JP4104105B2 - Mineral beverage manufacturing method - Google Patents

Mineral beverage manufacturing method Download PDF

Info

Publication number
JP4104105B2
JP4104105B2 JP2001036413A JP2001036413A JP4104105B2 JP 4104105 B2 JP4104105 B2 JP 4104105B2 JP 2001036413 A JP2001036413 A JP 2001036413A JP 2001036413 A JP2001036413 A JP 2001036413A JP 4104105 B2 JP4104105 B2 JP 4104105B2
Authority
JP
Japan
Prior art keywords
mineral
water
exchange membrane
seawater
beverage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001036413A
Other languages
Japanese (ja)
Other versions
JP2002238515A (en
Inventor
拓男 重冨
正一 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2001036413A priority Critical patent/JP4104105B2/en
Publication of JP2002238515A publication Critical patent/JP2002238515A/en
Application granted granted Critical
Publication of JP4104105B2 publication Critical patent/JP4104105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Description

【0001】
【発明の属する技術分野】
本発明は、ミネラル成分を有効に補給できる飲料の製造方法に関するものである。
【0002】
【従来の技術】
市販されている飲料は、多種多様であるが、最近は、糖類やカフェインを含まない健康飲料が消費者の人気を集めている。この健康飲料のなかでも、特に、日本人に不足がちと言われているマグネシウムやカルシウムなどの必須ミネラルを含有する飲料が、注目されつつある。
従来、ミネラル成分を補給するために、海水を利用する方法が提案されている(特開昭60−255729号)。これは、イオン交換膜による製塩の際に排出される海水、すなわち、一価イオン選択性の陰及び陽イオン交換膜を組込んだ電気透析装置を使用し、海水の電気伝導度が50mS/cm程度の海水から40mS/cm程度に脱塩した排出海水を有効利用しようというものである。しかしながら、ここで例示される飲料の組成は、二価イオン(ミネラル成分)と共に、高濃度のナトリウムイオンを含むものであり、ミネラル成分のみを補給したいという要求を満足していない。また、効率良く脱塩し、飲料を製造するための手法を開示されていない。
【0003】
【発明が解決しようとする課題】
本発明の目的はマグネシウム、カルシウムなどのミネラル成分を有効に補給できる飲料を効率良く製造する方法を提供することである。
【0004】
【課題を解決するための手段】
本発明は、健康上必要な必須ミネラルを有効に補給できるミネラル飲料の効率的製造方法に関する。すなわち、本発明は、()陽イオン交換膜として一価イオンを選択的に透過させて下記式(1)で定義されるF 2 が0.3以下である陽イオン交換膜を使用した電気透析装置に、海水を供給し、その電気伝導度が5〜20mS/cmの範囲に達するまで脱塩してミネラル水としたのち、このミネラル水の硬度が100〜2000mg/リットルの範囲に達するまで純水で希釈することを特徴とするミネラル飲料の製造方法、
【化2】

