WO2016067582A1 - Method for producing liquid crystal display panel, liquid crystal display panel and liquid crystal sealing agent composition - Google Patents

Method for producing liquid crystal display panel, liquid crystal display panel and liquid crystal sealing agent composition Download PDF

Info

Publication number
WO2016067582A1
WO2016067582A1 PCT/JP2015/005354 JP2015005354W WO2016067582A1 WO 2016067582 A1 WO2016067582 A1 WO 2016067582A1 JP 2015005354 W JP2015005354 W JP 2015005354W WO 2016067582 A1 WO2016067582 A1 WO 2016067582A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display panel
organic acid
crystal display
acid
Prior art date
Application number
PCT/JP2015/005354
Other languages
French (fr)
Japanese (ja)
Inventor
祐司 溝部
達司 村田
大輔 河野
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2016556220A priority Critical patent/JP6438491B2/en
Priority to CN201580037737.3A priority patent/CN106489098B/en
Priority to KR1020177001657A priority patent/KR101863011B1/en
Publication of WO2016067582A1 publication Critical patent/WO2016067582A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators

Definitions

  • the present invention relates to a method for producing a liquid crystal display panel, a liquid crystal display panel obtained by the method, and a liquid crystal sealant composition.
  • liquid crystal display panels have been widely used as image display panels for various electronic devices such as mobile phones and personal computers.
  • the liquid crystal display panel has a structure in which a liquid crystal material (hereinafter simply referred to as “liquid crystal”) is sandwiched between two transparent substrates having electrodes provided on the surface, and the periphery thereof is sealed with a liquid crystal sealant. It is.
  • liquid crystal sealant has a small influence on the reliability of the liquid crystal display panel because it is in direct contact with the liquid crystal although the amount used is small. Therefore, in order to achieve high image quality of the liquid crystal display panel, liquid crystal sealants are currently required to have advanced and diverse characteristics.
  • liquid crystal display panels are mainly manufactured by a liquid crystal injection method.
  • the liquid crystal injection method is (1) after applying a liquid crystal sealant on one transparent substrate to form a frame, and (2) drying the liquid crystal sealant by precuring the substrate.
  • the other substrate is bonded, (3) the two substrates are heated and pressed, and the substrates are bonded together to form a frame (cell) of the liquid crystal sealant between the substrates, and (4) empty
  • This is a method of manufacturing a liquid crystal display panel by injecting an appropriate amount of liquid crystal into a cell and then sealing the liquid crystal injection port.
  • liquid crystal dropping method has been studied as a method for manufacturing a liquid crystal display panel, which is expected to improve productivity.
  • a liquid crystal sealant is applied on a transparent substrate to form a frame for filling the liquid crystal
  • (2) a minute liquid crystal is dropped into the frame
  • two substrates are stacked under high vacuum while the sealant is in an uncured state, and then (4) the liquid crystal sealant is cured to produce a panel.
  • a light and thermosetting liquid crystal sealant may be used.
  • the liquid crystal sealant is preliminarily cured by irradiating light such as ultraviolet rays, it is heated. Post-curing may be performed.
  • Patent Document 1 The resin composition of Patent Document 1 described above is intended to accelerate the photocuring of the photocurable resin by the titanocene radical initiator and to suppress the dissolution of the liquid crystal sealant component in the liquid crystal. However, it has been difficult to sufficiently suppress the dissolution of the liquid crystal sealant component in the liquid crystal, which occurs when the liquid crystal is filled.
  • the present invention has been made in view of the above circumstances, and is a liquid crystal sealant composition that can be cured efficiently, is not easily dissolved in liquid crystal even when an uncured component is in contact with liquid crystal, and has a high display reliability of the liquid crystal display panel obtained. It is an object of the present invention to provide a manufacturing method of a product and a liquid crystal display panel using the same.
  • the present inventors include that a specific organic acid is included in the liquid crystal sealing agent composition, so that the photocuring of the liquid crystal sealing agent composition is easily promoted. Even when the sealant and the liquid crystal are brought into contact with each other, it has been found that the liquid crystal is hardly contaminated.
  • the first of the present invention relates to the following method for producing a liquid crystal display panel and the liquid crystal display panel obtained by the method.
  • a method for producing a liquid crystal display panel by a liquid crystal dropping method which comprises (A) an organic acid on a substrate and (B) a photocurable resin having at least one ethylenically unsaturated double bond in one molecule.
  • the organic acid (A) in one molecule has an —OH group, —NH 2 group, —NHR group (R represents an aromatic, aliphatic hydrocarbon, or a derivative thereof), —COOH group, At least one functional group selected from the group consisting of —OP ( ⁇ O) (OH) 2 groups, —P ( ⁇ O) (OH) 2 groups, —SO 3 H groups, —CONH 2 groups, and —NHOH groups.
  • a method for producing a liquid crystal display panel according to any one of [1] to [3].
  • thermosetting resin The method for producing a liquid crystal display panel according to any one of [1] to [5], further comprising (D) a thermosetting resin.
  • Panel manufacturing method [8]
  • the thermosetting agent (E) is selected from the group consisting of a dihydrazide thermal latent curing agent, an imidazole thermal latent curing agent, an amine adduct thermal latent curing agent, and a polyamine thermal latent curing agent.
  • the method for producing a liquid crystal display panel according to [7] which is at least one kind of heat latent curing agent.
  • the second of the present invention relates to the following liquid crystal sealant composition.
  • a liquid crystal sealant composition comprising an initiator, wherein the (A) organic acid has an oxygen atom equivalent represented by the following formula (1) of 23 g / eq or more and 75 g / eq or less.
  • Oxygen atom equivalent (g / eq) (Molecular weight of organic acid) / (Number of oxygen atoms in one molecule of organic acid) (1)
  • the liquid crystal sealant composition even if the liquid crystal sealant composition is in an uncured state and comes into contact with the liquid crystal, the liquid crystal is less contaminated. Furthermore, by using the liquid crystal sealant composition, a liquid crystal display panel that can be efficiently photocured in a short time and has excellent display reliability can be obtained.
  • the liquid crystal sealant composition of the present invention contains at least (A) an organic acid, (B) a photocurable resin, and (C) a titanocene photopolymerization initiator.
  • the liquid crystal sealant composition of the present invention contains components other than the above, such as (D) thermosetting resin, (E) thermosetting agent, (F) inorganic filler, and (G) organic filler, as necessary. May be.
  • the liquid crystal sealant composition when it comes into contact with the liquid crystal in an uncured state, there are problems that the resin component and the like are easily dissolved in the liquid crystal and the display characteristics of the liquid crystal display panel are deteriorated. Further, when the liquid crystal sealant composition is photocured, the liquid crystal sealant composition is not sufficiently cured in a region where the irradiation light does not reach. Therefore, for example, in an area where only scattered light is irradiated, such as an edge of the liquid crystal panel, the uncured component of the liquid crystal sealant composition tends to remain, and the display characteristics of the liquid crystal display panel are likely to deteriorate.
  • an organic acid it is known that when an organic acid is added, the curability of the photopolymerizable composition is easily increased. However, when a general organic acid is added to the liquid crystal sealant, the organic acid is dissolved in the liquid crystal, so that the display characteristics of the liquid crystal display panel are likely to deteriorate.
  • the liquid crystal sealant composition of the present invention includes (A) an organic acid having a specific oxygen atom equivalent.
  • the photocuring reaction of the photocurable resin (B) is promoted. Therefore, the liquid crystal sealant composition is sufficiently cured even in a region where light is not sufficiently irradiated.
  • the organic acid (A) having a specific oxygen atom equivalent has a low affinity with the liquid crystal, and thus is difficult to dissolve in the liquid crystal. Therefore, even if the uncured liquid crystal sealant composition and the liquid crystal come into contact with each other, the components in the liquid crystal sealant composition are hardly dissolved in the liquid crystal. That is, in the obtained display panel, it is difficult for the display characteristics and the like to be lowered, and further, the voltage holding ratio is hardly lowered.
  • the (A) organic acid includes a compound having an acid anhydride structure.
  • the organic acid (A) has an oxygen atom equivalent represented by the following formula (1) of 23 g / eq or more and 75 g / eq or less, preferably 25 to 60 g / eq, more preferably 27 to 55 g. / Eq.
  • Oxygen atom equivalent (g / eq) (molecular weight of organic acid) / (number of oxygen atoms in one molecule of organic acid) (1)
  • the organic acid (A) may contain an ethylenically unsaturated double bond in the molecule.
  • A) the organic acid is polymerized with (B) the photocurable resin, and from the cured product of the liquid crystal sealant composition (A ) Organic acid is difficult to exude.
  • the number of unsaturated double bonds contained in one molecule of the organic acid may be two or more.
  • Examples of the organic acid (A) having an unsaturated double bond in one molecule include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (Meth) acryloyloxyethylphthalic acid, bisphenol A type epoxy acrylate acid anhydride modified compound, bisphenol A type epoxy (meth) acrylate phosphoric acid modified compound, bisphenol F type epoxy (meth) acrylate acid anhydride modified compound, bisphenol Examples include phosphoric acid-modified compounds of F-type epoxy acrylate, phosphoric acid (meth) acrylates, and the like.
  • the phosphoric acid (meth) acrylates are, for example, [CH 2 ⁇ CRCOOCH 2 CH 2 [OCO (CH 2 ) 6 ] a O] b PO (OH) 3 -b (R represents a hydrogen atom or a methyl group, a represents 0 to 2, b represents 1 or 2, and [CH 2 ⁇ CRCOOOCH 2 CH 2 [OCH 2 CH (CH 3 )] c O] d PO (OH) 3-e (R represents a hydrogen atom) Or a methyl group, d represents 0 to 2, and c and e represent 1 or 2.
  • (A) organic acid having no ethylenically unsaturated double bond in one molecule includes acetic acid, butyric acid, succinic acid, citric acid, lauric acid, stearic acid, malonic acid, adipic acid, tartaric acid, benzoic acid.
  • Salicylic acid phthalic acid, monoethyl phosphate, monophenyl phosphate, diethyl phosphate, mono 2-ethylhexyl phosphate, di (2-ethylhexyl) phosphate, benzenesulfonic acid, toluenesulfonic acid, sulfobenzoic acid, formic acid, propion Acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, myristic acid, palmitic acid, margaric acid, succinic acid, glutaric acid, dodecanedioic acid, sepacic acid, isophthalic acid, terephthalic acid, benzenetricarboxylic acid Acids (including isomers), pyromellitic acid, mellitic acid, 4- (4-hydroxyphenyl) an Kosan, 6-hydroxy-1-naphthoic acid, phenylphosphonic
  • Examples of preferred (A) organic acids include oxalic acid, tartaric acid, trimellitic acid, trimellitic anhydride, isophthalic acid, phenylphosphonic acid, 4′-hydroxy-4-biphenylcarboxylic acid, terephthalic acid, succinic acid, And glutaric acid.
  • organic acid (A) having the above bond examples include carboxylic acid and phosphoric acid having the above bond, for example, a compound represented by the following formula.
  • the preferred molecular weight of the organic acid is 60 to 3000, more preferably 60 to 1000, and still more preferably 60 to 500.
  • the molecular weight of the (A) organic acid is within the above range, the (A) organic acid easily flows in the liquid crystal sealing agent composition, and the photocuring of the liquid crystal sealing agent composition is easily promoted.
  • the content of the (A) organic acid is 0.01 to 10 parts by mass, preferably 0.05 to 2 parts by mass with respect to 100 parts by mass of the liquid crystal sealant composition.
  • the organic acid is included in the above range, the photocurability of the liquid crystal sealant composition is likely to be increased, and (A) the liquid crystal is hardly contaminated by the organic acid.
  • the photocurable resin is not particularly limited as long as it is a resin having at least one ethylenically unsaturated double bond in one molecule. However, (B) the photo-curable resin does not include a compound corresponding to the aforementioned (A) organic acid.
  • the photocurable resin is (B1) (meth) acrylic resin or (B2) (meth) acrylic-modified epoxy resin, the photocurability of the liquid crystal sealant composition is likely to be sufficiently increased.
  • the liquid crystal sealant composition of the present invention may contain (B1) (meth) acrylic resin and (B2) (meth) acrylic modified epoxy resin.
  • the (meth) acrylic resin is a compound containing one or more (meth) acrylic groups in one molecule and does not contain an epoxy group.
  • (meth) acryl means that it can be either acrylic or methacrylic.
  • (B1) (meth) acrylic resins include diacrylates and / or dimethacrylates such as polyethylene glycol, propylene glycol, and polypropylene glycol; diacrylates and / or dimethacrylates of tris (2-hydroxyethyl) isocyanurate; neo Diacrylate and / or dimethacrylate of diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of pentyl glycol; of diol obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of bisphenol A Diacrylate and / or dimethacrylate; trimethylolpropane obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of trimethylolpropane Di- or triacrylate and / or di- or trimethacrylate of diol; Diacrylate and / or dimethacrylate of diol obtained by adding 4 mol or more of ethylene oxide or propylene glyco
  • the weight average molecular weight of the (meth) acrylic resin may be, for example, about 310 to 1000.
  • the weight average molecular weight Mw of the (meth) acrylic resin can be measured, for example, by gel permeation chromatography (GPC).
  • the amount of (B1) (meth) acrylic resin in the liquid crystal sealing agent composition is 10 to 99 parts by mass with respect to 100 parts by mass of the liquid crystal sealing agent composition, although it depends on the required degree of curability. It is preferably 20 to 99 parts by mass.
  • the (B2) (meth) acrylic-modified epoxy resin is a compound containing at least one (meth) acrylic group and an epoxy group, preferably an epoxy resin and (meth) acrylic acid, for example, tertiary. It is a compound obtained by reacting in the presence of a basic catalyst such as amine.
  • the epoxy resin used as a raw material of the (meth) acryl-modified epoxy resin may be a bifunctional or higher functional epoxy resin having two or more epoxy groups in the molecule, and is bisphenol A type, bisphenol F type, 2, 2 Bisphenol type epoxy resins such as' -diallyl bisphenol A type, bisphenol AD type, and hydrogenated bisphenol type; Novolak type epoxy resins such as phenol novolak type, cresol novolak type, biphenyl novolak type, and trisphenol novolak type; biphenyl type epoxy Resin; Naphthalene type epoxy resin and the like are included.
  • the (meth) acryl-modified epoxy resin obtained by (meth) acryl modification of a trifunctional or tetrafunctional polyfunctional epoxy resin has a high crosslink density, and the adhesive strength is likely to decrease. Therefore, (B2) (meth)
  • the epoxy resin used as the raw material for the acrylic-modified epoxy resin is preferably a bifunctional epoxy resin.
  • the bifunctional epoxy resin is preferably a biphenyl type epoxy resin, a naphthalene type epoxy resin, or a bisphenol type epoxy resin.
  • bisphenol type epoxy resins such as bisphenol A type and bisphenol F type are liquid crystal seals. From the viewpoint of the coating properties of the agent composition.
  • the raw material epoxy resin may be only one type, or two or more types may be combined. Moreover, it is preferable that the epoxy resin used as a raw material is highly purified by a molecular distillation method, a washing method, or the like.
  • the (B2) (meth) acrylic-modified epoxy resin is preferably one in which 10 to 99.5% of the epoxy group of the epoxy resin as a raw material is modified with a (meth) acrylic group, more preferably 30-70%.
  • the epoxy group is modified within the above range, (meth) acrylic group, the photocuring property and thermosetting property of the liquid crystal sealing agent composition become good, and the moisture resistance of the cured product of the liquid crystal sealing agent composition is low. Prone.
  • the weight average molecular weight of the (meth) acryl-modified epoxy resin can be, for example, about 310 to 1000.
  • the weight average molecular weight Mw of the (meth) acryl-modified epoxy resin can be measured, for example, by gel permeation chromatography (GPC).
  • the amount of the (B2) (meth) acrylic-modified epoxy resin in the liquid crystal sealant composition is 10 to 99 parts by mass with respect to 100 parts by mass of the liquid crystal sealant composition, although it depends on the required degree of curability. It is preferably 20 to 99 parts by mass.
  • the (B1) (meth) acrylic resin and the (B2) (meth) acryl-modified epoxy resin preferably have a hydrogen-bonding functional group such as a hydroxyl group, a urethane bond, an amide group, or a carboxyl group.
  • the hydrogen bondable functional group includes a hydroxyl group generated by the reaction of the epoxy group of the epoxy resin with (meth) acrylic acid, and a raw material for the (B1) (meth) acrylic resin and (B2) (meth) acrylic modified epoxy resin.
  • the (meth) acrylic acid and epoxy resin to be used include a hydroxyl group, a urethane bond, a carboxyl group, an amide group, and the like.
  • the hydrogen bonding functional group equivalents of (B1) (meth) acrylic resin and (B2) (meth) acrylic modified epoxy resin are preferably 1.0 ⁇ 10 ⁇ 4 to 5 ⁇ 10 ⁇ 3 mol / g, More preferably, it is 3.5 ⁇ 10 ⁇ 3 to 4.5 ⁇ 10 ⁇ 3 mol / g.
  • the hydrogen bondable functional group equivalent is 1.0 ⁇ 10 ⁇ 4 mol / g or more, the hydrogen bondable functional group is contained in one molecule of (B1) (meth) acrylic resin or (B2) (meth) acrylic modified epoxy resin. A sufficient number of groups are included. Therefore, (B) dissolution of the photocurable resin into the liquid crystal is easily suppressed.
  • the hydrogen bondable functional group equivalent is 5 ⁇ 10 ⁇ 3 mol / g or less
  • the cured product of (B1) (meth) acrylic resin and (B2) (meth) acrylic modified epoxy resin has sufficient moisture resistance. It is easy to have, and the moisture resistance of the hardened
  • the hydrogen bondable functional group equivalent (mol / g) of (B1) (meth) acrylic resin and (B2) (meth) acryl-modified epoxy resin is “(B1) (meth) acrylic resin or (B2) (meth) acrylic”. It is expressed as “the number of hydrogen bonding functional groups contained in one molecule of the modified epoxy resin” / “weight average molecular weight (Mw) of (B1) (meth) acrylic resin or (B2) (meth) acrylic modified epoxy resin”. For example, when it has only a hydroxyl group obtained by reacting (meth) acrylic acid with an epoxy resin as a hydrogen bonding functional group, the hydrogen bonding functional group equivalent is the number of moles of (meth) acrylic acid reacted. , By dividing by the weight average molecular weight (Mw) of the (meth) acryl-modified epoxy resin.
  • the hydrogen bondable functional group equivalent of the (meth) acrylic resin is controlled by adjusting the amount of the hydrogen bondable functional group of the (B1) (meth) acrylic resin itself.
  • the hydrogen bondable functional group equivalent of the (B2) (meth) acryl-modified epoxy resin is, for example, adjusting the number of moles of (meth) acrylic acid to be reacted with the raw material epoxy resin; It is controlled by adjusting the amount of hydrogen bonding functional groups of acrylic acid or epoxy resin.
  • the total amount of (B) photocurable resin (for example, the total amount of (B1) (meth) acrylic resin and (B2) (meth) acrylic-modified epoxy resin) with respect to 100 parts by mass of the liquid crystal sealing agent composition) is 10 to The amount is preferably 99 parts by mass, and more preferably 20 to 99 parts by mass.
  • titanocene photopolymerization initiator contained in the liquid crystal sealant composition of the present invention is a compound for curing the above-mentioned (B) photocurable resin;
  • the polymerization initiator is a titanocene compound
  • the curability of the liquid crystal sealant composition is likely to increase.
  • the liquid crystal sealant composition can be cured by irradiation light including a visible light region.
  • Examples of (C) titanocene photopolymerization initiators include bis ( ⁇ 5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl)- Phenyl) titanium, bis (cyclopentadienyl) -dichlorotitanium, bis (cyclopentadienyl) -diphenyltitanium, bis (cyclopentadienyl) -bis (2,3,4,5,6 pentafluorophenyl) titanium Bis (cyclopentadienyl) -bis (2,6difluorophenyl) titanium, bis (methylcyclopentadienyl) -bis (2,3,4,5,6 pentafluorophenyl) titanium, bis (methylcyclopenta Dienyl) -bis (2,6difluorophenyl) titanium, bis (cyclopentadienyl) -bis [2,6-diph Or
  • the content of the (C) titanocene photopolymerization initiator with respect to 100 parts by mass of the liquid crystal sealant composition is 0.01 to 10 parts by mass, preferably 0.1 to 2 parts by mass. If the liquid crystal sealant composition contains (C) the titanocene photopolymerization initiator in the above range, the photocurability of the liquid crystal sealant composition is likely to increase.
  • the liquid crystal sealant composition of the present invention may contain (D) a thermosetting resin.
  • a thermosetting resin When a thermosetting resin is contained, the moisture resistance of the hardened
  • an epoxy resin having at least one epoxy group in one molecule may be mentioned.
  • the number of epoxy groups is preferably 2 or more, particularly preferably 2.
  • Examples of (D1) epoxy resins include bisphenol type epoxy resins such as bisphenol A type, bisphenol F type, bisphenol S type, 2,2′-diallyl bisphenol A type, bisphenol AD type, and hydrogenated bisphenol type; Type epoxy resins; phenol novolac type, cresol novolak type, biphenyl novolak type, bisphenol novolak type, naphthol novolak type, trisphenol novolak type, dicyclopentadiene novolak type, etc .; biphenyl type epoxy resin; naphthyl type epoxy resin A triphenolalkane type epoxy resin such as a triphenolmethane type, a triphenolethane type or a triphenolpropane type; an alicyclic epoxy resin or the like. Of these, bisphenol type epoxy resins such as bisphenol A type and bisphenol F type are more preferable. Since these bisphenol type epoxy resins have lower crystallinity than diphenyl ether type epoxy resins and the like, there are advantages such as excellent coating stability.
  • (D1) epoxy resin has low solubility and diffusibility in liquid crystal, and not only the display characteristics of the obtained liquid crystal panel are improved, but also the moisture resistance of the cured product of the liquid crystal sealant composition is increased.
  • the weight average molecular weight (Mw) of the epoxy resin is preferably 300 to 3000, and more preferably 300 to 2000.
  • the weight average molecular weight of the epoxy resin can be measured, for example, by gel permeation chromatography (GPC) using polystyrene as a standard.
  • the epoxy resin may be liquid or solid. In the case of a solid epoxy resin, the softening point is preferably 40 ° C or higher and 150 ° C or lower.
  • the liquid crystal sealant composition may contain only one type of (D) thermosetting resin, or may contain two or more types or different molecular weights.
  • the amount of (D) thermosetting resin relative to 100 parts by mass of the liquid crystal sealant composition is 20 parts by mass or less, preferably 10 parts by mass or less.
  • (D) When a thermosetting resin is contained, the moisture resistance of a liquid-crystal sealing compound composition will become easy to increase.
  • the liquid crystal sealant composition of the present invention may contain (E) a thermosetting agent.
  • the thermosetting agent is a compound for curing the thermosetting resin, and the type thereof is not particularly limited, but is preferably a heat latent curing agent.
  • the thermolatent curing agent is a curing agent that cures the thermosetting resin by heating without curing the thermosetting resin in a state where the liquid crystal sealant composition is stored (at room temperature).
  • the thermal latent curing agent may be a known one, but is preferably a thermal latent curing agent having a melting point of 50 ° C. or higher and 250 ° C. or lower in order to improve the viscosity stability of the liquid crystal sealant composition. Further, from the viewpoint of curing the resin even at a low thermosetting temperature (about 80 to 100 ° C.), the melting point is more preferably 50 ° C. or more and 150 ° C. or less.
  • thermal latent curing agent examples include dihydrazide thermal latent curing agent, imidazole thermal latent curing agent, amine adduct thermal latent curing agent, and polyamine thermal latent curing agent.
  • dihydrazide thermal latent curing agents examples include adipic acid dihydrazide (melting point 181 ° C.), 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin (melting point 120 ° C.), 7,11-octadecadien -1,18-dicarbohydrazide (melting point 160 ° C.), dodecanedioic acid dihydrazide (melting point 190 ° C.), sebacic acid dihydrazide (melting point 189 ° C.) and the like.
  • the imidazole-based latent heat curing agent may be a compound having a structure represented by the following formula (X), for example.
  • R 1 and R 2 are each independently a hydrogen atom, a lower alkyl group, a lower hydroxyalkyl group, a phenyl group or a benzyl group.
  • R 3 and R 4 are each independently a hydrogen atom, a lower alkyl group or a lower hydroxyalkyl group. At least one of R 1 to R 4 is a lower hydroxyalkyl group.
  • the imidazole-based thermal latent curing agent having a lower hydroxyalkyl group contains a hydroxyl group and thus is difficult to dissolve in the liquid crystal.
  • the lower alkyl group which may be R 1 to R 4 is an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group or a propyl group, preferably a methyl group or an ethyl group.
  • the lower hydroxyalkyl group is a hydroxyalkyl group having 1 to 4 carbon atoms such as a hydroxymethyl group or a hydroxyethyl group, preferably a hydroxymethyl group.
  • the lower hydroxyalkyl group may contain a plurality of hydroxyl groups.
  • the number of hydroxyl groups contained in the imidazole-based curing catalyst is not particularly limited. However, when the number of hydroxyl groups is 2 or more, the water resistance may be decreased. Preferably there is.
  • the melting point of the imidazole-based heat-latent curing agent represented by the formula (X) depends on the heat-curing temperature of the liquid crystal sealant composition, but when it is heat-cured at a relatively low temperature (eg, about 80 to 100 ° C.). It is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, further preferably 60 to 120 ° C., and particularly preferably 80 to 100 ° C. If the melting point of the imidazole heat latent curing agent is too low, the imidazole heat latent curing agent melts at room temperature. Then, (D) the curing reaction of the thermosetting resin proceeds, and the storage stability of the liquid crystal sealing agent composition at room temperature deteriorates.
  • a relatively low temperature eg, about 80 to 100 ° C.
  • the melting point of the imidazole-based heat-latent curing agent can be lowered by, for example, a structure that does not contain an aromatic ring.
  • R 2 is preferably a group other than a phenyl group or a benzyl group, that is, a hydrogen atom, a lower alkyl group or a lower hydroxyalkyl group, and a lower hydroxyalkyl group It is more preferable that
  • Examples of the imidazole thermal latent curing agent represented by the formula (X) include 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-hydroxymethyl Examples include imidazole, 1-benzyl-5-hydroxymethylimidazole, 1,2-dihydroxyethylimidazole and the like. Among these, examples of the imidazole thermal latent curing agent having a melting point of 150 ° C. or lower include 2-hydroxymethylimidazole.
  • the amine adduct thermal latent curing agent may be an addition compound obtained by reacting an amine compound having catalytic activity with an arbitrary compound. Such an amine adduct thermal latent curing agent is activated by dissociation of the amine by heat.
  • Examples of the above amine compounds include compounds having 1,2, tertiary amino groups, such as Amicure PN-40 (melting point 110 ° C.), Amicure PN-23 (melting point 100 ° C.), Amicure PN- 31 (melting point 115 ° C.), Amicure PN-H (melting point 115 ° C.), Amicure MY-24 (melting point 120 ° C.), Amicure MY-H (melting point 130 ° C.) (Ajinomoto Fine Techno Co., Ltd.) It is.
  • Amicure PN-40 melting point 110 ° C.
  • Amicure PN-23 melting point 100 ° C.
  • Amicure PN- 31 melting point 115 ° C.
  • Amicure PN-H melting point 115 ° C.
  • Amicure MY-24 melting point 120 ° C.
  • Amicure MY-H melting point 130 ° C.
  • the polyamine thermal latent curing agent is a thermal latent curing agent having a polymer structure obtained by reacting an amine and an epoxy.
  • Specific examples thereof include ADEKA HARDNER EH4339S (softening point 120 to 130) manufactured by ADEKA Corporation.
  • Adeka Hardener EH4357S softening point 73 to 83 ° C manufactured by ADEKA Corporation.
  • thermosetting agent is preferably 30 parts by mass or less, more preferably 15 parts by mass with respect to 100 parts by mass of the total amount of (B) the photocurable resin and (D) the thermosetting resin. Or less.
  • thermosetting agent When a thermosetting agent is included, the thermosetting reaction of the liquid crystal sealant composition is sufficiently facilitated.
  • the liquid crystal sealing agent composition of the present invention may further contain (F) an inorganic filler.
  • an inorganic filler By adding an inorganic filler, it is possible to control the viscosity of the liquid crystal sealant composition, the strength of the cured product, the linear expansion, and the like.
  • the inorganic filler is not particularly limited, and examples thereof include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, aluminum oxide (alumina), zinc oxide, Inorganic fillers such as silicon dioxide, potassium titanate, kaolin, talc, glass beads, sericite activated clay, bentonite, aluminum nitride, silicon nitride, titanium nitride are included, and silicon dioxide and talc are preferred.
  • the shape of the inorganic filler is not particularly limited, and may be a regular shape such as a spherical shape, a plate shape, or a needle shape, or an irregular shape.
  • the (F) inorganic filler preferably has an average primary particle size of 1.5 ⁇ m or less, and a specific surface area of 1 m 2 / g to 500 m 2 / g.
  • the average primary particle diameter of the inorganic filler can be measured by a laser diffraction method described in JIS Z8825.
  • the specific surface area can be measured by the BET method described in JIS Z8830.
  • the amount of the inorganic filler is preferably 30 parts by mass or less and more preferably 15 parts by mass or less with respect to 100 parts by mass of the liquid crystal sealant composition.
  • (G) Organic filler An organic filler may be contained in the liquid-crystal sealing compound composition of this invention as needed.
  • the type of (G) organic filler is not particularly limited, but when the liquid crystal sealant composition is thermally cured, when the (G) organic filler is melted in the vicinity of the thermosetting temperature, the liquid crystal sealant composition is dripped.
  • the melting point or softening point of the (G) organic filler is preferably 30 to 120 ° C.
  • Examples of the organic filler include fine particles selected from the group consisting of silicone fine particles, acrylic fine particles, styrene fine particles such as styrene / divinylbenzene copolymer, and polyolefin fine particles.
  • the shape of the organic filler is not particularly limited, and may be, for example, spherical.
  • the average particle diameter of the organic filler (G) is preferably 0.05 to 5 ⁇ m, more preferably 0.07 to 3 ⁇ m, since the gap of the liquid crystal cell is usually 5 ⁇ m or less.
  • the average particle diameter of the organic filler can be measured by, for example, a laser diffraction method described in JIS Z8825.
  • the amount of the organic filler is preferably 30 parts by mass or less and more preferably 15 parts by mass or less with respect to 100 parts by mass of the liquid crystal sealant composition.
  • the liquid crystal sealant composition of the present invention may further include a thermal radical polymerization initiator, a coupling agent such as a silane coupling agent, an ion trapping agent, an ion exchange agent, and a leveling agent as necessary. Additives such as pigments, dyes, plasticizers and antifoaming agents may be included. In addition, a spacer or the like may be blended to adjust the gap of the liquid crystal panel.
  • the liquid crystal sealing agent of this invention can be used for both a liquid crystal injection construction method and a liquid crystal dropping construction method.
  • the liquid crystal sealant composition of the present invention is preferably used in a liquid crystal dropping method because it is difficult to dissolve in liquid crystals and can be cured in a short time.
  • Curing in the liquid crystal dropping method may be only photocuring or a combination of photocuring and thermosetting.
  • the photocuring and heat can be quickly cured because there is little deterioration of the liquid crystal due to heating and it can be cured quickly. It is preferable to use in combination with curing.
  • the liquid crystal sealing agent for the liquid crystal dropping method using both photocuring and thermosetting includes (B) a photocurable resin, (C) a titanocene photopolymerization initiator, (A) an organic acid, (D) a thermosetting resin, (E) It preferably contains a thermosetting agent, and preferably further contains (F) an inorganic filler, (G) an organic filler, and the like.
  • the viscosity of the liquid crystal sealant composition of the present invention at 25 ° C. and 2.5 rpm using an E-type viscometer is preferably 30 to 350 Pa ⁇ s.
  • a liquid crystal sealant having a viscosity in the above range is excellent in coating stability.
  • the liquid crystal display panel of the present invention is a display substrate, a counter substrate that is paired with the display substrate, a frame-shaped sealing member interposed between the display substrate and the counter substrate, and a display substrate. And a liquid crystal layer filled in a space surrounded by a sealing member between the substrate and the substrate.
  • the cured product of the liquid crystal sealant of the present invention can be used as a seal member.
  • the display substrate and the counter substrate are both transparent substrates.
  • the material of the transparent substrate can be glass or plastic such as polycarbonate, polyethylene terephthalate, polyethersulfone and PMMA.
  • a matrix-like TFT, a color filter, a black matrix, or the like can be disposed on the surface of the display substrate or the counter substrate.
  • An alignment film is further formed on the surface of the display substrate or the counter substrate.
  • the alignment film includes a known organic alignment agent or inorganic alignment agent.
  • Such a liquid crystal display panel can be manufactured using the liquid crystal sealant composition of the present invention.
  • the liquid crystal display panel manufacturing method includes a liquid crystal dropping method and a liquid crystal injection method.
  • the manufacturing method of the liquid crystal display panel by the liquid crystal dropping method is a1) applying a liquid crystal sealant composition of the present invention to one substrate to form a liquid crystal seal pattern; a2) When the liquid crystal seal pattern composed of the liquid crystal sealant composition is in an uncured state, the liquid crystal is formed on the region surrounded by the liquid crystal seal pattern or the region of the other substrate facing the region surrounded by the liquid crystal seal pattern.
  • the state in which the seal pattern is uncured means a state in which the curing reaction of the liquid crystal sealant has not progressed to the gel point. Therefore, in the step a2), the seal pattern may be semi-cured by light irradiation or heating in order to suppress dissolution of the liquid crystal sealant in the liquid crystal.
  • One substrate and the other substrate are a display substrate or a counter substrate, respectively.
  • step a3) only curing by light may be performed, but it is preferable to perform curing (main curing) by heating after curing by light irradiation (temporary curing). This is because the liquid crystal sealant can be instantly cured by temporary curing by light irradiation to suppress dissolution in the liquid crystal.
  • Irradiation energy, (B) may be a degree that can cure the photocurable resin or the like, 1000 ⁇ 3000mJ / cm 2 or so, preferably 2000 mJ / cm 2 or so.
  • the liquid crystal sealant composition of the present invention contains (C) a titanocene photopolymerization initiator, the irradiation light can be ultraviolet light or light containing a visible region.
  • the thermosetting temperature is as low as possible, for example, about 120 ° C., preferably 80 to 100 ° C. from the viewpoint of reducing deterioration of the liquid crystal, and the thermosetting time is About 1 to 2 hours.
  • liquid crystal dropping method since the contact time between the uncured liquid crystal sealing agent composition and the liquid crystal is relatively long, liquid crystal contamination is likely to occur.
  • the liquid crystal sealing composition of the present invention since the liquid crystal sealing composition of the present invention has low solubility in liquid crystals, the liquid crystal display panel obtained by the liquid crystal dropping method using the liquid crystal sealing composition of the present invention has excellent display reliability. ing.
  • the manufacturing method of the liquid crystal display panel by the liquid crystal injection method is b1) a first step of applying the liquid crystal sealing agent composition of the present invention to one substrate to form a liquid crystal sealing pattern; b2) a second step of superimposing one substrate and the other substrate via a liquid crystal seal pattern; b3) a third step of photocuring the liquid crystal seal pattern to obtain a liquid crystal injection cell having an injection port for injecting liquid crystal; b4) a fourth step of injecting the liquid crystal into the liquid crystal injection cell through the injection port; b5) a fifth step of sealing the inlet.
  • a liquid crystal injection cell is prepared. First, two transparent substrates (for example, glass plates) are prepared. Then, a liquid crystal seal pattern is formed on one substrate with the liquid crystal sealant composition. The liquid crystal seal pattern may be cured after the other substrate is superimposed on the surface of the substrate on which the seal pattern is formed. At this time, it is necessary to provide an injection port for injecting liquid crystal in a part of the liquid crystal injection cell, but the injection port may be provided with an opening in part when drawing a liquid crystal seal pattern. Moreover, after forming the liquid crystal seal pattern, the liquid crystal seal pattern at a desired location may be removed to provide an injection port.
  • the photocuring conditions in the step b3) depend on the composition of the liquid crystal sealant, for example, the light irradiation energy is about 1000 to 3000 mJ / cm 2 .
  • the step b4) can be performed according to a known method in which the inside of the liquid crystal injection cell obtained in the steps b1) to b3) is evacuated and the liquid crystal is sucked from the injection port of the liquid crystal injection cell. Good.
  • the liquid crystal sealant may be cured after being sealed in the injection port of the liquid crystal injection cell.
  • the time for which the liquid crystal sealant composition and the liquid crystal are in contact with each other is relatively short.
  • the liquid crystal may be injected even if the liquid crystal sealing agent composition of the liquid crystal injection cell is not sufficiently cured. Since the liquid crystal sealing agent composition of the present invention has low solubility in liquid crystals, it is difficult to contaminate the liquid crystals even in such a case. Therefore, a liquid crystal display panel excellent in display reliability can also be obtained by a liquid crystal injection method using the liquid crystal sealant composition of the present invention.
  • Example 1 100 parts by mass of methacrylic acid-modified bisphenol F type epoxy resin obtained in Synthesis Example 1, bis ( ⁇ 5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrole)
  • a liquid crystal sealant composition was prepared by mixing 0.5 parts by mass of 1-yl) -phenyl) titanium (trade name Irgacure 784, manufactured by BASF) and 0.5 parts by mass of oxalic acid.
  • Example 2 A liquid crystal sealant composition was prepared in the same manner as in Example 1 except that oxalic acid was changed to tartaric acid.
  • Example 3 A liquid crystal sealant composition was prepared in the same manner as in Example 1 except that oxalic acid was changed to trimellitic acid.
  • Example 4 A liquid crystal sealant composition was prepared in the same manner as in Example 1 except that oxalic acid was changed to trimellitic anhydride.
  • Example 5 A liquid crystal sealant composition was prepared in the same manner as in Example 1 except that oxalic acid was changed to isophthalic acid.
  • Example 6 A liquid crystal sealant composition was prepared in the same manner as in Example 1 except that oxalic acid was changed to phenylphosphonic acid.
  • Example 7 A liquid crystal sealant composition was prepared in the same manner as in Example 1 except that oxalic acid was changed to 4′-hydroxy-4-biphenylcarboxylic acid.
  • Example 1 A liquid crystal sealant composition was prepared in the same manner as in Example 1 except that oxalic acid was not added.
  • Example 2 A liquid crystal sealant composition was prepared in the same manner as in Example 1 except that oxalic acid was changed to 2-ethylhexyl phosphate.
  • Example 3 A liquid crystal sealant composition was prepared in the same manner as in Example 1 except that oxalic acid was changed to 3,5-bistrifluoromethylbenzoic acid.
  • the liquid crystal sealant composition contained an organic acid (Examples 1 to 7 and Comparative Examples 2 and 3), and compared with the case where no organic acid was contained (Comparative Example 1). Increased curability.
  • the oxygen atom equivalent of the organic acid is 23 or more and 75 or less (Examples 1 to 7)
  • the voltage holding ratio of the liquid crystal was very good.
  • the photocurability was good, but the liquid crystal was contaminated, so the voltage holding ratio decreased.
  • Example 8 43 parts by mass of a methacrylic acid-modified bisphenol F type epoxy resin obtained in Synthesis Example 1, 5 parts by mass of a solid epoxy resin (jER1004, softening point 97 ° C., manufactured by Mitsubishi Chemical Corporation), an acrylic resin (polyethylene glycol diacrylate, light manufactured by Kyoeisha Chemical Co., Ltd.) Acrylate 14EG-A, weight average molecular weight: 708) 20 parts by mass, adipic acid dihydrazide (Nippon Kasei Co., Ltd.
  • silica particles S-100 (manufactured by Nippon Shokubai Co., Ltd.) ) 13 parts by mass, 7 parts by mass of an organic filler (fine particle polymer, F351 manufactured by Zeon Kasei Co., Ltd.) obtained by copolymerizing a (meth) acrylic acid ester monomer and a monomer copolymerizable therewith, a silane coupling agent (Shin-Etsu) 2 parts by mass of KBM-403) manufactured by Chemical Industry Co., Ltd., bis ( ⁇ 5-2,4-cyclopente) Tadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium (BASF Irgacure 784) 0.5 parts by mass and oxalic acid 0.5 masses
  • the liquid crystal sealant composition was obtained by sufficiently mixing the parts with a three-roll mill so that
  • Example 9 A liquid crystal sealant composition was obtained in the same manner as in Example 8 except that oxalic acid was changed to tartaric acid.
  • Example 10 A liquid crystal sealant composition was obtained in the same manner as in Example 8 except that oxalic acid was changed to trimellitic acid.
  • Example 11 A liquid crystal sealant composition was obtained in the same manner as in Example 8 except that oxalic acid was changed to trimellitic anhydride.
  • Example 12 A liquid crystal sealant composition was obtained in the same manner as in Example 8 except that oxalic acid was changed to isophthalic acid.
  • Example 13 A liquid crystal sealant composition was obtained in the same manner as in Example 8 except that oxalic acid was changed to phenylphosphonic acid.
  • Example 14 A liquid crystal sealant composition was obtained in the same manner as in Example 8 except that oxalic acid was changed to 4′-hydroxy-4-biphenylcarboxylic acid.
  • a dispenser Shot Master, manufactured by Musashi Engineering.
  • a square frame-shaped seal pattern cross-sectional area 3500 ⁇ m 2 ) (main seal) having an outer dimension of 35 mm ⁇ 40 mm and a line width of 0.7 mm after bonding
  • a liquid crystal material (MLC-7021-000, manufactured by Merck & Co., Inc.) corresponding to the panel internal volume after bonding the substrates was precisely dropped using a dispenser into the main seal frame.
  • a pair of glass substrates was bonded together under reduced pressure, and then bonded to the atmosphere. Then, the two bonded glass substrates were held in a light shielding box for 3 minutes. Then, it masked with the board
  • the liquid crystal sealant composition contains an organic acid (Examples 8 to 14 and Comparative Examples 5 and 6)
  • the liquid crystal sealant composition does not contain an organic acid (Comparative Example 4).
  • the display panel characteristics were good. This is because the organic acid is contained, so that the liquid crystal sealant is sufficiently cured even when not directly irradiated with light, and the dissolution of the uncured component of the liquid crystal sealant composition in the liquid crystal is remarkably suppressed. Conceivable.
  • the liquid crystal display panel is energized.
  • the display characteristics of were good.
  • the oxygen atom equivalent is in the above range, it is considered that the uncured component of the composition for liquid crystal sealant hardly affects the liquid crystal and further hardly dissolves, so that the voltage holding ratio of the liquid crystal is very good. .
  • liquid crystal sealing agent composition of the present invention contains an organic acid, the curability is very good and the uncured component is very little dissolved in the liquid crystal. Therefore, a liquid crystal panel excellent in display reliability can be provided, which is suitable for manufacturing various liquid crystal display panels.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Sealing Material Composition (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

