WO2020024174A1 - 获取伺服系统频率特性的方法、电子装置和存储装置 - Google Patents
获取伺服系统频率特性的方法、电子装置和存储装置 Download PDFInfo
- Publication number
- WO2020024174A1 WO2020024174A1 PCT/CN2018/098111 CN2018098111W WO2020024174A1 WO 2020024174 A1 WO2020024174 A1 WO 2020024174A1 CN 2018098111 W CN2018098111 W CN 2018098111W WO 2020024174 A1 WO2020024174 A1 WO 2020024174A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- servo system
- phase difference
- output signal
- phase
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
Definitions
- the present invention relates to the field of servo systems, and in particular, to a method, an electronic device, and a storage device for obtaining frequency characteristics of a servo system.
- the servo system can use three feedback loops to control the servo motor: position loop, speed loop and torque loop.
- position loop When the control system of the servo system sets the corresponding position, speed, or torque target command, the servo system changes the position, speed, or torque in response to the command.
- the command signal of the control system can be expressed as a combination of sine (or cosine) signals of different frequencies.
- the frequency characteristics of the servo system can reflect the performance of the servo system under the action of a sine signal, that is, the relationship between the output signal and the input signal of the servo system.
- the invention provides a method, an electronic device and a storage device for obtaining frequency characteristics of a servo system, thereby solving the problem of low calculation accuracy of the existing methods.
- a technical solution provided by the present invention is to provide a method for obtaining a frequency characteristic of a servo system, which includes: sequentially supplying sinusoidal excitation signals of different frequencies to a servo system in at least one specified frequency range, and The output signals of the servo system are scanned step by step; in each step of the step scan, the output signals of the servo system are sampled synchronously throughout the cycle to obtain the output signals of the servo system at different frequency points. And the frequency characteristic of the servo system is calculated according to the amplitude and phase of the output signal at the different frequency points and the sinusoidal excitation signal.
- an electronic device including a controller, where the controller can load program instructions and execute a method for obtaining frequency characteristics of a servo system, the method includes: Within at least one specified frequency range, a servo system is provided with sinusoidal excitation signals of different frequencies in order to perform stepwise scanning of the output signal of the servo system; in each step of the stepwise scanning, the output of the servo system is The signals are sampled synchronously throughout the cycle to obtain the amplitude and phase of the output signal of the servo system at different frequency points; according to the amplitude and phase of the output signal of the servo system at different frequency points and the The sinusoidal excitation signal is calculated to obtain the frequency characteristics of the servo system.
- another technical solution provided by the present invention is to provide a device with a storage function, in which program instructions are stored, and the program instructions can be loaded and executed as described above to obtain the frequency characteristics of the servo system. .
- the beneficial effect of the present invention is that by providing the servo system with sinusoidal excitation signals of different frequencies in at least one specified frequency range, and performing synchronous full-cycle sampling on the data of the servo system, the frequency leakage and spectrum leakage in the spectrum analysis process can be improved or eliminated. Non-linear modal characteristics of the system, thereby improving calculation accuracy. Therefore, the present invention can improve the accuracy of the acquired frequency characteristics of the servo system, and is helpful for the precise control of the servo system.
- FIG. 1 is a schematic flowchart of a method for obtaining frequency characteristics of a servo system according to an embodiment of the present invention.
- FIG. 2 is a schematic flowchart of a method for obtaining frequency characteristics of a servo system according to another embodiment of the present invention.
- FIG. 3 is a schematic flowchart of a method for correcting a phase difference between an output signal and an input signal of a servo system according to an embodiment of the present invention.
- FIG. 4 shows a schematic flowchart of an implementation algorithm of the phase difference correction method in FIG. 3.
- FIG. 5 is a schematic structural diagram of an embodiment of an electronic device provided by the present invention.
- FIG. 6 is an exemplary structure diagram of a feedback loop of a servo system.
- FIG. 1 is a schematic flowchart of a method for obtaining frequency characteristics of a servo system according to an embodiment of the present invention. The method includes:
- the servo system sequentially provides sinusoidal excitation signals of different frequencies to perform step-by-step scanning on the output signal of the servo system.
- the frequency characteristic of the servo system can reflect the relationship between the input signal and the output signal of the servo system. Therefore, in order to obtain the frequency characteristic of the servo system, it is necessary to first provide an appropriate excitation signal to the servo system as an input, and measure it in the subsequent steps. Output of the servo system.
- the output signals of the servo system can be scanned step by step, that is, the relationship between the output signals and input signals of the servo system at different frequencies can be obtained. Therefore, in step S101, within the at least one specified frequency range, sinusoidal excitation signals of different frequencies are sequentially provided to the servo system for frequency scanning.
- the specified frequency range is the frequency range in which frequency characteristics need to be obtained. For example, if you want to obtain the frequency characteristics of the servo system in the range of 0 to 1000 Hz, you can select an appropriate number of frequency points in the range of 0 to 1000 Hz, and provide the servo system with a sinusoidal signal of the corresponding frequency according to these frequency points, thereby Perform a step-by-step scan. In some embodiments, stepwise scanning can be performed in multiple specified frequency ranges in order to improve the scanning accuracy or reduce the amount of unnecessary operations. A detailed description will be described later. It should be noted that since the cosine signal and the sine signal are only ⁇ / 2 in phase, they can be collectively referred to as a sine signal or a sine signal. Therefore, the cosine excitation signal is equivalent to the sine excitation signal in this application, and the cosine excitation model is used for frequency The scanning scheme also belongs to the protection scope of this application.
- step S102 for the sinusoidal excitation signals of different frequencies in each step, the output signals of the servo system are synchronously sampled for the entire period.
- the period extension of the signal in the acquisition time window can completely coincide with the actual signal, that is, the acquisition time window contains exactly an integer number of signal periods.
- S103 Calculate the frequency characteristics of the servo system according to the amplitude and phase of the output signal of the servo system at different frequency points and the sinusoidal excitation signal.
- the frequency characteristics of the servo system include amplitude-frequency characteristics and phase-frequency characteristics.
- the amplitude-frequency characteristics is the relationship between the amplitude ratio of the output signal and the excitation signal and the frequency
- the phase-frequency characteristics is the relationship between the phase difference and the frequency of the output signal and the excitation signal.
- the specific form of the frequency characteristics of the servo system can be a table containing the correspondence between the amplitude ratio and / or phase difference at each frequency point, or a fitting of the data points based on the obtained amplitude ratio and / or phase difference and frequency. The obtained amplitude-frequency characteristic curve and / or phase-frequency characteristic curve.
- step S103 according to the obtained amplitude and phase of the output signal at each frequency point and the corresponding excitation signal, the frequency characteristics of the servo system can be calculated. This frequency characteristic can be provided to the control system of the servo system to achieve precise control of the servo system.
- the present invention can improve or eliminate frequency leakage and non-linear mode of the system during spectrum analysis by providing the servo system with sinusoidal excitation signals of different frequencies in at least one specified frequency range and synchronously sampling the data of the servo system. Characteristics, thereby improving calculation accuracy. Therefore, the present invention can improve the accuracy of the acquired frequency characteristics of the servo system, and is helpful for the precise control of the servo system.
