WO2020022357A1 - Apparatus and method for removing salts from liquid food, and liquid food from which salts are removed - Google Patents

Apparatus and method for removing salts from liquid food, and liquid food from which salts are removed Download PDF

Info

Publication number
WO2020022357A1
WO2020022357A1 PCT/JP2019/028932 JP2019028932W WO2020022357A1 WO 2020022357 A1 WO2020022357 A1 WO 2020022357A1 JP 2019028932 W JP2019028932 W JP 2019028932W WO 2020022357 A1 WO2020022357 A1 WO 2020022357A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
liquid food
potassium
anode
cathode
Prior art date
Application number
PCT/JP2019/028932
Other languages
French (fr)
Japanese (ja)
Inventor
柳田 友隆
未来 中村
耀宗 江
Original Assignee
株式会社クレアテラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレアテラ filed Critical 株式会社クレアテラ
Priority to JP2020532427A priority Critical patent/JPWO2020022357A1/en
Publication of WO2020022357A1 publication Critical patent/WO2020022357A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/70Clarifying or fining of non-alcoholic beverages; Removing unwanted matter
    • A23L2/72Clarifying or fining of non-alcoholic beverages; Removing unwanted matter by filtration
    • A23L2/74Clarifying or fining of non-alcoholic beverages; Removing unwanted matter by filtration using membranes, e.g. osmosis, ultrafiltration
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/70Clarifying or fining of non-alcoholic beverages; Removing unwanted matter
    • A23L2/78Clarifying or fining of non-alcoholic beverages; Removing unwanted matter by ion-exchange
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/30Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation

Definitions

  • the present invention relates to an apparatus for removing salts by supplying electricity from a liquid, and a method for removing salts using the apparatus.
  • the present invention relates to a method and an apparatus for removing potassium from a liquid food such as juice, and a low potassium liquid food.
  • the amount of potassium available daily depends on the stage, but should be limited to 1500-2000 mg or less. This is because the target daily intake of potassium for adults is 3000 mg for men and 2600 mg for women according to the Japanese dietary intake standards (2015 version) set by the Ministry of Health, Labor and Welfare from the viewpoint of preventing the development of lifestyle-related diseases. This is equivalent to limiting to about 1/2 to 3/4.
  • Potassium is contained in almost all foods, and when it is necessary to limit potassium, it is necessary to reduce potassium intake by devising food selection and cooking methods.
  • Chronic kidney disease patients are subject to various restrictions on their dietary habits, including potassium intake, and daily dietary management places a heavy burden on the patients themselves and their families.
  • potassium can be removed by cooking methods such as boiling and exposing to water, but potassium cannot be removed from “drinks” by conventional methods such as exposing to water.
  • milk beverages, fruit juices, mixed fruit / vegetable juices, etc. have a high potassium content of 100 mg or more per 100 g.
  • Green tea has a very high potassium content of 340 mg per 100 g of gyokuro.
  • gyokuro which has a high potassium content, it contains about 100 mg and 30 mg, and it is considered that a considerable amount of potassium is consumed from green tea in consideration of the normal dietary habits of Japanese people.
  • Patent Documents 1 to 5 disclose a method for producing a low potassium juice in which potassium is removed by treating the juice with a cation exchange resin and neutralized with calcium carbonate or calcium hydroxide.
  • Patent Document 4 discloses that a liquid food is immersed in an electrolytic solution in a state of being surrounded by a bag-shaped metal ion permeable membrane, an electric current is passed between a positive electrode and a negative electrode, and a metal component is electrolyzed to form a metal such as potassium. Methods for removing components are described.
  • Patent Document 5 describes a method for removing potassium on from juice by electrodialysis.
  • Patent Document 4 in a method in which a food is surrounded by a bag-shaped metal ion permeable membrane and immersed in an electrolytic solution to energize to remove potassium, the food is contained in the electrolytic solution. Is immersed in the electrolyte, so that not only the food but also the immersed electrolyte is supplied with electricity. Therefore, there is a problem that the ion removal rate from the food is low.
  • the ion exchange membrane used for electrodialysis has a small pore size, so it has a large resistance to flowing water and a low processing speed. In order to increase the processing speed, it is necessary to apply a high voltage. However, when a high voltage is applied, Joule heat is generated, which causes a problem that the juice is deteriorated. For this reason, a high voltage is not applied and processing takes time, and when potassium is removed from foods such as juice, there has been a problem that freshness is reduced. Furthermore, the method of removing potassium on by electrodialysis has the disadvantage that the apparatus becomes large-scale.
  • Still another object of the present invention is to selectively remove anions instead of removing cations such as potassium from a liquid food.
  • a method for simultaneously removing cations and anions from liquid foods is provided.
  • This method is effective for removing ions from a liquid food containing a large amount of sodium ions such as soy sauce.
  • the pH tends to be acidic.
  • foods that are originally sour, such as juice few people notice the change in taste to acidic by removing cations such as potassium ions.
  • many testers notice a change in pH to acidic when a sensory test is performed. According to the method shown in the present embodiment, almost equal amounts of both cations and anions are removed from existing products, and the taste is hardly changed.
  • the present invention relates to an apparatus for removing salts described below, a method for removing salts composed of alkali metal ions, alkaline earth metal ions or halogen ions using the apparatus, and a low potassium food produced using the same.
  • a method for producing a liquid food for removing cations or anions from the liquid food comprising a cathode disposed opposite to the anode, an anode, and a membrane having a fixed pore size.
  • a cathode is arranged on the opposite side of the surface of the membrane facing the anode, and when removing anions, the anode is located on the opposite side of the surface of the membrane facing the cathode.
  • a low-potassium liquid food product characterized by being substantially equal in amount.
  • a method for producing a liquid food for simultaneously removing cations and anions from a liquid food comprising a pair of electrodes and a membrane having a fixed pore size, wherein the membrane is provided inside the pair of electrodes.
  • a method for producing a liquid food in which a space defined by the membrane is filled with a liquid food, and cations or anions are simultaneously removed by energizing.
  • the figure which shows the example of the apparatus which removes salts from liquid food The figure which shows the example of the apparatus which removes a cation and an anion simultaneously from a liquid foodstuff.
  • a device for removing salts is a device that removes ions oozing through a film in contact with an electrode when electricity is supplied.
  • a membrane is disposed on the cathode side, and ions oozing through pores in the membrane are removed together with the solvent. At this time, since no ions are removed from the anode side, the amount of anions does not change.
  • anions such as nitrate ions can be removed.
  • cations are not removed from the cathode side. That is, cations or anions can be selectively removed.
  • the liquid food in the present invention there is provided a food prescribed by Food Sanitation Law, it refers to viscosity of 10 0 from 10 5 mPa ⁇ s (cp) .
  • a food refers to viscosity of 10 0 from 10 5 mPa ⁇ s (cp) .
  • it refers to fruit juice, fruit mixed juice, fruit / vegetable mixed juice, vegetable juice such as green juice, green tea, black tea, coffee, soft drink, drinking water, liquid beverage such as wine.
  • Foods containing solids such as porridge, tomato ketchup, vegetable paste, fruit paste, surimi, liquid food, etc. are also included.
  • a membrane that can be sieved according to the size of a substance depending on the pore diameter and transmitted.
  • membranes having a pore size of a certain size or less include a microfiltration membrane, an ultrafiltration membrane, an ion exchange membrane, a reverse osmosis membrane, and a semi-permeable membrane. Among them, a microfiltration membrane and an ultrafiltration membrane having a certain range of pore diameter are suitable.
  • a membrane having a pore diameter of 0.7 ⁇ m when a membrane having a pore diameter of 0.7 ⁇ m is used, juice passes through the membrane, and therefore, it is necessary to use a membrane having a pore diameter of less than 0.7 ⁇ m.
  • a membrane having a pore diameter of less than 1 nm has a high resistance to flowing water through a membrane having a small pore diameter, so that a large amount of Joule heat is generated and the food is degraded. Therefore, it is necessary to use a film having a pore diameter of 1 nm or more. Any membrane having a pore size in this range may be used.
  • the electrode it is preferable to use platinum or gold which does not cause electrolysis for the anode.
  • titanium may be plated with platinum and used.
  • the cathode stainless steel, titanium, or the like can be used in addition to platinum, gold, and the like.
  • a perforated electrode For example, a mesh electrode or the like can be preferably used.
  • the cathode is removed when removing cations, and the anode is removed when removing anions, the anode is brought into contact with the film, so that it is preferable that the shape has a large contact area with the film.
  • contacting the electrode with the film may mean that only part of the electrode contacts the film.
  • the electrodes and the film may be simply arranged so as to be in the vicinity of several mm or less.
  • a liquid such as juice
  • the juice exudes from the pores of the membrane. Since the exuded liquid contains ions, the electrode and the film come into contact with each other through the liquid, and sufficient electrical contact can be obtained, so that the ions can migrate.
  • the space between the electrodes may be filled with water. By filling with water, electrical contact can be easily obtained.
  • the salt removing device 1 has a structure provided with a pair of electrodes in a tank 2.
  • a cathode 3 and an anode 4 are arranged in a tank 2 so as to face each other, and a liquid food 5 such as juice can be put in a space sandwiched between the electrodes.
  • a membrane 6 is disposed inside the cathode 3, and the liquid food 5 is separated by a membrane so as not to leak into a space 7 in a tank outside the membrane 6.
  • the membrane 6 arranged inside the cathode 3 is arranged so as to contact the cathode.
  • the cathode 3 Since the cathode 3 is in contact with the membrane 6, cations such as potassium can be positively removed from the pores opened in the membrane by energizing.
  • the anode When removing anions such as nitrate ions, the anode may be arranged so as to be in contact with the film.
  • both the cathode and the anode when removing cations and anions simultaneously, both the cathode and the anode may be arranged so as to be in contact with the membrane and may be removed simultaneously (see FIG. 2).
  • the distance between the electrodes is large, the resistance will increase and a large amount of Joule heat will be generated, and the temperature of the liquid food will rise and deteriorate. Therefore, it is desirable that the distance between the electrodes is such that the food does not deteriorate due to the generation of Joule heat.
  • Embodiment 1 attracts a cation such as potassium to the cathode side by the principle of electrophoresis and discharges it from the pores of the membrane by energization by the electrophoresis principle. Therefore, it is not necessary to arrange a solvent such as water in the space 7 outside the membrane.
  • the salt can be removed by diffusion by adding water. The use of diffusion makes it possible to remove salts such as potassium very quickly.
  • the water placed in the space 7 outside the membrane uses stirring, running water, or removes cations outside the tank and circulates them again with a pump to quickly remove cations in the vicinity of the membrane. It is preferred to maintain a low concentration.
  • Liquid foods such as juice have a higher viscosity than water, and therefore are difficult to move from the inside of the film to the space 7. Therefore, even if the space 7 is filled with water, the water flows in from the space 7 by the compensating action of the water pressure and the like, mixes with the liquid food 5, and the food itself is not diluted by the water. However, when the membrane pore size is 0.7 ⁇ m or more, the liquid food moves to the space 7 and instead, the water in the space 7 moves into the membrane by a compensation action such as water pressure, so that the food becomes watery.
  • the space 7 When the space 7 is filled with water and used, if the interface of the liquid food 5 is slightly higher than the interface of the water filling the space 7, the membrane 6 and the cathode 3 adhere to each other by pressure. This is preferred. Water also contributes to cooling as well as rapid removal of potassium. The cooling may be performed by installing the device itself in a low-temperature environment such as a low-temperature room.
  • a membrane and an electrode are arranged in the tank, and a device for putting liquid food such as juice between the membrane and the electrode in the tank is used.
  • a device for putting liquid food such as juice between the membrane and the electrode in the tank is used.
  • an electrode in contact with the membrane is arranged on one side of the flow path.
  • an electrode may be arranged on the other side surface, and electricity may be supplied while flowing liquid food through the flow path to remove salts.
  • anions such as chloride ions and organic acids and acidic amino acids contained in the liquid food have a concentration equivalent to that of the liquid food as a raw material even after the energization treatment.
  • Organic acids are formic, acetic, glycolic, lactic, gluconic, oxalic, malonic, succinic, fumaric, malic, tartaric, ⁇ -ketoglutanic, citric, Salicylic acid, p-coumaric acid, caffeic acid, ferulic acid, chlorogenic acid, quinic acid, orotic acid, etc .; acidic amino acids refer to aspartic acid and glutamic acid.
  • acidic amino acids refer to aspartic acid and glutamic acid.
  • the salt removing device described in the embodiment can selectively remove cations, so that the amount and composition of the anions do not greatly vary from those of the raw material beverage. Therefore, when cations are removed, foods from which cations and anions have been removed by electrodialysis are measured by measuring at least one or more anions, acidic amino acids, neutral amino acids, or organic acids. be able to. In addition, when cations are selectively removed by a cation exchange resin, large cations are also removed at the same time, so by measuring high molecular weight cations such as magnesium, calcium, or basic amino acids. It is possible to make a distinction. Therefore, by measuring a plurality of organic acids and amino acids and analyzing the amounts and compositions thereof, it is possible to distinguish the food from the cations such as potassium which have been removed by other methods.
  • the salt removing device 11 having a different shape will be described.
  • the salt removing apparatus 11 has two cathodes 13 and 13 ′ in a tank 12 and an anode 14 in the center.
  • Membrane 16, 16 ' is arranged inside cathode 13, 13'. Since it is partitioned by the two membranes 16 and 16 ', even if the liquid food 15 is put between the membranes 16 and 16', it does not leak to both sides.
  • the cation / anion removing device 21 shown in FIG. 2 has a structure in which a pair of electrodes 23 and 24 are provided in a tank 22.
  • the cation / anion removing device 21 is a liquid food in which a cathode 23 and an anode 24 are arranged in a tank 22 so as to face each other, and it is preferable to simultaneously remove cations and anions such as soy sauce in a space sandwiched between the electrodes. 25 can be inserted.
  • Membrane 26 and 26 ' are arranged inside the cathode 23 and anode 24 so as to be in electrical contact with each other, and the liquid food 25 leaks into the space 27 inside the tank outside the membrane 26 and 26'.
  • the space is separated by a membrane so that there is no space. Since the cathode 23 and the anode 24 are in contact with the membranes 26 and 26 ′, when electricity is supplied, cations such as sodium from the cathode side and chlorine ions from the anode side through pores opened in the membrane. Can be positively removed. Further, the space 27 can be filled with water.
  • the water that fills the space 27 may be deionized water or the like, but may be any water such as tap water that contains a small amount of ions.
  • Example 1 The results of removing potassium using various films using the apparatus of Embodiment 1 are shown below.
  • the membrane used and the source are as follows. Nitrocellulose membrane (Toyo Roshi Kaisha, Ltd.), semipermeable membrane (cellophane), polyethylene membrane (Polywrap (registered trademark), Ube Film Co., Ltd.) having a pore size of 0.70 ⁇ m, 0.45 ⁇ m, or 0.10 ⁇ m. In Example 1, the area where the film was in contact with the juice was about 30% of the whole film.
  • a green juice beverage product a, manufactured by A company
  • vegetable and fruit juices manufactured using vegetables such as broccoli, celery, and cabbage was used.
  • Table 1 shows the results of applying electricity at a current density of 8 mA / cm 2 for 30 minutes or 45 minutes.
  • the distance between the electrodes is set to 2.5 cm.
  • the Joule heat generated by applying electricity to the juice and coffee used for the measurement was examined below, if the distance between the electrodes was 4.0 cm or less, preferably 3.5 cm, more preferably 2.5 cm or less. Even if Joule heat was generated, the food did not deteriorate.
  • the removal rate of potassium (K) from the undiluted solution, the solution temperature, the pH after energization, and the results of sensory tests are shown. Note that the potassium concentration of the stock solution was 153.8 to 170.2 mg / 100 g, depending on the product lot.
  • the amount of potassium removed from the raw beverage was measured and expressed as a removal rate (%).
  • Potassium was measured by atomic absorption spectrophotometry after drying and wet incineration of the sample.
  • the liquid temperature of the stock solution was 20 ° C., and the pH was 3.86.
  • the flavor of the processed juice was evaluated by 10 expert panelists having excellent flavor discrimination ability.
  • the evaluations are 5: the flavor does not change, 4: the flavor does not change much, 3: neither can be said, 2: the flavor slightly changes, 1: the flavor is greatly deteriorated, and the average is described.
  • the larger the pore size the higher the K removal rate per fixed time. That is, the larger the pore size, the higher the processing efficiency.
  • polyethylene form and semi-permeable membranes have a small pore size, so they are clogged and cannot be used immediately. Therefore, it is preferable that the pore diameter is large enough not to leak juice.
  • the type of the membrane the microfiltration membrane and the ultrafiltration membrane have a relatively large pore size, and therefore, it is preferable to use these membranes.
  • the pore size of the semipermeable membrane is said to be 1 nm to 10 nm. Therefore, it is considered that a salt having a pore diameter of 1 nm or more can remove salts such as potassium.
  • a membrane having a pore size of 10 nm or more it is preferable to use. In the case of a nitrocellulose membrane having a pore diameter of 0.70 ⁇ m, since the beverage leaked to the outside of the membrane, it is necessary to use a membrane having a pore diameter of less than 0.70 ⁇ m.
  • the removal rate of potassium contained in a large amount is the highest, and calcium and magnesium with large atoms are hardly removed.
  • the liquid food from which potassium has been removed by the salt removing device has a low potassium content, and the calcium and magnesium contents have almost no difference from the food before removal. Therefore, a beverage from which potassium and sodium have been selectively removed can be provided.
  • Example 2 The amount of potassium removed was examined by changing the current density (Table 3). The treatment was carried out under the same conditions as in Example 1 except that the current-carrying density was increased to 12 mA / cm 2 , and the potassium removal rate, liquid temperature, and pH of the treated beverage were measured, and a sensory test was performed.
  • Example 3 Next, various beverages were energized under the conditions of a current density of 8 mA / cm 2 , a distance between electrodes of 2.5 cm, a current time of 30 minutes, and a 0.45 ⁇ m nitrocellulose membrane, the amount of cations was measured, and the removal rate was determined. . The following beverages were used as samples.
  • Orange juice (concentrated reduced orange juice, fruit juice 100%, product b1, manufactured by B company), apple juice (concentrated reduced apple juice, fruit juice 100%, product b2, manufactured by B company), vegetable / fruit beverage (green-yellow vegetable mixed juice, Vegetable juice 100%, product c, company C), tomato juice (concentrated and reduced tomato juice 100%, product d, company D), coffee (sugar-free, product e, company E).
  • potassium could be efficiently removed as 36.9 to 95.5% of the raw beverage by applying electricity for 8 minutes at an electric current density of 8 mA / cm 2 .
  • the potassium removal rate is as low as 36.9%, but about 100 mg of potassium is removed per 100 g. Comparing the amount of potassium removed before and after the treatment, about 100 mg / 100 g of potassium was removed in all of the beverages for 30 minutes.
  • Example 4 When cations are removed in the same manner as in Example 1, relatively large molecules such as amino acids are hardly removed compared to relatively small cations such as potassium and sodium. Using the apparatus of Embodiment 1, cations were extracted from a green juice beverage (product a, manufactured by Company A) containing vegetable and fruit juices using a nitrocellulose membrane having a pore size of 0.10 ⁇ m in the same manner as in Example 1. A test for removal was performed.
  • Electric current was applied at an electric current density of 8 mA / cm 2 for 60 minutes.
  • the distance between the electrodes is set to 3.5 cm.
  • the amount of potassium removed from the stock solution and the total amount of free amino acids were measured and expressed as the removal rate (%).
  • Potassium was measured by atomic absorption spectrometry after drying and wet incineration of the sample as described above.
  • the total free amino acid concentration was determined by heating a raw sample at 70 to 80 ° C. for 30 minutes and measuring the filtrate by a ninhydrin colorimetric method.
  • the potassium concentration, the potassium removal rate, the total free amino acid concentration, the total free amino acid removal rate, the solution temperature, and the pH of the stock solution and the treatment solution are shown.
  • Example 5 It is shown that the anion can be removed by replacing the anode and the cathode and using the electrode in contact with the membrane as the anode (Table 6).
  • a test for removing nitrate ions was performed by replacing the cathode and anode of the apparatus of Embodiment 1 so that the anode was in contact with the membrane.
  • the nitrate nitrogen content in foods varies from material to material.
  • spinach contains 0.2 g / 100 g and bok choy 0.5 g / 100 g, which is relatively large in leafy vegetables. Therefore, the test was carried out using potassium nitrate (Fuji Film Wako Pure Chemical Co., Ltd.) to prepare a solution having a nitric acid concentration (NO 3 ) of 100 mg / L (0.1 g / 100 g).
  • nitric acid concentration Using a nitrocellulose membrane having a pore size of 0.10 ⁇ m, current was applied at a current density of 4 mA / cm 2 for 10 minutes. The distance between the electrodes is set to 2.5 cm. Shows nitric acid concentration, removal rate from stock solution, liquid temperature, and pH. The removal rate (%) represents the amount of nitric acid removed from the stock solution in%. The nitric acid concentration was measured by a colorimetric method.
  • test solution did not contain fiber components such as pulp, 90% or more of nitric acid could be removed in a short time at a low current density. It was shown that even anions can be removed similarly to cations.
  • the nitrate content can be reduced to a desired concentration such as 50% or less of the liquid food as a raw material.
  • a desired concentration such as 50% or less of the liquid food as a raw material.
  • Comparative Example 1 Removal of Potassium by Conventional Method As a method for removing potassium from juice and soymilk, a comparison was made between a potassium removal method using a conventional ion exchange resin and a method disclosed in the examples.
  • the samples used are the following beverages. Orange juice (product b1, manufactured by Company B), vegetable / fruit drink (product c, manufactured by Company C), tomato juice (product d, manufactured by Company D), coffee (product e, manufactured by Company E), vegetable / fruit juice Green juice beverage (product a, manufactured by Company A)
  • orange juice, tomato juice, and coffee are prepared by adding a dry weight of 5 g (wet weight of 7.53 g) of H-type ion exchange resin to 100 ml of a sample to produce a vegetable / fruit beverage, A green juice drink containing vegetable and fruit juices was added to a sample (100 ml) at a dry weight of 70 g (wet weight of 105.45 g), and after shaking for 30 minutes, a cation exchange resin was precipitated and the supernatant was measured.
  • Tomato juice has a large amount of pulp, is insufficiently separated from the resin, contains a large amount of resin, and cannot obtain an accurate measurement value.
  • Green juice drinks including orange juice and vegetable / fruit juice were able to obtain measurement results although resin was slightly mixed. Table 7 shows the results.
  • Potassium ions were very well removed at 95.3% to 99.7%.
  • calcium and magnesium are also removed at a high rate.
  • ions such as calcium and magnesium are also removed at a high rate regardless of the size of the mass.
  • Example 6 Next, the result of simultaneously removing anions and cations will be described.
  • the soy sauce product f, manufactured by Company F
  • Table 8 shows the results.
  • the method of removing salts using a membrane having a large pore size shown in this example is simpler than ion exchange resin and electrodialysis, without accompanying a change in taste, It is a useful method that can remove cations such as potassium or sodium chloride from existing products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Water Supply & Treatment (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

