WO2016181478A1 - System and method for removing potassium from food - Google Patents

System and method for removing potassium from food Download PDF

Info

Publication number
WO2016181478A1
WO2016181478A1 PCT/JP2015/063555 JP2015063555W WO2016181478A1 WO 2016181478 A1 WO2016181478 A1 WO 2016181478A1 JP 2015063555 W JP2015063555 W JP 2015063555W WO 2016181478 A1 WO2016181478 A1 WO 2016181478A1
Authority
WO
WIPO (PCT)
Prior art keywords
potassium
food
removal system
water
exchange resin
Prior art date
Application number
PCT/JP2015/063555
Other languages
French (fr)
Japanese (ja)
Inventor
柳田 友隆
未来 中村
Original Assignee
株式会社クレアテラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレアテラ filed Critical 株式会社クレアテラ
Priority to PCT/JP2015/063555 priority Critical patent/WO2016181478A1/en
Priority to JP2017517500A priority patent/JP6281888B2/en
Publication of WO2016181478A1 publication Critical patent/WO2016181478A1/en

Links

Images

Definitions

  • the present invention relates to a system for removing potassium without impairing the flavor and texture of food and a method for removing potassium using the system.
  • the present invention relates to a system and method for performing potassium removal treatment in a short time.
  • the kidney regulates the excretion of waste, water and electrolytes, and keeps the body environment constant. When the kidney function falls and the homeostasis in the body cannot be maintained, various symptoms called uremia appear in the whole body.
  • Dialysis includes peritoneal dialysis and hemodialysis.
  • hemodialysis that circulates blood outside the body is the mainstream, and about 270,000 people are treated by hemodialysis.
  • dialysis is generally performed 4 hours at a time, 3 times a week, but the function of dialysis is not as far as the living kidney. Therefore, patients are not allowed to eat an unlimited number of meals, and it is important to manage their diet through self-management.
  • the amount of potassium that can be taken per day varies depending on the stage, but it must be limited to 1500 to 2000 mg or less.
  • Vegetables and fruits contain a lot of potassium among foods, and patients who are restricted by potassium are often restricted from taking vegetables and fruits that contain a lot of potassium. In addition, depending on the cooking method, it is recommended to perform certain cooking because the amount of potassium can be reduced. Therefore, the dietary life of patients who are subject to potassium restriction is often limited. Patients may feel stress in their restricted diet, which can be problematic in terms of QOL (Quality of Life).
  • QOL Quality of Life
  • potassium tends to flow out into water, so it is common to remove potassium by cooking methods such as cutting vegetables into small pieces, exposing them to water, or spilling them on a bowl.
  • Patent Documents 1 and 2 disclose methods for cultivating with a culture solution such as hydroponics.
  • Patent Document 1 discloses a technique for cultivating low potassium spinach by hydroponics.
  • Patent Document 2 discloses a method of cultivating a low potassium crop by a method of cultivating a crop by hydroponic or pearlite plowing. It has been shown that over 40% of potassium can be removed from melon or the like using either hydroponics or perlite cultivation.
  • Patent Documents 3 and 4 disclose technologies for producing low-potassium processed food by removing potassium when processing food.
  • Patent Document 3 discloses a method of removing 90% or more of potassium content by treating vegetable juice or fruit juice with a cation exchange resin.
  • Patent Document 4 discloses a method and a process for producing a processed food in which fruit and freeze are melted or heated to remove sugars and potassium, and then a gelling solution is injected to reproduce the elasticity and texture to the raw state. Food is listed.
  • Patent Documents 5 and 6 disclose methods and devices for removing salts such as potassium from food by energization.
  • Patent Document 5 discloses a method of removing metal ions such as potassium from food by immersing food contained in a metal ion permeable membrane between opposing electrodes in an electrolytic solution and energizing between the electrodes.
  • Patent Document 6 describes a device for desalting while sandwiching an object to be desalted containing salts between electrodes arranged opposite to each other and energizing it while allowing the surrounding solvent to flow in and out.
  • At least 40% or more of potassium can be reduced in low potassium vegetables cultivated by hydroponics (Patent Documents 1 and 2).
  • leafy vegetables such as leaf lettuce and komatsuna are mainly used.
  • Root vegetables such as carrots and burdocks, and leafy vegetables such as cabbage and ball lettuce (heading lettuce) also require time and cost to harvest. It is not cultivated because it costs.
  • the method described in the cited document 3 is limited to vegetable juice and fruit juice, and the method described in the cited document 4 is limited to processed fruit foods. Therefore, the method described in Citation 3 is limited to some vegetables and fruits suitable for vegetable juice. Moreover, it was applicable only in the form of juice as the form during processing.
  • the amount of potassium that can be removed is determined by the drip that comes out of the fruit cell by freezing and thawing or heating, so that the amount cannot be adjusted.
  • both the flavor and scent components of the fruit are removed.
  • the texture such as touch can be reproduced to some extent by adding a thickener, a gelling agent, etc., it has been difficult to restore the taste and aroma.
  • the method of removing salts by energizing has the advantage of not limiting the type of food.
  • the conventional method does not control the amount of potassium to be removed, and how much potassium has been removed can only be measured after the treatment.
  • Patent Document 5 does not consider the amount of salt removed from food, and it is necessary to individually define energization conditions in order to produce food for patients with kidney disease who are subject to potassium restriction. It was not practical.
  • the electrode since the electrode is not in contact with food, when current is passed, the current flows through the electrolyte solution with low resistance, and the food is hardly energized. For this reason, the removal efficiency of metal ions is poor, and potassium removal cannot be performed in a short time.
  • the device of Patent Document 6 is for desalinating seafood and salted products by exchanging a solvent such as water, and energization is only for shortening the desalting operation. That is, desalting is not intended only by energization.
  • it is an apparatus for removing sodium chloride contained at a concentration as high as several percent, and sodium ions that have a moderate salty taste remain in the desalted product. ing. Therefore, the amount of remaining potassium is not so low as to be suitable for the purpose of reducing potassium intake in patients with renal disease.
  • the present invention removes potassium quickly without damaging the texture and flavor of food, as much as possible, while maintaining the advantages of the energization method that can remove potassium in any food. It is an object of the present invention to provide a system and method capable of performing the above. In particular, in order to provide a low-potassium food that is safe to provide to patients with kidney disease, it is an object to provide an apparatus and a method for producing with good productivity while monitoring how much potassium has been removed. And
  • the present invention relates to a system for removing potassium from foods described below, a removal method, and a low potassium food using the method.
  • the potassium removal system according to (1) The potassium removal system, wherein the deionization means is an ion exchange resin.
  • the circulation means is a circulation channel; A circulation pump for circulating water in the circulation channel; A potassium removal system comprising an ion exchange resin tower filled with the ion exchange resin.
  • a potassium removal system comprising a cooling system for cooling water in which food is immersed to 0 to 15 ° C.
  • a method for removing potassium from food Place it in the water tank so that the food is sandwiched between the opposing electrodes, While removing the eluted ions from the water by deionization means, A method for removing potassium from food, wherein the potassium is removed by passing a direct current from the opposite electrode to the other electrode through the food.
  • a method for removing potassium from the food according to (9) A method for removing potassium from food, wherein the water in the water tank is removed while monitoring the amount of potassium ions eluted by an electric conductivity meter or a potassium ion meter.
  • (14) By the method according to any one of (9) to (13), Food from which potassium has been removed.
  • potassium removal process By disposing deionization means in the potassium removal system, leakage of current outside the sample can be prevented, and potassium can be removed from food in a short time. Moreover, in the system of this invention, since potassium removal processing is performed while monitoring the eluted ions, the amount of potassium eluted from food can be grasped. Therefore, the potassium removal process can be completed at an appropriate time.
  • FIG. 1A shows an overview of a system for removing potassium from food according to the first embodiment.
  • FIG. 1B shows an overview of a system for removing potassium from food according to the second embodiment. The figure which shows the system which removes potassium from the foodstuff of 2nd Embodiment. The potassium elution rate according to the energization time is shown.
  • FIG. 3A shows a diagram using pumpkin as a specimen.
  • FIG. 3B shows a diagram using sweet potato as a specimen. The figure which shows the potassium movement distance with respect to electricity density and time.
  • food includes agricultural products such as vegetables, meat, fish, etc., and there are no restrictions on the types.
  • the method for removing potassium according to the present invention needs to energize the food, it is preferably a food having a thickness and hardness that do not allow the electrodes to come into contact with each other when sandwiched between the electrodes.
  • it is not suitable for removing potassium from small grains such as rice and liquid foods such as juice.
  • the food may be used as it is, or may be subjected to heat treatment as a pre-process or post-process of the energization process.
  • the heat treatment may be a light heat treatment of about 70 to 80% in the case of normal cooking.
  • FIG. 1A shows an outline of a system 1 for removing potassium from food according to the first embodiment of the present invention.
  • the food 4 is sandwiched between the opposing electrodes 2 and 3 and disposed in the water tank 5.
  • the electrodes 2 and 3 are connected to a DC power source 6. Alternating current periodically changes polarity, so potassium hardly elutes from food.
  • the DC power source 6 is preferably a power source that can be controlled to a constant current.
  • it may be energized with a constant current from the beginning to the end, or depending on the food, since the resistance value is high at the beginning of energization, the voltage is set high, and after a certain time, it may be energized by controlling it to a slightly lower voltage. .
  • it is an electrode which opposes, either side is good also as an anode and a cathode.
  • Water in the water tank 5 functions as a reservoir of eluted ions and has a role of supplying moisture. That is, since cations such as potassium ions and sodium ions are eluted from the cathode side by energization, they function as a reservoir for these cations. On the anode side, moisture is supplied from the sample surface.
  • the electrodes 2 and 3 are installed in the water tank 5.
  • the water in the water tank 5 is maintained at a low temperature of 0 to 15 ° C. by a cooling device (not shown).
  • a cooling device not shown.
  • the temperature of the food must be maintained at 0 to 15 ° C., more preferably 0 to 10 ° C., with a cooling device.
  • 0 ° C. means a temperature at which food or water in the aquarium does not freeze, that is, a freezing point.
  • Any cooling device may be used.
  • a cooling device is provided in a part of the circulation flow path, and the circulating water can be cooled to maintain the temperature low.
  • a potassium removal system may be installed in a low temperature environment such as a low temperature chamber to keep the entire system at a low temperature.
  • a deionization means is arranged in the water tank. Any deionization means may be used as long as ions can be removed, and ion exchange resin, RO membrane (semipermeable membrane), electrodialysis, or the like may be used. Furthermore, a water treatment device combining ion exchange resin, RO membrane (semipermeable membrane), and electrodialysis can be used.
  • an ion exchange resin As the deionization means, it is convenient and preferable to use an ion exchange resin. Any ion-exchange resin may be used as long as it can remove the eluted ions, but H-type strongly acidic cation exchange resin capable of removing cations and anions, OH-type strongly basic anions It is preferable to mix exchange resins or use as a two-bed type apparatus. Examples of such a resin include Diaion UBK10, Diaion UBA120 (manufactured by Mitsubishi Chemical Corporation), and the like.
  • mixed-bed resin manufactured by Airi System Co., Ltd., MB-120
  • ion exchange resin for producing pure water
  • H-type strongly acidic cation exchange resin and OH-type strongly basic anion exchange resin It is a premixed resin and can be used as it is.
  • the deionization means may be arranged in any way as long as it can adsorb ions eluted in the water in the water tank.
  • the ion exchange resin may be placed in a water tank, water may be stirred with a stirring blade, a stirrer, or the like, and contacted with the ion exchange resin to remove ions.
  • FIG. 1A shows a configuration in which a circulation channel 7 is provided, an ion exchange resin tower 8 filled with an ion exchange resin is arranged in the channel, and water is circulated by a pump 9.
  • An elution ion measuring instrument 10 such as an electric conductivity meter or a potassium ion meter is disposed upstream of the ion exchange resin tower 8 into which water flows from the water tank 5. If a potassium ion meter is used, the amount of potassium ions eluted from food can be calculated. If an electric conductivity meter is arranged, the amount of metal ions such as potassium and sodium eluted from food can be calculated based on the electric conductivity reflecting the increase in ions. By continuously monitoring the eluted potassium ions and metal ions and taking into account the speed of the water circulated by the pump 9, the amount of elution of potassium ions and the like can be integrated.
  • Food potassium content is usually not constant.
  • the amount of potassium contained in vegetables varies depending on the production area and season.
  • the amount of potassium removed from the food can be accurately determined by monitoring the eluted potassium ions using a potassium ion meter and an electrical conductivity meter while performing the potassium removal treatment.
  • the amount of potassium remaining in the food is based on the standard that describes the ingredients of standard foods, such as the 5th amended Japanese food standard ingredient table (hereinafter sometimes simply referred to as the food standard ingredient table). It may be calculated.
  • the ingredients of the food listed in the food standard ingredient table are standard values to the last, but the proportion of potassium eluted from the food can be calculated based on this.
  • the amount of residual potassium has been determined by measuring the amount of potassium in food after elution.
  • energization can be performed while monitoring the amount of ions eluted by the eluted ion measuring instrument 10. Therefore, the amount of removed potassium can be monitored and the removal of potassium can be performed until the target amount of removed potassium is reached.
  • the state of the water flowing into the water tank 5 can be monitored by arranging the eluted ion measuring device 11 on the downstream side of the ion exchange resin tower 8. Thereby, the exchange time of the ion exchange resin with which the ion exchange resin tower 8 is filled can be grasped
  • Water in the water tank 5 is circulated by a pump 9 disposed in the circulation channel 7.
  • Any pump such as a peristaltic pump, a tube pump, or a diaphragm pump may be used.
  • the flow rate of the pump is clear.
  • the food 4 is cut into a substantially rectangular parallelepiped shape and sandwiched between the electrodes 2 and 3 and energized.
  • the food 4 may have any shape as long as the food 4 is in close contact with the electrodes 2 and 3.
  • the food 4 can be brought into close contact with each other and can be energized over a wide area. Since the electrodes 2 and 3 of the present invention directly contact the food 4 and conduct electricity, it is necessary to consider the safety. Specifically, iron, aluminum, platinum, and titanium specified in “Standards for Foods, Additives, etc.” may be used.
  • the anode electrode 2 needs to be a corrosion-resistant electrode such as a platinum electrode in order to prevent elution of metal ions. Further, the electrodes 2 and 3 can be efficiently energized by using mesh surface electrodes.
  • the electrodes 2 and 3 can be in close contact with the food 4 and can be energized efficiently.
  • Any material may be used as the cushioning material 12 as long as it is flexible and can diffuse ions eluted from food.
  • porous materials such as sponge, fabrics made of cotton, chemical fibers, mountain-shaped cushioning materials, etc., which do not adhere to the electrodes 2 and 3 and are capable of diffusing eluted ions into the surrounding water Any type may be used.
  • a fixing member such as a weight or a band, the current is passed through the food 4 only, so that the efficiency is high.
  • the mounting table 13 is disposed below the cushioning material 12. Cations such as potassium that have moved to the cathode side when energized are finally eluted out of the food.
  • a hole 14 is provided in the mounting table 13 disposed below the cushioning material 12. The eluted ions do not stay near the mounting table 13 but are adsorbed by the ion exchange resin.
  • FIG. 2 schematically shows a second embodiment of the present invention.
  • a large number of units with the foods 4 sandwiched between the opposing electrodes 2 and 3 shown in the first embodiment may be arranged adjacent to each other with the cushioning material 12 interposed therebetween.
  • the unit is placed in the water tank 5. Since water in the circulation channel 7 circulates, water in the water tank 5 circulates, so there is no need to stir. Further, if the buffer material 12 is a continuous mountain-shaped material, such as a material that promotes the adhesion between the electrodes 2 and 3 and the food 4 while making contact with the electrodes in a small area, It is possible to promote the diffusion of ions into water.
  • the thickness of the food 4 (distance between the electrodes 2 and 3) substantially the same, the amount of ions eluted by the energization process is almost the same even when a plurality of foods are processed simultaneously. Therefore, a large amount of food can be subjected to the same degree of depotassium treatment at a time.
  • Food softening is a major factor that deteriorates the taste.
  • pretreatment for preventing alteration of pectin which is a skeleton-forming component of plants, can be performed to prevent softening.
  • there is a method of pre-treating food using a calcium salt solution, binding pectin and calcium salt, utilizing the fact that the cell wall is strengthened and the tissue is hardened, and the food is softened Patent Document 7, Non-patent documents 1, 2).
  • the present inventors have also examined whether it is possible to prevent excessive softening of vegetables due to energization using this reaction, and have obtained a significant effect on prevention of softening. Specifically, about 120 g of a pumpkin specimen cut into 2.5 cm in length, 2.5 cm in width and 2.5 cm in thickness is immersed in 3 L of a 0.7 wt% calcium chloride solution, and at room temperature for 16 hours every 2 hours. The sample was pretreated with gentle stirring. After pre-treatment, electricity was applied to remove potassium, and the hardness of the food was analyzed. As a result, softening was clearly prevented in the case where the calcium chloride solution treatment was performed, compared to the case where the calcium chloride solution treatment was not performed.
  • the softening can be prevented by the pretreatment with the calcium chloride solution indicate that the softening of the food by the electric current treatment can be prevented by other pretreatments that prevent the deterioration of pectin.
  • softening can be prevented by adopting various methods for preventing other pectin alterations such as preheating treatment at 50 to 65 ° C. utilizing the enzymatic reaction of pectin methylesterase.
  • the acidity may be felt strongly.
  • the taste of food is impaired by being sour, it is necessary to perform alkali treatment to restore the original taste.
  • Example 1 Examination of energization condition and temperature condition ⁇ Example 1 >> The effect of the current density per energized area of food and the temperature during energization on the hardness of the food was investigated. It has been confirmed in advance that there is a correlation between the taste of food such as sweetness and aroma and the texture such as hardness and texture. That is to say, those having good hardness have good taste.
  • a pumpkin Japanese pumpkin was cut to have a length of 2.5 cm, a width of 2.5 cm, and a thickness of 2.5 cm, and used as a specimen.
  • the temperature was kept at 0 ° C. and the current density was changed from 0 to 16 mA / cm 2 , and the sweetness, fragrance, hardness and texture were examined.
  • a sample immersed in water at room temperature (23 ° C.) without conducting an energization treatment was similarly examined for sweetness and the like.
  • the analysis was performed by energizing for 6 hours with an apparatus having no deionization means.
  • the hardness is comparable to that of the untreated specimen, good for the equivalent, soft for the reduced hardness and soft, and very soft for the clay-like plastic that loses elasticity.
  • the amount of potassium remaining in the pumpkin was measured according to the analysis method used in the Japanese food standard ingredient table. That is, the specimen was pretreated by a wet ashing method using nitric acid and perchloric acid, and then the amount of potassium was measured by an atomic absorption method. All of the specimens (samples 1 to 5) subjected to energization treatment with a direct current have potassium removed.
  • the alternating current (sample 6) was 12%, or the samples that were not energized (samples 7 and 8) were 1% and 3%, respectively, and almost no potassium was removed regardless of temperature conditions.
  • the potassium removal apparatus performs the treatment by immersing the specimen in water in the water tank, the dehydration occurs remarkably when the treatment is performed at room temperature, which affects the taste (Sample 5). .
  • the specimens (samples 1 to 4) treated at a low temperature (0 to 10 ° C.) had a degree of dehydration ranging from minus ( ⁇ ) to plus (+) regardless of the current density.
  • the specimen treated at 0 ° C. and 4 mA / cm 2 (Sample 1) or the specimen treated at 8 mA / cm 2 (Sample 2) has the same hardness as the untreated specimen, and the dent due to dehydration is 8 mA / cm 2 . Only a very small dent of about 1 mm was generated on the cathode side in the treated specimen (sample 2).
  • sample 3 treated at 0 ° C. and 16 mA / cm 2 had a strong dent on the cathode side. Therefore, even at a low temperature, at 16 mA / cm 2 , dehydration proceeds, so the taste and texture are slightly lowered.
  • sample 5 The specimen (sample 5) treated at 23 ° C. and 8 mA / cm 2 is heavily dehydrated, the specimen is clay-like, and the texture is remarkably poor. Therefore, not only the energization conditions but also the temperature conditions are very important for maintaining the taste and texture.
  • Example 2 A pumpkin (Japanese pumpkin) was cut into a length of 2.5 cm, a width of 2.5 cm, and a thickness of 2.5 cm and used as a specimen. Using the system 1 shown in FIG. 1, the temperature was kept at 5 ° C., and the energization process was performed at 4 mA / cm 2 and 8 mA / cm 2 . Using ion-exchange resin for pure water production mixed with H-type strongly acidic cation-exchange resin and OH-type strongly basic anion-exchange resin as ion-exchange resin, electricity was applied while removing ions eluted from pumpkin. .
  • the potassium removal rate (K elution%) depending on the energization time is calculated from the value measured by the ion measuring instrument 10 upstream of the ion exchange resin tower 8 shown in FIG. 1A.
  • a rate at which water circulates through the circulation flow path 7 by the pump 9 and an integration of ions eluted by energization are obtained by calculation using an electric conductivity meter as the ion measuring device 10.
  • water is sucked at a rate of 1.2 L / min directly under the negative electrode, and the eluted ions are removed through the ion exchange resin and then returned to the water tank.
  • the amount of ions before flowing into the ion exchange resin tower is measured with an electric conductivity meter to calculate the amount of ions eluted by energization.
  • Example 3 The effect of removing ions from the water in the water tank was analyzed using ion exchange resin in the same manner using sweet potato as a specimen.
  • sweet potato was cut to have a length of 2.5 cm, a width of 2.5 cm, and a thickness of 2.5 cm. Except for using sweet potato instead of pumpkin, the energization treatment was performed in the same manner as in Example 2 to obtain the potassium removal rate. Moreover, what removed potassium without using ion exchange resin was made into the comparative example. The results are shown in FIG. 3B.
  • the energization time required to remove equivalent potassium ions is 1/3 to 1/5 compared to when no ion exchange resin is used. It can be shortened to the extent.
  • Example 2 In the same manner as in Example 2, energization was performed while constantly removing ions with an ion exchange resin, and the distance of potassium movement was determined. A comparative example was obtained by conducting an energization treatment without using an ion exchange resin and removing potassium. The results are shown in FIG.
  • Low-potassium foods can be produced quickly. Moreover, since it supplies with electricity monitoring the ion removed, a low potassium food can be manufactured, estimating the potassium which remains in food. Therefore, it is possible to provide a low-potassium food that can be consumed with peace of mind even in patients with limited potassium, such as patients with kidney disease.