Figure 0004104105
ii)電気透析装置に使用される陰イオン交換膜が、一価イオンを選択的に透過させる特性を持たない陰イオン交換膜であることを特徴とする(i)記載のミネラル飲料の製造方法、(iii)陽イオン交換膜が、F 2 が0.13以下のものであることを特徴とする(i)または(ii)に記載のミネラル飲料の製造方法、(iv)海水を脱塩した後のミネラル水を希釈する純水の電気伝導度が、海水を脱塩した後のミネラル水の1/10以下であることを特徴とする、(i)または(ii)に記載のミネラル飲料水の製造方法、(v)海水を脱塩した後のミネラル水を希釈する純水が、イオン交換樹脂により脱イオンされたイオン交換水または水道水であることを特徴とする(i)から(iv)のいずれかに記載のミネラル飲料水の製造方法、に関する。
【0005】
本発明は、一価イオンを選択的に透過させる陽イオン交換膜(以下、一価イオン選択性陽イオン交換膜)を使用して海水を脱塩するに際し、飲料に適する程度まで電気透析装置だけで脱塩するのではなく、また、製塩の様に、わずかの脱塩でとどめるのでもなく、脱塩の程度を適度にコントロールし、その脱塩した水を純水で希釈調整することで、塩分を過度に含まない、ミネラル飲料を効率良く製造出来ることを見出したことに基づくものである。
【0006】
本発明で用いる電気透析装置とは、一般に脱塩の目的で使用され、陰イオン交換膜と陽イオン交換膜を組み合わせて用いるもので良い。但し、使用される陽イオン交換膜は、一価イオン選択性陽イオン交換膜に限定される。この一価イオン選択性陽イオン交換膜とは、イオン交換膜法による製塩で用いられる陽イオン交換膜であり、一価陽イオンを優先的に透過させる特性を持つ陽イオン交換膜を意味する。特に、この一価イオン選択特性のより高い陽イオン交換膜すなわち、後で定義するF2値が0.3以下の陽イオン交換膜を用いる。さらには、 2 値は0.13以下が好ましい。
【0007】
とは、(1)式で与えられるが、イオン交換膜を用いる製塩を想定した海水の濃縮における陽イオン交換膜の一価陽イオンに対する二価陽イオンの比選択透過性を示し、この値が低いほど一価陽イオン選択透過性が高いことを意味する。
【0008】
【化3】
Figure 0004104105
【0009】
また、陰イオン交換膜は、一価イオンを選択的に透過させる陰イオン交換膜(以下、一価イオン選択性陰イオン交換膜)であってもよいし、一価イオンを選択的に透過させる特性を持たない陰イオン交換膜(以下、非一価イオン選択性陰イオン交換膜)であっても良いが、硫酸イオンと塩素イオンを同等に除去できるため、非一価イオン選択性陰イオン交換膜の方が好ましい。
本発明で用いる海水は、どの水深及び海域のものでもよいが、浮遊物や有害物質の少ない、170mより深い深度から取水された海洋深層水が好ましい。本発明では、まず海水を脱塩処理してミネラル水を製造する。ミネラル水を製造するための脱塩処理は、脱塩した水の電気伝導度が5〜20mS/cmまでの範囲に達するまで脱塩する。5mS/cmを越えて脱塩すると、非常に長い時間を要し効率が悪くなる。また、電気伝導度が20mS/cmに達する前に脱塩を止めると、ナトリウムイオンの除去が不完全となり、ミネラル成分のみを補給する飲料を作り得ない。 さらに好ましい脱塩時の電気伝導度は、7〜15mS/cmの範囲である。なお、電気伝導度は、一般に測定温度に大きく影響されるため、本発明の明細書中では、25℃で測定したものを示している。
【0010】
次に得られたミネラル水を純水で希釈してミネラル飲料を製造する。本発明で用いる純水とは、海水を脱塩した後のミネラル水と比べ電気伝導度が1/10以下の水を意味する。イオン交換樹脂で脱イオンした水であっても良いし、電気伝導度さえ満足すれば、水道水でもかまわない。もちろん、海水を逆浸透膜で濾過した水であってもよいが、製造コストは、ここで例示したその他に比べ高くなる。
【0011】
希釈の程度は、ミネラル飲料の硬度が、100〜2000mg/リットルの範囲に達するまで行なう。100mg/リットル未満では、ミネラル補給の効率が悪い飲料しか得られず、また、2000mg/リットルを越えると、ミネラル由来の苦味が増し、飲料に適さなくなる。さらに好ましいミネラル飲料の硬度は、200〜1000mg/リットルの範囲である。
また、本発明で製造するミネラル飲料のNa濃度は、200mg/リットル以下が好ましく、さらには、100mg/リットル以下がより好ましい。
なお、本発明で得られるミネラル飲料に、さらに処理を加え、飲料としてさらに良好な特性を付与することができる。例えば、飲料製造工程中もしくは、飲料製造後に滅菌を施すことや、また、いわゆるスポーツドリンクの様な味付けを施すことも可能である。
【0012】
【発明の実施の形態】
次に、実施例、比較例に基いて、本発明の実施の態様を具体的に説明するが、本発明はこれらに限定されるものではない。
まず、実施例及び比較例中での共通する実験条件を説明する。脱塩に用いた電気透析装置は、旭化成株式会社製マイクロアシライザーS3型であり、使用したカートリッジ(イオン交換膜の積層体)は、一価イオン選択性陽イオン交換膜K192(F=0.08)と非一価イオン選択性陰イオン交換膜A501SBを組込んだAC120―550(F=0.08)と一価イオン選択性陽イオン交換膜K192(F=0.2)と陰イオン交換膜A501SBを組込んだAC120―550(F=0.2)と非一価イオン選択性陽イオン交換膜K501SBと陰イオン交換膜A501SBを組込んだAC220―550である。
【0013】
運転初期の脱塩液には、深度300mから取水した海水800mlを使用した。運転初期の濃縮液には、脱イオン水500mlを使用し、印加した電圧は10V固定とした。脱塩を終了した海水(ミネラル水)の希釈に用いた純水は、水道水をデミエースDY−15型イオン交換樹脂で脱イオンした水を用いた。この脱イオン水の硬度は、EDTA滴定法により、ナトリウムイオン濃度は、イオンクロマト法により分析したが、それぞれ、1mg/リットル以下であった。なお、EDTA法とは、水中のカルシウムイオンとマグネシウムイオン量合計を滴定で求める方法であり、得られたイオン量合計をCaCO3に換算し、mg/リットルの単位で表示したものである。
【0014】
また、脱塩希釈後の飲料(ミネラル飲料)の硬度とナトリウムイオン濃度分析も、上記と同じ方法で行った。ミネラル飲料の試飲評価法は、成人男女各5名が試飲し、評価した結果をまとめ、過半数を占めた評価結果を表中に以下の記号で示した。
○:ミネラル飲料として飲料可能
×:苦みがあり、飲料として不適
●:塩辛く、飲料として不適
脱塩実施例1から5に示すように、本発明の範囲で飲料として良好な評価が得られた。一方、比較例1に示すように硬度2500に希釈したものは、苦味がある結果となった。また、比較例2では脱塩終了電気伝導度を22mS/cmと高く設定したが、飲料にしたときの評価は塩辛い結果となった。
【0015】
比較例3では、非一価選択性の陽イオン交換膜を使用して脱塩したが、飲料とした場合の評価は塩辛い結果となった。
比較例4では、脱塩電気伝導度を4mS/cmと低く設定したが、脱塩に要する時間が過大に長く、効率良い脱塩とは言えない状況であった。
【0016】
【表1】
Figure 0004104105
【0017】
【発明の効果】
本発明の海水を利用した飲料の製造方法により、海水に含まれるマグネシウムやカルシウムなどのミネラルを有効に利用でき、また、塩辛くなく塩化ナトリウムの健康への悪影響もなく、飲みやすい飲料を効率良く製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a beverage that can effectively replenish mineral components.
[0002]
[Prior art]
There are a wide variety of beverages on the market, but recently, health beverages that do not contain sugars or caffeine are gaining popularity among consumers. Among these health drinks, drinks containing essential minerals such as magnesium and calcium, which are often deficient by the Japanese, are attracting attention.
Conventionally, a method of using seawater to replenish mineral components has been proposed (Japanese Patent Laid-Open No. 60-255729). This is because seawater discharged during salt production by an ion exchange membrane, that is, using an electrodialyzer incorporating a monovalent ion-selective anion and cation exchange membrane, the electrical conductivity of the seawater is 50 mS / cm. It is intended to make effective use of discharged seawater that has been desalted to about 40 mS / cm. However, the composition of the beverage exemplified here contains high-concentration sodium ions together with divalent ions (mineral components), and does not satisfy the requirement to replenish only the mineral components. Moreover, the method for desalting efficiently and manufacturing a drink is not disclosed.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for efficiently producing a beverage capable of effectively supplementing mineral components such as magnesium and calcium.
[0004]
[Means for Solving the Problems]