The present invention addresses the problem of providing: a liquid crystal sealing agent composition, which is able to be efficiently cured and is not easily dissolved in liquid crystals even if an uncured component thereof is in contact with the liquid crystals, and which provides a liquid crystal display panel having high display reliability; and a method for producing a liquid crystal display panel using this liquid crystal sealing agent composition. In order to solve the above-described problem, this method for producing a liquid crystal display panel comprises: a step for forming a liquid crystal sealing pattern by applying a liquid sealing agent composition onto a substrate, said liquid sealing agent composition containing (A) an organic acid, (B) a photocurable resin having at least one ethylenically unsaturated double bond in each molecule (excluding the above-mentioned organic acid) and (C) a titanocene-based photopolymerization initiator, with the oxygen atom equivalent weight of the organic acid (A) represented by formula (1) being from 23 g/eq to 75 g/eq (inclusive); and a step for photocuring the liquid crystal sealing agent composition. Oxygen atom equivalent weight (g/eq) = (molecular weight of organic acid)/(number of oxygen atoms in each molecule of organic acid) (1)

Description

液晶表示パネルの製造方法、液晶表示パネル、及び液晶シール剤組成物Method for manufacturing liquid crystal display panel, liquid crystal display panel, and liquid crystal sealant composition
 本発明は、液晶表示パネルの製造方法、および当該方法により得られる液晶表示パネル、並びに液晶シール剤組成物に関する。 The present invention relates to a method for producing a liquid crystal display panel, a liquid crystal display panel obtained by the method, and a liquid crystal sealant composition.
 近年、携帯電話やパーソナルコンピュータをはじめとする各種電子機器の画像表示パネルとして、液晶表示パネルが広く使用されている。液晶表示パネルは、表面に電極が設けられた2枚の透明基板の間に液晶材料(以下、単に「液晶」という)を挟み込み、その周りを液晶シール剤によってシールされた構造を有する画像表示パネルである。 In recent years, liquid crystal display panels have been widely used as image display panels for various electronic devices such as mobile phones and personal computers. The liquid crystal display panel has a structure in which a liquid crystal material (hereinafter simply referred to as “liquid crystal”) is sandwiched between two transparent substrates having electrodes provided on the surface, and the periphery thereof is sealed with a liquid crystal sealant. It is.
 上記液晶シール剤は、その使用量は僅かであるものの液晶と直接接触するため、液晶表示パネルの信頼性に大きな影響を与える。したがって、液晶表示パネルの高画質化を実現するため、現在、液晶シール剤には、高度かつ多様な特性が求められている。 The liquid crystal sealant has a small influence on the reliability of the liquid crystal display panel because it is in direct contact with the liquid crystal although the amount used is small. Therefore, in order to achieve high image quality of the liquid crystal display panel, liquid crystal sealants are currently required to have advanced and diverse characteristics.
 従来から、液晶表示パネルは、主に液晶注入工法によって製造されている。液晶注入工法は、一般に、(1)1枚の透明な基板の上に液晶シール剤を塗布して枠を形成し、(2)当該基板をプレキュア処理することによって液晶シール剤を乾燥させた後、他方の基板を貼り合わせ、(3)この2枚の基板を加熱圧締し、基板同士を接着させることにより基板の間に液晶シール剤の枠(セル)を形成し、(4)空のセル内に適量の液晶を注入した後、液晶の注入口を封止することにより液晶表示パネルを製造する方法である。 Conventionally, liquid crystal display panels are mainly manufactured by a liquid crystal injection method. In general, the liquid crystal injection method is (1) after applying a liquid crystal sealant on one transparent substrate to form a frame, and (2) drying the liquid crystal sealant by precuring the substrate. The other substrate is bonded, (3) the two substrates are heated and pressed, and the substrates are bonded together to form a frame (cell) of the liquid crystal sealant between the substrates, and (4) empty This is a method of manufacturing a liquid crystal display panel by injecting an appropriate amount of liquid crystal into a cell and then sealing the liquid crystal injection port.
 一方、最近では、生産性の向上が見込まれる液晶表示パネルの製造方法として液晶滴下工法が検討されている。液晶滴下工法は、(1)透明な基板の上に液晶シール剤を塗布して液晶を充填するための枠を形成し、(2)前記枠内に微小の液晶を滴下し、(3)液晶シール剤が未硬化状態のままで2枚の基板を高真空下で重ね合わせた後、(4)液晶シール剤を硬化させてパネルを製造する方法である。通常、液晶滴下工法では、光および熱硬化性の液晶シール剤を使用してもよく、上記(3)の工程で、液晶シール剤に紫外線などの光を照射する仮硬化を行った後、加熱による後硬化を行ってもよい。 On the other hand, recently, a liquid crystal dropping method has been studied as a method for manufacturing a liquid crystal display panel, which is expected to improve productivity. In the liquid crystal dropping method, (1) a liquid crystal sealant is applied on a transparent substrate to form a frame for filling the liquid crystal, (2) a minute liquid crystal is dropped into the frame, and (3) liquid crystal In this method, two substrates are stacked under high vacuum while the sealant is in an uncured state, and then (4) the liquid crystal sealant is cured to produce a panel. Usually, in the liquid crystal dropping method, a light and thermosetting liquid crystal sealant may be used. In the step (3), after the liquid crystal sealant is preliminarily cured by irradiating light such as ultraviolet rays, it is heated. Post-curing may be performed.
 この液晶滴下工法では、液晶シール剤が未硬化の状態で長時間液晶と接触するため、液晶注入工法よりも液晶シール剤の成分が液晶に溶解しやすい。そのため、液晶表示パネルの表示特性が低下し易いとの問題があった。そこで、例えばチタノセン系ラジカル開始剤と、光硬化性樹脂と、潜在性エポキシ硬化剤とを含む液晶滴下工法用シール剤が提案されている(特許文献1)。 In this liquid crystal dropping method, since the liquid crystal sealing agent is in contact with the liquid crystal for a long time in an uncured state, the components of the liquid crystal sealing agent are more easily dissolved in the liquid crystal than the liquid crystal injection method. For this reason, there has been a problem that the display characteristics of the liquid crystal display panel tend to deteriorate. Thus, for example, a sealing agent for a liquid crystal dropping method including a titanocene radical initiator, a photocurable resin, and a latent epoxy curing agent has been proposed (Patent Document 1).
 一方、歯科材料等に用いられる光重合性の組成物として、チタノセン誘導体、プロトン性供与基を有する化合物、及びエチレン性不飽和二重結合を有する化合物、を含む光重合性組成物が提案されている(特許文献2及び3)。 On the other hand, a photopolymerizable composition containing a titanocene derivative, a compound having a protic donor group, and a compound having an ethylenically unsaturated double bond has been proposed as a photopolymerizable composition used for dental materials and the like. (Patent Documents 2 and 3).
国際公開第2011/007649号International Publication No. 2011/007649 特開2001-316416号公報JP 2001-316416 A 特開平2-4705号公報Japanese Patent Laid-Open No. 2-4705
 前述の特許文献1の樹脂組成物は、チタノセン系ラジカル開始剤によって、光硬化性樹脂の光硬化を早め、液晶への液晶シール剤成分の溶解を抑制しようとするものである。しかし、液晶の充填時に生じる、液晶シール剤成分の液晶への溶解は十分に抑制し難かった。 The resin composition of Patent Document 1 described above is intended to accelerate the photocuring of the photocurable resin by the titanocene radical initiator and to suppress the dissolution of the liquid crystal sealant component in the liquid crystal. However, it has been difficult to sufficiently suppress the dissolution of the liquid crystal sealant component in the liquid crystal, which occurs when the liquid crystal is filled.
 そこで、液晶に対して溶け難く、(液晶に溶解する前に)効率良く硬化できる液晶シール剤が求められている。本発明は、上記事情に鑑みなされたものであり、効率良く硬化でき、さらに未硬化成分が液晶と接しても液晶に溶け難く、さらに得られる液晶表示パネルの表示信頼性が高い液晶シール剤組成物や、これを用いた液晶表示パネルの製造方法を提供することを目的とする。 Therefore, there is a demand for a liquid crystal sealant that is difficult to dissolve in liquid crystal and can be cured efficiently (before being dissolved in liquid crystal). The present invention has been made in view of the above circumstances, and is a liquid crystal sealant composition that can be cured efficiently, is not easily dissolved in liquid crystal even when an uncured component is in contact with liquid crystal, and has a high display reliability of the liquid crystal display panel obtained. It is an object of the present invention to provide a manufacturing method of a product and a liquid crystal display panel using the same.
 本発明者らは、液晶シール剤組成物に、特定の有機酸を含めることで、液晶シール剤組成物の光硬化が促進されやすくなること、さらに特定の有機酸であれば、硬化前の液晶シール剤と液晶とが接触したとしても、液晶が汚染され難くなることを見出し、なされたものである。 The present inventors include that a specific organic acid is included in the liquid crystal sealing agent composition, so that the photocuring of the liquid crystal sealing agent composition is easily promoted. Even when the sealant and the liquid crystal are brought into contact with each other, it has been found that the liquid crystal is hardly contaminated.
 本発明の第一は、以下の液晶表示パネルの製造方法、及び当該方法で得られる液晶表示パネルに関する。
 [1]液晶滴下工法により液晶表示パネルを製造する方法であって、基板上に(A)有機酸、(B)1分子内にエチレン性不飽和二重結合を少なくとも1つ有する光硬化性樹脂(ただし、前記有機酸を除く)、及び(C)チタノセン系光重合開始剤、を含み、前記(A)有機酸の下記式(1)で表される酸素原子当量が、23g/eq以上75g/eq以下である液晶シール剤組成物を塗布し、液晶シールパターンを形成する工程と、前記液晶シール剤組成物を光硬化させる工程と、を含む、液晶表示パネルの製造方法。
 酸素原子当量(g/eq)=(有機酸の分子量)/(有機酸1分子中の酸素原子数)(1)
The first of the present invention relates to the following method for producing a liquid crystal display panel and the liquid crystal display panel obtained by the method.
[1] A method for producing a liquid crystal display panel by a liquid crystal dropping method, which comprises (A) an organic acid on a substrate and (B) a photocurable resin having at least one ethylenically unsaturated double bond in one molecule. (Excluding the organic acid) and (C) a titanocene photopolymerization initiator, and the oxygen atom equivalent represented by the following formula (1) of the organic acid (A) is 23 g / eq or more and 75 g The manufacturing method of a liquid crystal display panel including the process of apply | coating the liquid-crystal sealing compound composition which is / eq or less, and forming a liquid-crystal sealing pattern, and the process of photocuring the said liquid-crystal sealing compound composition.
Oxygen atom equivalent (g / eq) = (Molecular weight of organic acid) / (Number of oxygen atoms in one molecule of organic acid) (1)
 [2]前記(A)有機酸が酸無水物である、[1]に記載の液晶表示パネルの製造方法。
 [3]前記(A)有機酸が、エチレン性不飽和二重結合を少なくとも1つ有する、[1]または[2]に記載の液晶表示パネルの製造方法。
 [4]前記(A)有機酸が1分子内に、-OH基、-NH基、-NHR基(Rは、芳香族、脂肪族炭化水素又はこれらの誘導体を表す)、-COOH基、-OP(=O)(OH)基、-P(=O)(OH)基、-SOH基、-CONH基、-NHOH基からなる群より選ばれる官能基を少なくとも1つ有する、[1]~[3]のいずれかに記載の液晶表示パネルの製造方法。
[2] The method for producing a liquid crystal display panel according to [1], wherein the organic acid (A) is an acid anhydride.
[3] The method for producing a liquid crystal display panel according to [1] or [2], wherein the (A) organic acid has at least one ethylenically unsaturated double bond.
[4] The organic acid (A) in one molecule has an —OH group, —NH 2 group, —NHR group (R represents an aromatic, aliphatic hydrocarbon, or a derivative thereof), —COOH group, At least one functional group selected from the group consisting of —OP (═O) (OH) 2 groups, —P (═O) (OH) 2 groups, —SO 3 H groups, —CONH 2 groups, and —NHOH groups. A method for producing a liquid crystal display panel according to any one of [1] to [3].
 [5]前記(B)光硬化性樹脂が、(B2)1分子内にエチレン性不飽和二重結合とエポキシ基とをそれぞれ少なくとも1つ有する樹脂である、[1]~[4]のいずれかに記載の液晶表示パネルの製造方法。 [5] Any of [1] to [4], wherein (B) the photocurable resin is (B2) a resin having at least one ethylenically unsaturated double bond and an epoxy group in one molecule. A method for producing a liquid crystal display panel according to claim 1.
 [6](D)熱硬化性樹脂をさらに含む、[1]~[5]のいずれかに記載の液晶表示パネルの製造方法。
 [7](E)熱硬化剤をさらに含み、かつ前記(D)熱硬化性樹脂が、(D1)1分子内にエポキシ基を少なくとも1つ有する樹脂である、[6]に記載の液晶表示パネルの製造方法。
 [8]前記(E)熱硬化剤が、ジヒドラジド系熱潜在性硬化剤、イミダゾール系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤からなる群より選ばれる少なくとも1種の熱潜在性硬化剤である[7]に記載の液晶表示パネルの製造方法。
 [9]液晶シール剤組成物をさらに熱硬化させる工程、をさらに含む、[6]~[8]のいずれかに記載の液晶表示パネルの製造方法。
[6] The method for producing a liquid crystal display panel according to any one of [1] to [5], further comprising (D) a thermosetting resin.
[7] The liquid crystal display according to [6], further comprising (E) a thermosetting agent and wherein the (D) thermosetting resin is (D1) a resin having at least one epoxy group in one molecule. Panel manufacturing method.
[8] The thermosetting agent (E) is selected from the group consisting of a dihydrazide thermal latent curing agent, an imidazole thermal latent curing agent, an amine adduct thermal latent curing agent, and a polyamine thermal latent curing agent. The method for producing a liquid crystal display panel according to [7], which is at least one kind of heat latent curing agent.
[9] The method for producing a liquid crystal display panel according to any one of [6] to [8], further comprising a step of further thermosetting the liquid crystal sealant composition.
 [10]前記光硬化工程で照射する光が可視光領域を含む、[1]~[9]のいずれかに記載の液晶表示パネルの製造方法。
 [11]前記[1]~[10]のいずれかに記載の液晶表示パネルの製造方法によって製造された液晶表示パネル。
[10] The method for producing a liquid crystal display panel according to any one of [1] to [9], wherein the light irradiated in the photocuring step includes a visible light region.
[11] A liquid crystal display panel manufactured by the method for manufacturing a liquid crystal display panel according to any one of [1] to [10].
 本発明の第二は、以下の液晶シール剤組成物に関する。
 [12](A)有機酸、(B)1分子内にエチレン性不飽和二重結合を少なくとも1つ有する光硬化性樹脂(ただし、前記有機酸を除く)、及び(C)チタノセン系光重合開始剤、を含み、前記(A)有機酸は下記式(1)で表される酸素原子当量が23g/eq以上75g/eq以下である液晶シール剤組成物。
 酸素原子当量(g/eq)=(有機酸の分子量)/(有機酸1分子中の酸素原子数)(1)
The second of the present invention relates to the following liquid crystal sealant composition.
[12] (A) an organic acid, (B) a photocurable resin having at least one ethylenically unsaturated double bond in one molecule (excluding the organic acid), and (C) a titanocene photopolymerization A liquid crystal sealant composition comprising an initiator, wherein the (A) organic acid has an oxygen atom equivalent represented by the following formula (1) of 23 g / eq or more and 75 g / eq or less.
Oxygen atom equivalent (g / eq) = (Molecular weight of organic acid) / (Number of oxygen atoms in one molecule of organic acid) (1)
 本発明の液晶表示パネルの製造方法によれば、液晶シール剤組成物が未硬化状態で液晶と接触しても液晶の汚染が少ない。またさらに上記液晶シール剤組成物を用いることで、短時間で効率良く光硬化でき、表示信頼性に優れた液晶表示パネルが得られる。 According to the method for producing a liquid crystal display panel of the present invention, even if the liquid crystal sealant composition is in an uncured state and comes into contact with the liquid crystal, the liquid crystal is less contaminated. Furthermore, by using the liquid crystal sealant composition, a liquid crystal display panel that can be efficiently photocured in a short time and has excellent display reliability can be obtained.
 1.液晶シール剤組成物
 本発明の液晶シール剤組成物には、(A)有機酸、(B)光硬化性樹脂、及び(C)チタノセン系光重合開始剤が少なくとも含まれる。本発明の液晶シール剤組成物には、必要に応じて、(D)熱硬化性樹脂や(E)熱硬化剤、(F)無機フィラーや(G)有機フィラー等、上記以外の成分が含まれてもよい。
1. Liquid Crystal Sealant Composition The liquid crystal sealant composition of the present invention contains at least (A) an organic acid, (B) a photocurable resin, and (C) a titanocene photopolymerization initiator. The liquid crystal sealant composition of the present invention contains components other than the above, such as (D) thermosetting resin, (E) thermosetting agent, (F) inorganic filler, and (G) organic filler, as necessary. May be.
 従来の液晶シール剤組成物では、未硬化の状態で液晶と接すると、樹脂成分等が液晶に溶解しやすく、液晶表示パネルの表示特性が低下する等の問題があった。さらに、液晶シール剤組成物を光硬化させる際に、照射光が届かない領域では、液晶シール剤組成物が十分に硬化しない。そのため、例えば液晶パネルの端部等、散乱光しか照射されない領域では、液晶シール剤組成物の未硬化成分が残存しやすく、液晶表示パネルの表示特性が低下しやすかった。ここで、有機酸を添加すると、光重合性組成物の硬化性が高まりやすくなることが知られている。ただし、液晶シール剤に一般的な有機酸を添加すると、当該有機酸が液晶に溶解するため、液晶表示パネルの表示特性が低下しやすくなる。 In the conventional liquid crystal sealant composition, when it comes into contact with the liquid crystal in an uncured state, there are problems that the resin component and the like are easily dissolved in the liquid crystal and the display characteristics of the liquid crystal display panel are deteriorated. Further, when the liquid crystal sealant composition is photocured, the liquid crystal sealant composition is not sufficiently cured in a region where the irradiation light does not reach. Therefore, for example, in an area where only scattered light is irradiated, such as an edge of the liquid crystal panel, the uncured component of the liquid crystal sealant composition tends to remain, and the display characteristics of the liquid crystal display panel are likely to deteriorate. Here, it is known that when an organic acid is added, the curability of the photopolymerizable composition is easily increased. However, when a general organic acid is added to the liquid crystal sealant, the organic acid is dissolved in the liquid crystal, so that the display characteristics of the liquid crystal display panel are likely to deteriorate.
 これに対し、本発明の液晶シール剤組成物には、特定の酸素原子当量を有する(A)有機酸が含まれる。当該(A)有機酸が含まれる液晶シール剤では、(B)光硬化性樹脂の光硬化反応が促進される。したがって、光が十分に照射されない領域であっても、液晶シール剤組成物が十分に硬化する。一方で、特定の酸素原子当量を有する(A)有機酸であれば、液晶との親和性が低いため、液晶に溶解し難い。したがって、未硬化の液晶シール剤組成物と液晶とが接触したとしても、液晶に液晶シール剤組成物中の成分が溶解し難い。つまり、得られる表示パネルにおいて、表示特性の低下等が生じ難く、さらに電圧保持率の低下等も生じ難くなる。 On the other hand, the liquid crystal sealant composition of the present invention includes (A) an organic acid having a specific oxygen atom equivalent. In the liquid crystal sealant containing the organic acid (A), the photocuring reaction of the photocurable resin (B) is promoted. Therefore, the liquid crystal sealant composition is sufficiently cured even in a region where light is not sufficiently irradiated. On the other hand, the organic acid (A) having a specific oxygen atom equivalent has a low affinity with the liquid crystal, and thus is difficult to dissolve in the liquid crystal. Therefore, even if the uncured liquid crystal sealant composition and the liquid crystal come into contact with each other, the components in the liquid crystal sealant composition are hardly dissolved in the liquid crystal. That is, in the obtained display panel, it is difficult for the display characteristics and the like to be lowered, and further, the voltage holding ratio is hardly lowered.
 (A)有機酸
 前述のように、液晶シール剤組成物に(A)有機酸が含まれると、液晶シール剤組成物の硬化性が高まりやすい。本発明において、(A)有機酸には、酸無水物構造を有する化合物も含むものとする。ここで、(A)有機酸は、下記式(1)で表される酸素原子当量が23g/eq以上75g/eq以下であり、好ましくは25~60g/eqであり、さらに好ましくは27~55g/eqである。
 酸素原子当量(g/eq)=(有機酸の分子量)/(有機酸1分子中の酸素原子数) (1)
(A) Organic acid As mentioned above, when (A) organic acid is contained in a liquid-crystal sealing compound composition, sclerosis | hardenability of a liquid-crystal sealing compound composition will increase easily. In the present invention, the (A) organic acid includes a compound having an acid anhydride structure. Here, the organic acid (A) has an oxygen atom equivalent represented by the following formula (1) of 23 g / eq or more and 75 g / eq or less, preferably 25 to 60 g / eq, more preferably 27 to 55 g. / Eq.
