WO2020021972A1 - Thermal environment control device, thermal environment control system, and thermal environment control method - Google Patents

Thermal environment control device, thermal environment control system, and thermal environment control method Download PDF

Info

Publication number
WO2020021972A1
WO2020021972A1 PCT/JP2019/026023 JP2019026023W WO2020021972A1 WO 2020021972 A1 WO2020021972 A1 WO 2020021972A1 JP 2019026023 W JP2019026023 W JP 2019026023W WO 2020021972 A1 WO2020021972 A1 WO 2020021972A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
unit
amount
environment
heat storage
Prior art date
Application number
PCT/JP2019/026023
Other languages
French (fr)
Japanese (ja)
Inventor
啓太 芳村
幹生 岩川
朋美 中川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020532243A priority Critical patent/JPWO2020021972A1/en
Publication of WO2020021972A1 publication Critical patent/WO2020021972A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to a thermal environment control device, a thermal environment control system, and a thermal environment control method.
  • the comfortable thermal environment for the user depends on the immediately preceding user's action. For example, if you were in a space of 32 ° C just before, you could feel comfortable even in a room with a room temperature of 30 ° C, whereas if you were in a space of 25 ° C just before, the room temperature would be the same. It feels hot and uncomfortable even in a room at 30 ° C. Therefore, as in the above-described conventional cooling / heating switching device, simply adjusting the cooling or heating based on the PMV value may not form a comfortable thermal environment for the user.
  • an object of the present invention is to provide a thermal environment control device, a thermal environment control system, and a thermal environment control method that can form a thermal environment that is comfortable for a user.
  • a thermal environment control device includes an indoor environment measurement unit that measures an indoor environment value, and a control unit that controls one or more devices that adjust the indoor environment.
  • a user environment measurement unit that measures an environment value around the user, a clothing amount acquisition unit that acquires the clothing amount of the user, an activity amount acquisition unit that acquires the activity amount of the user, and the user environment measurement
  • a calculating unit that calculates the heat storage amount of the user based on the environmental value measured by the unit, the clothing amount acquired by the clothing amount acquiring unit, and the activity amount acquired by the activity amount acquiring unit.
  • the control unit determines the control content of the one or more devices based on the environment value measured by the indoor environment measurement unit and the heat storage amount calculated by the calculation unit, and determines the determined control content.
  • the one or more machines To control.
  • a thermal environment control system includes the thermal environment control device and the one or more devices.
  • the thermal environment control method includes a step of measuring an environment value around the user, a step of acquiring the amount of clothing of the user, a step of acquiring an amount of activity of the user, A calculating step of calculating a heat storage amount of the user based on the environmental value, the clothing amount, and the activity amount; a step of measuring an indoor environment value; and controlling one or more devices for adjusting the indoor environment. Controlling the one or more devices, determining the control content of the one or more devices based on the indoor environment value and the heat storage amount, and determining the one or more devices based on the determined control content. Control the equipment.
  • one embodiment of the present invention can be realized as a program for causing a computer to execute the thermal environment control method.
  • it can be realized as a computer-readable recording medium storing the program.
  • a thermal environment that is comfortable for the user can be formed.
  • FIG. 1 is a block diagram showing a configuration of the thermal environment control system according to the first embodiment.
  • FIG. 2 is a flowchart illustrating an operation of the thermal environment control system according to the first embodiment.
  • FIG. 3 is a flowchart illustrating a process of determining an air volume in the operation of the thermal environment control system according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of time-series data acquired in the thermal environment control system according to the first embodiment and a heat storage amount calculated based on the time-series data.
  • FIG. 5 is a diagram illustrating a change in the indoor environment due to control of devices in the thermal environment control system according to the first embodiment.
  • FIG. 6 is a block diagram illustrating a configuration of a thermal environment control system according to the second embodiment.
  • FIG. 1 is a block diagram showing a configuration of the thermal environment control system according to the first embodiment.
  • FIG. 2 is a flowchart illustrating an operation of the thermal environment control system according to the first embodiment.
  • FIG. 7 is a flowchart showing the operation of the air conditioner of the thermal environment control system according to the second embodiment.
  • FIG. 8 is a flowchart illustrating a process of determining a set temperature or a set humidity in the operation of the thermal environment control system according to the second embodiment.
  • each drawing is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, the scales and the like do not always match in each drawing. Further, in each of the drawings, substantially the same configuration is denoted by the same reference numeral, and redundant description will be omitted or simplified.
  • FIG. 1 is a block diagram showing a configuration of a thermal environment control system 1 according to the present embodiment.
  • the thermal environment control system 1 includes a thermal environment control device 2, a wearable device 10, and a blower 30.
  • the thermal environment control device 2 includes a user environment measurement unit 11, a clothing amount acquisition unit 15, an activity amount acquisition unit 16, a storage unit 17, a heat storage amount calculation unit 19, an indoor environment measurement unit 20, a control unit, 31.
  • Wearable device 10 is worn by the user.
  • the indoor environment measuring unit 20 and the blower 30 are provided, for example, indoors.
  • the wearable device 10, the indoor environment measuring unit 20, and the blower 30 are communicably connected wirelessly or by wire.
  • the room is an indoor space in which the thermal environment is controlled by devices provided in the thermal environment control system 1.
  • the room is a space from which the airflow generated by the blower 30 is released.
  • the room is an indoor space in which the user stays, and specifically, a room in a building such as a user's home, office building, school, or hospital.
  • the indoor space may be a space inside a vehicle such as an automobile.
  • the wearable device 10 is a terminal device that is worn by a user and acquires information about the user's surrounding environment.
  • the wearable device 10 is mounted on, for example, a user's hand, arm, or leg. In the present embodiment, wearable device 10 transmits the acquired information to blower 30.
  • the wearable device 10 includes a main body that houses a microcomputer, various sensors, and the like, and a fixture for mounting the main body to a user.
  • the attachment includes, for example, a band that supports the main body, and a fastener that can be fixed in a state where the band is wound around an object such as a wrist or an ankle.
  • the fastener is, for example, a buckle or a hook-and-loop fastener, but is not particularly limited.
  • the wearable device 10 may have an adhesive tape or the like, and may be directly attached to the skin of the user.
  • the wearable device 10 may be mounted on the user by being stored in a pocket of the user's clothes or the like.
  • the wearable device 10 includes a user environment measurement unit 11, a clothing amount acquisition unit 15, an activity amount acquisition unit 16, a storage unit 17, and a heat storage amount calculation unit 19.
  • the user environment measurement unit 11 includes a temperature measurement unit 12, a humidity measurement unit 13, and a solar radiation measurement unit 14.
  • the storage unit 17 stores time-series data 18.
  • the temperature measurement unit 12 is an example of a user environment measurement unit that measures an environment value around a user, and measures a temperature that is an example of an environment value.
  • the temperature measurement unit 12 is, for example, a temperature sensor, and measures the temperature around the user.
  • the temperature measurement unit 12 measures the temperature of the air that touches the wearable device 10.
  • the humidity measurement unit 13 is an example of a user environment measurement unit that measures an environment value around a user, and measures humidity, which is an example of an environment value.
  • the humidity measuring unit 13 is, for example, a humidity sensor, and measures the humidity around the user.
  • the humidity measuring unit 13 measures the humidity of the air that touches the wearable device 10.
  • the solar radiation measuring unit 14 is an example of a user environment measuring unit that measures an environmental value around the user, and measures solar radiation, which is an example of an environmental value.
  • the solar radiation measuring unit 14 is, for example, a pyranometer, and measures radiant energy per unit area and unit time of solar light irradiated to a user as solar radiation. For example, the solar radiation measuring unit 14 measures the amount of solar radiation by receiving sunlight irradiated on the wearable device 10.
  • the clothing amount acquisition unit 15 acquires the user's clothing amount.
  • the amount of clothing is, for example, a total value of thermal resistance of one or more pieces of clothing worn by the user, and is represented by a unit: clo. Generally, the thicker the clothes, the larger the amount of clothes.
  • the clothing amount acquisition unit 15 is realized by, for example, a user interface that receives an input of clothing from a user.
  • the clothing amount acquisition unit 15 is realized by a touch panel display and a processor included in the wearable device 10.
  • a selection screen for selecting clothes worn by the user On the touch panel display, a selection screen for selecting clothes worn by the user, a text input screen for inputting clothes in text, and the like are displayed.
  • the processor acquires the user's clothing amount by referring to the clothing amount database based on the selected content or the input content.
  • a microphone that accepts voice input may be used instead of the touch panel display.
  • the clothing amount database is stored in, for example, a memory included in the wearable device 10. Alternatively, the clothing amount database may be stored in a memory of a server device with which the wearable device 10 can communicate.
  • the clothing amount database is a database in which thermal resistance is associated with each type of clothing. For example, in the clothing amount database, the thermal resistance is predetermined to be 0.01 clo for a tie and 0.24 clo for a shirt.
  • the clothing amount acquisition unit 15 receives an input of clothing from the user at the timing when the user changes clothing.
  • the clothing amount acquisition unit 15 may perform display, sound output, or vibration to prompt the user to input clothing.
  • the activity amount acquisition unit 16 acquires the activity amount of the user.
  • the activity amount is, for example, the intensity of the physical activity of the user, and is expressed in units of METs (METs: Metabolic @ Equivalents). Specifically, a state where the user is sitting and resting is defined as 1 mets. For example, a state of walking at a normal speed becomes 3 mets.
  • the activity amount acquisition unit 16 is realized by, for example, a three-axis acceleration sensor that detects the movement of the user.
  • the triaxial acceleration sensor is built in the wearable device 10, and measures the strength of the user's physical activity as an activity amount based on the swing of the arm or the movement of the leg.
  • the storage unit 17 is a storage unit for storing the time-series data 18.
  • the storage unit 17 is realized by, for example, a semiconductor memory.
  • the storage unit 17 stores the temperature measured by the temperature measurement unit 12, the humidity measured by the humidity measurement unit 13, the insolation amount measured by the insolation measurement unit 14, and the clothing acquired by the clothing amount acquisition unit 15.
  • the amount and the activity amount acquired by the activity amount acquiring unit 16 are stored as time-series data 18.
  • the time-series data 18 includes the environmental values around the user measured by the user environment measuring unit 11, the clothing amount acquired by the clothing amount acquiring unit 15, and the activity amount acquired by the activity amount acquiring unit 16. It is data indicating each time change. Specifically, the time-series data 18 indicates the temperature, the humidity, the amount of solar radiation, the amount of clothes, and the amount of activity around the user at regular intervals such as one second or one minute. The time-series data 18 includes values for a predetermined period, such as one hour or one day. Further, the time-series data 18 may include a time change of the heat storage amount calculated by the heat storage amount calculation unit 19.
  • the heat storage amount calculation unit 19 calculates the environment value around the user measured by the user environment measurement unit 11, the clothing amount acquired by the clothing amount acquisition unit 15, the activity amount acquired by the activity amount acquisition unit 16, Is an example of a calculation unit that calculates the amount of heat stored by the user based on the calculation.
  • the heat storage amount is the amount of heat stored in the body of the user according to the behavior of the user, and is represented by a unit: W / m 2 .
  • the higher the ambient temperature or humidity the greater the amount of heat stored.
  • the greater the amount of solar radiation the user takes the greater the amount of heat stored.
  • the heat storage amount also increases. On the other hand, for example, when a user takes a wind, the amount of heat radiation increases and the amount of heat storage decreases.
  • the heat storage amount calculation unit 19 calculates the heat storage amount based on the time-series data 18 stored in the storage unit 17. For example, the heat storage amount calculation unit 19 calculates the heat storage amount using regression analysis. In the present embodiment, the heat storage amount calculation unit 19 calculates the heat storage amount at each time t. More specifically, the heat storage amount calculation unit 19 calculates the heat storage amount based on the following (Equation 1).
  • Heat storage amount (t) heat storage amount (t-1) + A1 ⁇ (temperature (t-1) -temperature (t)) + A2 x (humidity (t-1)-humidity (t)) + A3 ⁇ (solar radiation (t-1) -solar radiation (t)) + A4 ⁇ (clothes amount (t-1) -clothes amount (t)) + A5 ⁇ (activity (t-1)-activity (t)) + D1
  • the coefficients a1, a2, a3, a4, and a5, and the constant d1 are values calculated in advance using measured data and multiple regression analysis.
  • the coefficients a1, a2, a3, a4, and a5 and the constant d1 are stored in, for example, the storage unit 17. Note that the coefficients a1, a2, a3, a4, and a5, and the constant d1 may be updated periodically by performing regression analysis.
  • the heat storage amount (t) is the heat storage amount at the calculation target time, and the heat storage amount (t-1) is the heat storage amount calculated immediately before.
  • the calculation of the heat storage amount is performed, for example, every second.
  • the heat storage amount (t-1) is the heat storage amount one second before the calculation target time.
  • the heat storage amount (t-1) is stored in the storage unit 17 as time-series data 18, for example.
  • Temperature (t) is the temperature at the calculation target time, and is a value measured by temperature measurement unit 12 and stored in storage unit 17 as time-series data 18.
  • the temperature (t-1) is the temperature at the immediately preceding calculation target time.
  • the temperature (t ⁇ 1) is a temperature one second before the calculation target time, and is a value stored as the time-series data 18 in the storage unit 17.
  • Humidity (t), solar radiation (t), clothing (t) and activity (t), and humidity (t-1), solar radiation (t-1), clothing (t-1) and activity The same applies to (t-1).
  • the indoor environment measuring unit 20 measures the indoor environment value.
  • the indoor is an indoor space such as a user's home, for example, as described above.
  • the indoor environment measuring unit 20 transmits the measured environment value to the blower 30.
  • the indoor environment measuring unit 20 includes a temperature measuring unit 21 and a humidity measuring unit 22.
  • the temperature measurement unit 21 is an example of an indoor environment measurement unit that measures an indoor environment value, and measures a temperature that is an example of an environment value.
  • the temperature measuring unit 21 is, for example, a temperature sensor and measures room temperature.
  • the temperature measuring unit 21 measures the temperature of one room of the user's home.
  • the one room is a space from which the airflow generated by the blower 30 is released.
  • the humidity measurement unit 22 is an example of an indoor environment measurement unit that measures an indoor environment value, and measures humidity, which is an example of an environment value.
  • the humidity measuring unit 22 is, for example, a humidity sensor and measures indoor humidity.
  • the humidity measuring unit 22 measures the humidity of one room of the user's home.
  • the blower 30 is one of one or more devices that adjust the indoor environment. Specifically, the blower 30 generates an airflow and discharges the airflow indoors. In the present embodiment, blower 30 can change the air volume. The blower 30 may be able to change the wind direction.
  • the blower 30 includes a control unit 31.
  • the control unit 31 is an example of a control unit that controls one or more devices that adjust the indoor environment, and controls the operation of the blower 30.
  • the control unit 31 determines the control content of the blower 30 based on the indoor environment value measured by the indoor environment measurement unit 20 and the heat storage amount calculated by the heat storage calculation unit 19, and uses the determined control content.
  • the blower 30 is controlled.
  • the control unit 31 controls the air volume of the blower 30.
  • the control unit 31 includes a determination unit 32 and an adjustment unit 33.
  • the determination unit 32 determines the control content of the blower 30 based on the indoor environment value measured by the indoor environment measurement unit 20 and the heat storage amount calculated by the heat storage amount calculation unit 19. In the present embodiment, the determination unit 32 determines the air volume of the blower 30. Note that the determination unit 32 may determine the wind direction of the blower 30.
  • the determination unit 32 determines the air volume for each time t. Specifically, when the heat storage amount at time t is smaller than the threshold, the determination unit 32 determines the air volume to be zero.
  • the threshold value is, for example, 0. That is, when the heat storage amount is smaller than 0, the heat balance for the user is negative, and the user is not hot, and the blower 30 does not need to generate the airflow and hit the user. Therefore, when the heat storage amount is smaller than 0, the determination unit 32 determines the air volume to be 0. Note that the threshold value may not be 0, and may be changeable by a user, for example.
  • the determination unit 32 determines the air volume based on the following (Equation 2).
  • Air volume (t) b1 ⁇ heat storage amount (t) + B2 x room temperature (t) + B3 x indoor humidity (t) + D2
  • the coefficients b1, b2, and b3 and the constant d2 are values calculated in advance using measured data and multiple regression analysis.
  • the coefficients b1, b2 and b3 and the constant d2 are stored in, for example, a memory (not shown) provided in the control unit 31.
  • the coefficients b1, b2 and b3 and the constant d2 may be updated periodically by performing a regression analysis.
  • the coefficients b1, b2, and b3, and the constant d2 are determined so that the air volume becomes zero.
  • the adjustment unit 33 adjusts the operation of the blower 30 based on the control content determined by the determination unit 32. Specifically, the adjustment unit 33 causes the blower 30 to emit an airflow having the air volume determined by the determination unit 32.
  • the control unit 31 is realized by, for example, a microcontroller.
  • the control unit 31 is realized by, for example, a nonvolatile memory storing a program, a volatile memory serving as a temporary storage area for executing the program, an input / output port, a processor executing the program, and the like.
  • At least one of the determination unit 32 and the adjustment unit 33 included in the control unit 31 may be realized by software executed by a processor.
  • at least one of the determination unit 32 and the adjustment unit 33 may be realized by hardware such as an electronic circuit including a plurality of circuit elements.
  • FIG. 2 is a flowchart showing the operation of the thermal environment control system 1 according to the present embodiment.
  • the user environment measuring unit 11 measures an environment value around the user (S10). Specifically, the temperature measuring unit 12 measures the temperature around the user, the humidity measuring unit 13 measures the humidity around the user, and the solar radiation measuring unit 14 measures the amount of solar radiation the user takes.
  • the clothing amount acquisition unit 15 acquires the user's clothing amount (S12), and the activity amount acquisition unit 16 acquires the user's activity amount (S14).
  • the measurement of the environmental value (S10), the acquisition of the clothing amount (S12), and the acquisition of the activity amount (S14) may be performed simultaneously, or any of them may be performed first.
  • the measurement of the environment value (S10) and the acquisition of the activity amount (S14) are periodically and repeatedly performed, for example, every second.
  • the acquisition of the clothing amount (S12) may be repeatedly performed periodically, or may be performed at a timing when the user changes the clothing.
  • Data obtained by each measurement and acquisition is stored in the storage unit 17 as time-series data 18.
  • the heat storage amount calculation unit 19 calculates the heat storage amount of the user (S16). Specifically, the heat storage amount calculation unit 19 reads out the time series data 18 from the storage unit 17 and calculates the heat storage amount using the read time series data 18 and (Equation 1). For example, the calculation of the heat storage amount (S16) is periodically and repeatedly executed.
  • the processing from the measurement of the environmental value (S10) to the calculation of the heat storage amount (S16) is periodically and repeatedly executed while the user is wearing the wearable device 10. Thereby, the time-series data 18 including the time change of the calculated heat storage amount is stored in the storage unit 17. Note that the calculation of the heat storage amount (S16) may be performed only when controlling the blower 30.
  • the indoor environment measurement unit 20 measures the indoor environment value (S18). Specifically, the temperature measuring unit 21 measures the indoor temperature, and the humidity measuring unit 22 measures the indoor humidity.
  • the measurement of the indoor environment value (S18) may be performed before determining the control content, and may be performed simultaneously with, for example, the measurement of the environment value around the user (S10). Alternatively, the measurement of the indoor environment value may be performed only when the user is in the room.
  • the determining unit 32 determines the control content of the blower 30 based on the measured indoor environment value and the calculated heat storage amount (S20). Specifically, the determination unit 32 determines the air volume of the blower 30 as the control content.
  • FIG. 3 is a flowchart showing the air volume determination process (S20) in the operation of the thermal environment control system 1 according to the present embodiment. As shown in FIG. 3, the determining unit 32 compares the calculated heat storage amount with the threshold (S30).
  • the determination unit 32 determines the air volume of the blower 30 to be 0 (S32).
  • the determination unit 32 calculates the air volume based on the indoor environment value (S34). Specifically, the determining unit 32 calculates the air volume using the above-described (Equation 2) based on the heat storage amount and the indoor temperature and humidity.
  • the processing for determining the air volume shown in FIG. 3 may be performed, for example, every time the heat storage amount is calculated. When the heat storage amount is periodically calculated repeatedly, the air volume is also periodically determined. This makes it possible to maintain a comfortable environment for the user.
  • the adjusting unit 33 operates the blower 30 with the determined control content (S22). For example, the adjustment unit 33 causes the blower 30 to generate and discharge an airflow having the determined air volume.
  • FIG. 4 is a diagram illustrating an example of the time-series data 18 acquired in the thermal environment control system 1 according to the present embodiment and the heat storage amount calculated based on the time-series data 18.
  • the horizontal axis represents time t.
  • FIG. 4 shows, for example, the time change of the environment value, the amount of clothes, and the amount of activity when the user goes shopping from home and returns to the home afterward when the outside air temperature is high (for example, summer).
  • One room in the house is an indoor space to be controlled in the thermal environment, specifically, an indoor space from which the airflow generated by the blower 30 is released.
  • the user in the period T1, the user is outdoors and is moving on foot. Therefore, the temperature, humidity, and solar radiation are all high values, and the activity is also high.
  • the user enters a cool store and performs shopping. For this reason, the temperature, humidity, and solar radiation all decrease and are maintained at low values.
  • the amount of movement since the amount of movement is reduced, the amount of activity is also reduced.
  • the user goes outdoors again and is moving on foot. Therefore, the temperature, the humidity, and the amount of solar radiation all have high values, and the amount of activity also has high values. Note that the user has not changed the clothing from the period T1 to T3, and the clothing amount becomes a constant value.
  • period T4 the user has returned home and is resting. During this time, air conditioning equipment such as an air conditioner and equipment such as a blower 30 are operated. As a result, the temperature, humidity, and solar radiation all decrease and are maintained at low values. In addition, the user has changed clothes from going out to the room after returning home, and thus the amount of clothes has decreased. Also, since the user is at rest, the amount of activity is also decreasing.