- FIG. 2 is a schematic flowchart of a method for obtaining a frequency characteristic of a servo system according to another embodiment of the present invention. The method includes:
- S201 Set the scan start frequency, frequency variable and scan end frequency in at least one specified frequency range.
- S202 Provide sinusoidal excitation signals of different frequencies to the servo system in order to perform stepwise scanning on the output signals of the servo system.
- the servo system In the first step of the step scan, the servo system is provided with a sinusoidal excitation signal with a frequency equal to the start frequency of the scan, and in each subsequent step of the step scan, the frequency of the sinusoidal excitation signal is changed at intervals of the frequency variable until the sinusoidal The frequency of the excitation signal is greater than or equal to the end-of-scan frequency.
- steps S201 and S202 in at least one designated frequency range, first, the scan start frequency f 0 , the frequency variable ⁇ f and the scan end frequency f n of the step scan are set, and then according to the scan start frequency f 0 and the frequency variable ⁇ f And the scan end frequency f n determines the frequency of the excitation signal in each step of the step scan.
- the scanning start frequency f 0 is taken as the scanning start frequency
- the frequency variable ⁇ f is increased each time in the subsequent steps of the stepwise scanning until it is equal to (or exceeds) the scanning end frequency f n .
- the scanning end frequency f n may be one of the required frequency points, and at this time, the value of (f n -f 0 ) should be set to an integer multiple of ⁇ f.
- the servo system can be provided with excitation signals having the following frequencies: f 0 , f 0 + ⁇ f, f 0 + 2 ⁇ f, ..., f n .
- S203 Set the number of sampling points and the sampling frequency for the specified frequency range, where the product of the frequency variable and the number of sampling points is equal to the sampling frequency, and the product of the scan start frequency and the number of sampling points is equal to an integer multiple of the sampling frequency.
- step S203 the number of sampling points and the sampling frequency are set for the specified frequency range, and the product of the number of sampling points and the set frequency variable is equal to the sampling frequency, and the product of the number of sampling points and the scanning start frequency is equal to an integer multiple of the sampling frequency.
- the number of sampling points and the sampling frequency may be set to 50 points and 1000 Hz, respectively.
- the scan start frequency f 0 and the frequency variable ⁇ f may be determined first, and then the number of sampling points and sampling frequency may be determined, and the number of sampling points and the sampling frequency may be determined first, and then the scan start frequency f 0 and the frequency variable ⁇ f may be determined, for example,
- the number of sampling points and sampling frequency are limited by hardware conditions.
- the scanning start frequency f 0 and the frequency variable ⁇ f can be limited according to the number of sampling points and sampling frequency, so that the above relationship is satisfied.
- Tables 1 to 3 respectively show exemplary configuration tables of current loop frequency characteristic test parameters, speed loop frequency characteristic parameters, and position loop frequency characteristic parameters of the servo system.
- the current loop is greater than the speed loop and the position loop, which is determined by the dynamic range of each control loop. In actual application, it can be set according to the characteristics of the control loop. In the embodiment, 3 kHz, 2 kHz, and 1 kHz are adopted for the current loop, the speed loop, and the position loop, respectively.
- the current control loop in order to test the frequency characteristics of the servo system current loop in the range of 0 to 3000, it can be divided into 6 specified frequency ranges, and the scanning start frequency and frequency are set for each specified frequency range. Variables, end-of-scan frequency, number of sampling points, and sampling frequency, and make these parameters meet the aforementioned relationship. It can be understood that the number of specific frequency ranges is not limited, and can be determined by debugging according to specific needs.
- the scan start frequency of the next specified frequency range may be close to or equal to the scan end frequency of the previous specified frequency range, for example, the scan start frequency of the next specified frequency range may be made equal to that of the previous specified frequency range.
- each designated frequency range may also have a repeated portion.
- the previous designated frequency range may be 0 to 500 Hz
- the latter designated frequency range may be 400 to 600 Hz
- 500 to 600 Hz is the repeated frequency range.
- Full cycle sampling can be implemented in each specified frequency range.
- the accuracy of scanning can be improved by changing the above parameters in some specified frequency ranges, and saving the time of scanning and subsequent calculations by changing the above parameters in other specified frequency ranges. For example, when performing frequency scanning and sampling in the low frequency band, you can set a lower sampling frequency and the number of sampling points to reduce the amount of data in the low frequency band.
- step S204 the output signal of the servo system is sampled according to the set number of sampling points and sampling frequency for each step of the step scanning within the aforementioned one or more specified frequency ranges.
- the servo system is provided with excitation signals (current instructions) with frequencies of 20 Hz, 40 Hz, ..., 400 Hz.
- the output current signal of the servo system is sampled according to the set number of sampling points (50 points) and the sampling frequency (1000Hz).
- an appropriate sampling circuit such as an analog-to-digital conversion circuit, can be used in the sampling process, and other filtering circuits and amplification circuits can be used, which is not limited herein.
- S205 According to the amplitude and phase of the output signal of the servo system at different frequency points, calculate the amplitude ratio of the output signal to the sinusoidal excitation signal at different frequency points, and calculate and correct the phase difference between the output signal and the sinusoidal excitation signal at different frequency points. , And draw the amplitude-frequency characteristic curve and phase-frequency characteristic curve of the servo system according to the amplitude ratio and phase difference.
- the amplitude and phase of the output signals of the servo system can be obtained by measurement or calculation.
- each excitation signal used in the stepwise scanning process is a sinusoidal signal
- its corresponding output signal can also be (or be close to) a sinusoidal signal
- the amplitude and phase of the sinusoidal signal can be obtained by measurement.
- a Fourier transform or a fast Fourier transform may be used to convert the output signal of the servo system from the time domain to the frequency domain, and obtain the amplitude and phase of the output signal.
- the amplitude ratio and phase difference of the output signal relative to the sinusoidal excitation signal at different frequency points during the stepwise scanning process are calculated. Based on these amplitude ratios and phase differences, the amplitude-frequency characteristic curve of the servo system can be fitted. And phase frequency characteristics.
- phase difference between the output signal and the sinusoidal excitation signal is corrected so that the absolute value of the difference between the phase difference at the next frequency point and the phase difference at the previous frequency point is less than ⁇ .
- the phase of the output signal at different frequency points in the frequency domain obtained by the fast Fourier transform is obtained by the arctangent function arctan, so its range is - ⁇ / 2 to ⁇ / 2, and the phase range of the excitation signal is the same It is defined as - ⁇ / 2 to ⁇ / 2, so the range of the obtained phase difference is - ⁇ to ⁇ .
- the final phase-frequency characteristic curve may suddenly jump to -180 ° at 180 °, or suddenly jump to 180 ° at -180 °, and the phase change does not conform to the actual change law.
- the phase difference between two adjacent frequency points should be changed within a small range. Therefore, the latter frequency in the adjacent two frequency points can be modified by correction.
- the absolute value of the difference between the phase difference at the point and the phase difference at the previous frequency point is less than ⁇ .
- the method of phase difference correction is shown in Figure 3 and the corresponding description.