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

[Problem] To provide a system and method for removing potassium from a food within a short period of time while maintaining the texture and flavor of the food. [Solution] According to the present invention, potassium can be removed from a food within a short period of time by: interposing the food between electrodes facing each other in a water tank; and passing a direct current from one of the electrodes facing each other to the other electrode via the food, while removing from water ions thus eluted using a deionization means.

Description

食品からカリウムを除去するシステム、及び除去方法System and method for removing potassium from food
 食品の風味や食感を損なうことなくカリウムを除去するシステム及び該システムを用いてカリウムを除去する方法に関する。特に短時間でカリウム除去処理を行うためのシステム及び方法に関する。 The present invention relates to a system for removing potassium without impairing the flavor and texture of food and a method for removing potassium using the system. In particular, the present invention relates to a system and method for performing potassium removal treatment in a short time.
 日本透析医学会の調査によれば、わが国の慢性透析患者は2012年に30万人を超え、毎年5千人程度増加している。 According to a survey by the Japan Dialysis Medical Association, the number of chronic dialysis patients in Japan exceeded 300,000 in 2012, increasing by about 5,000 every year.
 腎臓は、老廃物の排泄、水分、電解質の調節を行い、体内環境を一定に保っている。腎臓の機能が低下し、体内の恒常性が維持できなくなると、いわゆる尿毒症と呼ばれる多様な症状が全身に出現する。 The kidney regulates the excretion of waste, water and electrolytes, and keeps the body environment constant. When the kidney function falls and the homeostasis in the body cannot be maintained, various symptoms called uremia appear in the whole body.
 腎機能が廃絶している患者には日常的に透析を行う維持透析療法を行い、体内の老廃物や過剰な水分を除去する。透析には腹膜透析と血液透析がある。わが国では、血液を体外で循環させる血液透析が主流であり、約27万人が血液透析による治療を受けている。血液透析の場合、現在一般的には、1回4時間、週3回の透析を行うが、透析が代行する機能は、生体腎には遠く及ばない。そのため、患者は無制限に食事を摂取してよいわけではなく、自己管理により食生活の管理をすることが重要である。 ● Patients who have lost renal function are treated with maintenance dialysis on a daily basis to remove waste and excess water from the body. Dialysis includes peritoneal dialysis and hemodialysis. In Japan, hemodialysis that circulates blood outside the body is the mainstream, and about 270,000 people are treated by hemodialysis. In the case of hemodialysis, currently, dialysis is generally performed 4 hours at a time, 3 times a week, but the function of dialysis is not as far as the living kidney. Therefore, patients are not allowed to eat an unlimited number of meals, and it is important to manage their diet through self-management.
 透析患者は食生活において種々の成分に気を付ける必要があるが、とりわけ高カリウム血症の原因となるカリウム量を一定に制限する必要がある。高カリウム血症は、致死性の不整脈や心停止をきたすことがある。そのため、カリウム制限の食事指導が、透析治療導入初期から継続して行われる必要がある。一日に摂取可能なカリウム量は病期によっても異なるが、1500~2000mg以下に制限する必要がある。 Dialysis patients need to pay attention to various components in their diet, but it is necessary to limit the amount of potassium that causes hyperkalemia to a certain level. Hyperkalemia can cause fatal arrhythmias and cardiac arrest. Therefore, it is necessary to continue dietary guidance for potassium restriction from the beginning of the introduction of dialysis treatment. The amount of potassium that can be taken per day varies depending on the stage, but it must be limited to 1500 to 2000 mg or less.
 野菜や果物は、食品の中でもカリウムが多く含まれており、カリウム制限を受けている患者は、カリウムが多く含まれている野菜や果物の摂取を制限されている場合が多い。また、調理方法によっては、カリウム量を低減することができることから、一定の調理を行うことが勧められている。そのため、カリウム制限を受けている患者の食生活は限られたものになることが多い。患者は、制限された食生活にストレスを感じることもあり、QOL(Quality of Life)の点で問題になることがある。 Vegetables and fruits contain a lot of potassium among foods, and patients who are restricted by potassium are often restricted from taking vegetables and fruits that contain a lot of potassium. In addition, depending on the cooking method, it is recommended to perform certain cooking because the amount of potassium can be reduced. Therefore, the dietary life of patients who are subject to potassium restriction is often limited. Patients may feel stress in their restricted diet, which can be problematic in terms of QOL (Quality of Life).
 カリウム制限を行う場合には、カリウムは水に流出しやすいことから、野菜を小さく切って水にさらしたり、茹でこぼすなどの調理方法によって、カリウムを除去するのが一般的である。 When performing potassium restriction, potassium tends to flow out into water, so it is common to remove potassium by cooking methods such as cutting vegetables into small pieces, exposing them to water, or spilling them on a bowl.
 上記の一般的な調理方法に加え、食品からカリウムを除去する方法としては、水耕栽培等、培養液により栽培する方法が知られている(特許文献1、2)。特許文献1には、水耕栽培によって低カリウムホウレンソウを栽培する技術が開示されている。特許文献2には、水耕、又はパーライト耕により作物を栽培する方法により低カリウム作物を栽培する方法が開示されている。水耕栽培、パーライト栽培どちらを用いても40%強のカリウムをメロン等から除去できることが示されている。 In addition to the above general cooking methods, methods for cultivating with a culture solution such as hydroponics are known as methods for removing potassium from food (Patent Documents 1 and 2). Patent Document 1 discloses a technique for cultivating low potassium spinach by hydroponics. Patent Document 2 discloses a method of cultivating a low potassium crop by a method of cultivating a crop by hydroponic or pearlite plowing. It has been shown that over 40% of potassium can be removed from melon or the like using either hydroponics or perlite cultivation.
 また、食品を加工する際にカリウムを除去し、低カリウム加工食品を製造する技術が開示されている(特許文献3、4)。特許文献3には、野菜ジュースや果物ジュースを陽イオン交換樹脂で処理することにより、カリウム含有量を90%以上除去する方法が開示されている。特許文献4には、果物を凍結融解や加熱によって、糖質やカリウムを除去した後に、ゲル化液を注入し、弾力や歯触りを生の状態にまで再現した加工食品を製造する方法及び加工食品が記載されている。 In addition, technologies for producing low-potassium processed food by removing potassium when processing food are disclosed (Patent Documents 3 and 4). Patent Document 3 discloses a method of removing 90% or more of potassium content by treating vegetable juice or fruit juice with a cation exchange resin. Patent Document 4 discloses a method and a process for producing a processed food in which fruit and freeze are melted or heated to remove sugars and potassium, and then a gelling solution is injected to reproduce the elasticity and texture to the raw state. Food is listed.
 また、食品からカリウム等の塩類を通電することによって除去する方法や装置も開示されている(特許文献5、6)。特許文献5には、電解液中の対向する電極間に金属イオン透過膜中に収容した食品を浸漬し、電極間に通電することにより食品からカリウム等の金属イオンを除去する方法が開示されている。特許文献6には、対向配置された電極間に塩類を含んだ被脱塩物を挟み、通電するとともに周囲の溶媒を流入・流出させながら、脱塩する装置が記載されている。 Also disclosed are methods and devices for removing salts such as potassium from food by energization (Patent Documents 5 and 6). Patent Document 5 discloses a method of removing metal ions such as potassium from food by immersing food contained in a metal ion permeable membrane between opposing electrodes in an electrolytic solution and energizing between the electrodes. Yes. Patent Document 6 describes a device for desalting while sandwiching an object to be desalted containing salts between electrodes arranged opposite to each other and energizing it while allowing the surrounding solvent to flow in and out.
特開2011-36226号公報JP 2011-36226 A 特開2011-135797号公報JP 2011-135797 A 特開2001-103945号公報JP 2001-103945 A 特開2007-105000号公報JP 2007-105000 A 特開平10-165113号公報JP 10-165113 A 特開平6-90685号公報JP-A-6-90685 特開2003-204768号公報JP 2003-204768 A
 高カリウム血症を予防するためには、食事からの摂取カリウム量を症状に応じて制限する必要がある。しかしながら、低カリウム食品を実現するために、上述のように様々な方法があるが、夫々以下のような問題がある。 In order to prevent hyperkalemia, it is necessary to limit the amount of potassium taken from the diet according to the symptoms. However, in order to realize a low potassium food, there are various methods as described above, but each has the following problems.
 カリウム含有量の多い食材の調理に際しては、長時間茹でてから茹でこぼしたり、細かく刻んで水にさらす必要があった。なぜならば、葉物野菜以外の野菜、例えば、にんじん等の根菜類やかぼちゃは、茹でることによるカリウムの減少が非常に少ない。また、長時間茹でたり、水にさらすため、カリウムだけではなく食品の旨味成分も溶出してしまう。したがって、食材や調理方法が限定される等、様々な問題が生じていた。 When cooking ingredients with a high potassium content, it was necessary to boil them for a long time and then spill them or chop them finely and expose them to water. This is because vegetables other than leafy vegetables, for example, root vegetables such as carrots and pumpkins, have very little decrease in potassium due to boiling. In addition, since it is boiled for a long time or exposed to water, not only potassium but also umami components of food are eluted. Therefore, various problems have occurred such as limited food ingredients and cooking methods.
 水耕栽培により栽培された低カリウム野菜では、上述のように少なくとも40%以上のカリウムを低減することができる(特許文献1、2)。しかしながら、水耕栽培で栽培できる作物に限られるため、低カリウム作物として提供できる作物の種類には限界がある。例えば、リーフレタスや小松菜等の葉物野菜が中心であり、にんじん、ごぼうなどの根菜類や、葉物野菜でもキャベツや玉レタス(結球レタス)などの結球性葉菜類は収穫までに期間と費用を要するために栽培されていない。 As described above, at least 40% or more of potassium can be reduced in low potassium vegetables cultivated by hydroponics (Patent Documents 1 and 2). However, since it is limited to crops that can be cultivated by hydroponics, the types of crops that can be provided as low potassium crops are limited. For example, leafy vegetables such as leaf lettuce and komatsuna are mainly used. Root vegetables such as carrots and burdocks, and leafy vegetables such as cabbage and ball lettuce (heading lettuce) also require time and cost to harvest. It is not cultivated because it costs.
 引用文献3に記載の方法は野菜ジュースや果物ジュースに、引用文献4に記載の方法は果物の加工食品に限定された方法である。したがって、引用文献3に記載の方法は、食品の種類が野菜ジュースに適した一部の野菜や、果物に限定されてしまう。また、処理時の形態としてジュースの形態でしか適用できなかった。 The method described in the cited document 3 is limited to vegetable juice and fruit juice, and the method described in the cited document 4 is limited to processed fruit foods. Therefore, the method described in Citation 3 is limited to some vegetables and fruits suitable for vegetable juice. Moreover, it was applicable only in the form of juice as the form during processing.
 引用文献4に記載の方法は、除去できるカリウム量は、凍結融解や加熱によって果物の細胞外に出てくるドリップによって決まるので、その量を調整することができない。また、糖質やカリウムとともに、果物の風味、香り成分もともに除去されてしまう。増粘剤、ゲル化剤等を添加することによって歯触り等の食感はある程度再現できるものの、味や香りの復元が困難であった。 In the method described in the cited document 4, the amount of potassium that can be removed is determined by the drip that comes out of the fruit cell by freezing and thawing or heating, so that the amount cannot be adjusted. In addition to the sugar and potassium, both the flavor and scent components of the fruit are removed. Although the texture such as touch can be reproduced to some extent by adding a thickener, a gelling agent, etc., it has been difficult to restore the taste and aroma.
 通電することによって、塩類を除去する方法は、食品の種類を限定しないという利点がある。しかしながら、従来の方法は、除去するカリウム量をコントロールしておらず、どの程度カリウムが除去されたかは、処理後に測定する以外にはなかった。特許文献5では、食品中の塩類の除去される量を考慮しておらず、カリウム制限を受けている腎臓病患者のための食品を製造するためには、通電条件を個々に定める必要があり実用的ではなかった。また、電極が食品に接していないために、通電すると電流は抵抗の少ない電解液中を流れ、食品中はほとんど通電されることがない。そのため、金属イオンの除去効率が悪く、カリウム除去を短時間で行うことができなかった。 The method of removing salts by energizing has the advantage of not limiting the type of food. However, the conventional method does not control the amount of potassium to be removed, and how much potassium has been removed can only be measured after the treatment. Patent Document 5 does not consider the amount of salt removed from food, and it is necessary to individually define energization conditions in order to produce food for patients with kidney disease who are subject to potassium restriction. It was not practical. In addition, since the electrode is not in contact with food, when current is passed, the current flows through the electrolyte solution with low resistance, and the food is hardly energized. For this reason, the removal efficiency of metal ions is poor, and potassium removal cannot be performed in a short time.