  • air conditioning equipment such as an air conditioner and equipment such as a blower 30 are operated.
  • the temperature, humidity, and solar radiation all decrease and are maintained at low values.
  • the user has changed clothes from going out to the room after returning home, and thus the amount of clothes has decreased. Also, since the user is at rest, the amount of activity is also decreasing.
  • FIG. 4 also shows a temporal change in the calculated heat storage amount of the user.
  • the amount of heat storage increases while moving outdoors, and when the vehicle is in an air-conditioned store as in the period T2, the amount of heat storage decreases.
  • the heat storage amount of the user is decreasing.
  • FIG. 5 is a diagram showing a change in the indoor environment due to control of the equipment in the thermal environment control system 1 according to the present embodiment.
  • FIG. 5 shows details of the period T4 during operation of the device after the user returns to his / her home.
  • the horizontal axis indicates time t.
  • the thermal environment control system 1 controls the blower 30 based on the heat storage amount.
  • the thermal environment control system 1 may detect the return of the user by a human sensor or the like and automatically start the blower 30. As shown in FIG. 5, when the air conditioner operates, both the room temperature and the indoor humidity gradually decrease.
  • the blower 30 operates at the air volume determined based on (Equation 2).
  • the heat storage amount calculated based on (Equation 1) also decreases. Therefore, as the heat storage amount decreases, the air volume of the blower 30 also decreases, and finally the air volume becomes zero.
  • the blower 30 can generate an airflow again.
  • the air volume is determined based on the heat storage amount, a comfortable environment for the user is automatically formed. Since a comfortable environment is automatically formed, an unnecessarily strong airflow or the like is not generated, which leads to a reduction in power consumption of the blower 30 and energy saving.
  • the thermal environment control device 2 includes the indoor environment measurement unit 20 that measures the indoor environment value, the control unit 31 that controls one or more devices that adjust the indoor environment, A user environment measuring unit 11 for measuring an environment value around the user, a clothing amount acquiring unit 15 for acquiring a user's clothing amount, an activity amount acquiring unit 16 for acquiring a user's activity amount, and a user environment measuring unit A heat storage amount calculation unit 19 that calculates a user's heat storage amount based on the environment value measured by the measurement unit 11, the clothing amount obtained by the clothing amount obtaining unit 15, and the activity amount obtained by the activity amount obtaining unit 16. And The control unit 31 determines the control content of one or more devices based on the environment value measured by the indoor environment measurement unit 20 and the heat storage amount calculated by the heat storage amount calculation unit 19, and uses the determined control content. Control one or more devices.
  • the thermal environment control system 1 includes a thermal environment control device 2 and one or more devices.
  • the thermal environment control system 1 controls the devices based on the heat storage amount of the user. Since the heat storage amount corresponds to the heat amount accumulated in the user up to the control time point, the influence of the user's surrounding environment can be reflected in the control of the device by the control time point. For example, the control content of the device can be changed depending on whether the user was in a high-temperature environment or a low-temperature environment by the time of the control. As a result, the control content suitable for the user can be determined, so that a comfortable thermal environment for the user can be formed.
  • the thermal environment control device 2 includes the environment value measured by the user environment measurement unit 11, the clothing amount acquired by the clothing amount acquisition unit 15, the activity amount acquired by the activity amount acquisition unit 16, Is stored as time-series data 18.
  • the heat storage amount calculation unit 19 calculates the heat storage amount based on the time-series data 18 stored in the storage unit 17.
  • the environment value, the amount of clothes, and the amount of activity around the user can be stored for a certain period of time, so that it is possible to determine the control content suitable for the user based on past changes in the surrounding environment of the user. it can.
  • the indoor environment value includes at least one of the indoor temperature and humidity.
  • control content suitable for the user can be determined according to the indoor temperature or humidity.
  • the environmental value around the user is the temperature, humidity and solar radiation around the user.
  • the accuracy of the heat storage amount increases, so that it is possible to determine the control content that is more suitable for the user.
  • the five parameters required for calculating the heat storage amount are temperature, humidity, solar radiation amount, clothing amount, and activity amount, the heat storage amount can be calculated with a small processing amount without requiring a complicated calculation. Also, the measurement and acquisition of the values of these five parameters can be easily performed, so that the configuration of the thermal environment control device 2 can be simplified.
  • the one or more devices include the blower 30.
  • the control unit 31 controls the air volume of the blower 30.
  • the thermal environment control system 1 further includes a wearable device 10 worn by a user.
  • the wearable device 10 includes a user environment measurement unit 11, a clothing amount acquisition unit 15, and an activity amount acquisition unit 16.
  • the wearable device 10 worn by the user to measure or acquire the environment value, the amount of clothing, and the amount of activity around the user, so that highly accurate environmental values, the amount of clothing, and the amount of activity can be obtained. For this reason, the accuracy of the heat storage amount calculated based on the environmental value, the amount of clothes, and the amount of activity also increases, so that it is possible to determine the control content more suitable for the user.
  • the thermal environment control method includes a step of measuring an environment value around the user, a step of acquiring a user's clothing amount, a step of acquiring a user's activity amount, A calculating step of calculating a heat storage amount of the user based on the clothing amount and the activity amount, a step of measuring an indoor environment value, and a step of controlling one or more devices that adjust the indoor environment.
  • the control content of the one or more devices is determined based on the indoor environment value and the heat storage amount, and the one or more devices are controlled with the determined control content.
  • control content suitable for the user can be determined in the same manner as the thermal environment control device and the thermal environment control system 1 described above, a comfortable thermal environment for the user can be formed.
  • the second embodiment is different from the first embodiment in that an air conditioner is included as a device to be controlled in the thermal environment control system.
  • the following description focuses on differences from the first embodiment, and description of common points is omitted or simplified as appropriate.
  • FIG. 6 is a block diagram showing a configuration of the thermal environment control system 101 according to the present embodiment.
  • the thermal environment control system 101 includes a thermal environment control device 102 and a wearable device 110 instead of the thermal environment control device 2 and the wearable device 10.
  • the thermal environment control system 101 includes an air conditioner 140.
  • the thermal environment control device 2 further includes an input unit 111, a position acquisition unit 112, and a control unit 141 as compared with the thermal environment control device 2 according to the first embodiment.
  • the wearable device 110 is different from the wearable device 10 according to the first embodiment in that it further includes an input unit 111 and a position acquisition unit 112.
  • the input unit 111 receives an input from the user to acquire a device activation instruction.
  • the input unit 111 is realized by, for example, physical buttons provided on the main body of the wearable device 110, a touch panel display, or the like.
  • the activation instruction acquired by the input unit 111 is transmitted to the air conditioner 140.
  • the position acquisition unit 112 acquires position information indicating the current position of the wearable device 110.
  • the position acquisition unit 112 is realized by a GPS (Global Positioning System) receiver, an IMES (Indoor MEssaging System) receiver, or the like.
  • the position information acquired by the position acquisition unit 112 is transmitted to the air conditioner 140.
  • the wearable device 110 may include only one of the input unit 111 and the position acquisition unit 112.
  • the air conditioner 140 is one of one or more devices that adjust the indoor environment. Specifically, the air conditioner 140 adjusts at least one of the indoor temperature and humidity. The air conditioner 140 air-conditions the room so that the indoor temperature or humidity becomes the set temperature or the set humidity. Specifically, the air conditioner 140 performs indoor cooling, heating, dehumidification, or humidification.
  • the air conditioner 140 includes a control unit 141.
  • the control unit 141 is an example of a control unit that controls one or more devices that adjust the indoor environment, and controls the operation of the air conditioner 140. Specifically, the control unit 141 determines the control content of the air conditioner 140 based on the indoor environment value measured by the indoor environment measurement unit 20 and the heat storage amount calculated by the heat storage amount calculation unit 19. The air conditioner 140 is controlled by the determined control content. For example, the control unit 141 controls the set temperature or the set humidity of the air conditioner 140. The control unit 141 causes the air conditioner 140 to perform cooling or heating according to the set temperature. The control unit 141 causes the air conditioner 140 to perform dehumidification or humidification according to the set humidity. As illustrated in FIG. 6, the control unit 141 includes a determination unit 142 and an adjustment unit 143.
  • the determination unit 142 determines the control content of the air conditioner 140 based on the indoor environment value measured by the indoor environment measurement unit 20 and the heat storage amount calculated by the heat storage calculation unit 19. In the present embodiment, determination unit 142 determines the set temperature of air conditioner 140 as the control content. Note that the determination unit 142 may determine the set humidity of the air conditioner 140.
  • the determination unit 142 determines a set temperature for each time t. Specifically, when the absolute value of the heat storage amount at time t is smaller than the threshold value, determination unit 142 determines the set temperature as a reference value.
  • the reference value is, for example, a temperature at which the user feels comfortable when the heat storage amount of the user is zero.
  • the determination unit 142 determines the set temperature based on the following (Equation 3).
  • the coefficients c1, c2, and c3 and the constant d3 are values calculated in advance using the measured data and the multiple regression analysis.
  • the coefficients c1, c2 and c3 and the constant d3 are stored in, for example, a memory (not shown) provided in the control unit 141.
  • the coefficients c1, c2 and c3, and the constant d3 may be updated periodically by performing a regression analysis. Further, the coefficients c1, c2 and c3, and the constant d3 may be different values during the cooling operation and during the heating operation.
  • the heat storage amount when the heat storage amount is a positive value and is equal to or greater than the threshold value, the set temperature decreases and the air conditioner 140 performs cooling.
  • the heat storage amount is a negative value and equal to or less than the threshold value, the set temperature increases and heating is performed by the air conditioner 140.
  • the coefficients c1, c2, and c3 and the constant d3 are determined so that the set temperature becomes the reference value.
  • the threshold value for the cooling or heating determination is the same, but is not limited to this.
  • the positive threshold value and the negative threshold value of the heat storage amount may be different.
  • the set humidity can be determined in the same manner. For example, when the absolute value of the heat storage amount at time t is smaller than the threshold, the determination unit 142 determines the set humidity as the reference value.
  • the reference value is, for example, the humidity at which the user feels comfortable when the heat storage amount of the user is 0. If the absolute value of the heat storage amount at time t is equal to or greater than the threshold, the determination unit 142 determines the set humidity using the same equation as the above (Equation 3).
  • Adjustment unit 143 adjusts the operation of air conditioner 140 based on the control content determined by determination unit 142. Specifically, the adjustment unit 143 performs indoor cooling or heating so that the set temperature determined by the determination unit 142 becomes room temperature. In addition, the adjustment unit 143 performs dehumidification or humidification of the room such that the indoor humidity is equal to the set humidity determined by the determination unit 142.
  • the control unit 141 is realized by, for example, a microcontroller.
  • the control unit 141 is realized by, for example, a non-volatile memory storing a program, a volatile memory serving as a temporary storage area for executing the program, an input / output port, a processor executing the program, and the like.
  • At least one of the determination unit 142 and the adjustment unit 143 included in the control unit 141 may be realized by software executed by a processor.
  • at least one of the determination unit 142 and the adjustment unit 143 may be realized by hardware such as an electronic circuit including a plurality of circuit elements.
  • control unit 141 when receiving the activation instruction acquired by input unit 111, activates air conditioner 140, that is, starts operation of air conditioner 140.
  • the user can start the operation of the air conditioner 140 by inputting a start instruction to the input unit 111 even when the user is away from the room (for example, outside). Therefore, the operation of the air conditioner 140 can be started before the user enters the room, and a comfortable environment can be formed immediately when the user enters the room or immediately after entering the room.
  • ⁇ ⁇ Control unit 141 starts the operation of air conditioner 140 when the position indicated by the position information acquired by position acquisition unit 112 enters the area from outside the predetermined area.
  • the predetermined area is, for example, a circular area centered on the room where the air conditioner 140 is provided.
  • the radius of the circular area is determined, for example, based on the time required to make the room a comfortable environment for the user. Specifically, the radius corresponds to the product of the average moving speed of the user (unit: m / min) and the required time (unit: minute).
  • the operation of the air conditioner 140 can be started. That is, before the user enters the room (for example, before returning home), the air conditioner 140 can be operated to create a state in which a comfortable environment has already been formed when the user enters the room.
  • the wearable device 110 may transmit a start instruction for starting the operation of the air conditioner 140 to the air conditioner 140 based on the position information acquired by the position acquisition unit 112 and the position in the room.
  • the storage unit 17 stores target position information indicating a position in a room.
  • the position acquisition unit 112 may transmit a start instruction to the air conditioner 140 when the position of the room enters the area from outside the predetermined area.
  • the predetermined area here is, for example, a circular area centered on the wearable device 110. The circular area corresponds to the product of the average moving speed of the user (unit: m / min) and the required time (unit: minute).
  • the blower 30 may be started based on a start instruction or position information instead of or in addition to the air conditioner 140.
  • thermal environment control system 101 [Operation (thermal environment control method)] Subsequently, an operation of the thermal environment control system 101 according to the present embodiment will be described.
  • the operations of the indoor environment measuring unit 20 and the blower 30 are the same as those in the first embodiment.
  • Wearable device 110 transmits a start instruction to air conditioner 140 when input unit 111 receives a start instruction in addition to the operation of the first embodiment. In addition, wearable device 110 periodically transmits the position information to air conditioner 140.
  • FIG. 7 is a flowchart showing the operation of the air conditioner 140 of the thermal environment control system 101 according to the present embodiment.
  • the control unit 141 determines whether a start instruction has been received (S40).
  • the activation instruction includes not only an instruction transmitted from the input unit 111 of the wearable device 110 but also an instruction input to the air conditioner 140 or its controller.
  • the determination unit 142 determines the control content (S42). In the present embodiment, determination unit 142 determines the set temperature or the set humidity of air conditioner 140 as the control content. A specific method of determining the control content will be described later with reference to FIG.
  • control unit 141 determines whether the position of wearable device 110 has entered a predetermined area based on the position information transmitted from wearable device 110. A determination is made (S44). When it is determined that the position of the wearable device 110 has entered the area (Yes in S44), the determination unit 142 determines the control content (S42).
  • the adjustment unit 143 operates the air conditioner 140 with the determined control content (S22). For example, the adjustment unit 143 operates the air conditioner 140 such that the room temperature or the indoor humidity becomes the set temperature or the set humidity.
  • control unit 141 When the position of the wearable device 110 exists outside the area, or when the position of the wearable device 110 already exists in the area (No in S44), the control unit 141 does not start the operation of the air conditioner 140. In this case, the control unit 141 returns to the determination of the start instruction (S40), and repeats the above-described processing.
  • FIG. 8 is a flowchart showing a process of determining a set temperature or a set humidity in the operation of the thermal environment control system 101 according to the present embodiment.
  • the determining unit 142 compares the calculated absolute value of the heat storage amount with the threshold (S50).
  • the threshold value is, for example, 0.
  • the determination unit 142 determines whether the absolute value of the heat storage amount is smaller than the threshold (Yes in S50). If the absolute value of the heat storage amount is equal to or larger than the threshold (No in S50), the determination unit 142 calculates the set temperature or the set humidity based on the indoor environment value (S54). Specifically, the determination unit 142 calculates the set temperature or the set humidity using the above-described (Equation 3) based on the heat storage amount and the indoor temperature and humidity.
  • the air volume determination process shown in FIG. 8 may be performed, for example, every time the heat storage amount is calculated. When the heat storage amount is periodically calculated repeatedly, the air volume is also periodically determined. This makes it possible to maintain a comfortable environment for the user.
  • one or more devices include the air conditioner 140 that adjusts the indoor temperature or humidity.
  • the control unit 141 controls at least one of the set temperature and the set humidity of the air conditioner 140.
  • the room temperature or the indoor humidity can be adjusted to a comfortable temperature or humidity for the user.
  • the thermal environment control device As described above, the thermal environment control device according to the present invention has been described based on the above embodiment, but the present invention is not limited to the above embodiment.
  • the temperature around the user, the amount of sunlight, the amount of solar radiation, the amount of clothing, and the amount of activity are used for calculating the amount of heat storage.
  • Any one or two of the temperature, the humidity, and the amount of solar radiation may not be used for calculating the heat storage amount.
  • the user's respiration rate, oxygen consumption, body surface area, exposed body surface area, average skin temperature, weight loss, heat transfer coefficient of the human body, and average radiation temperature At least one may be further used.
  • the clothing amount acquisition unit 15 obtains the clothing amount by user input, but is not limited thereto.
  • the clothing amount acquisition unit 15 may be realized by a camera that photographs a user and an image processing circuit that processes an image obtained by photographing.
  • the clothing amount acquisition unit 15 may determine the type of clothing of the user by processing the image, and acquire the clothing amount based on the determination result.
  • the storage unit 17 may store not the time-series data 18 but only the value obtained immediately before. Specifically, the storage unit 17 stores only the temperature, humidity, and irradiation amount around the user measured immediately before, the amount of clothing and activity of the user, and the heat storage amount calculated immediately before. May be.
  • the communication method between the devices described in the above embodiment is not particularly limited.
  • the wireless communication method is, for example, ZigBee (registered trademark), Bluetooth (registered trademark), or short-range wireless communication such as wireless LAN (Local Area Network).
  • the wireless communication method may be communication via a wide area communication network such as the Internet. Wired communication may be performed between the devices instead of wireless communication.
  • the wired communication is power line communication (PLC) or communication using a wired LAN.
  • another processing unit may execute the process executed by the specific processing unit. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel.
  • the distribution of the components included in the thermal environment control system to a plurality of devices is an example. For example, components included in one device may be included in another device.
  • the storage unit 17 and the heat storage amount calculation unit 19 included in the wearable device 10 may be provided in the blower 30 or the air conditioner 140.
  • the storage unit 17 and the heat storage amount calculation unit 19 may be provided in a server device with which the wearable device 10, the blower 30, and the air conditioner 140 can communicate.
  • the blower 30 or the air conditioner 140 may include the indoor environment measuring unit 20.
  • the thermal environment control system 1 may include a general-purpose blower or an air conditioner, and a control device that controls the blower or the air conditioner.
  • the control device includes the indoor environment measurement unit 20, the control unit 31, or A control unit 141 may be provided.
  • the wearable device 10 may include the determining unit 32 of the control unit 31 or the determining unit 142 of the control unit 141.
  • the thermal environment control system 1 may be realized as a single device.
  • the processing described in the above embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. Good.
  • the number of processors that execute the program may be one or more. That is, centralized processing or distributed processing may be performed.
  • all or a part of the components such as the control unit may be configured by dedicated hardware, or may be realized by executing a software program suitable for each component. Is also good.
  • Each component may be realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
  • a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
  • the components such as the control unit may be configured by one or a plurality of electronic circuits.
  • Each of the one or more electronic circuits may be a general-purpose circuit or a dedicated circuit.
  • the one or more electronic circuits may include, for example, a semiconductor device, an integrated circuit (IC), or a large scale integration (LSI).
  • the IC or LSI may be integrated on one chip, or may be integrated on a plurality of chips.
  • the term “IC” or “LSI” is used.
  • the term “IC” or “LSI” changes depending on the degree of integration, and may be referred to as a system LSI, a VLSI (Very Large Scale Integration), or an ULSI (Ultra Large Scale Integration).
  • an FPGA Field Programmable Gate Array programmed after manufacturing the LSI can be used for the same purpose.
  • the general or specific aspects of the present invention may be realized by a system, an apparatus, a method, an integrated circuit, or a computer program.
  • the present invention may be realized by a non-transitory computer-readable recording medium such as an optical disk, an HDD, or a semiconductor memory in which the computer program is stored.
  • the present invention may be realized by an arbitrary combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A thermal environment control device (2) is provided with: an indoor environment measurement unit (20) that measures environment values in an indoor space; a control unit (31) that controls a blower (30), which is one example of one or more devices for adjusting the environment in the indoor space; a user environment measurement unit (11) that measures environment values in the vicinity of a user; a clothing amount acquisition unit (15) that acquires the amount of clothing on the user; an activity amount acquisition unit (16) that acquires the amount of activity by the user; and a heat accumulation amount calculation unit (19) that calculates the amount of heat accumulated by the user on the basis of the environment values measured by the user environment measurement unit (11), the clothing amount acquired by the clothing amount acquisition unit (15), and the activity amount acquired by the activity amount acquisition unit (16). The control unit (31) determines control content for the one or more devices on the basis of the environment values measured by the indoor environment measurement unit (20) and the heat accumulation amount calculated by the heat accumulation amount calculation unit (19), and controls the one or more devices using the determined control content.