The present invention relates to an efficient method for producing a mineral beverage that can effectively replenish essential minerals necessary for health. That is, the present invention was used (i) a cation exchange membrane F 2 of the monovalent ions selectively transmitting and defined by the following formula (1) as Ru der 0.3 below the cation exchange membrane After supplying seawater to the electrodialyzer and desalting it into mineral water until the electric conductivity reaches a range of 5 to 20 mS / cm, the hardness of the mineral water reaches a range of 100 to 2000 mg / liter. A method for producing a mineral beverage, characterized by dilution with pure water until
[Chemical formula 2]
Figure 0004104105
( Ii ) The method for producing a mineral beverage according to (i) , wherein the anion exchange membrane used in the electrodialyzer is an anion exchange membrane that does not have a property of selectively transmitting monovalent ions. (Iii) The method for producing a mineral beverage according to (i) or (ii), wherein the cation exchange membrane has an F 2 of 0.13 or less, (iv) desalted seawater The mineral drinking water according to (i) or (ii), wherein the electrical conductivity of pure water for diluting the later mineral water is 1/10 or less of the mineral water after desalting seawater (V) The pure water for diluting mineral water after desalting seawater is ion-exchanged water or tap water deionized by an ion-exchange resin (iv) to (iv) ) Made of mineral drinking water Method, and.
[0005]
The present invention uses a cation exchange membrane that selectively permeates monovalent ions (hereinafter referred to as a monovalent ion selective cation exchange membrane) to desalinate seawater. It is not desalted with, and it is not limited to a slight amount of desalting as in salt production, but by appropriately controlling the degree of desalting and adjusting the dilution of the desalted water with pure water, This is based on the finding that a mineral beverage that does not contain excessive salt can be produced efficiently.
[0006]
The electrodialysis apparatus used in the present invention is generally used for the purpose of desalting and may be a combination of an anion exchange membrane and a cation exchange membrane. However, the cation exchange membrane used is limited to a monovalent ion selective cation exchange membrane. The monovalent ion-selective cation exchange membrane is a cation exchange membrane used in salt production by an ion exchange membrane method, and means a cation exchange membrane having a property of preferentially permeating monovalent cations. In particular, a cation exchange membrane having higher monovalent ion selective characteristics , that is, a cation exchange membrane having an F 2 value defined below of 0.3 or less is used . Furthermore, the F 2 value is preferably 0.13 or less.
[0007]
F 2 is given by the equation (1), and indicates the selective permeability of a divalent cation to a monovalent cation of a cation exchange membrane in the concentration of seawater assuming salt production using an ion exchange membrane. It means that monovalent cation selective permeability is so high that a value is low.
[0008]
[Chemical 3]
Figure 0004104105
[0009]
Further, the anion exchange membrane may be an anion exchange membrane that selectively transmits monovalent ions (hereinafter referred to as a monovalent ion selective anion exchange membrane), or selectively transmits monovalent ions. It may be an anion exchange membrane with no characteristics (hereinafter referred to as non-monovalent ion selective anion exchange membrane), but it can remove sulfate ions and chloride ions equally, so non-monovalent ion selective anion exchange A membrane is preferred.
The seawater used in the present invention may be of any depth and sea area, but is preferably deep sea water taken from a depth of more than 170 m with less suspended matter and harmful substances. In the present invention, first, seawater is desalted to produce mineral water. In the desalting treatment for producing mineral water, desalting is performed until the electrical conductivity of the desalted water reaches a range of 5 to 20 mS / cm. When desalting exceeds 5 mS / cm, a very long time is required and the efficiency deteriorates. Moreover, if desalting is stopped before the electric conductivity reaches 20 mS / cm, removal of sodium ions becomes incomplete, and a beverage that replenishes only mineral components cannot be made. Furthermore, the electrical conductivity at the time of desalting is in the range of 7 to 15 mS / cm. In addition, since electric conductivity is generally greatly influenced by measurement temperature, in the specification of this invention, what was measured at 25 degreeC is shown.
[0010]