Oxygen atom equivalent (g / eq) = (molecular weight of organic acid) / (number of oxygen atoms in one molecule of organic acid) (1)
 上記酸素原子当量が過剰に高いと、(A)有機酸が液晶に極微量溶出した場合にも、液晶に大きな影響を与えやすくなる、つまり、液晶を汚染しやすくなる。これに対し、酸素原子当量が75g/eq以下であると、(A)有機酸が液晶に与える影響が小さく、液晶の汚染が抑制される。また、酸素原子当量が23g/eq以上であれば、(A)有機酸が液晶と相溶し難くなり、液晶の汚染が抑制される。 When the oxygen atom equivalent is excessively high, (A) even when a very small amount of organic acid is eluted in the liquid crystal, the liquid crystal is likely to be greatly affected, that is, the liquid crystal is easily contaminated. On the other hand, when the oxygen atom equivalent is 75 g / eq or less, (A) the influence of the organic acid on the liquid crystal is small, and the contamination of the liquid crystal is suppressed. In addition, when the oxygen atom equivalent is 23 g / eq or more, (A) the organic acid is hardly compatible with the liquid crystal, and the contamination of the liquid crystal is suppressed.
 ここで、(A)有機酸には、-OH基、-NH基、-NHR基(Rは、芳香族、脂肪族炭化水素又はこれらの誘導体を表す)、-COOH基、-OP(=O)(OH)基、-P(=O)(OH)基、-SOH基、-CONH基、-NHOH基からなる群より選ばれる1種以上の官能基が含まれることが好ましい。(A)有機酸にこれらの基が含まれると、(A)有機酸と液晶とが相溶し難くなり、液晶の汚染が抑制されやすい。(A)有機酸には、これらの基が1種のみ含まれてもよく、2種以上含まれてもよい。 Here, (A) the organic acid includes —OH group, —NH 2 group, —NHR group (R represents an aromatic, aliphatic hydrocarbon, or a derivative thereof), —COOH group, —OP (= It contains at least one functional group selected from the group consisting of O) (OH) 2 groups, —P (═O) (OH) 2 groups, —SO 3 H groups, —CONH 2 groups, and —NHOH groups. Is preferred. When these groups are contained in (A) the organic acid, it becomes difficult for the (A) organic acid and the liquid crystal to be compatible, and the contamination of the liquid crystal is easily suppressed. (A) One kind of these groups may be contained in the organic acid, or two or more kinds thereof may be contained.
 上記(A)有機酸には、エチレン性不飽和二重結合が分子中に含まれてもよい。(A)有機酸1分子内に不飽和二重結合が少なくとも1つ含まれると、(A)有機酸が(B)光硬化性樹脂と重合し、液晶シール剤組成物の硬化物から(A)有機酸が滲出し難くなる。(A)有機酸1分子内に含まれる不飽和二重結合の数は、2つ以上であってもよい。 The organic acid (A) may contain an ethylenically unsaturated double bond in the molecule. (A) When at least one unsaturated double bond is contained in one molecule of the organic acid, (A) the organic acid is polymerized with (B) the photocurable resin, and from the cured product of the liquid crystal sealant composition (A ) Organic acid is difficult to exude. (A) The number of unsaturated double bonds contained in one molecule of the organic acid may be two or more.
 1分子内に不飽和二重結合を有する(A)有機酸の例には、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルフタル酸、ビスフェノールA型エポキシアクリレートの酸無水物変性化合物、ビスフェノールA型エポキシ(メタ)アクリレートのリン酸変性化合物、ビスフェノールF型エポキシ(メタ)アクリレートの酸無水物変性化合物、ビスフェノールF型エポキシアクリレートのリン酸変性化合物、リン酸(メタ)アクリレート類等が挙げられる。ここでリン酸(メタ)アクリレート類は、例えば[CH=CRCOOCHCH[OCO(CHO]PO(OH)3-b(Rは水素原子またはメチル基を表し、aは0~2を表し、bは1または2を表す)、[CH=CRCOOCHCH[OCHCH(CH)]O]PO(OH)3-e(Rは水素原子またはメチル基を表し、dは0~2を表し、c及びeは1または2を表す)でありうる。 Examples of the organic acid (A) having an unsaturated double bond in one molecule include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, 2- (meth) acryloyloxyethyl succinic acid, 2- ( (Meth) acryloyloxyethylphthalic acid, bisphenol A type epoxy acrylate acid anhydride modified compound, bisphenol A type epoxy (meth) acrylate phosphoric acid modified compound, bisphenol F type epoxy (meth) acrylate acid anhydride modified compound, bisphenol Examples include phosphoric acid-modified compounds of F-type epoxy acrylate, phosphoric acid (meth) acrylates, and the like. Here, the phosphoric acid (meth) acrylates are, for example, [CH 2 ═CRCOOCH 2 CH 2 [OCO (CH 2 ) 6 ] a O] b PO (OH) 3 -b (R represents a hydrogen atom or a methyl group, a represents 0 to 2, b represents 1 or 2, and [CH 2 ═CRCOOOCH 2 CH 2 [OCH 2 CH (CH 3 )] c O] d PO (OH) 3-e (R represents a hydrogen atom) Or a methyl group, d represents 0 to 2, and c and e represent 1 or 2.
 一方、1分子内にエチレン性不飽和二重結合を有さない(A)有機酸としては、酢酸、酪酸、蓚酸、クエン酸、ラウリル酸、ステアリン酸、マロン酸、アジピン酸、酒石酸、安息香酸、サリチル酸、フタル酸、リン酸モノエチル、リン酸モノフェニル、リン酸ジエチル、リン酸モノ2-エチルヘキシル、リン酸ジ(2-エチルヘキシル)、ベンゼンスルホン酸、トルエンスルホン酸、スルホ安息香酸、ギ酸、プロピオン酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ミリスチン酸、パルミチン酸、マルガリン酸、コハク酸、グルタル酸、ドデカン二酸、セパシン酸、イソフタル酸、テレフタル酸、ベンゼントリカルボン酸(異性体含む)、ピロメリット酸、メリト酸、4-(4-ヒドロキシフェニル)安息香酸、6-ヒドロキシ-1-ナフトエ酸、フェニルホスホン酸、グリコール酸、トリメリット酸、トリメリット酸無水物、4’-ヒドロキシ-4-ビフェニルカルボン酸等が挙げられる。なお、(A)有機酸は、上記化合物の高分子量体でもあり得る。 On the other hand, (A) organic acid having no ethylenically unsaturated double bond in one molecule includes acetic acid, butyric acid, succinic acid, citric acid, lauric acid, stearic acid, malonic acid, adipic acid, tartaric acid, benzoic acid. , Salicylic acid, phthalic acid, monoethyl phosphate, monophenyl phosphate, diethyl phosphate, mono 2-ethylhexyl phosphate, di (2-ethylhexyl) phosphate, benzenesulfonic acid, toluenesulfonic acid, sulfobenzoic acid, formic acid, propion Acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, myristic acid, palmitic acid, margaric acid, succinic acid, glutaric acid, dodecanedioic acid, sepacic acid, isophthalic acid, terephthalic acid, benzenetricarboxylic acid Acids (including isomers), pyromellitic acid, mellitic acid, 4- (4-hydroxyphenyl) an Kosan, 6-hydroxy-1-naphthoic acid, phenylphosphonic acid, glycolic acid, trimellitic acid, trimellitic anhydride, 4'-hydroxy-4-biphenylcarboxylic acid and the like. The (A) organic acid can also be a high molecular weight product of the above compound.
 好ましい(A)有機酸の例としては、シュウ酸、酒石酸、トリメリット酸、トリメリット酸無水物、イソフタル酸、フェニルホスホン酸、4’-ヒドロキシ-4-ビフェニルカルボン酸、テレフタル酸、コハク酸、及びグルタル酸が挙げられる。 Examples of preferred (A) organic acids include oxalic acid, tartaric acid, trimellitic acid, trimellitic anhydride, isophthalic acid, phenylphosphonic acid, 4′-hydroxy-4-biphenylcarboxylic acid, terephthalic acid, succinic acid, And glutaric acid.
 上記結合を有する(A)有機酸の例には、上記結合を含むカルボン酸やリン酸が含まれ、例えば、下記式で表される化合物が含まれる。
Figure JPOXMLDOC01-appb-C000001
Examples of the organic acid (A) having the above bond include carboxylic acid and phosphoric acid having the above bond, for example, a compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000001
 (A)有機酸の好ましい分子量は60~3000であり、より好ましくは60~1000であり、さらに好ましくは60~500である。(A)有機酸の分子量が上記範囲であると、液晶シール剤組成物内で(A)有機酸が流動しやすく、液晶シール剤組成物の光硬化が促進されやすくなる。 (A) The preferred molecular weight of the organic acid is 60 to 3000, more preferably 60 to 1000, and still more preferably 60 to 500. When the molecular weight of the (A) organic acid is within the above range, the (A) organic acid easily flows in the liquid crystal sealing agent composition, and the photocuring of the liquid crystal sealing agent composition is easily promoted.
 また、液晶シール剤組成物100質量部に対する、(A)有機酸の含有量は0.01~10質量部であり、好ましくは0.05~2質量部である。(A)有機酸が上記範囲含まれると、液晶シール剤組成物の光硬化性が高まりやすく、さらに(A)有機酸によって液晶が汚染され難くなる。 In addition, the content of the (A) organic acid is 0.01 to 10 parts by mass, preferably 0.05 to 2 parts by mass with respect to 100 parts by mass of the liquid crystal sealant composition. When (A) the organic acid is included in the above range, the photocurability of the liquid crystal sealant composition is likely to be increased, and (A) the liquid crystal is hardly contaminated by the organic acid.
 (B)光硬化性樹脂
 (B)光硬化性樹脂は、エチレン性不飽和二重結合を1分子内に少なくとも1つ有する樹脂であれば特に制限されない。ただし、(B)光硬化性樹脂には、前述の(A)有機酸に相当する化合物は含まないものとする。(B)光硬化性樹脂の例として、(B1)(メタ)アクリル樹脂や、(B2)1分子内にエポキシ基と(メタ)アクリル基とをそれぞれ少なくとも1つ有する(メタ)アクリル変性エポキシ樹脂が挙げられる。光硬化性樹脂が、(B1)(メタ)アクリル樹脂、または(B2)(メタ)アクリル変性エポキシ樹脂であると、液晶シール剤組成物の光硬化性が十分に高まりやすい。また特に光硬化性樹脂が(B2)(メタ)アクリル変性エポキシ樹脂であると、液晶シール剤組成物の硬化物の耐湿性が高まりやすい。なお、本発明の液晶シール剤組成物には、(B1)(メタ)アクリル樹脂及び(B2)(メタ)アクリル変性エポキシ樹脂が含まれてもよい。
(B) Photocurable resin (B) The photocurable resin is not particularly limited as long as it is a resin having at least one ethylenically unsaturated double bond in one molecule. However, (B) the photo-curable resin does not include a compound corresponding to the aforementioned (A) organic acid. (B) As an example of a photocurable resin, (B1) (meth) acrylic resin, or (B2) (meth) acrylic modified epoxy resin having at least one epoxy group and (meth) acrylic group in one molecule. Is mentioned. When the photocurable resin is (B1) (meth) acrylic resin or (B2) (meth) acrylic-modified epoxy resin, the photocurability of the liquid crystal sealant composition is likely to be sufficiently increased. In particular, when the photocurable resin is a (B2) (meth) acryl-modified epoxy resin, the moisture resistance of the cured product of the liquid crystal sealant composition is likely to be increased. The liquid crystal sealant composition of the present invention may contain (B1) (meth) acrylic resin and (B2) (meth) acrylic modified epoxy resin.
 (B1)(メタ)アクリル樹脂は、1分子内に1つ以上の(メタ)アクリル基を含む化合物であり、エポキシ基を含まない化合物とする。なお、(メタ)アクリルとは、アクリルまたはメタクリルのいずれでもあり得ることをいう。 (B1) The (meth) acrylic resin is a compound containing one or more (meth) acrylic groups in one molecule and does not contain an epoxy group. In addition, (meth) acryl means that it can be either acrylic or methacrylic.
 (B1)(メタ)アクリル樹脂の例には、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール等のジアクリレートおよび/またはジメタクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートのジアクリレートおよび/またはジメタクリレート;ネオペンチルグリコール1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得たジオールのジアクリレートおよび/またはジメタクリレート;ビスフェノールA1モルに2モルのエチレンオキサイド若しくはプロピレンオキサイドを付加して得たジオールのジアクリレートおよび/またはジメタクリレート;トリメチロールプロパン1モルに3モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得たトリオールのジまたはトリアクリレートおよび/またはジまたはトリメタクリレート;ビスフェノールA1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得たジオールのジアクリレートおよび/またはジメタクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートトリアクリレートおよび/またはトリメタクリレート;トリメチロールプロパントリアクリレートおよび/またはトリメタクリレート、またはそのオリゴマー;ペンタエリスリトールトリアクリレートおよび/またはトリメタクリレート、またはそのオリゴマー;ジペンタエリスリトールのポリアクリレートおよび/またはポリメタクリレート;トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(メタクリロキシエチル)イソシアヌレート;アルキル変性ジペンタエリスリトールのポリアクリレートおよび/またはポリメタクリレート;カプロラクトン変性ジペンタエリスリトールのポリアクリレートおよび/またはポリメタクリレート;ヒドロキシピバリン酸ネオペンチルグリコールジアクリレートおよび/またはジメタクリレート;カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールジアクリレートおよび/またはジメタクリレート;エチレンオキサイド変性リン酸アクリレートおよび/またはジメタクリレート;エチレンオキサイド変性アルキル化リン酸アクリレートおよび/またはジメタクリレート;ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトールのオリゴアクリレートおよび/またはオリゴメタクリレート等が含まれる。 Examples of (B1) (meth) acrylic resins include diacrylates and / or dimethacrylates such as polyethylene glycol, propylene glycol, and polypropylene glycol; diacrylates and / or dimethacrylates of tris (2-hydroxyethyl) isocyanurate; neo Diacrylate and / or dimethacrylate of diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of pentyl glycol; of diol obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of bisphenol A Diacrylate and / or dimethacrylate; trimethylolpropane obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of trimethylolpropane Di- or triacrylate and / or di- or trimethacrylate of diol; Diacrylate and / or dimethacrylate of diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of bisphenol A; Tris (2-hydroxyethyl) ) Isocyanurate triacrylate and / or trimethacrylate; trimethylolpropane triacrylate and / or trimethacrylate or oligomer thereof; pentaerythritol triacrylate and / or trimethacrylate or oligomer thereof; polyacrylate and / or polypentaerythritol Methacrylate; tris (acryloxyethyl) isocyanurate; caprolactone-modified tris (acryloxy) Cyl) isocyanurate; caprolactone-modified tris (methacryloxyethyl) isocyanurate; polyacrylate and / or polymethacrylate of alkyl-modified dipentaerythritol; polyacrylate and / or polymethacrylate of caprolactone-modified dipentaerythritol; neopentyl glycol hydroxypivalate Diacrylate and / or dimethacrylate; caprolactone modified hydroxypivalate neopentyl glycol diacrylate and / or dimethacrylate; ethylene oxide modified phosphate acrylate and / or dimethacrylate; ethylene oxide modified alkylated phosphate acrylate and / or dimethacrylate; Neopentyl glycol, trimethylolpropane, pe Examples include oligoacrylate and / or oligomethacrylate of intererythritol.
 (B1)(メタ)アクリル樹脂の重量平均分子量は、例えば310~1000程度でありうる。(B1)(メタ)アクリル樹脂の重量平均分子量Mwは、例えばゲルパーミエーションクロマトグラフィー(GPC)により測定できる。 (B1) The weight average molecular weight of the (meth) acrylic resin may be, for example, about 310 to 1000. (B1) The weight average molecular weight Mw of the (meth) acrylic resin can be measured, for example, by gel permeation chromatography (GPC).
 また、液晶シール剤組成物における(B1)(メタ)アクリル樹脂の量は、求められる硬化性の程度にもよるが、液晶シール剤組成物100質量部に対して、10~99質量部であることが好ましく、20~99質量部であることがより好ましい。 In addition, the amount of (B1) (meth) acrylic resin in the liquid crystal sealing agent composition is 10 to 99 parts by mass with respect to 100 parts by mass of the liquid crystal sealing agent composition, although it depends on the required degree of curability. It is preferably 20 to 99 parts by mass.
 一方、(B2)(メタ)アクリル変性エポキシ樹脂は、(メタ)アクリル基とエポキシ基とを、それぞれ少なくとも1つ含む化合物であり、好ましくはエポキシ樹脂と(メタ)アクリル酸とを、例えば三級アミン等の塩基性触媒の存在下で反応させることにより得られる化合物である。 On the other hand, the (B2) (meth) acrylic-modified epoxy resin is a compound containing at least one (meth) acrylic group and an epoxy group, preferably an epoxy resin and (meth) acrylic acid, for example, tertiary. It is a compound obtained by reacting in the presence of a basic catalyst such as amine.
 (B2)(メタ)アクリル変性エポキシ樹脂は、分子内にエポキシ基と(メタ)アクリル基とを有するため、光硬化性と熱硬化性とを併せ持つことができる。さらに、(メタ)アクリル変性エポキシ樹脂が、非結晶性のエポキシ樹脂であったとしても、エポキシ基の数に対する水酸基の数の割合が多いことから、液晶に対する親和性が低く、液晶に対する溶解が十分に抑制される。 (B2) Since the (meth) acrylic-modified epoxy resin has an epoxy group and a (meth) acrylic group in the molecule, it can have both photocuring properties and thermosetting properties. Furthermore, even if the (meth) acryl-modified epoxy resin is a non-crystalline epoxy resin, since the ratio of the number of hydroxyl groups to the number of epoxy groups is large, the affinity for liquid crystals is low and the dissolution in liquid crystals is sufficient. To be suppressed.
 (B2)(メタ)アクリル変性エポキシ樹脂の原料となるエポキシ樹脂は、分子内にエポキシ基を2つ以上有する2官能以上のエポキシ樹脂であればよく、ビスフェノールA型、ビスフェノールF型、2,2’-ジアリルビスフェノールA型、ビスフェノールAD型、および水添ビスフェノール型等のビスフェノール型エポキシ樹脂;フェノールノボラック型、クレゾールノボラック型、ビフェニルノボラック型、およびトリスフェノールノボラック型等のノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;ナフタレン型エポキシ樹脂等が含まれる。3官能や4官能などの多官能エポキシ樹脂を(メタ)アクリル変性して得られる(メタ)アクリル変性エポキシ樹脂は、架橋密度が高く、密着強度が低下し易いことから、(B2)(メタ)アクリル変性エポキシ樹脂の原料となるエポキシ樹脂は、2官能のエポキシ樹脂であることが好ましい。 (B2) The epoxy resin used as a raw material of the (meth) acryl-modified epoxy resin may be a bifunctional or higher functional epoxy resin having two or more epoxy groups in the molecule, and is bisphenol A type, bisphenol F type, 2, 2 Bisphenol type epoxy resins such as' -diallyl bisphenol A type, bisphenol AD type, and hydrogenated bisphenol type; Novolak type epoxy resins such as phenol novolak type, cresol novolak type, biphenyl novolak type, and trisphenol novolak type; biphenyl type epoxy Resin; Naphthalene type epoxy resin and the like are included. The (meth) acryl-modified epoxy resin obtained by (meth) acryl modification of a trifunctional or tetrafunctional polyfunctional epoxy resin has a high crosslink density, and the adhesive strength is likely to decrease. Therefore, (B2) (meth) The epoxy resin used as the raw material for the acrylic-modified epoxy resin is preferably a bifunctional epoxy resin.
 また特に、2官能のエポキシ樹脂は、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、およびビスフェノール型エポキシ樹脂であることが好ましく、なかでもビスフェノールA型およびビスフェノールF型等のビスフェノール型エポキシ樹脂が、液晶シール剤組成物の塗布性等の観点から好ましい。 In particular, the bifunctional epoxy resin is preferably a biphenyl type epoxy resin, a naphthalene type epoxy resin, or a bisphenol type epoxy resin. Among them, bisphenol type epoxy resins such as bisphenol A type and bisphenol F type are liquid crystal seals. From the viewpoint of the coating properties of the agent composition.
 原料となるエポキシ樹脂は、1種類のみであってもよく、2種類以上を組み合わせてもよい。また、原料となるエポキシ樹脂は、分子蒸留法、洗浄法等により高純度化されていることが好ましい。 The raw material epoxy resin may be only one type, or two or more types may be combined. Moreover, it is preferable that the epoxy resin used as a raw material is highly purified by a molecular distillation method, a washing method, or the like.
 ここで、(B2)(メタ)アクリル変性エポキシ樹脂は、原料となるエポキシ樹脂のエポキシ基の10~99.5%が(メタ)アクリル基で変性されたものであることが好ましく、より好ましくは30~70%である。エポキシ基が上記範囲、(メタ)アクリル基で変性されていると、液晶シール剤組成物の光硬化性及び熱硬化性が良好になり、さらに液晶シール剤組成物の硬化物の耐湿性が低くなりやすい。 Here, the (B2) (meth) acrylic-modified epoxy resin is preferably one in which 10 to 99.5% of the epoxy group of the epoxy resin as a raw material is modified with a (meth) acrylic group, more preferably 30-70%. When the epoxy group is modified within the above range, (meth) acrylic group, the photocuring property and thermosetting property of the liquid crystal sealing agent composition become good, and the moisture resistance of the cured product of the liquid crystal sealing agent composition is low. Prone.
 (B2)(メタ)アクリル変性エポキシ樹脂の重量平均分子量は、例えば310~1000程度でありうる。(B2)(メタ)アクリル変性エポキシ樹脂の重量平均分子量Mwは、例えばゲルパーミエーションクロマトグラフィー(GPC)により測定できる。 (B2) The weight average molecular weight of the (meth) acryl-modified epoxy resin can be, for example, about 310 to 1000. (B2) The weight average molecular weight Mw of the (meth) acryl-modified epoxy resin can be measured, for example, by gel permeation chromatography (GPC).
 液晶シール剤組成物における(B2)(メタ)アクリル変性エポキシ樹脂の量は、求められる硬化性の程度にもよるが、液晶シール剤組成物100質量部に対して、10~99質量部であることが好ましく、20~99質量部であることがより好ましい。 The amount of the (B2) (meth) acrylic-modified epoxy resin in the liquid crystal sealant composition is 10 to 99 parts by mass with respect to 100 parts by mass of the liquid crystal sealant composition, although it depends on the required degree of curability. It is preferably 20 to 99 parts by mass.
 ここで、上記(B1)(メタ)アクリル樹脂および(B2)(メタ)アクリル変性エポキシ樹脂は、水酸基、ウレタン結合、アミド基、カルボキシル基などの水素結合性官能基を有することが好ましい。水素結合性官能基には、エポキシ樹脂のエポキシ基が(メタ)アクリル酸と反応することにより生成する水酸基や、(B1)(メタ)アクリル樹脂および(B2)(メタ)アクリル変性エポキシ樹脂の原料となる(メタ)アクリル酸やエポキシ樹脂に含まれる水酸基、ウレタン結合、カルボキシル基、およびアミド基等が含まれる。(B)光硬化性樹脂が、水素結合性官能基を有すると、疎水性である液晶材料との相溶性が低くなり、液晶への溶解が抑制される。その結果、液晶滴下工法用に適した液晶シール剤が得られる。 Here, the (B1) (meth) acrylic resin and the (B2) (meth) acryl-modified epoxy resin preferably have a hydrogen-bonding functional group such as a hydroxyl group, a urethane bond, an amide group, or a carboxyl group. The hydrogen bondable functional group includes a hydroxyl group generated by the reaction of the epoxy group of the epoxy resin with (meth) acrylic acid, and a raw material for the (B1) (meth) acrylic resin and (B2) (meth) acrylic modified epoxy resin. The (meth) acrylic acid and epoxy resin to be used include a hydroxyl group, a urethane bond, a carboxyl group, an amide group, and the like. (B) When a photocurable resin has a hydrogen bondable functional group, compatibility with the liquid crystal material which is hydrophobic will become low, and the melt | dissolution to a liquid crystal will be suppressed. As a result, a liquid crystal sealant suitable for the liquid crystal dropping method is obtained.
