WO2020022188A1 - Light-blocking sealing agent for liquid crystal dropping methods and method for producing liquid crystal display panel using same - Google Patents

Light-blocking sealing agent for liquid crystal dropping methods and method for producing liquid crystal display panel using same Download PDF

Info

Publication number
WO2020022188A1
WO2020022188A1 PCT/JP2019/028313 JP2019028313W WO2020022188A1 WO 2020022188 A1 WO2020022188 A1 WO 2020022188A1 JP 2019028313 W JP2019028313 W JP 2019028313W WO 2020022188 A1 WO2020022188 A1 WO 2020022188A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light
sealant
group
agent
Prior art date
Application number
PCT/JP2019/028313
Other languages
French (fr)
Japanese (ja)
Inventor
健祐 大塚
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN201980048301.2A priority Critical patent/CN112424680A/en
Priority to KR1020207037783A priority patent/KR102509153B1/en
Priority to JP2020532342A priority patent/JP7181936B2/en
Publication of WO2020022188A1 publication Critical patent/WO2020022188A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a light-shielding sealant for a liquid crystal dropping method and a method for manufacturing a liquid crystal display panel using the same.
  • a liquid crystal display panel has a structure in which a liquid crystal material (hereinafter, also simply referred to as “liquid crystal”) is sandwiched between two transparent substrates provided with electrodes on the surface, and the periphery thereof is sealed with a liquid crystal sealant. It is a panel.
  • liquid crystal a liquid crystal material
  • liquid crystal sealant Although the amount of the liquid crystal sealant used is small, it is in direct contact with the liquid crystal, which greatly affects the reliability of the liquid crystal display panel. Therefore, in order to achieve high image quality of a liquid crystal display panel, liquid crystal sealants are currently required to have high and various characteristics.
  • a liquid crystal dropping method has been widely used as a method of manufacturing a liquid crystal display panel.
  • a liquid crystal sealant is applied on a transparent substrate to form a frame for filling the liquid crystal, and (2) fine liquid crystal is dropped into the frame.
  • a liquid crystal sealant curable by both light and heat may be used.
  • the step (3) after the liquid crystal sealant is temporarily cured by irradiating light such as ultraviolet rays, post-curing by heating can be performed.
  • the liquid crystal sealant is in contact with the liquid crystal for a long time in an uncured state. Therefore, the components of the liquid crystal sealant are more easily dissolved in the liquid crystal than in the conventional liquid crystal injection method. Therefore, it has been proposed to increase the photocurability by adding an organic acid to the liquid crystal sealant to suppress the contamination of the liquid crystal (Patent Document 1).
  • the seal member black for example, a wide wiring or the like can be covered with the seal member, and a color filter can be arranged on the TFT array side. As a result, the degree of freedom in wiring design is widened, and the brightness of the liquid crystal display panel can be increased.
  • the present invention has been made in view of the above problems. That is, a light-shielding sealant for a liquid crystal dropping method, which has good photocurability and can reliably seal between liquid crystal display panel substrates without causing contamination of the liquid crystal, and An object of the present invention is to provide a method for manufacturing a liquid crystal display panel.
  • the present invention provides the following light-shielding sealant for a liquid crystal dropping method.
  • A an organic acid
  • B a photocurable resin having at least one ethylenically unsaturated double bond in one molecule (provided that the (A) organic acid is excluded)
  • C A titanocene-based photopolymerization initiator
  • D a light-shielding agent having a pH of less than 7.0 or more than 8.0
  • E a thermosetting compound having at least one epoxy group in one molecule (provided that ( B) excluding a photocurable resin) and
  • F a thermosetting agent, wherein the (A) organic acid has an oxygen atom equivalent represented by the following formula (1) of 23 g / eq or more and 75 g / eq.
  • Oxygen atom equivalent (g / eq) (molecular weight of organic acid) / (number of oxygen atoms in one molecule of organic acid) (1)
  • R represents an aromatic or aliphatic hydrocarbon or a derivative thereof
  • -P ( O) (OH ) 2 group
  • -SO 3 H group at least one functional group selected from the group consisting of -CONH 2 groups
  • the light-blocking sealant for a liquid crystal dropping method according to any one of [1] to [3].
  • the light-shielding sealant for a liquid crystal dropping method according to any one of [1] to [4], wherein the photocurable resin (B) further has an epoxy group in a molecule.
  • the heat curing agent (F) is selected from the group consisting of a dihydrazide heat latent curing agent, an imidazole heat latent curing agent, an amine adduct heat latent curing agent, and a polyamine heat latent curing agent.
  • the present invention also provides the following method for manufacturing a liquid crystal display panel.
  • the sealant for the liquid crystal dropping method of the present invention has good photocurability despite containing a light-shielding agent. Further, the liquid crystal dropping method sealing agent is unlikely to contaminate the liquid crystal even when it comes into contact with the liquid crystal. Therefore, according to the liquid crystal dropping method sealing agent, a liquid crystal display panel having excellent display reliability can be obtained.
  • Light-shielding sealant for liquid crystal dropping method comprises (A) an organic acid, (B) a photocurable resin, and (C) titanocene.
  • a system photopolymerization initiator comprises (D) a light-shielding agent, (E) a thermosetting compound, and (F) a thermosetting agent.
  • the sealant may contain other components as necessary.
  • the light-shielding agent contained in the sealant of the present invention has a pH of less than 7 (more specifically, less than 7.0) or a pH of more than 8.0, and the dispersibility of the light-shielding agent is much better. It is. Although the reason is not clear, if (D) the pH of the light-shielding agent is less than 7 (more specifically, less than 7.0) or if the pH is more than 8.0, (D) other light- It is considered that components (for example, (A) an organic acid, (B) a photocurable resin, and (E) a thermosetting compound) interact with each other.
  • components for example, (A) an organic acid, (B) a photocurable resin, and (E) a thermosetting compound
  • (D) the dispersibility of the light-shielding agent is improved. If the dispersibility of (D) the light-shielding agent is low, poor curing is likely to occur in a region where the concentration of the (D) light-shielding agent is high, resulting in uneven curability. On the other hand, when the (D) light-shielding agent is uniformly dispersed in the sealant as in the present invention, the curability of the entire sealant becomes uniform.
  • the sealant of the present invention contains (A) an organic acid, and the (A) organic acid promotes the photocuring reaction of (B) the photocurable resin. Further, at this time, since the oxygen atom equivalent of (A) the organic acid is within a predetermined range, even if the liquid crystal contacts the (A) organic acid, it hardly affects the liquid crystal.
  • the sealant of the present invention contains (C) a titanocene-based photopolymerization initiator having an ability to absorb visible light.
  • Light having a relatively long wavelength for example, visible light
  • the sealant contains (C) a titanocene-based photopolymerization initiator having an ability to absorb visible light.
  • Light having a relatively long wavelength for example, visible light
  • the sealant can be activated by such long-wavelength light. Therefore, by using a titanocene-based photopolymerization initiator that can be activated by such long-wavelength light, the deep curability of the sealant can be enhanced.
  • the sealant of the present invention has good photocurability even though it contains (D) a light-shielding agent so that its blackness is, for example, 2 to 5. Further, according to the sealing agent, it is possible to reliably seal the space between the substrates of the liquid crystal display panel without causing the liquid crystal to be contaminated by the uncured component.
  • the sealing agent contains (A) the organic acid, the photocurability of the sealing agent is enhanced.
  • the organic acid (A) may be a Bronsted acid, and the organic acid (A) includes a compound having an acid anhydride structure.
  • the organic acid has an oxygen atom equivalent represented by the following formula (1) of 23 g / eq to 75 g / eq, preferably 25 to 60 g / eq, more preferably 27 to 55 g. / Eq.
  • Oxygen atom equivalent (g / eq) (molecular weight of organic acid) / (number of oxygen atoms in one molecule of organic acid) (1)
  • the liquid crystal and the organic acid (A) are hardly compatible with each other even when the organic acid (sealant) comes into contact with the liquid crystal during the production of the liquid crystal display panel.
  • the liquid crystal is hardly contaminated.
  • the oxygen atom equivalent is 75 g / eq or less, even if a small amount of the (A) organic acid is eluted into the liquid crystal, the influence is hardly exerted.
  • the organic acid may contain only one kind of these groups, or may contain two or more kinds of these groups.
  • organic acids include acetic acid, butyric acid, oxalic acid, citric acid, lauric acid, stearic acid, malonic acid, adipic acid, tartaric acid, benzoic acid, salicylic acid, phthalic acid, monoethyl phosphate, monophenyl phosphate, Diethyl phosphate, mono-2-ethylhexyl phosphate, di (2-ethylhexyl) phosphate, benzenesulfonic acid, toluenesulfonic acid, sulfobenzoic acid, formic acid, propionic acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargon Acid, capric acid, myristic acid, palmitic acid, margaric acid, succinic acid, glutaric acid, dodecane diacid, sepasic acid, isophthalic acid, terephthalic acid, benzenetricar
  • Examples of the organic acid (A) having no ethylenically unsaturated double bond in one molecule include a compound represented by the following formula.
  • the organic acid (A) may contain an ethylenically unsaturated double bond in the molecule.
  • the (A) organic acid is polymerized with the (B) photocurable resin, and the cured product of the sealant is converted into the (A) organic acid. Is difficult to exude.
  • the number of unsaturated double bonds contained in one molecule of the organic acid may be two or more.
  • Examples of the (A) organic acid having an unsaturated double bond in one molecule include (meth) acrylic acid, itaconic acid, maleic acid, fumaric acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (Meth) acryloyloxyethyl phthalic acid, bisphenol A type epoxy (meth) acrylate acid anhydride modified compound, bisphenol A type epoxy (meth) acrylate phosphoric acid modified compound, bisphenol F type epoxy (meth) acrylate acid anhydride modified Compounds, phosphoric acid-modified compounds of bisphenol F type epoxy acrylate, phosphoric acid (meth) acrylates, and high molecular weights thereof are included.
  • (meth) acryl means either or both of acryl and methacryl.
  • the preferred organic acids (A) include oxalic acid, tartaric acid, trimellitic acid, trimellitic anhydride, isophthalic acid, phenylphosphonic acid, 4'-hydroxy-4-biphenylcarboxylic acid, terephthalic acid, and succinic acid , And glutaric acid.
  • the preferred molecular weight of the organic acid (A) is from 60 to 5,000, more preferably from 60 to 3,000, even more preferably from 100 to 1500.
  • the (A) organic acid easily flows inside the sealant, and photocuring of the sealant is easily promoted.
  • the content of the organic acid (A) is 0.01 to 20 parts by mass, preferably 0.05 to 10 parts by mass, based on 100 parts by mass of the sealant.
  • the photocurable resin is not particularly limited as long as it has at least one ethylenically unsaturated double bond in one molecule. However, in this specification, (B) the photocurable resin does not include the compound corresponding to the (A) organic acid.
  • Examples of the photocurable resin include (B1) a (meth) acrylic resin and (B2) a (meth) acryl-modified epoxy having at least one epoxy group and one (meth) acryl group in one molecule. Resin included.
  • the sealant of the present invention may include both (B1) (meth) acrylic resin and (B2) (meth) acryl-modified epoxy resin.
  • the (meth) acrylic resin is a compound containing one or more (meth) acrylic groups in one molecule, and is a compound containing no epoxy group.
  • Examples of the (meth) acrylic resin include diacrylates and / or dimethacrylates such as polyethylene glycol, propylene glycol, and polypropylene glycol; diacrylates and / or dimethacrylates of tris (2-hydroxyethyl) isocyanurate; Diacrylate and / or dimethacrylate of diol obtained by adding 4 moles or more of ethylene oxide or propylene oxide to 1 mole of pentyl glycol; diacrylate of diol obtained by adding 2 moles of ethylene oxide or propylene oxide to 1 mole of bisphenol A; / Or dimethacrylate; diol of triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of trimethylolpropane.
  • triacrylate and / or di or trimethacrylate diacrylate and / or dimethacrylate of a diol obtained by adding at least 4 moles of ethylene oxide or propylene oxide to 1 mole of bisphenol A; tris (2-hydroxyethyl) isocyanurate triacrylate; Trimethylolpropane triacrylate and / or trimethacrylate, or an oligomer thereof; pentaerythritol triacrylate and / or trimethacrylate, or an oligomer thereof; polyacrylate and / or polymethacrylate of dipentaerythritol; tris (acryloxy) Ethyl) isocyanurate; caprolactone-modified tris (acryloxyethyl) isocyanate Nurate; caprolactone-modified tris (methacryloxyethyl) isocyanurate; alkyl-modified dipentaerythritol polyacrylate and / or polymethacrylate; cap
  • the weight average molecular weight of the (meth) acrylic resin can be, for example, about 310 to 1,000.
  • the weight average molecular weight Mw of the (meth) acrylic resin can be measured by gel permeation chromatography (GPC) using polystyrene as a standard.
  • the amount of the (B1) (meth) acrylic resin in the sealant is 5 to 80 parts by mass with respect to 100 parts by mass of the sealant, depending on the curability required for the sealant and its blackness. And more preferably 10 to 80 parts by mass.
  • the (B2) (meth) acryl-modified epoxy resin is a compound containing at least one each of a (meth) acryl group and an epoxy group.
  • the epoxy resin and the (meth) acrylic acid are tertiary, for example. It is a compound obtained by reacting in the presence of a basic catalyst such as an amine.
  • the (meth) acryl-modified epoxy resin has an epoxy group and a (meth) acryl group in the molecule, it can have both photocurability and thermosetting properties. Further, the (meth) acryl-modified epoxy resin has low solubility in liquid crystal, and hardly affects the liquid crystal.
  • the epoxy resin used as a raw material of the (meth) acryl-modified epoxy resin may be a bifunctional or higher epoxy resin having two or more epoxy groups in a molecule.
  • Examples thereof include bisphenol A type and bisphenol F.
  • a (meth) acryl-modified epoxy resin obtained by modifying a trifunctional or tetrafunctional polyfunctional epoxy resin with a (meth) acrylic resin has a high crosslinking density and a low adhesion strength to a substrate. Therefore, the epoxy resin used as the raw material of the (B2) (meth) acryl-modified epoxy resin is preferably a bifunctional epoxy resin.
  • the bifunctional epoxy resin is preferably a biphenyl type epoxy resin, a naphthalene type epoxy resin, and a bisphenol type epoxy resin.
  • bisphenol type epoxy resins such as bisphenol A type and bisphenol F type are preferably used as a sealing agent. It is preferable from the viewpoint of the applicability and the like.
  • Epoxy resin as a raw material may be only one kind, or two or more kinds may be combined. Further, it is preferable that the epoxy resin as a raw material is highly purified by a molecular distillation method, a washing method, or the like.
  • the (meth) acryl-modified epoxy resin is preferably one in which 10 to 99.5% of the epoxy groups of the epoxy resin as a raw material are modified with (meth) acryl groups, and 30 to 95% % Is more preferably modified with an acrylic group.
  • the epoxy group is modified in the above range with a (meth) acrylic group, the photocurability and the thermosetting property of the sealant are improved, and the moisture resistance of the cured product of the sealant is likely to be lowered.
  • the weight average molecular weight of the (meth) acryl-modified epoxy resin can be, for example, about 310 to 1,000.
  • the weight average molecular weight Mw of the (meth) acryl-modified epoxy resin can be measured, for example, by gel permeation chromatography (GPC) using polystyrene as a standard.
  • the amount of the (B2) (meth) acryl-modified epoxy resin in the sealing agent depends on the degree of curability required, but is preferably 5 to 80 parts by mass, and preferably 10 to 80 parts by mass, per 100 parts by mass of the sealing agent. More preferably, it is 80 parts by mass.
  • the photocurable resin preferably has a hydrogen-bonding functional group such as a hydroxyl group, a urethane bond, an amide group, and a carboxyl group in the molecule.
  • groups may be, for example, hydroxyl groups generated by reacting an epoxy group of an epoxy resin with (meth) acrylic acid, and a compound (B) as a raw material of a photocurable resin (for example, (meth) acrylic acid Or an epoxy resin), or a urethane bond, a carboxyl group, an amide group, or the like contained in a compound as a raw material.
  • the equivalent of the hydrogen bonding functional group contained in the photocurable resin is preferably from 1.0 ⁇ 10 ⁇ 4 to 5 ⁇ 10 ⁇ 3 mol / g, and preferably from 3.5 ⁇ 10 ⁇ 3 to 4. More preferably, it is 5 ⁇ 10 ⁇ 3 mol / g.
  • the hydrogen-bonding functional group equivalent is 1.0 ⁇ 10 ⁇ 4 mol / g or more, the dissolution of the photocurable resin (B) in the liquid crystal is easily suppressed.
  • the hydrogen bonding functional group equivalent is 5 ⁇ 10 ⁇ 3 mol / g or less
  • the cured product of (B) the photocurable resin tends to have sufficient moisture resistance, and the cured product of the sealant has moisture resistance. Is not easily reduced.
  • the hydrogen-bonding functional group equivalent (mol / g) of the photocurable resin is represented by "(B) Number of hydrogen-bonding functional groups contained in one molecule of photocurable resin” / "(B) Photocurable Weight average molecular weight (Mw) of the resin ".
  • Mw Photocurable Weight average molecular weight
  • the hydrogen-bonding functional group equivalent is such that the monomer for obtaining the (B1) (meth) acrylic resin is It can be controlled by adjusting the amount of the hydrogen-bonding functional group contained.
  • the (B) photo-curable resin is the above-mentioned (B2) (meth) acryl-modified epoxy resin
  • its hydrogen-bonding functional group equivalent is determined, for example, by reacting (meth) acrylic acid with the epoxy resin as a raw material. Can be controlled by adjusting the number of moles, or by adjusting the amount of hydrogen-bonding functional groups contained in the raw material (meth) acrylic acid or epoxy resin.
  • the total amount of (B) the photocurable resin (for example, the total amount of (B1) (meth) acrylic resin and (B2) (meth) acryl-modified epoxy resin) is 5 to 80 parts by mass with respect to 100 parts by mass of the sealant. And more preferably 10 to 80 parts by mass.
  • the (C) titanocene-based photopolymerization initiator contained in the sealant of the present invention is a compound for curing the (B) photocurable resin described above.
  • the use of the (C) titanocene-based photopolymerization initiator can enhance the deep curability of the sealant. Becomes
  • titanocene-based photopolymerization initiators include bis ( ⁇ 5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl)- Phenyl) titanium, bis (cyclopentadienyl) -dichlorotitanium, bis (cyclopentadienyl) -diphenyltitanium, bis (cyclopentadienyl) -bis (2,3,4,5,6 pentafluorophenyl) titanium , Bis (cyclopentadienyl) -bis (2,6 difluorophenyl) titanium, bis (methylcyclopentadienyl) -bis (2,3,4,5,6 pentafluorophenyl) titanium, bis (methylcyclopenta Dienyl) -bis (2,6-difluorophenyl) titanium, bis (cyclopentadienyl) -bis [2,6-
  • ⁇ ⁇ ⁇ it is preferable to be able to absorb light having a wavelength of 300 to 550 nm, and more preferably to be able to absorb light having a wavelength of 350 to 500 nm.
  • the content of the titanocene photopolymerization initiator (C) is 0.01 to 20 parts by mass, preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the sealant.
  • the sealing agent contains (C) the titanocene-based photopolymerization initiator in the above range, the photocurability of the sealing agent is likely to increase.
  • the light-shielding agent contained in the sealant of the present invention has a pH of less than 7 (specifically, less than 7.0) or a pH of more than 8.0 and a blackness of the sealant of, for example, 2 to 5 There is no particular limitation as long as it is adjustable.
  • the pH of (D) the light-shielding agent is less than 7 (specifically, less than 7.0) or the pH is more than 8.0, the dispersibility of (D) the light-shielding agent in the sealant is excellent as described above. And the curability of the sealant is improved.
  • the pH of the light-shielding agent was determined by diluting and stirring the (D) light-shielding agent 20-fold with pure water, and then measuring the pH of the pure water containing the (D) light-shielding agent with a compact pH meter (B-71X manufactured by HORIBA). It can be obtained by measuring.
  • a compact pH meter B-71X manufactured by HORIBA.
  • the pH of the light-shielding agent is less than 7.0, it is preferably from 1 to 6, more preferably from 1 to 4.
  • the pH of the light-shielding agent (D) exceeds 8.0, the pH is preferably 10.0 or less.
  • Examples of the (D) light-blocking agent satisfying the above-mentioned pH include carbon black, titanium black, vanadium, and inorganic compounds such as iron and copper. Among these, it is preferable to include carbon, and examples thereof include acidic carbon black.
  • the acidic carbon black may be a channel black or an oxidized carbon black.
  • Examples of the method of oxidizing carbon black include air oxidation, nitric acid, mixed gas of nitrogen oxide and air, and oxidation with various oxidizing agents such as ozone.
  • the sealing agent may contain only one type of (D) light-shielding agent, or two or more types. Examples of preferable (D) light-shielding agents also include titanium black.
  • the shape of the light-shielding agent is not particularly limited, and may be a fixed shape such as a sphere, a plate, or a needle, or an irregular shape.
  • the average primary particle diameter of the light-shielding agent (D) is preferably 0.005 to 0.1 ⁇ m, more preferably 0.01 to 0.05 ⁇ m, and more preferably 0.015 to 0.03 ⁇ m. Is more preferable. Average particle diameter It can be measured by a laser diffraction method described in JIS Z8825. The specific surface area can be measured by the BET method described in JIS Z8830.
  • the amount of the (D) light-shielding agent with respect to 100 parts by mass of the sealing agent is not particularly limited as long as the blackness of the sealing agent can be adjusted to, for example, 2 to 5.
  • the amount can be 5 to 46 parts by mass, preferably 7 to 40 parts by mass, and more preferably 10 to 30 parts by mass with respect to the total amount of the sealant.
  • the blackness of the sealing agent tends to fall within a desired range.
  • the amount of the (D) light-shielding agent is excessively large, the (D) light-shielding agent is likely to aggregate, and the photocurability of the sealant is likely to be reduced.
  • the sealant of the present invention contains (E) a thermosetting compound having at least one epoxy group in one molecule.
  • the sealant contains (E) a thermosetting compound, the cured product of the sealant has improved moisture resistance.
  • a resin corresponding to the above-mentioned (B) photocurable resin is not included in (E) the thermosetting compound.
  • the number of epoxy groups contained in the thermosetting compound is preferably two or more, and particularly preferably two.
  • thermosetting compound examples include bisphenol type epoxy resins such as bisphenol A type, bisphenol F type, bisphenol S type, 2,2′-diallylbisphenol A type, bisphenol AD type, and hydrogenated bisphenol type; Diphenyl ether type epoxy resin; phenol novolak type, cresol novolak type, biphenyl novolak type, bisphenol novolak type, naphthol novolak type, trisphenol novolak type, dicyclopentadiene novolak type, etc .; nophenyl type epoxy resin; biphenyl type epoxy resin; naphthyl type epoxy resin Resins; triphenol alkane type epoxy resins such as triphenol methane type, triphenol ethane type, and triphenol propane type; alicyclic epoxy resins.
  • bisphenol type epoxy resins such as bisphenol A type, bisphenol F type, bisphenol S type, 2,2′-diallylbisphenol A type, bisphenol AD type, and hydrogenated bisphenol type
  • Diphenyl ether type epoxy resin phenol
  • bisphenol type epoxy resins such as bisphenol A type and bisphenol F type are preferable.
  • These bisphenol-type epoxy resins have advantages such as lower crystallinity and superior coating stability than diphenyl ether-type epoxy resins and the like.
  • the compound has low solubility and diffusibility in liquid crystal, and not only improves the display characteristics of the obtained liquid crystal display panel, but also increases the moisture resistance of the cured product of the sealant.
  • the thermosetting compound preferably has a weight average molecular weight (Mw) of 300 to 3,000, more preferably 300 to 2,000.
  • Mw weight average molecular weight
  • the weight average molecular weight of the thermosetting compound can be measured, for example, by gel permeation chromatography (GPC) using polystyrene as a standard.
  • the thermosetting compound may be liquid or solid.
  • the softening point is preferably from 40 ° C to 150 ° C.
  • the sealant may contain only one kind of the thermosetting compound (E), or may contain two or more kinds having different kinds and molecular weights.
  • the amount of the thermosetting compound (E) is 5 to 70 parts by mass, preferably 5 to 50 parts by mass, based on 100 parts by mass of the sealant.
  • thermosetting agent The sealant of the present invention contains (F) a thermosetting agent.
  • the (F) thermosetting agent is a compound that contributes to the reaction of the epoxy group contained in the (E) thermosetting compound.
  • the photocurable resin (B) has an epoxy group, it also contributes to the reaction of the epoxy group.
  • thermosetting agents those that do not generate radicals when reacting with an epoxy group are referred to as (F) thermosetting agents.
  • thermosetting agent is not particularly limited, but is preferably a thermal latent curing agent.
  • the thermal latent curing agent is a compound which does not cure the (E) thermosetting compound during storage of the sealant (at room temperature), and contributes to the reaction of the epoxy group of the (E) thermosetting compound by heating, (E) A compound that cures a thermosetting compound.
  • a known compound can be used as the heat latent curing agent, but a heat latent curing agent having a melting point of 50 ° C. or more and 250 ° C. or less is preferable in order to increase the viscosity stability of the sealant. Further, from the viewpoint of curing the resin even at a low thermosetting temperature (about 80 to 100 ° C.), the melting point is more preferably 50 ° C. or more and 200 ° C. or less.
  • Preferred examples of the heat latent curing agent include a dihydrazide heat latent curing agent, an imidazole heat latent curing agent, an amine adduct heat latent curing agent, and a polyamine heat latent curing agent.
  • dihydrazide heat latent curing agents examples include adipic dihydrazide (melting point: 181 ° C.), 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin (melting point: 120 ° C.), 7,11-octadecadien Includes -1,18-dicarbohydrazide (melting point 160 ° C.), dodecane diacid dihydrazide (melting point 190 ° C.), sebacic acid dihydrazide (melting point 189 ° C.), and the like.
  • Preferred examples of the imidazole heat latent curing agent include a compound having a structure represented by the following general formula (X).
  • R 1 and R 2 are each independently a hydrogen atom, a lower alkyl group, a lower hydroxyalkyl group, a phenyl group or a benzyl group.
  • R 3 and R 4 are each independently a hydrogen atom, a lower alkyl group or a lower hydroxyalkyl group. At least one of R 1 to R 4 is a lower hydroxyalkyl group. Since the imidazole-based latent heat curing agent having a lower hydroxyalkyl group contains a hydroxyl group, it is difficult to dissolve in a liquid crystal.
  • the lower alkyl group which may be R 1 to R 4 in the above formula (X) is an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, and a propyl group, and is preferably a methyl group or an ethyl group.
  • the lower hydroxyalkyl group is a hydroxyalkyl group having 1 to 4 carbon atoms such as a hydroxymethyl group and a hydroxyethyl group, and is preferably a hydroxymethyl group.
  • the lower hydroxyalkyl group may include a plurality of hydroxyl groups.
  • the number of hydroxyl groups contained in the imidazole-based curing catalyst is not particularly limited, but since the water resistance may decrease when the number of hydroxyl groups is 2 or more, the number of hydroxyl groups is 1 in terms of not reducing water resistance and the like. Preferably, there is.
  • the melting point of the imidazole heat latent curing agent represented by the general formula (X) depends on the heat curing temperature of the sealant, but when the sealant is thermoset at a relatively low temperature (for example, about 80 to 100 ° C.). Is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, still more preferably 60 to 120 ° C., and particularly preferably 80 to 100 ° C. If the melting point of the imidazole heat latent curing agent is too low, the imidazole heat latent curing agent will melt at room temperature. Then, (E) the curing reaction of the thermosetting compound proceeds, and the storage stability of the sealant at room temperature deteriorates.
  • a relatively low temperature for example, about 80 to 100 ° C.
  • the melting point of the imidazole heat latent curing agent can be lowered by, for example, having a structure not containing an aromatic ring.
  • R 2 is preferably a group other than a phenyl group or a benzyl group, that is, a hydrogen atom, a lower alkyl group or a lower hydroxyalkyl group, and a lower hydroxyalkyl group. Is more preferable.
  • Examples of the imidazole heat latent curing agent represented by the general formula (X) include 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-hydroxy Methyl imidazole, 1-benzyl-5-hydroxymethyl imidazole, 1,2-dihydroxyethyl imidazole and the like are included.
  • examples of the imidazole-based heat latent curing agent having a melting point of 150 ° C. or lower include 2-hydroxymethylimidazole.
  • the amine adduct thermal latent curing agent is an additional compound obtained by reacting an amine compound having catalytic activity with an arbitrary compound.
  • the amine is dissociated by heat and activated.
  • Examples of the amine-based compound include compounds having 1, 2, and tertiary amino groups, such as Amicure PN-40 (melting point 110 ° C.), Amicure PN-23 (melting point 100 ° C.), and Amicure PN-31 ( Melting point 115 ° C.), AMICURE PN-24 (melting point 115 ° C.), AMICURE MY-24 (melting point 120 ° C.), AMICURE MY-H (melting point 130 ° C.) (all manufactured by Ajinomoto Fine Techno Co., Ltd.) and the like.
  • Amicure PN-40 melting point 110 ° C.
  • Amicure PN-23 melting point 100 ° C.
  • Amicure PN-31 Melting point 115 ° C.
  • AMICURE PN-24 melting point 115 ° C.
  • AMICURE MY-24 melting point 120 ° C.
  • AMICURE MY-H melting point 130 ° C.
  • the polyamine-based heat latent curing agent is a heat latent curing agent having a polymer structure obtained by reacting an amine with an epoxy, and specific examples thereof include Adeka Hardener EH4339S (softening point of 120 to 130) manufactured by ADEKA Corporation. ° C) and Adeka Hardener EH4357S (softening point 73-83 ° C) manufactured by ADEKA Corporation.
  • thermosetting agent (F) is preferably 5 to 100 parts by mass, more preferably 10 to 100 parts by mass, based on 100 parts by mass of the total of (B) the photocurable resin and (E) the thermosetting compound. It is 50 parts by mass or less. (F) When a thermosetting agent is contained, the thermosetting reaction of the sealing agent easily proceeds sufficiently.
  • the sealant of the present invention may contain components other than those described above. Examples of other components include inorganic fillers and organic fillers, various additives, and the like.
  • the viscosity of the sealant can be adjusted to a desired range, and the strength and linear expansion of a cured product of the sealant can be controlled.
  • the inorganic filler include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, aluminum oxide (alumina), zinc oxide, silicon dioxide, potassium titanate, kaolin, and talc.
  • the sealant may include only one of these, or may include two or more thereof.
  • the shape of the inorganic filler is not particularly limited, and may be any of a fixed shape such as a sphere, a plate, and a needle, or an irregular shape.
  • the inorganic filler preferably has an average primary particle diameter of 1.5 ⁇ m or less, and preferably has a specific surface area of 1 m 2 / g to 500 m 2 / g.
  • the average primary particle diameter of the inorganic filler can be measured by a laser diffraction method described in JIS Z8825.
  • the specific surface area can be measured by the BET method described in JIS Z8830.
  • the amount of the inorganic filler is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, based on 100 parts by mass of the sealant.
  • the sealant contains an organic filler
  • the impact resistance and the like of the sealant are improved.
  • the type of the organic filler is not particularly limited, but the melting point of the sealant is preferably higher than the thermosetting temperature.
  • the softening point of the organic filler is preferably 30 to 120 ° C.
  • organic filler examples include fine particles selected from the group consisting of silicone fine particles, acrylic fine particles, styrene fine particles such as styrene-divinylbenzene copolymer, and polyolefin fine particles.
  • the sealant may contain only one type of organic filler, or may contain two or more types of organic filler.
  • the shape of the organic filler is not particularly limited, and may be, for example, spherical.
  • the average particle size of the organic filler is preferably 0.05 to 5 ⁇ m, more preferably 0.07 to 3 ⁇ m, since the gap of the liquid crystal cell is usually 5 ⁇ m or less.
  • the average particle size of the organic filler can be measured, for example, by a laser diffraction method described in JIS Z8825.
  • the amount of the organic filler is preferably 30 parts by mass or less, more preferably 15 parts by mass or less, based on 100 parts by mass of the sealant.
  • additives examples include a thermal radical polymerization initiator, a coupling agent such as a silane coupling agent, an ion trapping agent, an ion exchange agent, a leveling agent, a pigment, a dye, a plasticizer, a defoaming agent, and the like. Further, a spacer or the like may be blended for adjusting the gap of the liquid crystal display panel. These contents are not particularly limited as long as the objects and effects of the present invention are not impaired.
  • the above-mentioned sealant preferably has a blackness of 2 to 5, more preferably 3 to 4.
  • the blackness of the sealant can be measured as follows.
  • a sealing agent is collected with a spatula, and dropped on a 25 mm ⁇ 45 mm ⁇ 5 mm thick non-alkali glass to form a circle having a diameter of 5 mm. Then, a pair of non-alkali glass is attached so as to overlap with each other and fixed with a jig.
  • the test piece fixed with the jig is irradiated with an ultraviolet ray of 500 mW / cm 2 from an ultraviolet ray irradiation device (manufactured by Ushio Inc.) to cure the sealant. At this time, the illuminance energy of the ultraviolet light is 3.0 J / cm 2 .
  • the viscosity of the sealant at 25 ° C. and 2.5 rpm using an E-type viscometer is preferably 30 to 350 Pa ⁇ s.
  • a liquid crystal sealant having a viscosity in the above range has excellent coating stability.
  • the method for producing the above-mentioned sealant is not particularly limited, and all the components may be mixed, or the components may be mixed twice or more.
  • the mixing method is not particularly limited, but is preferably a method capable of sufficiently dispersing the (D) light-shielding agent, such as a three-roll mill.
  • the liquid crystal display panel is usually a display substrate, a counter substrate to be paired with the display substrate, a frame-shaped sealing member interposed between the display substrate and the counter substrate, a display substrate and the counter substrate. And a liquid crystal layer filled in a space surrounded by the seal member.
  • a cured product of the above-described sealant can be used as a seal member.
  • Both the display substrate and the counter substrate are transparent substrates.
  • the material of the transparent substrate can be glass or plastic such as polycarbonate, polyethylene terephthalate, polyethersulfone, and PMMA.
  • a matrix-like TFT, color filter, black matrix, and the like are arranged on the surface of the display substrate or the counter substrate.
  • An alignment film is further formed on the surface of the display substrate or the counter substrate.
  • the alignment film contains a known organic or inorganic alignment agent.
  • a black matrix and a color filter may be arranged on a display substrate side, a black matrix may be arranged on a display substrate side, and a color filter may be arranged on a counter substrate side.
  • a black matrix and a color filter may be arranged on the substrate side.
  • Such a liquid crystal display panel can be manufactured by the following method. Specifically, 1) a first step of applying the above-mentioned sealant to one substrate to form a liquid crystal seal pattern, and 2) the liquid crystal in a state where the liquid crystal seal pattern made of the sealant is uncured. A second step of dropping liquid crystal on a region surrounded by a seal pattern or a region of the other substrate facing the region surrounded by the liquid crystal seal pattern; 3) forming one substrate and the other substrate , A third step of superimposing via a liquid crystal seal pattern, and 4) a fourth step of curing the sealant.
  • the above-mentioned sealant is applied in a desired pattern.
  • the method for applying the sealant is not particularly limited as long as the sealant can be applied to a desired region, and may be, for example, an application using a dispenser.
  • the liquid crystal seal pattern to be manufactured is appropriately selected according to the type of the liquid crystal display panel and the like, and can be usually formed in a rectangular frame shape or the like.
  • the line width of the sealant in the liquid crystal seal pattern is preferably 300 to 2000 ⁇ m, more preferably 500 to 1500 ⁇ m.
  • Sectional area of the sealing agent is preferably 1000 ⁇ 10000 2, more preferably 1500 ⁇ 5000 ⁇ m 2.
  • liquid crystal is applied in a state where the liquid crystal seal pattern produced in the first step is in an uncured state.
  • the method of dropping the liquid crystal is not particularly limited, and may be a known method.
  • the “state in which the liquid crystal seal pattern is not cured” means a state in which the curing reaction of the sealant has not progressed to the gel point. Therefore, in the second step, the liquid crystal seal pattern may be semi-cured by irradiating or heating the liquid crystal in order to suppress the dissolution of the sealant into the liquid crystal.
  • one substrate and the other substrate are overlapped via a liquid crystal seal pattern.
  • the superposition can be performed by a known method, and is usually performed under a high vacuum.
  • the sealant is cured. It is preferable that the sealing agent is cured by heating (main curing) after being subjected to light curing (temporary curing). By instantly curing the sealant by temporary curing by light irradiation, dissolution in liquid crystal can be suppressed.
  • the sealant of the present invention contains (C) a titanocene-based photopolymerization initiator. Therefore, the irradiation light preferably includes not only ultraviolet light but also light in the visible light region. In this specification, the visible light region refers to a wavelength range from 360 nm to 800 nm.
  • the light source is not particularly limited, but is preferably an LED, a metal halide lamp, a high-pressure mercury lamp, or a low-pressure mercury lamp, and more preferably an LED or a metal halide lamp. From the viewpoint of sufficiently activating the (C) titanocene-based photopolymerization initiator, the wavelength preferably ranges from 360 to 550 nm, and more preferably ranges from 360 to 450 nm.
  • the heating temperature at the time of heating after light irradiation depends on the composition of the sealing agent, but is preferably as low as possible, for example, about 120 ° C., from the viewpoint of reducing deterioration of the liquid crystal.
  • the temperature is more preferably 80 to 120 ° C.
  • the heat curing time is about 1 to 2 hours.
  • the obtained compound was washed 20 times with ultrapure water, and a methacrylic acid-modified bisphenol F-type epoxy resin (95% partially methacrylated) (weight average molecular weight (Mw) 485, hydrogen bonding functional group equivalent 4.0 ⁇ ). 10 ⁇ 3 mol / g).
  • Example 1 As a photocurable resin, 330 parts by mass of a methacrylic acid-modified bisphenol F type epoxy resin obtained in a synthesis example and polyethylene glycol diacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: light acrylate 14EG-A, weight average molecular weight 722, hydrogen bonding) 172 parts by mass of a functional group equivalent (0.9 ⁇ 10 ⁇ 3 mol / g), 6 parts by mass of (A) trimellitic acid (manufactured by Tokyo Chemical Industry Co., Ltd., oxygen atom equivalent 35 g / eq) as an organic acid, and (C) ) 12 parts by mass of a titanocene-based photopolymerization initiator (manufactured by Insight High Technology: IHT-PI 784) and (E) an epoxy resin as a thermosetting compound (manufactured by Mitsubishi Chemical Corporation: jER1004, softening point 97 ° C, weight average
  • Example 2 A sealant was obtained in the same manner as in Example 1 except that the content was changed to the content shown in Table 1.
  • Example 3 A sealant was used in the same manner as in Example 1 except that carbon (Mitsubishi Chemical Corporation: # 2600, pH 6.5, particle size: 13 nm) was used instead of carbon (MA-100R) as a light-shielding agent. I got
  • Example 4 Sealing agent in the same manner as in Example 1, except that titanium black (13M, pH 8.8, particle diameter 97 nm, manufactured by Mitsubishi Materials Corporation) was used instead of carbon (MA-100R) as a light-shielding agent. I got
  • Example 5 A sealant was obtained in the same manner as in Example 1, except that phenylphosphonic acid (oxygen atom equivalent: 53 g / eq) was used as the organic acid instead of trimellitic acid.
  • Example 1 A sealant was obtained in the same manner as in Example 1, except that trimellitic acid was not added, and t-butyl peroxypivalate (manufactured by Mitsubishi Chemical: Luperox 11) was added as a thermal radical generator.
  • the test piece cured by light was heated in an oven at 120 ° C. for 60 minutes to obtain a sample for measuring blackness.
  • the seal pattern was a circle having a diameter of 5 mm.
  • a pair of non-alkali glass was stuck together so as to overlap, and fixed with a jig.
  • the test piece fixed with the jig was irradiated with ultraviolet light (wavelength 365 nm) of 500 mW / cm 2 from an ultraviolet irradiation device (manufactured by Ushio Inc.) to cure the sealant.
  • the illuminance energy of the ultraviolet light was 3.0 J / cm 2 .
  • the test piece cured by light was heated in an oven at 120 ° C. for 60 minutes to obtain a sample for dispersibility evaluation. This sample was observed with a microscope, and the number of foreign substances (aggregates of light-shielding agents) present in a visual field of 2 mm ⁇ 2 mm was counted.
  • No foreign matter
  • Less than 10 foreign matters
  • 10 or more foreign matters
  • a liquid crystal material manufactured by MLC-7021-00 Merck Co., Ltd.
  • a dispenser After bonding the glass substrates to be paired under reduced pressure, they were opened to the atmosphere and bonded. Thereafter, light of 1000 mJ / cm 2 (light calibrated by a sensor having a wavelength of 365 nm) is irradiated in a state where the black matrix is covered with a substrate formed with a line / space of 300 ⁇ m / 100 ⁇ m so as to cover the lower half of the main seal. And further heated at 120 ° C. for 1 hour.
  • the liquid crystal display panel after the hardening treatment of the light shielding sealant was evaluated as follows. :: No liquid crystal leakage occurred ⁇ : No liquid crystal leakage occurred, but liquid crystal was inserted into sealant ⁇ : Liquid crystal leakage occurred
  • the sealant was printed on a 25 mm ⁇ 45 mm ⁇ 5 mm thick non-alkali glass using a screen plate.
  • the seal pattern was a circle having a diameter of 1 mm. Then, they were mounted on a pair of non-alkali glass in a seal pattern and fixed with a jig.
  • the test piece fixed by the jig was irradiated with an ultraviolet ray (wavelength: 365 nm) of 500 mW / cm 2 by an ultraviolet ray irradiation device (manufactured by Ushio Inc.) to cure the light-shielding sealant.
  • the illuminance energy of the ultraviolet rays was 3.0 J / cm 2 .
  • the test piece obtained by curing the light-shielding sealant with light was heated at 120 ° C. for 60 minutes using an oven to obtain a sample for measuring the adhesive strength.
  • the tensile speed was set to 2 mm / min, and the cured light-shielding sealant was peeled off in a direction parallel to the glass bottom surface to measure the tensile strength in a plane.
  • the adhesive strength was evaluated in the following four stages according to the magnitude of the plane tensile strength.
  • Tensile strength of 15 MPa or more
  • Tensile strength of 10 MPa or more and less than 15 MPa
  • the stability was evaluated as follows. ((Excellent): The ratio of the viscosity after one week to the initial viscosity (increase rate) was 1.2 times or less. ⁇ (somewhat excellent): The ratio of the viscosity after one week to the initial viscosity (increase rate) was 1 X: less than 1.5 times ⁇ (poor): The ratio of the viscosity after one week to the initial viscosity (increase rate) exceeded 1.5 times
  • the sealant of the present invention has high photocurability and can reliably seal between substrates of a liquid crystal display panel without causing contamination of liquid crystal. Therefore, a highly reliable display panel can be manufactured, which is suitable for manufacturing various liquid crystal display panels.