Provided is a salt removing apparatus employing an electrophoresis principle. A membrane having a constant pore diameter is disposed so as to be in contact with an inner side of a cathode and/or an anode, and by filling a liquid food into a space between the opposing cathode and anode and passing an electric current therethrough, it is possible to remove salts from the liquid food.

Description

液体状の食品から塩類を除去する装置、方法、及び塩類が除去された液体状の食品Apparatus and method for removing salts from liquid food, and liquid food from which salts have been removed
 液体から通電することによって塩類を除去する装置、及び前記装置を用いて塩類を除去する方法に関する。特に、ジュースなどの液体状の食品からカリウムを除去する方法、装置及び低カリウム液体状食品に関する。 The present invention relates to an apparatus for removing salts by supplying electricity from a liquid, and a method for removing salts using the apparatus. In particular, the present invention relates to a method and an apparatus for removing potassium from a liquid food such as juice, and a low potassium liquid food.
 日本透析医学会の調査によれば、わが国の慢性透析患者は2016年には、約33万人と1000人あたり約2.6人が透析治療を受けていることになる。さらに、慢性腎臓病(CKD)の患者は約1330万人、すなわち日本人成人の8人に1人が慢性腎臓病患者であるとも言われており、腎機能の低下は大きな問題と考えられている。腎機能が低下している患者ではカリウムの排泄機能が低下しており、致死性の不整脈による突然死をきたす高カリウム血症を引き起こしやすい。 According to a survey by the Japan Society for Dialysis Therapy, about 330,000 chronic dialysis patients in Japan will receive dialysis treatment in 2016, or about 2.6 out of 1,000. Furthermore, it is said that about 13.3 million patients with chronic kidney disease (CKD), that is, one out of eight Japanese adults have chronic kidney disease, and a decrease in renal function is considered to be a major problem. I have. Patients with impaired renal function have impaired potassium excretion and are more likely to cause hyperkalemia with sudden death due to fatal arrhythmias.
 そのため、慢性腎臓病患者には、カリウム制限の食事指導が継続して行われる必要がある。一日に摂取可能なカリウム量は病期によっても異なるが、1500~2000mg以下に制限する必要がある。これは、生活習慣病の発症予防などの観点から厚生労働省が定めた日本人の食事摂取基準(2015年版)における成人の1日のカリウム摂取量の目標量が男性3000mg、女性2600mgであることから1/2から3/4程度に制限することに相当する。 Therefore, it is necessary to continuously provide dietary guidance on potassium restriction for patients with chronic kidney disease. The amount of potassium available daily depends on the stage, but should be limited to 1500-2000 mg or less. This is because the target daily intake of potassium for adults is 3000 mg for men and 2600 mg for women according to the Japanese dietary intake standards (2015 version) set by the Ministry of Health, Labor and Welfare from the viewpoint of preventing the development of lifestyle-related diseases. This is equivalent to limiting to about 1/2 to 3/4.
 カリウムは、ほぼ全ての食品に含有されており、カリウム制限が必要な場合には、食品の選択や調理法を工夫することによってカリウム摂取量の低減を図る必要がある。慢性腎臓病患者は、カリウム摂取量をはじめ食生活において種々の制限を受けていることから、日々の食事管理は患者自身にとっても、家族にとっても負担が大きい。 (4) Potassium is contained in almost all foods, and when it is necessary to limit potassium, it is necessary to reduce potassium intake by devising food selection and cooking methods. Chronic kidney disease patients are subject to various restrictions on their dietary habits, including potassium intake, and daily dietary management places a heavy burden on the patients themselves and their families.
 食事に関しては、茹でこぼす、水にさらすなどの調理法によってカリウム除去を図ることができるが、「飲み物」からは、水にさらすなどの従来の方法によりカリウムを除去することができない。しかし、乳飲料、果実ジュース、果実・野菜ミックスジュースなどは、100gあたりのカリウム含有量が100mg以上とカリウムを多く含んでいる。また、緑茶は、玉露では100gあたり340mgとカリウム含有量が非常に高い。カリウム含有量の高い玉露以外でも100g30mg程度含まれており、日本人の通常の食生活を考えると緑茶からもかなりの量のカリウムを摂取しているものと考えられる。 As for meals, potassium can be removed by cooking methods such as boiling and exposing to water, but potassium cannot be removed from “drinks” by conventional methods such as exposing to water. However, milk beverages, fruit juices, mixed fruit / vegetable juices, etc. have a high potassium content of 100 mg or more per 100 g. Green tea has a very high potassium content of 340 mg per 100 g of gyokuro. Other than gyokuro, which has a high potassium content, it contains about 100 mg and 30 mg, and it is considered that a considerable amount of potassium is consumed from green tea in consideration of the normal dietary habits of Japanese people.
 そこで、野菜ジュース、豆乳など液体状の食品から、カリウムを除去し、慢性腎臓病患者であっても安心して摂取することができる低カリウム飲料を製造する方法が提案されている(特許文献1~5)。特許文献1~3にはジュースを陽イオン交換樹脂によって処理することによってカリウムを除去し、炭酸カルシウム、あるいは水酸化カルシウムによって中和する低カリウムジュースの製造方法が記載されている。特許文献4は、液状の食品を袋状の金属イオン透過膜で包囲された状態にして電解液中に浸漬して、陽電極と陰電極間へ通電し、金属成分を電解しカリウム等の金属成分を除去する方法が記載されている。特許文献5には、電気透析によってジュースからカリウムオンを除去する方法が記載されている。 Therefore, a method has been proposed in which potassium is removed from liquid foods such as vegetable juices and soy milk to produce a low-potassium beverage that can be safely consumed even by patients with chronic kidney disease (Patent Documents 1 to 5). 5). Patent Documents 1 to 3 disclose a method for producing a low potassium juice in which potassium is removed by treating the juice with a cation exchange resin and neutralized with calcium carbonate or calcium hydroxide. Patent Document 4 discloses that a liquid food is immersed in an electrolytic solution in a state of being surrounded by a bag-shaped metal ion permeable membrane, an electric current is passed between a positive electrode and a negative electrode, and a metal component is electrolyzed to form a metal such as potassium. Methods for removing components are described. Patent Document 5 describes a method for removing potassium on from juice by electrodialysis.
特開2000-69947号公報JP-A-2000-69947 特開2001-103945号公報JP 2001-103945 A 特表2003-511052号公報JP-T-2003-511052 特開平10-165113号公報JP-A-10-165113 米国特許出願公開第2006/0147559号明細書US Patent Application Publication No. 2006/0147559
 しかしながら、陽イオン交換樹脂を使用する方法を用いた場合には、ジュースなどの液状食品に含まれるイオン濃度が高濃度であることから、陽イオン交換樹脂を頻繁に洗浄・再生したり、交換する必要があった。また、野菜ジュースなどパルプ成分の多いジュースでは、カラム式製法ではすぐに目詰まりを起こすため、パルプと分離した後にイオン交換樹脂と接触させなければならない。そのため、製造工程数が多くなるという問題が生じていた。また、バッチ式製法では、カリウムイオンを吸着させた後に樹脂をジュースと分離する工程でパルプ成分との分離が困難であった。さらに、陽イオンをすべて吸着することから、カルシウムイオン、マグネシウムイオンなど、摂取することが望ましい陽イオンまで除去するという問題が生じていた。 However, when a method using a cation exchange resin is used, the cation exchange resin is frequently washed, regenerated, or replaced because the ion concentration contained in a liquid food such as juice is high. Needed. In addition, in the case of juice containing a large amount of pulp components such as vegetable juice, clogging occurs immediately in the column-type manufacturing method, so that it must be brought into contact with an ion exchange resin after being separated from pulp. Therefore, there has been a problem that the number of manufacturing steps is increased. Moreover, in the batch-type production method, it is difficult to separate the resin from the pulp component in the step of separating the resin from the juice after adsorbing potassium ions. Furthermore, since all the cations are adsorbed, there has been a problem that cations such as calcium ions and magnesium ions that are desirable to be taken in are removed.
 また、特許文献4に記載されているように、食品を袋状の金属イオン透過膜で包囲された状態にして電解液中に浸漬して通電しカリウムを除去する方法では、電解液中に食品を浸漬することから、食品だけではなく浸漬している電解液中も通電されることから、食品からのイオンの除去率が低いという問題があった。 Further, as described in Patent Document 4, in a method in which a food is surrounded by a bag-shaped metal ion permeable membrane and immersed in an electrolytic solution to energize to remove potassium, the food is contained in the electrolytic solution. Is immersed in the electrolyte, so that not only the food but also the immersed electrolyte is supplied with electricity. Therefore, there is a problem that the ion removal rate from the food is low.
 また、電気透析に用いるイオン交換膜は、孔径が小さいことから、流水抵抗が大きく、処理速度が遅い。処理速度を上げるためには高い電圧をかける必要があるが、高電圧をかけるとジュール熱が発生し、ジュースに変質が生じるという問題が生じる。そのため、高電圧はかけられず処理に時間がかかり、ジュースなどの食品からカリウムを除去する場合には、鮮度が低下するという問題が生じていた。さらに、電気透析によってカリウムオンを除去する方法は、装置が大掛かりになるという欠点がある。 イ オ ン In addition, the ion exchange membrane used for electrodialysis has a small pore size, so it has a large resistance to flowing water and a low processing speed. In order to increase the processing speed, it is necessary to apply a high voltage. However, when a high voltage is applied, Joule heat is generated, which causes a problem that the juice is deteriorated. For this reason, a high voltage is not applied and processing takes time, and when potassium is removed from foods such as juice, there has been a problem that freshness is reduced. Furthermore, the method of removing potassium on by electrodialysis has the disadvantage that the apparatus becomes large-scale.
 本発明は、工程が単純であり、かつ効率良く液体状の食品から塩類を除去する装置、及び方法を提供することを課題とする。特に、液状食品からカリウムを除去する装置、方法、及びこれにより製造された低カリウム液状食品を提供することを課題とする。さらに、本発明は、液体状の食品からカリウムなど陽イオンを除去する代わりに、陰イオンを選択的に除去することを課題とする。特に、ヒト体内で有害となる発がん性物質や、乳幼児においてメトヘモグロビン血症を引き起こす可能性のある亜硝酸に体内で還元される硝酸イオンを除去することを課題とする。 。 It is an object of the present invention to provide an apparatus and a method for removing salts from a liquid food efficiently with a simple process. In particular, it is an object of the present invention to provide an apparatus and a method for removing potassium from a liquid food, and a low potassium liquid food produced by the method. Still another object of the present invention is to selectively remove anions instead of removing cations such as potassium from a liquid food. In particular, it is an object of the present invention to remove carcinogenic substances that are harmful in the human body and nitrate ions that are reduced in the body to nitrite, which may cause methemoglobinemia in infants.
 さらに、液状食品から陽イオン、陰イオンを同時に除去する方法を提供する。この方法は、醤油などナトリウムイオンが多く含まれた液状の食品からイオンを除去するのに有効である。ナトリウムやカリウムなどの陽イオンを選択的に除去する方法では、pHが酸性に傾く。ジュースのように、もともと酸味のある食品の場合、カリウムイオンなどの陽イオンを除去することによる味の酸性への変化に気づく者はほとんどいない。しかし、醤油など酸味を感じることの少ない食品の場合、官能試験を行うとpHの酸性への変化に多くの試験者が気が付く。本実施例で示す方法によれば、既存の製品から陽イオン、陰イオンどちらもほぼ等量除去することとなり、味がほとんど変化することがない。 Furthermore, a method for simultaneously removing cations and anions from liquid foods is provided. This method is effective for removing ions from a liquid food containing a large amount of sodium ions such as soy sauce. In the method of selectively removing cations such as sodium and potassium, the pH tends to be acidic. In the case of foods that are originally sour, such as juice, few people notice the change in taste to acidic by removing cations such as potassium ions. However, in the case of foods that do not feel sour, such as soy sauce, many testers notice a change in pH to acidic when a sensory test is performed. According to the method shown in the present embodiment, almost equal amounts of both cations and anions are removed from existing products, and the taste is hardly changed.
 本発明は、以下の塩類を除去する装置、及び前記装置を用いてアルカリ金属イオン、アルカリ土類金属イオンあるいはハロゲンイオンからなる塩類を除去する方法、これを用いて製造された低カリウム食品に関する。
(1)液体状の食品から陽イオン、又は陰イオンを除去する液体状の食品の製造方法であって、対向して配置される陰極、及び陽極と一定の孔径を備えた膜を備え、陽イオンを除去する場合には前記膜の前記陽極に対向する面の反対側に陰極を接するように配置し、陰イオンを除去する場合には前記膜の前記陰極に対向する面の反対側に陽極を接するように配置し、前記膜によって区切られた空間を液体状の食品で満たし、通電することによって陽イオン、又は陰イオンを除去する液体状の食品の製造方法。
(2)前記膜の孔径が1nm以上0.7μm未満であることを特徴とする(1)記載の液体状の食品の製造方法。
(3)対向する陰極と陽極を備え、前記陰極、又は陽極のいずれか一方の内側には一定の孔径を備えた膜が接するように配置されており、前記陽極と陰極間に通電することによって電気泳動によって液体状の食品から塩類を除去する装置。
(4)1対の陰極と陽極が設けられ、前記陰極、又は陽極は膜に接し、膜を介して陽極、又は陰極が対向するように設けられている(3)記載の液体状の食品から塩類を除去する装置。
(5)2つの陰極、又は2つの陽極が対向して配置され、前記2つの対向する陰極、又は陽極の中央に、陽極、又は陰極が設けられ、前記2つの対向する陰極、又は陽極は夫々膜を介して中央の陽極、又は陰極に対向している(3)記載の液体状の食品から塩類を除去する装置。
(6)前記膜の孔径が1nm以上0.7μm未満であることを特徴とする(3)~(5)いずれか1つ記載の液体状の食品から塩類を除去する装置。
(7)前記膜が接するように配置されている陰極、又は陽極が水に浸漬され、水を循環、及び/又は撹拌する手段を備えていることを特徴とする(3)~(6)いずれか1つ記載の液体状の食品から塩類を除去する装置。
(8)処理後のカリウム含有量が原料とする液体状の食品の50%以下であり、少なくとも1つ以上の遊離酸性アミノ酸、有機酸、及び/又は陰イオンは原料とする液体状の食品とほぼ等量であることを特徴とする低カリウム化された液体状の食品。