Description

温熱環境制御装置、温熱環境制御システム及び温熱環境制御方法Thermal environment control device, thermal environment control system, and thermal environment control method
 本発明は、温熱環境制御装置、温熱環境制御システム及び温熱環境制御方法に関する。 The present invention relates to a thermal environment control device, a thermal environment control system, and a thermal environment control method.
 従来、予想温冷感申告(PMV:Predicted Mean Vote)の値に基づいて、冷房又は暖房の調整を行う冷暖切替装置が知られている(例えば、特許文献1を参照)。 Conventionally, there has been known a cooling / heating switching device that performs cooling or heating adjustment based on a value of a predicted thermal sensation report (PMV: Predicted @ Mean @ Vote) (for example, see Patent Document 1).
特開平7-198186号公報JP-A-7-198186
 ユーザにとって快適な温熱環境は、直前のユーザの行動に依存する。例えば、直前に32℃の空間に居た場合には、室温が30℃の部屋であっても快適に感じられるのに対して、直前に25℃の空間に居た場合には、室温が同じ30℃の部屋であっても暑く、不快に感じられる。このため、上記従来の冷暖切替装置のように、PMV値に基づいて冷房又は暖房の調整を行うだけでは、ユーザにとって快適な温熱環境が形成されない場合がある。 温 The comfortable thermal environment for the user depends on the immediately preceding user's action. For example, if you were in a space of 32 ° C just before, you could feel comfortable even in a room with a room temperature of 30 ° C, whereas if you were in a space of 25 ° C just before, the room temperature would be the same. It feels hot and uncomfortable even in a room at 30 ° C. Therefore, as in the above-described conventional cooling / heating switching device, simply adjusting the cooling or heating based on the PMV value may not form a comfortable thermal environment for the user.
 そこで、本発明は、ユーザにとって快適な温熱環境を形成することができる温熱環境制御装置、温熱環境制御システム及び温熱環境制御方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a thermal environment control device, a thermal environment control system, and a thermal environment control method that can form a thermal environment that is comfortable for a user.
 上記目的を達成するため、本発明の一態様に係る温熱環境制御装置は、室内の環境値を測定する室内環境測定部と、前記室内の環境を調整する1以上の機器を制御する制御部と、ユーザの周囲の環境値を測定する使用者環境測定部と、前記ユーザの着衣量を取得する着衣量取得部と、前記ユーザの活動量を取得する活動量取得部と、前記使用者環境測定部によって測定された環境値と、前記着衣量取得部によって取得された着衣量と、前記活動量取得部によって取得された活動量とに基づいて、前記ユーザの蓄熱量を算出する算出部とを備え、前記制御部は、前記室内環境測定部によって測定された環境値と、前記算出部によって算出された蓄熱量とに基づいて、前記1以上の機器の制御内容を決定し、決定した制御内容で前記1以上の機器を制御する。 To achieve the above object, a thermal environment control device according to one embodiment of the present invention includes an indoor environment measurement unit that measures an indoor environment value, and a control unit that controls one or more devices that adjust the indoor environment. A user environment measurement unit that measures an environment value around the user, a clothing amount acquisition unit that acquires the clothing amount of the user, an activity amount acquisition unit that acquires the activity amount of the user, and the user environment measurement A calculating unit that calculates the heat storage amount of the user based on the environmental value measured by the unit, the clothing amount acquired by the clothing amount acquiring unit, and the activity amount acquired by the activity amount acquiring unit. The control unit determines the control content of the one or more devices based on the environment value measured by the indoor environment measurement unit and the heat storage amount calculated by the calculation unit, and determines the determined control content. The one or more machines To control.
 また、本発明の一態様に係る温熱環境制御システムは、前記温熱環境制御装置と、前記1以上の機器とを備える。 Further, a thermal environment control system according to one aspect of the present invention includes the thermal environment control device and the one or more devices.
 また、本発明の一態様に係る温熱環境制御方法は、ユーザの周囲の環境値を測定するステップと、前記ユーザの着衣量を取得するステップと、前記ユーザの活動量を取得するステップと、前記環境値と前記着衣量と前記活動量とに基づいて、前記ユーザの蓄熱量を算出する算出ステップと、室内の環境値を測定するステップと、前記室内の環境を調整する1以上の機器を制御するステップとを含み、前記1以上の機器を制御するステップでは、前記室内の環境値と前記蓄熱量とに基づいて前記1以上の機器の制御内容を決定し、決定した制御内容で前記1以上の機器を制御する。 Further, the thermal environment control method according to one aspect of the present invention includes a step of measuring an environment value around the user, a step of acquiring the amount of clothing of the user, a step of acquiring an amount of activity of the user, A calculating step of calculating a heat storage amount of the user based on the environmental value, the clothing amount, and the activity amount; a step of measuring an indoor environment value; and controlling one or more devices for adjusting the indoor environment. Controlling the one or more devices, determining the control content of the one or more devices based on the indoor environment value and the heat storage amount, and determining the one or more devices based on the determined control content. Control the equipment.
 また、本発明の一態様は、上記温熱環境制御方法をコンピュータに実行させるためのプログラムとして実現することができる。あるいは、当該プログラムを格納したコンピュータ読み取り可能な記録媒体として実現することもできる。 In addition, one embodiment of the present invention can be realized as a program for causing a computer to execute the thermal environment control method. Alternatively, it can be realized as a computer-readable recording medium storing the program.
 本発明によれば、ユーザにとって快適な温熱環境を形成することができる。 According to the present invention, a thermal environment that is comfortable for the user can be formed.
図1は、実施の形態1に係る温熱環境制御システムの構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of the thermal environment control system according to the first embodiment. 図2は、実施の形態1に係る温熱環境制御システムの動作を示すフローチャートである。FIG. 2 is a flowchart illustrating an operation of the thermal environment control system according to the first embodiment. 図3は、実施の形態1に係る温熱環境制御システムの動作において、風量の決定処理を示すフローチャートである。FIG. 3 is a flowchart illustrating a process of determining an air volume in the operation of the thermal environment control system according to the first embodiment. 図4は、実施の形態1に係る温熱環境制御システムにおいて取得された時系列データと、当該時系列データに基づいて算出された蓄熱量との一例を示す図である。FIG. 4 is a diagram illustrating an example of time-series data acquired in the thermal environment control system according to the first embodiment and a heat storage amount calculated based on the time-series data. 図5は、実施の形態1に係る温熱環境制御システムにおける機器の制御による室内環境の変化を示す図である。FIG. 5 is a diagram illustrating a change in the indoor environment due to control of devices in the thermal environment control system according to the first embodiment. 図6は、実施の形態2に係る温熱環境制御システムの構成を示すブロック図である。FIG. 6 is a block diagram illustrating a configuration of a thermal environment control system according to the second embodiment. 図7は、実施の形態2に係る温熱環境制御システムの空調機器の動作を示すフローチャートである。FIG. 7 is a flowchart showing the operation of the air conditioner of the thermal environment control system according to the second embodiment. 図8は、実施の形態2に係る温熱環境制御システムの動作において、設定温度又は設定湿度の決定処理を示すフローチャートである。FIG. 8 is a flowchart illustrating a process of determining a set temperature or a set humidity in the operation of the thermal environment control system according to the second embodiment.
 以下では、本発明の実施の形態に係る温熱環境制御装置、温熱環境制御システム及び温熱環境制御方法について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, a thermal environment control device, a thermal environment control system, and a thermal environment control method according to an embodiment of the present invention will be described in detail with reference to the drawings. Each of the embodiments described below shows a specific example of the present invention. Therefore, numerical values, shapes, materials, constituent elements, arrangement and connection forms of constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and do not limit the present invention. Therefore, among the components in the following embodiments, components not described in the independent claims are described as arbitrary components.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 図 Moreover, each drawing is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, the scales and the like do not always match in each drawing. Further, in each of the drawings, substantially the same configuration is denoted by the same reference numeral, and redundant description will be omitted or simplified.
 (実施の形態1)
 [構成]
 まず、本実施の形態に係る温熱環境制御装置及び温熱環境制御システムの構成について、図1を用いて説明する。図1は、本実施の形態に係る温熱環境制御システム1の構成を示すブロック図である。
(Embodiment 1)
[Constitution]
First, the configurations of the thermal environment control device and the thermal environment control system according to the present embodiment will be described with reference to FIG. FIG. 1 is a block diagram showing a configuration of a thermal environment control system 1 according to the present embodiment.
 図1に示されるように、温熱環境制御システム1は、温熱環境制御装置2と、ウェアラブルデバイス10と、送風機30とを備える。温熱環境制御装置2は、使用者環境測定部11と、着衣量取得部15と、活動量取得部16と、記憶部17と、蓄熱量算出部19と、室内環境測定部20と、制御部31とを備える。 温 As shown in FIG. 1, the thermal environment control system 1 includes a thermal environment control device 2, a wearable device 10, and a blower 30. The thermal environment control device 2 includes a user environment measurement unit 11, a clothing amount acquisition unit 15, an activity amount acquisition unit 16, a storage unit 17, a heat storage amount calculation unit 19, an indoor environment measurement unit 20, a control unit, 31.
 ウェアラブルデバイス10は、ユーザに装着される。室内環境測定部20及び送風機30は、例えば室内に設けられる。ウェアラブルデバイス10と、室内環境測定部20と、送風機30とは、無線又は有線で通信可能に接続されている。 Wearable device 10 is worn by the user. The indoor environment measuring unit 20 and the blower 30 are provided, for example, indoors. The wearable device 10, the indoor environment measuring unit 20, and the blower 30 are communicably connected wirelessly or by wire.
 室内は、温熱環境制御システム1が備える機器によって温熱環境が制御される対象となる屋内空間である。本実施の形態では、室内は、送風機30によって生成される気流が放出される空間である。例えば、室内は、ユーザが滞在する屋内空間であり、具体的には、ユーザの自宅、オフィスビル、学校又は病院などの建物の一室である。屋内空間は、自動車などの車両の車内空間であってもよい。 The room is an indoor space in which the thermal environment is controlled by devices provided in the thermal environment control system 1. In the present embodiment, the room is a space from which the airflow generated by the blower 30 is released. For example, the room is an indoor space in which the user stays, and specifically, a room in a building such as a user's home, office building, school, or hospital. The indoor space may be a space inside a vehicle such as an automobile.
 ウェアラブルデバイス10は、ユーザに装着され、ユーザの周囲環境に関する情報を取得する端末装置である。ウェアラブルデバイス10は、例えば、ユーザの手、腕又は脚に装着される。本実施の形態では、ウェアラブルデバイス10は、取得した情報を送風機30に送信する。 The wearable device 10 is a terminal device that is worn by a user and acquires information about the user's surrounding environment. The wearable device 10 is mounted on, for example, a user's hand, arm, or leg. In the present embodiment, wearable device 10 transmits the acquired information to blower 30.
 例えば、ウェアラブルデバイス10は、マイコン及び各種センサなどを収容する本体部と、当該本体部をユーザに装着するための取付具とを備える。取付具は、例えば、本体部を支持する帯(バンド)と、手首又は足首などの対象物に帯が巻きつけられた状態で固定可能な留め具とを有する。留め具は、例えばバックル又は面ファスナーなどであるが、特に限定されない。 For example, the wearable device 10 includes a main body that houses a microcomputer, various sensors, and the like, and a fixture for mounting the main body to a user. The attachment includes, for example, a band that supports the main body, and a fastener that can be fixed in a state where the band is wound around an object such as a wrist or an ankle. The fastener is, for example, a buckle or a hook-and-loop fastener, but is not particularly limited.
 ウェアラブルデバイス10がユーザに装着される態様は、特に限定されない。例えば、ウェアラブルデバイス10は、粘着テープなどを有し、ユーザの肌に直接貼り付けられてもよい。あるいは、ウェアラブルデバイス10は、ユーザの衣服のポケットなどに収納されることで、ユーザに装着されてもよい。 The manner in which the wearable device 10 is worn by the user is not particularly limited. For example, the wearable device 10 may have an adhesive tape or the like, and may be directly attached to the skin of the user. Alternatively, the wearable device 10 may be mounted on the user by being stored in a pocket of the user's clothes or the like.
 図1に示されるように、ウェアラブルデバイス10は、使用者環境測定部11と、着衣量取得部15と、活動量取得部16と、記憶部17と、蓄熱量算出部19とを備える。使用者環境測定部11は、温度測定部12と、湿度測定部13と、日射量測定部14とを有する。記憶部17には、時系列データ18が記憶される。 As shown in FIG. 1, the wearable device 10 includes a user environment measurement unit 11, a clothing amount acquisition unit 15, an activity amount acquisition unit 16, a storage unit 17, and a heat storage amount calculation unit 19. The user environment measurement unit 11 includes a temperature measurement unit 12, a humidity measurement unit 13, and a solar radiation measurement unit 14. The storage unit 17 stores time-series data 18.
 温度測定部12は、ユーザの周囲の環境値を測定する使用者環境測定部の一例であり、環境値の一例である温度を測定する。温度測定部12は、例えば温度センサであり、ユーザの周囲の温度を測定する。例えば、温度測定部12は、ウェアラブルデバイス10に触れる空気の温度を測定する。 The temperature measurement unit 12 is an example of a user environment measurement unit that measures an environment value around a user, and measures a temperature that is an example of an environment value. The temperature measurement unit 12 is, for example, a temperature sensor, and measures the temperature around the user. For example, the temperature measurement unit 12 measures the temperature of the air that touches the wearable device 10.
 湿度測定部13は、ユーザの周囲の環境値を測定する使用者環境測定部の一例であり、環境値の一例である湿度を測定する。湿度測定部13は、例えば湿度センサであり、ユーザの周囲の湿度を測定する。例えば、湿度測定部13は、ウェアラブルデバイス10に触れる空気の湿度を測定する。 The humidity measurement unit 13 is an example of a user environment measurement unit that measures an environment value around a user, and measures humidity, which is an example of an environment value. The humidity measuring unit 13 is, for example, a humidity sensor, and measures the humidity around the user. For example, the humidity measuring unit 13 measures the humidity of the air that touches the wearable device 10.
 日射量測定部14は、ユーザの周囲の環境値を測定する使用者環境測定部の一例であり、環境値の一例である日射量を測定する。日射量測定部14は、例えば日射計であり、ユーザに照射される太陽光の単位面積及び単位時間当たりの放射エネルギーを日射量として測定する。例えば、日射量測定部14は、ウェアラブルデバイス10に照射される太陽光を受光することで、日射量を測定する。 The solar radiation measuring unit 14 is an example of a user environment measuring unit that measures an environmental value around the user, and measures solar radiation, which is an example of an environmental value. The solar radiation measuring unit 14 is, for example, a pyranometer, and measures radiant energy per unit area and unit time of solar light irradiated to a user as solar radiation. For example, the solar radiation measuring unit 14 measures the amount of solar radiation by receiving sunlight irradiated on the wearable device 10.
 着衣量取得部15は、ユーザの着衣量を取得する。着衣量は、例えば、ユーザが着ている1枚以上の衣服の熱抵抗の合計値であり、単位:cloで表される。一般的に、厚着である程、着衣量は大きな値になる。 The clothing amount acquisition unit 15 acquires the user's clothing amount. The amount of clothing is, for example, a total value of thermal resistance of one or more pieces of clothing worn by the user, and is represented by a unit: clo. Generally, the thicker the clothes, the larger the amount of clothes.
 着衣量取得部15は、例えば、ユーザからの着衣の入力を受け付けるユーザインタフェースで実現される。具体的には、着衣量取得部15は、ウェアラブルデバイス10が備えるタッチパネルディスプレイとプロセッサとで実現される。タッチパネルディスプレイには、ユーザが着ている衣服を選択するための選択画面、又は、衣服をテキストで入力するためのテキスト入力画面などが表示される。プロセッサは、選択内容又は入力内容に基づいて着衣量データベースを参照することで、ユーザの着衣量を取得する。なお、タッチパネルディスプレイの代わりに、音声入力を受け付けるマイクが用いられてもよい。 The clothing amount acquisition unit 15 is realized by, for example, a user interface that receives an input of clothing from a user. Specifically, the clothing amount acquisition unit 15 is realized by a touch panel display and a processor included in the wearable device 10. On the touch panel display, a selection screen for selecting clothes worn by the user, a text input screen for inputting clothes in text, and the like are displayed. The processor acquires the user's clothing amount by referring to the clothing amount database based on the selected content or the input content. Note that a microphone that accepts voice input may be used instead of the touch panel display.
 着衣量データベースは、例えば、ウェアラブルデバイス10が備えるメモリに記憶されている。あるいは、着衣量データベースは、ウェアラブルデバイス10が通信可能なサーバ装置のメモリに記憶されていてもよい。着衣量データベースは、衣服の種類毎に熱抵抗を対応付けたデータベースである。例えば、着衣量データベースでは、ネクタイであれば熱抵抗が0.01clo、ワイシャツであれば熱抵抗が0.24cloなどと予め定められている。 The clothing amount database is stored in, for example, a memory included in the wearable device 10. Alternatively, the clothing amount database may be stored in a memory of a server device with which the wearable device 10 can communicate. The clothing amount database is a database in which thermal resistance is associated with each type of clothing. For example, in the clothing amount database, the thermal resistance is predetermined to be 0.01 clo for a tie and 0.24 clo for a shirt.
 なお、着衣量取得部15は、ユーザが着衣を変更したタイミングで、ユーザからの着衣の入力を受け付ける。着衣量取得部15は、着衣の入力をユーザに促すための表示、音声出力又は振動を行ってもよい。 The clothing amount acquisition unit 15 receives an input of clothing from the user at the timing when the user changes clothing. The clothing amount acquisition unit 15 may perform display, sound output, or vibration to prompt the user to input clothing.
 活動量取得部16は、ユーザの活動量を取得する。活動量は、例えば、ユーザの身体活動の強さであり、単位:メッツ(METs:Metabolic Equivalents)で表される。具体的には、座って安静にしている状態を1メッツとする。例えば、通常の速さで歩行している状態が3メッツになる。 The activity amount acquisition unit 16 acquires the activity amount of the user. The activity amount is, for example, the intensity of the physical activity of the user, and is expressed in units of METs (METs: Metabolic @ Equivalents). Specifically, a state where the user is sitting and resting is defined as 1 mets. For example, a state of walking at a normal speed becomes 3 mets.
 活動量取得部16は、例えば、ユーザの動きを検出する三軸加速度センサで実現される。三軸加速度センサは、ウェアラブルデバイス10に内蔵されており、腕の振り又は脚の動きなどに基づいてユーザの身体活動の強さを活動量として測定する。 The activity amount acquisition unit 16 is realized by, for example, a three-axis acceleration sensor that detects the movement of the user. The triaxial acceleration sensor is built in the wearable device 10, and measures the strength of the user's physical activity as an activity amount based on the swing of the arm or the movement of the leg.
 記憶部17は、時系列データ18を記憶するための記憶部である。記憶部17は、例えば半導体メモリで実現される。記憶部17は、温度測定部12によって測定された温度と、湿度測定部13によって測定された湿度と、日射量測定部14によって測定された日射量と、着衣量取得部15によって取得された着衣量と、活動量取得部16によって取得された活動量とを、時系列データ18として記憶する。 The storage unit 17 is a storage unit for storing the time-series data 18. The storage unit 17 is realized by, for example, a semiconductor memory. The storage unit 17 stores the temperature measured by the temperature measurement unit 12, the humidity measured by the humidity measurement unit 13, the insolation amount measured by the insolation measurement unit 14, and the clothing acquired by the clothing amount acquisition unit 15. The amount and the activity amount acquired by the activity amount acquiring unit 16 are stored as time-series data 18.
 時系列データ18は、使用者環境測定部11によって測定されたユーザの周囲の環境値と、着衣量取得部15によって取得された着衣量と、活動量取得部16によって取得された活動量との各々の時間変化を示すデータである。具体的には、時系列データ18は、1秒又は1分などの一定期間毎に、ユーザの周囲の温度、湿度及び日射量、並びに、着衣量及び活動量を示している。時系列データ18は、例えば、1時間又は1日などの所定の期間分の値を含んでいる。また、時系列データ18には、蓄熱量算出部19によって算出された蓄熱量の時間変化も含まれてもよい。 The time-series data 18 includes the environmental values around the user measured by the user environment measuring unit 11, the clothing amount acquired by the clothing amount acquiring unit 15, and the activity amount acquired by the activity amount acquiring unit 16. It is data indicating each time change. Specifically, the time-series data 18 indicates the temperature, the humidity, the amount of solar radiation, the amount of clothes, and the amount of activity around the user at regular intervals such as one second or one minute. The time-series data 18 includes values for a predetermined period, such as one hour or one day. Further, the time-series data 18 may include a time change of the heat storage amount calculated by the heat storage amount calculation unit 19.
 蓄熱量算出部19は、使用者環境測定部11によって測定されたユーザの周囲の環境値と、着衣量取得部15によって取得された着衣量と、活動量取得部16によって取得された活動量とに基づいて、ユーザの蓄熱量を算出する算出部の一例である。蓄熱量は、ユーザの行動に応じてユーザの体内に蓄積される熱量であり、単位:W/mで表される。 The heat storage amount calculation unit 19 calculates the environment value around the user measured by the user environment measurement unit 11, the clothing amount acquired by the clothing amount acquisition unit 15, the activity amount acquired by the activity amount acquisition unit 16, Is an example of a calculation unit that calculates the amount of heat stored by the user based on the calculation. The heat storage amount is the amount of heat stored in the body of the user according to the behavior of the user, and is represented by a unit: W / m 2 .
 例えば、周囲の気温又は湿度が高い程、蓄熱量も大きくなる。また、ユーザが浴びる日射量が多い程、蓄熱量も大きくなる。また、ユーザの活動量又は着衣量が多い程、蓄熱量も大きくなる。一方で、例えばユーザが風を浴びることにより、放熱量が大きくなって、蓄熱量は小さくなる。 For example, the higher the ambient temperature or humidity, the greater the amount of heat stored. In addition, the greater the amount of solar radiation the user takes, the greater the amount of heat stored. In addition, as the user's activity amount or clothing amount increases, the heat storage amount also increases. On the other hand, for example, when a user takes a wind, the amount of heat radiation increases and the amount of heat storage decreases.