 特許文献6の装置は、水などの溶媒を交換することによって、海産物・塩蔵品についての脱塩を行うものであり、通電はあくまでも脱塩作業を短縮化するためのものである。すなわち、通電だけで脱塩を図るものではない。また、実施例に開示されているように、数%という高い濃度で含まれる塩化ナトリウムを除去するための装置であり、脱塩処理完了品には、適度な塩味が残る程度のナトリウムイオンが残っている。そのため残存するカリウム量は、腎疾患を有する患者のカリウム摂取量低減の目的に適するほど低くはない。 The device of Patent Document 6 is for desalinating seafood and salted products by exchanging a solvent such as water, and energization is only for shortening the desalting operation. That is, desalting is not intended only by energization. In addition, as disclosed in the examples, it is an apparatus for removing sodium chloride contained at a concentration as high as several percent, and sodium ions that have a moderate salty taste remain in the desalted product. ing. Therefore, the amount of remaining potassium is not so low as to be suitable for the purpose of reducing potassium intake in patients with renal disease.
 上述のように種々の低カリウム食品製造法が開示されているものの、多様な低カリウム食品を提供できる技術は今まで開発されていなかった。本発明は、どのような食品であってもカリウムを除去できるという通電による方法の長所はそのままに、食品のもつ歯ごたえのような食感や風味をできるだけ損なわずに、迅速にカリウムを除去することのできるシステム及び方法を提供することを課題とする。特に、腎臓病患者に提供しても安全な低カリウム食品を提供するために、どの程度のカリウム除去を行ったかをモニターしながら生産性良く生産するための装置、及び方法を提供することを課題とする。 Although various low potassium food production methods have been disclosed as described above, no technology that can provide various low potassium foods has been developed so far. The present invention removes potassium quickly without damaging the texture and flavor of food, as much as possible, while maintaining the advantages of the energization method that can remove potassium in any food. It is an object of the present invention to provide a system and method capable of performing the above. In particular, in order to provide a low-potassium food that is safe to provide to patients with kidney disease, it is an object to provide an apparatus and a method for producing with good productivity while monitoring how much potassium has been removed. And
 本発明は、以下に示す食品からカリウムを除去するシステム、除去方法、該方法を用いた低カリウム食品に関する。
(1)食品から通電によってカリウムを除去するシステムであって、
 直流電流を付与する電源と、
 水槽と、
 該水槽内に配置され食品を介して対向する少なくとも一対の電極と、
 溶出されたイオンを吸着する脱イオン手段を備えたことを特徴とするカリウム除去システム。
(2)(1)記載のカリウム除去システムであって、
 前記脱イオン手段がイオン交換樹脂であることを特徴とするカリウム除去システム。
(3)(1)又は(2)記載のカリウム除去システムであって、
 前記水槽には水を循環させる循環手段が設けられていることを特徴とするカリウム除去システム。
(4)(3)記載のカリウム除去システムであって、
 前記循環手段は循環流路であり、
 該循環流路には水を循環させる循環ポンプと、
 前記イオン交換樹脂が充填されたイオン交換樹脂塔が設けられたことを特徴とするカリウム除去システム。
(5)(4)記載のカリウム除去システムであって、
 前記循環流路の前記イオン交換樹脂塔の上流側に電気伝導度計又はカリウムイオン計を設けたことを特徴とするカリウム除去システム。
(6)(5)記載のカリウム除去システムであって、
 前記循環流路の前記イオン交換樹脂塔の下流側にさらに電気伝導度計又はカリウムイオン計を設けたことを特徴とするカリウム除去システム。
(7)(1)~(6)いずれか記載のカリウム除去システムであって、
 前記電源が定電流直流電源であることを特徴とするカリウム除去システム。
(8)(1)~(7)いずれか記載のカリウム除去システムであって、
 食品を浸漬している水を0~15℃に冷却する冷却システムを備えることを特徴とするカリウム除去システム。
(9)食品からカリウムを除去する方法であって、
 対向する電極に食品を挟むようにして水槽内に配置し、
 溶出したイオンを脱イオン手段によって水中から除去しながら、
 対向した一方の電極から食品を介して他方の電極に直流電流を通電することによりカリウムを除去することを特徴とする食品からカリウムを除去する方法。
(10)(9)に記載の食品からカリウムを除去する方法であって、
 前記水槽内の水を電気伝導度計又はカリウムイオン計によって溶出したカリウムイオンの量をモニターしながらカリウムを除去することを特徴とする食品からカリウムを除去する方法。
(11)(9)又は(10)記載の食品からカリウムを除去する方法であって、
 前記食品の温度は0~15℃に保つことを特徴とする食品からカリウムを除去する方法。
(12)(9)~(11)いずれか記載の食品からカリウムを除去する方法であって、
 定電流で通電することを特徴とする食品からカリウムを除去する方法。
(13)(9)~(12)いずれか記載の食品からカリウムを除去する方法であって、
 通電密度を1~16mA/cmで処理することを特徴とする食品からカリウムを除去する方法。
(14)(9)~(13)いずれか1項記載の方法によって、
 カリウムが除去された食品。
The present invention relates to a system for removing potassium from foods described below, a removal method, and a low potassium food using the method.
(1) A system for removing potassium from food by energization,
A power supply for applying a direct current;
A tank,
At least a pair of electrodes disposed in the aquarium and facing each other via food,
A potassium removal system comprising a deionization means for adsorbing eluted ions.
(2) The potassium removal system according to (1),
The potassium removal system, wherein the deionization means is an ion exchange resin.
(3) The potassium removal system according to (1) or (2),
A potassium removing system, wherein the water tank is provided with a circulating means for circulating water.
(4) The potassium removal system according to (3),
The circulation means is a circulation channel;
A circulation pump for circulating water in the circulation channel;
A potassium removal system comprising an ion exchange resin tower filled with the ion exchange resin.
(5) The potassium removal system according to (4),
A potassium removal system, wherein an electrical conductivity meter or a potassium ion meter is provided upstream of the ion exchange resin tower in the circulation channel.
(6) The potassium removal system according to (5),
A potassium removal system further comprising an electric conductivity meter or a potassium ion meter on the downstream side of the ion exchange resin tower in the circulation channel.
(7) The potassium removal system according to any one of (1) to (6),
The potassium removal system, wherein the power source is a constant current DC power source.
(8) The potassium removal system according to any one of (1) to (7),
A potassium removal system comprising a cooling system for cooling water in which food is immersed to 0 to 15 ° C.
(9) A method for removing potassium from food,
Place it in the water tank so that the food is sandwiched between the opposing electrodes,
While removing the eluted ions from the water by deionization means,
A method for removing potassium from food, wherein the potassium is removed by passing a direct current from the opposite electrode to the other electrode through the food.
(10) A method for removing potassium from the food according to (9),
A method for removing potassium from food, wherein the water in the water tank is removed while monitoring the amount of potassium ions eluted by an electric conductivity meter or a potassium ion meter.
(11) A method for removing potassium from a food according to (9) or (10),
A method for removing potassium from food, characterized in that the temperature of the food is maintained at 0 to 15 ° C.
(12) A method for removing potassium from a food according to any one of (9) to (11),
A method for removing potassium from food, characterized by energizing at a constant current.
(13) A method for removing potassium from a food according to any one of (9) to (12),
A method for removing potassium from food, characterized by treating the current density at 1 to 16 mA / cm 2 .
(14) By the method according to any one of (9) to (13),
Food from which potassium has been removed.
 カリウム除去システム内に脱イオン手段を配置することによって、試料外への電流の漏出を防ぎ、短時間で食品からカリウムを除去することができる。また、本発明のシステムでは、溶出したイオンをモニターしながらカリウム除去処理を行うので、食品から溶出したカリウム量を把握することができる。そのため、適切な時期にカリウム除去処理を完了することができるようになる。 By disposing deionization means in the potassium removal system, leakage of current outside the sample can be prevented, and potassium can be removed from food in a short time. Moreover, in the system of this invention, since potassium removal processing is performed while monitoring the eluted ions, the amount of potassium eluted from food can be grasped. Therefore, the potassium removal process can be completed at an appropriate time.
 また、工業的に低カリウム食品を製造する場合には、多量の冷却水を必要とするが、脱イオン手段によってイオンが除去され、電気伝導度が低く保たれているため水槽内の水を交換する回数を減らすことができる。その結果、コストを低減することができる。 In addition, when industrially producing low potassium foods, a large amount of cooling water is required, but ions are removed by deionization means and the electrical conductivity is kept low, so the water in the aquarium is replaced. Can be reduced. As a result, cost can be reduced.
図1Aは、第1の実施形態の食品からカリウムを除去するシステムの概要を示す。図1Bは、第2の実施形態の食品からカリウムを除去するシステムの概要を示す。FIG. 1A shows an overview of a system for removing potassium from food according to the first embodiment. FIG. 1B shows an overview of a system for removing potassium from food according to the second embodiment. 第2の実施形態の食品からカリウムを除去するシステムを示す図。The figure which shows the system which removes potassium from the foodstuff of 2nd Embodiment. 通電時間によるカリウム溶出率を示す。図3Aはかぼちゃを検体として用いた図を示す。図3Bはさつまいもを検体として用いた図を示す。The potassium elution rate according to the energization time is shown. FIG. 3A shows a diagram using pumpkin as a specimen. FIG. 3B shows a diagram using sweet potato as a specimen. 通電密度と時間に対するカリウム移動距離を示す図。The figure which shows the potassium movement distance with respect to electricity density and time.
 本発明では、食品とは野菜などの農産物、肉、魚などを含み、その種類に制限はない。しかし、本発明のカリウム除去方法は、食品に通電する必要があることから、電極の間に挟んだ際に、電極同士が接触しないだけの厚みや固さを備えた食品であることが好ましい。例えば、米などの粒の小さいものや、ジュースなど液体状の食品からのカリウム除去には適さない。 In the present invention, food includes agricultural products such as vegetables, meat, fish, etc., and there are no restrictions on the types. However, since the method for removing potassium according to the present invention needs to energize the food, it is preferably a food having a thickness and hardness that do not allow the electrodes to come into contact with each other when sandwiched between the electrodes. For example, it is not suitable for removing potassium from small grains such as rice and liquid foods such as juice.
 また、食品は生のままで用いてもよいし、通電処理の前工程、又は後工程として、加熱処理を行っても良い。加熱処理は、通常調理の場合の70~80%程度の軽い加熱処理であってもよい。通電前に加熱処理を行うことによって、野菜によってはカリウムイオンを除去する効率の向上が期待できる。また、通電後に加熱処理を行うことによって、後述する中和効率の向上が期待できる。 Moreover, the food may be used as it is, or may be subjected to heat treatment as a pre-process or post-process of the energization process. The heat treatment may be a light heat treatment of about 70 to 80% in the case of normal cooking. By performing the heat treatment before energization, the efficiency of removing potassium ions can be expected for some vegetables. Moreover, the neutralization efficiency mentioned later can be expected to be improved by performing the heat treatment after energization.
 以下、図を示しながら本発明を詳細に説明する。図1Aに本発明の第1の実施形態である食品からカリウムを除去するシステム1の概要を示す。図1Aに示すように、対向する電極2、3で食品4を挟むようにし水槽5内に配置する。電極2、3は直流電源6に接続されている。交流では周期的に極性が変わるため、カリウムが食品からほとんど溶出しない。 Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1A shows an outline of a system 1 for removing potassium from food according to the first embodiment of the present invention. As shown in FIG. 1A, the food 4 is sandwiched between the opposing electrodes 2 and 3 and disposed in the water tank 5. The electrodes 2 and 3 are connected to a DC power source 6. Alternating current periodically changes polarity, so potassium hardly elutes from food.