(9)液体状の食品から陽イオン、及び陰イオンを同時に除去する液体状の食品の製造方法であって、一対の電極と一定の孔径を備えた膜を備え、一対の電極の内側に膜を接するように配置し、前記膜によって区切られた空間を液体状の食品で満たし、通電することによって陽イオン、又は陰イオンを同時に除去する液体状の食品の製造方法。
(10)前記膜の孔径が1nm以上0.7μm未満であることを特徴とする(9)記載の液体状の食品の製造方法。
The present invention relates to an apparatus for removing salts described below, a method for removing salts composed of alkali metal ions, alkaline earth metal ions or halogen ions using the apparatus, and a low potassium food produced using the same.
(1) A method for producing a liquid food for removing cations or anions from the liquid food, comprising a cathode disposed opposite to the anode, an anode, and a membrane having a fixed pore size. When removing ions, a cathode is arranged on the opposite side of the surface of the membrane facing the anode, and when removing anions, the anode is located on the opposite side of the surface of the membrane facing the cathode. A method for producing a liquid food in which a space defined by the membrane is filled with a liquid food, and cations or anions are removed by applying a current.
(2) The method for producing a liquid food according to (1), wherein the membrane has a pore diameter of 1 nm or more and less than 0.7 μm.
(3) comprising a cathode and an anode facing each other, a membrane having a fixed pore size is disposed inside one of the cathode and the anode so as to be in contact with the cathode, and a current is passed between the anode and the cathode. A device that removes salts from liquid foods by electrophoresis.
(4) The liquid food according to (3), wherein a pair of a cathode and an anode are provided, and the cathode or the anode is in contact with the membrane, and the anode or the cathode is provided so as to face the membrane. Equipment for removing salts.
(5) Two cathodes or two anodes are arranged facing each other, and an anode or a cathode is provided at the center of the two facing cathodes or the anodes, and the two opposed cathodes or the anodes are respectively The apparatus for removing salts from liquid food according to (3), which is opposed to the central anode or cathode through the membrane.
(6) The apparatus for removing salts from a liquid food according to any one of (3) to (5), wherein the pore size of the membrane is 1 nm or more and less than 0.7 μm.
(7) The method according to any one of (3) to (6), wherein a cathode or an anode arranged so as to be in contact with the membrane is provided with means for immersing in water and circulating and / or stirring water. An apparatus for removing salts from a liquid food according to any one of the preceding claims.
(8) The potassium content after the treatment is 50% or less of the liquid food as the raw material, and at least one or more free acidic amino acids, organic acids, and / or anions are mixed with the liquid food as the raw material. A low-potassium liquid food product characterized by being substantially equal in amount.
(9) A method for producing a liquid food for simultaneously removing cations and anions from a liquid food, comprising a pair of electrodes and a membrane having a fixed pore size, wherein the membrane is provided inside the pair of electrodes. A method for producing a liquid food, in which a space defined by the membrane is filled with a liquid food, and cations or anions are simultaneously removed by energizing.
(10) The method for producing a liquid food according to (9), wherein the membrane has a pore size of 1 nm or more and less than 0.7 μm.
液体状の食品から塩類を除去する装置の例を示す図。The figure which shows the example of the apparatus which removes salts from liquid food. 液体状の食品から陽イオン、陰イオンを同時に除去する装置の例を示す図。The figure which shows the example of the apparatus which removes a cation and an anion simultaneously from a liquid foodstuff.
 電気泳動によって液体状の食品から塩類を除去する方法、及び装置、また、これを用いて塩類が除去された食品を提供する。まず、カリウムなど陽イオンのみ、あるいは硝酸など陰イオンのみを除去する方法について説明する。以下の実施例で示すように、塩類を除去する装置は通電することによって、電極と接している膜を通して滲出してくるイオンを除去する装置である。カリウムなどの陽イオンを除去する場合には、陰極側に膜を配置し、膜にある細孔を通して滲出してくるイオンを溶媒とともに除去する。このとき陽極側からはイオンを除去しないので、陰イオンの量は変化しない。また、陽極を電気的に膜と接するように配置すれば、硝酸イオンなどの陰イオンを除去することができる。このとき陰極側には膜を配置しないので、陰極側から陽イオンが除去されることはない。すなわち、陽イオン、あるいは陰イオンを選択的に除去することができる。 (4) A method and an apparatus for removing salts from liquid food by electrophoresis, and a food from which salts have been removed using the same. First, a method for removing only cations such as potassium or only anions such as nitric acid will be described. As shown in the following examples, a device for removing salts is a device that removes ions oozing through a film in contact with an electrode when electricity is supplied. When removing cations such as potassium, a membrane is disposed on the cathode side, and ions oozing through pores in the membrane are removed together with the solvent. At this time, since no ions are removed from the anode side, the amount of anions does not change. If the anode is arranged so as to be in electrical contact with the film, anions such as nitrate ions can be removed. At this time, since no film is disposed on the cathode side, cations are not removed from the cathode side. That is, cations or anions can be selectively removed.
 以下の実施例では、低カリウム食品を製造する目的で、果実ジュース、果実・野菜ミックスジュース、青汁などの飲料から塩類、特に野菜や果物に多く含まれているカリウムの除去について説明するが、実施例に限定されることなく、種々の液体からカリウムイオン、ナトリウムイオンなどの陽イオン、あるいは、塩素イオン、硝酸イオン、硫酸イオンなどの陰イオンを除去することが可能である。 In the following examples, for the purpose of producing a low potassium food, fruit juice, fruit and vegetable mixed juice, salt from beverages such as green juice, the removal of potassium, which is particularly contained in vegetables and fruits, is described, Without being limited to the embodiments, it is possible to remove cations such as potassium ions and sodium ions or anions such as chloride ions, nitrate ions and sulfate ions from various liquids.
 本発明で液体状の食品とは、食品衛生法で定める食品であって、粘度が10から10mPa・s(cp)であるものをいう。例えば、果実ジュース、果実ミックスジュース、果実・野菜ミックスジュース、青汁などの野菜汁、緑茶、紅茶、コーヒー、清涼飲料、飲料水、ワインなど液体状の飲料をいう。また、粥やトマトケチャップ、野菜ペースト、果物ペースト、すり身、流動食など固形分を含む食品も含まれる。 The liquid food in the present invention, there is provided a food prescribed by Food Sanitation Law, it refers to viscosity of 10 0 from 10 5 mPa · s (cp) . For example, it refers to fruit juice, fruit mixed juice, fruit / vegetable mixed juice, vegetable juice such as green juice, green tea, black tea, coffee, soft drink, drinking water, liquid beverage such as wine. Foods containing solids such as porridge, tomato ketchup, vegetable paste, fruit paste, surimi, liquid food, etc. are also included.
 以下の実施例で示すように、液体状の食品から塩類を除去するためには、孔径によって物質の大きさによりふるい分け透過させる膜が良い。孔径が一定以下の膜としては、精密濾過膜、限外濾過膜、イオン交換膜、逆浸透膜、半透膜などがあるが、孔径の小さい膜は流水抵抗が大きく、処理速度が遅いことから、精密濾過膜、限外濾過膜のうち、一定範囲の孔径を備えた膜が適している。 示 す As shown in the following examples, in order to remove salts from liquid foods, it is preferable to use a membrane that can be sieved according to the size of a substance depending on the pore diameter and transmitted. Examples of membranes having a pore size of a certain size or less include a microfiltration membrane, an ultrafiltration membrane, an ion exchange membrane, a reverse osmosis membrane, and a semi-permeable membrane. Among them, a microfiltration membrane and an ultrafiltration membrane having a certain range of pore diameter are suitable.
 また、用いる膜の孔径は、0.7μmの孔径の膜を用いた場合には、ジュースが膜を通過してしまうことから、0.7μm未満の孔径の膜を使用する必要がある。また、1nm未満の孔径の膜では小さい孔径の膜を通すための流水抵抗は高いため、ジュール熱が多量に発生して食品が変質してしまう。したがって、1nm以上の孔径の膜を使用する必要がある。この範囲の孔径を備えた膜であれば、どのような膜を使用してもよい。 膜 In addition, when a membrane having a pore diameter of 0.7 μm is used, juice passes through the membrane, and therefore, it is necessary to use a membrane having a pore diameter of less than 0.7 μm. In addition, a membrane having a pore diameter of less than 1 nm has a high resistance to flowing water through a membrane having a small pore diameter, so that a large amount of Joule heat is generated and the food is degraded. Therefore, it is necessary to use a film having a pore diameter of 1 nm or more. Any membrane having a pore size in this range may be used.
 電極は、陽極は電気分解が起こらない白金、金を使用することが好ましい。また、チタンに白金をメッキして用いてもよい。陰極は、白金、金などの他、ステンレス、チタンなどを使用することができる。また、膜から排出されたイオンを除去するために電極は有孔電極を用いる必要がある。例えば、網状の電極などを好ましく用いることができる。また、陽イオンを除去する場合は陰極を、陰イオンを除去する場合は陽極を膜に接触させて通電することから、膜との接触面積の多い形状とすることが好ましい。ここで、「電極を膜に接触させる」とは、膜と電極の一部が接触するだけでもよい。実施例に記載する網状の電極を使用する場合には、電極と膜の一部が接触するだけにとどまる。また、電極と膜が数mm以下の近傍にあるように配置するだけでもよい。膜の中にジュース等の液体を入れると、膜孔からジュースが滲出してくる。滲出した液体はイオンを含むことから、液体を介して電極と膜が接することになり、電気的には十分な接触が得られ、イオンを泳動させることができる。また、電極との間を水で満たしてもよい。水を満たすことによって、容易に電気的な接触を得ることができる。 For the electrode, it is preferable to use platinum or gold which does not cause electrolysis for the anode. Alternatively, titanium may be plated with platinum and used. As the cathode, stainless steel, titanium, or the like can be used in addition to platinum, gold, and the like. Further, in order to remove ions discharged from the membrane, it is necessary to use a perforated electrode. For example, a mesh electrode or the like can be preferably used. In addition, since the cathode is removed when removing cations, and the anode is removed when removing anions, the anode is brought into contact with the film, so that it is preferable that the shape has a large contact area with the film. Here, "contacting the electrode with the film" may mean that only part of the electrode contacts the film. In the case of using the mesh electrode described in the embodiment, only a part of the electrode and the membrane are in contact with each other. Alternatively, the electrodes and the film may be simply arranged so as to be in the vicinity of several mm or less. When a liquid such as juice is put into the membrane, the juice exudes from the pores of the membrane. Since the exuded liquid contains ions, the electrode and the film come into contact with each other through the liquid, and sufficient electrical contact can be obtained, so that the ions can migrate. The space between the electrodes may be filled with water. By filling with water, electrical contact can be easily obtained.
 以下低カリウム食品の製造方法、製造装置を中心に記載するが、硝酸イオンなどの陰イオンを除去する場合には、膜と接する極を陽極に代えて通電すればよい。低カリウム食品を製造する場合、腎臓病患者の食事制限がどの程度であるか、また、一日に摂取する量によって、カリウム除去率を適宜定めることが望ましい。腎臓病患者は病期によって、一日に摂取可能なカリウム量は異なっている。患者の必要に応じてジュース、あるいはコーヒーなどの原料食品に対して65%以下、50%以下、30%以下と異なるカリウム含有量の低カリウム食品を提供することにより、異なる病期の患者に対して対応することができる。また、例えば、緑茶、コーヒーなど摂取する総量が多い飲料に関しては、含有するカリウム量を30%以下にしておくことによって、カリウム量を気にせず安心して摂取することが可能となる。 Hereinafter, the method and apparatus for producing low potassium foods will be mainly described. In the case of removing anions such as nitrate ions, electricity may be supplied instead of the anode in contact with the membrane. When producing low potassium foods, it is desirable to appropriately determine the potassium removal rate depending on the dietary restrictions of patients with kidney disease and the daily intake. The amount of potassium that can be taken per day varies depending on the stage of kidney disease patients. Providing low-potassium foods with a potassium content different from 65% or less, 50% or less, or 30% or less for raw foods such as juice or coffee as needed by patients, so that patients of different stages can be treated. Can respond. In addition, for a beverage such as green tea or coffee that consumes a large amount of total, by setting the amount of potassium contained to 30% or less, it becomes possible to ingest with confidence without worrying about the amount of potassium.