- a cubic spline interpolation technique in the process of fitting the amplitude-frequency characteristic curve and phase-frequency characteristic curve of the servo system, can be used to refine the amplitude-frequency characteristic curve and the phase-frequency characteristic curve to make the amplitude frequency
- the resolution of the characteristic curve and phase frequency characteristic curve reaches the required accuracy.
- the amplitude and phase information at 21 Hz, 25 Hz, or other frequency points can be obtained through a cubic spline interpolation algorithm. It can be understood that, in other embodiments, other interpolation techniques may also be used, such as Lagrange interpolation or linear interpolation.
- FIG. 3 is a schematic flowchart of a method for correcting a phase difference between an acquired output signal and an input signal of a servo system according to an embodiment of the present invention.
- the method includes:
- S302 Determine whether the phase difference at the first frequency point in the total test frequency range is within the initial phase range. If not, execute S303, and if so, execute S304.
- the phase of the servo system output signal and the sinusoidal excitation signal are relatively close, so you can set smaller starting phase ranges accordingly, such as -5 ° ⁇ 5 °, -10 ° ⁇ 10 ° Or other scope.
- the period of the sine signal is equal to 2 ⁇ , so this adjustment does not change the substantial relationship between the phase of the output signal and the excitation signal.
- phase difference at the first frequency point cannot fall within the starting phase range by increasing or decreasing 2 ⁇ , the possible reason is that there is a fault in the servo system or the test system, and corresponding detection is required, such as If there is no fault detected, you can try to expand the starting phase range.
- S304 Starting from the second frequency point, determine whether the absolute value of the difference between the phase difference at the current frequency point and the phase difference at the previous frequency point is greater than ⁇ . If it is larger than ⁇ , execute S305, otherwise execute S308.
- the phase difference between two adjacent frequency points should also be relatively close. Therefore, starting from the second frequency point, if the absolute value of the difference between the phase difference at the current frequency point and the phase difference at the previous frequency point is greater than ⁇ , it means that a frequency jump has occurred, or the previous frequency point has passed
- the range of the phase difference after the correction has exceeded 2 ⁇ (or -2 ⁇ ), which is the possible range of the phase difference in the original uncorrected case. In this case, the phase difference at the current frequency point is corrected to reduce the difference between the phase difference at the previous frequency point and the actual situation.
- S305 Determine whether the phase difference at the current frequency point is greater than the phase difference at the previous frequency point. If yes, execute S306, otherwise execute S307.
- the correction of the phase difference at the current frequency point is ended, and the correction at the next frequency point is continued. Until the correction of the last frequency point in the total test frequency range is completed, the correction is ended.
- FIG. 4 illustrates a schematic flowchart of an implementation algorithm of the phase difference correction method in FIG. 3.
- tv corresponds to the starting phase range, and is set to 10 in this embodiment.
- First set i 1 to determine whether pr (1) exceeds the starting phase range. If it exceeds, then increase or decrease peri to make pr (1) fall within the starting phase range.
- make i i + 1 to determine whether i is greater than the length of pr. If yes, it indicates that the phase difference vector pr has been completely corrected, and the correction can be ended to output the corrected phase difference vector pr. Otherwise, the current frequency point pr ( Correction at i).
- the phase difference pr (i) of the current frequency point is compared with the phase difference pr (i-1) of the previous frequency point, and a variable flag is initialized.
- the flag is used to record whether the correction of the current frequency point meets the requirements.
- p2 is used to determine whether the difference p1 between pr (i) and pr (i-1) is less than ⁇ . If it is smaller, the flag is marked as 1 to end the correction of the current frequency point. Otherwise, according to pr (i) and pr
- the magnitude relationship of (i-1) is increased or decreased by 2 ⁇ (ie, peri) to correct the phase difference pr (i) at the current frequency point, and return to the previous step to compare again until it meets the requirements.
- FIG. 5 is a schematic structural diagram of an embodiment of an electronic device 500 provided by the present invention.
- the electronic device 500 includes a communication bus 501, a controller 502, and a memory 503.
- the controller 502 and the memory 503 are coupled through a communication bus 501.
- the memory 503 stores program data, and the program data can be loaded by the controller 502 and executes the method for acquiring frequency characteristics of a servo system in any of the foregoing embodiments. It can be understood that, in other embodiments, the memory 503 may be disposed in the same physical device with different controllers 502, but the method of any of the above embodiments may be performed by combining the electronic device 500 with a network.
- the electronic device 500 may be a control system and a device embedded in the servo system, or may be an external device connected to the servo system, such as a computer, an industrial control device, a signal processing device, and the like.
- the servo system can use position loop, speed loop and / or torque loop to implement feedback control.
- the position loop control can issue speed commands according to the position command and position feedback
- the speed loop control can be based on the speed command and speed.
- Feedback the torque command is issued
- the torque loop can adjust the electrical parameters of the servo system motor accordingly according to the torque command and torque feedback, so as to control the servo motor to provide the required torque.
- the electronic device 500 provided by the present invention can work based on any one of a position loop, a speed loop and a torque loop.
- the functions described in the above embodiments are implemented in software and sold or used as an independent product, they can be stored in a device with a storage function, that is, the present invention also provides a storage device that stores a program.
- the program data in the storage device can be executed to implement the method for obtaining the frequency characteristics of the servo system in the foregoing embodiment.