 (B1)(メタ)アクリル樹脂及び(B2)(メタ)アクリル変性エポキシ樹脂の水素結合性官能基当量は、1.0×10-4~5×10-3mol/gであることが好ましく、3.5×10-3~4.5×10-3mol/gであることがより好ましい。水素結合性官能基当量が1.0×10-4mol/g以上であると、(B1)(メタ)アクリル樹脂や(B2)(メタ)アクリル変性エポキシ樹脂の一分子中に水素結合性官能基が充分な数含まれる。そのため、(B)光硬化性樹脂の液晶への溶解が抑制されやすい。一方、水素結合性官能基当量が5×10-3mol/g以下であると、(B1)(メタ)アクリル樹脂および(B2)(メタ)アクリル変性エポキシ樹脂の硬化物が充分な耐湿性を有しやすく、液晶シール剤組成物の硬化物の耐湿性が低下しにくい。 The hydrogen bonding functional group equivalents of (B1) (meth) acrylic resin and (B2) (meth) acrylic modified epoxy resin are preferably 1.0 × 10 −4 to 5 × 10 −3 mol / g, More preferably, it is 3.5 × 10 −3 to 4.5 × 10 −3 mol / g. When the hydrogen bondable functional group equivalent is 1.0 × 10 −4 mol / g or more, the hydrogen bondable functional group is contained in one molecule of (B1) (meth) acrylic resin or (B2) (meth) acrylic modified epoxy resin. A sufficient number of groups are included. Therefore, (B) dissolution of the photocurable resin into the liquid crystal is easily suppressed. On the other hand, when the hydrogen bondable functional group equivalent is 5 × 10 −3 mol / g or less, the cured product of (B1) (meth) acrylic resin and (B2) (meth) acrylic modified epoxy resin has sufficient moisture resistance. It is easy to have, and the moisture resistance of the hardened | cured material of a liquid-crystal sealing compound composition does not fall easily.
 (B1)(メタ)アクリル樹脂および(B2)(メタ)アクリル変性エポキシ樹脂の水素結合性官能基当量(mol/g)は、「(B1)(メタ)アクリル樹脂または(B2)(メタ)アクリル変性エポキシ樹脂1分子に含まれる水素結合性官能基の数」/「(B1)(メタ)アクリル樹脂または(B2)(メタ)アクリル変性エポキシ樹脂の重量平均分子量(Mw)」として表される。例えば、水素結合性官能基として、(メタ)アクリル酸とエポキシ樹脂とを反応させて得られる水酸基のみを有する場合、水素結合性官能基当量は、反応させた(メタ)アクリル酸のモル数を、(メタ)アクリル変性エポキシ樹脂の重量平均分子量(Mw)で割ることにより求めることができる。 The hydrogen bondable functional group equivalent (mol / g) of (B1) (meth) acrylic resin and (B2) (meth) acryl-modified epoxy resin is “(B1) (meth) acrylic resin or (B2) (meth) acrylic”. It is expressed as “the number of hydrogen bonding functional groups contained in one molecule of the modified epoxy resin” / “weight average molecular weight (Mw) of (B1) (meth) acrylic resin or (B2) (meth) acrylic modified epoxy resin”. For example, when it has only a hydroxyl group obtained by reacting (meth) acrylic acid with an epoxy resin as a hydrogen bonding functional group, the hydrogen bonding functional group equivalent is the number of moles of (meth) acrylic acid reacted. , By dividing by the weight average molecular weight (Mw) of the (meth) acryl-modified epoxy resin.
 (B1)(メタ)アクリル樹脂の水素結合性官能基当量は、(B1)(メタ)アクリル樹脂自体が有する水素結合性官能基の量を調整すること等によって制御される。一方、(B2)(メタ)アクリル変性エポキシ樹脂の水素結合性官能基当量は、例えば、原料となるエポキシ樹脂に反応させる(メタ)アクリル酸のモル数を調整したり;原料となる(メタ)アクリル酸やエポキシ樹脂が有する水素結合性官能基の量を調整したりすることなどによって制御される。 (B1) The hydrogen bondable functional group equivalent of the (meth) acrylic resin is controlled by adjusting the amount of the hydrogen bondable functional group of the (B1) (meth) acrylic resin itself. On the other hand, the hydrogen bondable functional group equivalent of the (B2) (meth) acryl-modified epoxy resin is, for example, adjusting the number of moles of (meth) acrylic acid to be reacted with the raw material epoxy resin; It is controlled by adjusting the amount of hydrogen bonding functional groups of acrylic acid or epoxy resin.
 液晶シール剤組成物100質量部に対する、(B)光硬化性樹脂の総量(例えば、(B1)(メタ)アクリル樹脂と(B2)(メタ)アクリル変性エポキシ樹脂との合計量)は、10~99質量部であることが好ましく、20~99質量部であることがより好ましい。 The total amount of (B) photocurable resin (for example, the total amount of (B1) (meth) acrylic resin and (B2) (meth) acrylic-modified epoxy resin) with respect to 100 parts by mass of the liquid crystal sealing agent composition) is 10 to The amount is preferably 99 parts by mass, and more preferably 20 to 99 parts by mass.
 (C)チタノセン系光重合開始剤
 本発明の液晶シール剤組成物に含まれる(C)チタノセン系光重合開始剤は、前述の(B)光硬化性樹脂を硬化させるための化合物であり;光重合開始剤が、チタノセン系の化合物であると、液晶シール剤組成物の硬化性が高まりやすい。また、可視光領域を含む照射光によって、液晶シール剤組成物を硬化させることができる。
(C) titanocene photopolymerization initiator (C) titanocene photopolymerization initiator contained in the liquid crystal sealant composition of the present invention is a compound for curing the above-mentioned (B) photocurable resin; When the polymerization initiator is a titanocene compound, the curability of the liquid crystal sealant composition is likely to increase. In addition, the liquid crystal sealant composition can be cured by irradiation light including a visible light region.
 (C)チタノセン系光重合開始剤の例には、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、ビス(シクロペンタジエニル)-ジクロロチタニウム、ビス(シクロペンタジエニル)-ジフェニルチタニウム、ビス(シクロペンタジエニル)-ビス(2,3,4,5,6ペンタフルオロフェニル)チタニウム、ビス(シクロペンタジエニル)-ビス(2,6ジフルオロフェニル)チタニウム、ビス(メチルシクロペンタジエニル)-ビス(2,3,4,5,6ペンタフルオロフェニル)チタニウム、ビス(メチルシクロペンタジエニル)-ビス(2,6ジフルオロフェニル)チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(1-ピル-1-イル)エチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-((1-ピル-1-イル)メチル)フェニル]チタニウム、ビス(メチルシクロペンタジエニル)-ビス[2,6-ジフルオロ-3-((1-ピル-1-イル)メチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-((2,5-ジメチル-1-ピル-1-イル)メチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-((3-トリメチルシリル-2,5-ジメチル-1-ピル-1-イル)メチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-((2,5-ビス(モルホリノメチル)-1-ピル-1-イル)メチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-4-((2,5-ジメチル-1-ピル-1-イル)メチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-メチル-4-(2-(1-ピル-1-イル)エチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(1-メチル-2-(1-ピル-1-イル)エチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(6-(9-カルバゾル-9-イル)ヘキシル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(3-(4,5,6,7-テトラヒドロ-2-メチル-1-インドル-1-イル)プロピル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-((アセチルアミノ)メチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(プロピオニルアミノ)エチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(4-(ビバロイルアミノ)ブチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(2,2-ジメチルペンタノイルアミノ)エチル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(3-(ベンゾイルアミノ)プロピル)フェニル]チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(N-アリルメチルスルホニルアミノ)エチル)フェニル]チタニウム等が含まれる。液晶シール剤組成物には、上記化合物が1種のみ含まれてもよく、2種以上が含まれてもよい。 Examples of (C) titanocene photopolymerization initiators include bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl)- Phenyl) titanium, bis (cyclopentadienyl) -dichlorotitanium, bis (cyclopentadienyl) -diphenyltitanium, bis (cyclopentadienyl) -bis (2,3,4,5,6 pentafluorophenyl) titanium Bis (cyclopentadienyl) -bis (2,6difluorophenyl) titanium, bis (methylcyclopentadienyl) -bis (2,3,4,5,6 pentafluorophenyl) titanium, bis (methylcyclopenta Dienyl) -bis (2,6difluorophenyl) titanium, bis (cyclopentadienyl) -bis [2,6-diph Oro-3- (2- (1-pyr-1-yl) ethyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3-((1-pyr-1-yl) Methyl) phenyl] titanium, bis (methylcyclopentadienyl) -bis [2,6-difluoro-3-((1-py-1-yl) methyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3-((2,5-dimethyl-1-pyr-1-yl) methyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3- ( (3-Trimethylsilyl-2,5-dimethyl-1-pyr-1-yl) methyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3-((2,5-bis ( Morpholinomethyl) -1-pyr-1-yl) methyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-4-((2,5-dimethyl-1-pyr-1- Yl) methyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3-methyl-4- (2- (1-pyr-1-yl) ethyl) phenyl] titanium, bis ( Cyclopentadienyl) -bis [2,6-difluoro-3- (1-methyl-2- (1-pyr-1-yl) ethyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2, 6-Difluoro-3- (6- (9-carbazol-9-yl) hexyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3- (3- (4,5,5 6 7-tetrahydro-2-methyl-1-indol-1-yl) propyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3-((acetylamino) methyl) phenyl] titanium Bis (cyclopentadienyl) -bis [2,6-difluoro-3- (2- (propionylamino) ethyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3- (4- (Bivaloylamino) butyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3- (2- (2,2-dimethylpentanoylamino) ethyl) phenyl] titanium Bis (cyclopentadienyl) -bis [2,6-difluoro-3- (3- (benzoylamino) propyl) phen Le] titanium, bis (cyclopentadienyl) - include bis [2,6-difluoro-3-(2-(N-allyl-methylsulfonylamino)) phenyl] titanium and the like. The liquid crystal sealant composition may contain only one kind of the above compound or two or more kinds.
 液晶シール剤組成物100質量部に対する、(C)チタノセン系光重合開始剤の含有量は0.01~10質量部であり、好ましくは0.1~2質量部である。液晶シール剤組成物に、(C)チタノセン系光重合開始剤が上記範囲含まれると、液晶シール剤組成物の光硬化性が高まりやすい。 The content of the (C) titanocene photopolymerization initiator with respect to 100 parts by mass of the liquid crystal sealant composition is 0.01 to 10 parts by mass, preferably 0.1 to 2 parts by mass. If the liquid crystal sealant composition contains (C) the titanocene photopolymerization initiator in the above range, the photocurability of the liquid crystal sealant composition is likely to increase.
 (D)熱硬化性樹脂
 本発明の液晶シール剤組成物には、(D)熱硬化性樹脂が含まれてもよい。(D)熱硬化性樹脂が含まれると、液晶シール剤組成物の硬化物の耐湿性が高まりやすくなる。(D)熱硬化性樹脂の一例として、(D1)1分子内にエポキシ基を少なくとも1つ有するエポキシ樹脂が挙げられる。エポキシ基の数は、好ましくは2以上であり、特に好ましくは2である。
(D) Thermosetting resin The liquid crystal sealant composition of the present invention may contain (D) a thermosetting resin. (D) When a thermosetting resin is contained, the moisture resistance of the hardened | cured material of a liquid-crystal sealing compound composition will become easy to increase. (D) As an example of the thermosetting resin, (D1) an epoxy resin having at least one epoxy group in one molecule may be mentioned. The number of epoxy groups is preferably 2 or more, particularly preferably 2.
 (D1)エポキシ樹脂の例には、例えばビスフェノールA型、ビスフェノールF型、ビスフェノールS型、2,2’-ジアリルビスフェノールA型、ビスフェノールAD型、および水添ビスフェノール型等のビスフェノール型エポキシ樹脂;ジフェニルエーテル型エポキシ樹脂;フェノールノボラック型、クレゾールノボラック型、ビフェニルノボラック型、ビスフェノールノボラック型、ナフトールノボラック型、トリスフェノールノボラック型、ジシクロペンタジエンノボラック型等のノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;ナフチル型エポキシ樹脂;トリフェノールメタン型、トリフェノールエタン型、トリフェノールプロパン型等のトリフェノールアルカン型エポキシ樹脂;脂環型エポキシ樹脂等が含まれる。なかでも、ビスフェノールA型およびビスフェノールF型等のビスフェノール型エポキシ樹脂がより好ましい。これらのビスフェノール型エポキシ樹脂は、ジフェニルエーテル型エポキシ樹脂等と比べて結晶性が低いため、塗工安定性に優れる等の利点がある。 Examples of (D1) epoxy resins include bisphenol type epoxy resins such as bisphenol A type, bisphenol F type, bisphenol S type, 2,2′-diallyl bisphenol A type, bisphenol AD type, and hydrogenated bisphenol type; Type epoxy resins; phenol novolac type, cresol novolak type, biphenyl novolak type, bisphenol novolak type, naphthol novolak type, trisphenol novolak type, dicyclopentadiene novolak type, etc .; biphenyl type epoxy resin; naphthyl type epoxy resin A triphenolalkane type epoxy resin such as a triphenolmethane type, a triphenolethane type or a triphenolpropane type; an alicyclic epoxy resin or the like. Of these, bisphenol type epoxy resins such as bisphenol A type and bisphenol F type are more preferable. Since these bisphenol type epoxy resins have lower crystallinity than diphenyl ether type epoxy resins and the like, there are advantages such as excellent coating stability.
 また、(D1)エポキシ樹脂は、液晶に対する溶解性、拡散性が低く、得られる液晶パネルの表示特性が良好になるだけでなく、液晶シール剤組成物の硬化物の耐湿性が高まる。 In addition, (D1) epoxy resin has low solubility and diffusibility in liquid crystal, and not only the display characteristics of the obtained liquid crystal panel are improved, but also the moisture resistance of the cured product of the liquid crystal sealant composition is increased.
 (D1)エポキシ樹脂の重量平均分子量(Mw)は、300~3000であることが好ましく、300~2000であることがより好ましい。(D1)エポキシ樹脂の重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレンを標準として測定できる。(D1)エポキシ樹脂は、液状であってもよく、固形であってもよい。固形エポキシ樹脂の場合、軟化点が40℃以上150℃以下であることが好ましい。 (D1) The weight average molecular weight (Mw) of the epoxy resin is preferably 300 to 3000, and more preferably 300 to 2000. (D1) The weight average molecular weight of the epoxy resin can be measured, for example, by gel permeation chromatography (GPC) using polystyrene as a standard. (D1) The epoxy resin may be liquid or solid. In the case of a solid epoxy resin, the softening point is preferably 40 ° C or higher and 150 ° C or lower.
 液晶シール剤組成物には、(D)熱硬化性樹脂が1種のみ含まれてもよく、種類や分子量の異なる2種以上が含まれてもよい。液晶シール剤組成物100質量部に対する、(D)熱硬化性樹脂の量は20質量部以下であり、好ましくは10質量部以下である。(D)熱硬化性樹脂が含まれると、液晶シール剤組成物の耐湿性が高まりやすくなる。 The liquid crystal sealant composition may contain only one type of (D) thermosetting resin, or may contain two or more types or different molecular weights. The amount of (D) thermosetting resin relative to 100 parts by mass of the liquid crystal sealant composition is 20 parts by mass or less, preferably 10 parts by mass or less. (D) When a thermosetting resin is contained, the moisture resistance of a liquid-crystal sealing compound composition will become easy to increase.
 (E)熱硬化剤
 本発明の液晶シール剤組成物には、(E)熱硬化剤が含まれてもよい。(E)熱硬化剤は、熱硬化性樹脂を硬化させるための化合物であり、その種類は特に制限されないが、熱潜在性硬化剤であることが好ましい。熱潜在性硬化剤とは、液晶シール剤組成物を保存する状態(室温下)では、熱硬化性樹脂を硬化させず、加熱によって熱硬化性樹脂を硬化させる硬化剤である。
(E) Thermosetting agent The liquid crystal sealant composition of the present invention may contain (E) a thermosetting agent. (E) The thermosetting agent is a compound for curing the thermosetting resin, and the type thereof is not particularly limited, but is preferably a heat latent curing agent. The thermolatent curing agent is a curing agent that cures the thermosetting resin by heating without curing the thermosetting resin in a state where the liquid crystal sealant composition is stored (at room temperature).
 熱潜在性硬化剤は、公知のものでありうるが、液晶シール剤組成物の粘度安定性を高めるため、融点が50℃以上250℃以下である熱潜在性硬化剤であることが好ましい。また、低い熱硬化温度(80~100℃程度)でも樹脂を硬化させるとの観点から、融点は50℃以上150℃以下であることがより好ましい。 The thermal latent curing agent may be a known one, but is preferably a thermal latent curing agent having a melting point of 50 ° C. or higher and 250 ° C. or lower in order to improve the viscosity stability of the liquid crystal sealant composition. Further, from the viewpoint of curing the resin even at a low thermosetting temperature (about 80 to 100 ° C.), the melting point is more preferably 50 ° C. or more and 150 ° C. or less.
 熱潜在性硬化剤の好ましい例には、ジヒドラジド系熱潜在性硬化剤、イミダゾール系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤が含まれる。 Preferred examples of the thermal latent curing agent include dihydrazide thermal latent curing agent, imidazole thermal latent curing agent, amine adduct thermal latent curing agent, and polyamine thermal latent curing agent.
 ジヒドラジド系熱潜在性硬化剤の例には、アジピン酸ジヒドラジド(融点181℃)、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン(融点120℃)、7,11-オクタデカジエン-1,18-ジカルボヒドラジド(融点160℃)、ドデカン二酸ジヒドラジド(融点190℃)、およびセバシン酸ジヒドラジド(融点189℃)等が含まれる。 Examples of dihydrazide thermal latent curing agents include adipic acid dihydrazide (melting point 181 ° C.), 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin (melting point 120 ° C.), 7,11-octadecadien -1,18-dicarbohydrazide (melting point 160 ° C.), dodecanedioic acid dihydrazide (melting point 190 ° C.), sebacic acid dihydrazide (melting point 189 ° C.) and the like.
 イミダゾール系熱潜在性硬化剤は、例えば下記式(X)で表される構造の化合物でありうる。
Figure JPOXMLDOC01-appb-C000002
The imidazole-based latent heat curing agent may be a compound having a structure represented by the following formula (X), for example.
Figure JPOXMLDOC01-appb-C000002
 式(X)中、RおよびRはそれぞれ独立に、水素原子、低級アルキル基、低級ヒドロキシアルキル基、フェニル基またはベンジル基である。また、RおよびRはそれぞれ独立に、水素原子、低級アルキル基または低級ヒドロキシアルキル基である。そして、R~Rの少なくとも一つが、低級ヒドロキシアルキル基である。このように、低級ヒドロキシアルキル基を有するイミダゾール系熱潜在性硬化剤は、水酸基を含むため、液晶に対して溶解し難い。 In formula (X), R 1 and R 2 are each independently a hydrogen atom, a lower alkyl group, a lower hydroxyalkyl group, a phenyl group or a benzyl group. R 3 and R 4 are each independently a hydrogen atom, a lower alkyl group or a lower hydroxyalkyl group. At least one of R 1 to R 4 is a lower hydroxyalkyl group. Thus, the imidazole-based thermal latent curing agent having a lower hydroxyalkyl group contains a hydroxyl group and thus is difficult to dissolve in the liquid crystal.
 上記式(X)においてR~Rでありうる低級アルキル基は、メチル基、エチル基、プロピル基等の炭素数1~4のアルキル基であり、好ましくはメチル基またはエチル基である。一方、低級ヒドロキシアルキル基は、ヒドロキシメチル基、ヒドロキシエチル基等の炭素数1~4のヒドロキシアルキル基であり、好ましくはヒドロキシメチル基である。低級ヒドロキシアルキル基には、複数の水酸基が含まれてもよい。 In the above formula (X), the lower alkyl group which may be R 1 to R 4 is an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group or a propyl group, preferably a methyl group or an ethyl group. On the other hand, the lower hydroxyalkyl group is a hydroxyalkyl group having 1 to 4 carbon atoms such as a hydroxymethyl group or a hydroxyethyl group, preferably a hydroxymethyl group. The lower hydroxyalkyl group may contain a plurality of hydroxyl groups.
 イミダゾール系硬化触媒に含まれる水酸基の数は、特に制限されないが、水酸基数が2個以上になると耐水性が低下することがあるため、耐水性等を低下させない点では、水酸基数は1個であることが好ましい。 The number of hydroxyl groups contained in the imidazole-based curing catalyst is not particularly limited. However, when the number of hydroxyl groups is 2 or more, the water resistance may be decreased. Preferably there is.
 式(X)で表されるイミダゾール系熱潜在性硬化剤の融点は、液晶シール剤組成物の熱硬化温度にもよるが、比較的低温(例えば80~100℃程度)で熱硬化させる場合は、150℃以下であることが好ましく、120℃以下であることがより好ましく、60~120℃であることがさらに好ましく、80~100℃であることが特に好ましい。イミダゾール系熱潜在性硬化剤の融点が低すぎると、室温でイミダゾール系熱潜在性硬化剤が融解する。そして、(D)熱硬化性樹脂の硬化反応が進み、液晶シール剤組成物の室温での保存安定性が悪くなる。一方、融点が高すぎると、液晶シール剤組成物の熱硬化温度において、イミダゾール系熱潜在性硬化剤の触媒機能が十分に発揮され難くなる。イミダゾール系熱潜在性硬化剤の融点は、例えば芳香族環を含まない構造とすることで、低くすることができる。 The melting point of the imidazole-based heat-latent curing agent represented by the formula (X) depends on the heat-curing temperature of the liquid crystal sealant composition, but when it is heat-cured at a relatively low temperature (eg, about 80 to 100 ° C.). It is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, further preferably 60 to 120 ° C., and particularly preferably 80 to 100 ° C. If the melting point of the imidazole heat latent curing agent is too low, the imidazole heat latent curing agent melts at room temperature. Then, (D) the curing reaction of the thermosetting resin proceeds, and the storage stability of the liquid crystal sealing agent composition at room temperature deteriorates. On the other hand, if the melting point is too high, the catalytic function of the imidazole-based heat-latent curing agent is not sufficiently exhibited at the thermosetting temperature of the liquid crystal sealant composition. The melting point of the imidazole-based latent latent curing agent can be lowered by, for example, a structure that does not contain an aromatic ring.