 具体的には、蓄熱量算出部19は、記憶部17に記憶される時系列データ18に基づいて蓄熱量を算出する。例えば、蓄熱量算出部19は、回帰分析を利用して蓄熱量を算出する。本実施の形態では、蓄熱量算出部19は、時刻t毎の蓄熱量を算出する。より具体的には、蓄熱量算出部19は、以下の(式1)に基づいて蓄熱量を算出する。 Specifically, the heat storage amount calculation unit 19 calculates the heat storage amount based on the time-series data 18 stored in the storage unit 17. For example, the heat storage amount calculation unit 19 calculates the heat storage amount using regression analysis. In the present embodiment, the heat storage amount calculation unit 19 calculates the heat storage amount at each time t. More specifically, the heat storage amount calculation unit 19 calculates the heat storage amount based on the following (Equation 1).
 (式1) 蓄熱量(t)=蓄熱量(t-1)
             +a1×(温度(t-1)-温度(t))
             +a2×(湿度(t-1)-湿度(t))
             +a3×(日射量(t-1)-日射量(t))
             +a4×(着衣量(t-1)-着衣量(t))
             +a5×(活動量(t-1)-活動量(t))
             +d1
(Equation 1) Heat storage amount (t) = heat storage amount (t-1)
+ A1 × (temperature (t-1) -temperature (t))
+ A2 x (humidity (t-1)-humidity (t))
+ A3 × (solar radiation (t-1) -solar radiation (t))
+ A4 × (clothes amount (t-1) -clothes amount (t))
+ A5 × (activity (t-1)-activity (t))
+ D1
 (式1)において、係数a1、a2、a3、a4及びa5、並びに、定数d1は、実測データと重回帰分析とを用いて予め算出された値である。係数a1、a2、a3、a4及びa5、並びに、定数d1は、例えば記憶部17に記憶されている。なお、係数a1、a2、a3、a4及びa5、並びに、定数d1は、回帰分析を行うことで定期的に更新されてもよい。 In (Equation 1), the coefficients a1, a2, a3, a4, and a5, and the constant d1 are values calculated in advance using measured data and multiple regression analysis. The coefficients a1, a2, a3, a4, and a5 and the constant d1 are stored in, for example, the storage unit 17. Note that the coefficients a1, a2, a3, a4, and a5, and the constant d1 may be updated periodically by performing regression analysis.
 蓄熱量(t)は、算出対象時刻の蓄熱量であり、蓄熱量(t-1)は、直前に算出された蓄熱量である。なお、蓄熱量の算出は、例えば1秒毎に行われる。この場合、蓄熱量(t-1)は、算出対象時刻の1秒前の蓄熱量である。蓄熱量(t-1)は、例えば、記憶部17に、時系列データ18として記憶される。 熱 The heat storage amount (t) is the heat storage amount at the calculation target time, and the heat storage amount (t-1) is the heat storage amount calculated immediately before. The calculation of the heat storage amount is performed, for example, every second. In this case, the heat storage amount (t-1) is the heat storage amount one second before the calculation target time. The heat storage amount (t-1) is stored in the storage unit 17 as time-series data 18, for example.
 温度(t)は、算出対象時刻の温度であり、温度測定部12によって測定され、記憶部17に時系列データ18として記憶された値である。温度(t-1)は、直前の算出対象時刻の温度である。例えば、温度(t-1)は、算出対象時刻の1秒前の温度であり、記憶部17に時系列データ18として記憶された値である。湿度(t)、日射量(t)、着衣量(t)及び活動量(t)、並びに、湿度(t-1)、日射量(t-1)、着衣量(t-1)及び活動量(t-1)についても、同様である。 Temperature (t) is the temperature at the calculation target time, and is a value measured by temperature measurement unit 12 and stored in storage unit 17 as time-series data 18. The temperature (t-1) is the temperature at the immediately preceding calculation target time. For example, the temperature (t−1) is a temperature one second before the calculation target time, and is a value stored as the time-series data 18 in the storage unit 17. Humidity (t), solar radiation (t), clothing (t) and activity (t), and humidity (t-1), solar radiation (t-1), clothing (t-1) and activity The same applies to (t-1).
 室内環境測定部20は、室内の環境値を測定する。室内は、上述した通り、例えばユーザの自宅などの屋内空間である。本実施の形態では、室内環境測定部20は、測定された環境値を送風機30に送信する。図1に示されるように、室内環境測定部20は、温度測定部21と、湿度測定部22とを有する。 The indoor environment measuring unit 20 measures the indoor environment value. The indoor is an indoor space such as a user's home, for example, as described above. In the present embodiment, the indoor environment measuring unit 20 transmits the measured environment value to the blower 30. As shown in FIG. 1, the indoor environment measuring unit 20 includes a temperature measuring unit 21 and a humidity measuring unit 22.
 温度測定部21は、室内の環境値を測定する室内環境測定部の一例であり、環境値の一例である温度を測定する。温度測定部21は、例えば温度センサであり、室温を測定する。例えば、温度測定部21は、ユーザの自宅の一室の温度を測定する。なお、当該一室は、送風機30によって生成された気流が放出される空間である。 The temperature measurement unit 21 is an example of an indoor environment measurement unit that measures an indoor environment value, and measures a temperature that is an example of an environment value. The temperature measuring unit 21 is, for example, a temperature sensor and measures room temperature. For example, the temperature measuring unit 21 measures the temperature of one room of the user's home. The one room is a space from which the airflow generated by the blower 30 is released.
 湿度測定部22は、室内の環境値を測定する室内環境測定部の一例であり、環境値の一例である湿度を測定する。湿度測定部22は、例えば湿度センサであり、室内の湿度を測定する。例えば、湿度測定部22は、ユーザの自宅の一室の湿度を測定する。 The humidity measurement unit 22 is an example of an indoor environment measurement unit that measures an indoor environment value, and measures humidity, which is an example of an environment value. The humidity measuring unit 22 is, for example, a humidity sensor and measures indoor humidity. For example, the humidity measuring unit 22 measures the humidity of one room of the user's home.
 送風機30は、室内の環境を調整する1以上の機器の1つである。具体的には、送風機30は、気流を生成し、室内に放出する。本実施の形態では、送風機30は、風量を変更可能である。送風機30は、風向を変更可能であってもよい。 風 The blower 30 is one of one or more devices that adjust the indoor environment. Specifically, the blower 30 generates an airflow and discharges the airflow indoors. In the present embodiment, blower 30 can change the air volume. The blower 30 may be able to change the wind direction.
 図1に示されるように、送風機30は、制御部31を備える。制御部31は、室内の環境を調整する1以上の機器を制御する制御部の一例であり、送風機30の動作を制御する。制御部31は、室内環境測定部20によって測定された室内の環境値と、蓄熱量算出部19によって算出された蓄熱量とに基づいて、送風機30の制御内容を決定し、決定した制御内容で送風機30を制御する。例えば、制御部31は、送風機30の風量を制御する。図1に示されるように、制御部31は、決定部32と、調整部33とを有する。 送 As shown in FIG. 1, the blower 30 includes a control unit 31. The control unit 31 is an example of a control unit that controls one or more devices that adjust the indoor environment, and controls the operation of the blower 30. The control unit 31 determines the control content of the blower 30 based on the indoor environment value measured by the indoor environment measurement unit 20 and the heat storage amount calculated by the heat storage calculation unit 19, and uses the determined control content. The blower 30 is controlled. For example, the control unit 31 controls the air volume of the blower 30. As illustrated in FIG. 1, the control unit 31 includes a determination unit 32 and an adjustment unit 33.
 決定部32は、室内環境測定部20によって測定された室内の環境値と、蓄熱量算出部19によって算出された蓄熱量とに基づいて、送風機30の制御内容を決定する。本実施の形態では、決定部32は、送風機30の風量を決定する。なお、決定部32は、送風機30の風向を決定してもよい。 The determination unit 32 determines the control content of the blower 30 based on the indoor environment value measured by the indoor environment measurement unit 20 and the heat storage amount calculated by the heat storage amount calculation unit 19. In the present embodiment, the determination unit 32 determines the air volume of the blower 30. Note that the determination unit 32 may determine the wind direction of the blower 30.
 本実施の形態では、決定部32は、時刻t毎の風量を決定する。具体的には、時刻tにおける蓄熱量が閾値より小さい場合、決定部32は、風量を0に決定する。 In the present embodiment, the determination unit 32 determines the air volume for each time t. Specifically, when the heat storage amount at time t is smaller than the threshold, the determination unit 32 determines the air volume to be zero.
 閾値は、例えば0である。つまり、蓄熱量が0より小さい場合、ユーザに対する熱収支がマイナスであるので、ユーザは暑くなく、送風機30は気流を生成してユーザに当てなくてもよい。このため、蓄熱量が0より小さい場合に、決定部32は、風量を0に決定する。なお、閾値は0でなくてもよく、例えば、ユーザによって変更可能であってもよい。 The threshold value is, for example, 0. That is, when the heat storage amount is smaller than 0, the heat balance for the user is negative, and the user is not hot, and the blower 30 does not need to generate the airflow and hit the user. Therefore, when the heat storage amount is smaller than 0, the determination unit 32 determines the air volume to be 0. Note that the threshold value may not be 0, and may be changeable by a user, for example.
 時刻tにおける蓄熱量が閾値以上である場合、決定部32は、以下の(式2)に基づいて風量を決定する。 If the heat storage amount at time t is equal to or greater than the threshold value, the determination unit 32 determines the air volume based on the following (Equation 2).
 (式2) 風量(t)=b1×蓄熱量(t)
            +b2×室温(t)
            +b3×室内の湿度(t)
            +d2
(Equation 2) Air volume (t) = b1 × heat storage amount (t)
+ B2 x room temperature (t)
+ B3 x indoor humidity (t)
+ D2
 (式2)において、係数b1、b2及びb3、並びに、定数d2は、実測データと重回帰分析とを用いて予め算出された値である。係数b1、b2及びb3、並びに、定数d2は、例えば制御部31が備えるメモリ(図示せず)に記憶されている。なお、係数b1、b2及びb3、並びに、定数d2は、回帰分析を行うことで定期的に更新されてもよい。 In (Equation 2), the coefficients b1, b2, and b3 and the constant d2 are values calculated in advance using measured data and multiple regression analysis. The coefficients b1, b2 and b3 and the constant d2 are stored in, for example, a memory (not shown) provided in the control unit 31. The coefficients b1, b2 and b3 and the constant d2 may be updated periodically by performing a regression analysis.
 例えば、蓄熱量、室温又は室内の湿度が高い程、風量も大きくなる。蓄熱量、室温又は室内の湿度が低い程、風量が小さくなる。例えば、蓄熱量、室温又は室内の湿度が、それぞれに予め定められた閾値を下回った場合には、風量が0になるように、係数b1、b2及びb3、並びに、定数d2が定められる。 For example, the higher the heat storage amount, room temperature or indoor humidity, the larger the air volume. The lower the heat storage amount, room temperature, or indoor humidity, the smaller the air volume. For example, when the heat storage amount, the room temperature, or the indoor humidity falls below a predetermined threshold value, the coefficients b1, b2, and b3, and the constant d2 are determined so that the air volume becomes zero.
 調整部33は、決定部32によって決定された制御内容に基づいて、送風機30の動作を調整する。具体的には、調整部33は、決定部32によって決定された風量の気流を送風機30に放出させる。 The adjustment unit 33 adjusts the operation of the blower 30 based on the control content determined by the determination unit 32. Specifically, the adjustment unit 33 causes the blower 30 to emit an airflow having the air volume determined by the determination unit 32.
 制御部31は、例えば、マイクロコントローラで実現される。制御部31は、例えば、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどで実現される。制御部31が備える決定部32及び調整部33の少なくとも一方は、プロセッサによって実行されるソフトウェアで実現されてもよい。あるいは、決定部32及び調整部33の少なくとも一方は、複数の回路素子を含む電子回路などのハードウェアで実現されてもよい。 The control unit 31 is realized by, for example, a microcontroller. The control unit 31 is realized by, for example, a nonvolatile memory storing a program, a volatile memory serving as a temporary storage area for executing the program, an input / output port, a processor executing the program, and the like. At least one of the determination unit 32 and the adjustment unit 33 included in the control unit 31 may be realized by software executed by a processor. Alternatively, at least one of the determination unit 32 and the adjustment unit 33 may be realized by hardware such as an electronic circuit including a plurality of circuit elements.
 [動作(温熱環境制御方法)]
 続いて、本実施の形態に係る温熱環境制御システム1の動作(すなわち、温熱環境制御方法)について、図2を用いて説明する。
[Operation (thermal environment control method)]
Next, the operation of the thermal environment control system 1 according to the present embodiment (that is, the thermal environment control method) will be described with reference to FIG.
 図2は、本実施の形態に係る温熱環境制御システム1の動作を示すフローチャートである。 FIG. 2 is a flowchart showing the operation of the thermal environment control system 1 according to the present embodiment.
 図2に示されるように、まず、使用者環境測定部11がユーザの周囲の環境値を測定する(S10)。具体的には、温度測定部12がユーザの周囲の温度を測定し、湿度測定部13がユーザの周囲の湿度を測定し、日射量測定部14が、ユーザが浴びる日射量を測定する。次に、着衣量取得部15がユーザの着衣量を取得し(S12)、活動量取得部16がユーザの活動量を取得する(S14)。 As shown in FIG. 2, first, the user environment measuring unit 11 measures an environment value around the user (S10). Specifically, the temperature measuring unit 12 measures the temperature around the user, the humidity measuring unit 13 measures the humidity around the user, and the solar radiation measuring unit 14 measures the amount of solar radiation the user takes. Next, the clothing amount acquisition unit 15 acquires the user's clothing amount (S12), and the activity amount acquisition unit 16 acquires the user's activity amount (S14).
 なお、環境値の測定(S10)、着衣量の取得(S12)及び活動量の取得(S14)は同時に実行されてもよく、又は、いずれが先に行われてもよい。また、環境値の測定(S10)及び活動量の取得(S14)は、例えば1秒毎に定期的に繰り返し実行される。着衣量の取得(S12)は、定期的に繰り返し実行されてもよく、又は、ユーザが着衣を交換したタイミングで行われてもよい。各測定及び取得により得られたデータは、時系列データ18として記憶部17に記憶される。 Note that the measurement of the environmental value (S10), the acquisition of the clothing amount (S12), and the acquisition of the activity amount (S14) may be performed simultaneously, or any of them may be performed first. The measurement of the environment value (S10) and the acquisition of the activity amount (S14) are periodically and repeatedly performed, for example, every second. The acquisition of the clothing amount (S12) may be repeatedly performed periodically, or may be performed at a timing when the user changes the clothing. Data obtained by each measurement and acquisition is stored in the storage unit 17 as time-series data 18.
 次に、蓄熱量算出部19がユーザの蓄熱量を算出する(S16)。具体的には、蓄熱量算出部19は、時系列データ18を記憶部17から読み出し、読み出した時系列データ18と(式1)とを用いて蓄熱量を算出する。例えば、蓄熱量の算出(S16)は、定期的に繰り返し実行される。 Next, the heat storage amount calculation unit 19 calculates the heat storage amount of the user (S16). Specifically, the heat storage amount calculation unit 19 reads out the time series data 18 from the storage unit 17 and calculates the heat storage amount using the read time series data 18 and (Equation 1). For example, the calculation of the heat storage amount (S16) is periodically and repeatedly executed.
 例えば、環境値の測定(S10)から蓄熱量の算出(S16)までの処理は、ユーザがウェアラブルデバイス10を装着している期間中、定期的に繰り返し実行される。これにより、算出された蓄熱量の時間変化を含む時系列データ18が記憶部17に記憶される。なお、蓄熱量の算出(S16)は、送風機30の制御を行う時にのみ行われてもよい。 {For example, the processing from the measurement of the environmental value (S10) to the calculation of the heat storage amount (S16) is periodically and repeatedly executed while the user is wearing the wearable device 10. Thereby, the time-series data 18 including the time change of the calculated heat storage amount is stored in the storage unit 17. Note that the calculation of the heat storage amount (S16) may be performed only when controlling the blower 30.
 次に、室内環境測定部20が室内の環境値を測定する(S18)。具体的には、温度測定部21が室内の温度を測定し、湿度測定部22が室内の湿度を測定する。なお、室内の環境値の測定(S18)は、制御内容を決定する前に行われればよく、例えばユーザの周囲の環境値の測定(S10)などと同時に行われてもよい。あるいは、室内の環境値の測定は、ユーザが室内に存在する場合のみ実行されてもよい。 Next, the indoor environment measurement unit 20 measures the indoor environment value (S18). Specifically, the temperature measuring unit 21 measures the indoor temperature, and the humidity measuring unit 22 measures the indoor humidity. The measurement of the indoor environment value (S18) may be performed before determining the control content, and may be performed simultaneously with, for example, the measurement of the environment value around the user (S10). Alternatively, the measurement of the indoor environment value may be performed only when the user is in the room.
 次に、決定部32は、測定された室内の環境値及び算出された蓄熱量に基づいて、送風機30の制御内容を決定する(S20)。具体的には、決定部32は、送風機30の風量を制御内容として決定する。 Next, the determining unit 32 determines the control content of the blower 30 based on the measured indoor environment value and the calculated heat storage amount (S20). Specifically, the determination unit 32 determines the air volume of the blower 30 as the control content.
 図3は、本実施の形態に係る温熱環境制御システム1の動作において、風量の決定処理(S20)を示すフローチャートである。図3に示されるように、決定部32は、算出された蓄熱量と閾値とを比較する(S30)。 FIG. 3 is a flowchart showing the air volume determination process (S20) in the operation of the thermal environment control system 1 according to the present embodiment. As shown in FIG. 3, the determining unit 32 compares the calculated heat storage amount with the threshold (S30).
 蓄熱量が閾値より小さい場合(S30でYes)、決定部32は、送風機30の風量を0と決定する(S32)。蓄熱量が閾値以上である場合(S30でNo)、決定部32は、室内の環境値に基づいて風量を算出する(S34)。具体的には、決定部32は、蓄熱量と室内の温度及び湿度とに基づいて、上述した(式2)を用いて風量を算出する。 If the heat storage amount is smaller than the threshold value (Yes in S30), the determination unit 32 determines the air volume of the blower 30 to be 0 (S32). When the heat storage amount is equal to or larger than the threshold (No in S30), the determination unit 32 calculates the air volume based on the indoor environment value (S34). Specifically, the determining unit 32 calculates the air volume using the above-described (Equation 2) based on the heat storage amount and the indoor temperature and humidity.
 図3に示される風量の決定処理は、例えば蓄熱量が算出される度に行われてもよい。蓄熱量が定期的に繰り返し算出される場合、風量も定期的に繰り返し決定される。これにより、ユーザにとって快適な環境を維持することができる。 風 The processing for determining the air volume shown in FIG. 3 may be performed, for example, every time the heat storage amount is calculated. When the heat storage amount is periodically calculated repeatedly, the air volume is also periodically determined. This makes it possible to maintain a comfortable environment for the user.
 風量が制御内容として決定された後、図2に示されるように、調整部33は、決定した制御内容で送風機30を動作させる(S22)。例えば、調整部33は、決定した風量の気流を送風機30に生成させて放出させる。 (2) After the air flow is determined as the control content, as shown in FIG. 2, the adjusting unit 33 operates the blower 30 with the determined control content (S22). For example, the adjustment unit 33 causes the blower 30 to generate and discharge an airflow having the determined air volume.
 [動作例]
 ここで、本実施の形態に係る温熱環境制御システム1による動作例について、ユーザの具体的な行動を例に挙げて説明する。
[Operation example]
Here, an operation example by the thermal environment control system 1 according to the present embodiment will be described by taking a specific action of the user as an example.
 図4は、本実施の形態に係る温熱環境制御システム1において取得された時系列データ18と、時系列データ18に基づいて算出された蓄熱量との一例を示す図である。図4において、横軸は時間tを示している。図4は、例えば、外気温が高い場合(例えば夏)において、ユーザが自宅から買い物に出かけ、その後に自宅に戻ってきた場合の環境値、着衣量及び活動量の時間変化を表している。自宅の一室は、温熱環境の制御対象となる屋内空間、具体的には、送風機30によって生成された気流が放出される屋内空間である。 FIG. 4 is a diagram illustrating an example of the time-series data 18 acquired in the thermal environment control system 1 according to the present embodiment and the heat storage amount calculated based on the time-series data 18. In FIG. 4, the horizontal axis represents time t. FIG. 4 shows, for example, the time change of the environment value, the amount of clothes, and the amount of activity when the user goes shopping from home and returns to the home afterward when the outside air temperature is high (for example, summer). One room in the house is an indoor space to be controlled in the thermal environment, specifically, an indoor space from which the airflow generated by the blower 30 is released.
 図4に示されるように、期間T1においては、ユーザは屋外に居て、徒歩による移動中である。このため、温度、湿度及び日射量はいずれも高い値であり、活動量も高い値となる。期間T2では、ユーザは冷房の効いた店舗に入り、買い物を行っている。このため、温度、湿度及び日射量はいずれも低下し、低い値で維持される。また、移動量が少なくなるため、活動量も低くなる。期間T3では、ユーザは、再び屋外に出て、徒歩による移動中である。このため、温度、湿度及び日射量はいずれも高い値になり、活動量も高い値になる。なお、期間T1からT3にかけて、ユーザは着衣の変更を行っておらず、着衣量は一定の値になる。 ユ ー ザ As shown in FIG. 4, in the period T1, the user is outdoors and is moving on foot. Therefore, the temperature, humidity, and solar radiation are all high values, and the activity is also high. In the period T2, the user enters a cool store and performs shopping. For this reason, the temperature, humidity, and solar radiation all decrease and are maintained at low values. In addition, since the amount of movement is reduced, the amount of activity is also reduced. In the period T3, the user goes outdoors again and is moving on foot. Therefore, the temperature, the humidity, and the amount of solar radiation all have high values, and the amount of activity also has high values. Note that the user has not changed the clothing from the period T1 to T3, and the clothing amount becomes a constant value.
 期間T4では、ユーザは自宅に戻り、休息を取っている。この間、エアコンなどの空調機器及び送風機30などの機器を稼働させている。これにより、温度、湿度及び日射量はいずれも低下し、低い値で維持される。また、ユーザは帰宅後に、外出着から部屋着に着替えたことにより、着衣量が低下している。また、ユーザは休息しているので、活動量も低下している。 ユ ー ザ In period T4, the user has returned home and is resting. During this time, air conditioning equipment such as an air conditioner and equipment such as a blower 30 are operated. As a result, the temperature, humidity, and solar radiation all decrease and are maintained at low values. In addition, the user has changed clothes from going out to the room after returning home, and thus the amount of clothes has decreased. Also, since the user is at rest, the amount of activity is also decreasing.
 図4には、算出されたユーザの蓄熱量の時間変化も表している。期間T1及びT3のように、屋外で移動中には蓄熱量が増加しており、期間T2のように冷房の効いた店内に居る場合には、蓄熱量が減少している。期間T4では、エアコン及び送風機が稼働中であるので、ユーザの蓄熱量が減少している。 FIG. 4 also shows a temporal change in the calculated heat storage amount of the user. As in the periods T1 and T3, the amount of heat storage increases while moving outdoors, and when the vehicle is in an air-conditioned store as in the period T2, the amount of heat storage decreases. In the period T4, since the air conditioner and the blower are operating, the heat storage amount of the user is decreasing.