- the storage device includes, but is not limited to, a U disk, an optical disk, a server, or a hard disk.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
本发明公开了一种获取伺服系统频率特性的方法、电子装置和存储装置,该方法包括:在至少一个指定频率范围内,对伺服系统依次提供不同频率的正弦激励信号以对伺服系统的输出信号进行分步扫描;在所述分步扫描的每一步中,对所述伺服系统的输出信号进行同步整周期采样,获取不同频率点处所述伺服系统的所述输出信号的幅值和相位;根据所述不同频率点处所述伺服系统的所述输出信号的幅值和相位以及所述正弦激励信号计算得到所述伺服系统的频率特性。通过对伺服系统提供不同频率的正弦激励信号,并对伺服系统的输出进行同步整周期采样,可以改善或消除频谱分析过程中的频率泄露和系统非线性模态特征,从而提高计算精度。因此,本发明可以提高获取到的伺服系统频率特性曲线的精度,有助于伺服系统的精确控制。
Description
本发明涉及伺服系统领域,特别是涉及一种获取伺服系统频率特性的方法、电子装置和存储装置。
伺服系统可以使用三个反馈环路来对伺服电机进行控制,分别是位置环、速度环和力矩环。当伺服系统的控制系统设定相应的位置、速度或者力矩目标指令时,伺服系统响应该指令对位置、速度或者力矩进行改变。
控制系统的指令信号可以表示为不同频率正弦(或余弦)信号的合成,伺服系统的频率特性可反映正弦信号作用下伺服系统响应的性能,也即伺服系统输出信号与输入信号之间的关系。
现有的获取伺服系统频率特性的方法,常常使用白噪声信号或者多个频率不同的正弦信号的叠加作为激励信号,这样在对伺服系统输出信号进行频谱分析时,常常会产生频率泄露或者出现系统非线性模态特征,降低计算的精度,从而影响伺服系统的控制精度。
【发明内容】
本发明提供一种获取伺服系统频率特性的方法、电子装置和存储装置,从而解决现有的方法计算精度低的问题。
为了解决上述技术问题,本发明提供的一种技术方案为提供一种获取伺服系统频率特性的方法,包括:在至少一个指定频率范围内,对伺服系统依次提供不同频率的正弦激励信号以对所述伺服系统的输出信号进行分步扫描;在所述分步扫描的每一步中,对所述伺服系统的输出信号进行同步整周期采样,获取不同频率点处所述伺服系统的所述输出信号的幅值和相位;根据所述不同频率点处所述输出信号的幅值和相位以及所述正弦激励信号计算得到所述伺服系 统的频率特性。
为了解决上述技术问题,本发明提供的另一种技术方案为提供一种电子装置,包括控制器,所述控制器可加载程序指令并执行获取伺服系统频率特性的方法,所述方法包括:在至少一个指定频率范围内,对伺服系统依次提供不同频率的正弦激励信号以对所述伺服系统的输出信号进行分步扫描;在所述分步扫描的每一步中,对所述伺服系统的输出信号进行同步整周期采样,获取不同频率点处所述伺服系统的所述输出信号的幅值和相位;根据所述不同频率点处所述伺服系统的所述输出信号的幅值和相位以及所述正弦激励信号计算得到所述伺服系统的频率特性。
为了解决上述技术问题,本发明提供的另一种技术方案为提供一种具有存储功能的装置,其中存储有程序指令,程序指令可被加载并执行如前所述的获取伺服系统频率特性的方法。
本发明的有益效果是:通过在至少一个指定频率范围内对伺服系统提供不同频率的正弦激励信号,并对伺服系统的数据进行同步整周期采样,可以改善或消除频谱分析过程中的频率泄露和系统非线性模态特征,从而提高计算精度。因此,本发明可以提高获取到的伺服系统频率特性的精确度,有助于伺服系统的精确控制。
图1根据本发明一实施例,示出了一种获取伺服系统频率特性的方法的流程示意图。
图2根据本发明另一实施例,示出了一种获取伺服系统频率特性的方法的流程示意图。
图3根据本发明一实施例,示出了一种对伺服系统输出信号与输入信号的相位差进行修正的方法的流程示意图。
图4示出了图3中相位差修正方法的一种实现算法流程示意图。
图5是本发明提供的电子装置一实施例的结构示意图。
图6是伺服系统反馈环路的一个示例性结构示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,图1根据本发明一实施例,示出了一种获取伺服系统频率特性的方法的流程示意图。该方法包括:
S101:在至少一个指定频率范围内,对伺服系统依次提供不同频率的正弦激励信号以对伺服系统的输出信号进行分步扫描。
伺服系统的频率特性可以反映伺服系统的输入信号和输出信号之间的关系,因此,为了获取伺服系统的频率特性,首先需要对伺服系统提供适当的激励信号作为输入,并在后续的步骤中测量伺服系统的输出。通过对伺服系统依次提供不同频率的正弦激励信号,从而可以对伺服系统的输出信号进行分步扫描,即获取不同频率下伺服系统的输出信号与输入信号的关系。因此,在步骤S101中,在至少一个指定频率范围内,对伺服系统依次提供不同频率的正弦激励信号以进行频率扫描。
指定频率范围即需要获取频率特性的频率范围。例如,若期望获取伺服系统在0~1000Hz范围内的频率特性,则可在0~1000Hz范围内选取适当数量的频率点,并分步按这些频率点向伺服系统提供相应频率的正弦信号,从而进行分步扫描。在一些实施例中,可以在多个指定频率范围内进行分步扫描,以便提高扫描精度或减少不必要的运算量,详细说明将在后文中描述。需要注意,由于余弦信号与正弦信号只是在相位上相差π/2,所以可以统称为正弦型信号或正弦信号,因此余弦激励信号与本申请中的正弦激励信号等同,且使用余弦激励 型号进行频率扫描的方案同样属于本申请的保护范围。
S102:在分步扫描的每一步中,对伺服系统的输出信号进行同步整周期采样,获取不同频率点处伺服系统的输出信号的幅值和相位。
在步骤S102中,针对每一步中的不同频率的正弦激励信号,对伺服系统的输出信号进行同步整周期采样。这样一来,在后续的信号处理过程中,采集时间窗口内的信号的周期延拓可与实际信号完全吻合,即采集时间窗口正好包含整数个信号周期。对采集到的信号进行分析,就可以检测得到不同频率点处伺服系统的输出信号的幅值和相位。
S103:根据不同频率点处伺服系统的输出信号的幅值和相位以及正弦激励信号计算得到伺服系统的频率特性。
伺服系统的频率特性包括幅频特性和相频特性,幅频特性即输出信号与激励信号的幅值比与频率的关系,相频特性即输出信号与激励信号的相位差与频率的关系。伺服系统频率特性的具体形式可以是包含上述各频率点处幅值比和/或相位差的对应关系表,也可以是根据获取到的幅值比和/或相位差与频率的数据点拟合得到的幅频特性曲线和/或相频特性曲线。在步骤S103中,根据得到的各个频率点处的输出信号的幅值和相位以及相应的激励信号,就可以计算得到伺服系统的频率特性。该频率特性可以提供给伺服系统的控制系统,以实现伺服系统的精确控制。
本发明通过在至少一个指定频率范围内对伺服系统提供不同频率的正弦激励信号,并对伺服系统的数据进行同步整周期采样,可以改善或消除频谱分析过程中的频率泄露和系统非线性模态特征,从而提高计算精度。因此,本发明可以提高获取到的伺服系统频率特性的精确度,有助于伺服系统的精确控制。
请参阅图2,图2根据本发明另一实施例,示出了一种获取伺服系统频率特性的方法的流程示意图。该方法包括:
S201:在至少一个指定频率范围内,设定扫描起始频率、频率变量和扫描结束频率。
S202:对伺服系统依次提供不同频率的正弦激励信号以对伺服系统的输出信号进行分步扫描。在分步扫描的第一步中,对伺服系统提供频率等于扫描起始频率的正弦激励信号,并在分步扫描的后续的每一步中以频率变量为间隔改变正弦激励信号的频率,直至正弦激励信号的频率大于或等于扫描结束频率。
在步骤S201和S202,在至少一个指定频率范围内,首先设定分步扫描的扫描起始频率f
0、频率变量Δf和扫描结束频率f
n,而后根据扫描起始频f
0、频率变量Δf和扫描结束频率f