 イミダゾール系熱潜在性硬化剤の融点を低くする点では、Rは、フェニル基やベンジル基以外の基、即ち水素原子、低級アルキル基または低級ヒドロキシアルキル基であることが好ましく、低級ヒドロキシアルキル基であることがより好ましい。 In terms of lowering the melting point of the imidazole-based heat latent curing agent, R 2 is preferably a group other than a phenyl group or a benzyl group, that is, a hydrogen atom, a lower alkyl group or a lower hydroxyalkyl group, and a lower hydroxyalkyl group It is more preferable that
 式(X)で表されるイミダゾール系熱潜在性硬化剤の例には、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-ヒドロキシメチルイミダゾール、1-ベンジル-5-ヒドロキシメチルイミダゾール、1,2-ジヒドロキシエチルイミダゾール等が含まれる。上記の中でも、融点が150℃以下のイミダゾール系熱潜在性硬化剤としては、例えば2-ヒドロキシメチルイミダゾールが挙げられる。 Examples of the imidazole thermal latent curing agent represented by the formula (X) include 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-hydroxymethyl Examples include imidazole, 1-benzyl-5-hydroxymethylimidazole, 1,2-dihydroxyethylimidazole and the like. Among these, examples of the imidazole thermal latent curing agent having a melting point of 150 ° C. or lower include 2-hydroxymethylimidazole.
 アミンアダクト系熱潜在性硬化剤は、触媒活性を有するアミン系化合物と任意の化合物とを反応させて得られる付加化合物でありうる。このようなアミンアダクト系熱潜在性硬化剤は、熱によりアミンが解離して活性化する。上記のアミン系化合物の例には、1,2,3級アミノ基を有する化合物が含まれ、例えば、アミキュアPN-40(融点110℃)やアミキュアPN-23(融点100℃)、アミキュアPN-31(融点115℃)、アミキュアPN-H(融点115℃)、アミキュアMY-24(融点120℃)、アミキュアMY-H(融点130℃)(以上、味の素ファインテクノ(株)製)等が含まれる。 The amine adduct thermal latent curing agent may be an addition compound obtained by reacting an amine compound having catalytic activity with an arbitrary compound. Such an amine adduct thermal latent curing agent is activated by dissociation of the amine by heat. Examples of the above amine compounds include compounds having 1,2, tertiary amino groups, such as Amicure PN-40 (melting point 110 ° C.), Amicure PN-23 (melting point 100 ° C.), Amicure PN- 31 (melting point 115 ° C.), Amicure PN-H (melting point 115 ° C.), Amicure MY-24 (melting point 120 ° C.), Amicure MY-H (melting point 130 ° C.) (Ajinomoto Fine Techno Co., Ltd.) It is.
 ポリアミン系熱潜在性硬化剤は、アミンとエポキシとを反応させて得られるポリマー構造を有する熱潜在硬化剤であり、その具体例には、(株)ADEKA製アデカハードナーEH4339S(軟化点120~130℃)、および(株)ADEKA製アデカハードナーEH4357S(軟化点73~83℃)等が含まれる。 The polyamine thermal latent curing agent is a thermal latent curing agent having a polymer structure obtained by reacting an amine and an epoxy. Specific examples thereof include ADEKA HARDNER EH4339S (softening point 120 to 130) manufactured by ADEKA Corporation. And Adeka Hardener EH4357S (softening point 73 to 83 ° C) manufactured by ADEKA Corporation.
 (E)熱硬化剤の含有量は、(B)光硬化性樹脂、及び(D)熱硬化性樹脂の総量100質量部に対して30質量部以下であることが好ましく、より好ましくは15質量部以下である。(E)熱硬化剤が含まれると、液晶シール剤組成物の熱硬化反応が十分に進行しやすくなる。 (E) The content of the thermosetting agent is preferably 30 parts by mass or less, more preferably 15 parts by mass with respect to 100 parts by mass of the total amount of (B) the photocurable resin and (D) the thermosetting resin. Or less. (E) When a thermosetting agent is included, the thermosetting reaction of the liquid crystal sealant composition is sufficiently facilitated.
 (F)無機フィラー
 本発明の液晶シール剤組成物には、さらに(F)無機フィラーが含まれてもよい。(F)無機フィラーの添加により、液晶シール剤組成物の粘度、硬化物の強度、および線膨張性の制御等を行うことができる。
(F) Inorganic filler The liquid crystal sealing agent composition of the present invention may further contain (F) an inorganic filler. (F) By adding an inorganic filler, it is possible to control the viscosity of the liquid crystal sealant composition, the strength of the cured product, the linear expansion, and the like.
 (F)無機フィラーは、特に制限されないが、その例には、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸マグネシウム、珪酸アルミニウム、珪酸ジルコニウム、酸化鉄、酸化チタン、酸化アルミニウム(アルミナ)、酸化亜鉛、二酸化ケイ素、チタン酸カリウム、カオリン、タルク、ガラスビーズ、セリサイト活性白土、ベントナイト、窒化アルミニウム、窒化ケイ素、窒化チタン等の無機フィラーが含まれ、好ましくは二酸化ケイ素、タルクである。 (F) The inorganic filler is not particularly limited, and examples thereof include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, aluminum oxide (alumina), zinc oxide, Inorganic fillers such as silicon dioxide, potassium titanate, kaolin, talc, glass beads, sericite activated clay, bentonite, aluminum nitride, silicon nitride, titanium nitride are included, and silicon dioxide and talc are preferred.
 (F)無機フィラーの形状は、特に限定されず、球状、板状、針状等の定形状あるいは非定形状のいずれであってもよい。(F)無機フィラーは平均一次粒子径が1.5μm以下であることが好ましく、かつその比表面積が1m/g~500m/gであることが好ましい。(F)無機フィラーの平均一次粒子径は、JIS Z8825に記載のレーザー回折法で測定できる。また、比表面積測定は、JIS Z8830に記載のBET法により測定できる。 (F) The shape of the inorganic filler is not particularly limited, and may be a regular shape such as a spherical shape, a plate shape, or a needle shape, or an irregular shape. The (F) inorganic filler preferably has an average primary particle size of 1.5 μm or less, and a specific surface area of 1 m 2 / g to 500 m 2 / g. (F) The average primary particle diameter of the inorganic filler can be measured by a laser diffraction method described in JIS Z8825. The specific surface area can be measured by the BET method described in JIS Z8830.
 (F)無機フィラーの量は、液晶シール剤組成物100質量部に対して、30質量部以下であることが好ましく、15質量部以下であることがより好ましい。 (F) The amount of the inorganic filler is preferably 30 parts by mass or less and more preferably 15 parts by mass or less with respect to 100 parts by mass of the liquid crystal sealant composition.
 (G)有機フィラー
 本発明の液晶シール剤組成物には、必要に応じて(G)有機フィラーが含まれてもよい。液晶シール剤組成物に(G)有機フィラーが含まれると、液晶シール剤組成物の硬化物の耐衝撃性等が高まりやすい。(G)有機フィラーの種類は、特に制限されないが、液晶シール剤組成物を熱硬化させる場合に、熱硬化温度近傍で(G)有機フィラーが融解すると、液晶シール剤組成物が液だれする。一方で、(G)有機フィラーの融点または軟化点が高すぎると、(G)有機フィラーが変形し難くなる。そこで、(G)有機フィラーの融点または軟化点が30~120℃であることが好ましい。
(G) Organic filler (G) An organic filler may be contained in the liquid-crystal sealing compound composition of this invention as needed. When (G) organic filler is contained in the liquid crystal sealant composition, the impact resistance and the like of the cured product of the liquid crystal sealant composition are likely to increase. The type of (G) organic filler is not particularly limited, but when the liquid crystal sealant composition is thermally cured, when the (G) organic filler is melted in the vicinity of the thermosetting temperature, the liquid crystal sealant composition is dripped. On the other hand, if the melting point or softening point of the (G) organic filler is too high, the (G) organic filler becomes difficult to deform. Therefore, the melting point or softening point of the (G) organic filler is preferably 30 to 120 ° C.
 (G)有機フィラーの例には、シリコーン微粒子、アクリル微粒子、スチレン・ジビニルベンゼン共重合体等のスチレン微粒子、およびポリオレフィン微粒子からなる群より選ばれる微粒子などが含まれる。 (G) Examples of the organic filler include fine particles selected from the group consisting of silicone fine particles, acrylic fine particles, styrene fine particles such as styrene / divinylbenzene copolymer, and polyolefin fine particles.
 (G)有機フィラーの形状は特に制限されず、例えば球状等でありうる。また(G)有機フィラーの平均粒子径は、液晶セルのギャップが通常5μm以下であるため、0.05~5μmであることが好ましく、より好ましくは0.07~3μmである。(G)有機フィラーの平均粒子径は、例えばJIS Z8825に記載のレーザー回折法で測定できる。 (G) The shape of the organic filler is not particularly limited, and may be, for example, spherical. The average particle diameter of the organic filler (G) is preferably 0.05 to 5 μm, more preferably 0.07 to 3 μm, since the gap of the liquid crystal cell is usually 5 μm or less. (G) The average particle diameter of the organic filler can be measured by, for example, a laser diffraction method described in JIS Z8825.
 (G)有機フィラーの量は、液晶シール剤組成物100質量部に対して、30質量部以下であることが好ましく、15質量部以下であることがより好ましい。 (G) The amount of the organic filler is preferably 30 parts by mass or less and more preferably 15 parts by mass or less with respect to 100 parts by mass of the liquid crystal sealant composition.
 (H)その他の添加剤
 本発明の液晶シール剤組成物には、必要に応じてさらに、熱ラジカル重合開始剤、シランカップリング剤等のカップリング剤、イオントラップ剤、イオン交換剤、レベリング剤、顔料、染料、可塑剤、消泡剤等の添加剤が含まれてもよい。また、液晶パネルのギャップを調整するためにスペーサー等が配合されていてもよい。
(H) Other additives The liquid crystal sealant composition of the present invention may further include a thermal radical polymerization initiator, a coupling agent such as a silane coupling agent, an ion trapping agent, an ion exchange agent, and a leveling agent as necessary. Additives such as pigments, dyes, plasticizers and antifoaming agents may be included. In addition, a spacer or the like may be blended to adjust the gap of the liquid crystal panel.
 ・液晶シール剤組成物の用途
 本発明の液晶シール剤は、液晶注入工法と液晶滴下工法のいずれにも用いることができる。特に、本発明の液晶シール剤組成物は、液晶に対して溶解し難く、短時間で硬化できる点等から、好ましくは液晶滴下工法に用いられる。液晶滴下工法における硬化は、光硬化のみであっても、光硬化と熱硬化の併用であってもよいが、加熱による液晶の劣化が少なく、速やかに硬化できる等の点から、光硬化と熱硬化とを併用することが好ましい。
-Use of liquid crystal sealing agent composition The liquid crystal sealing agent of this invention can be used for both a liquid crystal injection construction method and a liquid crystal dropping construction method. In particular, the liquid crystal sealant composition of the present invention is preferably used in a liquid crystal dropping method because it is difficult to dissolve in liquid crystals and can be cured in a short time. Curing in the liquid crystal dropping method may be only photocuring or a combination of photocuring and thermosetting. However, the photocuring and heat can be quickly cured because there is little deterioration of the liquid crystal due to heating and it can be cured quickly. It is preferable to use in combination with curing.
 光硬化と熱硬化を併用する液晶滴下工法用の液晶シール剤は、(B)光硬化性樹脂、(C)チタノセン系光重合開始剤、(A)有機酸、(D)熱硬化性樹脂、(E)熱硬化剤を含むことが好ましく、(F)無機フィラーや(G)有機フィラー等をさらに含むことが好ましい。 The liquid crystal sealing agent for the liquid crystal dropping method using both photocuring and thermosetting includes (B) a photocurable resin, (C) a titanocene photopolymerization initiator, (A) an organic acid, (D) a thermosetting resin, (E) It preferably contains a thermosetting agent, and preferably further contains (F) an inorganic filler, (G) an organic filler, and the like.
 本発明の液晶シール剤組成物のE型粘度計を用いた25℃、2.5rpmでの粘度は、30~350Pa・sであることが好ましい。粘度が上記範囲にある液晶シール剤は、塗工安定性に優れる。 The viscosity of the liquid crystal sealant composition of the present invention at 25 ° C. and 2.5 rpm using an E-type viscometer is preferably 30 to 350 Pa · s. A liquid crystal sealant having a viscosity in the above range is excellent in coating stability.
 2.液晶表示パネルの製造方法
 本発明の液晶表示パネルは、表示基板と、それと対になる対向基板と、表示基板と対向基板との間に介在している枠状のシール部材と、表示基板と対向基板との間のシール部材で囲まれた空間に充填された液晶層とを含む。本発明の液晶シール剤の硬化物を、シール部材とすることができる。
2. Manufacturing method of liquid crystal display panel The liquid crystal display panel of the present invention is a display substrate, a counter substrate that is paired with the display substrate, a frame-shaped sealing member interposed between the display substrate and the counter substrate, and a display substrate. And a liquid crystal layer filled in a space surrounded by a sealing member between the substrate and the substrate. The cured product of the liquid crystal sealant of the present invention can be used as a seal member.
 表示基板および対向基板は、いずれも透明基板である。透明基板の材質は、ガラス、または、ポリカーボネート、ポリエチレンテレフタレート、ポリエーテルサルフォンおよびPMMA等のプラスチックでありうる。 The display substrate and the counter substrate are both transparent substrates. The material of the transparent substrate can be glass or plastic such as polycarbonate, polyethylene terephthalate, polyethersulfone and PMMA.
 表示基板または対向基板の表面には、マトリックス状のTFT、カラーフィルタ、ブラックマトリクスなどが配置されうる。表示基板または対向基板の表面には、さらに配向膜が形成される。配向膜には、公知の有機配向剤や無機配向剤などが含まれる。 A matrix-like TFT, a color filter, a black matrix, or the like can be disposed on the surface of the display substrate or the counter substrate. An alignment film is further formed on the surface of the display substrate or the counter substrate. The alignment film includes a known organic alignment agent or inorganic alignment agent.
 このような液晶表示パネルは、本発明の液晶シール剤組成物を用いて製造されうる。液晶表示パネルの製造方法には、液晶滴下工法と、液晶注入工法とがある。 Such a liquid crystal display panel can be manufactured using the liquid crystal sealant composition of the present invention. The liquid crystal display panel manufacturing method includes a liquid crystal dropping method and a liquid crystal injection method.
 液晶滴下工法による液晶表示パネルの製造方法は、
 a1)一方の基板に、本発明の液晶シール剤組成物を塗布し、液晶シールパターンを形成する第1の工程と、
 a2)液晶シール剤組成物からなる液晶シールパターンが未硬化の状態において、前記液晶シールパターンで囲まれた領域、または前記液晶シールパターンで囲まれた領域に対向する他方の基板の領域に、液晶を滴下する第2の工程と、
 a3)一方の基板と、他方の基板とを、液晶シールパターンを介して重ね合わせて、液晶シール剤組成物を光硬化させる第3の工程と、を含む。
The manufacturing method of the liquid crystal display panel by the liquid crystal dropping method is
a1) applying a liquid crystal sealant composition of the present invention to one substrate to form a liquid crystal seal pattern;
a2) When the liquid crystal seal pattern composed of the liquid crystal sealant composition is in an uncured state, the liquid crystal is formed on the region surrounded by the liquid crystal seal pattern or the region of the other substrate facing the region surrounded by the liquid crystal seal pattern. A second step of dropping
a3) including a third step in which one substrate and the other substrate are superposed through a liquid crystal seal pattern to photocur the liquid crystal sealant composition.
 a2)の工程における、シールパターンが未硬化の状態とは、液晶シール剤の硬化反応がゲル化点までは進行していない状態を意味する。このため、a2)の工程では、液晶シール剤の液晶への溶解を抑制するために、シールパターンを光照射または加熱して半硬化させてもよい。一方の基板および他方の基板は、それぞれ表示基板または対向基板である。 In the step a2), the state in which the seal pattern is uncured means a state in which the curing reaction of the liquid crystal sealant has not progressed to the gel point. Therefore, in the step a2), the seal pattern may be semi-cured by light irradiation or heating in order to suppress dissolution of the liquid crystal sealant in the liquid crystal. One substrate and the other substrate are a display substrate or a counter substrate, respectively.
 a3)の工程では、光による硬化のみを行ってもよいが、光照射による硬化(仮硬化)を行った後、加熱による硬化(本硬化)を行うことが好ましい。光照射による仮硬化で液晶シール剤を瞬時に硬化させることで、液晶への溶解を抑制できるからである。 In the step a3), only curing by light may be performed, but it is preferable to perform curing (main curing) by heating after curing by light irradiation (temporary curing). This is because the liquid crystal sealant can be instantly cured by temporary curing by light irradiation to suppress dissolution in the liquid crystal.
 光照射エネルギーは、(B)光硬化性樹脂等を硬化させることができる程度であればよく、1000~3000mJ/cm程度、好ましくは2000mJ/cm程度である。本発明の液晶シール剤組成物には、(C)チタノセン系光重合開始剤が含まれるため、照射光は紫外線もしくは可視領域を含む光でありうる。一方、熱硬化温度は、液晶シール剤の組成にもよるが、液晶の劣化を少なくする等の点から、できるだけ低い温度、例えば120℃程度、好ましくは80~100℃であり、熱硬化時間は1~2時間程度である。 Irradiation energy, (B) may be a degree that can cure the photocurable resin or the like, 1000 ~ 3000mJ / cm 2 or so, preferably 2000 mJ / cm 2 or so. Since the liquid crystal sealant composition of the present invention contains (C) a titanocene photopolymerization initiator, the irradiation light can be ultraviolet light or light containing a visible region. On the other hand, although depending on the composition of the liquid crystal sealant, the thermosetting temperature is as low as possible, for example, about 120 ° C., preferably 80 to 100 ° C. from the viewpoint of reducing deterioration of the liquid crystal, and the thermosetting time is About 1 to 2 hours.
 液晶滴下工法では、未硬化の液晶シール剤組成物と液晶との接触時間が比較的長いため、液晶汚染を生じやすい。これに対して本発明の液晶シール剤組成物は、液晶への溶解性が低いため、本発明の液晶シール剤組成物を用いた液晶滴下工法により得られる液晶表示パネルは、表示信頼性に優れている。 In the liquid crystal dropping method, since the contact time between the uncured liquid crystal sealing agent composition and the liquid crystal is relatively long, liquid crystal contamination is likely to occur. On the other hand, since the liquid crystal sealing composition of the present invention has low solubility in liquid crystals, the liquid crystal display panel obtained by the liquid crystal dropping method using the liquid crystal sealing composition of the present invention has excellent display reliability. ing.
 一方、液晶注入工法による液晶表示パネルの製造方法は、
 b1)一方の基板に、本発明の液晶シール剤組成物を塗布し、液晶シールパターンを形成する第1の工程と、
 b2)一方の基板と、他方の基板とを、液晶シールパターンを介して重ね合わせる第2の工程と、
 b3)液晶シールパターンを光硬化させて、液晶を注入するための注入口を有する液晶注入用セルを得る第3の工程と、
 b4)液晶を、注入口を介して液晶注入用セルに注入する第4の工程と、
 b5)注入口を封止する第5の工程と、を含む。
On the other hand, the manufacturing method of the liquid crystal display panel by the liquid crystal injection method is
b1) a first step of applying the liquid crystal sealing agent composition of the present invention to one substrate to form a liquid crystal sealing pattern;
b2) a second step of superimposing one substrate and the other substrate via a liquid crystal seal pattern;
b3) a third step of photocuring the liquid crystal seal pattern to obtain a liquid crystal injection cell having an injection port for injecting liquid crystal;
b4) a fourth step of injecting the liquid crystal into the liquid crystal injection cell through the injection port;
b5) a fifth step of sealing the inlet.
 b1)~b3)の工程では、液晶注入用セルを準備する。まず、2枚の透明な基板(例えば、ガラス板)を準備する。そして、一方の基板に液晶シール剤組成物で液晶シールパターンを形成する。基板のシールパターンが形成された面に、他方の基板を重ね合わせた後、液晶シールパターンを硬化させればよい。この際、液晶注入用セルの一部に、液晶を注入するための注入口を設ける必要があるが、注入口は液晶シールパターンを描画する際に、一部に開口部を設ければよい。また、液晶シールパターンを形成した後に、所望の箇所の液晶シールパターンを除去して注入口を設けてもよい。 In the steps b1) to b3), a liquid crystal injection cell is prepared. First, two transparent substrates (for example, glass plates) are prepared. Then, a liquid crystal seal pattern is formed on one substrate with the liquid crystal sealant composition. The liquid crystal seal pattern may be cured after the other substrate is superimposed on the surface of the substrate on which the seal pattern is formed. At this time, it is necessary to provide an injection port for injecting liquid crystal in a part of the liquid crystal injection cell, but the injection port may be provided with an opening in part when drawing a liquid crystal seal pattern. Moreover, after forming the liquid crystal seal pattern, the liquid crystal seal pattern at a desired location may be removed to provide an injection port.
 b3)の工程における光硬化条件は、液晶シール剤の組成にもよるが、例えば光照射エネルギーは、1000~3000mJ/cm程度である。 Although the photocuring conditions in the step b3) depend on the composition of the liquid crystal sealant, for example, the light irradiation energy is about 1000 to 3000 mJ / cm 2 .
 b4)の工程は、b1)~b3)の工程で得られた液晶注入用セルの内部を真空状態にして、液晶注入用セルの注入口から液晶を吸い込ませるという公知の方法に準じて行えばよい。b5)の工程では、液晶シール剤を、液晶注入用セルの注入口に封入した後、硬化させてもよい。 The step b4) can be performed according to a known method in which the inside of the liquid crystal injection cell obtained in the steps b1) to b3) is evacuated and the liquid crystal is sucked from the injection port of the liquid crystal injection cell. Good. In the step b5), the liquid crystal sealant may be cured after being sealed in the injection port of the liquid crystal injection cell.
