WO2020021667A1 - Electronic-component-device manufacturing method, electronic component device, and sealing material - Google Patents

Electronic-component-device manufacturing method, electronic component device, and sealing material Download PDF

Info

Publication number
WO2020021667A1
WO2020021667A1 PCT/JP2018/027991 JP2018027991W WO2020021667A1 WO 2020021667 A1 WO2020021667 A1 WO 2020021667A1 JP 2018027991 W JP2018027991 W JP 2018027991W WO 2020021667 A1 WO2020021667 A1 WO 2020021667A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing material
sealing
electronic component
component device
manufacturing
Prior art date
Application number
PCT/JP2018/027991
Other languages
French (fr)
Japanese (ja)
Inventor
戸川 光生
保 鵜飼
成俊 村杉
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2020531904A priority Critical patent/JPWO2020021667A1/en
Priority to PCT/JP2018/027991 priority patent/WO2020021667A1/en
Publication of WO2020021667A1 publication Critical patent/WO2020021667A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a method for manufacturing an electronic component device, an electronic component device, and a sealing material.
  • an electronic component device in which a semiconductor element is mounted on a substrate and the periphery thereof is sealed with an insulating material (sealing material), there is a so-called power semiconductor device such as an insulated gate bipolar transistor (IGBT). Since the power semiconductor device generates a large amount of heat, a heat radiating member called a heat spreader is arranged on the side of the substrate opposite to the surface on which the semiconductor element is mounted, so that the generated heat is dissipated. For this reason, a sealing material for sealing between the substrate and the heat dissipation member is required to have high heat dissipation as well as insulation.
  • IGBT insulated gate bipolar transistor
  • H11-163873 discloses a second mold resin having a better heat dissipation property after sealing a mounting surface of a lead frame on which a semiconductor element is mounted with a first mold resin and then mounting a surface opposite to the mounting surface of the lead frame. The method of sealing with is described.
  • a step of disposing the sheet-like insulating material separately from the sealing step occurs.
  • a step of sealing with a second mold resin occurs separately from the step of sealing with a first mold resin. Therefore, there is room for improvement from the viewpoint of the manufacturing efficiency of the electronic component device.
  • an object of one embodiment of the present invention is to provide a method for manufacturing an electronic component device capable of efficiently manufacturing an electronic component device having excellent heat dissipation, and an electronic component device having excellent heat dissipation.
  • Another aspect of the present invention is to provide a sealing material for use in the manufacturing method or the formation of the electronic component device.
  • Means for solving the above problems include the following embodiments. ⁇ 1> A method for manufacturing an electronic component device comprising a substrate, an element disposed on the substrate, and a sealing portion, wherein a first sealing is provided on a side of the substrate opposite to a side on which the element is disposed. The first sealing is performed inside a molding apparatus including a first gate for supplying a stopper and a second gate for supplying a second sealing material to a side of the substrate on which the element is disposed. A method for manufacturing an electronic component device, comprising a step of supplying a material and the second sealing material.
  • ⁇ 2> The electronic component device according to ⁇ 1>, wherein the supply is performed such that the start of the supply of the first sealing material is earlier than the start of the supply of the second sealing material.
  • Production method. ⁇ 3> The method according to ⁇ 1> or ⁇ 2>, wherein the supply is performed such that an end of the supply of the first sealing material is earlier than a start of the supply of the second sealing material.
  • a method for manufacturing an electronic component device. ⁇ 4> The method of manufacturing an electronic component device according to any one of ⁇ 1> to ⁇ 3>, wherein the first gate is located below the second gate in the direction of gravity in the molding apparatus. .
  • the electronic component device includes a structure in which the first sealing portion and a different second sealing portion are collectively formed.
  • a seal for use as at least one of the first sealing material and the second sealing material Stopping material.
  • a sealing material for forming at least one of the first sealing portion and the second sealing portion In the electronic component device according to ⁇ 6>, a sealing material for forming at least one of the first sealing portion and the second sealing portion.
  • a method for manufacturing an electronic component device capable of efficiently manufacturing an electronic component device excellent in heat dissipation, and an electronic component device excellent in heat dissipation are provided.
  • a sealing material for use in the manufacturing method or the formation of the electronic component device is provided.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of a configuration of a molding device used in a method of manufacturing an electronic component device according to the present disclosure. It is a schematic sectional drawing which shows an example of a structure of the shaping
  • the term "step” includes, in addition to a step independent of other steps, even if the purpose of the step is achieved even if it cannot be clearly distinguished from the other steps, the step is also included.
  • the numerical ranges indicated by using “to” include the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of the numerical range described in other stages.
  • the upper limit or the lower limit of the numerical range may be replaced with the value shown in the embodiment.
  • each component may include a plurality of corresponding substances.
  • the content or content of each component is, unless otherwise specified, the total content or content of the plurality of substances present in the composition. Means quantity.
  • a plurality of types of particles corresponding to each component may be included.
  • the particle size of each component means a value of a mixture of the plurality of types of particles present in the composition unless otherwise specified.
  • a method for manufacturing an electronic component device is a method for manufacturing an electronic component device including a substrate, an element disposed on the substrate, and a sealing portion, wherein the side of the substrate on which the element is disposed is provided. And a second gate for supplying a second sealing material to the side of the substrate on which the element is arranged, and a second gate for supplying a second sealing material to a side of the substrate on which the element is arranged.
  • a method for manufacturing an electronic component device comprising a step of supplying the first sealing material and the second sealing material therein.
  • the side opposite to the side on which the elements of the substrate are arranged (hereinafter, also referred to as the lower side of the elements) is the first sealing material, and the side of the substrate on which the elements are arranged (hereinafter, also referred to as the upper side of the elements). ) Is sealed with a second sealing material.
  • a sealing material suitable for each location can be used.
  • a sealing material with high heat dissipation can be used as the first sealing material
  • a sealing material with high fluidity can be used as the second sealing material.
  • the “step of supplying the first sealing material and the second sealing material” includes a step of supplying the first sealing material and a step of supplying the second sealing material at a time.
  • the manufacturing process can be simplified as compared with a case where each step is performed separately.
  • the production efficiency of parts is improved.
  • a clear interface is less likely to be formed between the two sealing materials than in the case where one sealing material is supplied and cured, and then the other sealing material is supplied. Therefore, an effect of improving the reliability of the electronic component device can be expected.
  • the “supplying the first sealing material and the second sealing material” may be performed such that the supply of both sealing materials is started even if the supply of both sealing materials starts and ends simultaneously. May be performed in such a manner that at least one of the start and end timings is different.
  • the start of the supply of the first sealing material is earlier than the start of the supply of the second sealing material. It is preferable that the supply of the first sealing material is completed before the start of the supply of the second sealing material.
  • a first gate for supplying a first sealing material on a side opposite to a side on which the element of the substrate is disposed and a second gate for supplying a second sealing material on a side of the substrate on which the element is disposed.
  • the structure of a forming apparatus (hereinafter, also referred to as a forming apparatus) including the two gates is not particularly limited.
  • an apparatus similar to an apparatus used for general transfer molding may be provided with a first gate and a second gate.
  • the positional relationship between the first gate and the second gate in the molding apparatus is not particularly limited. In some embodiments, it is preferred that the first gate is located below the second gate in the direction of gravity. In this case, the first sealing material can be sufficiently supplied to the lower side of the element (that is, the side facing the heat dissipation member), and sufficient heat dissipation can be achieved.
  • the number of the first gate and the second gate in the molding apparatus is not particularly limited, and can be selected according to the shape, size, and the like of the electronic component device to be manufactured.
  • the molding apparatus may include a third gate for supplying a third sealing material, in addition to the first gate and the second gate. Further, a control mechanism for controlling the timing at which the sealing material is supplied from each gate may be provided.
  • a method of supplying the sealing material from the first gate and the second gate into the molding device is not particularly limited.
  • a method of injecting a sealing material into the inside of a molding device using a plunger may be used.
  • the method includes a step of curing the first sealing material and the second sealing material to form a sealing portion after supplying the first sealing material and the second sealing material. There may be. Specifically, after supplying the first sealing material and the second sealing material to the inside of the molding apparatus, a curing process for curing the first sealing material and the second sealing material is performed. To form a sealing portion.
  • the conditions for the curing treatment are not particularly limited, and can be set according to the types of the first sealing material and the second sealing material.
  • a sealing portion obtained by curing the first sealing material (hereinafter, also referred to as a first sealing portion) and a sealing portion obtained by curing the second sealing material (hereinafter, referred to as a second sealing material)
  • the shape of the sealing portion is not particularly limited.
  • the thickness of the first sealing portion (the minimum value of the thickness when the thickness is not constant) is preferably 1000 ⁇ m or less, and from the viewpoint of insulating properties, the first sealing portion. Is preferably 0.1 ⁇ m or more.
  • the type of electronic component device manufactured by the above method is not particularly limited, and may be any type of electronic component device. Among them, a power semiconductor device is preferable, and an insulated gate bipolar transistor (IGBT) is more preferable.
  • IGBT insulated gate bipolar transistor
  • the first sealing material and the second sealing material may be the same or different.
  • the first sealing material and the second sealing material may satisfy at least one of the following (1), (2) and (3).
  • the sealing material (particularly, the first sealing material) preferably has excellent jetting characteristics.
  • the “jetting characteristic” refers to a property in which a sealing material supplied from a gate to a molding apparatus flows while maintaining the shape of a supply port of the gate.
  • the shape of the sealing portion formed by the sealing material can be controlled by the shape of the gate supply port.
  • the shape of a sealing portion formed by the first sealing material can be flat.
  • the viscosity at the time of supplying the sealing material (particularly, the first sealing material) is preferably 1 Pa ⁇ s or more, and from the viewpoint of ensuring sufficient fluidity. It is preferably 1000 Pa ⁇ s or less.
  • viscosity at the time of supply means a viscosity at a temperature (for example, a temperature selected from 150 ° C. to 250 ° C.) when the sealing material is supplied from the gate into the inside of the molding apparatus.
  • the viscosity of the sealing material is measured using an E-type viscometer.
  • the materials of the first sealing material and the second sealing material are not particularly limited, and may be selected from those generally used as sealing materials for electronic component devices.
  • the sealing material preferably contains a resin component, and from the viewpoint of heat resistance, it is preferable to contain a thermosetting resin.
  • the thermosetting resin include an epoxy resin, a phenol resin, a urea resin, a melamine resin, a urethane resin, a silicone resin, and an unsaturated polyester resin.
  • those that exhibit both thermoplastic and thermosetting properties, such as an acrylic resin containing an epoxy group, are included in “thermosetting resins”.
  • the resin component contained in the sealing material may be one kind or two or more kinds.
  • the sealing material preferably contains an epoxy resin as a resin component.
  • the epoxy resin include at least one selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcin, catechol, bisphenol A and bisphenol F and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • Novolak epoxy resin phenol novolak type
  • Novolak epoxy resin obtained by epoxidizing a novolak resin obtained by condensing or co-condensing a phenolic compound of a type with an aliphatic aldehyde compound such as formaldehyde, acetaldehyde, propionaldehyde, etc.
  • Epoxy resin, orthocresol novolak type epoxy resin, etc. condensation of the above phenolic compound with an aromatic aldehyde compound such as benzaldehyde or salicylaldehyde under an acidic catalyst or Is a triphenylmethane-type epoxy resin obtained by epoxidizing a triphenylmethane-type phenol resin obtained by co-condensation; a novolak obtained by co-condensing the phenol compound and the naphthol compound with an aldehyde compound under an acidic catalyst.
  • aromatic aldehyde compound such as benzaldehyde or salicylaldehyde under an acidic catalyst or Is a triphenylmethane-type epoxy resin obtained by epoxidizing a triphenylmethane-type phenol resin obtained by co-condensation
  • a novolak obtained by co-condensing the phenol compound and the naphthol compound with an aldehyde compound under an acid
  • Copolymer type epoxy resin obtained by epoxidation of resin diphenylmethane type epoxy resin which is diglycidyl ether such as bisphenol A and bisphenol F; biphenyl type epoxy resin which is diglycidyl ether of alkyl-substituted or unsubstituted biphenol; stilbene Stilbene type epoxy resin which is a diglycidyl ether of a phenolic compound; epoxy resin containing a sulfur atom which is a diglycidyl ether such as bisphenol S; butanediol, polyethylene glycol, polypropylene Epoxy resin which is a glycidyl ether of alcohols such as glycol; glycidyl ester type epoxy resin which is a glycidyl ester of a polycarboxylic acid compound such as phthalic acid, isophthalic acid and tetrahydrophthalic acid; nitrogen such as aniline, diaminodiphenylmethane and isocyanuric acid A
  • the epoxy equivalent (molecular weight / number of epoxy groups) of the epoxy resin is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance and electrical reliability, it is preferably from 100 g / eq to 1000 g / eq, more preferably from 150 g / eq to 500 g / eq.
  • the epoxy equivalent of the epoxy resin is a value measured by a method according to JIS K7236: 2009.
  • the epoxy resin is a solid, its melting point or softening point is not particularly limited.
  • the temperature is preferably from 40 ° C. to 180 ° C. from the viewpoint of moldability and reflow resistance, and more preferably from 50 ° C. to 130 ° C. from the viewpoint of handleability in preparing the sealing material.
  • the melting point or softening point of the epoxy resin is a value measured by a differential scanning calorimetry (DSC) or a method (ring and ball method) according to JIS K 7234: 1986.
  • the content of the epoxy resin in the sealing material is preferably 0.5% by mass to 50% by mass, and more preferably 2% by mass to 30% by mass from the viewpoints of strength, fluidity, heat resistance, moldability and the like. Is more preferable.
  • the sealing material may include a cured product as a resin component.
  • the curing agent is not particularly limited as long as it causes a curing reaction with the resin used in combination.
  • Examples of the curing agent used in combination with the epoxy resin include a phenol curing agent, an amine curing agent, an acid anhydride curing agent, a polymercaptan curing agent, a polyaminoamide curing agent, an isocyanate curing agent, and a blocked isocyanate curing agent.
  • At least one selected from the group consisting of a phenol curing agent, an amine curing agent and an acid anhydride curing agent is preferable, and from the viewpoint of electrical reliability, a phenol curing agent is more preferable. preferable.
  • phenol curing agent examples include polyphenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, and phenylphenol.
  • Phenolic compounds such as aminophenols, aminophenols and the like and at least one phenolic compound selected from the group consisting of naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene, and aldehyde compounds such as formaldehyde, acetaldehyde and propionaldehyde
  • Novolak-type phenolic resin obtained by condensation or co-condensation under the following conditions: the above-mentioned phenolic compound, dimethoxyparaxylene, bis (methoxymethyl) biffe Phenol aralkyl resins such as phenol aralkyl resins, naphthol aralkyl resins, etc .; para-xylylene-modified phenol resins, meta-xylylene-modified phenol resins; melamine-modified phenol resins; terpene-modified phenol resins; A dicyclopentadiene-type phenol
  • the functional group equivalent of the curing agent is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance, and electrical reliability, it is preferably from 70 g / eq to 1000 g / eq, more preferably from 80 g / eq to 500 g / eq.
  • the functional group equivalent of the curing agent (hydroxyl equivalent in the case of a phenol curing agent) is a value measured by a method according to JIS K 0070: 1992.
  • the curing agent is a solid
  • its melting point or softening point is not particularly limited. It is preferably from 40 ° C. to 180 ° C. from the viewpoint of moldability and reflow resistance, and more preferably from 50 ° C. to 130 ° C. from the viewpoint of handleability during the production of the sealing material.
  • the melting point or softening point of the curing agent is a value measured in the same manner as the melting point or softening point of the epoxy resin.
  • the equivalent ratio of the epoxy resin to the curing agent is not particularly limited. From the viewpoint of minimizing the amount of each unreacted component, it is preferably set in the range of 0.5 to 2.0, and more preferably in the range of 0.6 to 1.3. From the viewpoint of moldability and reflow resistance, it is more preferable to set the ratio in the range of 0.8 to 1.2.
  • the sealing material may contain an inorganic filler.
  • the inorganic filler include fused silica, crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, and steatite. , Spinel, mullite, titania, talc, clay, mica and the like.
  • An inorganic filler having a flame-retardant effect may be used.
  • the inorganic filler having a flame-retardant effect include aluminum hydroxide, magnesium hydroxide, a composite metal hydroxide such as a composite hydroxide of magnesium and zinc, and zinc borate.
  • silica such as fused silica is preferred from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferred from the viewpoint of high thermal conductivity.
  • One inorganic filler may be used alone, or two or more inorganic fillers may be used in combination.
  • the inorganic filler is in particulate form
  • its particle size is not particularly limited.
  • the particle diameter is preferably from 0.2 ⁇ m to 200 ⁇ m, and more preferably from 0.5 ⁇ m to 100 ⁇ m.
  • the particle diameter is 0.2 ⁇ m or more, an increase in the viscosity of the sealing material tends to be further suppressed.
  • the particle diameter is 200 ⁇ m or less, the filling properties tend to be further improved.
  • the particle size of the inorganic filler is the particle size (volume average particle size, D50) when the accumulation from the smaller diameter side is 50% in the volume-based particle size distribution obtained using a laser diffraction type particle size distribution analyzer. %).
  • the particle size distribution of the inorganic filler is preferably narrow.
  • those having a particle size in the range of 80 ⁇ m to 120 ⁇ m preferably account for 80% by mass or more, more preferably 85% by mass or more, and preferably 90% by mass or more. Is more preferred.
  • the particle diameter (D90%) when the accumulation from the small diameter side is 90%, and the accumulation from the small diameter side is 10%
  • the ratio (D90% / D10%) with respect to the particle diameter (D10%) is preferably 1.5 or less, more preferably 1.2 or less.
  • the particle diameter (D90%) when the accumulation from the small diameter side is 90%, and the accumulation from the small diameter side is 10%
  • the difference (D90% -D10%) from the particle diameter (D10%) at the time is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less.
  • the sealing material preferably contains a non-spherical inorganic filler.
  • a non-spherical inorganic filler it is preferable to include an inorganic filler having an aspect ratio of 0.8 or less, and more preferably to include an inorganic filler having an aspect ratio of 0.5 or less.
  • the non-spherical inorganic filler include angular, plate-like, and needle-like inorganic fillers.
  • the aspect ratio of the inorganic filler is A, where A is the maximum diameter of the particles of the inorganic filler (the maximum value of the distance that two surfaces can take when the particles are sandwiched between two parallel surfaces), and A is the minimum diameter ( When B is the minimum value of the distance that two surfaces can take when particles are sandwiched between two parallel surfaces, B means the value obtained by dividing B by A (B / A).
  • the aspect ratio of the inorganic filler may be an arithmetic average value (average aspect ratio) of the aspect ratios measured for arbitrarily selected 100 particles.
  • the content of the inorganic filler in the sealing material is preferably 50% by volume or more, and the viewpoint of ensuring sufficient fluidity. Is preferably 90% by volume or less.
  • the encapsulant may include a curing accelerator.
  • the type of the curing accelerator is not particularly limited, and can be selected according to the type of the resin used in combination, the desired characteristics of the sealing material, and the like.
  • the curing accelerator include diaza such as 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) and 1,8-diazabicyclo [5.4.0] undecene-7 (DBU).
  • Cyclic amidine compounds such as bicycloalkene, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole; derivatives of the cyclic amidine compounds; phenol novolaks of the cyclic amidine compounds or derivatives thereof Salts: These compounds include maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5- Methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, Quinone compounds such as 1,
  • tetra-substituted phosphonium such as tetraphenylphosphonium, and tetra-substituted phosphonium having no phenyl group bonded to a boron atom such as tetra-p-tolyl borate And tetra-substituted borates; salts of tetraphenylphosphonium with phenolic compounds Etc., and the like.
  • the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 15 parts by mass, based on 100 parts by mass of the resin component. preferable.
  • the amount of the curing accelerator is 0.1 parts by mass or more based on 100 parts by mass of the resin component, the curing tends to be performed well in a short time. If the amount of the curing accelerator is 30 parts by mass or less based on 100 parts by mass of the resin component, the curing rate tends to be too high and a good molded product tends to be obtained.
  • the sealing material may include a coupling agent.
  • the coupling agent include known coupling agents such as silane compounds such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, and vinyl silane, titanium compounds, aluminum chelate compounds, and aluminum / zirconium compounds. Is mentioned.
  • the amount is preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 2.5 parts by mass based on 100 parts by mass of the inorganic filler. Is more preferable.
  • the amount of the coupling agent is 0.05 parts by mass or more based on 100 parts by mass of the inorganic component, the adhesiveness to the element and the substrate tends to be further improved.
  • the amount of the coupling agent is 5 parts by mass or less based on 100 parts by mass of the inorganic component, the moldability of the package tends to be further improved.
  • the sealing material may include an ion exchanger.
  • the ion exchanger include hydrotalcite compounds and hydrated oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium and bismuth.
  • One type of ion exchanger may be used alone, or two or more types may be used in combination.
  • the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 10 parts by mass, per 100 parts by mass of the resin component. preferable.
  • the sealant may include a release agent.
  • the release agent include carnauba wax, montanic acid, higher fatty acids such as stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as polyethylene oxide and non-oxidized polyethylene.
  • Can be One type of release agent may be used alone, or two or more types may be used in combination.
  • the amount is preferably from 0.01 to 10 parts by mass, and more preferably from 0.1 to 5 parts by mass based on 100 parts by mass of the resin component. Is more preferred.
  • the encapsulant may include a flame retardant.
  • the flame retardant include an organic or inorganic compound containing a halogen atom, an antimony atom, a nitrogen atom or a phosphorus atom, and a metal hydroxide.
  • the flame retardants may be used alone or in combination of two or more.
  • the sealing material contains a flame retardant
  • its amount is not particularly limited as long as the amount is sufficient to obtain the desired flame retardant effect.
  • it is preferably from 1 to 30 parts by mass, more preferably from 2 to 20 parts by mass, per 100 parts by mass of the resin component.
  • the encapsulant may include a colorant.
  • the colorant include carbon black, organic dyes, organic pigments, titanium oxide, lead tan, and red bean.
  • the content of the coloring agent can be appropriately selected according to the purpose and the like.
  • the colorant may be used alone or in combination of two or more.
  • the sealing material may include a stress relieving agent such as silicone oil and silicone rubber particles.
  • a stress relieving agent such as silicone oil and silicone rubber particles.
  • the stress relaxing agent include thermoplastic elastomers such as silicone, styrene, olefin, urethane, polyester, polyether, polyamide, and polybutadiene, NR (natural rubber), and NBR (acrylonitrile-butadiene). Rubber), rubber particles such as acrylic rubber, urethane rubber, silicone powder, etc., methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer, methyl methacrylate-butyl acrylate copolymer, etc. And rubber particles having a core-shell structure of One type of stress relaxation agent may be used alone, or two or more types may be used in combination.
  • An electronic component device includes a substrate, an element disposed on the substrate, and a sealing unit, and the sealing unit is disposed on a side of the substrate opposite to a side on which the element is disposed.
  • An electronic device including a structure in which a first sealing portion and a second sealing portion different from the first sealing portion are collectively formed on a side of the substrate on which the element is arranged. It is a component device.
  • the sealing portion includes the first sealing portion and the second sealing portion different from the first sealing portion.
  • the first sealing portion disposed on the side opposite to the side on which the elements of the substrate are arranged is formed using a sealing material having high heat dissipation
  • the second sealing portion disposed on the side where is disposed is formed using a sealing material having high fluidity.
  • the electronic component device having the above configuration includes a structure in which the first sealing portion and the second sealing portion are collectively formed, the first sealing portion and the second sealing portion It is hard to cause peeling off and has excellent reliability.
  • the structure in which the first sealing portion and the second sealing portion different from the first sealing portion are collectively formed means that the formation of both sealing portions is started and ended. Means a structure formed without performing a curing process. The determination as to whether or not the first sealing portion and the second sealing portion are integrally formed is performed, for example, at a boundary between the first sealing portion and the second sealing portion. It can be performed depending on whether or not an appropriate interface is formed.
  • the difference between the first sealing portion and the second sealing portion is not particularly limited.
  • the types (contents, etc.) of components (resin, inorganic filler, etc.) contained in the sealing portion may be different.
  • the sealing portion may include a different sealing portion in addition to the first sealing portion and the second sealing portion.
  • the electronic component device having the above configuration can be manufactured by, for example, the above-described method for manufacturing an electronic component device.
  • the details and preferred embodiments of the electronic component device and the sealing portion and the sealing material included therein are the same as the details and preferred embodiments of the electronic component device, the sealing portion and the sealing material described in the method of manufacturing the electronic component device. is there.
  • the sealing material (first embodiment) of the present disclosure is a sealing material to be used as at least one of the first sealing material and the second sealing material in the method for manufacturing an electronic component device described above.
  • a sealing material (second embodiment) of the present disclosure is a sealing material for forming at least one of the first sealing portion and the second sealing portion in the electronic component device described above.
  • the specific mode of the sealing material is not particularly limited.
  • FIG. 1 is a schematic cross-sectional view showing an example of a configuration of a molding device used in the method for manufacturing an electronic component device according to the present disclosure.
  • the molding device 10 includes a cavity (not shown) corresponding to the shape of the sealing portion 5 formed around the substrate 1, the element 2, the lead frame 3, and the wires 4 that constitute the electronic component device. Further, a gate 6 for supplying a sealing material inside the cavity and below the element 2 and a gate 7 for supplying a sealing material above the element 2 are provided.
  • a sealing material is supplied from the gate 6 and the gate 7 to the inside of the cavity of the molding apparatus 10 to form the sealing portion 5 around the substrate 1, the element 2, the lead frame 3 and the wires 4.
  • the lower part of the element 2 and the upper part of the element 2 in the sealing part 5 are supplied from the gates 6 and 7 in the directions indicated by arrows, respectively. It is formed using a sealing material to be formed. For this reason, for example, the lower part of the element 2 in the sealing part 5 is formed using a sealing material having high heat dissipation, and the upper part of the sealing part 5 in the element 2 is sealed with high fluidity. It may be formed by using a stopper.
  • the supply of the sealing material from the gate 6 and the supply of the sealing material from the gate 7 are performed collectively, so that the sealing portion 5 can be clearly defined between the upper part and the lower part of the element 2. May not be easily formed.
  • FIG. 2 is a schematic cross-sectional view showing an example of the configuration of a molding device used in a conventional method for manufacturing an electronic component device.
  • the molding device 20 differs from the molding device 10 in that the supply of the sealing material to the lower side of the element 2 and the supply of the sealing material to the upper side of the element 2 are performed from the same gate 8.
  • FIG. 3 is a schematic cross-sectional view showing another example of the configuration of the molding apparatus used in the conventional method of manufacturing an electronic component device.
  • the molding apparatus 30 includes a gate 7 for supplying a sealing material on the upper side of the element 2, similarly to the molding apparatus 10, but unlike the molding apparatus 10, a gate for supplying a sealing material on the lower side of the element 2. 6 is not provided.
  • the sealing material supplied from the gate 7 is cured to form the sealing portion 5 only on the upper side of the element 2 first. Thereafter, a sheet-like insulating material is disposed below the element 2 or the sealing portion 9 is formed using another sealing material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