n确定分步扫描每一步中激励信号的频率。具体地,以扫描起始频f
0为扫描起始频率,并在分步扫描的后续步骤中每次增加频率变量Δf,直到等于(或超过)扫描结束频率f
n。应当注意,扫描结束频率f
n可以是所需的频率点之一,此时应设置为(f
n-f
0)的值为Δf的整数倍。这样,就可向伺服系统提供具有以下频率的激励信号:f
0、f
0+Δf、f
0+2Δf、……、f
n。
S203:对该指定频率范围设定采样点数和采样频率,其中,频率变量与采样点数的乘积等于采样频率,且扫描起始频率与采样点数的乘积等于采样频率的整数倍。
在步骤S203中,对该指定频率范围设定采样点数和采样频率,并使采样点数与设定的频率变量的乘积等于采样频率,且采样点数与扫描起始频率的乘积等于采样频率的整数倍,从而满足同步整周期采样的条件。例如,若扫描起始频率f
0为0Hz,频率变量Δf为20Hz,则可以将采样点数和采样频率分别设置为50个点和1000Hz。应当注意,可以先确定扫描起始频率f
0和频率变量Δf,进而确定采样点数和采样频率,也可以先确定采样点数和采样频率,进而确定扫描起始频率f
0和频率变量Δf,例如,在一些情况下,采样点数和采样频率受到硬件条件的限制,此时就可以根据采样点数和采样频率对扫描起始频率f
0和频率变量Δf进行限定,使它们之间满足上述关系。
在一些实施例中,可以有多个指定频率范围,对每个指定频率范围可以分别设置相应的激励信号的参数以及采样参数。表1至表3分别示出了示例性的伺服系统电流环频率特性测试参数配置表、速度环频率特性参数配置表以及位 置环频率特性参数配置表。
表1 电流环频率特性参数配置表
表2 速度环频率特性参数配置表
表3 位置环频率特性参数配置表
可以看出,就总的频率测试范围来看,电流环大于速度环大于位置环,这是由各控制环路动态范围不同决定的,实际应用时可根据控制环路的特性设定,在本实施例中,对电流环、速度环和位置环分别采用3kHz、2kHz和1kHz。
以电流控制环路为例,为了测试伺服系统电流环在0~3000范围内的频率特性,可以将其分为6个指定频率范围,对每个指定频率范围分别设定扫描起始频率、频率变量、扫描结束频率、采样点数和采样频率,并使这些参数符合前述关系。可以理解,具体的指定频率范围的数量不限,可根据具体需要调试确定。可选地,后一个指定频率范围的扫描起始频率可与前一个指定频率范围的扫描结束频率接近或相等,例如,可以使后一个指定频率范围的扫描起始频率与前一个指定频率范围的扫描结束频率之间的差值小于后一个指定频率范围的 频率变量值。可选地,各指定频率范围也可以有重复的部分,例如,前一个指定频率范围可以是0~500Hz,后一个指定频率范围可以是400~600Hz,500~600Hz即为重复的频率范围。
通过将总的测试频率范围分为多个指定频率范围,并在每个指定频率范围内分别设置激励信号的扫描起始频率、频率变量和扫描结束频率,以及采样过程的采样点数和采样频率,可以在每个指定频率范围中都实现整周期采样。并且,可以根据伺服系统的实际特性,在一些指定频率范围内通过改变上述参数以提高扫描的精度,而在另一些指定频率范围内通过改变上述参数以节约扫描和后续运算的时间。例如,在低频段进行频率扫描和采样时,可以设置较低的采样频率和采样点数,以减少低频段数据量。
S204:在分步扫描的每一步中,按照设定的采样点数和采样频率对伺服系统的输出信号进行采样。
在步骤S204中,在前述一个或多个指定频率范围内,对分步扫描的每一步,都按照设定的采样点数和采样频率对伺服系统的输出信号进行采样。以表1中电流控制环路的第1个指定频率范围为例,依次在分步扫描的每一步中,分别向伺服系统提供频率为20Hz、40Hz、……、400Hz的激励信号(电流指令),并按照设定的采样点数(50个点)和采样频率(1000Hz)对伺服系统的输出电流信号进行采样。可以理解,采样过程可以使用适当的采样电路,例如模数转换电路,并可以配合其他滤波电路、放大电路等,在此不做限定。
S205:根据不同频率点处伺服系统的输出信号的幅值和相位,计算不同频率点处输出信号相对正弦激励信号的幅值比,计算并修正不同频率点处输出信号相对正弦激励信号的相位差,并根据该幅值比和相位差绘制伺服系统的幅频特性曲线和相频特性曲线。
根据步骤S204中采样得到的伺服系统在不同频率点处的输出信号,可以通过测量或者计算得到伺服系统输出信号的幅值和相位。例如,由于分步扫描过程中使用的各激励信号为正弦信号,其相应的输出信号可以同样为(或者接近) 正弦信号,那么就可以通过测量得到正弦信号的幅值和相位。可选地,在一些实施例中,可以采用傅里叶变换或者快速傅里叶变换,将伺服系统输出信号从时域转化为频域,并得到输出信号的幅值和相位。在此基础上,计算分步扫描过程中不同频率点处输出信号相对正弦激励信号的幅值比和相位差,根据这些幅值比和相位差,就可以拟合得到伺服系统的幅频特性曲线和相频特性曲线。
在一些实施例中,在根据快速傅里叶变换得到的输出信号在频域内的不同频率点处的相位,并计算不同频率点处输出信号相对正弦激励信号的相位差后,还可以对不同频率点处输出信号相对正弦激励信号的相位差进行修正,使后一个频率点处的相位差与前一个频率点处的相位差的差值的绝对值小于π。通常,通过快速傅里叶变换得到的输出信号在频域内不同频率点处的相位是由反正切函数arctan得到的,因此其范围为-π/2~π/2,而激励信号的相位范围同样定义为-π/2~π/2,因此获取到的相位差的范围为-π~π。若不对其进行修正,最终得到的相频特性曲线可能在180°时突然跳变到-180°,或在-180°时突然跳变到180°,相位变化不符合实际的变化规律。理论上将,只要各频率点间的距离不要设置的过宽,相邻两频率点处的相位差应当在很小的范围内变化,因此,可以通过修正使相邻两频率点中后一个频率点处的相位差与前一个频率点处的相位差的差值的绝对值小于π。相位差修正的方法详见图3及相应的说明。
S206:使用三次样条插值技术对幅频特性曲线和相频特性曲线进行精细化处理。
在一些实施例中,在拟合伺服系统的幅频特性曲线和相频特性曲线的过程中,可以使用三次样条插值技术对幅频特性曲线和相频特性曲线进行精细化处理,使幅频特性曲线和相频特性曲线的分辨率达到所需要的精度。通过使用具有二阶连续的三次样条插值算法对结果进行插值,可以较为准确的得到任何扫频范围内的频率点的幅值信息和相位信息。例如,在采集到20Hz、40Hz频率点处的幅值信息和相位信息的基础上,可以通过三次样条插值算法得到21Hz、25Hz或其他频率点处的幅值信息和相位信息。可以理解,在其他实施例中,也 可以使用其他插值技术,例如拉格朗日插值法或者线性插值法。
请参阅图3,图3根据本发明一实施例,示出了一种对获取到的伺服系统输出信号与输入信号的相位差进行修正的方法的流程示意图。该方法包括:
S301:设定起始相位范围。
S302:判断总的测试频率范围内的第一个频率点处的相位差是否在起始相位范围内。若不在,则执行S303,若在,则执行S304。
S303:通过增加或减少2π使第一个频率点处的相位差落在起始相位范围内。
通常,在频率接近零时,伺服系统输出信号与正弦激励信号的相位较为接近,因此,可以相应地设定较小的起始相位范围,例如-5°~5°、-10°~10°或其他范围。接着,判断总的测试频率范围内的第一个频率点处的相位差是否在起始相位范围内。如不在起始范围内,则尝试通过增加或减少2π的方式使第一个频率点处的相位差落在起始相位范围内。正弦信号周期等于2π,因此该调整并不会改变输出信号与激励信号相位的实质性关系。需要注意,如果无法通过增加或减少2π使第一个频率点处的相位差落在起始相位范围内,则有可能的原因是伺服系统或测试系统中存在故障,需要进行相应的检测,如检测认为无故障,则可以尝试扩大起始相位范围。
S304:从第二个频率点开始,判断当前频率点处的相位差与前一个频率点处的相位差的差值的绝对值是否大于π。若大于π,则执行S305,否则执行S308。