Abstract

The purpose of the present invention is to provide: a light-blocking sealing agent for liquid crystal dropping methods, which has good photocurability and is capable of reliably sealing the space between substrates of a liquid crystal display panel without causing contamination of liquid crystals; and a method for producing a liquid crystal display panel, which uses this light-blocking sealing agent for liquid crystal dropping methods. A light-blocking sealing agent for liquid crystal dropping methods according to the present invention contains (A) an organic acid, (B) a photocurable resin which has at least one ethylenically unsaturated double bond in each molecule, (C) a titanocene-based photopolymerization initiator, (D) a light blocking agent which has a pH of less than 7.0 or a pH of more than 8.0, (E) a thermosetting compound which has at least one epoxy group in each molecule (excluding the photocurable resin (B)), and (F) a thermal curing agent. With respect to this light-blocking sealing agent for liquid crystal dropping methods, the oxygen atom equivalent of the organic acid (A) is from 23 g/eq to 75 g/eq (inclusive).

Description

液晶滴下工法用遮光シール剤、およびこれを用いた液晶表示パネルの製造方法Light shielding sealant for liquid crystal dropping method, and method for manufacturing liquid crystal display panel using the same
 本発明は、液晶滴下工法用遮光シール剤、およびこれを用いた液晶表示パネルの製造方法に関する。 The present invention relates to a light-shielding sealant for a liquid crystal dropping method and a method for manufacturing a liquid crystal display panel using the same.
 近年、携帯電話やパーソナルコンピュータをはじめとする各種電子機器の画像表示パネルとして、液晶表示パネルが広く使用されている。液晶表示パネルは、表面に電極が設けられた2枚の透明基板の間に液晶材料(以下、単に「液晶」とも称する)を挟み込み、その周りを液晶シール剤によってシールされた構造を有する画像表示パネルである。 In recent years, liquid crystal display panels have been widely used as image display panels for various electronic devices such as mobile phones and personal computers. 2. Description of the Related Art A liquid crystal display panel has a structure in which a liquid crystal material (hereinafter, also simply referred to as “liquid crystal”) is sandwiched between two transparent substrates provided with electrodes on the surface, and the periphery thereof is sealed with a liquid crystal sealant. It is a panel.
 上記液晶シール剤は、その使用量は僅かであるものの液晶と直接接触するため、液晶表示パネルの信頼性に大きな影響を与える。したがって、液晶表示パネルの高画質化を実現するため、現在、液晶シール剤には、高度かつ多様な特性が求められている。 (4) Although the amount of the liquid crystal sealant used is small, it is in direct contact with the liquid crystal, which greatly affects the reliability of the liquid crystal display panel. Therefore, in order to achieve high image quality of a liquid crystal display panel, liquid crystal sealants are currently required to have high and various characteristics.
 近年、液晶表示パネルの製造方法として、液晶滴下工法が多く採用されている。液晶滴下工法では、(1)透明な基板の上に液晶シール剤を塗布して、液晶を充填するための枠を形成し、(2)前記枠内に微小の液晶を滴下する。そして(3)液晶シール剤が未硬化状態のままで2枚の基板を高真空下で重ね合わせた後、(4)液晶シール剤を硬化させてパネルを製造する方法である。液晶滴下工法では、光および熱の両方によって硬化可能な液晶シール剤を使用してもよい。この場合、上記(3)の工程で、液晶シール剤に紫外線などの光を照射する仮硬化を行った後、加熱による後硬化を行うことができる。 In recent years, a liquid crystal dropping method has been widely used as a method of manufacturing a liquid crystal display panel. In the liquid crystal dropping method, (1) a liquid crystal sealant is applied on a transparent substrate to form a frame for filling the liquid crystal, and (2) fine liquid crystal is dropped into the frame. Then, (3) a method in which two substrates are overlapped under a high vacuum while the liquid crystal sealant remains uncured, and (4) the liquid crystal sealant is cured to manufacture a panel. In the liquid crystal dropping method, a liquid crystal sealant curable by both light and heat may be used. In this case, in the step (3), after the liquid crystal sealant is temporarily cured by irradiating light such as ultraviolet rays, post-curing by heating can be performed.
 当該液晶滴下工法では、液晶シール剤が未硬化の状態で長時間液晶と接触する。そのため、従来の液晶注入工法よりも液晶シール剤の成分が液晶に溶解しやすい。そこで、液晶シール剤に有機酸を添加することで光硬化性を高め、液晶の汚染を抑制すること等が提案されている(特許文献1)。 で は In the liquid crystal dropping method, the liquid crystal sealant is in contact with the liquid crystal for a long time in an uncured state. Therefore, the components of the liquid crystal sealant are more easily dissolved in the liquid crystal than in the conventional liquid crystal injection method. Therefore, it has been proposed to increase the photocurability by adding an organic acid to the liquid crystal sealant to suppress the contamination of the liquid crystal (Patent Document 1).
 一方、従来の液晶シール剤の硬化物(以下、「シール部材」とも称する)は、無色や白色であることが多かった。しかしながら、このようなシール部材が所望の領域外にはみ出すと、この部分からバックライトの光が漏れ出し、コントラスト低下の原因となることがあった。そこで、液晶シール剤に遮光剤を含め、得られるシール部材を黒色化することも検討されている(特許文献2~4)。 On the other hand, cured products of conventional liquid crystal sealants (hereinafter, also referred to as “seal members”) were often colorless or white. However, when such a sealing member protrudes outside a desired region, the light of the backlight leaks from this portion, which may cause a decrease in contrast. Therefore, it has been studied to blacken the obtained seal member by including a light-shielding agent in the liquid crystal sealant (Patent Documents 2 to 4).
国際公開第2016/067582号International Publication No. WO 2016/065882 特開2006-99027号公報JP 2006-99027 A 特開2006-313286号公報JP 2006-313286 A 特開2017-107234号公報JP-A-2017-107234
 シール部材を黒色化することで、例えば幅の広い配線等をシール部材によって被覆することが可能となったり、カラーフィルタをTFTアレイ側に配置したりすることが可能となる。その結果、配線設計の自由度が広がったり、液晶表示パネルの高輝度化が図れたりする。 (4) By making the seal member black, for example, a wide wiring or the like can be covered with the seal member, and a color filter can be arranged on the TFT array side. As a result, the degree of freedom in wiring design is widened, and the brightness of the liquid crystal display panel can be increased.
 ただし、液晶シール剤を黒色化すると、液晶シール剤を硬化させるための光が深部まで到達し難くなり、硬化不良が生じやすかった。そこで、液晶シール剤に、長波長側まで吸収波長を有する光重合開始剤を使用したり、熱ラジカル発生剤を添加したりすること等が考えられる。しかしながら、このような方法でも、黒色の液晶シール剤の光硬化性を十分に高めることは難しく、得られる液晶表示パネルに液晶漏れが生じたり、基板どうしの接着強度が不十分になったりしやすかった。 However, when the liquid crystal sealant was blackened, light for curing the liquid crystal sealant was difficult to reach a deep portion, and poor curing was likely to occur. Therefore, it is conceivable to use a photopolymerization initiator having an absorption wavelength up to the longer wavelength side, add a thermal radical generator, or the like to the liquid crystal sealant. However, even with such a method, it is difficult to sufficiently enhance the photocurability of the black liquid crystal sealant, and liquid crystal leakage occurs in the obtained liquid crystal display panel, or the adhesive strength between the substrates is likely to be insufficient. Was.
 本発明は、上記課題を鑑みてなされたものである。すなわち、光硬化性が良好であり、液晶の汚染を生じさせることなく、液晶表示パネルの基板どうしの間を確実に封止することが可能な液晶滴下工法用遮光シール剤や、これを用いた液晶表示パネルの製造方法の提供を目的とする。 The present invention has been made in view of the above problems. That is, a light-shielding sealant for a liquid crystal dropping method, which has good photocurability and can reliably seal between liquid crystal display panel substrates without causing contamination of the liquid crystal, and An object of the present invention is to provide a method for manufacturing a liquid crystal display panel.
 本発明は、以下の液晶滴下工法用遮光シール剤を提供する。
 [1](A)有機酸と、(B)1分子内にエチレン性不飽和二重結合を少なくとも1つ有する光硬化性樹脂(ただし、前記(A)有機酸を除く)と、(C)チタノセン系光重合開始剤と、(D)pHが7.0未満または8.0を超える遮光剤と、(E)1分子内にエポキシ基を少なくとも1つ有する熱硬化性化合物(ただし、前記(B)光硬化性樹脂を除く)と、(F)熱硬化剤と、を含み、前記(A)有機酸の下記式(1)で表される酸素原子当量が、23g/eq以上75g/eq以下である、液晶滴下工法用遮光シール剤。
 酸素原子当量(g/eq)=(有機酸の分子量)/(有機酸1分子中の酸素原子数)・・(1)
The present invention provides the following light-shielding sealant for a liquid crystal dropping method.
[1] (A) an organic acid, (B) a photocurable resin having at least one ethylenically unsaturated double bond in one molecule (provided that the (A) organic acid is excluded), and (C) A titanocene-based photopolymerization initiator, (D) a light-shielding agent having a pH of less than 7.0 or more than 8.0, and (E) a thermosetting compound having at least one epoxy group in one molecule (provided that ( B) excluding a photocurable resin) and (F) a thermosetting agent, wherein the (A) organic acid has an oxygen atom equivalent represented by the following formula (1) of 23 g / eq or more and 75 g / eq. The following is a light-shielding sealant for a liquid crystal dropping method.
Oxygen atom equivalent (g / eq) = (molecular weight of organic acid) / (number of oxygen atoms in one molecule of organic acid) (1)
 [2]黒色度が2~5である、[1]に記載の液晶滴下工法用遮光シール剤。
 [3]前記(D)遮光剤が炭素およびチタンのうち、少なくとも一方を含む、[1]または[2]に記載の液晶滴下工法用遮光シール剤。
 [4]前記(A)有機酸が1分子内に、-OH基、-NH基、-NHR基(Rは、芳香族、脂肪族炭化水素又はこれらの誘導体を表す)、-COOH基、-OP(=O)(OH)基、-P(=O)(OH)基、-SOH基、-CONH基、および-NHOH基からなる群より選ばれる官能基を少なくとも1つ有する、[1]~[3]のいずれかに記載の液晶滴下工法用遮光シール剤。
[2] The light-shielding sealant according to [1], which has a blackness of 2 to 5.
[3] The light-shielding sealant according to [1] or [2], wherein the light-shielding agent (D) contains at least one of carbon and titanium.
[4] The organic acid (A) includes, in one molecule, an —OH group, a —NH 2 group, a —NHR group (R represents an aromatic or aliphatic hydrocarbon or a derivative thereof), a —COOH group, -OP (= O) (OH) 2 group, -P (= O) (OH ) 2 group, -SO 3 H group, at least one functional group selected from the group consisting of -CONH 2 groups, and -NHOH group The light-blocking sealant for a liquid crystal dropping method according to any one of [1] to [3].
 [5]前記(B)光硬化性樹脂が分子内にエポキシ基をさらに有する、[1]~[4]のいずれかに記載の液晶滴下工法用遮光シール剤。
 [6]前記(F)熱硬化剤が、ジヒドラジド系熱潜在性硬化性、イミダゾール系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤からなる群より選ばれる1以上である、[1]~[5]のいずれかに記載の液晶滴下工法用遮光シール剤。
[5] The light-shielding sealant for a liquid crystal dropping method according to any one of [1] to [4], wherein the photocurable resin (B) further has an epoxy group in a molecule.
[6] The heat curing agent (F) is selected from the group consisting of a dihydrazide heat latent curing agent, an imidazole heat latent curing agent, an amine adduct heat latent curing agent, and a polyamine heat latent curing agent. The light-shielding sealant for a liquid crystal dropping method according to any one of [1] to [5], which is one or more of the following.
 本発明は、以下の液晶表示パネルの製造方法も提供する。
 [7]上記[1]~[6]のいずれかに記載の液晶滴下工法用遮光シール剤を用いて、一方の基板にシールパターンを形成する工程と、前記シールパターンが未硬化の状態において、前記シールパターンの領域内、または前記一方の基板と対になる他方の基板に液晶を滴下する工程と、前記一方の基板と前記他方の基板とを、前記シールパターンを介して重ね合わせる工程と、前記シールパターンを硬化させる工程と、を含む、液晶表示パネルの製造方法。
The present invention also provides the following method for manufacturing a liquid crystal display panel.
[7] A step of forming a seal pattern on one of the substrates using the light-shielding sealant for a liquid crystal dropping method according to any one of [1] to [6], and In the region of the seal pattern, or a step of dropping liquid crystal on the other substrate paired with the one substrate, and the step of superimposing the one substrate and the other substrate via the seal pattern, And a step of curing the seal pattern.
 [8]前記シールパターンを硬化させる工程は、前記シールパターンに光を照射して前記シールパターンを硬化させる工程を含む、[7]に記載の液晶表示パネルの製造方法。
 [9]前記シールパターンに照射する光は、可視光領域の光を含む、[8]に記載の液晶表示パネルの製造方法。
 [10]前記シールパターンを硬化させる工程は、光が照射された前記シールパターンを加熱して硬化させる工程をさらに含む、[8]または[9]に記載の液晶表示パネルの製造方法。
[8] The method for manufacturing a liquid crystal display panel according to [7], wherein the step of curing the seal pattern includes a step of irradiating the seal pattern with light to cure the seal pattern.
[9] The method for manufacturing a liquid crystal display panel according to [8], wherein the light applied to the seal pattern includes light in a visible light region.
[10] The method for manufacturing a liquid crystal display panel according to [8] or [9], wherein the step of curing the seal pattern further includes a step of heating and curing the seal pattern irradiated with light.
 本発明の液晶滴下工法用シール剤は、遮光剤を含むにもかかわらず、光硬化性が良好である。また、当該液晶滴下工法用シール剤は、液晶と接触しても、液晶を汚染し難い。したがって、当該液晶滴下工法用シール剤によれば、表示信頼性に優れた液晶表示パネルが得られる。 シ ー ル The sealant for the liquid crystal dropping method of the present invention has good photocurability despite containing a light-shielding agent. Further, the liquid crystal dropping method sealing agent is unlikely to contaminate the liquid crystal even when it comes into contact with the liquid crystal. Therefore, according to the liquid crystal dropping method sealing agent, a liquid crystal display panel having excellent display reliability can be obtained.
 1.液晶滴下工法用遮光シール剤
 本発明の液晶滴下工法用遮光シール剤(以下、単に「シール剤」とも称する)は、(A)有機酸と、(B)光硬化性樹脂と、(C)チタノセン系光重合開始剤と、(D)遮光剤と、(E)熱硬化性化合物と、(F)熱硬化剤と、を含む。シール剤は、必要に応じてこれら以外の成分を含んでいてもよい。
1. Light-shielding sealant for liquid crystal dropping method The light-shielding sealant for liquid crystal dropping method (hereinafter also simply referred to as “sealant”) of the present invention comprises (A) an organic acid, (B) a photocurable resin, and (C) titanocene. A system photopolymerization initiator, (D) a light-shielding agent, (E) a thermosetting compound, and (F) a thermosetting agent. The sealant may contain other components as necessary.
 前述のように、遮光剤を含む従来の液晶シール剤では、遮光剤を添加すると、内部まで十分に光硬化させることが難しかった。そのため、このような液晶シール剤を用いて作製された液晶表示パネルでは、液晶漏れが生じたり、基板どうしの接着強度が不足したりしやすい、という課題があった。 As described above, in the conventional liquid crystal sealant containing a light-shielding agent, it was difficult to sufficiently harden the inside of the liquid-crystal sealant when the light-shielding agent was added. Therefore, in a liquid crystal display panel manufactured using such a liquid crystal sealant, there is a problem that a liquid crystal leaks easily and an adhesive strength between substrates is apt to be insufficient.
 これに対し、本発明のシール剤が含む(D)遮光剤は、pHが7未満(より詳しくは7.0未満)またはpHが8.0超であり、遮光剤の分散性が格段に良好である。その理由は定かではないが、(D)遮光剤のpHが7未満(より詳しくは7.0未満)またはpHが8.0超であると、(D)遮光剤とシール剤中の他の成分(例えば(A)有機酸や、(B)光硬化性樹脂や(E)熱硬化性化合物等)とが相互作用すると考えられる。その結果、(D)遮光剤の分散性が良好になると考えられる。なお、(D)遮光剤の分散性が低いと、(D)遮光剤の濃度の高い領域で硬化不良が生じやすくなり、硬化性にムラが生じる。これに対し、本発明のように、シール剤中に(D)遮光剤が均一に分散されていると、シール剤全体の硬化性が均一となる。 On the other hand, (D) the light-shielding agent contained in the sealant of the present invention has a pH of less than 7 (more specifically, less than 7.0) or a pH of more than 8.0, and the dispersibility of the light-shielding agent is much better. It is. Although the reason is not clear, if (D) the pH of the light-shielding agent is less than 7 (more specifically, less than 7.0) or if the pH is more than 8.0, (D) other light- It is considered that components (for example, (A) an organic acid, (B) a photocurable resin, and (E) a thermosetting compound) interact with each other. As a result, it is considered that (D) the dispersibility of the light-shielding agent is improved. If the dispersibility of (D) the light-shielding agent is low, poor curing is likely to occur in a region where the concentration of the (D) light-shielding agent is high, resulting in uneven curability. On the other hand, when the (D) light-shielding agent is uniformly dispersed in the sealant as in the present invention, the curability of the entire sealant becomes uniform.
 また、本発明のシール剤は、(A)有機酸を含んでおり、当該(A)有機酸によって、(B)光硬化性樹脂の光硬化反応が促進される。またこのとき、(A)有機酸の酸素原子当量が所定の範囲であることから、液晶が(A)有機酸と接触しても、液晶に影響を及ぼし難い。 シ ー ル The sealant of the present invention contains (A) an organic acid, and the (A) organic acid promotes the photocuring reaction of (B) the photocurable resin. Further, at this time, since the oxygen atom equivalent of (A) the organic acid is within a predetermined range, even if the liquid crystal contacts the (A) organic acid, it hardly affects the liquid crystal.
 さらに、本発明のシール剤は、可視光吸収能を有する(C)チタノセン系光重合開始剤を含む。比較的長波長の光(例えば可視光)は、シール剤の内部まで到達しやすい。したがって、このような長波長の光によって活性化可能なチタノセン系光重合開始剤を用いることで、シール剤の深部硬化性を高めることができる。 Furthermore, the sealant of the present invention contains (C) a titanocene-based photopolymerization initiator having an ability to absorb visible light. Light having a relatively long wavelength (for example, visible light) easily reaches the inside of the sealant. Therefore, by using a titanocene-based photopolymerization initiator that can be activated by such long-wavelength light, the deep curability of the sealant can be enhanced.
 以上のように、本発明のシール剤は、その黒色度が例えば2~5となるように(D)遮光剤を含むにもかかわらず、光硬化性が良好である。また、当該シール剤によれば、未硬化成分によって液晶の汚染を生じさせることなく、液晶表示パネルの基板どうしの間を確実に封止することが可能である。 As described above, the sealant of the present invention has good photocurability even though it contains (D) a light-shielding agent so that its blackness is, for example, 2 to 5. Further, according to the sealing agent, it is possible to reliably seal the space between the substrates of the liquid crystal display panel without causing the liquid crystal to be contaminated by the uncured component.
 (A)有機酸
 前述のように、シール剤に(A)有機酸が含まれると、シール剤の光硬化性が高まる。本明細書において、(A)有機酸は、ブレンステッド酸であればよく、(A)有機酸には、酸無水物構造を有する化合物も含むものとする。
(A) Organic Acid As described above, when the sealing agent contains (A) the organic acid, the photocurability of the sealing agent is enhanced. In this specification, the organic acid (A) may be a Bronsted acid, and the organic acid (A) includes a compound having an acid anhydride structure.
 ここで、(A)有機酸は、下記式(1)で表される酸素原子当量が23g/eq以上75g/eq以下であり、好ましくは25~60g/eqであり、さらに好ましくは27~55g/eqである。
 酸素原子当量(g/eq)=(有機酸の分子量)/(有機酸1分子中の酸素原子数)・・(1)
Here, (A) the organic acid has an oxygen atom equivalent represented by the following formula (1) of 23 g / eq to 75 g / eq, preferably 25 to 60 g / eq, more preferably 27 to 55 g. / Eq.
Oxygen atom equivalent (g / eq) = (molecular weight of organic acid) / (number of oxygen atoms in one molecule of organic acid) (1)
 上記酸素原子当量が23g/eq以上であると、液晶表示パネルの作製の際、(A)有機酸(シール剤)が液晶と接触しても、液晶と(A)有機酸が相溶し難く、液晶が汚染され難い。一方、酸素原子当量が75g/eq以下であると、たとえ微量の(A)有機酸が液晶に溶出したとしても、影響を及ぼしにくくなる。 When the oxygen atom equivalent is 23 g / eq or more, the liquid crystal and the organic acid (A) are hardly compatible with each other even when the organic acid (sealant) comes into contact with the liquid crystal during the production of the liquid crystal display panel. The liquid crystal is hardly contaminated. On the other hand, when the oxygen atom equivalent is 75 g / eq or less, even if a small amount of the (A) organic acid is eluted into the liquid crystal, the influence is hardly exerted.
 ここで、(A)有機酸には、-OH基、-NH基、-NHR基(Rは、芳香族、脂肪族炭化水素又はこれらの誘導体を表す)、-COOH基、-OP(=O)(OH)基、-P(=O)(OH)基、-SOH基、-CONH基、-NHOH基からなる群より選ばれる1種以上の官能基が含まれることが好ましい。より好ましくは、-COOH基または-OP(=O)(OH)基が含まれることが好ましい。(A)有機酸にこれらの基が含まれると、(A)有機酸と液晶とが相溶し難くなり、液晶の汚染が抑制されやすい。(A)有機酸には、これらの基が1種のみ含まれてもよく、2種以上含まれてもよい。 Here, (A) the organic acid includes -OH group, -NH 2 group, -NHR group (R represents an aromatic or aliphatic hydrocarbon or a derivative thereof), -COOH group, -OP (= O) (OH) 2 groups, -P (= O) (OH) 2 groups, -SO 3 H groups, -CONH 2 groups, and -NHOH groups. Is preferred. More preferably, it contains a —COOH group or a —OP (= O) (OH) 2 group. When these groups are contained in (A) the organic acid, the (A) organic acid and the liquid crystal are hardly compatible with each other, and the contamination of the liquid crystal is easily suppressed. (A) The organic acid may contain only one kind of these groups, or may contain two or more kinds of these groups.