Provided is a manufacturing method for an electronic component device provided with a board, an element disposed on the board, and sealing parts, the manufacturing method including a step for supplying a first sealing material and a second sealing material to the interior of a molding device that is provided with a first gate from which the first sealing material is supplied to an opposite side from the side of the board at which the element is disposed, and a second gate from which the second sealing material is supplied to the side of the board at which the element is disposed.

Description

電子部品装置の製造方法、電子部品装置及び封止材Manufacturing method of electronic component device, electronic component device, and sealing material
 本発明は、電子部品装置の製造方法、電子部品装置及び封止材に関する。 The present invention relates to a method for manufacturing an electronic component device, an electronic component device, and a sealing material.
 半導体素子を基板に実装し、その周囲を絶縁性の材料(封止材)で封止した電子部品装置の一形態として、絶縁ゲートバイポーラトランジスタ(IGBT)等のいわゆるパワー半導体装置がある。パワー半導体装置は発熱量が大きいため、基板の半導体素子を実装した面と逆側にヒートスプレッダと呼ばれる放熱部材が配置されて発生した熱が放散されるように構成されている。このため、基板と放熱部材との間を封止する封止材には絶縁性とともに高い放熱性が求められている。 (1) As one form of an electronic component device in which a semiconductor element is mounted on a substrate and the periphery thereof is sealed with an insulating material (sealing material), there is a so-called power semiconductor device such as an insulated gate bipolar transistor (IGBT). Since the power semiconductor device generates a large amount of heat, a heat radiating member called a heat spreader is arranged on the side of the substrate opposite to the surface on which the semiconductor element is mounted, so that the generated heat is dissipated. For this reason, a sealing material for sealing between the substrate and the heat dissipation member is required to have high heat dissipation as well as insulation.
 上記構成を有する電子部品装置では、半導体素子を搭載した基板全体を一般的な封止材で封止すると放熱性が充分に確保できない場合がある。一方、放熱性に優れる封止材は粘度が高すぎる等の理由により、半導体素子を搭載した基板全体の封止に適さない場合がある。そこで、基板の放熱部材と対向する側に放熱性に優れるシート状の絶縁材を配置することが行われている。また、特許文献1には半導体素子が実装されたリードフレームの実装面を第1のモールド樹脂で封止した後にリードフレームの実装面と反対側の面をより放熱性に優れる第2のモールド樹脂で封止する方法が記載されている。 電子 In the electronic component device having the above configuration, if the entire substrate on which the semiconductor element is mounted is sealed with a general sealing material, heat radiation may not be sufficiently secured. On the other hand, a sealing material having excellent heat dissipation properties may not be suitable for sealing the entire substrate on which a semiconductor element is mounted, because the viscosity is too high. Therefore, a sheet-like insulating material having excellent heat dissipation properties is arranged on the side of the substrate facing the heat dissipation member. Japanese Patent Application Laid-Open No. H11-163873 discloses a second mold resin having a better heat dissipation property after sealing a mounting surface of a lead frame on which a semiconductor element is mounted with a first mold resin and then mounting a surface opposite to the mounting surface of the lead frame. The method of sealing with is described.
国際公開第2016/166834号International Publication No. 2016/166834
 基板の放熱部材と対向する側にシート状の絶縁材を配置する方法では、封止工程とは別にシート状の絶縁材を配置する工程が生じる。また、特許文献1に記載された方法では、第1のモールド樹脂で封止する工程とは別に第2のモールド樹脂で封止する工程が生じる。このため、電子部品装置の製造効率の観点から改善の余地がある。 方法 In the method of disposing the sheet-like insulating material on the side of the substrate facing the heat dissipation member, a step of disposing the sheet-like insulating material separately from the sealing step occurs. In the method described in Patent Document 1, a step of sealing with a second mold resin occurs separately from the step of sealing with a first mold resin. Therefore, there is room for improvement from the viewpoint of the manufacturing efficiency of the electronic component device.
 上記事情に鑑み、本発明の一態様は、放熱性に優れる電子部品装置を効率よく製造できる電子部品装置の製造方法、及び放熱性に優れる電子部品装置を提供することを目的とする。本発明の別の一態様は、上記製造方法又は上記電子部品装置の形成に使用するための封止材を提供することを目的とする。 In view of the above circumstances, an object of one embodiment of the present invention is to provide a method for manufacturing an electronic component device capable of efficiently manufacturing an electronic component device having excellent heat dissipation, and an electronic component device having excellent heat dissipation. Another aspect of the present invention is to provide a sealing material for use in the manufacturing method or the formation of the electronic component device.
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>基板と、前記基板上に配置される素子と、封止部とを備える電子部品装置の製造方法であって、前記基板の前記素子が配置された側と逆側に第1の封止材を供給する第1のゲートと、前記基板の前記素子が配置された側に第2の封止材を供給する第2のゲートと、を備える成形装置の内部に前記第1の封止材と前記第2の封止材を供給する工程を備える、電子部品装置の製造方法。
<2>前記供給が、前記第1の封止材の供給の開始が前記第2の封止材の供給の開始よりも先になるように行われる、<1>に記載の電子部品装置の製造方法。
<3>前記供給が、前記第1の封止材の供給の終了が前記第2の封止材の供給の開始よりも先になるように行われる、<1>又は<2>に記載の電子部品装置の製造方法。
<4>前記成形装置において前記第1のゲートが前記第2のゲートよりも重力方向にみて下に位置する、<1>~<3>のいずれか1項に記載の電子部品装置の製造方法。
<5>前記第1の封止材と前記第2の封止材は下記(1)、(2)及び(3)の少なくともいずれかの関係を満たす、<1>~<4>のいずれか1項に記載の電子部品装置の製造方法。
(1)第1の封止材の供給時の粘度>第2の封止材の供給時の粘度
(2)第1の封止材の硬化後の熱伝導率>第2の封止材の硬化後の熱伝導率
(3)第1の封止材の無機充填材の含有率>第2の封止材の無機充填材の含有率
<6>基板と、前記基板上に配置される素子と、封止部とを備え、前記封止部は、前記基板の前記素子が配置された側と逆側に配置される第1の封止部と、前記基板の前記素子が配置された側に配置され、第1の封止部と異なる第2の封止部とが一括して形成された構造を含む、電子部品装置。
<7><1>~<5>のいずれか1項に記載の電子部品装置の製造方法において前記第1の封止材及び前記第2の封止材の少なくとも1つとして用いるための、封止材。
<8><6>に記載の電子部品装置において前記第1の封止部及び第2の封止部の少なくとも1つを形成するための、封止材。
Means for solving the above problems include the following embodiments.
<1> A method for manufacturing an electronic component device comprising a substrate, an element disposed on the substrate, and a sealing portion, wherein a first sealing is provided on a side of the substrate opposite to a side on which the element is disposed. The first sealing is performed inside a molding apparatus including a first gate for supplying a stopper and a second gate for supplying a second sealing material to a side of the substrate on which the element is disposed. A method for manufacturing an electronic component device, comprising a step of supplying a material and the second sealing material.
<2> The electronic component device according to <1>, wherein the supply is performed such that the start of the supply of the first sealing material is earlier than the start of the supply of the second sealing material. Production method.
<3> The method according to <1> or <2>, wherein the supply is performed such that an end of the supply of the first sealing material is earlier than a start of the supply of the second sealing material. A method for manufacturing an electronic component device.
<4> The method of manufacturing an electronic component device according to any one of <1> to <3>, wherein the first gate is located below the second gate in the direction of gravity in the molding apparatus. .
<5> Any of <1> to <4>, wherein the first sealing material and the second sealing material satisfy at least one of the following (1), (2), and (3): 2. The method for manufacturing an electronic component device according to claim 1.
(1) Viscosity at the time of supplying the first sealing material> Viscosity at the time of supplying the second sealing material (2) Thermal conductivity after curing of the first sealing material> Thermal conductivity after curing (3) Content of inorganic filler in first sealing material> Content of inorganic filler in second sealing material <6> Substrate and element disposed on substrate And a sealing portion, wherein the sealing portion is a first sealing portion disposed on a side of the substrate opposite to the side on which the element is disposed, and a side of the substrate on which the element is disposed. The electronic component device includes a structure in which the first sealing portion and a different second sealing portion are collectively formed.
<7> In the method for manufacturing an electronic component device according to any one of <1> to <5>, a seal for use as at least one of the first sealing material and the second sealing material. Stopping material.
<8> In the electronic component device according to <6>, a sealing material for forming at least one of the first sealing portion and the second sealing portion.
 本発明の一態様によれば、放熱性に優れる電子部品装置を効率よく製造できる電子部品装置の製造方法、及び放熱性に優れる電子部品装置が提供される。本発明の別の一態様によれば、上記製造方法又は上記電子部品装置の形成に使用するための封止材が提供される。 According to one embodiment of the present invention, a method for manufacturing an electronic component device capable of efficiently manufacturing an electronic component device excellent in heat dissipation, and an electronic component device excellent in heat dissipation are provided. According to another aspect of the present invention, there is provided a sealing material for use in the manufacturing method or the formation of the electronic component device.
本開示の電子部品装置の製造方法で用いる成形装置の構成の一例を示す概略断面図である。1 is a schematic cross-sectional view illustrating an example of a configuration of a molding device used in a method of manufacturing an electronic component device according to the present disclosure. 従来の電子部品装置の製造方法で用いる成形装置の構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the shaping | molding apparatus used in the manufacturing method of the conventional electronic component device. 従来の電子部品装置の製造方法で用いる成形装置の構成の別の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the structure of the shaping | molding apparatus used in the manufacturing method of the conventional electronic component device.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including the element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, and does not limit the present invention.
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
In the present disclosure, the term "step" includes, in addition to a step independent of other steps, even if the purpose of the step is achieved even if it cannot be clearly distinguished from the other steps, the step is also included. .
In the present disclosure, the numerical ranges indicated by using “to” include the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the numerical ranges described in stages in the present disclosure, the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of the numerical range described in other stages. . Further, in the numerical range described in the present disclosure, the upper limit or the lower limit of the numerical range may be replaced with the value shown in the embodiment.
In the present disclosure, each component may include a plurality of corresponding substances. When there are a plurality of substances corresponding to each component in the composition, the content or content of each component is, unless otherwise specified, the total content or content of the plurality of substances present in the composition. Means quantity.
In the present disclosure, a plurality of types of particles corresponding to each component may be included. When a plurality of types of particles corresponding to each component are present in the composition, the particle size of each component means a value of a mixture of the plurality of types of particles present in the composition unless otherwise specified.
<電子部品装置の製造方法>
 本開示の電子部品装置の製造方法は、基板と、前記基板上に配置される素子と、封止部とを備える電子部品装置の製造方法であって、前記基板の前記素子が配置された側と逆側に第1の封止材を供給する第1のゲートと、前記基板の前記素子が配置された側に第2の封止材を供給する第2のゲートと、を備える成形装置の内部に前記第1の封止材と前記第2の封止材を供給する工程を備える、電子部品装置の製造方法である。
<Manufacturing method of electronic component device>
A method for manufacturing an electronic component device according to an embodiment of the present disclosure is a method for manufacturing an electronic component device including a substrate, an element disposed on the substrate, and a sealing portion, wherein the side of the substrate on which the element is disposed is provided. And a second gate for supplying a second sealing material to the side of the substrate on which the element is arranged, and a second gate for supplying a second sealing material to a side of the substrate on which the element is arranged. A method for manufacturing an electronic component device, comprising a step of supplying the first sealing material and the second sealing material therein.