 本発明者らは、食感、風味を元の食品と同様に維持するには通電密度を調整しながら通電する必要があることを見出した。そのため、直流電源6は一定の電流に制御可能な電源を用いることが好ましい。例えば、最初から最後まで一定の電流で通電してもよいし、食品によっては通電初期は抵抗値が高いため電圧を高く設定し、一定時間後はやや低い電圧に制御して通電してもよい。また、対向する電極であれば、どちら側を陽極、陰極としてもよい。 The present inventors have found that it is necessary to energize while adjusting the energization density in order to maintain the texture and flavor in the same manner as the original food. For this reason, the DC power source 6 is preferably a power source that can be controlled to a constant current. For example, it may be energized with a constant current from the beginning to the end, or depending on the food, since the resistance value is high at the beginning of energization, the voltage is set high, and after a certain time, it may be energized by controlling it to a slightly lower voltage. . Moreover, as long as it is an electrode which opposes, either side is good also as an anode and a cathode.
 水槽5内の水は、溶出したイオンのリザーバーとして機能するとともに、水分を供給する役割がある。すなわち、通電により陰極側からは、カリウムイオン、ナトリウムイオン等の陽イオンが溶出してくることから、これら陽イオンのリザーバーとして機能する。また、陽極側では、試料表面から水分の供給が行われる。 Water in the water tank 5 functions as a reservoir of eluted ions and has a role of supplying moisture. That is, since cations such as potassium ions and sodium ions are eluted from the cathode side by energization, they function as a reservoir for these cations. On the anode side, moisture is supplied from the sample surface.
 本発明者らが条件検討を行った結果、水分の供給を行わずに通電すると脱水が生じ、食品がやわらかくなるなど、食感が著しく損なわれることが明らかとなった。そのため、水槽5内に電極2、3を設置する構成にしている。 As a result of the examination of the conditions by the present inventors, it was found that when the power is supplied without supplying water, dehydration occurs and the food becomes soft, for example, the food becomes soft. Therefore, the electrodes 2 and 3 are installed in the water tank 5.
 また、水槽5内の水は図示しない冷却装置で0~15℃の低温に維持されている。本発明者らが検討した結果によれば、25℃程度の室温で食品に通電すると、水槽内で水に浸漬して通電処理を行っても食品から脱水が著しく生じるため、食味、食感に悪影響を及ぼす。したがって、食品の温度は冷却装置で0~15℃、より好ましくは0~10℃に維持する必要がある。なお、ここで0℃とは食品や水槽の水が凍らない温度、すなわち氷点を指すものとする。 In addition, the water in the water tank 5 is maintained at a low temperature of 0 to 15 ° C. by a cooling device (not shown). According to the results of the study by the present inventors, when food is energized at room temperature of about 25 ° C., dehydration occurs significantly from the food even if it is immersed in water in a water tank and subjected to energization treatment. Adversely affect. Therefore, the temperature of the food must be maintained at 0 to 15 ° C., more preferably 0 to 10 ° C., with a cooling device. Here, 0 ° C. means a temperature at which food or water in the aquarium does not freeze, that is, a freezing point.
 冷却装置はどのようなものを使用してもよい。例えば、水槽の水を循環させる際に循環流路の一部に冷却装置を設けて、循環水を冷却することによって低温に維持することができる。また、低温室のような低温環境にカリウム除去システムを設置してシステム全体を低温に維持してもよい。 Any cooling device may be used. For example, when the water in the water tank is circulated, a cooling device is provided in a part of the circulation flow path, and the circulating water can be cooled to maintain the temperature low. Further, a potassium removal system may be installed in a low temperature environment such as a low temperature chamber to keep the entire system at a low temperature.
 さらに、通電によって溶出してきたカリウム等のイオンを除去するために、水槽内に脱イオン手段を配置する。脱イオン手段としては、イオンを除去することができればどのようなものを用いてもよく、イオン交換樹脂、RO膜(半透膜)、電気透析などを用いてもよい。さらに、イオン交換樹脂、RO膜(半透膜)、電気透析を組み合わせた水処理装置を用いることができる。 Furthermore, in order to remove ions such as potassium that are eluted by energization, a deionization means is arranged in the water tank. Any deionization means may be used as long as ions can be removed, and ion exchange resin, RO membrane (semipermeable membrane), electrodialysis, or the like may be used. Furthermore, a water treatment device combining ion exchange resin, RO membrane (semipermeable membrane), and electrodialysis can be used.
 脱イオン手段としてはイオン交換樹脂を用いることが簡便であり好ましい。イオン交換樹脂は、溶出するイオンを除去することができればどのようなものを用いてもよいが、陽イオン、陰イオンを除去可能なH型強酸性陽イオン交換樹脂、OH型強塩基性陰イオン交換樹脂を混合して、あるいは二床式装置として用いることが好ましい。このような樹脂としては、ダイヤイオンUBK10、ダイヤイオンUBA120(三菱化学株式会社製)等が例示できる。また、純水製造用イオン交換樹脂として市販されている混床樹脂(アイリシステム株式会社製、MB-120)等は、H型強酸性陽イオン交換樹脂、OH型強塩基性陰イオン交換樹脂が予め混合された樹脂であり、このまま用いることができる。 As the deionization means, it is convenient and preferable to use an ion exchange resin. Any ion-exchange resin may be used as long as it can remove the eluted ions, but H-type strongly acidic cation exchange resin capable of removing cations and anions, OH-type strongly basic anions It is preferable to mix exchange resins or use as a two-bed type apparatus. Examples of such a resin include Diaion UBK10, Diaion UBA120 (manufactured by Mitsubishi Chemical Corporation), and the like. In addition, mixed-bed resin (manufactured by Airi System Co., Ltd., MB-120) marketed as an ion exchange resin for producing pure water includes H-type strongly acidic cation exchange resin and OH-type strongly basic anion exchange resin. It is a premixed resin and can be used as it is.
 脱イオン手段は、水槽内の水に溶出してきたイオンが吸着できればよく、どのように配置してもよい。例えば、イオン交換樹脂を水槽内に配置し、水を撹拌羽、スターラー等で撹拌し、イオン交換樹脂と接触させ、イオンの除去を行ってもよい。図1Aでは、循環流路7を設け、流路内にイオン交換樹脂を充填したイオン交換樹脂塔8を配置し、ポンプ9で水を循環させる構成を示している。 The deionization means may be arranged in any way as long as it can adsorb ions eluted in the water in the water tank. For example, the ion exchange resin may be placed in a water tank, water may be stirred with a stirring blade, a stirrer, or the like, and contacted with the ion exchange resin to remove ions. FIG. 1A shows a configuration in which a circulation channel 7 is provided, an ion exchange resin tower 8 filled with an ion exchange resin is arranged in the channel, and water is circulated by a pump 9.
 水が水槽5内から流入するイオン交換樹脂塔8の上流側には電気伝導度計又はカリウムイオン計等の溶出イオン測定器10を配置する。カリウムイオン計を用いれば、食品から溶出したカリウムイオンの量を算出することができる。また、電気伝導度計を配置すれば、イオンの増加を反映する電気伝導度に基づいて食品から溶出したカリウム、ナトリウム等の金属イオンの量を算出することができる。溶出したカリウムイオンや金属イオンを継続的にモニターし、ポンプ9により循環する水の速度を勘案することによって、カリウムイオン等の溶出量を積算することができる。 An elution ion measuring instrument 10 such as an electric conductivity meter or a potassium ion meter is disposed upstream of the ion exchange resin tower 8 into which water flows from the water tank 5. If a potassium ion meter is used, the amount of potassium ions eluted from food can be calculated. If an electric conductivity meter is arranged, the amount of metal ions such as potassium and sodium eluted from food can be calculated based on the electric conductivity reflecting the increase in ions. By continuously monitoring the eluted potassium ions and metal ions and taking into account the speed of the water circulated by the pump 9, the amount of elution of potassium ions and the like can be integrated.
 食品のカリウム含有量は、通常一定ではない。特に、野菜は産地や季節によって含有するカリウム量は変化する。食品に残存するカリウム量を正確に求めるにはカリウム除去前にロット毎に食品中に含まれるカリウム量を測定しておくことが好ましい。カリウム除去処理を行いながらカリウムイオン計、電気伝導度計を用い、溶出されたカリウムイオンをモニターすることにより食品から除去されたカリウム量を正確に求めることができる。 Food potassium content is usually not constant. In particular, the amount of potassium contained in vegetables varies depending on the production area and season. In order to accurately determine the amount of potassium remaining in the food, it is preferable to measure the amount of potassium contained in the food for each lot before removing potassium. The amount of potassium removed from the food can be accurately determined by monitoring the eluted potassium ions using a potassium ion meter and an electrical conductivity meter while performing the potassium removal treatment.
 あるいは、食品に残存するカリウム量は、五訂増補日本食品標準成分表(以下、単に食品標準成分表ということもある。)のように標準的な食品の成分を記載しているものを基準として算出してもよい。食品標準成分表に記載されている食品の成分はあくまでも標準的な値であるが、これを基準として食品から溶出したカリウムの割合を算出することができる。 Alternatively, the amount of potassium remaining in the food is based on the standard that describes the ingredients of standard foods, such as the 5th amended Japanese food standard ingredient table (hereinafter sometimes simply referred to as the food standard ingredient table). It may be calculated. The ingredients of the food listed in the food standard ingredient table are standard values to the last, but the proportion of potassium eluted from the food can be calculated based on this.
 従来は、溶出後に食品のカリウム量を測定することによって、残存するカリウム量を求めていた。これに対し、本発明では、溶出イオン測定器10により溶出したイオンの量をモニターしながら、通電を行うことができる。したがって、除去されたカリウム量をモニターし、目標とするカリウム除去量に達する時点まで、カリウム除去を行うことができる。 Conventionally, the amount of residual potassium has been determined by measuring the amount of potassium in food after elution. On the other hand, in the present invention, energization can be performed while monitoring the amount of ions eluted by the eluted ion measuring instrument 10. Therefore, the amount of removed potassium can be monitored and the removal of potassium can be performed until the target amount of removed potassium is reached.
 また、イオン交換樹脂塔8の下流側にも溶出イオン測定器11を配置するとことによって、水槽5内に流入する水の状態をモニターすることができる。これにより、イオン交換樹脂塔8に充填されているイオン交換樹脂の交換時期を把握することができる。 Moreover, the state of the water flowing into the water tank 5 can be monitored by arranging the eluted ion measuring device 11 on the downstream side of the ion exchange resin tower 8. Thereby, the exchange time of the ion exchange resin with which the ion exchange resin tower 8 is filled can be grasped | ascertained.
 水槽5内の水は循環流路7に配置したポンプ9によって循環する。ポンプはペリスタポンプ、チューブポンプ、ダイヤフラムポンプ等どのようなものを用いてもよい。また、溶出したカリウム量を算出するためにはポンプの流量が明らかであることが好ましい。 Water in the water tank 5 is circulated by a pump 9 disposed in the circulation channel 7. Any pump such as a peristaltic pump, a tube pump, or a diaphragm pump may be used. In order to calculate the amount of potassium eluted, it is preferable that the flow rate of the pump is clear.
 水槽5内の食品4と電極2、3についてさらに説明する。図1Bでは、食品4は略直方体状にカットして電極間2、3に挟み込み通電する態様を記載しているが、食品4は電極2、3と密着すればどのような形状でもよい。 The food 4 and the electrodes 2 and 3 in the water tank 5 will be further described. In FIG. 1B, the food 4 is cut into a substantially rectangular parallelepiped shape and sandwiched between the electrodes 2 and 3 and energized. However, the food 4 may have any shape as long as the food 4 is in close contact with the electrodes 2 and 3.
 電極2、3に可撓性の素材を用い、食品4の電極2、3に接する面をある程度平らにすることにより、食品4と密着させ広い面積で通電することができる。本発明の電極2、3は、直接食品4に接触し通電を行うことから、安全性に配慮したものである必要がある。具体的には、「食品、添加物等の規格基準」に定められた鉄、アルミニウム、白金及びチタンを用いれば良い。また、特に、陽極電極2は金属イオン溶出を防ぐために、白金電極等の耐食性電極とする必要がある。また、電極2、3は網状の面電極を用いることにより効率的に通電を行うことができる。 By using a flexible material for the electrodes 2 and 3 and making the surface of the food 4 in contact with the electrodes 2 and 3 flat to some extent, the food 4 can be brought into close contact with each other and can be energized over a wide area. Since the electrodes 2 and 3 of the present invention directly contact the food 4 and conduct electricity, it is necessary to consider the safety. Specifically, iron, aluminum, platinum, and titanium specified in “Standards for Foods, Additives, etc.” may be used. In particular, the anode electrode 2 needs to be a corrosion-resistant electrode such as a platinum electrode in order to prevent elution of metal ions. Further, the electrodes 2 and 3 can be efficiently energized by using mesh surface electrodes.