 図5は、本実施の形態に係る温熱環境制御システム1における機器の制御による室内環境の変化を示す図である。図5は、ユーザが自宅に戻った後の機器の動作中の期間T4の詳細を示している。図5において、横軸は時間tを示している。 FIG. 5 is a diagram showing a change in the indoor environment due to control of the equipment in the thermal environment control system 1 according to the present embodiment. FIG. 5 shows details of the period T4 during operation of the device after the user returns to his / her home. In FIG. 5, the horizontal axis indicates time t.
 ユーザは、自宅に戻った後、エアコン及び送風機30を稼働させる。送風機30が稼働されることで、本実施の形態に係る温熱環境制御システム1は、送風機30を蓄熱量に基づいて制御する。なお、温熱環境制御システム1は、人感センサなどでユーザの帰宅を検知し、送風機30の起動を自動的に行ってもよい。図5に示されるように、エアコンが稼働することで、室温及び室内の湿度がいずれも徐々に低下する。 After returning to the home, the user operates the air conditioner and the blower 30. By operating the blower 30, the thermal environment control system 1 according to the present embodiment controls the blower 30 based on the heat storage amount. The thermal environment control system 1 may detect the return of the user by a human sensor or the like and automatically start the blower 30. As shown in FIG. 5, when the air conditioner operates, both the room temperature and the indoor humidity gradually decrease.
 帰宅時点(すなわち、期間T4の開始時点)では、蓄熱量が大きいので、(式2)に基づいて決定された風量で送風機30が動作する。送風機30が気流を生成し、ユーザに浴びせることにより、かつ、室温及び湿度が低下することにより、(式1)に基づいて算出される蓄熱量も減少する。このため、蓄熱量の減少に伴って、送風機30の風量も低下し、最終的に風量が0になる。 At the time of returning home (that is, at the start of the period T4), since the heat storage amount is large, the blower 30 operates at the air volume determined based on (Equation 2). When the blower 30 generates an air flow and bathes the user, and the room temperature and the humidity decrease, the heat storage amount calculated based on (Equation 1) also decreases. Therefore, as the heat storage amount decreases, the air volume of the blower 30 also decreases, and finally the air volume becomes zero.
 なお、期間T4において、ユーザが運動を始めるなどして活動量が上昇し、蓄熱量が大きくなった場合は、再び送風機30が気流を生成することができる。このように、蓄熱量に基づいて風量が決定されるので、ユーザにとって快適な環境が自動的に形成される。快適な環境が自動的に形成されるので、必要以上に強い気流などが生成されずに、送風機30の消費電力の低減にも繋がり、省エネルギー化も実現することができる。 In the period T4, if the amount of activity increases due to the user starting exercise or the like and the amount of stored heat increases, the blower 30 can generate an airflow again. As described above, since the air volume is determined based on the heat storage amount, a comfortable environment for the user is automatically formed. Since a comfortable environment is automatically formed, an unnecessarily strong airflow or the like is not generated, which leads to a reduction in power consumption of the blower 30 and energy saving.
 [効果など]
 以上のように、本実施の形態に係る温熱環境制御装置2は、室内の環境値を測定する室内環境測定部20と、室内の環境を調整する1以上の機器を制御する制御部31と、ユーザの周囲の環境値を測定する使用者環境測定部11と、ユーザの着衣量を取得する着衣量取得部15と、ユーザの活動量を取得する活動量取得部16と、使用者環境測定部11によって測定された環境値と、着衣量取得部15によって取得された着衣量と、活動量取得部16によって取得された活動量とに基づいて、ユーザの蓄熱量を算出する蓄熱量算出部19とを備える。制御部31は、室内環境測定部20によって測定された環境値と、蓄熱量算出部19によって算出された蓄熱量とに基づいて、1以上の機器の制御内容を決定し、決定した制御内容で1以上の機器を制御する。
[Effects, etc.]
As described above, the thermal environment control device 2 according to the present embodiment includes the indoor environment measurement unit 20 that measures the indoor environment value, the control unit 31 that controls one or more devices that adjust the indoor environment, A user environment measuring unit 11 for measuring an environment value around the user, a clothing amount acquiring unit 15 for acquiring a user's clothing amount, an activity amount acquiring unit 16 for acquiring a user's activity amount, and a user environment measuring unit A heat storage amount calculation unit 19 that calculates a user's heat storage amount based on the environment value measured by the measurement unit 11, the clothing amount obtained by the clothing amount obtaining unit 15, and the activity amount obtained by the activity amount obtaining unit 16. And The control unit 31 determines the control content of one or more devices based on the environment value measured by the indoor environment measurement unit 20 and the heat storage amount calculated by the heat storage amount calculation unit 19, and uses the determined control content. Control one or more devices.
 また、本実施の形態に係る温熱環境制御システム1は、温熱環境制御装置2と、1以上の機器とを備える。 The thermal environment control system 1 according to the present embodiment includes a thermal environment control device 2 and one or more devices.
 このように、温熱環境制御システム1は、ユーザの蓄熱量に基づいて機器を制御する。蓄熱量は制御時点までにユーザに蓄積された熱量に相当するので、制御時点までにユーザの周囲環境の影響を機器の制御に反映させることができる。例えば、制御時点までにユーザが高温の環境下に存在していたのか、低温の環境下に存在していたのかに応じて、機器の制御内容を変更することができる。これにより、ユーザに合った制御内容を決定することができるので、ユーザにとって快適な温熱環境を形成することができる。 Thus, the thermal environment control system 1 controls the devices based on the heat storage amount of the user. Since the heat storage amount corresponds to the heat amount accumulated in the user up to the control time point, the influence of the user's surrounding environment can be reflected in the control of the device by the control time point. For example, the control content of the device can be changed depending on whether the user was in a high-temperature environment or a low-temperature environment by the time of the control. As a result, the control content suitable for the user can be determined, so that a comfortable thermal environment for the user can be formed.
 また、例えば、温熱環境制御装置2は、使用者環境測定部11によって測定された環境値と、着衣量取得部15によって取得された着衣量と、活動量取得部16によって取得された活動量とを時系列データ18として蓄積するための記憶部17を備える。蓄熱量算出部19は、記憶部17に蓄積される時系列データ18に基づいて蓄熱量を算出する。 In addition, for example, the thermal environment control device 2 includes the environment value measured by the user environment measurement unit 11, the clothing amount acquired by the clothing amount acquisition unit 15, the activity amount acquired by the activity amount acquisition unit 16, Is stored as time-series data 18. The heat storage amount calculation unit 19 calculates the heat storage amount based on the time-series data 18 stored in the storage unit 17.
 これにより、ユーザの周囲の環境値、着衣量及び活動量を一定期間記憶させておくことができるので、過去のユーザの周囲環境の変化に基づいて、ユーザに合った制御内容を決定することができる。 Accordingly, the environment value, the amount of clothes, and the amount of activity around the user can be stored for a certain period of time, so that it is possible to determine the control content suitable for the user based on past changes in the surrounding environment of the user. it can.
 また、例えば、室内の環境値は、室内の温度及び湿度の少なくとも一方を含む。 Also, for example, the indoor environment value includes at least one of the indoor temperature and humidity.
 これにより、室内の温度又は湿度に応じて、ユーザに合った制御内容を決定することができる。 Thereby, the control content suitable for the user can be determined according to the indoor temperature or humidity.
 また、例えば、ユーザの周囲の環境値は、ユーザの周囲の温度、湿度及び日射量である。 {Circle around (2)} For example, the environmental value around the user is the temperature, humidity and solar radiation around the user.
 これにより、蓄熱量の確度が高くなるので、ユーザにより合った制御内容を決定することができる。また、蓄熱量の算出に要するパラメータが温度、湿度、日射量、着衣量及び活動量の5つであるので、複雑な演算を必要とせずに少ない処理量で蓄熱量を算出することができる。また、これらの5つのパラメータの値の測定及び取得も容易に行うことができるので、温熱環境制御装置2の構成を簡素化することができる。 (4) As a result, the accuracy of the heat storage amount increases, so that it is possible to determine the control content that is more suitable for the user. Further, since the five parameters required for calculating the heat storage amount are temperature, humidity, solar radiation amount, clothing amount, and activity amount, the heat storage amount can be calculated with a small processing amount without requiring a complicated calculation. Also, the measurement and acquisition of the values of these five parameters can be easily performed, so that the configuration of the thermal environment control device 2 can be simplified.
 また、例えば、1以上の機器は、送風機30を含む。制御部31は、送風機30の風量を制御する。 In addition, for example, the one or more devices include the blower 30. The control unit 31 controls the air volume of the blower 30.
 これにより、送風機30の風量を調整することで、ユーザにとって快適な気流をユーザに浴びせることができる。 (4) By adjusting the air volume of the blower 30, the user can be given a comfortable airflow.
 また、例えば、温熱環境制御システム1は、さらに、ユーザに装着されるウェアラブルデバイス10を備える。ウェアラブルデバイス10は、使用者環境測定部11、着衣量取得部15及び活動量取得部16を備える。 In addition, for example, the thermal environment control system 1 further includes a wearable device 10 worn by a user. The wearable device 10 includes a user environment measurement unit 11, a clothing amount acquisition unit 15, and an activity amount acquisition unit 16.
 これにより、ユーザに装着されたウェアラブルデバイス10がユーザの周囲の環境値、着衣量及び活動量を測定又は取得するので、確度の高い環境値、着衣量及び活動量を得ることができる。このため、環境値、着衣量及び活動量に基づいて算出される蓄熱量の確度も高くなるので、ユーザにより合った制御内容を決定することができる。 This allows the wearable device 10 worn by the user to measure or acquire the environment value, the amount of clothing, and the amount of activity around the user, so that highly accurate environmental values, the amount of clothing, and the amount of activity can be obtained. For this reason, the accuracy of the heat storage amount calculated based on the environmental value, the amount of clothes, and the amount of activity also increases, so that it is possible to determine the control content more suitable for the user.
 また、例えば、本実施の形態に係る温熱環境制御方法は、ユーザの周囲の環境値を測定するステップと、ユーザの着衣量を取得するステップと、ユーザの活動量を取得するステップと、環境値と着衣量と活動量とに基づいて、ユーザの蓄熱量を算出する算出ステップと、室内の環境値を測定するステップと、室内の環境を調整する1以上の機器を制御するステップとを含む。1以上の機器を制御するステップでは、室内の環境値と蓄熱量とに基づいて1以上の機器の制御内容を決定し、決定した制御内容で1以上の機器を制御する。 Also, for example, the thermal environment control method according to the present embodiment includes a step of measuring an environment value around the user, a step of acquiring a user's clothing amount, a step of acquiring a user's activity amount, A calculating step of calculating a heat storage amount of the user based on the clothing amount and the activity amount, a step of measuring an indoor environment value, and a step of controlling one or more devices that adjust the indoor environment. In the step of controlling one or more devices, the control content of the one or more devices is determined based on the indoor environment value and the heat storage amount, and the one or more devices are controlled with the determined control content.
 これにより、上述した温熱環境制御装置及び温熱環境制御システム1と同様に、ユーザに合った制御内容を決定することができるので、ユーザにとって快適な温熱環境を形成することができる。 (4) Since the control content suitable for the user can be determined in the same manner as the thermal environment control device and the thermal environment control system 1 described above, a comfortable thermal environment for the user can be formed.
 (実施の形態2)
 続いて、実施の形態2について説明する。
(Embodiment 2)
Next, a second embodiment will be described.
 実施の形態2では、温熱環境制御システムにおいて制御対象となる機器として空調機器が含まれる点が実施の形態1と相違する。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を適宜省略又は簡略化する。 The second embodiment is different from the first embodiment in that an air conditioner is included as a device to be controlled in the thermal environment control system. The following description focuses on differences from the first embodiment, and description of common points is omitted or simplified as appropriate.
 図6は、本実施の形態に係る温熱環境制御システム101の構成を示すブロック図である。図6に示されるように、温熱環境制御システム101は、温熱環境制御装置2及びウェアラブルデバイス10の代わりに、温熱環境制御装置102及びウェアラブルデバイス110を備える。さらに、温熱環境制御システム101は、空調機器140を備える。温熱環境制御装置2は、実施の形態1に係る温熱環境制御装置2と比較して、さらに、入力部111と、位置取得部112と、制御部141とを備える。 FIG. 6 is a block diagram showing a configuration of the thermal environment control system 101 according to the present embodiment. As shown in FIG. 6, the thermal environment control system 101 includes a thermal environment control device 102 and a wearable device 110 instead of the thermal environment control device 2 and the wearable device 10. Further, the thermal environment control system 101 includes an air conditioner 140. The thermal environment control device 2 further includes an input unit 111, a position acquisition unit 112, and a control unit 141 as compared with the thermal environment control device 2 according to the first embodiment.
 ウェアラブルデバイス110は、実施の形態1に係るウェアラブルデバイス10と比較して、入力部111と、位置取得部112とを新たに備える。 The wearable device 110 is different from the wearable device 10 according to the first embodiment in that it further includes an input unit 111 and a position acquisition unit 112.
 入力部111は、ユーザからの入力を受け付けることで、機器の起動指示を取得する。入力部111は、例えば、ウェアラブルデバイス110の本体に設けられた物理的ボタン、又は、タッチパネルディスプレイなどで実現される。入力部111によって取得された起動指示は、空調機器140に送信される。 (4) The input unit 111 receives an input from the user to acquire a device activation instruction. The input unit 111 is realized by, for example, physical buttons provided on the main body of the wearable device 110, a touch panel display, or the like. The activation instruction acquired by the input unit 111 is transmitted to the air conditioner 140.
 位置取得部112は、ウェアラブルデバイス110の現在位置を示す位置情報を取得する。例えば、位置取得部112は、GPS(Global Positioning System)受信機、又は、IMES(Indoor MEssaging System)受信機などで実現される。位置取得部112によって取得された位置情報は、空調機器140に送信される。 The position acquisition unit 112 acquires position information indicating the current position of the wearable device 110. For example, the position acquisition unit 112 is realized by a GPS (Global Positioning System) receiver, an IMES (Indoor MEssaging System) receiver, or the like. The position information acquired by the position acquisition unit 112 is transmitted to the air conditioner 140.
 なお、ウェアラブルデバイス110は、入力部111及び位置取得部112のいずれか一方のみを備えていてもよい。 Note that the wearable device 110 may include only one of the input unit 111 and the position acquisition unit 112.
 空調機器140は、室内の環境を調整する1以上の機器の1つである。具体的には、空調機器140は、室内の温度及び湿度の少なくとも一方を調整する。空調機器140は、室内の温度又は湿度が設定温度又は設定湿度になるように室内の空調を行う。具体的には、空調機器140は、室内の冷房、暖房、除湿又は加湿などを行う。 The air conditioner 140 is one of one or more devices that adjust the indoor environment. Specifically, the air conditioner 140 adjusts at least one of the indoor temperature and humidity. The air conditioner 140 air-conditions the room so that the indoor temperature or humidity becomes the set temperature or the set humidity. Specifically, the air conditioner 140 performs indoor cooling, heating, dehumidification, or humidification.
 図6に示されるように、空調機器140は、制御部141を備える。制御部141は、室内の環境を調整する1以上の機器を制御する制御部の一例であり、空調機器140の動作を制御する。具体的には、制御部141は、室内環境測定部20によって測定された室内の環境値と、蓄熱量算出部19によって算出された蓄熱量とに基づいて、空調機器140の制御内容を決定し、決定した制御内容で空調機器140を制御する。例えば、制御部141は、空調機器140の設定温度又は設定湿度を制御する。制御部141は、設定温度に応じて空調機器140に冷房又は暖房を行わせる。制御部141は、設定湿度に応じて空調機器140に除湿又は加湿を行わせる。図6に示されるように、制御部141は、決定部142と、調整部143とを有する。 空調 As shown in FIG. 6, the air conditioner 140 includes a control unit 141. The control unit 141 is an example of a control unit that controls one or more devices that adjust the indoor environment, and controls the operation of the air conditioner 140. Specifically, the control unit 141 determines the control content of the air conditioner 140 based on the indoor environment value measured by the indoor environment measurement unit 20 and the heat storage amount calculated by the heat storage amount calculation unit 19. The air conditioner 140 is controlled by the determined control content. For example, the control unit 141 controls the set temperature or the set humidity of the air conditioner 140. The control unit 141 causes the air conditioner 140 to perform cooling or heating according to the set temperature. The control unit 141 causes the air conditioner 140 to perform dehumidification or humidification according to the set humidity. As illustrated in FIG. 6, the control unit 141 includes a determination unit 142 and an adjustment unit 143.
 決定部142は、室内環境測定部20によって測定された室内の環境値と、蓄熱量算出部19によって算出された蓄熱量とに基づいて、空調機器140の制御内容を決定する。本実施の形態では、決定部142は、空調機器140の設定温度を制御内容として決定する。なお、決定部142は、空調機器140の設定湿度を決定してもよい。 The determination unit 142 determines the control content of the air conditioner 140 based on the indoor environment value measured by the indoor environment measurement unit 20 and the heat storage amount calculated by the heat storage calculation unit 19. In the present embodiment, determination unit 142 determines the set temperature of air conditioner 140 as the control content. Note that the determination unit 142 may determine the set humidity of the air conditioner 140.
 本実施の形態では、決定部142は、時刻t毎の設定温度を決定する。具体的には、時刻tにおける蓄熱量の絶対値が閾値より小さい場合、決定部142は、設定温度を基準値に決定する。基準値は、例えば、ユーザの蓄熱量が0である場合にユーザが快適と感じる温度である。 In the present embodiment, the determination unit 142 determines a set temperature for each time t. Specifically, when the absolute value of the heat storage amount at time t is smaller than the threshold value, determination unit 142 determines the set temperature as a reference value. The reference value is, for example, a temperature at which the user feels comfortable when the heat storage amount of the user is zero.
 時刻tにおける蓄熱量の絶対値が閾値以上である場合、決定部142は、以下の(式3)に基づいて設定温度を決定する。 場合 If the absolute value of the heat storage amount at time t is equal to or greater than the threshold, the determination unit 142 determines the set temperature based on the following (Equation 3).
 (式3) 設定温度(t)=c1×蓄熱量(t)
              +c2×室温(t)
              +c3×室内の湿度(t)
              +d3
(Equation 3) Set temperature (t) = c1 × heat storage amount (t)
+ C2 x room temperature (t)
+ C3 x indoor humidity (t)
+ D3
 (式3)において、係数c1、c2及びc3、並びに、定数d3は、実測データと重回帰分析とを用いて予め算出された値である。係数c1、c2及びc3、並びに、定数d3は、例えば制御部141が備えるメモリ(図示せず)に記憶されている。なお、係数c1、c2及びc3、並びに、定数d3は、回帰分析を行うことで定期的に更新されてもよい。また、係数c1、c2及びc3、並びに、定数d3は、冷房動作時と暖房動作時とでそれぞれ異なる値であってもよい。 In (Equation 3), the coefficients c1, c2, and c3 and the constant d3 are values calculated in advance using the measured data and the multiple regression analysis. The coefficients c1, c2 and c3 and the constant d3 are stored in, for example, a memory (not shown) provided in the control unit 141. Note that the coefficients c1, c2 and c3, and the constant d3 may be updated periodically by performing a regression analysis. Further, the coefficients c1, c2 and c3, and the constant d3 may be different values during the cooling operation and during the heating operation.
 例えば、蓄熱量、室温又は室内の湿度が高い程、設定温度は小さくなる。蓄熱量、質損又は室内の湿度が低い程、設定温度が高くなる。例えば、蓄熱量が正の値であり、かつ、閾値以上である場合、設定温度が小さくなって空調機器140によって冷房が行われる。蓄熱量が負の値であり、かつ、閾値以下である場合、設定温度が高くなって空調機器140によって暖房が行われる。また、例えば蓄熱量の絶対値が閾値を下回った場合には、設定温度が基準値になるように、係数c1、c2及びc3、並びに、定数d3が定められる。ここでは、蓄熱量の絶対値と閾値とを比較しているため、冷房又は暖房の判断の閾値が同じであるが、これに限らない。蓄熱量の正の閾値と負の閾値とは異なっていてもよい。 For example, the higher the heat storage amount, room temperature, or indoor humidity, the lower the set temperature. The lower the heat storage amount, quality loss or indoor humidity, the higher the set temperature. For example, when the heat storage amount is a positive value and is equal to or greater than the threshold value, the set temperature decreases and the air conditioner 140 performs cooling. When the heat storage amount is a negative value and equal to or less than the threshold value, the set temperature increases and heating is performed by the air conditioner 140. Further, for example, when the absolute value of the heat storage amount falls below the threshold, the coefficients c1, c2, and c3 and the constant d3 are determined so that the set temperature becomes the reference value. Here, since the absolute value of the heat storage amount is compared with the threshold value, the threshold value for the cooling or heating determination is the same, but is not limited to this. The positive threshold value and the negative threshold value of the heat storage amount may be different.
 なお、設定湿度も同様にして決定することができる。例えば、決定部142は、時刻tにおける蓄熱量の絶対値が閾値より小さい場合、設定湿度を基準値に決定する。基準値は、例えば、ユーザの蓄熱量が0である場合にユーザが快適と感じる湿度である。時刻tにおける蓄熱量の絶対値が閾値以上である場合、決定部142は、上述した(式3)と同様の式を用いて設定湿度を決定する。 Note that the set humidity can be determined in the same manner. For example, when the absolute value of the heat storage amount at time t is smaller than the threshold, the determination unit 142 determines the set humidity as the reference value. The reference value is, for example, the humidity at which the user feels comfortable when the heat storage amount of the user is 0. If the absolute value of the heat storage amount at time t is equal to or greater than the threshold, the determination unit 142 determines the set humidity using the same equation as the above (Equation 3).