类似地,通常来说,相邻两频率点的相位差也应当较为接近。因此,从第二个频率点开始,若当前频率点处的相位差与前一个频率点处的相位差的差值的绝对值大于π,则说明发生了频率跳变,或者之前的频率点经过修正后相位差的范围已经超过2π(或-2π),即原有的未修正情况下的相位差的可能范围。在这种情况下,对当前频率点处的相位差进行修正,使其与前一个频率点处的相位差的差值缩小,以符合实际的情况。
S305:判断当前频率点处的相位差是否大于前一个频率点处的相位差。若 是,则执行S306,否则执行S307。
S306:使当前频率点处的相位差减少2π。
S307:使当前频率点处的相位差增加2π。
S308:继续下一个频率点的修正,或者,结束修正。
若当前频率点处的相位差与前一个频率点处的相位差的差值的绝对值大于π并且当前频率点处的相位差大于前一个频率点处的相位差时,则执行S306,使当前频率点处的相位差减少2π,并再次判断当前频率点处的相位差与前一个频率点处的相位差的差值的绝对值是否大于π。
若当前频率点处的相位差与前一个频率点处的相位差的差值的绝对值大于π并且当前频率点处的相位差小于前一个频率点处的相位差时,则执行S307,使当前频率点处的相位差增加2π,并再次判断当前频率点处的相位差与前一个频率点处的相位差的差值的绝对值是否大于π。
若当前频率点处的相位差与前一个频率点处的相位差的差值的绝对值小于π,则结束当前频率点处的相位差的修正,并继续进行下一个频率点处的修正。直到完成总的测试频率范围内的最后一个频率点的修正后,结束修正。
请参阅图4,图4示出了图3中相位差修正方法的一种实现算法流程示意图。
如图4所示,首先对参数进行初始化,使peri=2π,并调入相位差向量pr。tv对应起始相位范围,在本实施例中设置为10。首先令i=1,判断pr(1)是否超过起始相位范围,若超过,则通过增加或减少peri使pr(1)落入起始相位范围内。
接着,使i=i+1,判断i是否大于pr的长度,若是,则说明相位差向量pr已经全部修正完成,可以结束修正,输出修正后的相位差向量pr,否则执行当前频率点pr(i)处的修正。
比较当前频率点的相位差pr(i)与前一个频率点的相位差pr(i-1),并初始化变量flag,flag用于记录当前频率点的修正是否符合要求。p2用于判断pr(i)与pr(i-1)的差值p1是否小于π,若小于,则将flag标记为1,结束当前频率点的修正,否则,则根据pr(i)与pr(i-1)的大小关系相应地增加或减少2π(即peri)对当前 频率点处的相位差pr(i)进行修正,并返回之前的步骤再次进行比较,直到符合要求。
请参阅图5,图5是本发明提供的电子装置500一实施例的结构示意图。该电子装置500包括通信总线501、控制器502和存储器503。控制器502和存储器503通过通信总线501耦接。
其中,存储器503保存有程序数据,程序数据可被控制器502加载并执行上述任意实施例的获取伺服系统频率特性的方法。可以理解地,在其它一些实施例中,存储器503可以不同控制器502设置于同一实体装置中,而是通过将电子装置500结合网络来执行上述任一实施例的方法。
可以理解,电子装置500可以是伺服系统内嵌的控制系统及装置,也可以是与伺服系统连接的外部设备,例如计算机、工业控制设备、信号处理设备等。
如图6所示,伺服系统可以使用位置环、速度环和/或力矩环实现反馈控制,其中,位置环控制可根据位置指令和位置反馈,发出速度指令,速度环控制可根据速度指令和速度反馈,发出力矩指令,而力矩环可根据力矩指令和力矩反馈,相应地调整伺服系统电机的电气参数,从而控制伺服电机提供所需的力矩。本发明提供的电子装置500可基于位置环、速度环和力矩环中的任一环工作。
上述实施例所述功能如果以软件形式实现并作为独立的产品销售或使用时,可存储在一个具有存储功能的装置中,即,本发明还提供一种存储有程序的存储装置。存储装置中程序数据能够被执行以实现上述实施例中获取伺服系统频率特性的方法,该存储装置包括但不限于U盘、光盘、服务器或者硬盘等。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (20)
- 一种获取伺服系统频率特性的方法,其特征在于,包括:在至少一个指定频率范围内,对伺服系统依次提供不同频率的正弦激励信号以对所述伺服系统的输出信号进行分步扫描;在所述分步扫描的每一步中,对所述伺服系统的输出信号进行同步整周期采样,获取不同频率处所述伺服系统的所述输出信号的幅值和相位;根据所述不同频率处所述伺服系统的所述输出信号的幅值和相位以及所述正弦激励信号计算得到所述伺服系统的频率特性。
- 如权利要求1所述的方法,其特征在于,所述在至少一个指定频率范围内对伺服系统依次提供不同频率的正弦激励信号以对所述伺服系统的输出信号进行分步扫描的步骤具体为:设定扫描起始频率、频率变量和扫描结束频率,其中,所述扫描起始频率和扫描结束频率确定所述指定频率范围;在所述分步扫描的第一步中,对所述伺服系统提供频率等于所述扫描起始频率的所述正弦激励信号,并在所述分步扫描的后续的每一步中以所述频率变量为间隔改变所述正弦激励信号的频率,直至所述正弦激励信号的频率大于或等于所述扫描结束频率。
- 如权利要求2所述的方法,其特征在于,所述对所述伺服系统的输出信号进行同步整周期采样的步骤具体为:对所述指定频率范围设定采样点数和采样频率,其中,所述频率变量与所述采样点数的乘积等于所述采样频率,且所述扫描起始频率与所述采样点数的乘积等于所述采样频率的整数倍;在所述分步扫描的每一步中,按照所述采样点数和采样频率对所述伺服系统的输出信号进行采样。
- 如权利要求1所述的方法,其特征在于,所述根据所述不同频率点处所 述伺服系统的所述输出信号的幅值和相位以及所述正弦激励信号计算得到所述伺服系统的频率特性的步骤具体为:根据所述不同频率点处所述伺服系统的所述输出信号的所述幅值和所述相位,计算所述不同频率点处所述输出信号相对所述正弦激励信号的幅值比,计算并修正所述不同频率点处所述输出信号相对所述正弦激励信号的相位差,并根据所述不同频率点处所述输出信号相对所述正弦激励信号的幅值比和相位差,绘制所述伺服系统的幅频特性曲线和相频特性曲线。
- 如权利要求4所述的方法,其特征在于,还包括:使用三次样条插值技术对所述幅频特性曲线和所述相频特性曲线进行精细化处理。
- 如权利要求4所述的方法,其特征在于,所述获取不同频率点处所述伺服系统的所述输出信号的幅值和相位的步骤包括:通过快速傅里叶变换,获取所述伺服系统的所述输出信号在频域内的所述不同频率点处的所述幅值和所述相位。
- 如权利要求6所述的方法,其特征在于,所述计算并修正所述不同频率点处所述输出信号相对所述正弦激励信号的相位差的步骤包括:根据快速傅里叶变换得到的所述输出信号在频域内的所述不同频率点处的所述相位,计算得到所述不同频率点处所述输出信号相对所述正弦激励信号的相位差;对所述不同频率点处所述输出信号相对所述正弦激励信号的相位差进行修正,使相邻两频率点中的后一个频率点处的相位差与前一个频率点处的相位差的差值的绝对值小于π。
- 如权利要求7所述的方法,其特征在于,所述对所述不同频率点处所述输出信号相对所述正弦激励信号的相位差进行修正的步骤包括:设定起始相位范围;判断总的测试频率范围内的第一个频率点处的相位差是否在所述起始相位范围内;当所述第一个频率点处的相位差不在所述起始相位范围内时,通过增加或减少2π使所述第一个频率点处的相位差落在所述起始相位范围内。
- 如权利要求8所述的方法,其特征在于,所述对所述不同频率点处所述输出信号相对所述正弦激励信号的相位差进行修正的步骤还包括:从所述总的测试频率范围内的第二个频率点开始,判断当前频率点处的相位差与前一个频率点处的相位差的差值的绝对值是否大于π;当所述差值的绝对值大于π并且所述当前频率点处的相位差大于所述前一个频率点处的相位差时,对所述当前频率点处的相位差减少2π,并返回判断所述当前频率点处的相位差与所述前一个频率点处的相位差的差值的绝对值是否大于π的步骤;当所述差值的绝对值大于π并且所述当前频率点处的相位差小于所述前一个频率点处的相位差时,对所述当前频率点处的相位差增加2π,并返回判断所述当前频率点处的相位差与所述前一个频率点处的相位差的差值的绝对值是否大于π的步骤;当所述当前频率点处的相位差与所述前一个频率点处的相位差的差值的绝对值小于π时,结束所述当前频率点处的相位差的修正,并继续进行下一个频率点处的修正,直到所述总的测试频率范围内的最后一个频率点。