 上記方法では、基板の素子が配置された側と逆側(以下、素子の下側ともいう)を第1の封止材で、基板の素子が配置された側(以下、素子の上側ともいう)を第2の封止材でそれぞれ封止する。このため、それぞれの場所に適した封止材を使用することができる。例えば、第1の封止材として放熱性の高い封止材を使用し、第2の封止材として流動性の高い封止材を使用することができる。 In the above method, the side opposite to the side on which the elements of the substrate are arranged (hereinafter, also referred to as the lower side of the elements) is the first sealing material, and the side of the substrate on which the elements are arranged (hereinafter, also referred to as the upper side of the elements). ) Is sealed with a second sealing material. For this reason, a sealing material suitable for each location can be used. For example, a sealing material with high heat dissipation can be used as the first sealing material, and a sealing material with high fluidity can be used as the second sealing material.
 上記方法において「第1の封止材と第2の封止材を供給する工程」とは、第1の封止材を供給する工程と、第2の封止材を供給する工程とを一括して行う工程を意味する。より具体的には、双方の封止材の供給の開始から終了までの間に供給された封止材の硬化処理を行わない工程を意味する。 In the above method, the “step of supplying the first sealing material and the second sealing material” includes a step of supplying the first sealing material and a step of supplying the second sealing material at a time. Means the step to be performed. More specifically, it means a step in which the hardening treatment of the supplied sealing material is not performed between the start and the end of the supply of the both sealing materials.
 第1の封止材を供給する工程と、第2の封止材を供給する工程とを一括して行うことで、それぞれの工程を別々に行う場合に比べて製造プロセスを簡略化でき、電子部品の製造効率が向上する。また、一方の封止材を供給し、硬化させた後にもう一方の封止材を供給する場合に比べて双方の封止材の間に明確な界面が形成されにくく剥離等の発生を抑制できるため、電子部品装置の信頼性の向上効果も期待できる。 By performing the step of supplying the first sealing material and the step of supplying the second sealing material collectively, the manufacturing process can be simplified as compared with a case where each step is performed separately. The production efficiency of parts is improved. In addition, a clear interface is less likely to be formed between the two sealing materials than in the case where one sealing material is supplied and cured, and then the other sealing material is supplied. Therefore, an effect of improving the reliability of the electronic component device can be expected.
 上記方法において「第1の封止材と第2の封止材を供給する工程」は、双方の封止材の供給が同時に開始及び終了するように行っても、双方の封止材の供給の開始又は終了の少なくともいずれかの時期が異なるように行ってもよい。 In the above method, the “supplying the first sealing material and the second sealing material” may be performed such that the supply of both sealing materials is started even if the supply of both sealing materials starts and ends simultaneously. May be performed in such a manner that at least one of the start and end timings is different.
 上記方法において「第1の封止材と第2の封止材を供給する工程」は、第1の封止材の供給の開始が第2の封止材の供給の開始よりも先になるように行われることが好ましく、第1の封止材の供給の終了が第2の封止材の供給の開始よりも先になるように行われることがより好ましい。封止材の供給をこの順で行うことで、基板の下側(すなわち、放熱部材に対向する側)に第1の封止材を充分に供給することができ、充分な放熱性を達成することができる。 In the above-mentioned method, in the “step of supplying the first sealing material and the second sealing material”, the start of the supply of the first sealing material is earlier than the start of the supply of the second sealing material. It is preferable that the supply of the first sealing material is completed before the start of the supply of the second sealing material. By supplying the sealing material in this order, the first sealing material can be sufficiently supplied to the lower side of the substrate (that is, the side facing the heat radiation member), and sufficient heat radiation can be achieved. be able to.
 上記方法において「基板の素子が配置された側と逆側に第1の封止材を供給する第1のゲートと、基板の素子が配置された側に第2の封止材を供給する第2のゲートと、を備える成形装置(以下、成形装置ともいう)」の構造は、特に制限されない。例えば、一般的なトランスファー成形に用いる装置と同様の装置であって、第1のゲートと第2のゲートとを備えるものであってもよい。 In the above method, “a first gate for supplying a first sealing material on a side opposite to a side on which the element of the substrate is disposed, and a second gate for supplying a second sealing material on a side of the substrate on which the element is disposed. The structure of a forming apparatus (hereinafter, also referred to as a forming apparatus) including the two gates is not particularly limited. For example, an apparatus similar to an apparatus used for general transfer molding may be provided with a first gate and a second gate.
 成形装置における第1のゲートと第2のゲートの位置関係は、特に制限されない。ある実施態様では、第1のゲートが第2のゲートよりも重力方向にみて下に位置することが好ましい。この場合、素子の下側(すなわち、放熱部材に対向する側)に第1の封止材を充分に供給することができ、充分な放熱性を達成することができる。 位置 The positional relationship between the first gate and the second gate in the molding apparatus is not particularly limited. In some embodiments, it is preferred that the first gate is located below the second gate in the direction of gravity. In this case, the first sealing material can be sufficiently supplied to the lower side of the element (that is, the side facing the heat dissipation member), and sufficient heat dissipation can be achieved.
 成形装置における第1のゲートと第2のゲートの数は特に制限されず、製造する電子部品装置の形状、大きさ等に応じて選択できる。また、成形装置は第1のゲートと第2のゲートに加え、第3の封止材を供給するための第3のゲートを備えていてもよい。また、各ゲートから封止材が供給されるタイミングを制御するための制御機構を備えていてもよい。 数 The number of the first gate and the second gate in the molding apparatus is not particularly limited, and can be selected according to the shape, size, and the like of the electronic component device to be manufactured. In addition, the molding apparatus may include a third gate for supplying a third sealing material, in addition to the first gate and the second gate. Further, a control mechanism for controlling the timing at which the sealing material is supplied from each gate may be provided.
 成形装置において、第1のゲートと第2のゲートから封止材を成形装置の内部に供給する方法は、特に制限されない。例えば、プランジャーを用いて封止材を成形装置の内部に注入する方法であってもよい。 方法 In the molding device, a method of supplying the sealing material from the first gate and the second gate into the molding device is not particularly limited. For example, a method of injecting a sealing material into the inside of a molding device using a plunger may be used.
 上記方法は、第1の封止材と第2の封止材の供給の後に、第1の封止材と第2の封止材を硬化して封止部を形成する工程を備えるものであってもよい。具体的には、第1の封止材と第2の封止材を成形装置の内部に供給した後、第1の封止材及び第2の封止材を硬化させるための硬化処理を行って封止部を形成する。硬化処理の条件は特に制限されず、第1の封止材及び第2の封止材の種類に応じて設定できる。 The method includes a step of curing the first sealing material and the second sealing material to form a sealing portion after supplying the first sealing material and the second sealing material. There may be. Specifically, after supplying the first sealing material and the second sealing material to the inside of the molding apparatus, a curing process for curing the first sealing material and the second sealing material is performed. To form a sealing portion. The conditions for the curing treatment are not particularly limited, and can be set according to the types of the first sealing material and the second sealing material.
 第1の封止材を硬化して得られる封止部(以下、第1の封止部ともいう)、及び第2の封止材を硬化して得られる封止部(以下、第2の封止部ともいう)の形状は、特に制限されない。放熱性の観点からは、第1の封止部の厚み(厚みが一定でない場合は、厚みの最小値)は1000μm以下であることが好ましく、絶縁性の観点からは、第1の封止部の厚みは0.1μm以上であることが好ましい。 A sealing portion obtained by curing the first sealing material (hereinafter, also referred to as a first sealing portion) and a sealing portion obtained by curing the second sealing material (hereinafter, referred to as a second sealing material) The shape of the sealing portion is not particularly limited. From the viewpoint of heat dissipation, the thickness of the first sealing portion (the minimum value of the thickness when the thickness is not constant) is preferably 1000 μm or less, and from the viewpoint of insulating properties, the first sealing portion. Is preferably 0.1 μm or more.
 上記方法により製造される電子部品装置の種類は、特に制限されず、あらゆる種類の電子部品装置であってよい。中でも、パワー半導体装置であることが好ましく、絶縁ゲートバイポーラトランジスタ(IGBT)であることがより好ましい。 The type of electronic component device manufactured by the above method is not particularly limited, and may be any type of electronic component device. Among them, a power semiconductor device is preferable, and an insulated gate bipolar transistor (IGBT) is more preferable.
 第1の封止材と第2の封止材(以下、あわせて封止材ともいう)は、同じであっても異なっていてもよい。ある実施態様では、第1の封止材と第2の封止材は下記(1)、(2)及び(3)の少なくともいずれかの関係を満たすものであってもよい。
(1)第1の封止材の供給時の粘度>第2の封止材の供給時の粘度
(2)第1の封止材の硬化後の熱伝導率>第2の封止材の硬化後の熱伝導率
(3)第1の封止材の無機充填材の含有率>第2の封止材の無機充填材の含有率
The first sealing material and the second sealing material (hereinafter, also collectively referred to as sealing materials) may be the same or different. In one embodiment, the first sealing material and the second sealing material may satisfy at least one of the following (1), (2) and (3).
(1) Viscosity at the time of supplying the first sealing material> Viscosity at the time of supplying the second sealing material (2) Thermal conductivity after curing of the first sealing material> Thermal conductivity after curing (3) Content of inorganic filler in first sealing material> Content of inorganic filler in second sealing material
 封止材(特に、第1の封止材)は、ジェッティング特性に優れていることが好ましい。本開示において「ジェッティング特性」とは、ゲートから成形装置に供給された封止材が、当該ゲートの供給口の形状を維持しながら流動する性質をいう。 The sealing material (particularly, the first sealing material) preferably has excellent jetting characteristics. In the present disclosure, the “jetting characteristic” refers to a property in which a sealing material supplied from a gate to a molding apparatus flows while maintaining the shape of a supply port of the gate.
 封止材として良好なジェッティング特性を発現するものを用いることで、ゲートの供給口の形状によって封止材により形成される封止部の形状を制御することができる。例えば、第1のゲートの供給口を扁平な形状とすることで、第1の封止材により形成される封止部の形状を扁平にすることができる。 こ と By using a material exhibiting good jetting characteristics as the sealing material, the shape of the sealing portion formed by the sealing material can be controlled by the shape of the gate supply port. For example, when the supply port of the first gate has a flat shape, the shape of a sealing portion formed by the first sealing material can be flat.
 良好なジェッティング特性を得る観点からは、封止材(特に、第1の封止材)の供給時の粘度は1Pa・s以上であることが好ましく、充分な流動性を確保する観点からは1000Pa・s以下であることが好ましい。 From the viewpoint of obtaining good jetting characteristics, the viscosity at the time of supplying the sealing material (particularly, the first sealing material) is preferably 1 Pa · s or more, and from the viewpoint of ensuring sufficient fluidity. It is preferably 1000 Pa · s or less.
 本開示において「供給時の粘度」とは、ゲートから封止材を成形装置の内部に供給するときの温度(例えば、150℃~250℃から選択される温度)における粘度を意味する。封止材の粘度は、E型粘度計を用いて測定される。 に お い て In the present disclosure, “viscosity at the time of supply” means a viscosity at a temperature (for example, a temperature selected from 150 ° C. to 250 ° C.) when the sealing material is supplied from the gate into the inside of the molding apparatus. The viscosity of the sealing material is measured using an E-type viscometer.
 第1の封止材と第2の封止材の材料は特に制限されず、電子部品装置の封止材として一般的に用いられるものから選択してもよい。 The materials of the first sealing material and the second sealing material are not particularly limited, and may be selected from those generally used as sealing materials for electronic component devices.
 絶縁性と成形性の観点からは、封止材は樹脂成分を含むことが好ましく、耐熱性の観点からは、熱硬化性樹脂を含むことが好ましい。熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ウレタン樹脂、シリコーン樹脂、不飽和ポリエステル樹脂等が挙げられる。本開示では、エポキシ基を含有するアクリル樹脂等の、熱可塑性と熱硬化性の両方の性質を示すものは「熱硬化性樹脂」に含めるものとする。封止材に含まれる樹脂成分は、1種であっても2種以上であってもよい。 封 止 From the viewpoint of insulation and moldability, the sealing material preferably contains a resin component, and from the viewpoint of heat resistance, it is preferable to contain a thermosetting resin. Examples of the thermosetting resin include an epoxy resin, a phenol resin, a urea resin, a melamine resin, a urethane resin, a silicone resin, and an unsaturated polyester resin. In the present disclosure, those that exhibit both thermoplastic and thermosetting properties, such as an acrylic resin containing an epoxy group, are included in “thermosetting resins”. The resin component contained in the sealing material may be one kind or two or more kinds.