 また、片側の電極の外側に緩衝材12を配置することにより、電極2、3が食品4に対して密着し効率良く通電を行うことができる。緩衝材12は可撓性があり、食品から溶出したイオンが拡散することができるものであればどのようなものを用いても良い。例えば、スポンジ等の多孔性の素材や、綿、化学繊維からなる織物、山型形状の緩衝材等、電極2、3に密着せず、溶出したイオンが周囲の水に拡散可能なものであればどのようなものを用いてもよい。また、ここでは図示していないが、重石、バンドなどの固定部材を用いて電極2、3が食品4に密着するよう固定すれば食品4を介してのみ通電されることから効率が良い。 Further, by disposing the buffer material 12 outside the electrode on one side, the electrodes 2 and 3 can be in close contact with the food 4 and can be energized efficiently. Any material may be used as the cushioning material 12 as long as it is flexible and can diffuse ions eluted from food. For example, porous materials such as sponge, fabrics made of cotton, chemical fibers, mountain-shaped cushioning materials, etc., which do not adhere to the electrodes 2 and 3 and are capable of diffusing eluted ions into the surrounding water Any type may be used. Although not shown here, if the electrodes 2 and 3 are fixed so as to be in close contact with the food 4 using a fixing member such as a weight or a band, the current is passed through the food 4 only, so that the efficiency is high.
 緩衝材12の下方には、載置台13を配置する。通電することにより陰極側に移動したカリウム等の陽イオンは、最終的に食品の外に溶出する。緩衝材12の下方に配置する載置台13には孔14を設けてある。溶出したイオンが載置台13付近に滞留せず、イオン交換樹脂によって吸着される。 The mounting table 13 is disposed below the cushioning material 12. Cations such as potassium that have moved to the cathode side when energized are finally eluted out of the food. A hole 14 is provided in the mounting table 13 disposed below the cushioning material 12. The eluted ions do not stay near the mounting table 13 but are adsorbed by the ion exchange resin.
 図2に、本発明の第2の実施形態を模式的に示す。多くの食品を一度に処理する場合には、第1の実施形態で示した対向する電極2、3に食品4を挟んだユニットを緩衝材12を介して、隣り合わせに多数配置すればよい。このような構成とすることにより多数の食品であっても、一度に通電し処理することができる。 FIG. 2 schematically shows a second embodiment of the present invention. When many foods are processed at a time, a large number of units with the foods 4 sandwiched between the opposing electrodes 2 and 3 shown in the first embodiment may be arranged adjacent to each other with the cushioning material 12 interposed therebetween. By adopting such a configuration, even a large number of foods can be energized and processed at a time.
 ユニットは水槽5内に配置する。循環流路7を水が循環することにより、水槽5内の水が循環することからあえて撹拌する必要はない。また、緩衝材12は連続した山型形状のものを使用する等、電極と少ない面積で接触しながら、電極2、3と食品4との密着性を促すようなものを用いれば、溶出した陽イオンの水への拡散を促進することができる。 The unit is placed in the water tank 5. Since water in the circulation channel 7 circulates, water in the water tank 5 circulates, so there is no need to stir. Further, if the buffer material 12 is a continuous mountain-shaped material, such as a material that promotes the adhesion between the electrodes 2 and 3 and the food 4 while making contact with the electrodes in a small area, It is possible to promote the diffusion of ions into water.
 食品4の厚み(電極2、3間の距離)をほぼ同じにしておくことにより、通電処理によって溶出するイオンの量は、複数の食品を同時に処理した場合であってもほぼ同等となる。したがって、多量の食品を一度に同程度の脱カリウム処理することも可能となる。 By making the thickness of the food 4 (distance between the electrodes 2 and 3) substantially the same, the amount of ions eluted by the energization process is almost the same even when a plurality of foods are processed simultaneously. Therefore, a large amount of food can be subjected to the same degree of depotassium treatment at a time.
 食品から通電によってカリウム除去を行った場合、食味、食感を損なわないことが重要である。通電処理による食味、食感の劣化としては、脱水による軟化、pHの低下による酸味が挙げられる。本発明者らは、これらに関与する条件として、水の供給の有無、通電条件、温度条件があることを検討し、明らかにした。 When potassium is removed from food by energization, it is important that the taste and texture are not impaired. Examples of the deterioration of the taste and texture due to the energization treatment include softening due to dehydration and acidity due to a decrease in pH. The present inventors examined and clarified that there are presence / absence of water supply, energization condition, and temperature condition as conditions relating to these.
 本発明のシステムでは水槽中に食品を配置し通電処理を行うので、水は常に周囲から供給される。したがって、水の供給の点では問題が生じず、食品の軟化は起こりにくい。通電条件に関しては、通電密度1~16mA/cm、温度条件に関しては0~15℃の低温で処理を行うことにより、食味、食感が保たれる。しかしながら、最適な通電条件、温度条件で脱カリウム処理を行なっても、食品によっては、軟化を生じ食味を悪化させる場合がある。軟化しやすい食品、酸味を帯びた食品に関しては以下の処理を行なうことが好ましい。 In the system of the present invention, food is placed in a water tank and energization processing is performed, so water is always supplied from the surroundings. Therefore, no problem arises in terms of water supply, and food softening is unlikely to occur. By conducting the treatment at a low temperature of 1 to 15 mA / cm 2 for the energization condition and 0 to 15 ° C. for the temperature condition, the taste and texture can be maintained. However, even if the potassium removal treatment is performed under optimum energization conditions and temperature conditions, some foods may soften and deteriorate the taste. For foods that tend to soften and foods with a sour taste, the following treatment is preferably performed.
 食品の軟化は食味を悪化させる大きな要因である。軟化に対しては、植物の骨格形成成分であるペクチンの変質を防止する前処理を行い軟化を防止することができる。例えば、カルシウム塩溶液を用いて食品を前処理し、ペクチンとカルシウム塩とを結合させ、細胞壁を強固にし組織が硬化することを利用し、食品の軟化を防止する方法がある(特許文献7、非特許文献1、2)。 Food softening is a major factor that deteriorates the taste. For softening, pretreatment for preventing alteration of pectin, which is a skeleton-forming component of plants, can be performed to prevent softening. For example, there is a method of pre-treating food using a calcium salt solution, binding pectin and calcium salt, utilizing the fact that the cell wall is strengthened and the tissue is hardened, and the food is softened (Patent Document 7, Non-patent documents 1, 2).
 本発明者らも、この反応を利用して通電による野菜の過度の軟化が防止できるか検討を行ったところ、軟化防止に対して有意な効果があるという結果を得ている。具体的には0.7重量%塩化カルシウム溶液3Lに、縦2.5cm、横2.5cm、厚さ2.5cmに切ったかぼちゃ検体、約120gを浸漬し、室温で16時間、2時間毎に穏やかに撹拌して前処理を行った。前処理後、通電してカリウム除去を行った後、食品の硬さを解析した。その結果、塩化カルシウム溶液処理を行なわなかったものに比べて、塩化カルシウム溶液処理を行なったものの方が明らかに軟化が防止されていた。 The present inventors have also examined whether it is possible to prevent excessive softening of vegetables due to energization using this reaction, and have obtained a significant effect on prevention of softening. Specifically, about 120 g of a pumpkin specimen cut into 2.5 cm in length, 2.5 cm in width and 2.5 cm in thickness is immersed in 3 L of a 0.7 wt% calcium chloride solution, and at room temperature for 16 hours every 2 hours. The sample was pretreated with gentle stirring. After pre-treatment, electricity was applied to remove potassium, and the hardness of the food was analyzed. As a result, softening was clearly prevented in the case where the calcium chloride solution treatment was performed, compared to the case where the calcium chloride solution treatment was not performed.
 塩化カルシウム溶液による前処理によって、軟化が防止できるという上記結果は、ペクチンの変質を防ぐ他の前処理によっても、通電処理による食品の軟化を防ぐことができることを示している。例えば、ペクチンメチルエステラーゼの酵素反応を利用する50~65℃での予備加熱処理等、他のペクチンの変質を防ぐ様々な方法を採用することによって軟化を防止することができる。 The above results that the softening can be prevented by the pretreatment with the calcium chloride solution indicate that the softening of the food by the electric current treatment can be prevented by other pretreatments that prevent the deterioration of pectin. For example, softening can be prevented by adopting various methods for preventing other pectin alterations such as preheating treatment at 50 to 65 ° C. utilizing the enzymatic reaction of pectin methylesterase.
 また、カリウム等の陽イオンを除去することにより、酸味を強く感じることがある。酸味を帯びることによって、食品の風味を損なう場合には、アルカリ処理を行って、元の食味に戻す必要がある。 Also, by removing cations such as potassium, the acidity may be felt strongly. When the taste of food is impaired by being sour, it is necessary to perform alkali treatment to restore the original taste.
 本発明者らが別途検討したところ、除去したカリウムに対して、当量比0.15~1.1のナトリウム及び/又はカルシウムを補うことによって、酸味を中和し、食品の風味を元に戻すことができる。 When the present inventors examined separately, supplementing sodium and / or calcium having an equivalent ratio of 0.15 to 1.1 with respect to the removed potassium neutralizes the acidity and restores the flavor of the food. be able to.
 食感や風味が脱カリウム処理によって損なわれる場合も、通電の前後にペクチンの変質防止処理やアルカリ処理を行なうことにより、元の食品と区別がつかない程度に回復させることができる。 Even when the texture and flavor are impaired by the depotassification treatment, it can be recovered to the extent that it is indistinguishable from the original food by performing anti-pectin alteration treatment and alkali treatment before and after energization.
 次に、本発明について、さらに具体例を挙げて説明するが、かかる例によって本発明が限定されるものではない。 Next, the present invention will be described with further specific examples, but the present invention is not limited to such examples.
1.通電条件、温度条件の検討
≪実施例1≫
 食品の通電面積あたりの通電密度と通電する際の温度が、食品の硬さに及ぼす影響について検討した。食品の甘味、香りといった食味と、硬さ・舌触りといった食感の間には相関が見られることを先に確認している。すなわち、硬さが良好であるものは食味も良好である。
1. Examination of energization condition and temperature condition << Example 1 >>
The effect of the current density per energized area of food and the temperature during energization on the hardness of the food was investigated. It has been confirmed in advance that there is a correlation between the taste of food such as sweetness and aroma and the texture such as hardness and texture. That is to say, those having good hardness have good taste.
 かぼちゃ(日本かぼちゃ)は、縦2.5cm、横2.5cm、厚さ2.5cmになるようにカットし、検体として用いた。温度は0℃に保ち、0~16mA/cmまで通電密度を変えて処理し、甘味、香り、硬さ・舌触りについて検討を行った。また、通電処理を行わず、室温(23℃)で水に浸漬した検体も同様に甘味等について検討した。脱イオン手段を有さない装置で6時間通電して解析を行った。 A pumpkin (Japanese pumpkin) was cut to have a length of 2.5 cm, a width of 2.5 cm, and a thickness of 2.5 cm, and used as a specimen. The temperature was kept at 0 ° C. and the current density was changed from 0 to 16 mA / cm 2 , and the sweetness, fragrance, hardness and texture were examined. In addition, a sample immersed in water at room temperature (23 ° C.) without conducting an energization treatment was similarly examined for sweetness and the like. The analysis was performed by energizing for 6 hours with an apparatus having no deionization means.
 硬さは、未処理検体と比較して、同等のものを良好、硬さが減り弾力性を持つものを軟、さらに弾力性を失い粘土様の可塑性を示したものを極軟としている。 The hardness is comparable to that of the untreated specimen, good for the equivalent, soft for the reduced hardness and soft, and very soft for the clay-like plastic that loses elasticity.
 かぼちゃに残存するカリウム量は、日本食品標準成分表に用いられている分析法に準拠して測定した。すなわち、検体は硝酸、過塩素酸による湿式灰化法による前処理を行い、その後、原子吸光法によってカリウム量を測定した。直流電流で通電処理を行った検体(試料1~5)はいずれもカリウムが除去されている。 The amount of potassium remaining in the pumpkin was measured according to the analysis method used in the Japanese food standard ingredient table. That is, the specimen was pretreated by a wet ashing method using nitric acid and perchloric acid, and then the amount of potassium was measured by an atomic absorption method. All of the specimens (samples 1 to 5) subjected to energization treatment with a direct current have potassium removed.
 一方、交流電流(試料6)は12%、あるいは通電を行わなかったもの(試料7、8)については、夫々1%、3%と温度条件によらず、ほとんどカリウムが除去されていない。 On the other hand, the alternating current (sample 6) was 12%, or the samples that were not energized (samples 7 and 8) were 1% and 3%, respectively, and almost no potassium was removed regardless of temperature conditions.