 (A)有機酸の例には、酢酸、酪酸、蓚酸、クエン酸、ラウリル酸、ステアリン酸、マロン酸、アジピン酸、酒石酸、安息香酸、サリチル酸、フタル酸、リン酸モノエチル、リン酸モノフェニル、リン酸ジエチル、リン酸モノ2-エチルヘキシル、リン酸ジ(2-エチルヘキシル)、ベンゼンスルホン酸、トルエンスルホン酸、スルホ安息香酸、ギ酸、プロピオン酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ミリスチン酸、パルミチン酸、マルガリン酸、コハク酸、グルタル酸、ドデカン二酸、セパシン酸、イソフタル酸、テレフタル酸、ベンゼントリカルボン酸(異性体含む)、ピロメリット酸、メリト酸、4-(4-ヒドロキシフェニル)安息香酸、6-ヒドロキシ-1-ナフトエ酸、フェニルホスホン酸、グリコール酸、トリメリット酸、トリメリット酸無水物、4’-ヒドロキシ-4-ビフェニルカルボン酸等の1分子内にエチレン性不飽和二重結合を有さない(A)有機酸が含まれる。 (A) Examples of organic acids include acetic acid, butyric acid, oxalic acid, citric acid, lauric acid, stearic acid, malonic acid, adipic acid, tartaric acid, benzoic acid, salicylic acid, phthalic acid, monoethyl phosphate, monophenyl phosphate, Diethyl phosphate, mono-2-ethylhexyl phosphate, di (2-ethylhexyl) phosphate, benzenesulfonic acid, toluenesulfonic acid, sulfobenzoic acid, formic acid, propionic acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargon Acid, capric acid, myristic acid, palmitic acid, margaric acid, succinic acid, glutaric acid, dodecane diacid, sepasic acid, isophthalic acid, terephthalic acid, benzenetricarboxylic acid (including isomers), pyromellitic acid, melitic acid, 4 -(4-hydroxyphenyl) benzoic acid, 6-hydroxy-1-naphthoic acid, (A) Organic acid having no ethylenically unsaturated double bond in one molecule, such as fonic acid, glycolic acid, trimellitic acid, trimellitic anhydride, 4'-hydroxy-4-biphenylcarboxylic acid It is.
 また、1分子内にエチレン性不飽和二重結合を有さない(A)有機酸の例には、下記式で表される化合物も含まれる。
Figure JPOXMLDOC01-appb-C000001
Examples of the organic acid (A) having no ethylenically unsaturated double bond in one molecule include a compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000001
 上記(A)有機酸には、エチレン性不飽和二重結合が分子中に含まれてもよい。(A)有機酸1分子内に不飽和二重結合が少なくとも1つ含まれると、(A)有機酸が(B)光硬化性樹脂と重合し、シール剤の硬化物から(A)有機酸が滲出し難くなる。(A)有機酸1分子内に含まれる不飽和二重結合の数は、2つ以上であってもよい。 The organic acid (A) may contain an ethylenically unsaturated double bond in the molecule. (A) When at least one unsaturated double bond is contained in one molecule of the organic acid, the (A) organic acid is polymerized with the (B) photocurable resin, and the cured product of the sealant is converted into the (A) organic acid. Is difficult to exude. (A) The number of unsaturated double bonds contained in one molecule of the organic acid may be two or more.
 1分子内に不飽和二重結合を有する(A)有機酸の例には、(メタ)アクリル酸、イタコン酸、マレイン酸、フマル酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルフタル酸、ビスフェノールA型エポキシ(メタ)アクリレートの酸無水物変性化合物、ビスフェノールA型エポキシ(メタ)アクリレートのリン酸変性化合物、ビスフェノールF型エポキシ(メタ)アクリレートの酸無水物変性化合物、ビスフェノールF型エポキシアクリレートのリン酸変性化合物、リン酸(メタ)アクリレート類、もしくはこれらの高分子量体が含まれる。なお、(メタ)アクリルとは、アクリルまたはメタクリルのいずれか、もしくは両方を意味する。 Examples of the (A) organic acid having an unsaturated double bond in one molecule include (meth) acrylic acid, itaconic acid, maleic acid, fumaric acid, 2- (meth) acryloyloxyethyl succinic acid, 2- ( (Meth) acryloyloxyethyl phthalic acid, bisphenol A type epoxy (meth) acrylate acid anhydride modified compound, bisphenol A type epoxy (meth) acrylate phosphoric acid modified compound, bisphenol F type epoxy (meth) acrylate acid anhydride modified Compounds, phosphoric acid-modified compounds of bisphenol F type epoxy acrylate, phosphoric acid (meth) acrylates, and high molecular weights thereof are included. In addition, (meth) acryl means either or both of acryl and methacryl.
 また、上記リン酸(メタ)アクリレート類の例には、[CH=CRCOOCHCH[OCO(CHO]PO(OH)3-b(Rは水素原子またはメチル基を表し、aは0~2を表し、bは1または2を表す)、もしくは[CH=CRCOOCHCH[OCHCH(CH)]O]PO(OH)3-e(Rは水素原子またはメチル基を表し、dは0~2を表し、cおよびeは1または2を表す)で表される化合物が含まれる。 Examples of the above-mentioned phosphoric acid (meth) acrylates include [CH 2 = CRCOOCH 2 CH 2 [OCO (CH 2 ) 6 ] a O] b PO (OH) 3-b (R is a hydrogen atom or a methyl group. A represents 0 to 2, b represents 1 or 2), or [CH 2 CRCRCOOCH 2 CH 2 [OCH 2 CH (CH 3 )] c O] d PO (OH) 3-e ( R represents a hydrogen atom or a methyl group, d represents 0 to 2, and c and e represent 1 or 2).
 上記の中でも好ましい(A)有機酸としては、シュウ酸、酒石酸、トリメリット酸、トリメリット酸無水物、イソフタル酸、フェニルホスホン酸、4’-ヒドロキシ-4-ビフェニルカルボン酸、テレフタル酸、コハク酸、およびグルタル酸が挙げられる。 Among the above, the preferred organic acids (A) include oxalic acid, tartaric acid, trimellitic acid, trimellitic anhydride, isophthalic acid, phenylphosphonic acid, 4'-hydroxy-4-biphenylcarboxylic acid, terephthalic acid, and succinic acid , And glutaric acid.
 また、(A)有機酸の好ましい分子量は60~5000であり、60~3000であることがより好ましく、100~1500であることがさらに好ましい。(A)有機酸の分子量が上記範囲であると、シール剤内部で(A)有機酸が流動しやすく、シール剤の光硬化が促進されやすくなる。 The preferred molecular weight of the organic acid (A) is from 60 to 5,000, more preferably from 60 to 3,000, even more preferably from 100 to 1500. When the molecular weight of (A) the organic acid is within the above range, the (A) organic acid easily flows inside the sealant, and photocuring of the sealant is easily promoted.
 また、シール剤100質量部に対する、(A)有機酸の含有量は0.01~20質量部であり、好ましくは0.05~10質量部である。(A)有機酸が上記範囲含まれると、シール剤の光硬化性が高まりやすく、さらに(A)有機酸によって液晶が汚染され難くなる。 (4) The content of the organic acid (A) is 0.01 to 20 parts by mass, preferably 0.05 to 10 parts by mass, based on 100 parts by mass of the sealant. When the (A) organic acid is included in the above range, the photocurability of the sealant is easily increased, and the liquid crystal is less likely to be contaminated by the (A) organic acid.
 (B)光硬化性樹脂
 (B)光硬化性樹脂は、エチレン性不飽和二重結合を1分子内に少なくとも1つ有する樹脂であれば特に制限されない。ただし、本明細書において、(B)光硬化性樹脂には、前述の(A)有機酸に相当する化合物は含まないものとする。(B)光硬化性樹脂の例には、(B1)(メタ)アクリル樹脂や、(B2)1分子内にエポキシ基と(メタ)アクリル基とをそれぞれ少なくとも1つ有する(メタ)アクリル変性エポキシ樹脂が含まれる。
(B) Photocurable resin (B) The photocurable resin is not particularly limited as long as it has at least one ethylenically unsaturated double bond in one molecule. However, in this specification, (B) the photocurable resin does not include the compound corresponding to the (A) organic acid. (B) Examples of the photocurable resin include (B1) a (meth) acrylic resin and (B2) a (meth) acryl-modified epoxy having at least one epoxy group and one (meth) acryl group in one molecule. Resin included.
 光硬化性樹脂が、(B1)(メタ)アクリル樹脂、または(B2)(メタ)アクリル変性エポキシ樹脂であると、シール剤の光硬化性が十分に高まりやすい。また特に光硬化性樹脂が(B2)(メタ)アクリル変性エポキシ樹脂であると、シール剤の硬化物の耐湿性が高まりやすい。なお、本発明のシール剤には、(B1)(メタ)アクリル樹脂および(B2)(メタ)アクリル変性エポキシ樹脂の両方が含まれてもよい。 (4) When the photocurable resin is (B1) (meth) acrylic resin or (B2) (meth) acrylic modified epoxy resin, the photocurability of the sealant is easily increased sufficiently. In particular, when the photocurable resin is (B2) (meth) acryl-modified epoxy resin, the moisture resistance of the cured product of the sealant tends to increase. The sealant of the present invention may include both (B1) (meth) acrylic resin and (B2) (meth) acryl-modified epoxy resin.
 (B1)(メタ)アクリル樹脂は、1分子内に1つ以上の(メタ)アクリル基を含む化合物であり、エポキシ基を含まない化合物とする。(B1)(メタ)アクリル樹脂の例には、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール等のジアクリレートおよび/またはジメタクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートのジアクリレートおよび/またはジメタクリレート;ネオペンチルグリコール1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得たジオールのジアクリレートおよび/またはジメタクリレート;ビスフェノールA1モルに2モルのエチレンオキサイド若しくはプロピレンオキサイドを付加したジオールのジアクリレートおよび/またはジメタクリレート;トリメチロールプロパン1モルに3モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加したトリオールのジまたはトリアクリレートおよび/またはジまたはトリメタクリレート;ビスフェノールA1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加したジオールのジアクリレートおよび/またはジメタクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートトリアクリレートおよび/またはトリメタクリレート;トリメチロールプロパントリアクリレートおよび/またはトリメタクリレート、またはそのオリゴマー;ペンタエリスリトールトリアクリレートおよび/またはトリメタクリレート、またはそのオリゴマー;ジペンタエリスリトールのポリアクリレートおよび/またはポリメタクリレート;トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(メタクリロキシエチル)イソシアヌレート;アルキル変性ジペンタエリスリトールのポリアクリレートおよび/またはポリメタクリレート;カプロラクトン変性ジペンタエリスリトールのポリアクリレートおよび/またはポリメタクリレート;ヒドロキシピバリン酸ネオペンチルグリコールジアクリレートおよび/またはジメタクリレート;カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールジアクリレートおよび/またはジメタクリレート;エチレンオキサイド変性リン酸アクリレートおよび/またはジメタクリレート;エチレンオキサイド変性アルキル化リン酸アクリレートおよび/またはジメタクリレート;ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトールのオリゴアクリレートおよび/またはオリゴメタクリレート等が含まれる。 (B1) The (meth) acrylic resin is a compound containing one or more (meth) acrylic groups in one molecule, and is a compound containing no epoxy group. (B1) Examples of the (meth) acrylic resin include diacrylates and / or dimethacrylates such as polyethylene glycol, propylene glycol, and polypropylene glycol; diacrylates and / or dimethacrylates of tris (2-hydroxyethyl) isocyanurate; Diacrylate and / or dimethacrylate of diol obtained by adding 4 moles or more of ethylene oxide or propylene oxide to 1 mole of pentyl glycol; diacrylate of diol obtained by adding 2 moles of ethylene oxide or propylene oxide to 1 mole of bisphenol A; / Or dimethacrylate; diol of triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of trimethylolpropane. Or triacrylate and / or di or trimethacrylate; diacrylate and / or dimethacrylate of a diol obtained by adding at least 4 moles of ethylene oxide or propylene oxide to 1 mole of bisphenol A; tris (2-hydroxyethyl) isocyanurate triacrylate; Trimethylolpropane triacrylate and / or trimethacrylate, or an oligomer thereof; pentaerythritol triacrylate and / or trimethacrylate, or an oligomer thereof; polyacrylate and / or polymethacrylate of dipentaerythritol; tris (acryloxy) Ethyl) isocyanurate; caprolactone-modified tris (acryloxyethyl) isocyanate Nurate; caprolactone-modified tris (methacryloxyethyl) isocyanurate; alkyl-modified dipentaerythritol polyacrylate and / or polymethacrylate; caprolactone-modified dipentaerythritol polyacrylate and / or polymethacrylate; hydroxypivalate neopentyl glycol diacrylate and And / or dimethacrylate; caprolactone-modified neopentyl glycol hydroxypivalate diacrylate and / or dimethacrylate; ethylene oxide-modified phosphate acrylate and / or dimethacrylate; ethylene oxide-modified alkylated phosphate acrylate and / or dimethacrylate; neopentyl glycol , Trimethylolpropane, Pentaerythrit Oligoacrylate and / or oligomethacrylate.
 (B1)(メタ)アクリル樹脂の重量平均分子量は、例えば310~1000程度とすることができる。(B1)(メタ)アクリル樹脂の重量平均分子量Mwは、ゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレンを標準として測定できる。 (B1) The weight average molecular weight of the (meth) acrylic resin can be, for example, about 310 to 1,000. (B1) The weight average molecular weight Mw of the (meth) acrylic resin can be measured by gel permeation chromatography (GPC) using polystyrene as a standard.
 また、シール剤における(B1)(メタ)アクリル樹脂の量は、シール剤に求められる硬化性や、その黒色度にもよるが、シール剤100質量部に対して、5~80質量部であることが好ましく、10~80質量部であることがより好ましい。 The amount of the (B1) (meth) acrylic resin in the sealant is 5 to 80 parts by mass with respect to 100 parts by mass of the sealant, depending on the curability required for the sealant and its blackness. And more preferably 10 to 80 parts by mass.
 一方、(B2)(メタ)アクリル変性エポキシ樹脂は、(メタ)アクリル基とエポキシ基とを、それぞれ少なくとも1つ含む化合物であり、好ましくはエポキシ樹脂と(メタ)アクリル酸とを、例えば三級アミン等の塩基性触媒の存在下で反応させることにより得られる化合物である。 On the other hand, the (B2) (meth) acryl-modified epoxy resin is a compound containing at least one each of a (meth) acryl group and an epoxy group. Preferably, the epoxy resin and the (meth) acrylic acid are tertiary, for example. It is a compound obtained by reacting in the presence of a basic catalyst such as an amine.
 (B2)(メタ)アクリル変性エポキシ樹脂は、分子内にエポキシ基と(メタ)アクリル基とを有するため、光硬化性と熱硬化性とを併せ持つことができる。さらに、(メタ)アクリル変性エポキシ樹脂は、液晶に対する溶解性が低く、液晶に影響を及ぼし難い。 (B2) Since the (meth) acryl-modified epoxy resin has an epoxy group and a (meth) acryl group in the molecule, it can have both photocurability and thermosetting properties. Further, the (meth) acryl-modified epoxy resin has low solubility in liquid crystal, and hardly affects the liquid crystal.
 (B2)(メタ)アクリル変性エポキシ樹脂の原料となるエポキシ樹脂は、分子内にエポキシ基を2つ以上有する2官能以上のエポキシ樹脂であればよく、その例には、ビスフェノールA型、ビスフェノールF型、2,2’-ジアリルビスフェノールA型、ビスフェノールAD型、および水添ビスフェノール型等のビスフェノール型エポキシ樹脂;フェノールノボラック型、クレゾールノボラック型、ビフェニルノボラック型、およびトリスフェノールノボラック型等のノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;ナフタレン型エポキシ樹脂等が含まれる。3官能や4官能などの多官能エポキシ樹脂を(メタ)アクリル変性して得られる(メタ)アクリル変性エポキシ樹脂は、架橋密度が高く、基板に対する密着強度が低くなりやすい。そこで、(B2)(メタ)アクリル変性エポキシ樹脂の原料となるエポキシ樹脂は、2官能のエポキシ樹脂であることが好ましい。 (B2) The epoxy resin used as a raw material of the (meth) acryl-modified epoxy resin may be a bifunctional or higher epoxy resin having two or more epoxy groups in a molecule. Examples thereof include bisphenol A type and bisphenol F. Type, 2,2'-diallylbisphenol A type, bisphenol AD type, bisphenol type epoxy resin such as hydrogenated bisphenol type; novolak type epoxy such as phenol novolak type, cresol novolak type, biphenyl novolak type, and trisphenol novolak type Resin; biphenyl type epoxy resin; naphthalene type epoxy resin and the like. A (meth) acryl-modified epoxy resin obtained by modifying a trifunctional or tetrafunctional polyfunctional epoxy resin with a (meth) acrylic resin has a high crosslinking density and a low adhesion strength to a substrate. Therefore, the epoxy resin used as the raw material of the (B2) (meth) acryl-modified epoxy resin is preferably a bifunctional epoxy resin.
 また特に、2官能のエポキシ樹脂は、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、およびビスフェノール型エポキシ樹脂であることが好ましく、なかでもビスフェノールA型およびビスフェノールF型等のビスフェノール型エポキシ樹脂が、シール剤の塗布性等の観点から好ましい。 Particularly, the bifunctional epoxy resin is preferably a biphenyl type epoxy resin, a naphthalene type epoxy resin, and a bisphenol type epoxy resin. Among them, bisphenol type epoxy resins such as bisphenol A type and bisphenol F type are preferably used as a sealing agent. It is preferable from the viewpoint of the applicability and the like.
 原料となるエポキシ樹脂は、1種類のみであってもよく、2種類以上を組み合わせてもよい。また、原料となるエポキシ樹脂は、分子蒸留法、洗浄法等により高純度化されていることが好ましい。 エ ポ キ シ Epoxy resin as a raw material may be only one kind, or two or more kinds may be combined. Further, it is preferable that the epoxy resin as a raw material is highly purified by a molecular distillation method, a washing method, or the like.
 ここで、(B2)(メタ)アクリル変性エポキシ樹脂は、原料となるエポキシ樹脂のエポキシ基の10~99.5%が(メタ)アクリル基で変性されたものであることが好ましく、30~95%がアクリル基で変性されたものであることがより好ましい。エポキシ基が上記範囲、(メタ)アクリル基で変性されていると、シール剤の光硬化性及び熱硬化性が良好になり、さらにシール剤の硬化物の耐湿性が低くなりやすい。 Here, (B2) the (meth) acryl-modified epoxy resin is preferably one in which 10 to 99.5% of the epoxy groups of the epoxy resin as a raw material are modified with (meth) acryl groups, and 30 to 95% % Is more preferably modified with an acrylic group. When the epoxy group is modified in the above range with a (meth) acrylic group, the photocurability and the thermosetting property of the sealant are improved, and the moisture resistance of the cured product of the sealant is likely to be lowered.
 (B2)(メタ)アクリル変性エポキシ樹脂の重量平均分子量は、例えば310~1000程度とすることができる。(B2)(メタ)アクリル変性エポキシ樹脂の重量平均分子量Mwは、例えばゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレンを標準として測定できる。 重量 (B2) The weight average molecular weight of the (meth) acryl-modified epoxy resin can be, for example, about 310 to 1,000. (B2) The weight average molecular weight Mw of the (meth) acryl-modified epoxy resin can be measured, for example, by gel permeation chromatography (GPC) using polystyrene as a standard.
 シール剤における(B2)(メタ)アクリル変性エポキシ樹脂の量は、求められる硬化性の程度にもよるが、シール剤100質量部に対して、5~80質量部であることが好ましく、10~80質量部であることがより好ましい。 The amount of the (B2) (meth) acryl-modified epoxy resin in the sealing agent depends on the degree of curability required, but is preferably 5 to 80 parts by mass, and preferably 10 to 80 parts by mass, per 100 parts by mass of the sealing agent. More preferably, it is 80 parts by mass.
 ここで、(B)光硬化性樹脂は、分子内に水酸基、ウレタン結合、アミド基、カルボキシル基などの水素結合性官能基を有することが好ましい。これらの基は、例えばエポキシ樹脂のエポキシ基が(メタ)アクリル酸と反応することにより生成する水酸基であってもよく、(B)光硬化性樹脂の原料となる化合物(例えば(メタ)アクリル酸やエポキシ樹脂等)に含まれる水酸基等であってもよく、また原料となる化合物に含まれるウレタン結合や、カルボキシル基、アミド基等であってもよい。 Here, (B) the photocurable resin preferably has a hydrogen-bonding functional group such as a hydroxyl group, a urethane bond, an amide group, and a carboxyl group in the molecule. These groups may be, for example, hydroxyl groups generated by reacting an epoxy group of an epoxy resin with (meth) acrylic acid, and a compound (B) as a raw material of a photocurable resin (for example, (meth) acrylic acid Or an epoxy resin), or a urethane bond, a carboxyl group, an amide group, or the like contained in a compound as a raw material.
 (B)光硬化性樹脂が、水素結合性官能基を有すると、疎水性である液晶材料との相溶性が低くなり、液晶への溶解が抑制される。その結果、液晶滴下工法用に適したシール剤が得られやすくなる。 (B) If the photocurable resin has a hydrogen-bonding functional group, the compatibility with the hydrophobic liquid crystal material is reduced, and the dissolution in the liquid crystal is suppressed. As a result, a sealant suitable for the liquid crystal dropping method is easily obtained.
 (B)光硬化性樹脂が含む水素結合性官能基の当量は、1.0×10-4~5×10-3mol/gであることが好ましく、3.5×10-3~4.5×10-3mol/gであることがより好ましい。水素結合性官能基当量が1.0×10-4mol/g以上であると、(B)光硬化性樹脂の液晶への溶解が抑制されやすくなる。一方、水素結合性官能基当量が5×10-3mol/g以下であると、(B)光硬化性樹脂の硬化物が充分な耐湿性を有しやすく、シール剤の硬化物の耐湿性が低下しにくい。 (B) The equivalent of the hydrogen bonding functional group contained in the photocurable resin is preferably from 1.0 × 10 −4 to 5 × 10 −3 mol / g, and preferably from 3.5 × 10 −3 to 4. More preferably, it is 5 × 10 −3 mol / g. When the hydrogen-bonding functional group equivalent is 1.0 × 10 −4 mol / g or more, the dissolution of the photocurable resin (B) in the liquid crystal is easily suppressed. On the other hand, when the hydrogen bonding functional group equivalent is 5 × 10 −3 mol / g or less, the cured product of (B) the photocurable resin tends to have sufficient moisture resistance, and the cured product of the sealant has moisture resistance. Is not easily reduced.
 (B)光硬化性樹脂の水素結合性官能基当量(mol/g)は、「(B)光硬化性樹脂1分子に含まれる水素結合性官能基の数」/「(B)光硬化性樹脂の重量平均分子量(Mw)」として表される。例えば、水素結合性官能基として、(メタ)アクリル酸とエポキシ樹脂とを反応させて得られる水酸基のみを有する場合、水素結合性官能基当量は、反応させた(メタ)アクリル酸のモル数を、(メタ)アクリル変性エポキシ樹脂の重量平均分子量(Mw)で割ることにより求めることができる。 (B) The hydrogen-bonding functional group equivalent (mol / g) of the photocurable resin is represented by "(B) Number of hydrogen-bonding functional groups contained in one molecule of photocurable resin" / "(B) Photocurable Weight average molecular weight (Mw) of the resin ". For example, when only a hydroxyl group obtained by reacting (meth) acrylic acid with an epoxy resin is used as the hydrogen bonding functional group, the hydrogen bonding functional group equivalent is determined by the number of moles of the reacted (meth) acrylic acid. , (Meth) acrylic modified epoxy resin by weight average molecular weight (Mw).
 ここで、(B)光硬化性樹脂が上述の(B1)(メタ)アクリル樹脂である場合、その水素結合性官能基当量は、(B1)(メタ)アクリル樹脂を得るための単量体が含む水素結合性官能基の量を調整すること等によって制御することができる。一方、(B)光硬化性樹脂が上述の(B2)(メタ)アクリル変性エポキシ樹脂である場合、その水素結合性官能基当量は、例えば、原料となるエポキシ樹脂に反応させる(メタ)アクリル酸のモル数を調整したり、原料となる(メタ)アクリル酸やエポキシ樹脂が有する水素結合性官能基の量を調整したりすることなどによって制御することができる。 Here, when the (B) photo-curable resin is the above-mentioned (B1) (meth) acrylic resin, the hydrogen-bonding functional group equivalent is such that the monomer for obtaining the (B1) (meth) acrylic resin is It can be controlled by adjusting the amount of the hydrogen-bonding functional group contained. On the other hand, when the (B) photo-curable resin is the above-mentioned (B2) (meth) acryl-modified epoxy resin, its hydrogen-bonding functional group equivalent is determined, for example, by reacting (meth) acrylic acid with the epoxy resin as a raw material. Can be controlled by adjusting the number of moles, or by adjusting the amount of hydrogen-bonding functional groups contained in the raw material (meth) acrylic acid or epoxy resin.