 封止材は、樹脂成分としてエポキシ樹脂を含むことが好ましい。エポキシ樹脂として具体的には、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したものであるノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等);上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂をエポキシ化したものであるトリフェニルメタン型エポキシ樹脂;上記フェノール化合物及びナフトール化合物と、アルデヒド化合物とを酸性触媒下で共縮合させて得られるノボラック樹脂をエポキシ化したものである共重合型エポキシ樹脂;ビスフェノールA、ビスフェノールF等のジグリシジルエーテルであるジフェニルメタン型エポキシ樹脂;アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂;スチルベン系フェノール化合物のジグリシジルエーテルであるスチルベン型エポキシ樹脂;ビスフェノールS等のジグリシジルエーテルである硫黄原子含有エポキシ樹脂;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテルであるエポキシ樹脂;フタル酸、イソフタル酸、テトラヒドロフタル酸等の多価カルボン酸化合物のグリシジルエステルであるグリシジルエステル型エポキシ樹脂;アニリン、ジアミノジフェニルメタン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したものであるグリシジルアミン型エポキシ樹脂;ジシクロペンタジエンとフェノール化合物の共縮合樹脂をエポキシ化したものであるジシクロペンタジエン型エポキシ樹脂;分子内のオレフィン結合をエポキシ化したものであるビニルシクロヘキセンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂;パラキシリレン変性フェノール樹脂のグリシジルエーテルであるパラキシリレン変性エポキシ樹脂;メタキシリレン変性フェノール樹脂のグリシジルエーテルであるメタキシリレン変性エポキシ樹脂;テルペン変性フェノール樹脂のグリシジルエーテルであるテルペン変性エポキシ樹脂;ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるジシクロペンタジエン変性エポキシ樹脂;シクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるシクロペンタジエン変性エポキシ樹脂;多環芳香環変性フェノール樹脂のグリシジルエーテルである多環芳香環変性エポキシ樹脂;ナフタレン環含有フェノール樹脂のグリシジルエーテルであるナフタレン型エポキシ樹脂;ハロゲン化フェノールノボラック型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;トリメチロールプロパン型エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂をエポキシ化したものであるアラルキル型エポキシ樹脂;などが挙げられる。さらにはアクリル樹脂のエポキシ化物等もエポキシ樹脂として挙げられる。これらのエポキシ樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 The sealing material preferably contains an epoxy resin as a resin component. Specific examples of the epoxy resin include at least one selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcin, catechol, bisphenol A and bisphenol F and naphthol compounds such as α-naphthol, β-naphthol and dihydroxynaphthalene. Novolak epoxy resin (phenol novolak type) obtained by epoxidizing a novolak resin obtained by condensing or co-condensing a phenolic compound of a type with an aliphatic aldehyde compound such as formaldehyde, acetaldehyde, propionaldehyde, etc. under an acidic catalyst. Epoxy resin, orthocresol novolak type epoxy resin, etc.); condensation of the above phenolic compound with an aromatic aldehyde compound such as benzaldehyde or salicylaldehyde under an acidic catalyst or Is a triphenylmethane-type epoxy resin obtained by epoxidizing a triphenylmethane-type phenol resin obtained by co-condensation; a novolak obtained by co-condensing the phenol compound and the naphthol compound with an aldehyde compound under an acidic catalyst. Copolymer type epoxy resin obtained by epoxidation of resin; diphenylmethane type epoxy resin which is diglycidyl ether such as bisphenol A and bisphenol F; biphenyl type epoxy resin which is diglycidyl ether of alkyl-substituted or unsubstituted biphenol; stilbene Stilbene type epoxy resin which is a diglycidyl ether of a phenolic compound; epoxy resin containing a sulfur atom which is a diglycidyl ether such as bisphenol S; butanediol, polyethylene glycol, polypropylene Epoxy resin which is a glycidyl ether of alcohols such as glycol; glycidyl ester type epoxy resin which is a glycidyl ester of a polycarboxylic acid compound such as phthalic acid, isophthalic acid and tetrahydrophthalic acid; nitrogen such as aniline, diaminodiphenylmethane and isocyanuric acid A glycidylamine-type epoxy resin in which active hydrogen bonded to an atom is replaced by a glycidyl group; a dicyclopentadiene-type epoxy resin in which a cocondensation resin of dicyclopentadiene and a phenol compound is epoxidized; an olefin bond in a molecule Vinylcyclohexene diepoxide obtained by epoxidation of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxy) cyclohexyl-5 Alicyclic epoxy resins such as spiro (3,4-epoxy) cyclohexane-m-dioxane; para-xylylene-modified epoxy resins which are glycidyl ethers of para-xylylene-modified phenol resins; meta-xylylene-modified epoxy resins which are glycidyl ethers of meta-xylylene-modified phenol resins; Terpene-modified epoxy resin which is a glycidyl ether of a terpene-modified phenol resin; dicyclopentadiene-modified epoxy resin which is a glycidyl ether of a dicyclopentadiene-modified phenol resin; cyclopentadiene-modified epoxy resin which is a glycidyl ether of a cyclopentadiene-modified phenol resin; Polycyclic aromatic ring-modified epoxy resin which is a glycidyl ether of an aromatic ring-modified phenolic resin; glycidyl ether of a naphthalene ring-containing phenolic resin A naphthalene type epoxy resin which is a polyester; a halogenated phenol novolak type epoxy resin; a hydroquinone type epoxy resin; a trimethylolpropane type epoxy resin; a linear aliphatic epoxy resin obtained by oxidizing an olefin bond with a peracid such as peracetic acid; An aralkyl-type epoxy resin obtained by epoxidizing an aralkyl-type phenol resin such as a phenol aralkyl resin and a naphthol aralkyl resin; Further, an epoxidized product of an acrylic resin is also an example of the epoxy resin. These epoxy resins may be used alone or in combination of two or more.
 エポキシ樹脂のエポキシ当量(分子量/エポキシ基数)は、特に制限されない。成形性、耐リフロー性及び電気的信頼等の各種特性バランスの観点からは、100g/eq~1000g/eqであることが好ましく、150g/eq~500g/eqであることがより好ましい。 (4) The epoxy equivalent (molecular weight / number of epoxy groups) of the epoxy resin is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance and electrical reliability, it is preferably from 100 g / eq to 1000 g / eq, more preferably from 150 g / eq to 500 g / eq.
 エポキシ樹脂のエポキシ当量は、JIS K 7236:2009に準じた方法で測定される値とする。 (4) The epoxy equivalent of the epoxy resin is a value measured by a method according to JIS K7236: 2009.
 エポキシ樹脂が固体である場合、その融点又は軟化点は特に制限されない。成形性と耐リフロー性の観点からは40℃~180℃であることが好ましく、封止材の調製の際の取扱い性の観点からは50℃~130℃であることがより好ましい。 場合 When the epoxy resin is a solid, its melting point or softening point is not particularly limited. The temperature is preferably from 40 ° C. to 180 ° C. from the viewpoint of moldability and reflow resistance, and more preferably from 50 ° C. to 130 ° C. from the viewpoint of handleability in preparing the sealing material.
 エポキシ樹脂の融点又は軟化点は、示差走査熱量測定(DSC)又はJIS K 7234:1986に準じた方法(環球法)で測定される値とする。 (4) The melting point or softening point of the epoxy resin is a value measured by a differential scanning calorimetry (DSC) or a method (ring and ball method) according to JIS K 7234: 1986.
 封止材中のエポキシ樹脂の含有率は、強度、流動性、耐熱性、成形性等の観点から0.5質量%~50質量%であることが好ましく、2質量%~30質量%であることがより好ましい。 The content of the epoxy resin in the sealing material is preferably 0.5% by mass to 50% by mass, and more preferably 2% by mass to 30% by mass from the viewpoints of strength, fluidity, heat resistance, moldability and the like. Is more preferable.
(硬化剤)
 封止材は、樹脂成分として硬化物を含んでいてもよい。硬化剤は、併用する樹脂と硬化反応を生じるものであれば特に制限されない。エポキシ樹脂と併用する硬化剤としては、フェノール硬化剤、アミン硬化剤、酸無水物硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。硬化性及びポットライフの両立の観点からはフェノール硬化剤、アミン硬化剤及び酸無水物硬化剤からなる群より選択される少なくとも1種が好ましく、電気的信頼性の観点からはフェノール硬化剤がより好ましい。
(Curing agent)
The sealing material may include a cured product as a resin component. The curing agent is not particularly limited as long as it causes a curing reaction with the resin used in combination. Examples of the curing agent used in combination with the epoxy resin include a phenol curing agent, an amine curing agent, an acid anhydride curing agent, a polymercaptan curing agent, a polyaminoamide curing agent, an isocyanate curing agent, and a blocked isocyanate curing agent. From the viewpoint of compatibility between curability and pot life, at least one selected from the group consisting of a phenol curing agent, an amine curing agent and an acid anhydride curing agent is preferable, and from the viewpoint of electrical reliability, a phenol curing agent is more preferable. preferable.
 フェノール硬化剤として具体的には、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、置換又は非置換のビフェノール等の多価フェノール化合物;フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも一種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂;上記フェノール性化合物と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル等とから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂;パラキシリレン変性フェノール樹脂、メタキシリレン変性フェノール樹脂;メラミン変性フェノール樹脂;テルペン変性フェノール樹脂;上記フェノール性化合物と、ジシクロペンタジエンとから共重合により合成されるジシクロペンタジエン型フェノール樹脂及びジシクロペンタジエン型ナフトール樹脂;シクロペンタジエン変性フェノール樹脂;多環芳香環変性フェノール樹脂;ビフェニル型フェノール樹脂;上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂;これら2種以上を共重合して得たフェノール樹脂などが挙げられる。これらのフェノール硬化剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 Specific examples of the phenol curing agent include polyphenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, and phenylphenol. Phenolic compounds such as aminophenols, aminophenols and the like and at least one phenolic compound selected from the group consisting of naphthol compounds such as α-naphthol, β-naphthol and dihydroxynaphthalene, and aldehyde compounds such as formaldehyde, acetaldehyde and propionaldehyde Novolak-type phenolic resin obtained by condensation or co-condensation under the following conditions: the above-mentioned phenolic compound, dimethoxyparaxylene, bis (methoxymethyl) biffe Phenol aralkyl resins such as phenol aralkyl resins, naphthol aralkyl resins, etc .; para-xylylene-modified phenol resins, meta-xylylene-modified phenol resins; melamine-modified phenol resins; terpene-modified phenol resins; A dicyclopentadiene-type phenol resin and a dicyclopentadiene-type naphthol resin synthesized by copolymerization with: a cyclopentadiene-modified phenolic resin; a polycyclic aromatic ring-modified phenolic resin; a biphenyl-type phenolic resin; the above phenolic compound, benzaldehyde, and salicyl Triphenylmethane-type phenolic resin obtained by condensing or co-condensing an aromatic aldehyde compound such as an aldehyde in the presence of an acidic catalyst; Phenol resins obtained by. These phenol curing agents may be used alone or in combination of two or more.
 硬化剤の官能基当量(フェノール硬化剤の場合は水酸基当量)は、特に制限されない。成形性、耐リフロー性、電気的信頼性等の各種特性バランスの観点からは、70g/eq~1000g/eqであることが好ましく、80g/eq~500g/eqであることがより好ましい。 (4) The functional group equivalent of the curing agent (hydroxyl equivalent in the case of a phenol curing agent) is not particularly limited. From the viewpoint of the balance of various properties such as moldability, reflow resistance, and electrical reliability, it is preferably from 70 g / eq to 1000 g / eq, more preferably from 80 g / eq to 500 g / eq.
 硬化剤の官能基当量(フェノール硬化剤の場合は水酸基当量)は、JIS K 0070:1992に準じた方法により測定される値とする。 (4) The functional group equivalent of the curing agent (hydroxyl equivalent in the case of a phenol curing agent) is a value measured by a method according to JIS K 0070: 1992.
 硬化剤が固体である場合、その融点又は軟化点は特に制限されない。成形性と耐リフロー性の観点からは、40℃~180℃であることが好ましく、封止材の製造時における取扱い性の観点からは、50℃~130℃であることがより好ましい。 場合 When the curing agent is a solid, its melting point or softening point is not particularly limited. It is preferably from 40 ° C. to 180 ° C. from the viewpoint of moldability and reflow resistance, and more preferably from 50 ° C. to 130 ° C. from the viewpoint of handleability during the production of the sealing material.
 硬化剤の融点又は軟化点は、エポキシ樹脂の融点又は軟化点と同様にして測定される値とする。 融 点 The melting point or softening point of the curing agent is a value measured in the same manner as the melting point or softening point of the epoxy resin.
 エポキシ樹脂と硬化剤の当量比、すなわちエポキシ樹脂中の官能基数に対する硬化剤中の官能基数の比(硬化剤中の官能基数/エポキシ樹脂中の官能基数)は、特に制限されない。それぞれの未反応分を少なく抑える観点からは、0.5~2.0の範囲に設定されることが好ましく、0.6~1.3の範囲に設定されることがより好ましい。成形性と耐リフロー性の観点からは、0.8~1.2の範囲に設定されることがさらに好ましい。 当 The equivalent ratio of the epoxy resin to the curing agent, that is, the ratio of the number of functional groups in the curing agent to the number of functional groups in the epoxy resin (the number of functional groups in the curing agent / the number of functional groups in the epoxy resin) is not particularly limited. From the viewpoint of minimizing the amount of each unreacted component, it is preferably set in the range of 0.5 to 2.0, and more preferably in the range of 0.6 to 1.3. From the viewpoint of moldability and reflow resistance, it is more preferable to set the ratio in the range of 0.8 to 1.2.
(無機充填材)
 封止材は、無機充填材を含有してもよい。無機充填材として具体的には、溶融シリカ、結晶シリカ、ガラス、アルミナ、炭酸カルシウム、ケイ酸ジルコニウム、ケイ酸カルシウム、窒化珪素、窒化アルミニウム、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、マイカ等が挙げられる。難燃効果を有する無機充填材を用いてもよい。難燃効果を有する無機充填材としては、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛の複合水酸化物等の複合金属水酸化物、硼酸亜鉛などが挙げられる。
(Inorganic filler)
The sealing material may contain an inorganic filler. Specific examples of the inorganic filler include fused silica, crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, and steatite. , Spinel, mullite, titania, talc, clay, mica and the like. An inorganic filler having a flame-retardant effect may be used. Examples of the inorganic filler having a flame-retardant effect include aluminum hydroxide, magnesium hydroxide, a composite metal hydroxide such as a composite hydroxide of magnesium and zinc, and zinc borate.
 無機充填材の中でも、線膨張係数低減の観点からは溶融シリカ等のシリカが好ましく、高熱伝導性の観点からはアルミナが好ましい。無機充填材は1種を単独で用いても2種以上を組み合わせて用いてもよい。 シ リ カ Among the inorganic fillers, silica such as fused silica is preferred from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferred from the viewpoint of high thermal conductivity. One inorganic filler may be used alone, or two or more inorganic fillers may be used in combination.
 無機充填材が粒子状である場合、その粒子径は特に制限されない。例えば、粒子径が0.2μm~200μmであることが好ましく、0.5μm~100μmであることがより好ましい。粒子径が0.2μm以上であると、封止材の粘度の上昇がより抑制される傾向がある。粒子径が200μm以下であると、充填性がより向上する傾向にある。 場合 When the inorganic filler is in particulate form, its particle size is not particularly limited. For example, the particle diameter is preferably from 0.2 μm to 200 μm, and more preferably from 0.5 μm to 100 μm. When the particle diameter is 0.2 μm or more, an increase in the viscosity of the sealing material tends to be further suppressed. When the particle diameter is 200 μm or less, the filling properties tend to be further improved.