 検体として用いた野菜の品種、産地、収穫後の保存期間や保存条件によって、カリウム量は変わってくることから、表1では、カリウム除去率は数回の実験結果をもとに幅のある値で示している。表1で示した実験条件で同日に行った、同じかぼちゃに由来する検体では、4mA/cmで処理した検体(試料1)では39%、8mA/cm、16mA/cmで処理した検体(試料2~5)については、夫々82%、95%、91%、98%といずれも80%以上カリウムが除去されている。 Since the amount of potassium varies depending on the cultivar of the vegetable used as the specimen, the place of production, the storage period and storage conditions after harvesting, in Table 1, the potassium removal rate varies widely based on the results of several experiments. Is shown. For the samples derived from the same pumpkin, which were performed on the same day under the experimental conditions shown in Table 1, the samples treated with 4 mA / cm 2 (sample 1) were 39%, the samples treated with 8 mA / cm 2 and 16 mA / cm 2. (Samples 2 to 5) are 82%, 95%, 91%, and 98%, respectively, and 80% or more of potassium is removed.
 また、カリウム除去装置は水槽内で検体を水に浸漬して処理を行っているにも関わらず、室温で処理を行うと著しく脱水が生じており、食味に影響を及ぼしている(試料5)。一方、低温(0~10℃)で処理した検体(試料1~4)は、通電密度に関わらず、脱水の程度がマイナス(-)~プラス(+)の範囲であった。 In addition, although the potassium removal apparatus performs the treatment by immersing the specimen in water in the water tank, the dehydration occurs remarkably when the treatment is performed at room temperature, which affects the taste (Sample 5). . On the other hand, the specimens (samples 1 to 4) treated at a low temperature (0 to 10 ° C.) had a degree of dehydration ranging from minus (−) to plus (+) regardless of the current density.
 0℃、4mA/cmで処理した検体(試料1)、あるいは8mA/cmで処理した検体(試料2)は、硬さも未処理検体と同等であり、脱水による凹みも8mA/cmで処理した検体(試料2)で1mm程度の極小さい凹みが陰極側に生じていたのみである。 The specimen treated at 0 ° C. and 4 mA / cm 2 (Sample 1) or the specimen treated at 8 mA / cm 2 (Sample 2) has the same hardness as the untreated specimen, and the dent due to dehydration is 8 mA / cm 2 . Only a very small dent of about 1 mm was generated on the cathode side in the treated specimen (sample 2).
 また、0℃、16mA/cmで処理した検体(試料3)は、陰極側に強い凹みが生じていた。したがって、低温であっても、16mA/cmでは、脱水が進むため、食味、食感がやや低下する。 In addition, the specimen (sample 3) treated at 0 ° C. and 16 mA / cm 2 had a strong dent on the cathode side. Therefore, even at a low temperature, at 16 mA / cm 2 , dehydration proceeds, so the taste and texture are slightly lowered.
 また、10℃、8mA/cmで処理した検体(試料4)では、皮以外の5面ですべて脱水による5mm程度の凹みが観察された。また、検体の硬さも軟らかくなっていた。 In addition, in the specimen (sample 4) treated at 10 ° C. and 8 mA / cm 2 , depressions of about 5 mm due to dehydration were observed on all five surfaces other than the skin. Moreover, the hardness of the specimen was also soft.
 23℃、8mA/cmで処理した検体(試料5)は、脱水が激しく、検体が粘土状となっており、食感も著しく悪いものとなっている。したがって、通電条件だけではなく、温度条件が食味、食感を保つためには非常に重要である。 The specimen (sample 5) treated at 23 ° C. and 8 mA / cm 2 is heavily dehydrated, the specimen is clay-like, and the texture is remarkably poor. Therefore, not only the energization conditions but also the temperature conditions are very important for maintaining the taste and texture.
Figure JPOXMLDOC01-appb-T000001
2.イオン交換樹脂の効果
≪実施例2≫
 かぼちゃ(日本かぼちゃ)は、縦2.5cm、横2.5cm、厚さ2.5cmになるようにカットし検体として用いた。図1で示したシステム1を用い、温度は5℃に保ち、4mA/cm、8mA/cmで通電処理を行った。イオン交換樹脂としてH型強酸性陽イオン交換樹脂、OH型強塩基性陰イオン交換樹脂が混合された純水製造用イオン交換樹脂を用い、かぼちゃから溶出してきたイオンを除去しながら通電を行なった。
Figure JPOXMLDOC01-appb-T000001
2. Effect of ion exchange resin << Example 2 >>
A pumpkin (Japanese pumpkin) was cut into a length of 2.5 cm, a width of 2.5 cm, and a thickness of 2.5 cm and used as a specimen. Using the system 1 shown in FIG. 1, the temperature was kept at 5 ° C., and the energization process was performed at 4 mA / cm 2 and 8 mA / cm 2 . Using ion-exchange resin for pure water production mixed with H-type strongly acidic cation-exchange resin and OH-type strongly basic anion-exchange resin as ion-exchange resin, electricity was applied while removing ions eluted from pumpkin. .
 通電時間によるカリウム除去率(K溶出%)は図1Aに示すイオン交換樹脂塔8の上流のイオン測定器10によって測定した値から算出している。ポンプ9により水が循環流路7を循環する速度と、イオン測定器10として電気伝導度計を用い、通電により溶出したイオンの積算を計算によって求める。 The potassium removal rate (K elution%) depending on the energization time is calculated from the value measured by the ion measuring instrument 10 upstream of the ion exchange resin tower 8 shown in FIG. 1A. A rate at which water circulates through the circulation flow path 7 by the pump 9 and an integration of ions eluted by energization are obtained by calculation using an electric conductivity meter as the ion measuring device 10.
 具体的には、負電極直下から1.2L/分の速度で水を吸引し、イオン交換樹脂を通して溶出イオンを除去した後に水槽に戻している。イオン交換樹脂塔に流入する前のイオンの量は電気伝導度計で測定することによって、通電により溶出したイオンの量を算出している。 Specifically, water is sucked at a rate of 1.2 L / min directly under the negative electrode, and the eluted ions are removed through the ion exchange resin and then returned to the water tank. The amount of ions before flowing into the ion exchange resin tower is measured with an electric conductivity meter to calculate the amount of ions eluted by energization.
 また、比較例として、イオン交換樹脂を用いず水の循環のみを行い、カリウムを除去しカリウム除去率を求めた。イオン交換樹脂を用いずカリウム除去を行ったものについては、一定時間ごとにサンプルを採取し、かぼちゃに残存するカリウム量を日本食品標準成分表に用いられている分析法に準拠して測定した。結果を図3Aに示す。図中、「+」は、イオン交換樹脂によって循環水からイオンを除去しながら通電を行なったもの、「-」は、水の循環のみを行い、イオン交換樹脂による水の処理を行なわなかったものを示す。 As a comparative example, only water was circulated without using an ion exchange resin, and potassium was removed to obtain a potassium removal rate. About what removed potassium without using ion exchange resin, the sample was extract | collected for every fixed time, and the amount of potassium which remains in a pumpkin was measured based on the analysis method used for the Japanese food standard ingredient table | surface. The results are shown in FIG. 3A. In the figure, “+” indicates that the energization was performed while removing ions from the circulating water with the ion exchange resin, and “−” indicates that only the water was circulated and the water was not treated with the ion exchange resin. Indicates.
 図3Aに示すように、50%のカリウムを検体から除去するのに、本願発明のシステムを用いた場合には、4mA/cmでは128分、8mA/cmでは66分かかった。一方、比較例の場合には、4mA/cmでは430分程度かかると推定される。また、8mA/cmでは180分かかった。イオン交換樹脂を用いて、循環する水からイオンを除去しながら脱カリウム処理を行なうと、イオンを除去せずに通電する場合に比べて、1/3程度の時間でカリウム除去を行うことができる。
≪実施例3≫
 検体としてさつまいもを用いて同様にイオン交換樹脂によって水槽内の水からイオンを除去する効果を解析した。さつまいもは実施例2と同様に、縦2.5cm、横2.5cm、厚さ2.5cmになるようにカットした検体を用いた。かぼちゃの代わりにさつまいもを用いた他は、実施例2と同様にして通電処理を行いカリウム除去率を求めた。また、イオン交換樹脂を用いずにカリウム除去を行なったものを比較例とした。結果を図3Bに示す。
As shown in FIG. 3A, for removing 50% of potassium from the sample, in the case of using the system of the present invention, 4mA / cm 2 at 128 minutes, it took 8 mA / cm 2 in 66 minutes. On the other hand, in the case of the comparative example, it is estimated that it takes about 430 minutes at 4 mA / cm 2 . Moreover, it took 180 minutes at 8 mA / cm 2 . When a potassium removal treatment is performed while removing ions from the circulating water using an ion exchange resin, potassium can be removed in about 1/3 of the time when electricity is supplied without removing ions. .
Example 3
The effect of removing ions from the water in the water tank was analyzed using ion exchange resin in the same manner using sweet potato as a specimen. As in Example 2, sweet potato was cut to have a length of 2.5 cm, a width of 2.5 cm, and a thickness of 2.5 cm. Except for using sweet potato instead of pumpkin, the energization treatment was performed in the same manner as in Example 2 to obtain the potassium removal rate. Moreover, what removed potassium without using ion exchange resin was made into the comparative example. The results are shown in FIG. 3B.
 図3Bに示すように、50%のカリウムを検体から除去するのに、本願発明のシステムを用いた場合には、4mA/cmでは103分、8mA/cmでは45分かかる。一方、イオン交換樹脂を用いない場合には、4mA/cmでは297分、8mA/cmでは212分かかった。 As shown in FIG. 3B, for removing 50% of potassium from the sample, in the case of using the system of the present invention, 4mA / cm 2 at 103 minutes, 8 mA / cm according 2 in 45 minutes. On the other hand, in the case of not using the ion exchange resin, 4mA / cm 2 at 297 minutes, it took 8 mA / cm 2 in 212 minutes.
 野菜の種類によっても異なるが、イオン交換樹脂を用いた場合には、イオン交換樹脂を用いない場合と比較して、同等のカリウムイオンを除去するのに要する通電時間は1/3~1/5程度に短縮することが可能である。
≪実施例4≫
 通電密度と通電時間の積にカリウムの移動距離が比例することから、カリウム移動距離に対するイオン交換樹脂の効果を検討した。
Depending on the type of vegetable, when ion exchange resin is used, the energization time required to remove equivalent potassium ions is 1/3 to 1/5 compared to when no ion exchange resin is used. It can be shortened to the extent.
Example 4
Since the movement distance of potassium is proportional to the product of the conduction density and the conduction time, the effect of the ion exchange resin on the potassium movement distance was examined.
 検体としてかぼちゃを用い、通電密度(mA/cm)と時間に対するカリウムの移動距離を算出した。日本かぼちゃは、縦2.5cm、横2.5cm、厚さ2.5cmに切ったものを検体として用いた。 Pumpkin was used as a specimen, and the moving distance of potassium with respect to current density (mA / cm 2 ) and time was calculated. A Japanese pumpkin cut into a length of 2.5 cm, a width of 2.5 cm, and a thickness of 2.5 cm was used as a specimen.
 実施例2と同様に、イオン交換樹脂によって常にイオンを除去しながら通電を行いカリウムの移動距離を求めた。イオン交換樹脂を用いずに通電処理を行い、カリウムを除去したものを比較例とした。結果を図4に示す。 In the same manner as in Example 2, energization was performed while constantly removing ions with an ion exchange resin, and the distance of potassium movement was determined. A comparative example was obtained by conducting an energization treatment without using an ion exchange resin and removing potassium. The results are shown in FIG.
 図4に示すように、イオン交換樹脂を用いた場合(図4中「+」で示す。)はカリウムの移動距離が早く、イオン交換樹脂を用いずに通電を行なった場合(図4中「-」で示す。)の約2倍である。かぼちゃから溶出したカリウムイオン等のイオンを周囲の水から常に除去することによって、周囲の水の電気伝導度は低く保たれ、食品を介して効率よく通電が行なわれ、カリウムが移動するものと考えられる。 As shown in FIG. 4, when an ion exchange resin is used (indicated by “+” in FIG. 4), the movement distance of potassium is fast, and electricity is applied without using an ion exchange resin (in FIG. 4, “ It is approximately twice that of “-”. By constantly removing ions such as potassium ions eluted from the pumpkin from the surrounding water, the electrical conductivity of the surrounding water is kept low, and electricity is efficiently conducted through the food, so that potassium moves. It is done.
 低カリウム食品を迅速に製造することができる。また、除去されるイオンをモニターしながら通電するので、食品に残存するカリウムを推定しながら低カリウム食品を製造することができる。そのため、腎臓病患者のようにカリウムを制限されている患者であっても安心して摂取可能な低カリウム食品の提供が可能となる。 ・ Low-potassium foods can be produced quickly. Moreover, since it supplies with electricity monitoring the ion removed, a low potassium food can be manufactured, estimating the potassium which remains in food. Therefore, it is possible to provide a low-potassium food that can be consumed with peace of mind even in patients with limited potassium, such as patients with kidney disease.
1・・・カリウムを除去するシステム、2、3・・・電極、4・・・食品、5・・・水槽、6・・・直流電源、7・・・循環流路、8・・・イオン交換樹脂塔、9・・・ポンプ、10、11・・・溶出イオン測定器、12・・・緩衝材、13・・・載置台 DESCRIPTION OF SYMBOLS 1 ... System which removes potassium, 2, 3 ... Electrode, 4 ... Food, 5 ... Water tank, 6 ... DC power supply, 7 ... Circulation flow path, 8 ... Ion Exchange resin tower, 9 ... pump, 10, 11 ... elution ion measuring device, 12 ... buffer material, 13 ... mounting table

