092分别与所述处理器及主电源电路1091连接,所述备用电源电路1092用于将所述第一电源进行电压转换,并输出稳定的第二电源,并将所述第二电源的输出电压传输至所述处理器。具体的,所述管理集成电路U2将主电源电路1091输出端第一电源转换成所述充电电池VBAT1的充电电压BAT_VIN,对所述充电电池VBAT1进行充电。以及为各模块提供供电电压BAT_VIN。所述充电电压BAT_VIN还通过电阻R8和R11分压后与所述处理器PC5_AD_BAT连接,所述处理器通过所述PC5_AD_BAT端进行电压采样,从而可对所述充电电池电压进行检测。
继续参阅图1,还包括蓝牙无线通信模块103,所述蓝牙无线通信模块103与所述处理器连接,所述蓝牙无线通信模块103用于与移动客户端通信,接收所述移动客户端的操作指令,并将所述操作指令传输至处理器,根据所述操作指令通过所述OBD检测控制模块150对汽车进行控制。方便用户通过所述蓝牙无线通信模块103进行汽车进行控制。
继续参阅图1,还包括CAN数据总线和K总线,所述CAN数据总线和K总线分别与所述处理器及OBD接口模块160连接。
以上仅为本实用新型的实施例,但并不限制本实用新型的专利范围,尽管参照前述实施例对本实用新型进行了详细的说明,对于本领域的技术人员来而言,其依然可以对前述各具体实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等效替换。凡是利用本实用新型说明书及附图内容所做的等效结构,直接或间接运用在其他相关的技术领域,均同理在本实用新型专利保护范围之内。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本实用新型的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本实用新型的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本实用新型的限制,本领域的普通技术人员在不脱离本实用新型的原理和宗旨的情况下在本实用新型的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种车载信息终端,其特征在于,包括:
    远程无线通信模块,所述远程无线通信模块与远程服务器无线通信连接;
    OBD检测控制模块,所述OBD检测控制模块与汽车的OBD接口电信号连接;
    处理器,所述处理器分别与所述远程无线通信模块及所述OBD检测控制模块连接,所述处理器用于通过所述OBD检测控制模块读取汽车的状态信息,并通过所述远程无线通信模块将所述汽车的状态信息发送至所述远程服务器;
    所述处理器还用于通过所述远程无线通信模块接收所述远程服务器的控制指令,并根据所述控制指令通过所述OBD检测控制模块对汽车进行控制。
  2. 根据权利要求1所述的车载信息终端,其特征在于,所述OBD检测控制模块包括:
    开锁控制电路,所述开锁控制电路分别与所述处理器及汽车的OBD接口电信号连接,所述开锁控制电路用于在所述处理器的控制下输出开锁控制信号,通过所述OBD接口进行开锁控制;
    关锁控制电路,所述关锁控制电路分别与所述处理器及汽车的OBD接口电信号连接,所述关锁控制电路用于在所述处理器的控制下输出关锁控制信号,通过所述OBD接口进行关锁控制。
  3. 根据权利要求2所述的车载信息终端,其特征在于,所述OBD检测控制模块还包括:
    点火档启动控制电路,所述点火档启动控制电路分别与所述处理器及汽车的OBD接口电信号连接,所述点火档启动控制电路用于在所述处理器的控制下输出点火档启动控制信号,通过所述OBD接口进行汽车的点火启动控制。
  4. 根据权利要求3所述的车载信息终端,其特征在于,所述OBD检测控制模块还包括:
    汽车启动检测组件,所述汽车启动检测组件分别与所述处理器及汽车的OBD接口电信号连接,所述汽车启动检测组件用于读取汽车的状态信息。
  5. 根据权利要求4所述的车载信息终端,其特征在于,汽车启动检测组件包括:
    钥匙插入检测电路,所述钥匙插入检测电路分别与所述处理器及汽车的OBD接口电信号连接,所述钥匙插入检测电路用于通过所述OBD接口读取汽车的钥匙是否插入信息,并将所述钥匙插入信息传输至所述处理器;
    车锁打开检测电路,所述车锁打开检测电路分别与所述处理器及汽车的OBD接口电信号连接,所述车锁打开检测电路用于通过所述OBD接口读取汽车的车锁是否打开信息,并将所述车锁是否打开信息传输至所述处理器;
    车锁关闭检测电路,所述车锁关闭检测电路分别与所述处理器及汽车的OBD接口电信号连 接,所述车锁关闭检测电路用于通过所述OBD接口读取汽车的车锁是否关闭信息,并将所述车锁是否关闭信息传输至所述处理器;
    启动电源检测电路,所述启动电源检测电路分别与所述处理器及汽车的OBD接口电信号连接,所述启动电源检测电路用于通过所述OBD接口读取汽车的ACC电源是否接通信息,并将所述ACC电源是否接通信息传输至所述处理器;
    ON档启动检测电路,所述ON档启动检测电路分别与所述处理器及汽车的OBD接口电信号连接,所述ON档启动检测电路用于通过所述OBD接口读取汽车的ON档是否启动信息,并将所述ON档是否启动信息传输至所述处理器;
    点火档启动检测电路,所述点火档启动检测电路分别与所述处理器及汽车的OBD接口电信号连接,所述点火档启动检测电路用于通过所述OBD接口读取汽车的点火档是否启动信息,并将所述点火档是否启动信息传输至所述处理器。
  6. 根据权利要求5所述的车载信息终端,其特征在于,还包括安全检测电路,所述安全检测电路包括光感检测电路、开盖检测电路或磁性检测中的任意一种;
    所述光感检测电路与所述处理器连接,所述光感检测电路用于检测光感应强度,并将所述光感应强度传输至所述处理器;
    所述开盖检测电路分别与所述处理器及所述车载信息终端的壳体连接,所述开盖检测电路用于检测所述车载信息终端的壳体打开状态,并将所述车载信息终端的壳体打开状态传输至所述处理器;
    所述磁性检测电路与所述处理器连接,所述磁性检测电路用于检测所述车载信息终端的壳体打开状态,并将所述车载信息终端的壳体打开状态传输至所述处理器。
  7. 根据权利要求6所述的车载信息终端,其特征在于,所述OBD检测控制模块还包括:
    双闪控制电路,所述双闪控制电路分别与所述处理器及汽车的OBD接口电信号连接,所述开锁控制电路用于在所述处理器的控制下输出双闪灯控制信号,通过所述OBD接口进行双闪灯的控制。
  8. 根据权利要求7所述的车载信息终端,其特征在于,所述OBD检测控制模块还包括:
    鸣笛控制电路,所述鸣笛控制电路分别与所述处理器及汽车的OBD接口电信号连接,所述鸣笛控制电路用于在所述处理器的控制下输出鸣笛控制信号,通过所述OBD接口进行鸣笛的控制。
  9. 根据权利要求1-8任意一项所述的车载信息终端,其特征在于,还包括供电电源电路,所述供电电源电路包括主电源电路和备用电源电路;
    所述主电源电路分别与所述处理器及汽车电瓶连接,所述主电源电路用于将所述汽车电瓶的输出进行稳压滤波,并输出稳定的第一电源,并将所述第一电源的输出电压传输至所述处理器;
    所述备用电源电路分别与所述处理器及主电源电路连接,所述备用电源电路用于将所述第一电源进行电压转换,并输出稳定的第二电源,并将所述第二电源的输出电压传输至所述处理器。
  10. 根据权利要求9所述的车载信息终端,其特征在于,还包括蓝牙无线通信模块,所述蓝牙无线通信模块与所述处理器连接,所述蓝牙无线通信模块用于与移动客户端通信,接收所述移动客户端的操作指令,并将所述操作指令传输至处理器,根据所述操作指令通过所述OBD检测控制模块对汽车进行控制。
PCT/CN2018/099495 2018-08-02 2018-08-09 一种车载信息终端 WO2020024316A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821254784.0U CN208805848U (zh) 2018-08-02 2018-08-02 一种车载信息终端
CN201821254784.0 2018-08-02