 カリウムなど陽イオンを除去することによって、液体のpHは酸性に傾く。果実ジュースなど、原料飲料のpHが酸性の食品では、官能試験を行った結果、カリウムを除去しpHが酸性に傾いてもさほど気にならないことが明らかになった。したがって、もともと酸性であり、酸味がある食品では味に違和感がない限り中和する必要がない。実施例で示すように電気的な方法で選択的に陽イオンを除去した場合には、カリウム、ナトリウムなど半径の小さいイオンから先に除去され、大きいイオンは除去されにくい。そのため、イオン交換樹脂を使用して陽イオンを除去した場合に比べてpHの低下率が少ない。そのため、果実ジュースなどでは味の変化をほとんど感じない。一方、豆乳などpHが中性付近の飲料や、酸性になることによって凝集体が生じるものについては、味に違和感がなく、凝集体を生じない程度にカリウム除去率を抑えるか、炭酸カルシウム、水酸化カルシウム、水酸化マグネシウムなどのアルカリによって中和すればよい。以下に図面を用いて塩類を除去する装置について説明するが、実施態様で示した装置に限定されることがないのは言うまでもない。 By removing cations such as potassium, the pH of the liquid will be acidic. Sensory tests on foods such as fruit juices with acidic beverages with acidic pH revealed that potassium was removed and the pH was inclined to be acidic, so that it was not so bothersome. Therefore, it is not necessary to neutralize foods that are acidic in nature and have a sour taste unless the taste is uncomfortable. As shown in the embodiment, when cations are selectively removed by an electric method, ions having a small radius such as potassium and sodium are removed first, and large ions are difficult to be removed. For this reason, the rate of decrease in pH is smaller than when cations are removed using an ion exchange resin. Therefore, a change in taste is hardly felt in fruit juices and the like. On the other hand, for beverages having a pH around neutrality, such as soy milk, and those in which aggregates are generated by becoming acidic, the taste is not uncomfortable and the potassium removal rate is suppressed to an extent that aggregates are not generated, or calcium carbonate, water, It may be neutralized with an alkali such as calcium oxide or magnesium hydroxide. Hereinafter, an apparatus for removing salts will be described with reference to the drawings, but it is needless to say that the apparatus is not limited to the apparatus shown in the embodiment.
 [実施態様1]
 一対の電極間に液体状の食品を配置し、塩類を除去する装置、及び方法について説明する(図1(A))。塩類除去装置1は、槽2の中に、1対の電極を備えた構造となっている。塩類除去装置1は、槽2に陰極3と陽極4が対向して配置され、電極間に挟まれた空間にジュースなどの液体状の食品5を入れることができる。陰極3の内側には膜6が配置されており、液体状の食品5は膜6の外側の槽内の空間7には漏れ出ないように膜で空間が区切られている。陰極3の内側に配置されている膜6は、陰極に接触するように配置されている。陰極3が膜6に接触していることから、通電することによって、膜に開いている細孔から、カリウムなどの陽イオンを積極的に除去することができる。また、硝酸イオンなどの陰イオンを除去する場合には、陽極を膜に接するように配置すればよい。さらに、陽イオンと陰イオンを同時に除去する場合には、陰極、陽極の両方を膜に接するように配置し、同時に除去する構成としてもよい(図2参照)。
[Embodiment 1]
An apparatus and a method for disposing a liquid food between a pair of electrodes and removing salts will be described (FIG. 1A). The salt removing device 1 has a structure provided with a pair of electrodes in a tank 2. In the salt removing device 1, a cathode 3 and an anode 4 are arranged in a tank 2 so as to face each other, and a liquid food 5 such as juice can be put in a space sandwiched between the electrodes. A membrane 6 is disposed inside the cathode 3, and the liquid food 5 is separated by a membrane so as not to leak into a space 7 in a tank outside the membrane 6. The membrane 6 arranged inside the cathode 3 is arranged so as to contact the cathode. Since the cathode 3 is in contact with the membrane 6, cations such as potassium can be positively removed from the pores opened in the membrane by energizing. When removing anions such as nitrate ions, the anode may be arranged so as to be in contact with the film. Furthermore, when removing cations and anions simultaneously, both the cathode and the anode may be arranged so as to be in contact with the membrane and may be removed simultaneously (see FIG. 2).
 電極間の距離が離れていると抵抗が高くなりジュール熱が多量に発生し、液状食品の温度が上昇し変質する。したがって、電極間の距離は、ジュール熱の発生により食品が変質しない程度の距離とすることが望ましい。 と If the distance between the electrodes is large, the resistance will increase and a large amount of Joule heat will be generated, and the temperature of the liquid food will rise and deteriorate. Therefore, it is desirable that the distance between the electrodes is such that the food does not deteriorate due to the generation of Joule heat.
 実施態様1で示している脱塩装置は、通電することによって、電気泳動の原理で、陰極側にカリウムなどの陽イオンを引き寄せ、膜の細孔から排出させる。したがって、膜の外側の空間7には水などの溶媒を配置する必要はない。しかし、水を入れておくことによって拡散によっても塩類を除去することができる。拡散の利用によって、非常に迅速にカリウムなどの塩類の除去が可能となる。膜の外側の空間7に配置する水は、撹拌、流水を使用する、あるいは、槽外で陽イオンを除去し、再度ポンプで循環させることによって、膜近傍の陽イオンを速やかに除去し、常に低濃度に維持することが好ましい。ジュースなどの液状食品は、水に比べ粘度が高いため、膜の内側から空間7に移動しにくい。そのため、空間7に水を満たしておいても水圧等の補償作用によって、空間7から水が流入し、液体状の食品5に混合し、食品自体が水によって薄まることはない。しかし、、膜孔径が0.7μm以上であると、液状食品が空間7に移動し、代わりに空間7の水が水圧等の補償作用によって膜内に移動することから、食品が水っぽくなる。 脱 The desalination apparatus shown in Embodiment 1 attracts a cation such as potassium to the cathode side by the principle of electrophoresis and discharges it from the pores of the membrane by energization by the electrophoresis principle. Therefore, it is not necessary to arrange a solvent such as water in the space 7 outside the membrane. However, the salt can be removed by diffusion by adding water. The use of diffusion makes it possible to remove salts such as potassium very quickly. The water placed in the space 7 outside the membrane uses stirring, running water, or removes cations outside the tank and circulates them again with a pump to quickly remove cations in the vicinity of the membrane. It is preferred to maintain a low concentration. Liquid foods such as juice have a higher viscosity than water, and therefore are difficult to move from the inside of the film to the space 7. Therefore, even if the space 7 is filled with water, the water flows in from the space 7 by the compensating action of the water pressure and the like, mixes with the liquid food 5, and the food itself is not diluted by the water. However, when the membrane pore size is 0.7 μm or more, the liquid food moves to the space 7 and instead, the water in the space 7 moves into the membrane by a compensation action such as water pressure, so that the food becomes watery.
 空間7に水を満たして使用する場合、液体状の食品5の界面が、空間7を満たしている水の界面よりも幾分高くなるようにすれば、圧力により膜6と陰極3が密着することから好ましい。また、水はカリウムの迅速な除去だけではなく、冷却にも寄与する。冷却は、装置自体を低温室などの低温環境に設置することによって行ってもよい。 When the space 7 is filled with water and used, if the interface of the liquid food 5 is slightly higher than the interface of the water filling the space 7, the membrane 6 and the cathode 3 adhere to each other by pressure. This is preferred. Water also contributes to cooling as well as rapid removal of potassium. The cooling may be performed by installing the device itself in a low-temperature environment such as a low-temperature room.
 また、ここでは槽内に膜と電極を配置し、槽内の膜と電極との間にジュースなどの液体食品を入れる装置にしているが、流路の片側に膜と接した電極を配置し、他方の側面に電極を配置し、流路内を液体食品を流しながら通電し、塩類を除去する構成としてもよい。 Also, here, a membrane and an electrode are arranged in the tank, and a device for putting liquid food such as juice between the membrane and the electrode in the tank is used.However, an electrode in contact with the membrane is arranged on one side of the flow path. Alternatively, an electrode may be arranged on the other side surface, and electricity may be supplied while flowing liquid food through the flow path to remove salts.
 陽極4は液体状の食品5に浸漬されているので、陰イオンが排除されることはない。そのため、塩類除去装置1では陽イオンのみが除去される。したがって、液体状の食品に含まれている塩素イオンや有機酸などの陰イオン、酸性アミノ酸は、通電処理を行った後でも原料となる液体状の食品と同等の濃度である。有機酸とは、食品成分表に記載されているギ酸、酢酸、グリコール酸、乳酸、グルコン酸、シュウ酸、マロン酸、コハク酸、フマル酸、リンゴ酸、酒石酸、α-ケトグルタン酸、クエン酸、サリチル酸、p-クマル酸、コーヒー酸、フェルラ酸、クロロゲン酸、キナ酸、オロト酸などをいい、酸性アミノ酸とはアスパラギン酸、グルタミン酸をいうが、これらの量を測定しても通電前後で変化することはない。これら有機酸、酸性アミノ酸の含有量が変化しないことは電気透析とは大きく異なる点であり、利点である。また、後述するように、カリウムなど小さなイオンは除去されるものの、マグネシウム、カルシウムは除去されるのに時間がかかる。アミノ酸も分子量が大きいことから、塩基性アミノ酸であるアルギニン、リジンは正電荷を有しているが除去されにくい。 (4) Since the anode 4 is immersed in the liquid food 5, anions are not eliminated. Therefore, in the salt removing device 1, only cations are removed. Therefore, anions such as chloride ions and organic acids and acidic amino acids contained in the liquid food have a concentration equivalent to that of the liquid food as a raw material even after the energization treatment. Organic acids are formic, acetic, glycolic, lactic, gluconic, oxalic, malonic, succinic, fumaric, malic, tartaric, α-ketoglutanic, citric, Salicylic acid, p-coumaric acid, caffeic acid, ferulic acid, chlorogenic acid, quinic acid, orotic acid, etc .; acidic amino acids refer to aspartic acid and glutamic acid. Never. The fact that the contents of these organic acids and acidic amino acids do not change is a significant difference from electrodialysis and is an advantage. Further, as described later, although small ions such as potassium are removed, it takes time to remove magnesium and calcium. Since amino acids also have a large molecular weight, arginine and lysine, which are basic amino acids, have a positive charge but are not easily removed.
 実施態様で示す塩類除去装置は、陽イオンを選択的に除去できることから、陰イオンの量や組成は原料飲料と大きく変動することはない。したがって、陽イオンを除去した場合には、少なくとも1つ以上の陰イオン、酸性アミノ酸や中性アミノ酸、又は有機酸を測定することによって、電気透析によって陽イオン、陰イオンを除去した食品と区別することができる。また、陽イオン交換樹脂により選択的に陽イオンを除去した場合には、サイズの大きい陽イオンも同時に除去することから、マグネシウム、カルシウム、あるいは塩基性アミノ酸など分子量の大きい陽イオンを測定することによって区別をすることが可能となる。したがって、複数の有機酸、アミノ酸を測定し、その量や組成を解析することで、他の方法でカリウム等の陽イオンを除去した食品と区別することができる。 塩 The salt removing device described in the embodiment can selectively remove cations, so that the amount and composition of the anions do not greatly vary from those of the raw material beverage. Therefore, when cations are removed, foods from which cations and anions have been removed by electrodialysis are measured by measuring at least one or more anions, acidic amino acids, neutral amino acids, or organic acids. be able to. In addition, when cations are selectively removed by a cation exchange resin, large cations are also removed at the same time, so by measuring high molecular weight cations such as magnesium, calcium, or basic amino acids. It is possible to make a distinction. Therefore, by measuring a plurality of organic acids and amino acids and analyzing the amounts and compositions thereof, it is possible to distinguish the food from the cations such as potassium which have been removed by other methods.
[実施態様2]
 異なる形状の塩類除去装置11について説明する。図1(B)に示すように、塩類除去装置11は、槽12内に2つの陰極13、13’と中央に陽極14が配置されている。陰極13、13’の内側には膜16、16’が配置されている。2つの膜16、16’で仕切られていることから、膜16、16’の間に液体状の食品15を入れても両側に漏れることがない。
[Embodiment 2]
The salt removing device 11 having a different shape will be described. As shown in FIG. 1 (B), the salt removing apparatus 11 has two cathodes 13 and 13 ′ in a tank 12 and an anode 14 in the center. Membrane 16, 16 'is arranged inside cathode 13, 13'. Since it is partitioned by the two membranes 16 and 16 ', even if the liquid food 15 is put between the membranes 16 and 16', it does not leak to both sides.
 陰極13、13’と陽極14間で通電することによって、液体状の食品中の陽イオンは陰極13、13’に泳動し、膜16、16’の細孔から溶媒とともに除去される。槽12の膜の外側の空間17、17’を水で満たしておけば、膜の細孔から排出された陽イオンを迅速に除去することができる。実施態様2の装置を使用することにより、実施態様1の装置の2倍の容量の液状食品を処理することができるので、大量の食品を処理することができる。なお、陰イオンを除去する場合には、陽極と陰極の位置を入れ替えて、膜の外側に1対の陽極を配置すればよい。 By applying electricity between the cathodes 13, 13 ’and the anode 14, cations in the liquid food migrate to the cathodes 13, 13 ′ and are removed from the pores of the membranes 16, 16 ′ together with the solvent. If the space 17, 17 'outside the membrane of the tank 12 is filled with water, the cations discharged from the pores of the membrane can be quickly removed. By using the apparatus of the second embodiment, a liquid food having twice the capacity of the apparatus of the first embodiment can be processed, so that a large amount of food can be processed. When removing anions, the positions of the anode and the cathode may be switched, and a pair of anodes may be arranged outside the film.
[実施態様3]
 次に醤油など、酸味を感じることの少ない食品から陰イオン、陽イオンを除去し、脱塩する方法について記載する。カリウムイオンを制限されている腎臓病患者は、塩化ナトリウムの摂取も制限されていることが多い。そのため、味を変化させることなく、既存の製品からナトリウムイオンを減少させることができれば、大きなメリットがある。陰イオン、陽イオンを同時に除去することによって、pHに変化をきたすことなく、食品から塩の除去を行うことができる。
[Embodiment 3]