 本開示において無機充填材の粒子径は、レーザー回折式粒度分布測定装置を用いて得られる体積基準の粒度分布において小径側からの累積が50%となるときの粒子径(体積平均粒子径、D50%)を意味する。 In the present disclosure, the particle size of the inorganic filler is the particle size (volume average particle size, D50) when the accumulation from the smaller diameter side is 50% in the volume-based particle size distribution obtained using a laser diffraction type particle size distribution analyzer. %).
 良好なジェッティング特性を得る観点からは、無機充填材の粒度分布は狭いことが好ましい。例えば、無機充填材のうち粒子径が80μm~120μmの範囲内にあるものが全体の80質量%以上を占めることが好ましく、85質量%以上を占めることがより好ましく、90質量%以上を占めることがさらに好ましい。 か ら From the viewpoint of obtaining good jetting characteristics, the particle size distribution of the inorganic filler is preferably narrow. For example, among the inorganic fillers, those having a particle size in the range of 80 μm to 120 μm preferably account for 80% by mass or more, more preferably 85% by mass or more, and preferably 90% by mass or more. Is more preferred.
 あるいは、例えば、レーザー回折式粒度分布測定装置を用いて得られる体積基準の粒度分布において小径側からの累積が90%となるときの粒子径(D90%)と、小径側からの累積が10%となるときの粒子径(D10%)との比(D90%/D10%)が1.5以下であることが好ましく、1.2以下であることがより好ましい。 Alternatively, for example, in a volume-based particle size distribution obtained using a laser diffraction type particle size distribution measuring apparatus, the particle diameter (D90%) when the accumulation from the small diameter side is 90%, and the accumulation from the small diameter side is 10% The ratio (D90% / D10%) with respect to the particle diameter (D10%) is preferably 1.5 or less, more preferably 1.2 or less.
 あるいは、例えば、レーザー回折式粒度分布測定装置を用いて得られる体積基準の粒度分布において小径側からの累積が90%となるときの粒子径(D90%)と、小径側からの累積が10%となるときの粒子径(D10%)との差(D90%-D10%)が40μm以下であることが好ましく、30μm以下であることがより好ましく、20μm以下であることがさらに好ましい。 Alternatively, for example, in a volume-based particle size distribution obtained using a laser diffraction type particle size distribution measuring apparatus, the particle diameter (D90%) when the accumulation from the small diameter side is 90%, and the accumulation from the small diameter side is 10% The difference (D90% -D10%) from the particle diameter (D10%) at the time is preferably 40 μm or less, more preferably 30 μm or less, and even more preferably 20 μm or less.
 良好なジェッティング特性を得る観点からは、封止材(特に、第1の封止材)は非球状の無機充填材を含むことが好ましい。例えば、アスペクト比が0.8以下である無機充填材を含むことが好ましく、0.5以下である無機充填材を含むことがより好ましい。非球状の無機充填材としては、角状、板状、針状等の無機充填材が挙げられる。 か ら From the viewpoint of obtaining good jetting characteristics, the sealing material (particularly, the first sealing material) preferably contains a non-spherical inorganic filler. For example, it is preferable to include an inorganic filler having an aspect ratio of 0.8 or less, and more preferably to include an inorganic filler having an aspect ratio of 0.5 or less. Examples of the non-spherical inorganic filler include angular, plate-like, and needle-like inorganic fillers.
 本開示において無機充填材のアスペクト比は、無機充填材の粒子の最大径(平行な2つの面で粒子を挟んだときに2つの面がとりうる距離の最大値)をAとし、最小径(平行な2つの面で粒子を挟んだときに2つの面がとりうる距離の最小値)をBとしたとき、BをAで割った値(B/A)を意味する。無機充填材のアスペクト比は、任意に選択した100個の粒子について測定したアスペクト比の算術平均値(平均アスペクト比)であってもよい。 In the present disclosure, the aspect ratio of the inorganic filler is A, where A is the maximum diameter of the particles of the inorganic filler (the maximum value of the distance that two surfaces can take when the particles are sandwiched between two parallel surfaces), and A is the minimum diameter ( When B is the minimum value of the distance that two surfaces can take when particles are sandwiched between two parallel surfaces, B means the value obtained by dividing B by A (B / A). The aspect ratio of the inorganic filler may be an arithmetic average value (average aspect ratio) of the aspect ratios measured for arbitrarily selected 100 particles.
 良好なジェッティング特性を得る観点からは、封止材(特に、第1の封止材)の無機充填材の含有率は50体積%以上であることが好ましく、充分な流動性を確保する観点からは90体積%以下であることが好ましい。 From the viewpoint of obtaining good jetting characteristics, the content of the inorganic filler in the sealing material (particularly, the first sealing material) is preferably 50% by volume or more, and the viewpoint of ensuring sufficient fluidity. Is preferably 90% by volume or less.
(硬化促進剤)
 封止材は、硬化促進剤を含んでもよい。硬化促進剤の種類は特に制限されず、併用する樹脂の種類、封止材の所望の特性等に応じて選択できる。
(Curing accelerator)
The encapsulant may include a curing accelerator. The type of the curing accelerator is not particularly limited, and can be selected according to the type of the resin used in combination, the desired characteristics of the sealing material, and the like.
 硬化促進剤として具体的には、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)等のジアザビシクロアルケン、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-ヘプタデシルイミダゾール等の環状アミジン化合物;前記環状アミジン化合物の誘導体;前記環状アミジン化合物又はその誘導体のフェノールノボラック塩;これらの化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;DBUのテトラフェニルボレート塩、DBNのテトラフェニルボレート塩、2-エチル-4-メチルイミダゾールのテトラフェニルボレート塩、N-メチルモルホリンのテトラフェニルボレート塩等の環状アミジニウム化合物;ピリジン、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン化合物;前記三級アミン化合物の誘導体;酢酸テトラ-n-ブチルアンモニウム、リン酸テトラ-n-ブチルアンモニウム、酢酸テトラエチルアンモニウム、安息香酸テトラ-n-ヘキシルアンモニウム、水酸化テトラプロピルアンモニウム等のアンモニウム塩化合物;トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等の三級ホスフィン;前記三級ホスフィンと有機ボロン類との錯体等のホスフィン化合物;前記三級ホスフィン又は前記ホスフィン化合物と無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;前記三級ホスフィン又は前記ホスフィン化合物と4-ブロモフェノール、3-ブロモフェノール、2-ブロモフェノール、4-クロロフェノール、3-クロロフェノール、2-クロロフェノール、4-ヨウ化フェノール、3-ヨウ化フェノール、2-ヨウ化フェノール、4-ブロモ-2-メチルフェノール、4-ブロモ-3-メチルフェノール、4-ブロモ-2,6-ジメチルフェノール、4-ブロモ-3,5-ジメチルフェノール、4-ブロモ-2,6-ジ-tert-ブチルフェノール、4-クロロ-1-ナフトール、1-ブロモ-2-ナフトール、6-ブロモ-2-ナフトール、4-ブロモ-4’-ヒドロキシビフェニル等のハロゲン化フェノール化合物を反応させた後に、脱ハロゲン化水素の工程を経て得られる、分子内分極を有する化合物;テトラフェニルホスホニウム等のテトラ置換ホスホニウム、テトラ-p-トリルボレート等のホウ素原子に結合したフェニル基がないテトラ置換ホスホニウム及びテトラ置換ボレート;テトラフェニルホスホニウムとフェノール化合物との塩などが挙げられる。 Specific examples of the curing accelerator include diaza such as 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) and 1,8-diazabicyclo [5.4.0] undecene-7 (DBU). Cyclic amidine compounds such as bicycloalkene, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole; derivatives of the cyclic amidine compounds; phenol novolaks of the cyclic amidine compounds or derivatives thereof Salts: These compounds include maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5- Methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, Quinone compounds such as 1,4-benzoquinone, and compounds having an intramolecular polarization obtained by adding a compound having a π bond such as diazophenylmethane; tetraphenylborate salt of DBU, tetraphenylborate salt of DBN, Cyclic amidinium compounds such as tetraphenylborate salt of -ethyl-4-methylimidazole and tetraphenylborate salt of N-methylmorpholine; pyridine, triethylamine, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethyl Tertiary amine compounds such as aminomethyl) phenol; derivatives of the above tertiary amine compounds; tetra-n-butylammonium acetate, tetra-n-butylammonium phosphate, tetraethylammonium acetate, tetrabenzoate Ammonium salt compounds such as n-hexylammonium and tetrapropylammonium hydroxide; triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine , Tris (dialkylphenyl) phosphine, tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkyl Tertiary phosphines such as phosphine, dialkylaryl phosphine, alkyldiaryl phosphine, etc .; A phosphine compound such as a complex; the tertiary phosphine or the phosphine compound and maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone Π bond of quinone compounds such as 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, and diazophenylmethane A compound having an intramolecular polarization obtained by adding a compound having a tertiary phosphine or the phosphine compound to 4-bromophenol, 3-bromophenol, 2-bromophenol, 4-chlorophenol, 3-chlorophenol, Chlorophenol, 4-iodophenol, 3-iodophenol, 2-yo Urinated phenol, 4-bromo-2-methylphenol, 4-bromo-3-methylphenol, 4-bromo-2,6-dimethylphenol, 4-bromo-3,5-dimethylphenol, 4-bromo-2, A halogenated phenol compound such as 6-di-tert-butylphenol, 4-chloro-1-naphthol, 1-bromo-2-naphthol, 6-bromo-2-naphthol, 4-bromo-4′-hydroxybiphenyl is reacted. Having an intramolecular polarization obtained through a dehydrohalogenation step after the reaction; tetra-substituted phosphonium such as tetraphenylphosphonium, and tetra-substituted phosphonium having no phenyl group bonded to a boron atom such as tetra-p-tolyl borate And tetra-substituted borates; salts of tetraphenylphosphonium with phenolic compounds Etc., and the like.
 封止材が硬化促進剤を含む場合、その量は、樹脂成分100質量部に対して0.1質量部~30質量部であることが好ましく、1質量部~15重量部であることがより好ましい。硬化促進剤の量が樹脂成分100質量部に対して0.1質量部以上であると、短時間で良好に硬化する傾向にある。硬化促進剤の量が樹脂成分100質量部に対して30質量部以下であると、硬化速度が速すぎず良好な成形品が得られる傾向にある。 When the sealing material contains a curing accelerator, the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 15 parts by mass, based on 100 parts by mass of the resin component. preferable. When the amount of the curing accelerator is 0.1 parts by mass or more based on 100 parts by mass of the resin component, the curing tends to be performed well in a short time. If the amount of the curing accelerator is 30 parts by mass or less based on 100 parts by mass of the resin component, the curing rate tends to be too high and a good molded product tends to be obtained.
(カップリング剤)
 封止材は、カップリング剤を含んでもよい。カップリング剤として具体的には、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等のシラン系化合物、チタン系化合物、アルミニウムキレート化合物、アルミニウム/ジルコニウム系化合物などの公知のカップリング剤が挙げられる。
(Coupling agent)
The sealing material may include a coupling agent. Specific examples of the coupling agent include known coupling agents such as silane compounds such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, and vinyl silane, titanium compounds, aluminum chelate compounds, and aluminum / zirconium compounds. Is mentioned.
 封止材がカップリング剤を含む場合、その量は、無機充填材100質量部に対して0.05質量部~5質量部であることが好ましく、0.1質量部~2.5質量部であることがより好ましい。カップリング剤の量が無機成分100質量部に対して0.05質量部以上であると、素子及び基板との接着性がより向上する傾向にある。カップリング剤の量が無機成分100質量部に対して5質量部以下であると、パッケージの成形性がより向上する傾向にある。 When the sealing material contains a coupling agent, the amount is preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 2.5 parts by mass based on 100 parts by mass of the inorganic filler. Is more preferable. When the amount of the coupling agent is 0.05 parts by mass or more based on 100 parts by mass of the inorganic component, the adhesiveness to the element and the substrate tends to be further improved. When the amount of the coupling agent is 5 parts by mass or less based on 100 parts by mass of the inorganic component, the moldability of the package tends to be further improved.
(イオン交換体)
 封止材は、イオン交換体を含んでもよい。イオン交換体として具体的には、ハイドロタルサイト化合物、並びにマグネシウム、アルミニウム、チタン、ジルコニウム及びビスマスからなる群より選ばれる少なくとも1種の元素の含水酸化物等が挙げられる。イオン交換体は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Ion exchanger)
The sealing material may include an ion exchanger. Specific examples of the ion exchanger include hydrotalcite compounds and hydrated oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium and bismuth. One type of ion exchanger may be used alone, or two or more types may be used in combination.
 封止材がイオン交換体を含む場合、その量は、樹脂成分100質量部に対して0.1質量部~30質量部であることが好ましく、1質量部~10質量部であることがより好ましい。 When the sealing material contains an ion exchanger, the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 10 parts by mass, per 100 parts by mass of the resin component. preferable.
(離型剤)
 封止材は、離型剤を含んでもよい。離型剤として具体的には、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスなどが挙げられる。離型剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Release agent)
The sealant may include a release agent. Specific examples of the release agent include carnauba wax, montanic acid, higher fatty acids such as stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as polyethylene oxide and non-oxidized polyethylene. Can be One type of release agent may be used alone, or two or more types may be used in combination.
 封止材が離型剤を含む場合、その量は、樹脂成分100質量部に対して0.01質量部~10質量部であることが好ましく、0.1質量部~5質量部であることがより好ましい。 When the sealing material contains a release agent, the amount is preferably from 0.01 to 10 parts by mass, and more preferably from 0.1 to 5 parts by mass based on 100 parts by mass of the resin component. Is more preferred.
(難燃剤)
 封止材は、難燃剤を含んでもよい。難燃剤として具体的には、ハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む有機又は無機の化合物、金属水酸化物等が挙げられる。難燃剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Flame retardants)