 液晶注入工法では、未硬化の液晶シール剤組成物と液晶が接触する時間は比較的短い。しかし、液晶注入用セルの液晶シール剤組成物の硬化が十分に進行していなくても、液晶を注入する場合がある。本発明の液晶シール剤組成物は液晶への溶解性が低いため、そのような場合でも液晶を汚染しにくい。よって、本発明の液晶シール剤組成物を用いた液晶注入工法によっても表示信頼性に優れた液晶表示パネルを得られる。 In the liquid crystal injection method, the time for which the liquid crystal sealant composition and the liquid crystal are in contact with each other is relatively short. However, the liquid crystal may be injected even if the liquid crystal sealing agent composition of the liquid crystal injection cell is not sufficiently cured. Since the liquid crystal sealing agent composition of the present invention has low solubility in liquid crystals, it is difficult to contaminate the liquid crystals even in such a case. Therefore, a liquid crystal display panel excellent in display reliability can also be obtained by a liquid crystal injection method using the liquid crystal sealant composition of the present invention.
 以下に、本発明に係る実施例を具体的に説明するが、本発明は、これらの実施例に限定されるものではない。したがって、本発明から逸脱しない限り、材料、製造方法等は適宜変更することができる。 Hereinafter, examples according to the present invention will be described in detail, but the present invention is not limited to these examples. Therefore, materials, manufacturing methods, and the like can be changed as appropriate without departing from the present invention.
 [合成例1](メタクリル酸変性ビスフェノールF型エポキシ樹脂の合成(95%部分メタクリル化物))
 160gの液状ビスフェノールF型エポキシ樹脂(エポトートYDF-8170C 新日鉄住金化学社製 エポキシ当量160g/eq)、0.1gのp-メトキシフェノール(重合禁止剤)、0.2gのトリエタノールアミン(触媒)、及び81.7gのメタクリル酸をフラスコ内に仕込んだ。当該フラスコ内に乾燥空気を送り込んで90℃で還流攪拌しながら5時間反応させた。得られた化合物を、超純水にて20回洗浄し、メタクリル酸変性ビスフェノールF型エポキシ樹脂(重量平均分子量:484)を得た。
[Synthesis Example 1] (Synthesis of methacrylic acid-modified bisphenol F type epoxy resin (95% partially methacrylated))
160 g of liquid bisphenol F type epoxy resin (Epototo YDF-8170C manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., epoxy equivalent 160 g / eq), 0.1 g of p-methoxyphenol (polymerization inhibitor), 0.2 g of triethanolamine (catalyst), And 81.7 g of methacrylic acid were charged into the flask. Dry air was fed into the flask and reacted at 90 ° C. for 5 hours with stirring under reflux. The obtained compound was washed 20 times with ultrapure water to obtain a methacrylic acid-modified bisphenol F type epoxy resin (weight average molecular weight: 484).
 [実施例1]
 合成例1で得られたメタクリル酸変性ビスフェノールF型エポキシ樹脂100質量部、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム(商品名 イルガキュア784、BASF社製)0.5質量部、及びシュウ酸0.5質量部を混合して液晶シール剤組成物を調製した。
[Example 1]
100 parts by mass of methacrylic acid-modified bisphenol F type epoxy resin obtained in Synthesis Example 1, bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrole) A liquid crystal sealant composition was prepared by mixing 0.5 parts by mass of 1-yl) -phenyl) titanium (trade name Irgacure 784, manufactured by BASF) and 0.5 parts by mass of oxalic acid.
 [実施例2]
 シュウ酸を酒石酸に変更した以外は実施例1と同様にして液晶シール剤組成物を調製した。
[Example 2]
A liquid crystal sealant composition was prepared in the same manner as in Example 1 except that oxalic acid was changed to tartaric acid.
 [実施例3]
 シュウ酸をトリメリット酸に変更した以外は、実施例1と同様にして液晶シール剤組成物を作製した。
[Example 3]
A liquid crystal sealant composition was prepared in the same manner as in Example 1 except that oxalic acid was changed to trimellitic acid.
 [実施例4]
 シュウ酸をトリメリット酸無水物に変更した以外は実施例1と同様にして、液晶シール剤組成物を調製した。
[Example 4]
A liquid crystal sealant composition was prepared in the same manner as in Example 1 except that oxalic acid was changed to trimellitic anhydride.
 [実施例5]
 シュウ酸をイソフタル酸に変更した以外は実施例1と同様にして液晶シール剤組成物を調製した。
[Example 5]
A liquid crystal sealant composition was prepared in the same manner as in Example 1 except that oxalic acid was changed to isophthalic acid.
 [実施例6]
 シュウ酸をフェニルホスホン酸に変更した以外は実施例1と同様にして液晶シール剤組成物を調製した。
[Example 6]
A liquid crystal sealant composition was prepared in the same manner as in Example 1 except that oxalic acid was changed to phenylphosphonic acid.
 [実施例7]
 シュウ酸を4’-ヒドロキシ-4-ビフェニルカルボン酸に変更した以外は実施例1と同様にして液晶シール剤組成物を調製した。
[Example 7]
A liquid crystal sealant composition was prepared in the same manner as in Example 1 except that oxalic acid was changed to 4′-hydroxy-4-biphenylcarboxylic acid.
 [比較例1]
 シュウ酸を添加しなかったこと以外は実施例1と同様にして液晶シール剤組成物を調製した。
[Comparative Example 1]
A liquid crystal sealant composition was prepared in the same manner as in Example 1 except that oxalic acid was not added.
 [比較例2]
 シュウ酸を2-エチルヘキシルホスフェートに変更した以外は実施例1と同様にして液晶シール剤組成物を調製した。
[Comparative Example 2]
A liquid crystal sealant composition was prepared in the same manner as in Example 1 except that oxalic acid was changed to 2-ethylhexyl phosphate.
 [比較例3]
 シュウ酸を3,5-ビストリフルオロメチル安息香酸に変更した以外は実施例1と同様にして液晶シール剤組成物を調製した。
[Comparative Example 3]
A liquid crystal sealant composition was prepared in the same manner as in Example 1 except that oxalic acid was changed to 3,5-bistrifluoromethylbenzoic acid.
 [評価]
 実施例1~7及び比較例1~3で得られた液晶シール剤組成物について、1)液晶の電圧保持率、2)光硬化性を以下の方法で評価した。結果を表1に示す。
[Evaluation]
With respect to the liquid crystal sealing agent compositions obtained in Examples 1 to 7 and Comparative Examples 1 to 3, 1) voltage holding ratio of liquid crystal and 2) photocurability were evaluated by the following methods. The results are shown in Table 1.
 1)液晶の電圧保持率
 実施例および比較例で得られた0.1gの液晶シール剤組成物と、1gの液晶(MLC-7021-000、メルク社製)とをバイアル瓶に投入し、120℃で1時間加熱して液晶混合物を得た。次いで、この液晶混合物を取り出して、透明電極が予め形成されたガラスセル(KSSZ-10/B111M1NSS05、EHC社製)に注入し、電圧1Vを印加し、60Hzでの電圧保持率を6254型測定装置(東陽テクニカ製)により測定した。評価は以下のように行った。
 〇:電圧保持率が90%以上であった場合(液晶への汚染が少ない)
 ×:電圧保持率が90%未満であった場合(液晶への汚染が生じた)
1) Voltage holding ratio of liquid crystal 0.1 g of the liquid crystal sealant composition obtained in Examples and Comparative Examples and 1 g of liquid crystal (MLC-7021-000, manufactured by Merck & Co., Inc.) were put into a vial. A liquid crystal mixture was obtained by heating at 0 ° C. for 1 hour. Next, this liquid crystal mixture is taken out and injected into a glass cell (KSSZ-10 / B111M1NSS05, manufactured by EHC) in which a transparent electrode is formed in advance, a voltage of 1 V is applied, and a voltage holding ratio at 60 Hz is measured by a 6254 type measuring device. It was measured by (Toyo Technica). Evaluation was performed as follows.
◯: When the voltage holding ratio is 90% or more (the liquid crystal is less contaminated)
X: When the voltage holding ratio was less than 90% (contamination to the liquid crystal occurred)
 2)光硬化性
 実施例および比較例で得られた液晶シール剤組成物に、1mW/cmの光(400nm以下の波長をカットし、405nmセンサーで校正した光)を照射後の粘度上昇挙動を、VISCOANALYSER VAR100(REOLOGICA INSTRUMENT社製)を用いて測定した。光照射後の液晶シール剤組成物の粘度が、飽和粘度値に対して50%の値となるまでの硬化時間を測定した。飽和粘度値とは、液晶シール剤組成物を完全硬化させたときの粘度である。硬化時間が短い程、硬化性に優れると判断できる。
2) Photocurability Viscosity increasing behavior after irradiation of liquid crystal sealant compositions obtained in Examples and Comparative Examples with 1 mW / cm 2 light (light with a wavelength of 400 nm or less cut and calibrated with a 405 nm sensor) Was measured using VISCOANALYSER VAR100 (manufactured by REOLOGICA INSTRUMENT). The curing time until the viscosity of the liquid crystal sealant composition after light irradiation reached 50% of the saturated viscosity value was measured. The saturated viscosity value is a viscosity when the liquid crystal sealant composition is completely cured. It can be determined that the shorter the curing time, the better the curability.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、液晶シール剤組成物に有機酸が含まれる(実施例1~7及び比較例2、3)と、有機酸を含まない場合(比較例1)と比較して光硬化性が高まった。また、有機酸の酸素原子当量が23以上75以下である(実施例1~7)と、酸素原子当量が75超である場合(比較例2及び3)と比較して、液晶の電圧保持率が極めて良好であった。また、比較例2及び3では、光硬化性は良好であったが、液晶が汚染されたため、電圧保持率が低下した。 As shown in Table 1, the liquid crystal sealant composition contained an organic acid (Examples 1 to 7 and Comparative Examples 2 and 3), and compared with the case where no organic acid was contained (Comparative Example 1). Increased curability. In addition, when the oxygen atom equivalent of the organic acid is 23 or more and 75 or less (Examples 1 to 7), compared with the case where the oxygen atom equivalent is more than 75 (Comparative Examples 2 and 3), the voltage holding ratio of the liquid crystal Was very good. In Comparative Examples 2 and 3, the photocurability was good, but the liquid crystal was contaminated, so the voltage holding ratio decreased.
 [実施例8]
 合成例1で得られたメタクリル酸変性ビスフェノールF型エポキシ樹脂43質量部、固形エポキシ樹脂(三菱化学社製 jER1004、軟化点97℃)5質量部、アクリル樹脂(ポリエチレングリコールジアクリレート、共栄社化学製 ライトアクリレート14EG-A、重量平均分子量:708)20質量部、熱硬化剤としてアジピン酸ジヒドラジド(日本化成社製 ADH、融点177~184℃)9質量部、シリカ粒子:S-100(日本触媒社製)13質量部、(メタ)アクリル酸エステルモノマーとこれらと共重合可能なモノマーとを共重合させて得られる有機フィラー(微粒子ポリマー、ゼオン化成社製 F351)7質量部、シランカップリング剤(信越化学工業社製 KBM-403)2質量部、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム(BASF社製 イルガキュア784)0.5質量部、およびシュウ酸0.5質量部を、三本ロールミルを用いて均一な液となるように十分に混合して、液晶シール剤組成物を得た。
[Example 8]
43 parts by mass of a methacrylic acid-modified bisphenol F type epoxy resin obtained in Synthesis Example 1, 5 parts by mass of a solid epoxy resin (jER1004, softening point 97 ° C., manufactured by Mitsubishi Chemical Corporation), an acrylic resin (polyethylene glycol diacrylate, light manufactured by Kyoeisha Chemical Co., Ltd.) Acrylate 14EG-A, weight average molecular weight: 708) 20 parts by mass, adipic acid dihydrazide (Nippon Kasei Co., Ltd. ADH, melting point 177-184 ° C.) as a thermosetting agent, silica particles: S-100 (manufactured by Nippon Shokubai Co., Ltd.) ) 13 parts by mass, 7 parts by mass of an organic filler (fine particle polymer, F351 manufactured by Zeon Kasei Co., Ltd.) obtained by copolymerizing a (meth) acrylic acid ester monomer and a monomer copolymerizable therewith, a silane coupling agent (Shin-Etsu) 2 parts by mass of KBM-403) manufactured by Chemical Industry Co., Ltd., bis (η5-2,4-cyclopente) Tadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium (BASF Irgacure 784) 0.5 parts by mass and oxalic acid 0.5 masses The liquid crystal sealant composition was obtained by sufficiently mixing the parts with a three-roll mill so that a uniform liquid was obtained.
 [実施例9]
 シュウ酸を酒石酸に変更した以外は実施例8と同様にして液晶シール剤組成物を得た。
[Example 9]
A liquid crystal sealant composition was obtained in the same manner as in Example 8 except that oxalic acid was changed to tartaric acid.
 [実施例10]
 シュウ酸をトリメリット酸に変更した以外は実施例8と同様にして液晶シール剤組成物を得た。
[Example 10]
A liquid crystal sealant composition was obtained in the same manner as in Example 8 except that oxalic acid was changed to trimellitic acid.
 [実施例11]
 シュウ酸をトリメリット酸無水物に変更した以外は実施例8と同様にして液晶シール剤組成物を得た。
[Example 11]
A liquid crystal sealant composition was obtained in the same manner as in Example 8 except that oxalic acid was changed to trimellitic anhydride.
 [実施例12]
 シュウ酸をイソフタル酸に変更した以外は実施例8と同様にして液晶シール剤組成物を得た。
[Example 12]
A liquid crystal sealant composition was obtained in the same manner as in Example 8 except that oxalic acid was changed to isophthalic acid.
 [実施例13]
 シュウ酸をフェニルホスホン酸に変更した以外は実施例8と同様にして液晶シール剤組成物を得た。
[Example 13]
A liquid crystal sealant composition was obtained in the same manner as in Example 8 except that oxalic acid was changed to phenylphosphonic acid.
 [実施例14]
 シュウ酸を4’-ヒドロキシ-4-ビフェニルカルボン酸に変更した以外は実施例8と同様にして液晶シール剤組成物を得た。
[Example 14]
A liquid crystal sealant composition was obtained in the same manner as in Example 8 except that oxalic acid was changed to 4′-hydroxy-4-biphenylcarboxylic acid.
 [比較例4]
 シュウ酸を添加しなかったこと以外は実施例8と同様にして液晶シール剤組成物を得た。
[Comparative Example 4]
A liquid crystal sealant composition was obtained in the same manner as in Example 8 except that oxalic acid was not added.
 [比較例5]
 シュウ酸を2-エチルヘキシルホスフェートに変更した以外は実施例8と同様にして液晶シール剤組成物を得た。
[Comparative Example 5]
A liquid crystal sealant composition was obtained in the same manner as in Example 8 except that oxalic acid was changed to 2-ethylhexyl phosphate.
 [比較例6]
 シュウ酸を3,5-ビストリフルオロメチル安息香酸に変更した以外は実施例8と同様にして液晶シール剤組成物を得た。
[Comparative Example 6]
A liquid crystal sealant composition was obtained in the same manner as in Example 8 except that oxalic acid was changed to 3,5-bistrifluoromethylbenzoic acid.
 [評価]
 実施例8~14および比較例4~6で得られた液晶シール剤組成物について、3)液晶表示パネル表示特性テスト、4)液晶パネル通電時の表示特性テストを以下の方法で評価した。結果を表2に示す。
[Evaluation]
The liquid crystal sealant compositions obtained in Examples 8 to 14 and Comparative Examples 4 to 6 were evaluated by 3) liquid crystal display panel display characteristic test and 4) display characteristic test when the liquid crystal panel was energized by the following methods. The results are shown in Table 2.
 3)液晶表示パネル表示特性テスト
 実施例及び比較例で得られた液晶シール剤組成物を、ディスペンサー(武蔵エンジニアリング製 ショットマスター)を用いて、透明電極と配向膜が予め形成された40mm×45mmガラス基板(EHC社製 RT-DM88-PIN)上に、外寸35mm×40mm、貼り合せ後の線幅が0.7mmとなる四角形の枠状のシールパターン(断面積3500μm)(メインシール)と、その外周に外寸38mm×43mm、貼り合せ後の線幅が1.0mmとなる四角形の枠状のシールパターンを形成した。
 次いで、基板貼り合せ後のパネル内容量に相当する液晶材料(MLC-7021-000、メルク社製)を、メインシールの枠内にディスペンサーを用いて精密に滴下した。対になるガラス基板を減圧下で貼り合せた後、大気開放して貼り合わせた。そして、貼り合わせた2枚のガラス基板を3分間遮光ボックス内で保持した。その後、メインシールに直接光が照射されないように、36mm×41mmの四角形のブラックマトリックスを塗布した基板でマスクした。この状態で3000mJ/cmの光(波長400nm以下の波長をカットし、405nmセンサーで校正した光)を照射し、さらに120℃で1時間加熱した。その後、両面に偏光フィルムを貼り付けた。
 液晶シール剤組成物を硬化処理した後の液晶表示パネルについて、以下のように評価した。
 〇:液晶パネルのメインシールの際(きわ)まで液晶が配向されて色ムラが全くない場合(表示特性が良好である)
 ×:インシールの際(きわ)の近傍が正常に配向されず色ムラが発生している場合(表示特性が劣る)
3) Liquid crystal display panel display characteristic test 40 mm × 45 mm glass in which a transparent electrode and an alignment film were previously formed from the liquid crystal sealant compositions obtained in Examples and Comparative Examples using a dispenser (Shot Master, manufactured by Musashi Engineering). On a substrate (RT-DM88-PIN manufactured by EHC), a square frame-shaped seal pattern (cross-sectional area 3500 μm 2 ) (main seal) having an outer dimension of 35 mm × 40 mm and a line width of 0.7 mm after bonding A rectangular frame-shaped seal pattern having an outer dimension of 38 mm × 43 mm and a line width of 1.0 mm after bonding was formed on the outer periphery.
Next, a liquid crystal material (MLC-7021-000, manufactured by Merck & Co., Inc.) corresponding to the panel internal volume after bonding the substrates was precisely dropped using a dispenser into the main seal frame. A pair of glass substrates was bonded together under reduced pressure, and then bonded to the atmosphere. Then, the two bonded glass substrates were held in a light shielding box for 3 minutes. Then, it masked with the board | substrate which apply | coated the 36 mm x 41 mm square black matrix so that light may not be directly irradiated to a main seal. In this state, light of 3000 mJ / cm 2 (light having a wavelength of 400 nm or less was cut and calibrated with a 405 nm sensor) was irradiated, and further heated at 120 ° C. for 1 hour. Then, the polarizing film was affixed on both surfaces.
The liquid crystal display panel after the liquid crystal sealant composition was cured was evaluated as follows.
○: When the liquid crystal is aligned until the main seal of the liquid crystal panel (wrinkles) and there is no color unevenness (good display characteristics)
×: In the case of in-sealing, when the vicinity of (wrinkle) is not properly oriented and color unevenness occurs (display characteristics are inferior)
 4)液晶表示パネル通電時の表示特性テスト
 前述の3)液晶表示パネル表示特性テストと同様にして作製した液晶パネルを、直流電源を用い、5Vの印加電圧で駆動させた。このときの表示特性を以下のように評価した。
 〇:メインシール近傍の液晶表示機能が発揮できている場合(表示特性が良好である)
 ×:メインシール近傍が正常に駆動せず、白ムラが発生している場合(表示特性が劣る)
4) Display characteristic test during energization of liquid crystal display panel A liquid crystal panel produced in the same manner as in the above-mentioned 3) liquid crystal display panel display characteristic test was driven with a DC power supply at an applied voltage of 5V. The display characteristics at this time were evaluated as follows.
◯: When the liquid crystal display function in the vicinity of the main seal is being demonstrated (good display characteristics)
×: When the vicinity of the main seal does not drive normally and white unevenness occurs (display characteristics are inferior)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、液晶シール剤組成物に有機酸を含む場合(実施例8~14および比較例5、6)、有機酸を含まない場合(比較例4)と比較して、液晶表示パネル特性が良好であった。これは、有機酸が含まれることにより、液晶シール剤の硬化時に直接光が照射されなくとも十分に硬化し、液晶シール剤用組成物の未硬化成分の液晶への溶解が顕著に抑制されたと考えられる。 As shown in Table 2, when the liquid crystal sealant composition contains an organic acid (Examples 8 to 14 and Comparative Examples 5 and 6), the liquid crystal sealant composition does not contain an organic acid (Comparative Example 4). The display panel characteristics were good. This is because the organic acid is contained, so that the liquid crystal sealant is sufficiently cured even when not directly irradiated with light, and the dissolution of the uncured component of the liquid crystal sealant composition in the liquid crystal is remarkably suppressed. Conceivable.
 また、有機酸の酸素原子当量が23以上75以下である(実施例8~14)と、酸素原子当量が75超である場合(比較例5及び6)と比較して、液晶表示パネル通電時の表示特性が良好であった。これは、酸素原子当量が上記範囲であると、液晶シール剤用組成物の未硬化成分が液晶に影響を及ぼし難く、さらに溶解し難かったため、液晶の電圧保持率が極めて良好になったと考えられる。 Further, when the oxygen atom equivalent of the organic acid is 23 or more and 75 or less (Examples 8 to 14), compared with the case where the oxygen atom equivalent is more than 75 (Comparative Examples 5 and 6), the liquid crystal display panel is energized. The display characteristics of were good. When the oxygen atom equivalent is in the above range, it is considered that the uncured component of the composition for liquid crystal sealant hardly affects the liquid crystal and further hardly dissolves, so that the voltage holding ratio of the liquid crystal is very good. .
 本出願は、2014年10月30日出願の特願2014-221018号に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2014-2221018 filed on October 30, 2014. All the contents described in the application specification are incorporated herein by reference.
 本発明の液晶シール剤組成物は、有機酸を含むため、硬化性が非常に良好であり、さらに未硬化成分の液晶への溶解が非常に少ない。そのため、表示信頼性に優れた液晶パネルを提供でき、各種液晶表示パネルの製造に好適である。 Since the liquid crystal sealing agent composition of the present invention contains an organic acid, the curability is very good and the uncured component is very little dissolved in the liquid crystal. Therefore, a liquid crystal panel excellent in display reliability can be provided, which is suitable for manufacturing various liquid crystal display panels.