Next, a method for removing anions and cations from foods that do not feel sour, such as soy sauce, and desalting the same will be described. Patients with renal disease who have limited potassium ions often have limited intake of sodium chloride. Therefore, there is a great merit if sodium ions can be reduced from existing products without changing the taste. By simultaneously removing anions and cations, salt can be removed from food without causing a change in pH.
 図2に示す陽イオン陰イオン除去装置21は、槽22の中に、1対の電極23、24を備えた構造となっている。陽イオン陰イオン除去装置21は、槽22に陰極23と陽極24が対向して配置され、電極間に挟まれた空間に醤油など陽イオン、陰イオンを同時に除去することが好ましい液体状の食品25を入れることができる。陰極23、陽極24の内側には膜26、26’がそれぞれ電気的に接するように配置されており、液体状の食品25は膜26、26’の外側の槽内の空間27には漏れ出ないように膜で空間が区切られている。陰極23、及び陽極24が膜26、26’に接触していることから、通電することによって、膜に開いている細孔から、陰極側からはナトリウムなどの陽イオン、及び陽極側から塩素イオンを積極的に除去することができる。また、空間27には水を満たすこともできる。空間27に満たす水は、脱イオン水などでもよいが、水道水など、含有イオンの少ない水であればどのようなものを使用してもよい。 陽 The cation / anion removing device 21 shown in FIG. 2 has a structure in which a pair of electrodes 23 and 24 are provided in a tank 22. The cation / anion removing device 21 is a liquid food in which a cathode 23 and an anode 24 are arranged in a tank 22 so as to face each other, and it is preferable to simultaneously remove cations and anions such as soy sauce in a space sandwiched between the electrodes. 25 can be inserted. Membrane 26 and 26 'are arranged inside the cathode 23 and anode 24 so as to be in electrical contact with each other, and the liquid food 25 leaks into the space 27 inside the tank outside the membrane 26 and 26'. The space is separated by a membrane so that there is no space. Since the cathode 23 and the anode 24 are in contact with the membranes 26 and 26 ′, when electricity is supplied, cations such as sodium from the cathode side and chlorine ions from the anode side through pores opened in the membrane. Can be positively removed. Further, the space 27 can be filled with water. The water that fills the space 27 may be deionized water or the like, but may be any water such as tap water that contains a small amount of ions.
[実施例1]
 実施態様1の装置を使用して、種々の膜を用い、カリウムを除去した結果を以下に示す。使用した膜、及び入手先は以下のとおりである。0.70μm、0.45μm、又は0.10μmの孔径のニトロセルロース膜(東洋濾紙株式会社)、半透膜(セロファン)、ポリエチレン膜(ポリラップ(登録商標)、宇部フィルム株式会社)。なお、実施例1において、膜がジュースと接している面積は膜全体の約30%である。また、試料としては、ブロッコリー、セロリ、キャベツなどの野菜を用いて製造されている野菜・果実汁を含む青汁飲料(商品a、A社製)を用いた。
[Example 1]
The results of removing potassium using various films using the apparatus of Embodiment 1 are shown below. The membrane used and the source are as follows. Nitrocellulose membrane (Toyo Roshi Kaisha, Ltd.), semipermeable membrane (cellophane), polyethylene membrane (Polywrap (registered trademark), Ube Film Co., Ltd.) having a pore size of 0.70 μm, 0.45 μm, or 0.10 μm. In Example 1, the area where the film was in contact with the juice was about 30% of the whole film. In addition, as a sample, a green juice beverage (product a, manufactured by A company) containing vegetable and fruit juices manufactured using vegetables such as broccoli, celery, and cabbage was used.
 通電密度8mA/cmで30分、又は45分通電した結果を表1に示す。電極間距離は2.5cmに設定している。なお、以下で測定に用いたジュース、コーヒーで、通電により発生するジュール熱を検討したところ、電極間の距離が4.0cm以下、好ましくは3.5cm、より好ましくは2.5cm以下であれば、ジュール熱が発生したとしても食品が変質することはなかった。原液からのカリウム(K)の除去率、通電後の液温、pH、及び官能試験結果を示す。なお、原液のカリウム濃度は、製品のロットによって異なり153.8~170.2mg/100gであった。原料の飲料から除去されたカリウムの量を測定し、除去率(%)として表している。カリウムは、試料を乾燥・湿式灰化後、原子吸光光度法により測定した。なお、原液の液温は20℃、pHは3.86であった。 Table 1 shows the results of applying electricity at a current density of 8 mA / cm 2 for 30 minutes or 45 minutes. The distance between the electrodes is set to 2.5 cm. In addition, when the Joule heat generated by applying electricity to the juice and coffee used for the measurement was examined below, if the distance between the electrodes was 4.0 cm or less, preferably 3.5 cm, more preferably 2.5 cm or less. Even if Joule heat was generated, the food did not deteriorate. The removal rate of potassium (K) from the undiluted solution, the solution temperature, the pH after energization, and the results of sensory tests are shown. Note that the potassium concentration of the stock solution was 153.8 to 170.2 mg / 100 g, depending on the product lot. The amount of potassium removed from the raw beverage was measured and expressed as a removal rate (%). Potassium was measured by atomic absorption spectrophotometry after drying and wet incineration of the sample. The liquid temperature of the stock solution was 20 ° C., and the pH was 3.86.
 また、処理後のジュースを風味識別能力に優れた専門パネラー10名によって風味の評価を実施した。評価は5:風味が変わらない、4:風味があまり変わらない、3:どちらともいえない、2:風味がやや変化、1:風味が大きく劣化の5段階評価とし、平均を記載している。 ジ ュ ー ス Furthermore, the flavor of the processed juice was evaluated by 10 expert panelists having excellent flavor discrimination ability. The evaluations are 5: the flavor does not change, 4: the flavor does not change much, 3: neither can be said, 2: the flavor slightly changes, 1: the flavor is greatly deteriorated, and the average is described.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、0.45μm、0.10μmの孔径のニトロセルロース膜、半透膜を使用した場合には、通電45分という短時間で、80~90%のカリウムを飲料から除去することができた。このときのpHは原料の清涼飲料と比較して1.0から1.2ほど低下している。また、通電30分では、原料からカリウムを5割から7割ほど除去することができた。この場合のpHの低下は0.7程度であった。 As shown in Table 1, when a nitrocellulose membrane or a semi-permeable membrane having a pore size of 0.45 μm or 0.10 μm is used, 80 to 90% of potassium is removed from the beverage in a short time of 45 minutes. I was able to. At this time, the pH is lower by about 1.0 to 1.2 as compared with the soft drink as the raw material. Further, in 30 minutes of energization, about 50 to 70% of potassium was removed from the raw material. In this case, the decrease in pH was about 0.7.
 30分通電した際のK除去率から明らかなように、孔径が大きいものほど、一定時間当たりのK除去率が高い。すなわち、孔径の大きいものほど、処理効率が高い。また、ポリエチレンフォルムや半透膜は孔径が小さいため、目詰まりを起こし、すぐに使用できなくなる。したがって、孔径はジュースが漏れ出ない程度に大きい方が好ましい。膜の種類としては精密濾過膜、限外濾過膜は孔径が比較的大きいことから、これらの膜を使用することが好ましい。 As is clear from the K removal rate when energized for 30 minutes, the larger the pore size, the higher the K removal rate per fixed time. That is, the larger the pore size, the higher the processing efficiency. Also, polyethylene form and semi-permeable membranes have a small pore size, so they are clogged and cannot be used immediately. Therefore, it is preferable that the pore diameter is large enough not to leak juice. As the type of the membrane, the microfiltration membrane and the ultrafiltration membrane have a relatively large pore size, and therefore, it is preferable to use these membranes.
 いずれの通電条件でも、官能試験の結果、評価は4.5であり、風味が原料飲料とほとんど変わらなかったことを示している。カリウムが80%以上除去されている通電45分の条件であっても、官能試験結果は、元のジュースと比べて遜色ない風味であることを示しており、中和処理を行う必要がない。従来のイオン交換樹脂を用いたカリウム除去法では、カリウム以外の分子量の大きい陽イオンも同時に除去されることからpHの変化が大きく処理後に中和する必要があったが、膜を用いた除去法では中和の必要がない場合も多い。 で も Under any of the energizing conditions, the result of the sensory test was 4.5, indicating that the flavor was almost the same as that of the raw beverage. Even under the condition of 45 minutes of energization in which 80% or more of potassium has been removed, the sensory test result shows that the flavor is comparable to that of the original juice, and there is no need to perform a neutralization treatment. In the conventional method of removing potassium using an ion exchange resin, cations having a high molecular weight other than potassium are also removed at the same time. In many cases, neutralization is not necessary.
 孔径0.70μmの膜を用いた場合には、細孔からジュースが膜の外側に漏れ出るのが観察されたため、測定を行わなかった。また、不透膜であるポリエチレンフィルムを用いた場合には、30分の通電で液温が52℃と高くなり、これ以上通電すると液温がさらに上昇すると考えられたので、通電45分の試験は行わなかった。 測定 When a membrane having a pore size of 0.70 μm was used, the measurement was not performed because juice was observed to leak out of the membrane from the pores. When a polyethylene film, which is an impermeable membrane, was used, the liquid temperature was raised to 52 ° C. by energizing for 30 minutes, and the liquid temperature was considered to rise further when energizing for more than 30 minutes. Did not do.
 以上のように、半透膜を用いた場合には、カリウム除去を行うことができた。半透膜の孔径は1nm~10nmと言われている。したがって、1nm以上の孔径の膜であればカリウムなどの塩類を除去することができると考えられる。しかし、処理時間や目詰まりを考慮すると、10nm以上の孔径を有する膜を使用することが好ましい。また、孔径0.70μmのニトロセルロース膜では飲料が膜の外側に漏れ出たことから、孔径0.70μm未満の膜を使用する必要がある。 カ リ ウ ム As described above, when the semipermeable membrane was used, potassium could be removed. The pore size of the semipermeable membrane is said to be 1 nm to 10 nm. Therefore, it is considered that a salt having a pore diameter of 1 nm or more can remove salts such as potassium. However, in consideration of the processing time and clogging, it is preferable to use a membrane having a pore size of 10 nm or more. In the case of a nitrocellulose membrane having a pore diameter of 0.70 μm, since the beverage leaked to the outside of the membrane, it is necessary to use a membrane having a pore diameter of less than 0.70 μm.
 次に、0.45μm、0.10μmの孔径のニトロセルロース膜、半透膜について、実施例1の通電30分の条件で陽イオン除去を行い、カリウム、ナトリウム(Na)、カルシウム(Ca)、マグネシウム(Mg)量を測定した。ナトリウム、カルシウム、及びマグネシウムの測定はカリウムと同様、試料を乾燥・湿式灰化後、原子吸光光度法により測定した(表2)。 Next, for the nitrocellulose membrane and the semipermeable membrane having pore diameters of 0.45 μm and 0.10 μm, cations were removed under the conditions of 30 minutes of energization of Example 1, and potassium, sodium (Na), calcium (Ca), The amount of magnesium (Mg) was measured. As in the case of potassium, sodium, calcium, and magnesium were measured by atomic absorption spectrophotometry after drying and wet incineration of the sample (Table 2).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 いずれの膜を使用して陽イオン除去を行った場合でも、多量に含まれているカリウムの除去率が最も高く、原子の大きいカルシウム、マグネシウムはほとんど除去されていない。このように、塩類除去装置でカリウムを除去した液状食品は、カリウム含有量が少なく、カルシウム、マグネシウム含有量は除去前の食品とほとんど差がない。したがって、カリウム、ナトリウムを選択的に除去した飲料を提供することができる。 陽 Regardless of which membrane is used to remove cations, the removal rate of potassium contained in a large amount is the highest, and calcium and magnesium with large atoms are hardly removed. As described above, the liquid food from which potassium has been removed by the salt removing device has a low potassium content, and the calcium and magnesium contents have almost no difference from the food before removal. Therefore, a beverage from which potassium and sodium have been selectively removed can be provided.
 電気泳動法によって、カリウムを除去した場合には、カルシウム、マグネシウムがほとんど除去されないことから、イオン交換樹脂によるカリウム除去法に比べて、pHが低下する割合が少ない。したがって、果実ジュースなど原料とする飲料が酸性の場合にはほとんど中和する必要がない。しかし、中性付近の飲料、例えば緑茶などからカリウムを除去する場合には、酸性だと味に違和感が生じることから、水酸化ナトリウム、炭酸カルシウム、水酸化カルシウム、水酸化マグネシウムなどのpH調整剤を用いて中和する必要がある。電気泳動によってカリウムを除去し、中和する場合には、除去されたカリウムによるpH低下に見合った量のアルカリ塩を加える必要がある。そのため、ナトリウム、カルシウム、又はマグネシウム量が原料とする飲料よりも多く含まれることになる。 (4) When potassium is removed by electrophoresis, calcium and magnesium are hardly removed, so that the rate of decrease in pH is smaller than in the potassium removal method using an ion exchange resin. Therefore, when a beverage as a raw material such as fruit juice is acidic, it is hardly necessary to neutralize the beverage. However, in the case of removing potassium from beverages near neutrality, for example, green tea, etc., the taste may be uncomfortable if it is acidic, and therefore, pH adjusters such as sodium hydroxide, calcium carbonate, calcium hydroxide, and magnesium hydroxide. It is necessary to neutralize using. When potassium is removed by electrophoresis and neutralized, it is necessary to add an alkali salt in an amount commensurate with the decrease in pH due to the removed potassium. Therefore, the amount of sodium, calcium, or magnesium is larger than that of the beverage used as the raw material.
[実施例2]