The encapsulant may include a flame retardant. Specific examples of the flame retardant include an organic or inorganic compound containing a halogen atom, an antimony atom, a nitrogen atom or a phosphorus atom, and a metal hydroxide. The flame retardants may be used alone or in combination of two or more.
 封止材が難燃剤を含む場合、その量は、所望の難燃効果を得るのに充分な量であれば特に制限されない。例えば、樹脂成分100質量部に対して1質量部~30質量部であることが好ましく、2質量部~20質量部であることがより好ましい。 場合 When the sealing material contains a flame retardant, its amount is not particularly limited as long as the amount is sufficient to obtain the desired flame retardant effect. For example, it is preferably from 1 to 30 parts by mass, more preferably from 2 to 20 parts by mass, per 100 parts by mass of the resin component.
(着色剤)
 封止材は、着色剤を含んでもよい。着色剤として具体的には、カーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラ等が挙げられる。着色剤の含有量は目的等に応じて適宜選択できる。着色剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Colorant)
The encapsulant may include a colorant. Specific examples of the colorant include carbon black, organic dyes, organic pigments, titanium oxide, lead tan, and red bean. The content of the coloring agent can be appropriately selected according to the purpose and the like. The colorant may be used alone or in combination of two or more.
(応力緩和剤)
 封止材は、シリコーンオイル、シリコーンゴム粒子等の応力緩和剤を含んでもよい。応力緩和剤として具体的には、シリコーン系、スチレン系、オレフィン系、ウレタン系、ポリエステル系、ポリエーテル系、ポリアミド系、ポリブタジエン系等の熱可塑性エラストマー、NR(天然ゴム)、NBR(アクリロニトリル-ブタジエンゴム)、アクリルゴム、ウレタンゴム、シリコーンパウダー等のゴム粒子、メタクリル酸メチル-スチレン-ブタジエン共重合体(MBS)、メタクリル酸メチル-シリコーン共重合体、メタクリル酸メチル-アクリル酸ブチル共重合体等のコア-シェル構造を有するゴム粒子などが挙げられる。応力緩和剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Stress relaxation agent)
The sealing material may include a stress relieving agent such as silicone oil and silicone rubber particles. Specific examples of the stress relaxing agent include thermoplastic elastomers such as silicone, styrene, olefin, urethane, polyester, polyether, polyamide, and polybutadiene, NR (natural rubber), and NBR (acrylonitrile-butadiene). Rubber), rubber particles such as acrylic rubber, urethane rubber, silicone powder, etc., methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer, methyl methacrylate-butyl acrylate copolymer, etc. And rubber particles having a core-shell structure of One type of stress relaxation agent may be used alone, or two or more types may be used in combination.
<電子部品装置>
 本開示の電子部品装置は、基板と、前記基板上に配置される素子と、封止部とを備え、前記封止部は、前記基板の前記素子が配置された側と逆側に配置される第1の封止部と、前記基板の前記素子が配置された側に配置され、第1の封止部と異なる第2の封止部とが一括して形成された構造を含む、電子部品装置である。
<Electronic component device>
An electronic component device according to an embodiment of the present disclosure includes a substrate, an element disposed on the substrate, and a sealing unit, and the sealing unit is disposed on a side of the substrate opposite to a side on which the element is disposed. An electronic device including a structure in which a first sealing portion and a second sealing portion different from the first sealing portion are collectively formed on a side of the substrate on which the element is arranged. It is a component device.
 上記構成を有する電子部品装置は、封止部が第1の封止部と、第1の封止部と異なる第2の封止部とから構成されている。例えば、基板の素子が配置された側と逆側(すなわち、放熱部材に対向する側)に配置される第1の封止部が放熱性の高い封止材を用いて形成され、基板の素子が配置された側に配置される第2の封止部が流動性の高い封止材を用いて形成されている。 電子 In the electronic component device having the above configuration, the sealing portion includes the first sealing portion and the second sealing portion different from the first sealing portion. For example, the first sealing portion disposed on the side opposite to the side on which the elements of the substrate are arranged (that is, the side facing the heat radiating member) is formed using a sealing material having high heat dissipation, and The second sealing portion disposed on the side where is disposed is formed using a sealing material having high fluidity.
 上記構成を有する電子部品装置は、第1の封止部と第2の封止部とが一括して形成された構造を含んでいるため、第1の封止部と第2の封止部の剥離等が生じにくく、信頼性に優れている。 Since the electronic component device having the above configuration includes a structure in which the first sealing portion and the second sealing portion are collectively formed, the first sealing portion and the second sealing portion It is hard to cause peeling off and has excellent reliability.
 本開示において「第1の封止部と、第1の封止部と異なる第2の封止部とが一括して形成された構造」とは、双方の封止部の形成の開始から終了までの間に硬化処理を行わないで形成された構造を意味する。第1の封止部と第2の封止部とが一括して形成された構造であるか否かの判断は、例えば、第1の封止部と第2の封止部の境界に明確な界面が形成されているか否かによって行うことができる。 In the present disclosure, “the structure in which the first sealing portion and the second sealing portion different from the first sealing portion are collectively formed” means that the formation of both sealing portions is started and ended. Means a structure formed without performing a curing process. The determination as to whether or not the first sealing portion and the second sealing portion are integrally formed is performed, for example, at a boundary between the first sealing portion and the second sealing portion. It can be performed depending on whether or not an appropriate interface is formed.
 第1の封止部と第2の封止部がどのように異なっているかは特に制限されない。例えば、封止部に含まれる成分(樹脂、無機充填材等)の種類、含有率等が異なっていてもよい。封止部は、第1の封止部と第2の封止部に加え、これらと異なる封止部を含んでいてもよい。 The difference between the first sealing portion and the second sealing portion is not particularly limited. For example, the types (contents, etc.) of components (resin, inorganic filler, etc.) contained in the sealing portion may be different. The sealing portion may include a different sealing portion in addition to the first sealing portion and the second sealing portion.
 上記構成を有する電子部品装置は、例えば、上述した電子部品装置の製造方法によって製造することができる。電子部品装置並びにこれに含まれる封止部及び封止材の詳細及び好ましい態様は、電子部品装置の製造方法において記載した電子部品装置、封止部及び封止材の詳細及び好ましい態様と同様である。 The electronic component device having the above configuration can be manufactured by, for example, the above-described method for manufacturing an electronic component device. The details and preferred embodiments of the electronic component device and the sealing portion and the sealing material included therein are the same as the details and preferred embodiments of the electronic component device, the sealing portion and the sealing material described in the method of manufacturing the electronic component device. is there.
<封止材>
 本開示の封止材(第1形態)は、上述した電子部品装置の製造方法において第1の封止材及び第2の封止材の少なくとも1つとして用いるための、封止材である。
 本開示の封止材(第2形態)は、上述した電子部品装置において第1の封止部及び第2の封止部の少なくとも1つを形成するための、封止材である。
<Sealant>
The sealing material (first embodiment) of the present disclosure is a sealing material to be used as at least one of the first sealing material and the second sealing material in the method for manufacturing an electronic component device described above.
A sealing material (second embodiment) of the present disclosure is a sealing material for forming at least one of the first sealing portion and the second sealing portion in the electronic component device described above.
 封止材の具体的な態様は、特に制限されない。例えば、上述した電子部品装置の製造方法に使用される封止材の詳細及び好ましい態様を参照できる。 具体 The specific mode of the sealing material is not particularly limited. For example, reference can be made to the details and preferred embodiments of the sealing material used in the above-described method for manufacturing an electronic component device.
<実施態様の説明>
 以下、図面を示して本開示の電子部品装置の製造方法を従来技術との対比に基づいて説明する。ただし、本開示の範囲は図面に示した構成に限定されるものではない。また、各図において共通する部材については説明を省略する場合がある。
<Description of Embodiment>
Hereinafter, a method for manufacturing an electronic component device according to the present disclosure will be described with reference to the drawings based on comparison with a conventional technology. However, the scope of the present disclosure is not limited to the configuration illustrated in the drawings. In addition, description of members common to the drawings may be omitted.
 図1は、本開示の電子部品装置の製造方法で用いる成形装置の構成の一例を示す概略断面図である。成形装置10は、電子部品装置を構成する基板1、素子2、リードフレーム3及びワイヤ4の周囲に形成される封止部5の形状に相当するキャビティ(図示せず)を備えている。さらに、キャビティの内部であって素子2の下側に封止材を供給するゲート6と、素子2の上側に封止材を供給するゲート7とを備えている。 FIG. 1 is a schematic cross-sectional view showing an example of a configuration of a molding device used in the method for manufacturing an electronic component device according to the present disclosure. The molding device 10 includes a cavity (not shown) corresponding to the shape of the sealing portion 5 formed around the substrate 1, the element 2, the lead frame 3, and the wires 4 that constitute the electronic component device. Further, a gate 6 for supplying a sealing material inside the cavity and below the element 2 and a gate 7 for supplying a sealing material above the element 2 are provided.
 成形装置10のキャビティの内部にゲート6とゲート7から封止材をそれぞれ供給して、基板1、素子2、リードフレーム3及びワイヤ4の周囲に封止部5を形成する。 封 止 A sealing material is supplied from the gate 6 and the gate 7 to the inside of the cavity of the molding apparatus 10 to form the sealing portion 5 around the substrate 1, the element 2, the lead frame 3 and the wires 4.
 成形装置10を用いて製造される電子部品装置は、封止部5のうち素子2の下側の部分と素子2の上側の部分とが、ゲート6及びゲート7からそれぞれ矢印で示す方向に供給される封止材を用いて形成される。このため、例えば、封止部5のうち素子2の下側の部分を放熱性の高い封止材を用いて形成し、封止部5のうち素子2の上側の部分を流動性の高い封止材を使用して形成してもよい。また、ゲート6からの封止材の供給とゲート7からの封止材の供給を一括して行うことで、封止部5のうち素子2の上側の部分と下側の部分の間に明確な界面を形成しにくくしてもよい。 In the electronic component device manufactured by using the molding apparatus 10, the lower part of the element 2 and the upper part of the element 2 in the sealing part 5 are supplied from the gates 6 and 7 in the directions indicated by arrows, respectively. It is formed using a sealing material to be formed. For this reason, for example, the lower part of the element 2 in the sealing part 5 is formed using a sealing material having high heat dissipation, and the upper part of the sealing part 5 in the element 2 is sealed with high fluidity. It may be formed by using a stopper. In addition, the supply of the sealing material from the gate 6 and the supply of the sealing material from the gate 7 are performed collectively, so that the sealing portion 5 can be clearly defined between the upper part and the lower part of the element 2. May not be easily formed.
 図2は、従来の電子部品装置の製造方法で用いる成形装置の構成の一例を示す概略断面図である。成形装置20は、成形装置10と異なり、素子2の下側への封止材の供給と、素子2の上側への封止材の供給とを、同じゲート8から行う。 FIG. 2 is a schematic cross-sectional view showing an example of the configuration of a molding device used in a conventional method for manufacturing an electronic component device. The molding device 20 differs from the molding device 10 in that the supply of the sealing material to the lower side of the element 2 and the supply of the sealing material to the upper side of the element 2 are performed from the same gate 8.
 成形装置20では、同じ材料を用いて封止部5を一括して形成するため、部分的な要請(例えば、素子2の下側における放熱性の確保)に対応しにくい。 (4) In the molding apparatus 20, since the sealing portion 5 is formed collectively using the same material, it is difficult to respond to a partial request (for example, securing heat radiation property under the element 2).
 図3は、従来の電子部品装置の製造方法で用いる成形装置の構成の別の一例を示す概略断面図である。成形装置30は、成形装置10と同様に、素子2の上側に封止材を供給するゲート7を備えているが、成形装置10と異なり、素子2の下側に封止材を供給するゲート6を備えていない。成形装置30を用いる方法では、ゲート7から供給した封止材を硬化させて素子2の上側にのみ封止部5をまず形成する。その後、素子2の下側にシート状の絶縁材を配置するか、別の封止材を用いて封止部9を形成する。 FIG. 3 is a schematic cross-sectional view showing another example of the configuration of the molding apparatus used in the conventional method of manufacturing an electronic component device. The molding apparatus 30 includes a gate 7 for supplying a sealing material on the upper side of the element 2, similarly to the molding apparatus 10, but unlike the molding apparatus 10, a gate for supplying a sealing material on the lower side of the element 2. 6 is not provided. In the method using the molding device 30, the sealing material supplied from the gate 7 is cured to form the sealing portion 5 only on the upper side of the element 2 first. Thereafter, a sheet-like insulating material is disposed below the element 2 or the sealing portion 9 is formed using another sealing material.
 成形装置30を用いる方法では、封止部5を形成した後に封止部9を形成するための工程が別途必要である、シート状の絶縁材が高価である等の理由により、生産性及びコスト面の改善に制約がある。 In the method using the molding device 30, a process for forming the sealing portion 9 after forming the sealing portion 5 is separately required, and productivity and cost are increased because the sheet-shaped insulating material is expensive. There are restrictions on surface improvement.
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。 All documents, patent applications, and technical standards mentioned herein are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.
 10、20、30…成形装置
 1…基板
 2…素子
 3…リードフレーム
 4…ワイヤ
 5、9…封止部
 6、7、8…ゲート
10, 20, 30 ... molding apparatus 1 ... substrate 2 ... element 3 ... lead frame 4 ... wire 5, 9 ... sealing part 6, 7, 8 ... gate