Claims (12)

  1.  液晶滴下工法により液晶表示パネルを製造する方法であって、
     基板上に
     (A)有機酸、
     (B)1分子内にエチレン性不飽和二重結合を少なくとも1つ有する光硬化性樹脂(ただし、前記有機酸を除く)、及び
     (C)チタノセン系光重合開始剤、
     を含み、
     前記(A)有機酸の下記式(1)で表される酸素原子当量が、23g/eq以上75g/eq以下である液晶シール剤組成物を塗布し、液晶シールパターンを形成する工程と、
     前記液晶シール剤組成物を光硬化させる工程と、を含む、液晶表示パネルの製造方法。
     酸素原子当量(g/eq)=(有機酸の分子量)/(有機酸1分子中の酸素原子数)(1)
    A method of manufacturing a liquid crystal display panel by a liquid crystal dropping method,
    (A) an organic acid on the substrate,
    (B) a photocurable resin having at least one ethylenically unsaturated double bond in one molecule (excluding the organic acid), and (C) a titanocene photopolymerization initiator,
    Including
    Applying a liquid crystal sealant composition having an oxygen atom equivalent represented by the following formula (1) of the organic acid (A) of 23 g / eq or more and 75 g / eq or less to form a liquid crystal seal pattern;
    And a step of photocuring the liquid crystal sealant composition.
    Oxygen atom equivalent (g / eq) = (Molecular weight of organic acid) / (Number of oxygen atoms in one molecule of organic acid) (1)
  2.  前記(A)有機酸が酸無水物である、請求項1に記載の液晶表示パネルの製造方法。 The method for producing a liquid crystal display panel according to claim 1, wherein the (A) organic acid is an acid anhydride.
  3.  前記(A)有機酸が、エチレン性不飽和二重結合を少なくとも1つ有する、請求項1に記載の液晶表示パネルの製造方法。 The method for producing a liquid crystal display panel according to claim 1, wherein the organic acid (A) has at least one ethylenically unsaturated double bond.
  4.  前記(A)有機酸が1分子内に、-OH基、-NH基、-NHR基(Rは、芳香族、脂肪族炭化水素又はこれらの誘導体を表す)、-COOH基、-OP(=O)(OH)基、-P(=O)(OH)基、-SOH基、-CONH基、-NHOH基からなる群より選ばれる官能基を少なくとも1つ有する、請求項1に記載の液晶表示パネルの製造方法。 In the molecule (A), the organic acid has an —OH group, —NH 2 group, —NHR group (R represents an aromatic, aliphatic hydrocarbon or derivative thereof), —COOH group, —OP ( ═O) (OH) 2 groups, —P (═O) (OH) 2 groups, —SO 3 H groups, —CONH 2 groups, and at least one functional group selected from the group consisting of —NHOH groups Item 2. A method for producing a liquid crystal display panel according to Item 1.
  5.  前記(B)光硬化性樹脂が、(B2)1分子内にエチレン性不飽和二重結合とエポキシ基とをそれぞれ少なくとも1つ有する樹脂である、請求項1に記載の液晶表示パネルの製造方法。 2. The method for producing a liquid crystal display panel according to claim 1, wherein the (B) photocurable resin is a resin having (B2) at least one ethylenically unsaturated double bond and one epoxy group in one molecule. .
  6.  (D)熱硬化性樹脂をさらに含む、請求項1に記載の液晶表示パネルの製造方法。 (D) The manufacturing method of the liquid crystal display panel of Claim 1 which further contains a thermosetting resin.
  7.  (E)熱硬化剤をさらに含み、かつ
     前記(D)熱硬化性樹脂が、(D1)1分子内にエポキシ基を少なくとも1つ有する樹脂である、請求項6に記載の液晶表示パネルの製造方法。
    The liquid crystal display panel production according to claim 6, further comprising (E) a thermosetting agent, wherein the (D) thermosetting resin is (D1) a resin having at least one epoxy group in one molecule. Method.
  8.  前記(E)熱硬化剤が、ジヒドラジド系熱潜在性硬化剤、イミダゾール系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤からなる群より選ばれる少なくとも1種の熱潜在性硬化剤である請求項7に記載の液晶表示パネルの製造方法。 The (E) thermosetting agent is at least one selected from the group consisting of a dihydrazide-based thermal latent curing agent, an imidazole-based thermal latent curing agent, an amine adduct-based thermal latent curing agent, and a polyamine-based thermal latent curing agent. The method for producing a liquid crystal display panel according to claim 7, which is a kind of thermal latent curing agent.
  9.  液晶シール剤組成物をさらに熱硬化させる工程をさらに含む、請求項6に記載の液晶表示パネルの製造方法。 The method for producing a liquid crystal display panel according to claim 6, further comprising a step of further thermosetting the liquid crystal sealant composition.
  10.  前記光硬化工程で照射する光が可視光領域を含む、請求項1に記載の液晶表示パネルの製造方法。 The method for manufacturing a liquid crystal display panel according to claim 1, wherein the light irradiated in the photocuring step includes a visible light region.
  11.  請求項1に記載の液晶表示パネルの製造方法によって製造された液晶表示パネル。 A liquid crystal display panel manufactured by the method for manufacturing a liquid crystal display panel according to claim 1.
  12.  (A)有機酸、
     (B)1分子内にエチレン性不飽和二重結合を少なくとも1つ有する光硬化性樹脂(ただし、前記有機酸を除く)、及び
     (C)チタノセン系光重合開始剤、
     を含み、
     前記(A)有機酸は下記式(1)で表される酸素原子当量が23g/eq以上75g/eq以下である液晶シール剤組成物。
     酸素原子当量(g/eq)=(有機酸の分子量)/(有機酸1分子中の酸素原子数)(1)
    (A) an organic acid,
    (B) a photocurable resin having at least one ethylenically unsaturated double bond in one molecule (excluding the organic acid), and (C) a titanocene photopolymerization initiator,
    Including
    The (A) organic acid is a liquid crystal sealant composition having an oxygen atom equivalent represented by the following formula (1) of 23 g / eq or more and 75 g / eq or less.
    Oxygen atom equivalent (g / eq) = (Molecular weight of organic acid) / (Number of oxygen atoms in one molecule of organic acid) (1)
PCT/JP2015/005354 2014-10-30 2015-10-26 Method for producing liquid crystal display panel, liquid crystal display panel and liquid crystal sealing agent composition WO2016067582A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016556220A JP6438491B2 (en) 2014-10-30 2015-10-26 Method for manufacturing liquid crystal display panel, liquid crystal display panel, and liquid crystal sealant composition
CN201580037737.3A CN106489098B (en) 2014-10-30 2015-10-26 Manufacturing method, liquid crystal display panel and the liquid crystal sealing agent composition of liquid crystal display panel
KR1020177001657A KR101863011B1 (en) 2014-10-30 2015-10-26 Method for producing liquid crystal display panel, liquid crystal display panel and liquid crystal sealing agent composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014221018 2014-10-30
JP2014-221018 2014-10-30