Next, the mineral water obtained is diluted with pure water to produce a mineral beverage. The pure water used by this invention means the water whose electrical conductivity is 1/10 or less compared with the mineral water after desalinating seawater. Water deionized with an ion exchange resin may be used, and tap water may be used as long as electric conductivity is satisfied. Of course, the water which filtered seawater with the reverse osmosis membrane may be sufficient, but a manufacturing cost becomes high compared with the other illustrated here.
[0011]
The degree of dilution is performed until the hardness of the mineral beverage reaches a range of 100 to 2000 mg / liter. If it is less than 100 mg / liter, only beverages with poor mineral replenishment efficiency can be obtained, and if it exceeds 2000 mg / liter, the bitterness derived from minerals increases, making it unsuitable for beverages. Further preferred hardness of the mineral beverage is in the range of 200 to 1000 mg / liter.
Moreover, 200 mg / liter or less is preferable and, as for the Na density | concentration of the mineral drink manufactured by this invention, 100 mg / liter or less is more preferable.
In addition, a process can be further added to the mineral drink obtained by this invention, and a more favorable characteristic can be provided as a drink. For example, it is possible to sterilize during the beverage production process or after the beverage production, or to add a seasoning such as a so-called sports drink.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to these.
First, common experimental conditions in the examples and comparative examples will be described. The electrodialyzer used for the desalting is a microacylator S3 type manufactured by Asahi Kasei Co., Ltd., and the cartridge (laminated body of ion exchange membranes) used is a monovalent ion selective cation exchange membrane K192 (F 2 = 0). 0.008) and AC120-550 (F 2 = 0.08) incorporating a non-monovalent ion selective anion exchange membrane A501SB and a monovalent ion selective cation exchange membrane K192 (F 2 = 0.2) AC120-550 (F 2 = 0.2) incorporating an anion exchange membrane A501SB, AC220-550 incorporating a non-monovalent ion selective cation exchange membrane K501SB and an anion exchange membrane A501SB.
[0013]
As the desalting solution in the initial stage of operation, 800 ml of seawater taken from a depth of 300 m was used. As the concentrated liquid in the initial stage of operation, 500 ml of deionized water was used, and the applied voltage was fixed at 10V. Pure water used for diluting seawater (mineral water) after desalting was water obtained by deionizing tap water with Demiace DY-15 type ion exchange resin. The hardness of the deionized water was analyzed by EDTA titration, and the sodium ion concentration was analyzed by ion chromatography, but each was 1 mg / liter or less. Note that the EDTA method is a method for determining the calcium and magnesium ions The total amount of water in the titration, by converting the obtained amount of ions total CaCO 3, is obtained by in units of mg / l.
[0014]
Further, the hardness and sodium ion concentration analysis of the beverage (mineral beverage) after the desalting dilution were also performed by the same method as described above. The tasting evaluation method for mineral beverages was prepared by tasting and evaluating five adult males and females, and the evaluation results accounting for the majority were indicated by the following symbols in the table.
○: Beverage possible as a mineral beverage ×: Bitterness, unsuitable as a beverage ●: Salty, unsuitable as a beverage Desalting As shown in Examples 1 to 5, favorable evaluation as a beverage was obtained within the scope of the present invention. On the other hand, as shown in Comparative Example 1, the sample diluted to a hardness of 2500 resulted in a bitter taste. In Comparative Example 2, the desalting completion electrical conductivity was set as high as 22 mS / cm, but the evaluation when the beverage was made gave a salty result.
[0015]
In Comparative Example 3, desalting was performed using a non-monovalent selective cation exchange membrane, but the evaluation for a beverage gave a salty result.
In Comparative Example 4, the desalting electrical conductivity was set as low as 4 mS / cm. However, the time required for desalting was excessively long, and it could not be said that desalting was efficient.
[0016]
[Table 1]
Figure 0004104105
[0017]
【The invention's effect】
According to the method for producing a beverage using seawater of the present invention, minerals such as magnesium and calcium contained in seawater can be effectively used, and the beverage is not salty and does not adversely affect the health of sodium chloride. can do.