- 一种电子装置,其特征在于,包括控制器,所述控制器可加载程序指令并执行获取伺服系统频率特性的方法,所述方法包括:在至少一个指定频率范围内,对伺服系统依次提供不同频率的正弦激励信号以对所述伺服系统的输出信号进行分步扫描;在所述分步扫描的每一步中,对所述伺服系统的输出信号进行同步整周期采样,获取不同频率点处所述伺服系统的所述输出信号的幅值和相位;根据所述不同频率点处所述伺服系统的所述输出信号的幅值和相位以及所述正弦激励信号计算得到所述伺服系统的频率特性。
- 如权利要求10所述的电子装置,其特征在于,所述在至少一个指定频 率范围内对伺服系统依次提供不同频率的正弦激励信号以对所述伺服系统的输出信号进行分步扫描的步骤具体为:设定扫描起始频率、频率变量和扫描结束频率,其中,所述扫描起始频率和扫描结束频率确定所述指定频率范围;在所述分步扫描的第一步中,对所述伺服系统提供频率等于所述扫描起始频率的所述正弦激励信号,并在所述分步扫描的后续的每一步中以所述频率变量为间隔改变所述正弦激励信号的频率,直至所述正弦激励信号的频率大于或等于所述扫描结束频率。
- 如权利要求11所述的电子装置,其特征在于,所述对所述伺服系统的输出信号进行同步整周期采样的步骤具体为:对所述指定频率范围设定采样点数和采样频率,其中,所述频率变量与所述采样点数的乘积等于所述采样频率,且所述扫描起始频率与所述采样点数的乘积等于所述采样频率的整数倍;在所述分步扫描的每一步中,按照所述采样点数和采样频率对所述伺服系统的输出信号进行采样。
- 如权利要求10所述的电子装置,其特征在于,所述根据所述不同频率点处所述伺服系统的所述输出信号的幅值和相位以及所述正弦激励信号计算得到所述伺服系统的频率特性的步骤具体为:根据所述不同频率点处所述伺服系统的所述输出信号的所述幅值和所述相位,计算所述不同频率点处所述输出信号相对所述正弦激励信号的幅值比,计算并修正所述不同频率点处所述输出信号相对所述正弦激励信号的相位差,并根据所述不同频率点处所述输出信号相对所述正弦激励信号的幅值比和相位差,绘制所述伺服系统的幅频特性曲线和相频特性曲线。
- 如权利要求13所述的电子装置,其特征在于,所述获取伺服系统频率特性的方法还包括:使用三次样条插值技术对所述幅频特性曲线和所述相频特性曲线进行精细化处理。
- 如权利要求13所述的电子装置,其特征在于,所述获取不同频率点处所述伺服系统的所述输出信号的幅值和相位的步骤包括:通过快速傅里叶变换,获取所述伺服系统的所述输出信号在频域内的所述不同频率点处的所述幅值和所述相位。
- 如权利要求15所述的电子装置,其特征在于,所述计算并修正所述不同频率点处所述输出信号相对所述正弦激励信号的相位差的步骤包括:根据快速傅里叶变换得到的所述输出信号在频域内的所述不同频率点处的所述相位,计算得到所述不同频率点处所述输出信号相对所述正弦激励信号的相位差;对所述不同频率点处所述输出信号相对所述正弦激励信号的相位差进行修正,使相邻两频率点中的后一个频率点处的相位差与前一个频率点处的相位差的差值的绝对值小于π。
- 如权利要求16所述的电子装置,其特征在于,所述对所述不同频率点处所述输出信号相对所述正弦激励信号的相位差进行修正的步骤包括:设定起始相位范围;判断总的测试频率范围内的第一个频率点处的相位差是否在所述起始相位范围内;当所述第一个频率点处的相位差不在所述起始相位范围内时,通过增加或减少2π使所述第一个频率点处的相位差落在所述起始相位范围内。
- 如权利要求17所述的电子装置,其特征在于,所述对所述不同频率点处所述输出信号相对所述正弦激励信号的相位差进行修正的步骤还包括:从所述总的测试频率范围内的第二个频率点开始,判断当前频率点处的相位差与前一个频率点处的相位差的差值的绝对值是否大于π;当所述差值的绝对值大于π并且所述当前频率点处的相位差大于所述前一个频率点处的相位差时,对所述当前频率点处的相位差减少2π,并返回判断所述当前频率点处的相位差与所述前一个频率点处的相位差的差值的绝对值是否 大于π的步骤;当所述差值的绝对值大于π并且所述当前频率点处的相位差小于所述前一个频率点处的相位差时,对所述当前频率点处的相位差增加2π,并返回判断所述当前频率点处的相位差与所述前一个频率点处的相位差的差值的绝对值是否大于π的步骤;当所述当前频率点处的相位差与所述前一个频率点处的相位差的差值的绝对值小于π时,结束所述当前频率点处的相位差的修正,并继续进行下一个频率点处的修正,直到所述总的测试频率范围内的最后一个频率点。
- 如权利要求18所述的电子装置,其特征在于,所述电子装置作用于所述伺服系统的力矩控制环、速度控制环或者位置控制环。
- 一种具有存储功能的装置,其特征在于,存储有程序指令,所述程序指令可被加载并执行如权利要求1-9任一项所述的获取伺服系统频率特性的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/098111 WO2020024174A1 (zh) | 2018-08-01 | 2018-08-01 | 获取伺服系统频率特性的方法、电子装置和存储装置 |
CN201880087476.XA CN111630459A (zh) | 2018-08-01 | 2018-08-01 | 获取伺服系统频率特性的方法、电子装置和存储装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/098111 WO2020024174A1 (zh) | 2018-08-01 | 2018-08-01 | 获取伺服系统频率特性的方法、电子装置和存储装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020024174A1 true WO2020024174A1 (zh) | 2020-02-06 |
Family
ID=69230920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/098111 WO2020024174A1 (zh) | 2018-08-01 | 2018-08-01 | 获取伺服系统频率特性的方法、电子装置和存储装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111630459A (zh) |
WO (1) | WO2020024174A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114237039A (zh) * | 2021-10-25 | 2022-03-25 | 中国航空工业集团公司成都飞机设计研究所 | 一种适用于非线性结构控制耦合的抑制方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114109798B (zh) * | 2021-11-26 | 2023-08-29 | 广东美的暖通设备有限公司 | 频率确定方法、频率确定装置、压缩机系统和存储介质 |