Publications (1)

Publication Number Publication Date
WO2020024316A1 true WO2020024316A1 (zh) 2020-02-06

Family

ID=66231171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099495 WO2020024316A1 (zh) 2018-08-02 2018-08-09 一种车载信息终端

Country Status (2)

Country Link
CN (1) CN208805848U (zh)
WO (1) WO2020024316A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1783161A (zh) * 2004-12-04 2006-06-07 现代奥途纳特株式会社 使用远程信息处理系统控制远程车辆的系统和方法
CN101118694A (zh) * 2007-05-18 2008-02-06 李克明 汽车智能化管理系统
CN202231750U (zh) * 2011-07-28 2012-05-23 福信富通(福建)网络科技有限公司 基于蓝牙采集的车载远程智能诊断终端
CN202472411U (zh) * 2012-01-13 2012-10-03 郑梅平 一种车辆追踪监控诊断器
CN103699108A (zh) * 2014-01-03 2014-04-02 中天新能源农业科技投资有限公司 一种基于obd技术的机动车实时监控系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1783161A (zh) * 2004-12-04 2006-06-07 现代奥途纳特株式会社 使用远程信息处理系统控制远程车辆的系统和方法
CN101118694A (zh) * 2007-05-18 2008-02-06 李克明 汽车智能化管理系统
CN202231750U (zh) * 2011-07-28 2012-05-23 福信富通(福建)网络科技有限公司 基于蓝牙采集的车载远程智能诊断终端
CN202472411U (zh) * 2012-01-13 2012-10-03 郑梅平 一种车辆追踪监控诊断器
CN103699108A (zh) * 2014-01-03 2014-04-02 中天新能源农业科技投资有限公司 一种基于obd技术的机动车实时监控系统

Also Published As

Publication number Publication date
CN208805848U (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
Malekian et al. Design and implementation of a wireless OBD II fleet management system
US8321081B2 (en) Plug-in vehicle management system
WO2018018761A1 (zh) 基于车载网关控制器的信息处理方法及网关控制器
BR112020024732B1 (pt) Sistema de controle remoto de veículo, módulo de comunicação, servidor, método de controle remoto de veículo e meio de armazenamento
KR101941628B1 (ko) IoT 기반 차량용 원격 제어 및 모니터링 시스템 및 방법
GB2551435A (en) Vehicle network communication protection
CN205344821U (zh) 一种汽车无钥匙进入、启动系统
CN204415338U (zh) 一种基于人脸识别的车辆防盗系统
WO2019184870A1 (zh) 车载电子设备、电子设备及其接收、发送信息的方法、服务器和通信系统
CN110879877A (zh) 车辆、车机设备及其车辆使用控制方法
CN204567573U (zh) 基于3g网络的汽车监测与防盗系统
CN109606105B (zh) 一种智能的车辆安全防护方法、设备及系统
CN201372630Y (zh) 汽车无钥匙进入系统
WO2020024316A1 (zh) 一种车载信息终端
CN111447589B (zh) 基于移动通信的车载以太网诊断系统监控及授权使用方法
CN111976630B (zh) 智能共享汽车网络及远程补电方法
CN106004793A (zh) 一种基于机器视觉的无线远程汽车防盗装置及其防盗方法
CN108765899A (zh) 一种汽车儿童防遗安全系统
CN116506824A (zh) 基于lora模块和4g/5g模块的物联网组网方法
KR20140142786A (ko) 전기차 카쉐어링 서비스의 사용 종료 판단 방법과 시스템 및 이 방법을 기록한 컴퓨터로 읽을 수 있는 기록 매체
CN200969139Y (zh) 具无线电传输及全球定位系统的汽车电子装置
CN110189499A (zh) 一种高灵敏度自适应车内活体生物监测智能系统
CN106338957A (zh) 一种智能物联网汽车控制系统
CN109263600A (zh) 一种汽车震动检测防盗装置、方法及存储介质
CN105966348A (zh) 一种电动车防盗系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18928954

Country of ref document: EP

Kind code of ref document: A1