 通電密度を変えて、カリウム除去量を検討した(表3)。通電密度を12mA/cmに上げたほかは実施例1と同じ条件で処理を行い、処理後の飲料のカリウム除去率、液温、pHを測定し、官能試験を実施した。
[Example 2]
The amount of potassium removed was examined by changing the current density (Table 3). The treatment was carried out under the same conditions as in Example 1 except that the current-carrying density was increased to 12 mA / cm 2 , and the potassium removal rate, liquid temperature, and pH of the treated beverage were measured, and a sensory test was performed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 通電密度を上げて通電することにより、より短時間でカリウムを除去することができた。いずれの膜を使用した場合でも30分で75%以上のカリウムを飲料から除去することができる。しかし、液温上昇のためか、カリウム除去に要する時間は短かったものの、官能試験の結果は、通電30分でいずれの膜でも3.5、通電45分では1と通電密度8mA/cmの場合と比較して風味が劣化していた。通電密度を上げることによる液温の上昇は避けることができないことから、通電密度を上げる場合には、槽を低温室に設置して通電する、あるいは槽内に冷却水を入れたり、冷却装置を設けるなど冷却しながら通電する必要がある。 By increasing the current density and energizing, potassium could be removed in a shorter time. Regardless of which membrane is used, more than 75% of potassium can be removed from the beverage in 30 minutes. However, although the time required for removing potassium was short due to an increase in the liquid temperature, the results of the sensory test showed that any of the films had a current density of 3.5 mA for 30 minutes and a current density of 8 mA / cm 2 for 45 minutes. The flavor was deteriorated as compared with the case. Since the rise of the liquid temperature due to the increase in the current density cannot be avoided, when increasing the current density, place the tank in a low-temperature room and energize it, put cooling water in the tank, or install a cooling device. It is necessary to energize while cooling, such as by providing.
[実施例3]
 次に種々の飲料を通電密度8mA/cm、電極間距離2.5cm、通電時間30分、0.45μmニトロセルロース膜の条件で通電し、陽イオンの量を測定し、除去率を求めた。試料は以下の飲料を用いた。オレンジジュース(濃縮還元オレンジジュース、果汁100%、商品b1、B社製)、アップルジュース(濃縮還元アップルジュース、果汁100%、商品b2、B社製)、野菜・果実飲料(緑黄色野菜ミックスジュース、野菜汁果汁100%、商品c、C社製)、トマトジュース(濃縮還元トマトジュース100%、商品d、D社製)、コーヒー(無糖、商品e、E社製)。
[Example 3]
Next, various beverages were energized under the conditions of a current density of 8 mA / cm 2 , a distance between electrodes of 2.5 cm, a current time of 30 minutes, and a 0.45 μm nitrocellulose membrane, the amount of cations was measured, and the removal rate was determined. . The following beverages were used as samples. Orange juice (concentrated reduced orange juice, fruit juice 100%, product b1, manufactured by B company), apple juice (concentrated reduced apple juice, fruit juice 100%, product b2, manufactured by B company), vegetable / fruit beverage (green-yellow vegetable mixed juice, Vegetable juice 100%, product c, company C), tomato juice (concentrated and reduced tomato juice 100%, product d, company D), coffee (sugar-free, product e, company E).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 いずれの飲料を用いた場合でも、通電密度8mA/cm、30分の通電で、原料飲料の36.9~95.5%と効率良くカリウムを除去することができた。トマトジュースのように、元の飲料に含まれるカリウム量が多い場合には、カリウム除去率では36.9%と低い値を示しているが、100gあたり約100mgのカリウムが除去されている。カリウム除去量を処理前後で比較すると、いずれの飲料でも30分の通電で100mg/100g程度のカリウムが除去されている。 Regardless of which beverage was used, potassium could be efficiently removed as 36.9 to 95.5% of the raw beverage by applying electricity for 8 minutes at an electric current density of 8 mA / cm 2 . When the amount of potassium contained in the original beverage is large, such as in tomato juice, the potassium removal rate is as low as 36.9%, but about 100 mg of potassium is removed per 100 g. Comparing the amount of potassium removed before and after the treatment, about 100 mg / 100 g of potassium was removed in all of the beverages for 30 minutes.
[実施例4]
 実施例1と同様にして陽イオンを除去した場合には、カリウム、ナトリウムなどの比較的小さい陽イオンに比べて、アミノ酸など比較的大きい分子は除去されにくいことを示す。実施態様1の装置を使用して、実施例1と同様に、0.10μmの孔径のニトロセルロース膜を用い、野菜・果実汁を含む青汁飲料(商品a、A社製)から陽イオンを除去する試験を行った。
[Example 4]
When cations are removed in the same manner as in Example 1, relatively large molecules such as amino acids are hardly removed compared to relatively small cations such as potassium and sodium. Using the apparatus of Embodiment 1, cations were extracted from a green juice beverage (product a, manufactured by Company A) containing vegetable and fruit juices using a nitrocellulose membrane having a pore size of 0.10 μm in the same manner as in Example 1. A test for removal was performed.
 通電密度8mA/cmで60分通電した。電極間距離は3.5cmに設定している。原液から除去されたカリウム量、全遊離アミノ酸量を測定し、除去率(%)として表している。カリウムは、上記と同様に試料を乾燥・湿式灰化後、原子吸光光度法により測定した。全遊離アミノ酸濃度は、生試料を70~80℃で30分間加温し、ろ過液をニンヒドリン比色法により測定した。原液、処理液のカリウム濃度、カリウム除去率、全遊離アミノ酸濃度、全遊離アミノ酸除去率、液温、pHを示す。 Electric current was applied at an electric current density of 8 mA / cm 2 for 60 minutes. The distance between the electrodes is set to 3.5 cm. The amount of potassium removed from the stock solution and the total amount of free amino acids were measured and expressed as the removal rate (%). Potassium was measured by atomic absorption spectrometry after drying and wet incineration of the sample as described above. The total free amino acid concentration was determined by heating a raw sample at 70 to 80 ° C. for 30 minutes and measuring the filtrate by a ninhydrin colorimetric method. The potassium concentration, the potassium removal rate, the total free amino acid concentration, the total free amino acid removal rate, the solution temperature, and the pH of the stock solution and the treatment solution are shown.
 表5に示すように、カリウムが84%除去されたが、全遊離アミノ酸は12%しか除去されなかった。カリウムが80%以上除去されている条件であっても、アミノ酸は10%程度しか除去されておらず、処理前後で野菜・果汁飲料、ジュースなどの食品に含まれるアミノ酸の量や組成に大きな変化はないと考えられる。特に、陽イオンが除去される条件では、酸性アミノ酸、あるいは中性アミノ酸はほとんど除去されていないと考えられる。通電処理によって塩類を除去した場合は、イオン交換樹脂によって塩類を除去した場合と比較して、小さいイオンが選択的に除去され、質量の大きいイオン、分子は除去されにくい。したがって、質量の大きいアミノ酸などの量や組成は変化しにくい。また、上記で示したように、酸などの陰イオンの除去は起こらないことから、処理前後でジュースなどの食品に含まれる酸の組成にも大きな変化はない。また、pHが低下することは、選択的に陽イオンのみが除去されており、塩素イオンなどの陰イオンは除去されていないことを示している。 カ リ ウ ム As shown in Table 5, 84% of potassium was removed, but only 12% of total free amino acids were removed. Even under conditions in which potassium is removed by 80% or more, only about 10% of amino acids are removed, and the amount and composition of amino acids contained in foods such as vegetables, fruit juice drinks, and juices before and after treatment significantly change. It is thought that there is no. In particular, it is considered that acidic or neutral amino acids are hardly removed under the conditions for removing cations. When the salts are removed by the energization treatment, small ions are selectively removed and ions and molecules having a large mass are hardly removed as compared with the case where the salts are removed by an ion exchange resin. Therefore, the amount and composition of amino acids having a large mass are unlikely to change. In addition, as described above, since the removal of anions such as acids does not occur, there is no significant change in the composition of acids contained in foods such as juice before and after the treatment. Further, a decrease in pH indicates that only cations are selectively removed and anions such as chloride ions are not removed.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[実施例5]
 陽極と陰極を入れ替え、膜に接する電極を陽極とすることによって、陰イオンが除去できることを示す(表6)。実施態様1の装置の陰極と陽極を入れ替え、膜に陽極が接するようにして硝酸イオンの除去試験を行った。
[Example 5]
It is shown that the anion can be removed by replacing the anode and the cathode and using the electrode in contact with the membrane as the anode (Table 6). A test for removing nitrate ions was performed by replacing the cathode and anode of the apparatus of Embodiment 1 so that the anode was in contact with the membrane.
 食品中の硝酸性窒素含量は材料により異なる。日本食品標準成分表(七訂)によれば、ほうれんそうでは0.2g/100g、チンゲンサイでは0.5g/100gと葉物野菜に比較的多量に含まれている。そこで、試験は硝酸カリウム(富士フィルム和光純薬株式会社)を用いて、100mg/L(0.1g/100g)の硝酸濃度(NO)の溶液を作製して実施した。 The nitrate nitrogen content in foods varies from material to material. According to the Japanese Food Standard Composition Table (Seventh Edition), spinach contains 0.2 g / 100 g and bok choy 0.5 g / 100 g, which is relatively large in leafy vegetables. Therefore, the test was carried out using potassium nitrate (Fuji Film Wako Pure Chemical Co., Ltd.) to prepare a solution having a nitric acid concentration (NO 3 ) of 100 mg / L (0.1 g / 100 g).
 0.10μmの孔径のニトロセルロース膜を用い、通電密度4mA/cmで10分通電した。電極間距離は2.5cmに設定している。硝酸の濃度、原液からの除去率、液温、pHを示す。除去率(%)は、原液から除去された硝酸の量を%で表している。硝酸濃度は、比色法により測定した。 Using a nitrocellulose membrane having a pore size of 0.10 μm, current was applied at a current density of 4 mA / cm 2 for 10 minutes. The distance between the electrodes is set to 2.5 cm. Shows nitric acid concentration, removal rate from stock solution, liquid temperature, and pH. The removal rate (%) represents the amount of nitric acid removed from the stock solution in%. The nitric acid concentration was measured by a colorimetric method.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 試験溶液には、パルプなどの繊維成分が含まれていないことから、低い通電密度、かつ短時間で90%以上の硝酸を除去することができた。陰イオンであっても、陽イオンと同様に除去できることが示された。 (4) Since the test solution did not contain fiber components such as pulp, 90% or more of nitric acid could be removed in a short time at a low current density. It was shown that even anions can be removed similarly to cations.
 上記処理によって、原料とする液状食品の50%以下など、所望の濃度に硝酸塩含有量を低減させることができる。硝酸イオンなどの陰イオンを除去する場合には、液体食品からは陽イオンは除去されにくい。したがって、遊離アミノ酸のうち、塩基性アミノ酸及び中性アミノ酸は除去されにくい。 By the above treatment, the nitrate content can be reduced to a desired concentration such as 50% or less of the liquid food as a raw material. When removing anions such as nitrate ions, cations are not easily removed from liquid foods. Therefore, of the free amino acids, basic amino acids and neutral amino acids are not easily removed.
[比較例1]従来法によるカリウム除去
 ジュース、豆乳からカリウムを除去する方法として従来から用いられているイオン交換樹脂によるカリウム除去法と実施例で開示している方法との比較を行った。用いた試料は下記の飲料である。オレンジジュース(商品b1、B社製)、野菜・果実飲料(商品c、C社製)、トマトジュース(商品d、D社製)、コーヒー(商品e、E社製)、野菜・果実汁を含む青汁飲料(商品a、A社製)
Comparative Example 1 Removal of Potassium by Conventional Method As a method for removing potassium from juice and soymilk, a comparison was made between a potassium removal method using a conventional ion exchange resin and a method disclosed in the examples. The samples used are the following beverages. Orange juice (product b1, manufactured by Company B), vegetable / fruit drink (product c, manufactured by Company C), tomato juice (product d, manufactured by Company D), coffee (product e, manufactured by Company E), vegetable / fruit juice Green juice beverage (product a, manufactured by Company A)
 特許文献3に記載の方法に沿って、オレンジジュース、トマトジュース、コーヒーは、試料100mlに対し、乾燥重量5g(湿重量7.53g)のH型イオン交換樹脂を添加し、野菜・果実飲料、野菜・果実汁を含む青汁飲料は試料100mlに対し、乾燥重量70g(湿重量105.45g)を添加し、30分間振盪した後に陽イオン交換樹脂を沈殿させ、上澄み液を測定した。トマトジュースはパルプが多く、樹脂との分離が不十分であり樹脂が多量に混入し、正確な測定値を得ることができなかったので測定結果からは除いている。オレンジジュース、野菜・果実汁を含む青汁飲料はわずかに樹脂が混入したが測定結果を得ることができた。結果を表7に示す。 In accordance with the method described in Patent Literature 3, orange juice, tomato juice, and coffee are prepared by adding a dry weight of 5 g (wet weight of 7.53 g) of H-type ion exchange resin to 100 ml of a sample to produce a vegetable / fruit beverage, A green juice drink containing vegetable and fruit juices was added to a sample (100 ml) at a dry weight of 70 g (wet weight of 105.45 g), and after shaking for 30 minutes, a cation exchange resin was precipitated and the supernatant was measured. Tomato juice has a large amount of pulp, is insufficiently separated from the resin, contains a large amount of resin, and cannot obtain an accurate measurement value. Green juice drinks including orange juice and vegetable / fruit juice were able to obtain measurement results although resin was slightly mixed. Table 7 shows the results.
Figure JPOXMLDOC01-appb-T000007
 