Claims (5)

陽イオン交換膜として一価イオンを選択的に透過させて下記式(1)で定義されるF 2 が0.3以下である陽イオン交換膜を使用した電気透析装置に、海水を供給し、その電気伝導度が5〜20mS/cmの範囲に達するまで脱塩してミネラル水としたのち、このミネラル水の硬度が100〜2000mg/リットルの範囲に達するまで純水で希釈することを特徴とするミネラル飲料の製造方法。
Figure 0004104105
The electrodialysis apparatus F 2 of the monovalent ions selectively transmitting and defined by the following formula (1) was used der Ru cation exchange membrane 0.3 or less as the cation exchange membrane, it supplies a seawater The mineral water is desalted until the electric conductivity reaches a range of 5 to 20 mS / cm, and then diluted with pure water until the hardness of the mineral water reaches a range of 100 to 2000 mg / liter. A method for producing a mineral beverage.
Figure 0004104105
電気透析装置に使用される陰イオン交換膜が、一価イオンを選択的に透過させる特性を持たない陰イオン交換膜であることを特徴とする請求項1記載のミネラル飲料の製造方法。  The method for producing a mineral beverage according to claim 1, wherein the anion exchange membrane used in the electrodialysis apparatus is an anion exchange membrane that does not have a property of selectively transmitting monovalent ions. 陽イオン交換膜が、FThe cation exchange membrane is F 22 が0.13以下のものであることを特徴とする請求項1または2に記載のミネラル飲料の製造方法。The method for producing a mineral beverage according to claim 1, wherein the water content is 0.13 or less. 海水を脱塩した後のミネラル水を希釈する純水の電気伝導度が、海水を脱塩した後のミネラル水の1/10以下であることを特徴とする、請求項1から3のいずれかに記載のミネラル飲料水の製造方法。The electric conductivity of pure water for diluting mineral water after desalting seawater is 1/10 or less of mineral water after desalting seawater. The manufacturing method of the mineral drinking water as described in any one of. 海水を脱塩した後のミネラル水を希釈する純水が、イオン交換樹脂により脱イオンされたイオン交換水または水道水であることを特徴とする請求項1から4のいずれかに記載のミネラル飲料水の製造方法。The mineral beverage according to any one of claims 1 to 4, wherein the pure water for diluting mineral water after desalting seawater is ion-exchanged water or tap water deionized by an ion-exchange resin. Water production method.
JP2001036413A 2001-02-14 2001-02-14 Mineral beverage manufacturing method Expired - Lifetime JP4104105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001036413A JP4104105B2 (en) 2001-02-14 2001-02-14 Mineral beverage manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001036413A JP4104105B2 (en) 2001-02-14 2001-02-14 Mineral beverage manufacturing method