 シール剤100質量部に対する、(B)光硬化性樹脂の総量(例えば、(B1)(メタ)アクリル樹脂と(B2)(メタ)アクリル変性エポキシ樹脂との合計量)は、5~80質量部であることが好ましく、10~80質量部であることがより好ましい。 The total amount of (B) the photocurable resin (for example, the total amount of (B1) (meth) acrylic resin and (B2) (meth) acryl-modified epoxy resin) is 5 to 80 parts by mass with respect to 100 parts by mass of the sealant. And more preferably 10 to 80 parts by mass.
 (C)チタノセン系光重合開始剤
 本発明のシール剤が含む(C)チタノセン系光重合開始剤は、前述の(B)光硬化性樹脂を硬化させるための化合物である。前述のように、(C)チタノセン系光重合開始剤は、可視光吸収能を有するため、当該(C)チタノセン系光重合開始剤を用いることで、シール剤の深部硬化性を高めることが可能となる。
(C) Titanocene-based photopolymerization initiator The (C) titanocene-based photopolymerization initiator contained in the sealant of the present invention is a compound for curing the (B) photocurable resin described above. As described above, since the (C) titanocene-based photopolymerization initiator has a visible light absorbing ability, the use of the (C) titanocene-based photopolymerization initiator can enhance the deep curability of the sealant. Becomes
 (C)チタノセン系光重合開始剤の例には、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、ビス(シクロペンタジエニル)-ジクロロチタニウム、ビス(シクロペンタジエニル)-ジフェニルチタニウム、ビス(シクロペンタジエニル)-ビス(2,3,4,5,6ペンタフルオロフェニル)チタニウム、ビス(シクロペンタジエニル)-ビス(2,6ジフルオロフェニル)チタニウム、ビス(メチルシクロペンタジエニル)-ビス(2,3,4,5,6ペンタフルオロフェニル)チタニウム、ビス(メチルシクロペンタジエニル)-ビス(2,6ジフルオロフェニル)チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(1-ピル-1-イル)エチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-((1-ピル-1-イル)メチル)フェニル]チタニウム、ビス(メチルシクロペンタジエニル)-ビス[2,6-ジフルオロ-3-((1-ピル-1-イル)メチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-((2,5-ジメチル-1-ピル-1-イル)メチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-((3-トリメチルシリル-2,5-ジメチル-1-ピル-1-イル)メチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-((2,5-ビス(モルホリノメチル)-1-ピル-1-イル)メチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-4-((2,5-ジメチル-1-ピル-1-イル)メチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-メチル-4-(2-(1-ピル-1-イル)エチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(1-メチル-2-(1-ピル-1-イル)エチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(6-(9-カルバゾル-9-イル)ヘキシル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(3-(4,5,6,7-テトラヒドロ-2-メチル-1-インドル-1-イル)プロピル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-((アセチルアミノ)メチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(プロピオニルアミノ)エチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(4-(ビバロイルアミノ)ブチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(2,2-ジメチルペンタノイルアミノ)エチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(3-(ベンゾイルアミノ)プロピル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(N-アリルメチルスルホニルアミノ)エチル)フェニル]チタニウム等が含まれる。シール剤には、(C)チタノセン系光重合開始剤が1種のみ含まれてもよく、2種以上が含まれてもよい。 (C) Examples of titanocene-based photopolymerization initiators include bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl)- Phenyl) titanium, bis (cyclopentadienyl) -dichlorotitanium, bis (cyclopentadienyl) -diphenyltitanium, bis (cyclopentadienyl) -bis (2,3,4,5,6 pentafluorophenyl) titanium , Bis (cyclopentadienyl) -bis (2,6 difluorophenyl) titanium, bis (methylcyclopentadienyl) -bis (2,3,4,5,6 pentafluorophenyl) titanium, bis (methylcyclopenta Dienyl) -bis (2,6-difluorophenyl) titanium, bis (cyclopentadienyl) -bis [2,6-diph Oro-3- (2- (1-pyr-1-yl) ethyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3-((1-pyr-1-yl) Methyl) phenyl] titanium, bis (methylcyclopentadienyl) -bis [2,6-difluoro-3-((1-pyr-1-yl) methyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3-((2,5-dimethyl-1-pyr-1-yl) methyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3- ( (3-trimethylsilyl-2,5-dimethyl-1-pyr-1-yl) methyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3-((2,5-bis ( Morpholinomethyl) -1-pyr-1-yl) methyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-4-((2,5-dimethyl-1-pyr-1- Yl) methyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3-methyl-4- (2- (1-pyr-1-yl) ethyl) phenyl] titanium, bis ( Cyclopentadienyl) -bis [2,6-difluoro-3- (1-methyl-2- (1-pyr-1-yl) ethyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2 6-difluoro-3- (6- (9-carbazol-9-yl) hexyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3- (3- (4,5, 6 7-tetrahydro-2-methyl-1-indol-1-yl) propyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3-((acetylamino) methyl) phenyl] titanium , Bis (cyclopentadienyl) -bis [2,6-difluoro-3- (2- (propionylamino) ethyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3- (4- (Bivaloylamino) butyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3- (2- (2,2-dimethylpentanoylamino) ethyl) phenyl] titanium , Bis (cyclopentadienyl) -bis [2,6-difluoro-3- (3- (benzoylamino) propyl) phenyl Le] titanium, bis (cyclopentadienyl) - include bis [2,6-difluoro-3-(2-(N-allyl-methylsulfonylamino)) phenyl] titanium and the like. The sealing agent may contain only one kind of the (C) titanocene-based photopolymerization initiator, or may contain two or more kinds.
 上記の中でも、波長300~550nmの光を吸収可能であることが好ましく、350~500nmの光を吸収可能であることがより好ましい。 中 で も Among the above, it is preferable to be able to absorb light having a wavelength of 300 to 550 nm, and more preferably to be able to absorb light having a wavelength of 350 to 500 nm.
 シール剤100質量部に対する、(C)チタノセン系光重合開始剤の含有量は0.01~20質量部であり、好ましくは0.1~10質量部である。シール剤に、(C)チタノセン系光重合開始剤が上記範囲含まれると、シール剤の光硬化性が高まりやすい。 The content of the titanocene photopolymerization initiator (C) is 0.01 to 20 parts by mass, preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the sealant. When the sealing agent contains (C) the titanocene-based photopolymerization initiator in the above range, the photocurability of the sealing agent is likely to increase.
 (D)遮光剤
 本発明のシール剤が含む遮光剤は、pHが7未満(詳しくは7.0未満)、もしくはpHが8.0超であり、かつシール剤の黒色度を例えば2~5に調整可能なものであれば特に制限されない。(D)遮光剤のpHが7未満(詳しくは7.0未満)、もしくはpHが8.0超であると、上述のように(D)遮光剤のシール剤中での分散性が良好になり、シール剤の硬化性が良好になる。
(D) Light-Shielding Agent The light-shielding agent contained in the sealant of the present invention has a pH of less than 7 (specifically, less than 7.0) or a pH of more than 8.0 and a blackness of the sealant of, for example, 2 to 5 There is no particular limitation as long as it is adjustable. When the pH of (D) the light-shielding agent is less than 7 (specifically, less than 7.0) or the pH is more than 8.0, the dispersibility of (D) the light-shielding agent in the sealant is excellent as described above. And the curability of the sealant is improved.
 (D)遮光剤のpHは、(D)遮光剤を純水で20倍に希釈・攪拌した後、(D)遮光剤を含む純水のpHを、HORIBA社製コンパクトpHメーター B-71Xで測定することで求めることができる。(D)遮光剤のpHが7.0未満である場合、1~6であることが好ましく、1~4であることがより好ましい。一方、(D)遮光剤のpHが8.0を超える場合、pHは10.0以下が好ましい。 (D) The pH of the light-shielding agent was determined by diluting and stirring the (D) light-shielding agent 20-fold with pure water, and then measuring the pH of the pure water containing the (D) light-shielding agent with a compact pH meter (B-71X manufactured by HORIBA). It can be obtained by measuring. (D) When the pH of the light-shielding agent is less than 7.0, it is preferably from 1 to 6, more preferably from 1 to 4. On the other hand, when the pH of the light-shielding agent (D) exceeds 8.0, the pH is preferably 10.0 or less.
 上述のpHを満たす(D)遮光剤の例には、カーボンブラック、チタンブラック、バナジウム、鉄や銅などの無機系化合物が含まれる。これらの中でも炭素を含むことが好ましく、その例には酸性カーボンブラック等が含まれる。酸性カーボンブラックは、チャンネルブラックであってもよく、カーボンブラックを酸化処理したものであってもよい。カーボンブラックの酸化処理方法の例には、空気酸化や、硝酸、窒素酸化物と空気との混合ガス、オゾン等の各種酸化剤による酸化等が含まれる。シール剤が含む(D)遮光剤は1種のみであってもよく、2種以上であってもよい。また、好ましい(D)遮光剤の例には、チタンブラックも含まれる。 例 Examples of the (D) light-blocking agent satisfying the above-mentioned pH include carbon black, titanium black, vanadium, and inorganic compounds such as iron and copper. Among these, it is preferable to include carbon, and examples thereof include acidic carbon black. The acidic carbon black may be a channel black or an oxidized carbon black. Examples of the method of oxidizing carbon black include air oxidation, nitric acid, mixed gas of nitrogen oxide and air, and oxidation with various oxidizing agents such as ozone. The sealing agent may contain only one type of (D) light-shielding agent, or two or more types. Examples of preferable (D) light-shielding agents also include titanium black.
 (D)遮光剤の形状は特に制限されず、球状、板状、針状等の定形状あるいは非定形状のいずれであってもよい。また、(D)遮光剤の平均一次粒子径は、0.005~0.1μmであることが好ましく、0.01~0.05μmであることがより好ましく、0.015~0.03μmであることがさらに好ましい。平均粒子径JIS Z8825に記載のレーザー回折法で測定できる。比表面積測定は、JIS Z8830に記載のBET法により測定できる。 (D) The shape of the light-shielding agent is not particularly limited, and may be a fixed shape such as a sphere, a plate, or a needle, or an irregular shape. The average primary particle diameter of the light-shielding agent (D) is preferably 0.005 to 0.1 μm, more preferably 0.01 to 0.05 μm, and more preferably 0.015 to 0.03 μm. Is more preferable. Average particle diameter It can be measured by a laser diffraction method described in JIS Z8825. The specific surface area can be measured by the BET method described in JIS Z8830.
 シール剤100質量部に対する、(D)遮光剤の量は、シール剤の黒色度を例えば2~5に調整可能な範囲であれば特に制限されない。例えばシール剤の総量に対して5~46質量部とすることができ、7~40質量部とすることがより好ましく、10~30質量部とすることがさらに好ましい。(D)遮光剤の量が上記範囲であると、シール剤の黒色度が所望の範囲に収まりやすい。一方で、(D)遮光剤の量が過度に多いと、(D)遮光剤が凝集しやすく、シール剤の光硬化性が低下しやすくなる。 量 The amount of the (D) light-shielding agent with respect to 100 parts by mass of the sealing agent is not particularly limited as long as the blackness of the sealing agent can be adjusted to, for example, 2 to 5. For example, the amount can be 5 to 46 parts by mass, preferably 7 to 40 parts by mass, and more preferably 10 to 30 parts by mass with respect to the total amount of the sealant. (D) When the amount of the light-shielding agent is within the above range, the blackness of the sealing agent tends to fall within a desired range. On the other hand, if the amount of the (D) light-shielding agent is excessively large, the (D) light-shielding agent is likely to aggregate, and the photocurability of the sealant is likely to be reduced.
 (E)熱硬化性化合物
 本発明のシール剤は、(E)1分子内にエポキシ基を少なくとも1つ有する熱硬化性化合物を含む。シール剤が(E)熱硬化性化合物を含むと、シール剤の硬化物の耐湿性が高まる。なお、本明細書において、上述の(B)光硬化性樹脂に相当する樹脂は、(E)熱硬化性化合物に含まない。(E)熱硬化性化合物が含むエポキシ基の数は、2以上であることが好ましく、2つであることが特に好ましい。
(E) Thermosetting Compound The sealant of the present invention contains (E) a thermosetting compound having at least one epoxy group in one molecule. When the sealant contains (E) a thermosetting compound, the cured product of the sealant has improved moisture resistance. In this specification, a resin corresponding to the above-mentioned (B) photocurable resin is not included in (E) the thermosetting compound. (E) The number of epoxy groups contained in the thermosetting compound is preferably two or more, and particularly preferably two.
 (E)熱硬化性化合物の例には、ビスフェノールA型、ビスフェノールF型、ビスフェノールS型、2,2’-ジアリルビスフェノールA型、ビスフェノールAD型、および水添ビスフェノール型等のビスフェノール型エポキシ樹脂;ジフェニルエーテル型エポキシ樹脂;フェノールノボラック型、クレゾールノボラック型、ビフェニルノボラック型、ビスフェノールノボラック型、ナフトールノボラック型、トリスフェノールノボラック型、ジシクロペンタジエンノボラック型等のノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;ナフチル型エポキシ樹脂;トリフェノールメタン型、トリフェノールエタン型、トリフェノールプロパン型等のトリフェノールアルカン型エポキシ樹脂;脂環型エポキシ樹脂等が含まれる。なかでも、ビスフェノールA型およびビスフェノールF型等のビスフェノール型エポキシ樹脂が好ましい。これらのビスフェノール型エポキシ樹脂は、ジフェニルエーテル型エポキシ樹脂等と比べて結晶性が低く、塗工安定性に優れる等の利点がある。また、当該化合物は、液晶に対する溶解性や拡散性が低く、得られる液晶表示パネルの表示特性が良好になるだけでなく、シール剤の硬化物の耐湿性が高まる。 (E) Examples of the thermosetting compound include bisphenol type epoxy resins such as bisphenol A type, bisphenol F type, bisphenol S type, 2,2′-diallylbisphenol A type, bisphenol AD type, and hydrogenated bisphenol type; Diphenyl ether type epoxy resin; phenol novolak type, cresol novolak type, biphenyl novolak type, bisphenol novolak type, naphthol novolak type, trisphenol novolak type, dicyclopentadiene novolak type, etc .; nophenyl type epoxy resin; biphenyl type epoxy resin; naphthyl type epoxy resin Resins; triphenol alkane type epoxy resins such as triphenol methane type, triphenol ethane type, and triphenol propane type; alicyclic epoxy resins. Among them, bisphenol type epoxy resins such as bisphenol A type and bisphenol F type are preferable. These bisphenol-type epoxy resins have advantages such as lower crystallinity and superior coating stability than diphenyl ether-type epoxy resins and the like. In addition, the compound has low solubility and diffusibility in liquid crystal, and not only improves the display characteristics of the obtained liquid crystal display panel, but also increases the moisture resistance of the cured product of the sealant.
 (E)熱硬化性化合物の重量平均分子量(Mw)は、300~3000であることが好ましく、300~2000であることがより好ましい。(E)熱硬化性化合物の重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレンを標準として測定できる。(E)熱硬化性化合物は、液状であってもよく、固形であってもよい。(E)熱硬化性化合物が固形エポキシ樹脂である場合、軟化点が40℃以上150℃以下であることが好ましい。 重量 (E) The thermosetting compound preferably has a weight average molecular weight (Mw) of 300 to 3,000, more preferably 300 to 2,000. (E) The weight average molecular weight of the thermosetting compound can be measured, for example, by gel permeation chromatography (GPC) using polystyrene as a standard. (E) The thermosetting compound may be liquid or solid. (E) When the thermosetting compound is a solid epoxy resin, the softening point is preferably from 40 ° C to 150 ° C.
 シール剤は、(E)熱硬化性化合物を1種のみ含んでいてもよく、種類や分子量の異なる2種以上を含んでもよい。シール剤100質量部に対する、(E)熱硬化性化合物の量は5~70質量部であり、好ましくは5~50質量部である。(E)熱硬化性化合物を上記範囲含むことで、シール剤の硬化物の耐湿性が高まりやすくなる。 The sealant may contain only one kind of the thermosetting compound (E), or may contain two or more kinds having different kinds and molecular weights. The amount of the thermosetting compound (E) is 5 to 70 parts by mass, preferably 5 to 50 parts by mass, based on 100 parts by mass of the sealant. By including the (E) thermosetting compound in the above range, the moisture resistance of the cured product of the sealant is easily increased.
 (F)熱硬化剤
 本発明のシール剤は、(F)熱硬化剤を含む。(F)熱硬化剤は、(E)熱硬化性化合物が含むエポキシ基の反応に寄与する化合物である。なお、(B)光硬化性樹脂がエポキシ基を有する場合には、当該エポキシ基の反応にも寄与する。本明細書では、エポキシ基と反応する際に、ラジカルを発生しないものを(F)熱硬化剤とする。
(F) Thermosetting agent The sealant of the present invention contains (F) a thermosetting agent. The (F) thermosetting agent is a compound that contributes to the reaction of the epoxy group contained in the (E) thermosetting compound. When the photocurable resin (B) has an epoxy group, it also contributes to the reaction of the epoxy group. In the present specification, those that do not generate radicals when reacting with an epoxy group are referred to as (F) thermosetting agents.
 (F)熱硬化剤の種類は特に制限されないが、熱潜在性硬化剤であることが好ましい。熱潜在性硬化剤とは、シール剤の保存時(室温下)には、(E)熱硬化性化合物を硬化させず、加熱によって(E)熱硬化性化合物のエポキシ基の反応に寄与し、(E)熱硬化性化合物を硬化させる化合物である。 F (F) The type of the thermosetting agent is not particularly limited, but is preferably a thermal latent curing agent. The thermal latent curing agent is a compound which does not cure the (E) thermosetting compound during storage of the sealant (at room temperature), and contributes to the reaction of the epoxy group of the (E) thermosetting compound by heating, (E) A compound that cures a thermosetting compound.
 熱潜在性硬化剤は、公知の化合物を適用可能であるが、シール剤の粘度安定性を高めるため、融点が50℃以上250℃以下である熱潜在性硬化剤が好ましい。また、低い熱硬化温度(80~100℃程度)でも樹脂を硬化させるとの観点から、融点は50℃以上200℃以下であることがより好ましい。 A known compound can be used as the heat latent curing agent, but a heat latent curing agent having a melting point of 50 ° C. or more and 250 ° C. or less is preferable in order to increase the viscosity stability of the sealant. Further, from the viewpoint of curing the resin even at a low thermosetting temperature (about 80 to 100 ° C.), the melting point is more preferably 50 ° C. or more and 200 ° C. or less.
 熱潜在性硬化剤の好ましい例には、ジヒドラジド系熱潜在性硬化剤、イミダゾール系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤が含まれる。 Preferred examples of the heat latent curing agent include a dihydrazide heat latent curing agent, an imidazole heat latent curing agent, an amine adduct heat latent curing agent, and a polyamine heat latent curing agent.
 ジヒドラジド系熱潜在性硬化剤の例には、アジピン酸ジヒドラジド(融点181℃)、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン(融点120℃)、7,11-オクタデカジエン-1,18-ジカルボヒドラジド(融点160℃)、ドデカン二酸ジヒドラジド(融点190℃)、およびセバシン酸ジヒドラジド(融点189℃)等が含まれる。 Examples of dihydrazide heat latent curing agents include adipic dihydrazide (melting point: 181 ° C.), 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin (melting point: 120 ° C.), 7,11-octadecadien Includes -1,18-dicarbohydrazide (melting point 160 ° C.), dodecane diacid dihydrazide (melting point 190 ° C.), sebacic acid dihydrazide (melting point 189 ° C.), and the like.
 また、イミダゾール系熱潜在性硬化剤の好ましい例には、下記一般式(X)で表される構造の化合物が含まれる。
Figure JPOXMLDOC01-appb-C000002
Preferred examples of the imidazole heat latent curing agent include a compound having a structure represented by the following general formula (X).
Figure JPOXMLDOC01-appb-C000002
 一般式(X)中、RおよびRはそれぞれ独立に、水素原子、低級アルキル基、低級ヒドロキシアルキル基、フェニル基またはベンジル基である。また、RおよびRはそれぞれ独立に、水素原子、低級アルキル基または低級ヒドロキシアルキル基である。そして、R~Rの少なくとも一つが、低級ヒドロキシアルキル基である。低級ヒドロキシアルキル基を有するイミダゾール系熱潜在性硬化剤は、水酸基を含むため、液晶に対して溶解し難い。 In the general formula (X), R 1 and R 2 are each independently a hydrogen atom, a lower alkyl group, a lower hydroxyalkyl group, a phenyl group or a benzyl group. R 3 and R 4 are each independently a hydrogen atom, a lower alkyl group or a lower hydroxyalkyl group. At least one of R 1 to R 4 is a lower hydroxyalkyl group. Since the imidazole-based latent heat curing agent having a lower hydroxyalkyl group contains a hydroxyl group, it is difficult to dissolve in a liquid crystal.
 上記式(X)においてR~Rでありうる低級アルキル基は、メチル基、エチル基、プロピル基等の炭素数1~4のアルキル基であり、好ましくはメチル基またはエチル基である。一方、低級ヒドロキシアルキル基は、ヒドロキシメチル基、ヒドロキシエチル基等の炭素数1~4のヒドロキシアルキル基であり、好ましくはヒドロキシメチル基である。低級ヒドロキシアルキル基には、複数の水酸基が含まれてもよい。 The lower alkyl group which may be R 1 to R 4 in the above formula (X) is an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, and a propyl group, and is preferably a methyl group or an ethyl group. On the other hand, the lower hydroxyalkyl group is a hydroxyalkyl group having 1 to 4 carbon atoms such as a hydroxymethyl group and a hydroxyethyl group, and is preferably a hydroxymethyl group. The lower hydroxyalkyl group may include a plurality of hydroxyl groups.
 イミダゾール系硬化触媒に含まれる水酸基の数は、特に制限されないが、水酸基数が2個以上になると耐水性が低下することがあるため、耐水性等を低下させない点では、水酸基数は1個であることが好ましい。 The number of hydroxyl groups contained in the imidazole-based curing catalyst is not particularly limited, but since the water resistance may decrease when the number of hydroxyl groups is 2 or more, the number of hydroxyl groups is 1 in terms of not reducing water resistance and the like. Preferably, there is.