CN114169174B (zh) * | 2021-12-09 | 2024-04-16 | 西安交通大学 | 一种基于正弦激励的频响测量用两点采样优化方法及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070205740A1 (en) * | 2004-06-16 | 2007-09-06 | Kabushiki Kaisha Yaskawa Denki | Method of automatically setting vibration suppression filter and automatic setting apparatus for vibration suppression filter |
CN106066636A (zh) * | 2015-04-24 | 2016-11-02 | 发那科株式会社 | 具有在线取得机械的频率特性的功能的伺服控制装置 |
CN106338967A (zh) * | 2015-07-09 | 2017-01-18 | 发那科株式会社 | 可显示控制系统的在线自动调整状况的伺服控制装置 |
CN106647258A (zh) * | 2015-10-28 | 2017-05-10 | 发那科株式会社 | 具有进行学习控制器的自动调整的功能的伺服控制装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101917163B (zh) * | 2010-07-29 | 2012-05-23 | 大连理工大学 | 一种改善非正弦周期信号电液激振控制波形的方法 |
JP2016092935A (ja) * | 2014-10-31 | 2016-05-23 | ファナック株式会社 | ゲイン自動調整支援装置 |
JP6050865B1 (ja) * | 2015-06-26 | 2016-12-21 | ファナック株式会社 | 評価関数によって制御ゲインをオンラインで最適化する機能を有するサーボ制御装置 |
CN107607114B (zh) * | 2017-09-11 | 2020-08-14 | 北京航天控制仪器研究所 | 一种数字陀螺稳定平台在线频率特性软测试方法 |
-
2018
- 2018-08-01 CN CN201880087476.XA patent/CN111630459A/zh active Pending
- 2018-08-01 WO PCT/CN2018/098111 patent/WO2020024174A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070205740A1 (en) * | 2004-06-16 | 2007-09-06 | Kabushiki Kaisha Yaskawa Denki | Method of automatically setting vibration suppression filter and automatic setting apparatus for vibration suppression filter |
CN106066636A (zh) * | 2015-04-24 | 2016-11-02 | 发那科株式会社 | 具有在线取得机械的频率特性的功能的伺服控制装置 |
CN106338967A (zh) * | 2015-07-09 | 2017-01-18 | 发那科株式会社 | 可显示控制系统的在线自动调整状况的伺服控制装置 |
CN106647258A (zh) * | 2015-10-28 | 2017-05-10 | 发那科株式会社 | 具有进行学习控制器的自动调整的功能的伺服控制装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114237039A (zh) * | 2021-10-25 | 2022-03-25 | 中国航空工业集团公司成都飞机设计研究所 | 一种适用于非线性结构控制耦合的抑制方法 |
CN114237039B (zh) * | 2021-10-25 | 2024-06-18 | 中国航空工业集团公司成都飞机设计研究所 | 一种适用于非线性结构控制耦合的抑制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111630459A (zh) | 2020-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020024174A1 (zh) | 获取伺服系统频率特性的方法、电子装置和存储装置 | |
US5309075A (en) | Digital servo-control apparatus for preventing torque variations | |
US10355717B2 (en) | Encoder signal processing device, encoder, and signal processing method and recording medium | |
WO2024139068A1 (zh) | 误差校正方法、终端设备及计算机可读存储介质 | |
CN103683292A (zh) | 一种并联型准比例谐振有源电力滤波器及控制方法 | |
US9143074B2 (en) | Controlling method of synchronous motor | |
WO2022267437A1 (zh) | 谐波检测方法、装置、变频器及存储介质 | |
CN113131819B (zh) | 一种永磁同步电机周期性误差补偿方法及装置 | |
CN108562775B (zh) | 一种电动汽车电机控制系统及其电流检测修正方法 | |
JP2005257565A (ja) | レゾルバディジタル角度変換装置および方法ならびにプログラム | |
WO2021232615A1 (zh) | 电机转子位置检测方法、装置以及电机控制器 | |
CN111190074B (zh) | 一种基于单相锁相环的电网同步检测方法 | |
CN115001016B (zh) | 一种基于无模型预测的变流器并网优化控制方法及系统 | |
CN113358928B (zh) | 一种基于频率测量的差分dft幅值修正算法 | |
CN110350886A (zh) | 一种永磁伺服系统的谐振频率检测方法、系统及装置 | |
CN106053936A (zh) | 一种获取电学信号瞬时频率的方法及系统 | |
CN111089610A (zh) | 一种编码器的信号处理方法、装置及相关组件 | |
CN117234176A (zh) | 一种基于扫频试验的控制回路频域辨识方法 | |
CN112388623B (zh) | 舵机位置控制方法、装置、终端设备及介质 | |
KR101125111B1 (ko) | 피엘엘 제어의 기본파 성분 획득방법 및 그 방법을 이용하는 피엘엘 제어기 | |
Ihlenfeld et al. | Simple algorithm for sampling synchronization of ADCs | |
CN108493927B (zh) | 一种基于跟踪微分器的单相电压锁相方法 | |
CN110824247A (zh) | 一种电力系统频率测量方法、母线电压校正方法及装置 | |
JP4518786B2 (ja) | 内挿誤差補正方法及び装置 | |
CN112448637A (zh) | 一种转子位置传感器角度信号的误差补偿方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18928626 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 09.06.2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18928626 Country of ref document: EP Kind code of ref document: A1 |