Publications (2)

Publication Number Publication Date
JP2002238515A JP2002238515A (en) 2002-08-27
JP4104105B2 true JP4104105B2 (en) 2008-06-18

Family

ID=18899691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001036413A Expired - Lifetime JP4104105B2 (en) 2001-02-14 2001-02-14 Mineral beverage manufacturing method

Country Status (1)

Country Link
JP (1) JP4104105B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9782720B2 (en) 2012-03-09 2017-10-10 Mitsubishi Heavy Industries, Ltd. Degradant concentration measurement device and acidic gas removal device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2840219B1 (en) * 2002-05-31 2004-08-27 Dev De Rech S Et Services De P PROCESS FOR THE DEMINERALIZATION OF SEA MARINE SALT WATERS
JP2004065196A (en) * 2002-08-09 2004-03-04 Suntory Ltd Mineral composition produced by using seawater
JP4703950B2 (en) * 2003-07-23 2011-06-15 花王株式会社 Purification method of sugar phosphate ester
WO2016046726A1 (en) * 2014-09-23 2016-03-31 Anjon Biologics, Inc. Mineral based compositions and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9782720B2 (en) 2012-03-09 2017-10-10 Mitsubishi Heavy Industries, Ltd. Degradant concentration measurement device and acidic gas removal device

Also Published As

Publication number Publication date
JP2002238515A (en) 2002-08-27

Similar Documents

Publication Publication Date Title
Tahaikt et al. Defluoridation of Moroccan groundwater by electrodialysis: continuous operation
KR100868493B1 (en) Preparation method of mineral water and mineral salt from deep ocean water
KR101639848B1 (en) The manufacturing process of high hardness drinking water using NF/RO/ED membrane connection system
TW200825026A (en) Method and apparatus for desalination
WO2017168425A1 (en) Method for separation of magnesium and calcium ions from saline water, for improving the quality of soft and desalinated waters
US20190263697A1 (en) Treatment of saline water for agricultural and potable use and for generation of disinfectant solution
Ben Sik Ali et al. Electrodialytic desalination of brackish water: effect of process parameters and water characteristics
Ben Sik Ali et al. Electrodialytic defluoridation of brackish water: effect of process parameters and water characteristics
CN101486503B (en) Method for making drinking water
JP2002292371A (en) Fresh water obtained from deep sea water, concentrated deep sea water, mineral concentrate, concentrated salt water, bittern, and specifyed salt
Sahli et al. Technical optimization of nitrate removal for groundwater by ED using a pilot plant
KR20160004063A (en) Removal system of sulfate in seawater using ion exchange resin
JP4104105B2 (en) Mineral beverage manufacturing method
KR101689059B1 (en) Removal of anions and conversion technology of carbonate ions from seawater
JP2001087762A (en) Water based on sea deep water, its production and production device therefor
KR20100048613A (en) Preparation method of the custom-mineral water and mineral salt from deep ocean water
KR100850378B1 (en) A manufacturing method of alkaline reduced ionized water for drinking, from the deep sea water
TWI308061B (en)
KR100992427B1 (en) Method for producing mineral water through anion removal by nf membrane and electrodialysis
KR20080108926A (en) Preparation method of magnesium, calcium and potassium mineral water from deep ocean water
KR100899014B1 (en) Preparation method of natural mineral salt from deep ocean water
JP4031789B2 (en) Manufacturing method and manufacturing apparatus for high-concentration mineral liquid
EP2381825B1 (en) Espresso machine with integrated water purification system
JP2001190255A (en) Deep water drink containing mineral ingredient originated from mineral spring water
JP2002191331A (en) Method for producing soft drinking water utilizing deep sea water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

R150 Certificate of patent or registration of utility model

Ref document number: 4104105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term