 一般式(X)で表されるイミダゾール系熱潜在性硬化剤の融点は、シール剤の熱硬化温度にもよるが、シール剤を比較的低温(例えば80~100℃程度)で熱硬化させる場合は、150℃以下であることが好ましく、120℃以下であることがより好ましく、60~120℃であることがさらに好ましく、80~100℃であることが特に好ましい。イミダゾール系熱潜在性硬化剤の融点が低すぎると、室温でイミダゾール系熱潜在性硬化剤が融解する。そして、(E)熱硬化性化合物の硬化反応が進み、シール剤の室温での保存安定性が悪くなる。一方、融点が高すぎると、シール剤の熱硬化温度において、イミダゾール系熱潜在性硬化剤の触媒機能が十分に発揮され難くなる。イミダゾール系熱潜在性硬化剤の融点は、例えば芳香族環を含まない構造とすることで、低くすることができる。 The melting point of the imidazole heat latent curing agent represented by the general formula (X) depends on the heat curing temperature of the sealant, but when the sealant is thermoset at a relatively low temperature (for example, about 80 to 100 ° C.). Is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, still more preferably 60 to 120 ° C., and particularly preferably 80 to 100 ° C. If the melting point of the imidazole heat latent curing agent is too low, the imidazole heat latent curing agent will melt at room temperature. Then, (E) the curing reaction of the thermosetting compound proceeds, and the storage stability of the sealant at room temperature deteriorates. On the other hand, if the melting point is too high, it becomes difficult for the imidazole-based heat latent curing agent to exert its catalytic function sufficiently at the thermosetting temperature of the sealant. The melting point of the imidazole heat latent curing agent can be lowered by, for example, having a structure not containing an aromatic ring.
 イミダゾール系熱潜在性硬化剤の融点を低くする点では、Rは、フェニル基やベンジル基以外の基、即ち水素原子、低級アルキル基または低級ヒドロキシアルキル基であることが好ましく、低級ヒドロキシアルキル基であることがより好ましい。 From the viewpoint of lowering the melting point of the imidazole heat latent curing agent, R 2 is preferably a group other than a phenyl group or a benzyl group, that is, a hydrogen atom, a lower alkyl group or a lower hydroxyalkyl group, and a lower hydroxyalkyl group. Is more preferable.
 一般式(X)で表されるイミダゾール系熱潜在性硬化剤の例には、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-ヒドロキシメチルイミダゾール、1-ベンジル-5-ヒドロキシメチルイミダゾール、1,2-ジヒドロキシエチルイミダゾール等が含まれる。上記の中でも、融点が150℃以下のイミダゾール系熱潜在性硬化剤としては、例えば2-ヒドロキシメチルイミダゾールが挙げられる。 Examples of the imidazole heat latent curing agent represented by the general formula (X) include 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-hydroxy Methyl imidazole, 1-benzyl-5-hydroxymethyl imidazole, 1,2-dihydroxyethyl imidazole and the like are included. Among the above, examples of the imidazole-based heat latent curing agent having a melting point of 150 ° C. or lower include 2-hydroxymethylimidazole.
 アミンアダクト系熱潜在性硬化剤は、触媒活性を有するアミン系化合物と任意の化合物とを反応させて得られる付加化合物である。このようなアミンアダクト系熱潜在性硬化剤は、熱によりアミンが解離して活性化する。アミン系化合物の例には、1,2,3級アミノ基を有する化合物が含まれ、例えば、アミキュアPN-40(融点110℃)やアミキュアPN-23(融点100℃)、アミキュアPN-31(融点115℃)、アミキュアPN-H(融点115℃)、アミキュアMY-24(融点120℃)、アミキュアMY-H(融点130℃)(以上、味の素ファインテクノ(株)製)等が含まれる。 (4) The amine adduct thermal latent curing agent is an additional compound obtained by reacting an amine compound having catalytic activity with an arbitrary compound. In such an amine adduct thermal latent curing agent, the amine is dissociated by heat and activated. Examples of the amine-based compound include compounds having 1, 2, and tertiary amino groups, such as Amicure PN-40 (melting point 110 ° C.), Amicure PN-23 (melting point 100 ° C.), and Amicure PN-31 ( Melting point 115 ° C.), AMICURE PN-24 (melting point 115 ° C.), AMICURE MY-24 (melting point 120 ° C.), AMICURE MY-H (melting point 130 ° C.) (all manufactured by Ajinomoto Fine Techno Co., Ltd.) and the like.
 ポリアミン系熱潜在性硬化剤は、アミンとエポキシとを反応させて得られるポリマー構造を有する熱潜在硬化剤であり、その具体例には、(株)ADEKA製アデカハードナーEH4339S(軟化点120~130℃)、および(株)ADEKA製アデカハードナーEH4357S(軟化点73~83℃)等が含まれる。 The polyamine-based heat latent curing agent is a heat latent curing agent having a polymer structure obtained by reacting an amine with an epoxy, and specific examples thereof include Adeka Hardener EH4339S (softening point of 120 to 130) manufactured by ADEKA Corporation. ° C) and Adeka Hardener EH4357S (softening point 73-83 ° C) manufactured by ADEKA Corporation.
 (F)熱硬化剤の含有量は、(B)光硬化性樹脂および(E)熱硬化性化合物の総量100質量部に対して5~100質量部であることが好ましく、より好ましくは10~50質量部以下である。(F)熱硬化剤が含まれると、シール剤の熱硬化反応が十分に進行しやすくなる。 The content of the thermosetting agent (F) is preferably 5 to 100 parts by mass, more preferably 10 to 100 parts by mass, based on 100 parts by mass of the total of (B) the photocurable resin and (E) the thermosetting compound. It is 50 parts by mass or less. (F) When a thermosetting agent is contained, the thermosetting reaction of the sealing agent easily proceeds sufficiently.
 (G)その他
 本発明のシール剤は、上述した以外の成分を含んでいてもよい。その他の成分の例には、無機フィラーや有機フィラー、各種添加剤等が含まれる。
(G) Others The sealant of the present invention may contain components other than those described above. Examples of other components include inorganic fillers and organic fillers, various additives, and the like.
 シール剤が無機フィラーを含むと、シール剤の粘度を所望の範囲にすることや、シール剤の硬化物の強度や線膨張性の制御等を行うことができる。無機フィラーの例には、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸マグネシウム、珪酸アルミニウム、珪酸ジルコニウム、酸化鉄、酸化チタン、酸化アルミニウム(アルミナ)、酸化亜鉛、二酸化ケイ素、チタン酸カリウム、カオリン、タルク、ガラスビーズ、セリサイト活性白土、ベントナイト、窒化アルミニウム、窒化ケイ素、窒化チタン等が含まれ、好ましくは二酸化ケイ素、タルクである。シール剤は、これらを1種のみ含んでいてもよく、2種以上含んでいてもよい。 (4) When the sealant contains an inorganic filler, the viscosity of the sealant can be adjusted to a desired range, and the strength and linear expansion of a cured product of the sealant can be controlled. Examples of the inorganic filler include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, aluminum oxide (alumina), zinc oxide, silicon dioxide, potassium titanate, kaolin, and talc. , Glass beads, sericite activated clay, bentonite, aluminum nitride, silicon nitride, titanium nitride and the like, and preferably silicon dioxide and talc. The sealant may include only one of these, or may include two or more thereof.
 無機フィラーの形状は、特に限定されず、球状、板状、針状等の定形状あるいは非定形状のいずれであってもよい。無機フィラーは平均一次粒子径が1.5μm以下であることが好ましく、かつその比表面積が1m/g~500m/gであることが好ましい。無機フィラーの平均一次粒子径は、JIS Z8825に記載のレーザー回折法で測定できる。また、比表面積測定は、JIS Z8830に記載のBET法により測定できる。 The shape of the inorganic filler is not particularly limited, and may be any of a fixed shape such as a sphere, a plate, and a needle, or an irregular shape. The inorganic filler preferably has an average primary particle diameter of 1.5 μm or less, and preferably has a specific surface area of 1 m 2 / g to 500 m 2 / g. The average primary particle diameter of the inorganic filler can be measured by a laser diffraction method described in JIS Z8825. The specific surface area can be measured by the BET method described in JIS Z8830.
 無機フィラーの量は、シール剤100質量部に対して、30質量部以下であることが好ましく、20質量部以下であることがより好ましい。 量 The amount of the inorganic filler is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, based on 100 parts by mass of the sealant.
 一方、シール剤が有機フィラーを含むと、シール剤の耐衝撃性等が高まる。有機フィラーの種類は、特に制限されないが、シール剤の融点は、熱硬化温度より高い温度であることが好ましい。一方で、有機フィラーの軟化点が高すぎると、有機フィラーが変形し難くなる。そこで、有機フィラーの軟化点は30~120℃であることが好ましい。 On the other hand, when the sealant contains an organic filler, the impact resistance and the like of the sealant are improved. The type of the organic filler is not particularly limited, but the melting point of the sealant is preferably higher than the thermosetting temperature. On the other hand, if the softening point of the organic filler is too high, the organic filler becomes difficult to deform. Therefore, the softening point of the organic filler is preferably 30 to 120 ° C.
 有機フィラーの例には、シリコーン微粒子、アクリル微粒子、スチレン・ジビニルベンゼン共重合体等のスチレン微粒子、およびポリオレフィン微粒子からなる群より選ばれる微粒子等が含まれる。シール剤は、有機フィラーを1種のみ含んでいてもよく、2種以上含んでいてもよい。 Examples of the organic filler include fine particles selected from the group consisting of silicone fine particles, acrylic fine particles, styrene fine particles such as styrene-divinylbenzene copolymer, and polyolefin fine particles. The sealant may contain only one type of organic filler, or may contain two or more types of organic filler.
 有機フィラーの形状は特に制限されず、例えば球状等とすることができる。また有機フィラーの平均粒子径は、液晶セルのギャップが通常5μm以下であるため、0.05~5μmであることが好ましく、より好ましくは0.07~3μmである。有機フィラーの平均粒子径は、例えばJIS Z8825に記載のレーザー回折法で測定できる。 形状 The shape of the organic filler is not particularly limited, and may be, for example, spherical. The average particle size of the organic filler is preferably 0.05 to 5 μm, more preferably 0.07 to 3 μm, since the gap of the liquid crystal cell is usually 5 μm or less. The average particle size of the organic filler can be measured, for example, by a laser diffraction method described in JIS Z8825.
 有機フィラーの量は、シール剤100質量部に対して、30質量部以下であることが好ましく、15質量部以下であることがより好ましい。 量 The amount of the organic filler is preferably 30 parts by mass or less, more preferably 15 parts by mass or less, based on 100 parts by mass of the sealant.
 各種添加剤の例には、熱ラジカル重合開始剤、シランカップリング剤等のカップリング剤、イオントラップ剤、イオン交換剤、レベリング剤、顔料、染料、可塑剤、消泡剤等が含まれる。また、液晶表示パネルのギャップを調整するためにスペーサー等が配合されていてもよい。これらの含有量は、本発明の目的および効果を損なわない範囲であれば特に制限されない。 Examples of various additives include a thermal radical polymerization initiator, a coupling agent such as a silane coupling agent, an ion trapping agent, an ion exchange agent, a leveling agent, a pigment, a dye, a plasticizer, a defoaming agent, and the like. Further, a spacer or the like may be blended for adjusting the gap of the liquid crystal display panel. These contents are not particularly limited as long as the objects and effects of the present invention are not impaired.
 ・シール剤の物性および製造方法
 上述のシール剤は、黒色度が好ましくは2~5であり、3~4であることがより好ましい。シール剤の黒色度は、以下のように測定することができる。
-Physical properties of sealant and manufacturing method The above-mentioned sealant preferably has a blackness of 2 to 5, more preferably 3 to 4. The blackness of the sealant can be measured as follows.
 まず、シール剤をスパチュラで10μl程度採取し、25mm×45mm×厚さ5mmの無アルカリガラス上に滴下し、直径5mmの円状とする。そして、対となる無アルカリガラスを重なるように貼りあわせ、治具で固定する。治具で固定した試験片に対して、紫外線照射装置(ウシオ電機社製)から、500mW/cmの紫外線を照射し、シール剤を硬化させる。このとき、紫外線の照度エネルギーは3.0J/cmとする。光によって硬化させた試験片を、オーブンを用いて120℃、60分加熱処理し、黒色度測定用のサンプルとする。その後、紫外可視分光光度計(島津製作所社製、UV-2550)を使用して、シール剤の硬化物の透過率(%T)を測定する。そして、波長500nmにおける透過率(%T)を用いて、黒色度(OD値)を式:OD値=-log(%T/100)に基づき、濃度換算して算出する。 First, about 10 μl of a sealing agent is collected with a spatula, and dropped on a 25 mm × 45 mm × 5 mm thick non-alkali glass to form a circle having a diameter of 5 mm. Then, a pair of non-alkali glass is attached so as to overlap with each other and fixed with a jig. The test piece fixed with the jig is irradiated with an ultraviolet ray of 500 mW / cm 2 from an ultraviolet ray irradiation device (manufactured by Ushio Inc.) to cure the sealant. At this time, the illuminance energy of the ultraviolet light is 3.0 J / cm 2 . The test piece cured by light is heated in an oven at 120 ° C. for 60 minutes to obtain a sample for measuring blackness. Then, the transmittance (% T) of the cured product of the sealant is measured using an ultraviolet-visible spectrophotometer (UV-2550, manufactured by Shimadzu Corporation). Then, using the transmittance (% T) at a wavelength of 500 nm, the blackness (OD value) is calculated by converting the density based on the formula: OD value = -log (% T / 100).
 また、シール剤のE型粘度計を用いた25℃、2.5rpmでの粘度は、30~350Pa・sであることが好ましい。粘度が上記範囲にある液晶シール剤は、塗工安定性に優れる。 The viscosity of the sealant at 25 ° C. and 2.5 rpm using an E-type viscometer is preferably 30 to 350 Pa · s. A liquid crystal sealant having a viscosity in the above range has excellent coating stability.
 上述のシール剤の製造方法は特に制限されず、各成分を全て混合してもよく、二回以上にわけて混合してもよい。また、混合方法は特に制限されないが、例えば三本ロール等のように、(D)遮光剤を十分に分散させることが可能な方法であることが好ましい。 The method for producing the above-mentioned sealant is not particularly limited, and all the components may be mixed, or the components may be mixed twice or more. The mixing method is not particularly limited, but is preferably a method capable of sufficiently dispersing the (D) light-shielding agent, such as a three-roll mill.
 2.液晶表示パネルの製造方法
 液晶表示パネルは通常、表示基板と、それと対になる対向基板と、表示基板と対向基板との間に介在している枠状のシール部材と、表示基板と対向基板との間のシール部材で囲まれた空間に充填された液晶層とを含む。本発明では、上述のシール剤の硬化物を、シール部材とすることができる。
2. Liquid crystal display panel manufacturing method The liquid crystal display panel is usually a display substrate, a counter substrate to be paired with the display substrate, a frame-shaped sealing member interposed between the display substrate and the counter substrate, a display substrate and the counter substrate. And a liquid crystal layer filled in a space surrounded by the seal member. In the present invention, a cured product of the above-described sealant can be used as a seal member.
 表示基板および対向基板は、いずれも透明基板である。透明基板の材質は、ガラス、または、ポリカーボネート、ポリエチレンテレフタレート、ポリエーテルサルフォンおよびPMMA等のプラスチックとすることができる。 Both the display substrate and the counter substrate are transparent substrates. The material of the transparent substrate can be glass or plastic such as polycarbonate, polyethylene terephthalate, polyethersulfone, and PMMA.
 表示基板または対向基板の表面には、マトリックス状のTFT、カラーフィルタ、ブラックマトリクスなどが配置される。表示基板または対向基板の表面には、さらに配向膜が形成される。配向膜には、公知の有機配向剤や無機配向剤などが含まれる。なお、当該液晶表示パネルでは、表示基板側にブラックマトリックスおよびカラーフィルタが配置されていてもよく、表示基板側にブラックマトリクスが配置され、対向基板側にカラーフィルタが配置されていてもよく、対向基板側にブラックマトリクスおよびカラーフィルタが配置されていてもよい。 マ ト リ ッ ク ス On the surface of the display substrate or the counter substrate, a matrix-like TFT, color filter, black matrix, and the like are arranged. An alignment film is further formed on the surface of the display substrate or the counter substrate. The alignment film contains a known organic or inorganic alignment agent. In the liquid crystal display panel, a black matrix and a color filter may be arranged on a display substrate side, a black matrix may be arranged on a display substrate side, and a color filter may be arranged on a counter substrate side. A black matrix and a color filter may be arranged on the substrate side.
 このような液晶表示パネルは、以下の方法により製造することができる。具体的には、1)一方の基板に、上述のシール剤を塗布し、液晶シールパターンを形成する第1の工程と、2)シール剤からなる液晶シールパターンが未硬化の状態において、前記液晶シールパターンで囲まれた領域、または前記液晶シールパターンで囲まれた領域に対向する他方の基板の領域に、液晶を滴下する第2の工程と、3)一方の基板と、他方の基板とを、液晶シールパターンを介して重ね合わせる第3の工程と、4)シール剤を硬化させる第4の工程と、を含む方法とすることができる。 Such a liquid crystal display panel can be manufactured by the following method. Specifically, 1) a first step of applying the above-mentioned sealant to one substrate to form a liquid crystal seal pattern, and 2) the liquid crystal in a state where the liquid crystal seal pattern made of the sealant is uncured. A second step of dropping liquid crystal on a region surrounded by a seal pattern or a region of the other substrate facing the region surrounded by the liquid crystal seal pattern; 3) forming one substrate and the other substrate , A third step of superimposing via a liquid crystal seal pattern, and 4) a fourth step of curing the sealant.
 第1の工程で、上述のシール剤を所望のパターン状に塗布する。シール剤を塗布する方法は、所望の領域にシール剤を塗布することが可能であれば特に制限されず、例えばディスペンサーによる塗布等とすることができる。また、作製する液晶シールパターンは、液晶表示パネルの種類等に合わせて適宜選択され、通常四角形の枠状等とすることができる。 で In the first step, the above-mentioned sealant is applied in a desired pattern. The method for applying the sealant is not particularly limited as long as the sealant can be applied to a desired region, and may be, for example, an application using a dispenser. Further, the liquid crystal seal pattern to be manufactured is appropriately selected according to the type of the liquid crystal display panel and the like, and can be usually formed in a rectangular frame shape or the like.
 液晶シールパターンにおけるシール剤の線幅は、300~2000μmとすることが好ましく、500~1500μmとすることがより好ましい。シール剤の断面積は、1000~10000μmであることが好ましく、1500~5000μmであることがより好ましい。シール剤の線幅や断面積を当該範囲とすることで、第4の工程で、シール剤の内部まで十分に硬化させることが可能となる。そして、液晶表示パネルから液晶漏れ等が生じ難くなり、さらには基板どうしの接着強度も十分になりやすい。 The line width of the sealant in the liquid crystal seal pattern is preferably 300 to 2000 μm, more preferably 500 to 1500 μm. Sectional area of the sealing agent is preferably 1000 ~ 10000 2, more preferably 1500 ~ 5000μm 2. By setting the line width and the cross-sectional area of the sealant within the above ranges, it is possible to sufficiently cure the inside of the sealant in the fourth step. Then, liquid crystal leakage or the like from the liquid crystal display panel is less likely to occur, and the adhesive strength between the substrates is likely to be sufficient.
 第2の工程では、第1の工程で作製された液晶シールパターンが未硬化の状態で液晶を塗布する。液晶を滴下する方法も特に制限されず、公知の方法とすることができる。なお、「液晶シールパターンが未硬化の状態」とは、シール剤の硬化反応がゲル化点までは進行していない状態を意味する。このため、第2の工程では、シール剤の液晶への溶解を抑制するために、液晶シールパターンを光照射または加熱して半硬化させてもよい。 {Circle around (2)} In the second step, liquid crystal is applied in a state where the liquid crystal seal pattern produced in the first step is in an uncured state. The method of dropping the liquid crystal is not particularly limited, and may be a known method. The “state in which the liquid crystal seal pattern is not cured” means a state in which the curing reaction of the sealant has not progressed to the gel point. Therefore, in the second step, the liquid crystal seal pattern may be semi-cured by irradiating or heating the liquid crystal in order to suppress the dissolution of the sealant into the liquid crystal.
 一方、第3の工程では、一方の基板と他方の基板とを、液晶シールパターンを介して重ね合わせる。当該重ね合わせは、公知の方法で行うことができ、通常、高真空下で行う。 On the other hand, in the third step, one substrate and the other substrate are overlapped via a liquid crystal seal pattern. The superposition can be performed by a known method, and is usually performed under a high vacuum.
 そして、第4の工程で、シール剤を硬化させる。シール剤は、光硬化(仮硬化)を行った後、加熱による硬化(本硬化)を行うことが好ましい。光照射による仮硬化でシール剤を瞬時に硬化させることで、液晶への溶解を抑制できる。 Then, in a fourth step, the sealant is cured. It is preferable that the sealing agent is cured by heating (main curing) after being subjected to light curing (temporary curing). By instantly curing the sealant by temporary curing by light irradiation, dissolution in liquid crystal can be suppressed.
 シール剤を仮硬化させる際に照射する光のエネルギー量は、1000~3000mJ/cm程度であることが好ましく、1000~2000mJ/cm程度であることがより好ましい。また、本発明のシール剤は、(C)チタノセン系光重合開始剤を含む。そこで、照射光は紫外光だけでなく、可視光領域の光も含むことが好ましい。本明細書では、可視光領域とは、波長360nm~800nmの範囲をいう。光源は特に制限されないが、LED、メタルハライドランプ、高圧水銀灯、低圧水銀灯であることが好ましく、LEDあるいはメタルハライドランプであることがより好ましい。(C)チタノセン系光重合開始剤を十分に活性化させるとの観点から、波長360~550nmの範囲を含むことが好ましく、360~450nmの範囲を含むことがより好ましい。 Energy of light illuminating the sealant when temporarily curing is preferably 1000 ~ 3000mJ / cm 2 or so, more preferably 1000 ~ 2000mJ / cm 2 approximately. Further, the sealant of the present invention contains (C) a titanocene-based photopolymerization initiator. Therefore, the irradiation light preferably includes not only ultraviolet light but also light in the visible light region. In this specification, the visible light region refers to a wavelength range from 360 nm to 800 nm. The light source is not particularly limited, but is preferably an LED, a metal halide lamp, a high-pressure mercury lamp, or a low-pressure mercury lamp, and more preferably an LED or a metal halide lamp. From the viewpoint of sufficiently activating the (C) titanocene-based photopolymerization initiator, the wavelength preferably ranges from 360 to 550 nm, and more preferably ranges from 360 to 450 nm.
 一方、光照射後に加熱する際の加熱温度は、シール剤の組成にもよるが、液晶の劣化を少なくする等の点から、できるだけ低い温度であることが好ましく、例えば120℃程度であることが好ましく、80~120℃であることがより好ましい。また、熱硬化時間は1~2時間程度である。 On the other hand, the heating temperature at the time of heating after light irradiation depends on the composition of the sealing agent, but is preferably as low as possible, for example, about 120 ° C., from the viewpoint of reducing deterioration of the liquid crystal. The temperature is more preferably 80 to 120 ° C. The heat curing time is about 1 to 2 hours.
 以下に、本発明に係る実施例を具体的に説明するが、本発明は、これらの実施例に限定されるものではない。したがって、本発明から逸脱しない限り、材料、製造方法等は適宜変更することができる。 実 施 Examples of the present invention will be specifically described below, but the present invention is not limited to these examples. Therefore, the material, the manufacturing method, and the like can be appropriately changed without departing from the present invention.