Publications (1)

Publication Number Publication Date
WO2016067582A1 true WO2016067582A1 (en) 2016-05-06

Family

ID=55856948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005354 WO2016067582A1 (en) 2014-10-30 2015-10-26 Method for producing liquid crystal display panel, liquid crystal display panel and liquid crystal sealing agent composition

Country Status (5)

Country Link
JP (1) JP6438491B2 (en)
KR (1) KR101863011B1 (en)
CN (1) CN106489098B (en)
TW (1) TWI651347B (en)
WO (1) WO2016067582A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098114A1 (en) * 2017-11-17 2019-05-23 Dic株式会社 Epoxy (meth) acrylate resin composition, curable resin composition, and cured product
WO2020022188A1 (en) * 2018-07-24 2020-01-30 三井化学株式会社 Light-blocking sealing agent for liquid crystal dropping methods and method for producing liquid crystal display panel using same
JP2020177039A (en) * 2019-04-15 2020-10-29 凸版印刷株式会社 Dimming sheet and laminated glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113661437A (en) * 2019-05-17 2021-11-16 三井化学株式会社 Sealant for liquid crystal dropping process, liquid crystal display panel using same, and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007649A1 (en) * 2009-07-13 2011-01-20 株式会社Adeka Sealing agent for liquid crystal dripping method
JP2012173488A (en) * 2011-02-21 2012-09-10 Sekisui Chem Co Ltd Sealing agent for liquid crystal dropping method, and manufacturing method of liquid crystal display

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316416A (en) 2000-05-10 2001-11-13 Nippon Paint Co Ltd Photopolymerizing composition and photopolymerizing putty composition
JP2011023498A (en) * 2009-07-15 2011-02-03 Panasonic Corp Semiconductor device, and method of manufacturing the same
CN102472929B (en) * 2010-03-25 2014-07-30 三井化学株式会社 Liquid crystal sealing agent, method for producing liquid crystal display panel using same, and liquid crystal display panel
CN102702987B (en) * 2012-03-21 2015-02-18 北京京东方光电科技有限公司 Frame sealant composition, liquid crystal pollution prevention method, liquid crystal display panel and display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007649A1 (en) * 2009-07-13 2011-01-20 株式会社Adeka Sealing agent for liquid crystal dripping method
JP2012173488A (en) * 2011-02-21 2012-09-10 Sekisui Chem Co Ltd Sealing agent for liquid crystal dropping method, and manufacturing method of liquid crystal display

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098114A1 (en) * 2017-11-17 2019-05-23 Dic株式会社 Epoxy (meth) acrylate resin composition, curable resin composition, and cured product
KR20200055110A (en) * 2017-11-17 2020-05-20 디아이씨 가부시끼가이샤 Epoxy (meth) acrylate resin composition, curable resin composition and cured product
JPWO2019098114A1 (en) * 2017-11-17 2020-05-28 Dic株式会社 Epoxy (meth)acrylate resin composition, curable resin composition and cured product
KR102286872B1 (en) 2017-11-17 2021-08-09 디아이씨 가부시끼가이샤 Epoxy (meth)acrylate resin composition, curable resin composition and cured product
WO2020022188A1 (en) * 2018-07-24 2020-01-30 三井化学株式会社 Light-blocking sealing agent for liquid crystal dropping methods and method for producing liquid crystal display panel using same
KR20210015936A (en) 2018-07-24 2021-02-10 미쓰이 가가쿠 가부시키가이샤 Light-shielding sealing agent for liquid crystal dropping method, and manufacturing method of liquid crystal display panel using same
JPWO2020022188A1 (en) * 2018-07-24 2021-05-20 三井化学株式会社 A light-shielding sealant for the liquid crystal dripping method, and a method for manufacturing a liquid crystal display panel using the same.
JP7181936B2 (en) 2018-07-24 2022-12-01 三井化学株式会社 Light-shielding sealant for liquid crystal dripping method, and method for manufacturing liquid crystal display panel using the same
JP2020177039A (en) * 2019-04-15 2020-10-29 凸版印刷株式会社 Dimming sheet and laminated glass

Also Published As

Publication number Publication date
KR101863011B1 (en) 2018-05-31
KR20170021305A (en) 2017-02-27
TW201619261A (en) 2016-06-01
TWI651347B (en) 2019-02-21
JP6438491B2 (en) 2018-12-12
CN106489098B (en) 2019-07-26
JPWO2016067582A1 (en) 2017-08-10
CN106489098A (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP5345393B2 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
JP5986987B2 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
JPWO2011118191A1 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
JP4977896B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2008015155A (en) Liquid crystal sealing agent and liquid crystal display cell using the same
JP6793474B2 (en) Sealing material for liquid crystal dripping method, liquid crystal display panel and manufacturing method of liquid crystal display panel
JP4815027B1 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
JP4948317B2 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
JP6438491B2 (en) Method for manufacturing liquid crystal display panel, liquid crystal display panel, and liquid crystal sealant composition
TW201730221A (en) Display element sealing agent, liquid crystal sealing agent and cured product thereof, and liquid crystal display panel and method for producing same
JP6370382B2 (en) Liquid crystal sealant and liquid crystal display panel manufacturing method
JP6338586B2 (en) Liquid crystal sealant and liquid crystal display panel manufacturing method
JP5424411B2 (en) Liquid crystal display panel manufacturing method and liquid crystal display panel
JP7181936B2 (en) Light-shielding sealant for liquid crystal dripping method, and method for manufacturing liquid crystal display panel using the same
JP4845667B2 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
JP6554040B2 (en) Liquid crystal display panel and method for manufacturing liquid crystal display panel
JP2014006325A (en) Liquid crystal sealing agent and liquid crystal display cell using the same
JP2007225774A (en) Liquid crystal sealing agent and liquid crystal display panel using the same
JP2006003432A (en) Sealant for liquid crystal display element, vertically conducting material, and the liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556220

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177001657

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15854413

Country of ref document: EP

Kind code of ref document: A1