 調整部143は、決定部142によって決定された制御内容に基づいて、空調機器140の動作を調整する。具体的には、調整部143は、決定部142によって決定された設定温度に室温がなるように、室内の冷房又は暖房を行う。また、調整部143は、決定部142によって決定された設定湿度に室内の湿度がなるように、室内の除湿又は加湿を行う。 Adjustment unit 143 adjusts the operation of air conditioner 140 based on the control content determined by determination unit 142. Specifically, the adjustment unit 143 performs indoor cooling or heating so that the set temperature determined by the determination unit 142 becomes room temperature. In addition, the adjustment unit 143 performs dehumidification or humidification of the room such that the indoor humidity is equal to the set humidity determined by the determination unit 142.
 制御部141は、例えば、マイクロコントローラで実現される。制御部141は、例えば、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどで実現される。制御部141が備える決定部142及び調整部143の少なくとも一方は、プロセッサによって実行されるソフトウェアで実現されてもよい。あるいは、決定部142及び調整部143の少なくとも一方は、複数の回路素子を含む電子回路などのハードウェアで実現されてもよい。 The control unit 141 is realized by, for example, a microcontroller. The control unit 141 is realized by, for example, a non-volatile memory storing a program, a volatile memory serving as a temporary storage area for executing the program, an input / output port, a processor executing the program, and the like. At least one of the determination unit 142 and the adjustment unit 143 included in the control unit 141 may be realized by software executed by a processor. Alternatively, at least one of the determination unit 142 and the adjustment unit 143 may be realized by hardware such as an electronic circuit including a plurality of circuit elements.
 本実施の形態では、制御部141は、入力部111によって取得された起動指示を受信した場合に、空調機器140を起動、すなわち、空調機器140の動作を開始する。これにより、ユーザは、室内から離れた位置(例えば、外出先)に居る場合であっても、入力部111に起動指示を入力することにより、空調機器140の動作を開始させることができる。このため、ユーザが室内に入る前から空調機器140の動作を開始させることができ、ユーザが室内に入った時点で、又は、室内に入ってから速やかに快適な環境を形成することができる。 In the present embodiment, when receiving the activation instruction acquired by input unit 111, control unit 141 activates air conditioner 140, that is, starts operation of air conditioner 140. Thus, the user can start the operation of the air conditioner 140 by inputting a start instruction to the input unit 111 even when the user is away from the room (for example, outside). Therefore, the operation of the air conditioner 140 can be started before the user enters the room, and a comfortable environment can be formed immediately when the user enters the room or immediately after entering the room.
 また、制御部141は、位置取得部112によって取得された位置情報が示す位置が、予め定められた領域の外から当該領域内に入った場合に、空調機器140の動作を開始する。予め定められた領域は、例えば、空調機器140が設けられた室内を中心とする円形の領域である。当該円形の領域の半径は、例えば、室内をユーザにとって快適な環境にするのに要する所要時間に基づいて定められる。具体的には、半径は、ユーザの平均移動速度(単位:m/分)と所要時間(単位:分)との積に相当する。 制 御 Control unit 141 starts the operation of air conditioner 140 when the position indicated by the position information acquired by position acquisition unit 112 enters the area from outside the predetermined area. The predetermined area is, for example, a circular area centered on the room where the air conditioner 140 is provided. The radius of the circular area is determined, for example, based on the time required to make the room a comfortable environment for the user. Specifically, the radius corresponds to the product of the average moving speed of the user (unit: m / min) and the required time (unit: minute).
 これにより、ユーザが室内(例えば、自宅)に近づいた場合に、空調機器140の動作を開始させることができる。つまり、ユーザが室内に入る前(例えば帰宅前)に空調機器140を動作させて、室内に入った時点では既に快適な環境が形成されている状態を作ることができる。 Thereby, when the user approaches the room (for example, at home), the operation of the air conditioner 140 can be started. That is, before the user enters the room (for example, before returning home), the air conditioner 140 can be operated to create a state in which a comfortable environment has already been formed when the user enters the room.
 なお、ウェアラブルデバイス110が、位置取得部112によって取得された位置情報と室内の位置とに基づいて、空調機器140の動作を開始するための起動指示を空調機器140に送信してもよい。例えば、記憶部17には、室内の位置を示す対象位置情報が記憶されている。例えば、位置取得部112は、予め定められた領域の外から当該領域内に、室内の位置が入った場合に、起動指示を空調機器140に送信してもよい。ここでの予め定められた領域は、例えば、ウェアラブルデバイス110を中心とする円形の領域である。当該円形の領域は、ユーザの平均移動速度(単位:m/分)と所要時間(単位:分)との積に相当する。 Note that the wearable device 110 may transmit a start instruction for starting the operation of the air conditioner 140 to the air conditioner 140 based on the position information acquired by the position acquisition unit 112 and the position in the room. For example, the storage unit 17 stores target position information indicating a position in a room. For example, the position acquisition unit 112 may transmit a start instruction to the air conditioner 140 when the position of the room enters the area from outside the predetermined area. The predetermined area here is, for example, a circular area centered on the wearable device 110. The circular area corresponds to the product of the average moving speed of the user (unit: m / min) and the required time (unit: minute).
 なお、本実施の形態に係る温熱環境制御システム101では、空調機器140の代わりに、又は、空調機器140に加えて、起動指示又は位置情報に基づいて送風機30を起動してもよい。 In the thermal environment control system 101 according to the present embodiment, the blower 30 may be started based on a start instruction or position information instead of or in addition to the air conditioner 140.
 [動作(温熱環境制御方法)]
 続いて、本実施の形態に係る温熱環境制御システム101の動作について説明する。なお、室内環境測定部20及び送風機30の動作は、実施の形態1と同様である。ウェアラブルデバイス110は、実施の形態1の動作に加えて、入力部111が起動指示を受け付けた場合に、起動指示を空調機器140に送信する。また、ウェアラブルデバイス110は、位置情報を定期的に空調機器140に送信する。
[Operation (thermal environment control method)]
Subsequently, an operation of the thermal environment control system 101 according to the present embodiment will be described. The operations of the indoor environment measuring unit 20 and the blower 30 are the same as those in the first embodiment. Wearable device 110 transmits a start instruction to air conditioner 140 when input unit 111 receives a start instruction in addition to the operation of the first embodiment. In addition, wearable device 110 periodically transmits the position information to air conditioner 140.
 図7は、本実施の形態に係る温熱環境制御システム101の空調機器140の動作を示すフローチャートである。 FIG. 7 is a flowchart showing the operation of the air conditioner 140 of the thermal environment control system 101 according to the present embodiment.
 図7に示されるように、まず、制御部141は、起動指示を受信したか否かを判定する(S40)。なお、起動指示は、ウェアラブルデバイス110の入力部111から送信される指示だけでなく、空調機器140又はそのコントローラに対して入力された指示も含まれる。 As shown in FIG. 7, first, the control unit 141 determines whether a start instruction has been received (S40). Note that the activation instruction includes not only an instruction transmitted from the input unit 111 of the wearable device 110 but also an instruction input to the air conditioner 140 or its controller.
 起動指示を受信した場合(S40でYes)、決定部142は、制御内容を決定する(S42)。本実施の形態では、決定部142は、空調機器140の設定温度又は設定湿度を制御内容として決定する。制御内容の具体的な決定方法は、図8を用いて後で説明する。 (4) When the activation instruction is received (Yes in S40), the determination unit 142 determines the control content (S42). In the present embodiment, determination unit 142 determines the set temperature or the set humidity of air conditioner 140 as the control content. A specific method of determining the control content will be described later with reference to FIG.
 起動指示を受信していない場合(S40でNo)、制御部141は、ウェアラブルデバイス110から送信された位置情報に基づいて、ウェアラブルデバイス110の位置が予め定められた領域内に入ったか否かを判定する(S44)。ウェアラブルデバイス110の位置が領域内に入ったと判定された場合(S44でYes)、決定部142は、制御内容を決定する(S42)。 If the activation instruction has not been received (No in S40), control unit 141 determines whether the position of wearable device 110 has entered a predetermined area based on the position information transmitted from wearable device 110. A determination is made (S44). When it is determined that the position of the wearable device 110 has entered the area (Yes in S44), the determination unit 142 determines the control content (S42).
 設定温度又は設定湿度が制御内容として決定された後、調整部143は、決定した制御内容で空調機器140を動作させる(S22)。例えば、調整部143は、室温又は室内の湿度が設定温度又は設定湿度になるように空調機器140を動作させる。 (4) After the set temperature or the set humidity is determined as the control content, the adjustment unit 143 operates the air conditioner 140 with the determined control content (S22). For example, the adjustment unit 143 operates the air conditioner 140 such that the room temperature or the indoor humidity becomes the set temperature or the set humidity.
 ウェアラブルデバイス110の位置が領域外に存在する場合、又は、ウェアラブルデバイス110の位置が既に領域内に存在する場合(S44でNo)、制御部141は、空調機器140の動作を開始させない。この場合、制御部141は、起動指示の判定(S40)に戻り、上述した処理を繰り返す。 (4) When the position of the wearable device 110 exists outside the area, or when the position of the wearable device 110 already exists in the area (No in S44), the control unit 141 does not start the operation of the air conditioner 140. In this case, the control unit 141 returns to the determination of the start instruction (S40), and repeats the above-described processing.
 図8は、本実施の形態に係る温熱環境制御システム101の動作において、設定温度又は設定湿度の決定処理を示すフローチャートである。図8に示されるように、決定部142は、算出された蓄熱量の絶対値と閾値とを比較する(S50)。閾値は、例えば0である。 FIG. 8 is a flowchart showing a process of determining a set temperature or a set humidity in the operation of the thermal environment control system 101 according to the present embodiment. As shown in FIG. 8, the determining unit 142 compares the calculated absolute value of the heat storage amount with the threshold (S50). The threshold value is, for example, 0.
 蓄熱量の絶対値が閾値より小さい場合(S50でYes)、決定部142は、空調機器140の設定温度又は設定湿度を基準値で維持する(S52)。蓄熱量の絶対値が閾値以上である場合(S50でNo)、決定部142は、室内の環境値に基づいて設定温度又は設定湿度を算出する(S54)。具体的には、決定部142は、蓄熱量と室内の温度及び湿度とに基づいて、上述した(式3)を用いて設定温度又は設定湿度を算出する。 If the absolute value of the heat storage amount is smaller than the threshold (Yes in S50), the determination unit 142 maintains the set temperature or set humidity of the air conditioner 140 at the reference value (S52). When the absolute value of the heat storage amount is equal to or larger than the threshold (No in S50), the determination unit 142 calculates the set temperature or the set humidity based on the indoor environment value (S54). Specifically, the determination unit 142 calculates the set temperature or the set humidity using the above-described (Equation 3) based on the heat storage amount and the indoor temperature and humidity.
 図8に示される風量の決定処理は、例えば蓄熱量が算出される度に行われてもよい。蓄熱量が定期的に繰り返し算出される場合、風量も定期的に繰り返し決定される。これにより、ユーザにとって快適な環境を維持することができる。 風 The air volume determination process shown in FIG. 8 may be performed, for example, every time the heat storage amount is calculated. When the heat storage amount is periodically calculated repeatedly, the air volume is also periodically determined. This makes it possible to maintain a comfortable environment for the user.
 [効果など]
 以上のように、本実施の形態に係る温熱環境制御システム101では、1以上の機器は、室内の温度又は湿度を調整する空調機器140を含む。制御部141は、空調機器140の設定温度及び設定湿度の少なくとも一方を制御する。
[Effects, etc.]
As described above, in the thermal environment control system 101 according to the present embodiment, one or more devices include the air conditioner 140 that adjusts the indoor temperature or humidity. The control unit 141 controls at least one of the set temperature and the set humidity of the air conditioner 140.
 これにより、空調機器140の設定温度又は設定湿度を調整することで、室温又は室内の湿度をユーザにとって快適な温度又は湿度にすることができる。 (4) By adjusting the set temperature or the set humidity of the air conditioner 140, the room temperature or the indoor humidity can be adjusted to a comfortable temperature or humidity for the user.
 (その他)
 以上、本発明に係る温熱環境制御装置について、上記の実施の形態に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
(Other)
As described above, the thermal environment control device according to the present invention has been described based on the above embodiment, but the present invention is not limited to the above embodiment.
 例えば、上記の実施の形態では、蓄熱量の算出に、ユーザの周囲の温度、湿度、日射量、着衣量及び活動量を用いる例について示したが、これに限らない。温度、湿度及び日射量のいずれか1つ又は2つは、蓄熱量の算出に用いられなくてもよい。また、例えば、蓄熱量の算出には、ユーザの呼吸率、酸素消費量、体表面積、露出している体表面積、平均皮膚温、体重減少量、人体の熱伝達率、及び、平均放射温度の少なくとも1つをさらに用いてもよい。 For example, in the above-described embodiment, an example in which the temperature around the user, the amount of sunlight, the amount of solar radiation, the amount of clothing, and the amount of activity are used for calculating the amount of heat storage has been described. Any one or two of the temperature, the humidity, and the amount of solar radiation may not be used for calculating the heat storage amount. In addition, for example, in calculating the heat storage amount, the user's respiration rate, oxygen consumption, body surface area, exposed body surface area, average skin temperature, weight loss, heat transfer coefficient of the human body, and average radiation temperature At least one may be further used.
 また、例えば、着衣量取得部15は、着衣量をユーザ入力で得たが、これに限らない。例えば、着衣量取得部15は、ユーザを撮影するカメラと、撮影により得られた画像を処理する画像処理回路とで実現されてもよい。着衣量取得部15は、画像を処理することで、ユーザの着衣の種類を判別し、判別結果に基づいて着衣量を取得してもよい。 Also, for example, the clothing amount acquisition unit 15 obtains the clothing amount by user input, but is not limited thereto. For example, the clothing amount acquisition unit 15 may be realized by a camera that photographs a user and an image processing circuit that processes an image obtained by photographing. The clothing amount acquisition unit 15 may determine the type of clothing of the user by processing the image, and acquire the clothing amount based on the determination result.
 また、例えば、記憶部17には、時系列データ18ではなく、直前に取得した値のみが記憶されていてもよい。具体的には、記憶部17には、直前に測定されたユーザの周囲の温度、湿度及び照射量、並びに、ユーザの着衣量及び活動量と、直前に算出された蓄熱量とのみが記憶されていてもよい。 For example, the storage unit 17 may store not the time-series data 18 but only the value obtained immediately before. Specifically, the storage unit 17 stores only the temperature, humidity, and irradiation amount around the user measured immediately before, the amount of clothing and activity of the user, and the heat storage amount calculated immediately before. May be.
 また、上記実施の形態で説明した装置間の通信方法については特に限定されるものではない。装置間で無線通信が行われる場合、無線通信の方式(通信規格)は、例えば、ZigBee(登録商標)、Bluetooth(登録商標)、又は、無線LAN(Local Area Network)などの近距離無線通信である。あるいは、無線通信の方式(通信規格)は、インターネットなどの広域通信ネットワークを介した通信でもよい。また、装置間においては、無線通信に代えて、有線通信が行われてもよい。有線通信は、具体的には、電力線搬送通信(PLC:Power Line Communication)又は有線LANを用いた通信などである。 The communication method between the devices described in the above embodiment is not particularly limited. When wireless communication is performed between devices, the wireless communication method (communication standard) is, for example, ZigBee (registered trademark), Bluetooth (registered trademark), or short-range wireless communication such as wireless LAN (Local Area Network). is there. Alternatively, the wireless communication method (communication standard) may be communication via a wide area communication network such as the Internet. Wired communication may be performed between the devices instead of wireless communication. Specifically, the wired communication is power line communication (PLC) or communication using a wired LAN.
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよく、あるいは、複数の処理が並行して実行されてもよい。また、温熱環境制御システムが備える構成要素の複数の装置への振り分けは、一例である。例えば、一の装置が備える構成要素を他の装置が備えてもよい。 In addition, in the above embodiment, another processing unit may execute the process executed by the specific processing unit. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel. The distribution of the components included in the thermal environment control system to a plurality of devices is an example. For example, components included in one device may be included in another device.
 例えば、ウェアラブルデバイス10が備える記憶部17及び蓄熱量算出部19は、送風機30又は空調機器140に備えられてもよい。あるいは、記憶部17及び蓄熱量算出部19は、ウェアラブルデバイス10、送風機30及び空調機器140が通信可能なサーバ装置などに備えられていてもよい。 For example, the storage unit 17 and the heat storage amount calculation unit 19 included in the wearable device 10 may be provided in the blower 30 or the air conditioner 140. Alternatively, the storage unit 17 and the heat storage amount calculation unit 19 may be provided in a server device with which the wearable device 10, the blower 30, and the air conditioner 140 can communicate.
 また、送風機30又は空調機器140は、室内環境測定部20を備えてもよい。また、温熱環境制御システム1は、汎用の送風機又は空調機器と、当該送風機又は空調機器を制御する制御装置とを備えてもよく、当該制御装置は、室内環境測定部20と、制御部31又は制御部141とを備えてもよい。あるいは、ウェアラブルデバイス10は、制御部31の決定部32、又は、制御部141の決定部142を備えてもよい。 The blower 30 or the air conditioner 140 may include the indoor environment measuring unit 20. In addition, the thermal environment control system 1 may include a general-purpose blower or an air conditioner, and a control device that controls the blower or the air conditioner. The control device includes the indoor environment measurement unit 20, the control unit 31, or A control unit 141 may be provided. Alternatively, the wearable device 10 may include the determining unit 32 of the control unit 31 or the determining unit 142 of the control unit 141.
 また、温熱環境制御システム1は、単一の装置として実現されてもよい。 The thermal environment control system 1 may be realized as a single device.
 例えば、上記実施の形態において説明した処理は、単一の装置(システム)を用いて集中処理することによって実現してもよく、又は、複数の装置を用いて分散処理することによって実現してもよい。また、上記プログラムを実行するプロセッサは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、又は分散処理を行ってもよい。 For example, the processing described in the above embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. Good. In addition, the number of processors that execute the program may be one or more. That is, centralized processing or distributed processing may be performed.
 また、上記実施の形態において、制御部などの構成要素の全部又は一部は、専用のハードウェアで構成されてもよく、あるいは、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU(Central Processing Unit)又はプロセッサなどのプログラム実行部が、HDD(Hard Disk Drive)又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 Further, in the above embodiment, all or a part of the components such as the control unit may be configured by dedicated hardware, or may be realized by executing a software program suitable for each component. Is also good. Each component may be realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
 また、制御部などの構成要素は、1つ又は複数の電子回路で構成されてもよい。1つ又は複数の電子回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。 The components such as the control unit may be configured by one or a plurality of electronic circuits. Each of the one or more electronic circuits may be a general-purpose circuit or a dedicated circuit.
 1つ又は複数の電子回路には、例えば、半導体装置、IC(Integrated Circuit)又はLSI(Large Scale Integration)などが含まれてもよい。IC又はLSIは、1つのチップに集積されてもよく、複数のチップに集積されてもよい。ここでは、IC又はLSIと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integration)、又は、ULSI(Ultra Large Scale Integration)と呼ばれるかもしれない。また、LSIの製造後にプログラムされるFPGA(Field Programmable Gate Array)も同じ目的で使うことができる。 The one or more electronic circuits may include, for example, a semiconductor device, an integrated circuit (IC), or a large scale integration (LSI). The IC or LSI may be integrated on one chip, or may be integrated on a plurality of chips. Here, the term “IC” or “LSI” is used. However, the term “IC” or “LSI” changes depending on the degree of integration, and may be referred to as a system LSI, a VLSI (Very Large Scale Integration), or an ULSI (Ultra Large Scale Integration). Further, an FPGA (Field Programmable Gate Array) programmed after manufacturing the LSI can be used for the same purpose.
 また、本発明の全般的又は具体的な態様は、システム、装置、方法、集積回路又はコンピュータプログラムで実現されてもよい。あるいは、当該コンピュータプログラムが記憶された光学ディスク、HDD若しくは半導体メモリなどのコンピュータ読み取り可能な非一時的記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 The general or specific aspects of the present invention may be realized by a system, an apparatus, a method, an integrated circuit, or a computer program. Alternatively, the present invention may be realized by a non-transitory computer-readable recording medium such as an optical disk, an HDD, or a semiconductor memory in which the computer program is stored. Further, the present invention may be realized by an arbitrary combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, a form obtained by performing various modifications that can be conceived by those skilled in the art to each embodiment, or a combination of components and functions in each embodiment arbitrarily without departing from the spirit of the present invention is realized. Embodiments are also included in the present invention.
1、101 温熱環境制御システム
2、102 温熱環境制御装置
10、110 ウェアラブルデバイス
11 使用者環境測定部
12、21 温度測定部
13、22 湿度測定部
14 日射量測定部
15 着衣量取得部
16 活動量取得部
17 記憶部
18 時系列データ
19 蓄熱量算出部(算出部)
20 室内環境測定部
30 送風機
31、141 制御部
32、142 決定部
33、143 調整部
111 入力部
112 位置取得部
140 空調機器
1, 101 thermal environment control system 2, 102 thermal environment control device 10, 110 wearable device 11 user environment measurement unit 12, 21 temperature measurement unit 13, 22 humidity measurement unit 14 solar radiation measurement unit 15 clothing amount acquisition unit 16 activity amount Acquisition unit 17 Storage unit 18 Time series data 19 Heat storage amount calculation unit (Calculation unit)
Reference Signs List 20 indoor environment measurement unit 30 blower 31, 141 control unit 32, 142 determination unit 33, 143 adjustment unit 111 input unit 112 position acquisition unit 140 air conditioner