 [合成例]
 ・メタアクリル酸変性ビスフェノールF型エポキシ樹脂の合成
 160gの液状ビスフェノールF型エポキシ樹脂(エポトートYDF-8170C 東都化成社製 エポキシ当量160g/eq)、重合禁止剤として0.1gのp-メトキシフェノール、触媒として0.2gのトリエタノールアミン、および81.7gのメタクリル酸をフラスコ内に仕込み、乾燥空気を送り込んで90℃で還流攪拌しながら5時間反応させた。得られた化合物を、超純水にて20回洗浄し、メタクリル酸変性ビスフェノールF型エポキシ樹脂(95%部分メタクリル化物)(重量平均分子量(Mw)485、水素結合性官能基当量4.0×10-3mol/g)を得た。
[Synthesis example]
-Synthesis of methacrylic acid-modified bisphenol F type epoxy resin 160 g of liquid bisphenol F type epoxy resin (Epototo YDF-8170C manufactured by Toto Kasei Co., Ltd., epoxy equivalent 160 g / eq), 0.1 g of p-methoxyphenol as a polymerization inhibitor, catalyst Was charged into a flask, and dry air was fed thereinto, and the mixture was reacted at 90 ° C. for 5 hours while stirring under reflux. The obtained compound was washed 20 times with ultrapure water, and a methacrylic acid-modified bisphenol F-type epoxy resin (95% partially methacrylated) (weight average molecular weight (Mw) 485, hydrogen bonding functional group equivalent 4.0 ×). 10 −3 mol / g).
 [実施例1]
 (B)光硬化性樹脂として、合成例で得られたメタクリル酸変性ビスフェノールF型エポキシ樹脂330質量部およびポリエチレングリコールジアクリレート(共栄社化学社製:ライトアクリレート14EG-A、重量平均分子量722、水素結合性官能基当量0.9×10-3mol/g)172質量部と、(A)有機酸としてトリメリット酸(東京化成工業社製、酸素原子当量35g/eq)6質量部と、(C)チタノセン系光重合開始剤(Insight High Technology社製:IHT-PI 784)12質量部と、(E)熱硬化性化合物としてエポキシ樹脂(三菱ケミカル社製:jER1004、軟化点97℃、重量平均分子量1650)50質量部と、(F)熱硬化剤としてアジピン酸ジヒドラジド(日本化成社製:ADH、融点177~184℃)90質量部と、シリカ粒子(日本触媒化学社製:S-100)80質量部と、熱可塑性樹脂粒子(微粒子ポリマー、アイカ工業社製:F351)40質量部と、シランカップリング剤(信越化学工業社製:KBM-403)20質量部と、(D)遮光剤としてカーボン(三菱ケミカル社製:MA-100R、pH3.5、粒子径24nm)200質量部とを、三本ロールを用いて均一な液となるように十分に混合して、シール剤を得た。なお、(D)遮光剤のpHは、(D)遮光剤を純水で20倍に希釈・攪拌した後、(D)遮光剤を含む純水のpHを、HORIBA社製コンパクトpHメーター B-71Xで測定することにより求めた。また、(A)有機酸の酸素原子当量は、以下の式(1)から求めた。
 酸素原子当量(g/eq)=(有機酸の分子量)/(有機酸1分子中の酸素原子数)・・(1)
[Example 1]
(B) As a photocurable resin, 330 parts by mass of a methacrylic acid-modified bisphenol F type epoxy resin obtained in a synthesis example and polyethylene glycol diacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: light acrylate 14EG-A, weight average molecular weight 722, hydrogen bonding) 172 parts by mass of a functional group equivalent (0.9 × 10 −3 mol / g), 6 parts by mass of (A) trimellitic acid (manufactured by Tokyo Chemical Industry Co., Ltd., oxygen atom equivalent 35 g / eq) as an organic acid, and (C) ) 12 parts by mass of a titanocene-based photopolymerization initiator (manufactured by Insight High Technology: IHT-PI 784) and (E) an epoxy resin as a thermosetting compound (manufactured by Mitsubishi Chemical Corporation: jER1004, softening point 97 ° C, weight average molecular weight) 1650) 50 parts by mass, and (F) adipic dihydrazide (manufactured by Nippon Kasei Co., Ltd.) as a thermosetting agent : ADH, melting point: 177 to 184 ° C) 90 parts by mass, silica particles (S-100 manufactured by Nippon Shokubai Kagaku Co., Ltd .: 80 parts by mass), and thermoplastic resin particles (fine particle polymer, manufactured by Aika Kogyo Co., Ltd .: F351) 40 parts by mass And 20 parts by mass of a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-403) and (D) 200 parts by mass of carbon (manufactured by Mitsubishi Chemical Corporation: MA-100R, pH 3.5, particle diameter 24 nm) as a light shielding agent Was thoroughly mixed using a three-roll mill so that a uniform liquid was obtained, to obtain a sealant. The pH of the light-shielding agent (D) was determined by diluting (D) the light-shielding agent 20-fold with pure water and stirring, and then measuring the pH of the pure water containing the light-shielding agent (B) using a compact pH meter B- manufactured by HORIBA. It was determined by measuring at 71X. Further, (A) the oxygen atom equivalent of the organic acid was determined from the following equation (1).
Oxygen atom equivalent (g / eq) = (molecular weight of organic acid) / (number of oxygen atoms in one molecule of organic acid) (1)
 [実施例2]
 表1に記載の含有量に変更した以外は、実施例1と同様にしてシール剤を得た。
[Example 2]
A sealant was obtained in the same manner as in Example 1 except that the content was changed to the content shown in Table 1.
 [実施例3]
 (D)遮光剤として、カーボン(MA-100R)の代わりに、カーボン(三菱ケミカル社製:#2600、pH6.5、粒子径13nm)を用いた以外は、実施例1と同様にしてシール剤を得た。
[Example 3]
(D) A sealant was used in the same manner as in Example 1 except that carbon (Mitsubishi Chemical Corporation: # 2600, pH 6.5, particle size: 13 nm) was used instead of carbon (MA-100R) as a light-shielding agent. I got
 [実施例4]
 (D)遮光剤として、カーボン(MA-100R)の代わりに、チタンブラック(三菱マテリアル社製:13M、pH8.8、粒子径97nm)を用いた以外は、実施例1と同様にしてシール剤を得た。
[Example 4]
(D) Sealing agent in the same manner as in Example 1, except that titanium black (13M, pH 8.8, particle diameter 97 nm, manufactured by Mitsubishi Materials Corporation) was used instead of carbon (MA-100R) as a light-shielding agent. I got
 [実施例5]
 (A)有機酸として、トリメリット酸の代わりに、フェニルホスホン酸(酸素原子当量53g/eq)を用いた以外は、実施例1と同様にしてシール剤を得た。
[Example 5]
(A) A sealant was obtained in the same manner as in Example 1, except that phenylphosphonic acid (oxygen atom equivalent: 53 g / eq) was used as the organic acid instead of trimellitic acid.
 [比較例1]
 トリメリット酸を添加せずに、熱ラジカル発生剤としてt-ブチル パーオキシピバレート(三菱ケミカル製:ルペロックス11)を添加した以外は、実施例1と同様にしてシール剤を得た。
[Comparative Example 1]
A sealant was obtained in the same manner as in Example 1, except that trimellitic acid was not added, and t-butyl peroxypivalate (manufactured by Mitsubishi Chemical: Luperox 11) was added as a thermal radical generator.
 [比較例2]
 トリメリット酸を添加せずに、表1に記載の含有量に変更した以外は、実施例1と同様にしてシール剤を得た。
[Comparative Example 2]
A sealant was obtained in the same manner as in Example 1 except that the content was changed to the content shown in Table 1 without adding trimellitic acid.
 [比較例3]
 チタノセン系光重合開始剤およびトリメリット酸を添加せず、オキシムエステル系光重合開始剤(BASF社製:IRGACURE OXE-1、1.2-オクタンジオン1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)])を添加して、表1に記載の含有量に変更した以外は、実施例1と同様にしてシール剤を得た。
[Comparative Example 3]
Without adding a titanocene-based photopolymerization initiator and trimellitic acid, an oxime ester-based photopolymerization initiator (manufactured by BASF: IRGACURE OXE-1, 1.2-octanedione 1- [4- (phenylthio) -2- ( O-benzoyl oxime)]) was added to obtain a sealant in the same manner as in Example 1 except that the content was changed to the content shown in Table 1.
 [比較例4]
 (D)遮光剤として、カーボン(MA-100R)の代わりに、カーボン(旭カーボン社製:SB200、pH7.5、粒子径26nm)を用いた以外は、実施例1と同様にしてシール剤を得た。
[Comparative Example 4]
(D) A sealing agent was used in the same manner as in Example 1 except that carbon (manufactured by Asahi Carbon: SB200, pH 7.5, particle size: 26 nm) was used instead of carbon (MA-100R) as a light-shielding agent. Obtained.
 [比較例5]
 (A)有機酸としてトリメリット酸の代わりに、2-エチルヘキシルホスフェート(酸素原子当量81g/eq)を用いた以外は、実施例2と同様にしてシール剤を得た。
[Comparative Example 5]
(A) A sealant was obtained in the same manner as in Example 2, except that 2-ethylhexyl phosphate (oxygen atom equivalent: 81 g / eq) was used instead of trimellitic acid as the organic acid.
 [比較例6]
 (D)遮光剤として、カーボン(MA-100R)の代わりに、カーボン(東海カーボン社製:#7350F、pH7.0、粒子径28nm)を用いた以外は、実施例1と同様にしてシール剤を得た。
[Comparative Example 6]
(D) A sealant was prepared in the same manner as in Example 1 except that carbon (# 7350F, pH 7.0, particle size 28 nm) was used as a light shielding agent instead of carbon (MA-100R). I got
 [比較例7]
 (D)遮光剤として、カーボン(MA-100R)の代わりに、カーボン(三菱ケミカル社製:#2300、pH8.0、粒子径15nm)を用いた以外は、実施例1と同様にしてシール剤を得た。
[Comparative Example 7]
(D) A sealant similar to that of Example 1 except that carbon (Mitsubishi Chemical Corporation: # 2300, pH 8.0, particle size 15 nm) was used instead of carbon (MA-100R) as a light-shielding agent. I got
 [評価]
 実施例および比較例で得られたシール剤について、次の評価を行った。
[Evaluation]
The following evaluations were performed on the sealants obtained in Examples and Comparative Examples.
 <黒色度>
 シール剤をスパチュラで10μl程度採取し、25mm×45mm×厚さ5mmの無アルカリガラス上に滴下した。シールパターンは、直径5mmの円状とした。そして、対となる無アルカリガラスを重なるように貼りあわせ、治具で固定した。
 治具で固定した試験片に対して、紫外線照射装置(ウシオ電機社製)から、500mW/cmの紫外線(波長365nm)を照射し、シール剤を硬化させた。このとき、紫外線の照度エネルギーは3.0J/cmとした。光によって硬化させた試験片を、オーブンを用いて120℃、60分加熱処理し、黒色度測定用のサンプルとした。
 紫外可視分光光度計(島津製作所社製、UV-2550)を使用して、シール部材(シール剤の硬化物)の透過率(%T)を測定した。そして、波長500nmにおける透過率(%T)を用いて、黒色度(OD値)を「OD値=-log(%T/100)」により濃度換算して算出した。
<Blackness>
About 10 μl of the sealing agent was collected with a spatula, and dropped on a 25 mm × 45 mm × 5 mm thick non-alkali glass. The seal pattern was a circle having a diameter of 5 mm. Then, a pair of non-alkali glass was stuck together so as to overlap, and fixed with a jig.
The test piece fixed with the jig was irradiated with ultraviolet light (wavelength 365 nm) of 500 mW / cm 2 from an ultraviolet irradiation device (manufactured by Ushio Inc.) to cure the sealant. At this time, the illuminance energy of the ultraviolet light was 3.0 J / cm 2 . The test piece cured by light was heated in an oven at 120 ° C. for 60 minutes to obtain a sample for measuring blackness.
The transmittance (% T) of the seal member (cured sealant) was measured using an ultraviolet-visible spectrophotometer (UV-2550, manufactured by Shimadzu Corporation). Then, using the transmittance (% T) at a wavelength of 500 nm, the blackness (OD value) was calculated by converting the density into "OD value = -log (% T / 100)".
 <分散性>
 シール剤をスパチュラで10μl程度採取し、25mm×45mm×厚さ5mmの無アルカリガラス上に滴下した。シールパターンは、直径5mmの円状とした。そして、対となる無アルカリガラスを重なるように貼りあわせ、治具で固定した。
 治具で固定した試験片に対して、紫外線照射装置(ウシオ電機社製)から、500mW/cmの紫外線(波長365nm)を照射し、シール剤を硬化させた。このとき、紫外線の照度エネルギーは3.0J/cmとした。光によって硬化させた試験片を、オーブンを用いて120℃、60分加熱処理し、分散性評価用のサンプルとした。
 このサンプルを顕微鏡で観察し、視野2mm×2mmのなかに存在する異物(遮光剤の凝集物)の数をカウントした。
 ○:異物なし
 △:異物10個未満
 ×:異物10個以上
<Dispersibility>
About 10 μl of the sealing agent was collected with a spatula, and dropped on a 25 mm × 45 mm × 5 mm thick non-alkali glass. The seal pattern was a circle having a diameter of 5 mm. Then, a pair of non-alkali glass was stuck together so as to overlap, and fixed with a jig.
The test piece fixed with the jig was irradiated with ultraviolet light (wavelength 365 nm) of 500 mW / cm 2 from an ultraviolet irradiation device (manufactured by Ushio Inc.) to cure the sealant. At this time, the illuminance energy of the ultraviolet light was 3.0 J / cm 2 . The test piece cured by light was heated in an oven at 120 ° C. for 60 minutes to obtain a sample for dispersibility evaluation.
This sample was observed with a microscope, and the number of foreign substances (aggregates of light-shielding agents) present in a visual field of 2 mm × 2 mm was counted.
○: No foreign matter △: Less than 10 foreign matters ×: 10 or more foreign matters
 <光硬化性評価(液晶リーク)>
 実施例および比較例で得られたシール剤を、ディスペンサー(武蔵エンジニアリング製 ショットマスター)を用いて、透明電極と配向膜が予め形成された40mm×45mmガラス基板(EHC社製 RT-DM88-PIN)上に、外寸35mm×40mmの四角形の枠状(メインシール)に、貼り合せ後の線幅が0.7mm(断面積3500μm)となるように塗布した。またその外周に外寸38mm×43mmの四角形の枠状に、貼り合せ後の線幅が1.0mmとなるようにシール剤を塗布した。
 次いで、基板貼り合せ後のパネル内容量に相当する量の液晶材料(MLC-7021-00メルク社製)を、メインシールの枠内にディスペンサーを用いて精密に滴下した。対になるガラス基板を減圧下で貼り合せた後、大気開放して貼り合わせた。その後、メインシールの下半分を覆うようにブラックマトリクスがライン/スペース=300μm/100μmで形成された基板で遮光した状態で、1000mJ/cmの光(波長365nmセンサーで校正した光)を照射し、さらに120℃で1時間加熱した。
 遮光シール剤を硬化処理した後の液晶表示パネルについて、以下のように評価した。
 ○:液晶漏れが発生していない
 △:液晶漏れは発生していないが、シール剤に液晶が差し込んでいる状態
 ×:液晶漏れが発生した
<Evaluation of photocurability (liquid crystal leak)>
Using a dispenser (Musashi Engineering Shotmaster), a 40 mm × 45 mm glass substrate (RT-DM88-PIN manufactured by EHC) on which a transparent electrode and an alignment film have been formed in advance using the sealants obtained in the examples and comparative examples. It was applied on a rectangular frame (main seal) having an outer size of 35 mm × 40 mm so that the line width after bonding was 0.7 mm (cross-sectional area: 3500 μm 2 ). Further, a sealant was applied to the outer periphery in a square frame shape having an outer size of 38 mm × 43 mm so that the line width after bonding was 1.0 mm.
Next, a liquid crystal material (manufactured by MLC-7021-00 Merck Co., Ltd.) corresponding to the capacity of the panel after bonding the substrates was precisely dropped into the frame of the main seal using a dispenser. After bonding the glass substrates to be paired under reduced pressure, they were opened to the atmosphere and bonded. Thereafter, light of 1000 mJ / cm 2 (light calibrated by a sensor having a wavelength of 365 nm) is irradiated in a state where the black matrix is covered with a substrate formed with a line / space of 300 μm / 100 μm so as to cover the lower half of the main seal. And further heated at 120 ° C. for 1 hour.
The liquid crystal display panel after the hardening treatment of the light shielding sealant was evaluated as follows.
:: No liquid crystal leakage occurred Δ: No liquid crystal leakage occurred, but liquid crystal was inserted into sealant ×: Liquid crystal leakage occurred
 <光硬化性評価(接着強度)>
 スクリーン版を使用してシール剤を25mm×45mm×厚さ5mmの無アルカリガラス上に印刷した。シールパターンは、直径1mmの円状とした。そして、対となる無アルカリガラスにシールパターン状に載置し、治具で固定した。
 治具で固定した試験片に対して、紫外線照射装置(ウシオ電機社製)で、500mW/cmの紫外線(波長365nm)を照射し、遮光シール剤を硬化させた。このとき、紫外線の照度エネルギーは3.0J/cmとした。光によって遮光シール剤を硬化させた試験片を、オーブンを用いて120℃、60分加熱処理し、接着強度測定用のサンプルとした。
 引張試験機(インテスコ社製)を用いて、引張速度を2mm/分とし、硬化した遮光シール剤をガラス底面に対して平行な方向に引き剥がすことにより、平面の引張強度を測定した。ここで、接着強度は、平面引張強度の大きさに応じて4段階で以下のように評価した。
 ◎:引張強度が15MPa以上
 〇:引張強度が10MPa以上15MPa未満
 ×:引張強度が10MPa未満
<Evaluation of photocurability (adhesive strength)>
The sealant was printed on a 25 mm × 45 mm × 5 mm thick non-alkali glass using a screen plate. The seal pattern was a circle having a diameter of 1 mm. Then, they were mounted on a pair of non-alkali glass in a seal pattern and fixed with a jig.
The test piece fixed by the jig was irradiated with an ultraviolet ray (wavelength: 365 nm) of 500 mW / cm 2 by an ultraviolet ray irradiation device (manufactured by Ushio Inc.) to cure the light-shielding sealant. At this time, the illuminance energy of the ultraviolet rays was 3.0 J / cm 2 . The test piece obtained by curing the light-shielding sealant with light was heated at 120 ° C. for 60 minutes using an oven to obtain a sample for measuring the adhesive strength.
Using a tensile tester (manufactured by Intesco Corporation), the tensile speed was set to 2 mm / min, and the cured light-shielding sealant was peeled off in a direction parallel to the glass bottom surface to measure the tensile strength in a plane. Here, the adhesive strength was evaluated in the following four stages according to the magnitude of the plane tensile strength.
◎: Tensile strength of 15 MPa or more 〇: Tensile strength of 10 MPa or more and less than 15 MPa ×: Tensile strength of less than 10 MPa
 <液晶汚染性(電圧保持率)>
 実施例および比較例で得られた0.1gのシール剤と、1gの液晶(MLC-7021-000、メルク社製)とをバイアル瓶に投入し、120℃で1時間加熱して液晶混合物を得た。次いで、この液晶混合物を取り出して、透明電極が予め形成されたガラスセル(KSSZ-10/B111M1NSS05、EHC社製)に注入し、電圧1Vを印加し、60Hzでの電圧保持率を6254型測定装置(東陽テクニカ製)により測定した。評価は以下のように行った。
 〇:電圧保持率が90%以上であった場合(液晶への汚染が少ない)
 ×:電圧保持率が90%未満であった場合(液晶への汚染が生じた)
<Liquid crystal contamination (voltage holding ratio)>
0.1 g of the sealant obtained in each of Examples and Comparative Examples and 1 g of liquid crystal (MLC-7021-000, manufactured by Merck) were charged into a vial and heated at 120 ° C. for 1 hour to obtain a liquid crystal mixture. Obtained. Next, the liquid crystal mixture is taken out, injected into a glass cell (KSS-10 / B111M1NSS05, manufactured by EHC) on which a transparent electrode is formed in advance, a voltage of 1 V is applied, and a voltage holding ratio at 60 Hz is measured by a 6254 type measuring device. (Manufactured by Toyo Technica). The evaluation was performed as follows.
〇: When the voltage holding ratio is 90% or more (contamination to the liquid crystal is small)
×: When the voltage holding ratio was less than 90% (contamination of the liquid crystal occurred).
 <安定性評価>
 ディスペンス用シリンジに、実施例および比較例で得られた10gのシール剤を入れ、脱泡処理を行った。脱法処理後のシール剤2gを使用して初期粘度を測定した。また、このシール剤を23℃、50%RH、イエロールーム下で1週間保存し、保存後の粘度を測定した。各粘度は、E型回転型粘度計(BROOKFIELD社製、デジタルレオメータ型式DV-III ULTRA)を使用して測定した。具体的には、シール剤を25℃で5分間放置した後、半径12mm、角度3°のCP-52型コーンプレート型センサーを用いて、回転数2.5rpmで測定した。得られた値から、安定性(粘度安定性)を、以下のように評価した。
 ○(優れる):初期粘度に対する1週間後の粘度の割合(上昇率)が1.2倍以下であった
 △(やや優れる):初期粘度に対する1週間後の粘度の割合(上昇率)が1.2を超えて、1.5倍以下であった
 ×(劣る):初期粘度に対する1週間後の粘度の割合(上昇率)が1.5倍を超えた
<Stability evaluation>
Into a syringe for dispensing, 10 g of the sealant obtained in each of Examples and Comparative Examples was placed, and defoaming treatment was performed. The initial viscosity was measured using 2 g of the sealant after the de-treatment. The sealant was stored at 23 ° C., 50% RH under a yellow room for one week, and the viscosity after storage was measured. The respective viscosities were measured using an E-type rotary viscometer (manufactured by BROOKFIELD, digital rheometer model DV-III ULTRA). Specifically, after leaving the sealant at 25 ° C. for 5 minutes, the measurement was performed at a rotation speed of 2.5 rpm using a CP-52 cone-plate sensor having a radius of 12 mm and an angle of 3 °. From the obtained values, the stability (viscosity stability) was evaluated as follows.
((Excellent): The ratio of the viscosity after one week to the initial viscosity (increase rate) was 1.2 times or less. Δ (somewhat excellent): The ratio of the viscosity after one week to the initial viscosity (increase rate) was 1 X: less than 1.5 times × (poor): The ratio of the viscosity after one week to the initial viscosity (increase rate) exceeded 1.5 times
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示されるように、(D)遮光剤のpHが7.0未満または8.0を超える場合には、分散性が良好になりやすかった(実施例1~5、および比較例1~3、5)。これに対し、(D)遮光剤のpHが7.0以上8.0以下である場合には、分散性が低く、液晶を十分に封止できなかった(比較例4、6、および7)。 As shown in Table 1, when the pH of (D) the light-shielding agent was less than 7.0 or more than 8.0, the dispersibility was easily improved (Examples 1 to 5 and Comparative Examples 1 to 5). 3, 5). On the other hand, when the pH of the light-shielding agent (D) was 7.0 or more and 8.0 or less, the dispersibility was low and the liquid crystal could not be sufficiently sealed (Comparative Examples 4, 6, and 7). .
 ただし、(D)遮光剤のpHが7.0未満、もしくはpHが8.0超であったとしても、(A)有機酸を含まない場合には、光硬化性が低く、液晶リークしやすかった(比較例1~3)。また、(A)有機酸の酸素原子当量が75g/eq超である場合には、液晶を汚染しやすかった(比較例5)。 However, even if (D) the pH of the light-shielding agent is less than 7.0 or more than 8.0, if (A) the organic acid is not contained, the photocurability is low and the liquid crystal leaks easily. (Comparative Examples 1 to 3). When the oxygen atom equivalent of (A) the organic acid was more than 75 g / eq, the liquid crystal was easily contaminated (Comparative Example 5).
 本出願は、2018年7月24日出願の特願2018-138353号に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。 This application claims the priority based on Japanese Patent Application No. 2018-138353 filed on July 24, 2018. The contents described in the specification of this application are all incorporated herein by reference.
 本発明のシール剤は、高い光硬化性を有し、液晶の汚染を生じさせることなく、液晶表示パネルの基板どうしの間を確実に封止することが可能である。したがって、信頼性の高い表示パネルを作製することが可能であり、各種液晶表示パネルの製造に好適である。 The sealant of the present invention has high photocurability and can reliably seal between substrates of a liquid crystal display panel without causing contamination of liquid crystal. Therefore, a highly reliable display panel can be manufactured, which is suitable for manufacturing various liquid crystal display panels.