Claims (14)

  1.  食品から通電によってカリウムを除去するシステムであって、
     直流電流を付与する電源と、
     水槽と、
     該水槽内に配置され食品を介して対向する少なくとも一対の電極と、
     溶出されたイオンを吸着する脱イオン手段を備えたことを特徴とするカリウム除去システム。
    A system for removing potassium from food by energization,
    A power supply for applying a direct current;
    A tank,
    At least a pair of electrodes disposed in the aquarium and facing each other via food,
    A potassium removal system comprising a deionization means for adsorbing eluted ions.
  2.  請求項1記載のカリウム除去システムであって、
     前記脱イオン手段がイオン交換樹脂であることを特徴とするカリウム除去システム。
    The potassium removal system according to claim 1,
    The potassium removal system, wherein the deionization means is an ion exchange resin.
  3.  請求項1又は2記載のカリウム除去システムであって、
     前記水槽には水を循環させる循環手段が設けられていることを特徴とするカリウム除去システム。
    The potassium removal system according to claim 1 or 2,
    A potassium removing system, wherein the water tank is provided with a circulating means for circulating water.
  4.  請求項3記載のカリウム除去システムであって、
     前記循環手段は循環流路であり、
     該循環流路には水を循環させる循環ポンプと、
     前記イオン交換樹脂が充填されたイオン交換樹脂塔が設けられたことを特徴とするカリウム除去システム。
    The potassium removal system according to claim 3,
    The circulation means is a circulation channel;
    A circulation pump for circulating water in the circulation channel;
    A potassium removal system comprising an ion exchange resin tower filled with the ion exchange resin.
  5.  請求項4記載のカリウム除去システムであって、
     前記循環流路の前記イオン交換樹脂塔の上流側に電気伝導度計又はカリウムイオン計を設けたことを特徴とするカリウム除去システム。
    The potassium removal system according to claim 4,
    A potassium removal system, wherein an electrical conductivity meter or a potassium ion meter is provided upstream of the ion exchange resin tower in the circulation channel.
  6.  請求項5記載のカリウム除去システムであって、
     前記循環流路の前記イオン交換樹脂塔の下流側にさらに電気伝導度計又はカリウムイオン計を設けたことを特徴とするカリウム除去システム。
    The potassium removal system according to claim 5, wherein
    A potassium removal system further comprising an electric conductivity meter or a potassium ion meter on the downstream side of the ion exchange resin tower in the circulation channel.
  7.  請求項1~6いずれか1項記載のカリウム除去システムであって、
     前記電源が定電流直流電源であることを特徴とするカリウム除去システム。
    The potassium removal system according to any one of claims 1 to 6,
    The potassium removal system, wherein the power source is a constant current DC power source.
  8.  請求項1~7いずれか1項記載のカリウム除去システムであって、
     食品を浸漬している水を0~15℃に冷却する冷却システムを備えることを特徴とするカリウム除去システム。
    The potassium removal system according to any one of claims 1 to 7,
    A potassium removal system comprising a cooling system for cooling water in which food is immersed to 0 to 15 ° C.
  9.  食品からカリウムを除去する方法であって、
     対向する電極に食品を挟むようにして水槽内に配置し、
     溶出したイオンを脱イオン手段によって水中から除去しながら、
     対向した一方の電極から食品を介して他方の電極に直流電流を通電することによりカリウムを除去することを特徴とする食品からカリウムを除去する方法。
    A method for removing potassium from food,
    Place it in the water tank so that the food is sandwiched between the opposing electrodes,
    While removing the eluted ions from the water by deionization means,
    A method for removing potassium from food, wherein the potassium is removed by passing a direct current from the opposite electrode to the other electrode through the food.
  10.  請求項9に記載の食品からカリウムを除去する方法であって、
     前記水槽内の水を電気伝導度計又はカリウムイオン計によって溶出したカリウムイオンの量をモニターしながらカリウムを除去することを特徴とする食品からカリウムを除去する方法。
    A method for removing potassium from a food according to claim 9,
    A method for removing potassium from food, wherein the water in the water tank is removed while monitoring the amount of potassium ions eluted by an electric conductivity meter or a potassium ion meter.
  11.  請求項9又は10記載の食品からカリウムを除去する方法であって、
     前記食品の温度は0~15℃に保つことを特徴とする食品からカリウムを除去する方法。
    A method for removing potassium from a food according to claim 9 or 10,
    A method for removing potassium from food, characterized in that the temperature of the food is maintained at 0 to 15 ° C.
  12.  請求項9~11いずれか1項記載の食品からカリウムを除去する方法であって、
     定電流で通電することを特徴とする食品からカリウムを除去する方法。
    A method for removing potassium from a food according to any one of claims 9 to 11, comprising
    A method for removing potassium from food, characterized by energizing at a constant current.
  13.  請求項9~12いずれか1項記載の食品からカリウムを除去する方法であって、
     通電密度を1~16mA/cmで処理することを特徴とする食品からカリウムを除去する方法。
    A method for removing potassium from a food according to any one of claims 9 to 12,
    A method for removing potassium from food, characterized by treating the current density at 1 to 16 mA / cm 2 .
  14.  請求項9~13いずれか1項記載の方法によって、
     カリウムが除去された食品。
    By the method according to any one of claims 9 to 13,
    Food from which potassium has been removed.
PCT/JP2015/063555 2015-05-12 2015-05-12 System and method for removing potassium from food WO2016181478A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/063555 WO2016181478A1 (en) 2015-05-12 2015-05-12 System and method for removing potassium from food
JP2017517500A JP6281888B2 (en) 2015-05-12 2015-05-12 System and method for removing potassium from food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/063555 WO2016181478A1 (en) 2015-05-12 2015-05-12 System and method for removing potassium from food