 
Figure JPOXMLDOC01-appb-T000007
 
 
 カリウムイオンは95.3%~99.7%と非常に良く除去されていた。また、樹脂を使用する方法では、カルシウム、マグネシウムも高率に除去されている。イオン交換樹脂を用いた場合には、質量の大きさによらずカルシウム、マグネシウムなどのイオンも高率に除去される。 Potassium ions were very well removed at 95.3% to 99.7%. In the method using a resin, calcium and magnesium are also removed at a high rate. When an ion exchange resin is used, ions such as calcium and magnesium are also removed at a high rate regardless of the size of the mass.
 また、バッチ式で樹脂と試料を混合し、カリウムを除去した場合には、試料から樹脂を除くのが非常に困難であった。特にパルプの多いトマトジュースでは、樹脂とジュースを分離することは困難であった。電気泳動による方法では、パルプの多い飲料や、流動食であっても、30分程度の短時間でカリウムを除去することが可能である。 In addition, when the resin and the sample were mixed in a batch system to remove potassium, it was very difficult to remove the resin from the sample. In particular, in the case of tomato juice containing a large amount of pulp, it was difficult to separate the resin from the juice. In the method by electrophoresis, potassium can be removed in a short time of about 30 minutes even in a beverage containing a lot of pulp or a liquid food.
 [実施例6]
 次に、陰イオン、陽イオンを同時に除去した結果を示す。醤油(商品f、F社製)を図2に示す装置を用い、通電密度8mA/cm、ナイロン膜(GE社製)孔径0.2μmの膜を用い、30分間処理を行った。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
[Example 6]
Next, the result of simultaneously removing anions and cations will be described. The soy sauce (product f, manufactured by Company F) was treated for 30 minutes using the apparatus shown in FIG. 2 using a membrane having a current density of 8 mA / cm 2 and a nylon membrane (manufactured by GE) having a pore diameter of 0.2 μm. Table 8 shows the results.
Figure JPOXMLDOC01-appb-T000008
 測定した陽イオン全体の総除去モル数は243.8mM、陰イオンの総除去モル数は249.2mMであり、陽イオン、陰イオンほぼ等量のイオンが除去されていた。その結果、pHの変化がほとんどなく、味の変化も認められなかった。醤油には、塩化ナトリウムが多量に含まれていることから、30分間の通電では100gあたり526mgのナトリウムが除去されているものの除去率が9.4%の除去率にとどまっていた。しかし、より長時間通電することによって、より多くの塩化ナトリウムを除去することが可能である。本実施例に示す方法は、既存の製品をもとに、味を変化させることなく塩化ナトリウムを減らすことができることから有用な方法となる。 (4) The total number of moles of the removed cations measured was 243.8 mM, and the total number of moles of the removed anions was 249.2 mM. Almost the same amount of cations and anions was removed. As a result, there was almost no change in pH and no change in taste was observed. Since soy sauce contains a large amount of sodium chloride, the energization for 30 minutes removes 526 mg of sodium per 100 g, but the removal rate is only 9.4%. However, it is possible to remove more sodium chloride by energizing for a longer time. The method shown in this example is a useful method because sodium chloride can be reduced based on existing products without changing the taste.
 電気透析により脱塩する場合にも、陽イオン、陰イオンが除去されることから、pHの変化がほとんどなく、味の変化は認められないが、電気透析に比べ、孔径の大きい膜を使用することから、より短時間、低電圧で処理を行うことができる。そのため、熱の発生も少なく、食品の鮮度を保つことができる。 Even when desalting by electrodialysis, since cations and anions are removed, there is almost no change in pH and no change in taste is observed, but use a membrane with a larger pore size than electrodialysis. Therefore, the processing can be performed in a shorter time and at a lower voltage. Therefore, generation of heat is small and freshness of the food can be maintained.
 以上示したように、本実施例で示した孔径の大きい膜を使用して塩を除去する方法は、イオン交換樹脂、電気透析法に比べ、簡便でありながら、味の変化を伴うことなく、既存の製品からカリウムなどの陽イオン、あるいは塩化ナトリウムを除去することができる有用な方法である。 As described above, the method of removing salts using a membrane having a large pore size shown in this example is simpler than ion exchange resin and electrodialysis, without accompanying a change in taste, It is a useful method that can remove cations such as potassium or sodium chloride from existing products.
1、11…塩類除去装置、2、12、22…槽、3、13、13’、23…陰極、4、14、24…陽極、5、15、25…液体状の食品、6、16、16’、26、26’…膜、21…陽イオン陰イオン除去装置 1, 11 ... salt removal device, 2, 12, 22 ... tank, 3, 13, 13 ', 23 ... cathode, 4, 14, 24 ... anode, 5, 15, 25 ... liquid food, 6, 16, 16 ', 26, 26' ... membrane, 21 ... cation / anion removal device