Claims (10)

  1.  (A)有機酸と、
     (B)1分子内にエチレン性不飽和二重結合を少なくとも1つ有する光硬化性樹脂(ただし、前記(A)有機酸を除く)と、
     (C)チタノセン系光重合開始剤と、
     (D)pHが7.0未満またはpHが8.0を超える遮光剤と、
     (E)1分子内にエポキシ基を少なくとも1つ有する熱硬化性化合物(ただし、前記(B)光硬化性樹脂を除く)と、
     (F)熱硬化剤と、
     を含み、
     前記(A)有機酸の下記式(1)で表される酸素原子当量が、23g/eq以上75g/eq以下である、液晶滴下工法用遮光シール剤。
     酸素原子当量(g/eq)=(有機酸の分子量)/(有機酸1分子中の酸素原子数)・・(1)
    (A) an organic acid;
    (B) a photocurable resin having at least one ethylenically unsaturated double bond in one molecule (however, excluding the (A) organic acid);
    (C) a titanocene-based photopolymerization initiator;
    (D) a light-shielding agent having a pH of less than 7.0 or a pH of more than 8.0,
    (E) a thermosetting compound having at least one epoxy group in one molecule (however, excluding the (B) photocurable resin);
    (F) a thermosetting agent,
    Including
    (A) A light-shielding sealant for a liquid crystal dropping method, wherein the organic acid has an oxygen atom equivalent represented by the following formula (1) of 23 g / eq or more and 75 g / eq or less.
    Oxygen atom equivalent (g / eq) = (molecular weight of organic acid) / (number of oxygen atoms in one molecule of organic acid) (1)
  2.  黒色度が2~5である、
     請求項1に記載の液晶滴下工法用遮光シール剤。
    Blackness is 2 to 5,
    The light-shielding sealant for a liquid crystal dropping method according to claim 1.
  3.  前記(D)遮光剤が炭素およびチタンのうち、少なくとも一方を含む、
     請求項1または2に記載の液晶滴下工法用遮光シール剤。
    (D) the light-shielding agent contains at least one of carbon and titanium,
    The light-shielding sealant for a liquid crystal dropping method according to claim 1.
  4.  前記(A)有機酸が1分子内に、-OH基、-NH基、-NHR基(Rは、芳香族、脂肪族炭化水素又はこれらの誘導体を表す)、-COOH基、-OP(=O)(OH)基、-P(=O)(OH)基、-SOH基、-CONH基、および-NHOH基からなる群より選ばれる官能基を少なくとも1つ有する、
     請求項1~3のいずれか一項に記載の液晶滴下工法用遮光シール剤。
    (A) In one molecule of the organic acid, an —OH group, a —NH 2 group, a —NHR group (R represents an aromatic or an aliphatic hydrocarbon or a derivative thereof), a —COOH group, and —OP ( = O) (OH) 2 groups, —P (= O) (OH) 2 groups, —SO 3 H groups, —CONH 2 groups, and —NHOH groups, having at least one functional group.
    The light-shielding sealant for a liquid crystal dropping method according to any one of claims 1 to 3.
  5.  前記(B)光硬化性樹脂が分子内にエポキシ基をさらに有する、
     請求項1~4のいずれか一項に記載の液晶滴下工法用遮光シール剤。
    (B) the photocurable resin further has an epoxy group in the molecule,
    The light-shielding sealant for a liquid crystal dropping method according to any one of claims 1 to 4.
  6.  前記(F)熱硬化剤が、ジヒドラジド系熱潜在性硬化剤、イミダゾール系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤からなる群より選ばれる1以上である、
     請求項1~5のいずれか一項に記載の液晶滴下工法用遮光シール剤。
    (F) at least one selected from the group consisting of a dihydrazide heat latent curing agent, an imidazole heat latent curing agent, an amine adduct heat latent curing agent, and a polyamine heat latent curing agent. Is,
    The light-blocking sealant for a liquid crystal dropping method according to any one of claims 1 to 5.
  7.  請求項1~6のいずれか一項に記載の液晶滴下工法用遮光シール剤を用いて、一方の基板にシールパターンを形成する工程と、
     前記シールパターンが未硬化の状態において、前記シールパターンの領域内、または前記一方の基板と対になる他方の基板に液晶を滴下する工程と、
     前記一方の基板と前記他方の基板とを、前記シールパターンを介して重ね合わせる工程と、
     前記シールパターンを硬化させる工程と、
     を含む、液晶表示パネルの製造方法。
    A step of forming a seal pattern on one of the substrates using the light-shielding sealant for a liquid crystal dropping method according to any one of claims 1 to 6,
    In the uncured state of the seal pattern, in the region of the seal pattern, or a step of dropping liquid crystal on the other substrate paired with the one substrate,
    Superimposing the one substrate and the other substrate via the seal pattern,
    Curing the seal pattern,
    A method for manufacturing a liquid crystal display panel, comprising:
  8.  前記シールパターンを硬化させる工程は、前記シールパターンに光を照射して前記シールパターンを硬化させる工程を含む、
     請求項7に記載の液晶表示パネルの製造方法。
    Curing the seal pattern includes irradiating the seal pattern with light to cure the seal pattern.
    A method for manufacturing a liquid crystal display panel according to claim 7.
  9.  前記シールパターンに照射する光は、可視光領域の光を含む、
     請求項8に記載の液晶表示パネルの製造方法。
    The light applied to the seal pattern includes light in a visible light region,
    A method for manufacturing a liquid crystal display panel according to claim 8.
  10.  前記シールパターンを硬化させる工程は、光が照射された前記シールパターンを加熱して硬化させる工程をさらに含む、
     請求項8または9に記載の液晶表示パネルの製造方法。 
     