Claims (8)

  1.  基板と、前記基板上に配置される素子と、封止部とを備える電子部品装置の製造方法であって、前記基板の前記素子が配置された側と逆側に第1の封止材を供給する第1のゲートと、前記基板の前記素子が配置された側に第2の封止材を供給する第2のゲートと、を備える成形装置の内部に前記第1の封止材と前記第2の封止材を供給する工程を備える、電子部品装置の製造方法。 A method for manufacturing an electronic component device comprising a substrate, an element disposed on the substrate, and a sealing portion, wherein a first sealing material is provided on a side of the substrate opposite to a side on which the element is disposed. A first gate for supplying the first sealing material, and a second gate for supplying a second sealing material to a side of the substrate on which the element is disposed, wherein the first sealing material is provided inside the molding apparatus. A method for manufacturing an electronic component device, comprising a step of supplying a second sealing material.
  2.  前記供給が、前記第1の封止材の供給の開始が前記第2の封止材の供給の開始よりも先になるように行われる、請求項1に記載の電子部品装置の製造方法。 2. The method of manufacturing an electronic component device according to claim 1, wherein the supply is performed such that a start of the supply of the first sealing material is earlier than a start of the supply of the second sealing material.
  3.  前記供給が、前記第1の封止材の供給の終了が前記第2の封止材の供給の開始よりも先になるように行われる、請求項1又は請求項2に記載の電子部品装置の製造方法。 3. The electronic component device according to claim 1, wherein the supply is performed such that an end of the supply of the first sealing material is earlier than a start of the supply of the second sealing material. Manufacturing method.
  4.  前記成形装置において前記第1のゲートが前記第2のゲートよりも重力方向にみて下に位置する、請求項1~請求項3のいずれか1項に記載の電子部品装置の製造方法。 4. The method of manufacturing an electronic component device according to claim 1, wherein the first gate is located below the second gate in the direction of gravity in the molding device.
  5.  前記第1の封止材と前記第2の封止材は下記(1)、(2)及び(3)の少なくともいずれかの関係を満たす、請求項1~請求項4のいずれか1項に記載の電子部品装置の製造方法。
    (1)第1の封止材の供給時の粘度>第2の封止材の供給時の粘度
    (2)第1の封止材の硬化後の熱伝導率>第2の封止材の硬化後の熱伝導率
    (3)第1の封止材の無機充填材の含有率>第2の封止材の無機充填材の含有率
    The method according to any one of claims 1 to 4, wherein the first sealing material and the second sealing material satisfy at least one of the following (1), (2), and (3). The manufacturing method of the electronic component device described in the above.
    (1) Viscosity at the time of supplying the first sealing material> Viscosity at the time of supplying the second sealing material (2) Thermal conductivity after curing of the first sealing material> Thermal conductivity after curing (3) Content of inorganic filler in first sealing material> Content of inorganic filler in second sealing material
  6.  基板と、前記基板上に配置される素子と、封止部とを備え、前記封止部は、前記基板の前記素子が配置された側と逆側に配置される第1の封止部と、前記基板の前記素子が配置された側に配置され、第1の封止部と異なる第2の封止部とが一括して形成された構造を含む、電子部品装置。 A substrate, an element disposed on the substrate, and a sealing portion, wherein the sealing portion is a first sealing portion disposed on a side of the substrate opposite to the side on which the element is disposed. And an electronic component device including a structure in which the first sealing portion and a different second sealing portion are collectively formed on the side of the substrate on which the elements are arranged.
  7.  請求項1~請求項5のいずれか1項に記載の電子部品装置の製造方法において前記第1の封止材及び前記第2の封止材の少なくとも1つとして用いるための、封止材。 (7) A sealing material for use as at least one of the first sealing material and the second sealing material in the method for manufacturing an electronic component device according to any one of (1) to (5).
  8.  請求項6に記載の電子部品装置において前記第1の封止部及び第2の封止部の少なくとも1つを形成するための、封止材。 A sealing material for forming at least one of the first sealing portion and the second sealing portion in the electronic component device according to claim 6.
PCT/JP2018/027991 2018-07-25 2018-07-25 Electronic-component-device manufacturing method, electronic component device, and sealing material WO2020021667A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020531904A JPWO2020021667A1 (en) 2018-07-25 2018-07-25 Manufacturing method of electronic component equipment, electronic component equipment and encapsulant
PCT/JP2018/027991 WO2020021667A1 (en) 2018-07-25 2018-07-25 Electronic-component-device manufacturing method, electronic component device, and sealing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027991 WO2020021667A1 (en) 2018-07-25 2018-07-25 Electronic-component-device manufacturing method, electronic component device, and sealing material