Claims (10)

  1.  液体状の食品から陽イオン、又は陰イオンを除去する液体状の食品の製造方法であって、
     対向して配置される陰極、及び陽極と
     一定の孔径を備えた膜を備え、
     陽イオンを除去する場合には前記膜の前記陽極に対向する面の反対側に陰極を接するように配置し、
     陰イオンを除去する場合には前記膜の前記陰極に対向する面の反対側に陽極を接するように配置し、
     前記膜によって区切られた空間を液体状の食品で満たし、
     通電することによって陽イオン、又は陰イオンを除去する液体状の食品の製造方法。
    A method for producing a liquid food for removing cations or anions from the liquid food,
    Comprising a cathode and an anode and a membrane having a fixed pore size,
    When removing cations, a cathode is placed on the opposite side of the surface of the membrane facing the anode,
    When anions are removed, an anode is disposed on the opposite side of the surface of the membrane facing the cathode,
    Fill the space separated by the membrane with liquid food,
    A method for producing a liquid food in which cations or anions are removed by energizing.
  2.  前記膜の孔径が1nm以上0.7μm未満であることを特徴とする請求項1記載の液体状の食品の製造方法。 (4) The method for producing a liquid food according to (1), wherein the membrane has a pore diameter of 1 nm or more and less than 0.7 μm.
  3.  対向する陰極と陽極を備え、
     前記陰極、又は陽極のいずれか一方の内側には一定の孔径を備えた膜が接するように配置されており、
     前記陽極と陰極間に通電することによって電気泳動によって液体状の食品から塩類を除去する装置。
    With opposing cathode and anode,
    The cathode, or a membrane having a certain pore diameter is arranged to be in contact with the inside of either one of the anode,
    An apparatus for removing salts from liquid food by electrophoresis by energizing between the anode and the cathode.
  4.  1対の陰極と陽極が設けられ、
     前記陰極、又は陽極は膜に接し、
     膜を介して陽極、又は陰極が対向するように設けられている請求項3記載の液体状の食品から塩類を除去する装置。
    A pair of cathode and anode are provided,
    The cathode, or the anode is in contact with the membrane,
    The apparatus for removing salts from a liquid food according to claim 3, wherein the anode or the cathode is provided so as to face the membrane.
  5.  2つの陰極、又は2つの陽極が対向して配置され、
     前記2つの対向する陰極、又は陽極の中央に、陽極、又は陰極が設けられ、
     前記2つの対向する陰極、又は陽極は夫々膜を介して中央の陽極、又は陰極に対向している請求項3記載の液体状の食品から塩類を除去する装置。
    Two cathodes or two anodes are arranged facing each other,
    At the center of the two opposed cathodes or anodes, an anode or cathode is provided,
    4. The apparatus for removing salts from a liquid food according to claim 3, wherein the two opposed cathodes or anodes face the central anode or cathode through a membrane, respectively.
  6.  前記膜の孔径が1nm以上0.7μm未満であることを特徴とする請求項3~5いずれか1項記載の液体状の食品から塩類を除去する装置。 (6) The apparatus for removing salts from a liquid food according to any one of (3) to (5), wherein the pore size of the membrane is 1 nm or more and less than 0.7 μm.
  7.  前記膜が接するように配置されている陰極、又は陽極が水に浸漬され、
     水を循環、及び/又は撹拌する手段を備えていることを特徴とする請求項3~6いずれか1項記載の液体状の食品から塩類を除去する装置。
    A cathode, or an anode, in which the membrane is arranged to be in contact, is immersed in water,
    The apparatus for removing salts from a liquid food according to any one of claims 3 to 6, further comprising means for circulating and / or stirring water.
  8.  処理後のカリウム含有量が原料とする液体状の食品の50%以下であり、
     少なくとも1つ以上の遊離酸性アミノ酸、有機酸、及び/又は陰イオンは原料とする液体状の食品とほぼ等量であることを特徴とする低カリウム化された液体状の食品。
    The potassium content after the treatment is 50% or less of the liquid food as a raw material,
    A low-potassium liquid food, wherein at least one or more free acidic amino acids, organic acids, and / or anions are substantially equivalent to the liquid food as a raw material.
  9.  液体状の食品から陽イオン、及び陰イオンを同時に除去する液体状の食品の製造方法であって、
     一対の電極と
     一定の孔径を備えた膜を備え、
     一対の電極の内側に膜を接するように配置し、
     前記膜によって区切られた空間を液体状の食品で満たし、
     通電することによって陽イオン、又は陰イオンを同時に除去する液体状の食品の製造方法。
    A method for producing a liquid food, wherein cations and anions are simultaneously removed from the liquid food,
    With a pair of electrodes and a membrane with a certain pore size,
    Place the membrane in contact with the inside of the pair of electrodes,
    Fill the space separated by the membrane with liquid food,
    A method for producing a liquid food in which cations or anions are simultaneously removed by energizing.
  10.  前記膜の孔径が1nm以上0.7μm未満であることを特徴とする請求項9記載の液体状の食品の製造方法。
     
     
    The method for producing a liquid food according to claim 9, wherein the pore size of the membrane is 1 nm or more and less than 0.7 µm.

PCT/JP2019/028932 2018-07-24 2019-07-24 Apparatus and method for removing salts from liquid food, and liquid food from which salts are removed WO2020022357A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020532427A JPWO2020022357A1 (en) 2018-07-24 2019-07-24 Devices and methods for removing salts from liquid foods, and liquid foods from which salts have been removed.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/027756 WO2020021641A1 (en) 2018-07-24 2018-07-24 Apparatus and method for removing salts from liquid food, and liquid food from which salts are removed
JPPCT/JP2018/027756 2018-07-24

Publications (1)

Publication Number Publication Date
WO2020022357A1 true WO2020022357A1 (en) 2020-01-30

Family

ID=69180790

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/027756 WO2020021641A1 (en) 2018-07-24 2018-07-24 Apparatus and method for removing salts from liquid food, and liquid food from which salts are removed
PCT/JP2019/028932 WO2020022357A1 (en) 2018-07-24 2019-07-24 Apparatus and method for removing salts from liquid food, and liquid food from which salts are removed

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027756 WO2020021641A1 (en) 2018-07-24 2018-07-24 Apparatus and method for removing salts from liquid food, and liquid food from which salts are removed

Country Status (2)

Country Link
JP (1) JPWO2020022357A1 (en)
WO (2) WO2020021641A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7478333B2 (en) 2020-07-29 2024-05-07 和弘 原 Ingredient preparation production device and ingredient preparation production method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209573A (en) * 1985-03-12 1986-09-17 Nippon Terupen Kagaku Kk Drink from which potassium is removed
US4857343A (en) * 1988-08-23 1989-08-15 Continental Can Company, Inc. Process for the low temperature pasteurization of liquid comestibles
JPH06293988A (en) * 1992-11-27 1994-10-21 Agency Of Ind Science & Technol Production of caustic soda
JP2003511052A (en) * 1999-10-12 2003-03-25 明治製菓株式会社 Low potassium juice, method for producing the same, and food containing the same
JP2004073056A (en) * 2002-08-14 2004-03-11 Hiroshi Tanaka Method for modifying health beverage, beverage and liquors using electrolysis and electrodialysis
US20060147559A1 (en) * 2005-01-06 2006-07-06 National Research Laboratories, Ltd. Methods for Altering the Mineral Content of Foods
WO2016181478A1 (en) * 2015-05-12 2016-11-17 株式会社クレアテラ System and method for removing potassium from food

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209573A (en) * 1985-03-12 1986-09-17 Nippon Terupen Kagaku Kk Drink from which potassium is removed
US4857343A (en) * 1988-08-23 1989-08-15 Continental Can Company, Inc. Process for the low temperature pasteurization of liquid comestibles
JPH06293988A (en) * 1992-11-27 1994-10-21 Agency Of Ind Science & Technol Production of caustic soda
JP2003511052A (en) * 1999-10-12 2003-03-25 明治製菓株式会社 Low potassium juice, method for producing the same, and food containing the same
JP2004073056A (en) * 2002-08-14 2004-03-11 Hiroshi Tanaka Method for modifying health beverage, beverage and liquors using electrolysis and electrodialysis
US20060147559A1 (en) * 2005-01-06 2006-07-06 National Research Laboratories, Ltd. Methods for Altering the Mineral Content of Foods
WO2016181478A1 (en) * 2015-05-12 2016-11-17 株式会社クレアテラ System and method for removing potassium from food

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIZUTANI, YUKIO: "Structure of Ion Exchange Membranes", BULLETIN OF THE SOCIETY OF SEA WATER SCIENCE , JAPAN, vol. 41, no. 4, 1987, pages 181 - 195 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7478333B2 (en) 2020-07-29 2024-05-07 和弘 原 Ingredient preparation production device and ingredient preparation production method

Also Published As

Publication number Publication date
JPWO2020022357A1 (en) 2021-08-02
WO2020021641A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
Kotsanopoulos et al. Membrane processing technology in the food industry: food processing, wastewater treatment, and effects on physical, microbiological, organoleptic, and nutritional properties of foods
JP5479361B2 (en) Method for enriching water with oxygen by electrolysis, oxygen-enriched water or beverage and use thereof
RU2140881C1 (en) Water produced by electrolysis and containing dissolved hydrogen, method of water production by electrolysis and plant for water production by electrolysis
JP2002292371A (en) Fresh water obtained from deep sea water, concentrated deep sea water, mineral concentrate, concentrated salt water, bittern, and specifyed salt
WO2004014154A1 (en) Mineral composition using marine water
JPS58165775A (en) Keeping of color and flavor of liquid food
Diblíková et al. The effect of dry matter and salt addition on cheese whey demineralisation
WO2020022357A1 (en) Apparatus and method for removing salts from liquid food, and liquid food from which salts are removed
JP5757962B2 (en) Processing method of marine product extract, marine product extract and food and drink
US4857343A (en) Process for the low temperature pasteurization of liquid comestibles
Nielsen et al. Improving electrodialysis separation efficiency of minerals from acid whey by nano‐filtration pre‐processing
WO2019180389A1 (en) Method for the demineralisation of whey and whey thus obtained
Chindapan et al. Desalination of fish sauce by electrodialysis: effect on selected aroma compounds and amino acid compositions
JP7075176B2 (en) A method for suppressing a decrease in the hydrogen content of a hydrogen-containing liquid, a method for suppressing a decrease in the hydrogen content of the hydrogen-containing liquid, and a method for producing a hydrogen-containing liquid.
US20060147559A1 (en) Methods for Altering the Mineral Content of Foods
JP2005526829A (en) Method for producing potato juice products by food technology
JP2006007084A (en) Mineral composition, manufacturing method therefor and usage thereof
US4938856A (en) Process for mild heat treatment of a flowable fluid
JP4104105B2 (en) Mineral beverage manufacturing method
US20060024413A1 (en) Preparation of pumpable, edible composition using electrodialysis
JP2006305412A (en) Mineral water, and method for producing the same
Bazinet et al. Electrodialytic phenomena, associated electromembrane technologies and applications in the food, beverage and nutraceutical industries
KR101219117B1 (en) A method of reducing histamine by using electrodialysis
JP4159395B2 (en) Method for removing nitrate nitrogen from vegetable juice
JP3756790B2 (en) Method for producing coffee beverage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020532427

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19841223

Country of ref document: EP

Kind code of ref document: A1