    The step of curing the seal pattern further includes a step of heating and curing the seal pattern irradiated with light,
    A method for manufacturing a liquid crystal display panel according to claim 8.
PCT/JP2019/028313 2018-07-24 2019-07-18 Light-blocking sealing agent for liquid crystal dropping methods and method for producing liquid crystal display panel using same WO2020022188A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980048301.2A CN112424680A (en) 2018-07-24 2019-07-18 Light-shielding sealant for liquid crystal dropping process and method for manufacturing liquid crystal display panel using same
KR1020207037783A KR102509153B1 (en) 2018-07-24 2019-07-18 Light-shielding sealing agent for liquid crystal dropping method, and manufacturing method of liquid crystal display panel using the same
JP2020532342A JP7181936B2 (en) 2018-07-24 2019-07-18 Light-shielding sealant for liquid crystal dripping method, and method for manufacturing liquid crystal display panel using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-138353 2018-07-24
JP2018138353 2018-07-24

Publications (1)

Publication Number Publication Date
WO2020022188A1 true WO2020022188A1 (en) 2020-01-30

Family

ID=69180732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028313 WO2020022188A1 (en) 2018-07-24 2019-07-18 Light-blocking sealing agent for liquid crystal dropping methods and method for producing liquid crystal display panel using same

Country Status (4)

Country Link
JP (1) JP7181936B2 (en)
KR (1) KR102509153B1 (en)
CN (1) CN112424680A (en)
WO (1) WO2020022188A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200511A1 (en) * 2020-03-31 2021-10-07 株式会社Adeka Compound, method for producing compound, and curable composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006099027A (en) * 2004-03-09 2006-04-13 Sekisui Chem Co Ltd Light shielding sealing agent for use in liquid crystal dropping construction method, vertical conduction material, and liquid crystal display device
JP2013011879A (en) * 2011-06-01 2013-01-17 Sekisui Chem Co Ltd Light-shielding sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2016067582A1 (en) * 2014-10-30 2016-05-06 三井化学株式会社 Method for producing liquid crystal display panel, liquid crystal display panel and liquid crystal sealing agent composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085943A1 (en) * 2004-03-09 2005-09-15 Sekisui Chemical Co., Ltd. Light shielding sealing agent for use in liquid crystal dropping construction method, un and down conduction material and liquid crystal display device
JP2006313286A (en) 2005-05-09 2006-11-16 Sekisui Chem Co Ltd Light shielding sealing agent for liquid crystal dropping method, vertical conducting material, and liquid crystal display element
JP2006317520A (en) * 2005-05-10 2006-11-24 Sekisui Chem Co Ltd Sealing agent for liquid crystal dropping method, light blocking sealing agent for liquid crystal dropping method, vertically conducting material and liquid crystal display element
CN103026292B (en) * 2011-04-05 2014-03-05 积水化学工业株式会社 Light-shielding sealing agent for liquid crystal display element, top-to-bottom conductive material, and liquid crystal display element
CN109897599B (en) 2015-11-09 2020-09-01 积水化学工业株式会社 Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006099027A (en) * 2004-03-09 2006-04-13 Sekisui Chem Co Ltd Light shielding sealing agent for use in liquid crystal dropping construction method, vertical conduction material, and liquid crystal display device
JP2013011879A (en) * 2011-06-01 2013-01-17 Sekisui Chem Co Ltd Light-shielding sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2016067582A1 (en) * 2014-10-30 2016-05-06 三井化学株式会社 Method for producing liquid crystal display panel, liquid crystal display panel and liquid crystal sealing agent composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200511A1 (en) * 2020-03-31 2021-10-07 株式会社Adeka Compound, method for producing compound, and curable composition
CN115003709A (en) * 2020-03-31 2022-09-02 株式会社艾迪科 Compound, method for producing compound, and curable composition
CN115003709B (en) * 2020-03-31 2023-09-29 株式会社艾迪科 Compound, method for producing compound, and curable composition

Also Published As

Publication number Publication date
JPWO2020022188A1 (en) 2021-05-20
TW202010818A (en) 2020-03-16
JP7181936B2 (en) 2022-12-01
KR102509153B1 (en) 2023-03-10
KR20210015936A (en) 2021-02-10
CN112424680A (en) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2011118191A1 (en) Liquid crystal sealing agent, method for producing liquid crystal display panel using same, and liquid crystal display panel
JPWO2008016122A1 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
JP4948317B2 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
WO2012132203A1 (en) Liquid crystal sealing agent, method for producing liquid crystal display device using same, and liquid crystal display panel
TW201623543A (en) Sealing agent for liquid crystal dropping methods, vertically conducting material and liquid crystal display element
JP2017223828A (en) Sealant for liquid crystal dropping method, liquid crystal display panel, and method for manufacturing liquid crystal display panel
JP6438491B2 (en) Method for manufacturing liquid crystal display panel, liquid crystal display panel, and liquid crystal sealant composition
JP2015040902A (en) Sealing agent for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP2017219565A (en) Sealant for liquid crystal dropping method, liquid crystal display panel, and method for manufacturing liquid crystal display panel
JP7181936B2 (en) Light-shielding sealant for liquid crystal dripping method, and method for manufacturing liquid crystal display panel using the same
JP6370382B2 (en) Liquid crystal sealant and liquid crystal display panel manufacturing method
JP5577403B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP4845667B2 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
CN107710061B (en) Light-shielding sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP5340474B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
TWI831810B (en) Light-shielding sealant for liquid crystal dripping process and method of manufacturing liquid crystal display panel using same
JP4405325B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2017219564A (en) Sealant for liquid crystal dropping method, liquid crystal display panel, and method for manufacturing liquid crystal display panel
JP5395968B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP2017134124A (en) Photocurable resin composition, display element sealant, and liquid crystal display panel
JP2007225774A (en) Liquid crystal sealing agent and liquid crystal display panel using the same
JP6122724B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP7411693B2 (en) Photothermosetting resin composition, liquid crystal sealant containing the same, liquid crystal display panel, and manufacturing method thereof
JP2006003432A (en) Sealant for liquid crystal display element, vertically conducting material, and the liquid crystal display element
TW202222804A (en) Thioxanthone compound, photopolymerization initiator, curable resin composition, composition for display element, sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element to provide a thioxanthone compound having excellent reactivity to long-wavelength light and represented by the formula 1

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840400

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020532342

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207037783

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840400

Country of ref document: EP

Kind code of ref document: A1