Publications (1)

Publication Number Publication Date
WO2016181478A1 true WO2016181478A1 (en) 2016-11-17

Family

ID=57248744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063555 WO2016181478A1 (en) 2015-05-12 2015-05-12 System and method for removing potassium from food

Country Status (2)

Country Link
JP (1) JP6281888B2 (en)
WO (1) WO2016181478A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230708A1 (en) * 2017-06-16 2018-12-20 株式会社クレアテラ Low-potassium food and method for manufacturing same
WO2020021641A1 (en) * 2018-07-24 2020-01-30 株式会社クレアテラ Apparatus and method for removing salts from liquid food, and liquid food from which salts are removed

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690685A (en) * 1992-09-11 1994-04-05 Tetsudo Kizai Kogyo Kk Desalting device
JPH08228698A (en) * 1995-03-01 1996-09-10 Takara Shuzo Co Ltd Production of processed food
JPH10165113A (en) * 1996-12-13 1998-06-23 Hoshizaki Electric Co Ltd Method and device for removing metallic component from food
JP2002325562A (en) * 2001-05-01 2002-11-12 Tomoki Yamazaki Method for desalting sea algae

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104916A (en) * 1996-06-24 1998-01-13 Nisshin Kasei Kk Production of food essence and food essence produced by the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690685A (en) * 1992-09-11 1994-04-05 Tetsudo Kizai Kogyo Kk Desalting device
JPH08228698A (en) * 1995-03-01 1996-09-10 Takara Shuzo Co Ltd Production of processed food
JPH10165113A (en) * 1996-12-13 1998-06-23 Hoshizaki Electric Co Ltd Method and device for removing metallic component from food
JP2002325562A (en) * 2001-05-01 2002-11-12 Tomoki Yamazaki Method for desalting sea algae

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230708A1 (en) * 2017-06-16 2018-12-20 株式会社クレアテラ Low-potassium food and method for manufacturing same
WO2018229975A1 (en) * 2017-06-16 2018-12-20 株式会社クレアテラ Low-potassium food and method for producing same
JPWO2018230708A1 (en) * 2017-06-16 2020-04-16 株式会社クレアテラ Low-potassium food and its manufacturing method
WO2020021641A1 (en) * 2018-07-24 2020-01-30 株式会社クレアテラ Apparatus and method for removing salts from liquid food, and liquid food from which salts are removed
WO2020022357A1 (en) * 2018-07-24 2020-01-30 株式会社クレアテラ Apparatus and method for removing salts from liquid food, and liquid food from which salts are removed
JPWO2020022357A1 (en) * 2018-07-24 2021-08-02 株式会社クレアテラ Devices and methods for removing salts from liquid foods, and liquid foods from which salts have been removed.

Also Published As

Publication number Publication date
JPWO2016181478A1 (en) 2017-11-09
JP6281888B2 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP6281888B2 (en) System and method for removing potassium from food
US4936962A (en) Process for adjusting the pH of an aqueous flowable fluid
Diblíková et al. The effect of dry matter and salt addition on cheese whey demineralisation
Merkel et al. The impact of high effective electrodialytic desalination on acid whey stream at high temperature
AU2004212401B2 (en) Method of desalting
US20130220828A1 (en) Process and system for producing an anolyte fraction
Lal et al. Alkaline water and human health: Significant hypothesize
Muldoon et al. Comparison of a resin ion-exchange method and a liquid ion-exchange method for determination of ionized calcium in skimmilk
JP2007289953A (en) Method for producing salt water, salt, and bittern using sea water as raw material, and salt water, salt, and bittern
JP6052701B2 (en) Apparatus and method for removing salts from food
JP4092252B2 (en) Method for obtaining useful substance from scallop visceral tissue and plant therefor
JP2002126744A (en) Method for sterilizing electric reproduction type deionizing pure water device
US20090017174A1 (en) Food product treatment using alkaline electrolyzed water
GB993132A (en) Improving the taste of edible plant extracts by dialysis
Janson et al. Electrochemical coagulation of whey protein
Bisson et al. Osmotic adaptations of charophyte algae in the Coorong, South Australia and other Australian lakes
WO2020022357A1 (en) Apparatus and method for removing salts from liquid food, and liquid food from which salts are removed
US20190200654A1 (en) Device and method for maturing meat in water, in particular beef on the bone
Michalski et al. Research onto the contents of selected inorganic ions in the dialysis fluids and dialysates by using ion chromatography
US4938856A (en) Process for mild heat treatment of a flowable fluid
JP6086417B2 (en) Low potassium food, method for producing the same, and kit for producing the same
JP3953730B2 (en) Seasoning liquid and pickles using weak alkaline aqueous solution obtained by electrolyzing deep ocean water
RU2512362C2 (en) Method for storage of animal meat under cool conditions
JP4088788B2 (en) Drinking water and method for producing the same
KR100627001B1 (en) The treatment method for maturing chickens, using electrolyzed water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017517500

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891803

Country of ref document: EP

Kind code of ref document: A1