Publications (1)

Publication Number Publication Date
WO2020021667A1 true WO2020021667A1 (en) 2020-01-30

Family

ID=69180436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027991 WO2020021667A1 (en) 2018-07-25 2018-07-25 Electronic-component-device manufacturing method, electronic component device, and sealing material

Country Status (2)

Country Link
JP (1) JPWO2020021667A1 (en)
WO (1) WO2020021667A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446156B2 (en) 2020-05-21 2024-03-08 三菱電機株式会社 Semiconductor devices, power conversion devices, semiconductor device testing methods, semiconductor device manufacturing methods, learning devices, and inference devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144827A (en) * 1996-11-13 1998-05-29 Oki Electric Ind Co Ltd Resin sealed semiconductor device, production thereof and die therefor
JP2001007256A (en) * 1999-06-22 2001-01-12 Mitsubishi Electric Corp Semiconductor integrated circuit device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144827A (en) * 1996-11-13 1998-05-29 Oki Electric Ind Co Ltd Resin sealed semiconductor device, production thereof and die therefor
JP2001007256A (en) * 1999-06-22 2001-01-12 Mitsubishi Electric Corp Semiconductor integrated circuit device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446156B2 (en) 2020-05-21 2024-03-08 三菱電機株式会社 Semiconductor devices, power conversion devices, semiconductor device testing methods, semiconductor device manufacturing methods, learning devices, and inference devices

Also Published As

Publication number Publication date
JPWO2020021667A1 (en) 2021-08-02

Similar Documents

Publication Publication Date Title
KR102628332B1 (en) Curable resin composition, electronic component device, and method of manufacturing electronic component device
JP7452028B2 (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
WO2020021667A1 (en) Electronic-component-device manufacturing method, electronic component device, and sealing material
JP2023036633A (en) Resin composition for sealing, semiconductor device, and method for manufacturing semiconductor device
JP2023059892A (en) Resin composition for sealing, electronic component device and method for manufacturing electronic component device
TW202024167A (en) Resin composition for sealing, electronic component device and method of manufacturing electronic component device
JPWO2019004458A1 (en) Sealing resin composition, relocated wafer, semiconductor package, and method for manufacturing semiconductor package
KR20230118100A (en) Resin composition for molding and electronic component device
JP6953971B2 (en) Curable resin composition, electronic component device and method for manufacturing electronic component device
JP2018104603A (en) Curable resin composition and electronic component device
JP7275528B2 (en) ELECTRONIC COMPONENT DEVICE, SEALING MATERIAL AND METHOD FOR MANUFACTURING ELECTRONIC COMPONENT DEVICE
JP7505661B2 (en) Molding resin composition and electronic component device
JP6953973B2 (en) Curable resin composition, electronic component device and method for manufacturing electronic component device
JP7501818B2 (en) Molding resin composition and electronic component device
JP6953972B2 (en) Curable resin composition, electronic component device and method for manufacturing electronic component device
WO2024111461A1 (en) Resin composition for molding and electronic component device
JP7491223B2 (en) Encapsulating resin composition, electronic component device, and method for producing electronic component device
JP2022125150A (en) Resin composition and electronic component device
WO2019142646A1 (en) Curable resin composition, semiconductor device, and method for producing semiconductor device
JP2023168050A (en) Resin composition and electronic component device
JP2023023485A (en) Epoxy resin composition, cured product, and electronic component device
TW202102567A (en) Resin composition for sealing, electronic component device and method of manufacturing electronic component device
KR20220131239A (en) Resin composition for sealing, electronic component device, and manufacturing method of electronic component device
JP2023127421A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JP2024082573A (en) Method for producing resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927888

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020531904

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927888

Country of ref document: EP

Kind code of ref document: A1