Claims (9)

  1.  室内の環境値を測定する室内環境測定部と、
     前記室内の環境を調整する1以上の機器を制御する制御部と、
     ユーザの周囲の環境値を測定する使用者環境測定部と、
     前記ユーザの着衣量を取得する着衣量取得部と、
     前記ユーザの活動量を取得する活動量取得部と、
     前記使用者環境測定部によって測定された環境値と、前記着衣量取得部によって取得された着衣量と、前記活動量取得部によって取得された活動量とに基づいて、前記ユーザの蓄熱量を算出する算出部とを備え、
     前記制御部は、前記室内環境測定部によって測定された環境値と、前記算出部によって算出された蓄熱量とに基づいて、前記1以上の機器の制御内容を決定し、決定した制御内容で前記1以上の機器を制御する
     温熱環境制御装置。
    An indoor environment measuring unit for measuring an indoor environment value,
    A control unit that controls one or more devices that adjust the indoor environment;
    A user environment measuring unit for measuring an environment value around the user,
    A clothing amount acquisition unit that acquires the clothing amount of the user,
    An activity amount acquisition unit that acquires the activity amount of the user;
    The amount of heat stored by the user is calculated based on the environment value measured by the user environment measurement unit, the amount of clothing acquired by the clothing amount acquisition unit, and the amount of activity acquired by the activity amount acquisition unit. And a calculation unit that performs
    The control unit determines the control content of the one or more devices based on the environment value measured by the indoor environment measurement unit and the heat storage amount calculated by the calculation unit. A thermal environment control device that controls one or more devices.
  2.  前記使用者環境測定部によって測定された環境値と、前記着衣量取得部によって取得された着衣量と、前記活動量取得部によって取得された活動量とを時系列データとして蓄積するための記憶部を備え、
     前記算出部は、前記記憶部に蓄積される前記時系列データに基づいて前記蓄熱量を算出する
     請求項1に記載の温熱環境制御装置。
    A storage unit for accumulating environmental values measured by the user environment measurement unit, the clothing amount acquired by the clothing amount acquisition unit, and the activity amount acquired by the activity amount acquisition unit as time-series data. With
    The thermal environment control device according to claim 1, wherein the calculation unit calculates the heat storage amount based on the time-series data stored in the storage unit.
  3.  前記室内の環境値は、前記室内の温度及び湿度の少なくとも一方を含む
     請求項1又は2に記載の温熱環境制御装置。
    The thermal environment control device according to claim 1, wherein the indoor environment value includes at least one of the indoor temperature and humidity.
  4.  前記ユーザの周囲の環境値は、前記ユーザの周囲の温度、湿度及び日射量である
     請求項1~3のいずれか1項に記載の温熱環境制御装置。
    The thermal environment control device according to any one of claims 1 to 3, wherein the environment value around the user is temperature, humidity, and solar radiation around the user.
  5.  請求項1~4のいずれか1項に記載の温熱環境制御装置と、
     前記1以上の機器とを備える
     温熱環境制御システム。
    A thermal environment control device according to any one of claims 1 to 4,
    A thermal environment control system comprising the one or more devices.
  6.  前記1以上の機器は、送風機を含み、
     前記制御部は、前記送風機の風量を制御する
     請求項5に記載の温熱環境制御システム。
    The one or more devices include a blower;
    The thermal environment control system according to claim 5, wherein the control unit controls an air volume of the blower.
  7.  前記1以上の機器は、前記室内の温度又は湿度を調整する空調機器を含み、
     前記制御部は、前記空調機器の設定温度及び設定湿度の少なくとも一方を制御する
     請求項5又は6に記載の温熱環境制御システム。
    The one or more devices include an air conditioner that adjusts the temperature or humidity of the room,
    The thermal environment control system according to claim 5, wherein the control unit controls at least one of a set temperature and a set humidity of the air conditioner.
  8.  さらに、前記ユーザに装着されるウェアラブルデバイスを備え、
     前記ウェアラブルデバイスは、前記使用者環境測定部、前記着衣量取得部及び前記活動量取得部を備える
     請求項5~7のいずれか1項に記載の温熱環境制御システム。
    A wearable device attached to the user;
    The thermal environment control system according to any one of claims 5 to 7, wherein the wearable device includes the user environment measurement unit, the clothing amount acquisition unit, and the activity amount acquisition unit.
  9.  ユーザの周囲の環境値を測定するステップと、
     前記ユーザの着衣量を取得するステップと、
     前記ユーザの活動量を取得するステップと、
     前記環境値と前記着衣量と前記活動量とに基づいて、前記ユーザの蓄熱量を算出する算出ステップと、
     室内の環境値を測定するステップと、
     前記室内の環境を調整する1以上の機器を制御するステップとを含み、
     前記1以上の機器を制御するステップでは、前記室内の環境値と前記蓄熱量とに基づいて前記1以上の機器の制御内容を決定し、決定した制御内容で前記1以上の機器を制御する
     温熱環境制御方法。
    Measuring an environment value around the user;
    Obtaining the amount of clothes of the user;
    Obtaining an activity amount of the user;
    A calculating step of calculating the heat storage amount of the user based on the environment value, the clothing amount, and the activity amount;
    Measuring indoor environmental values;
    Controlling one or more devices that adjust the indoor environment.
    In the step of controlling the one or more devices, the control content of the one or more devices is determined based on the indoor environment value and the heat storage amount, and the one or more devices are controlled with the determined control content. Environmental control method.
PCT/JP2019/026023 2018-07-25 2019-07-01 Thermal environment control device, thermal environment control system, and thermal environment control method WO2020021972A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020532243A JPWO2020021972A1 (en) 2018-07-25 2019-07-01 Thermal environment control device, thermal environment control system and thermal environment control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-139720 2018-07-25
JP2018139720 2018-07-25

Publications (1)

Publication Number Publication Date
WO2020021972A1 true WO2020021972A1 (en) 2020-01-30

Family

ID=69181013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026023 WO2020021972A1 (en) 2018-07-25 2019-07-01 Thermal environment control device, thermal environment control system, and thermal environment control method

Country Status (2)

Country Link
JP (1) JPWO2020021972A1 (en)
WO (1) WO2020021972A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021156795A (en) * 2020-03-27 2021-10-07 パナソニックIpマネジメント株式会社 Clothes amount estimation device, air conditioning control device, and skin temperature estimation device
JP2022074536A (en) * 2020-11-04 2022-05-18 ダイキン工業株式会社 Temperature load management device, temperature load management method and computer program
JP2022074515A (en) * 2020-11-04 2022-05-18 ダイキン工業株式会社 Temperature load reduction device, temperature load reduction method and computer program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087959A1 (en) * 2007-01-17 2008-07-24 Daikin Industries, Ltd. Air conditioning control system
JP2011069601A (en) * 2009-05-11 2011-04-07 Panasonic Electric Works Co Ltd Apparatus management device and program
JP2015222324A (en) * 2014-05-22 2015-12-10 Kddi株式会社 Spectacle type wearable device, temperature sensation change induction method and program
JP2017097614A (en) * 2015-11-24 2017-06-01 日本電信電話株式会社 Physical exertion management system, method and program

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2846437B2 (en) * 1990-09-05 1999-01-13 株式会社日立製作所 Air conditioner control device
JPH0749141A (en) * 1991-10-30 1995-02-21 Hitachi Plant Eng & Constr Co Ltd Automatically controlling method for thermal environment in room
JPH0658593A (en) * 1992-08-05 1994-03-01 Sharp Corp Air conditioner
JPH07145980A (en) * 1993-11-22 1995-06-06 Matsushita Electric Ind Co Ltd Control device for air-conditioner
JP2004251573A (en) * 2003-02-21 2004-09-09 Daikin Ind Ltd Air conditioner
JP6097183B2 (en) * 2013-09-06 2017-03-15 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP2016057057A (en) * 2014-09-05 2016-04-21 アイシン精機株式会社 Energy management system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087959A1 (en) * 2007-01-17 2008-07-24 Daikin Industries, Ltd. Air conditioning control system
JP2011069601A (en) * 2009-05-11 2011-04-07 Panasonic Electric Works Co Ltd Apparatus management device and program
JP2015222324A (en) * 2014-05-22 2015-12-10 Kddi株式会社 Spectacle type wearable device, temperature sensation change induction method and program
JP2017097614A (en) * 2015-11-24 2017-06-01 日本電信電話株式会社 Physical exertion management system, method and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021156795A (en) * 2020-03-27 2021-10-07 パナソニックIpマネジメント株式会社 Clothes amount estimation device, air conditioning control device, and skin temperature estimation device
JP7325060B2 (en) 2020-03-27 2023-08-14 パナソニックIpマネジメント株式会社 Clothing amount estimation device, air conditioning control device and skin temperature estimation device
JP2022074536A (en) * 2020-11-04 2022-05-18 ダイキン工業株式会社 Temperature load management device, temperature load management method and computer program
JP2022074515A (en) * 2020-11-04 2022-05-18 ダイキン工業株式会社 Temperature load reduction device, temperature load reduction method and computer program
JP7127784B2 (en) 2020-11-04 2022-08-30 ダイキン工業株式会社 Temperature load reduction device, temperature load reduction method, and computer program

Also Published As

Publication number Publication date
JPWO2020021972A1 (en) 2021-08-02

Similar Documents

Publication Publication Date Title
US20220066405A1 (en) Methods and systems of building automation STATE load and user preference via network systems activity
WO2020021972A1 (en) Thermal environment control device, thermal environment control system, and thermal environment control method
CN110454930B (en) Method and device for estimating optimal thermal comfort of human body and air conditioner control method and device
US11076758B2 (en) Controlling devices based on physiological measurements
CN105571048B (en) Group dynamic environment control
JP5988196B2 (en) Device control device, device control system and program
JP5755556B2 (en) Air conditioning control device, air conditioning control system, and air conditioning control program
JP5851105B2 (en) Energy demand forecasting apparatus and program
US20160320081A1 (en) Method and System for Personalization of Heating, Ventilation, and Air Conditioning Services
CN108240694B (en) Method and apparatus for controlling air conditioner
JP2017529509A (en) Temperature control method and apparatus
CN105387557A (en) Method and device for controlling room temperature and humidity
CN110701750A (en) Operation control method, operation control device, air conditioner, and storage medium
JP6668010B2 (en) Air conditioning control device, air conditioning control method, and air conditioning control program
JP6346010B2 (en) Thermal comfort evaluation method and thermal environment control system.
CN109931680A (en) The sendible temperature calculation method and device of user in a kind of air-conditioned room
JP2017116129A (en) Information presentation system, and program
CN207635543U (en) A kind of air-conditioning that can improve human body comfort
JP2009109034A (en) Air-conditioning control-supporting data generating device and method
JP7389369B2 (en) Mobile control system
JP2014055742A (en) Air conditioning equipment
JP7149495B2 (en) Air blow control system and air blow control device
JP6774241B2 (en) Specific system, specific method, and specific program
JP5771781B2 (en) Air conditioning control system
JP2022022587A (en) Air blow control system and air blow control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840702

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020532243

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840702

Country of ref document: EP

Kind code of ref document: A1