WO2020021648A1 - Flowing liquid-type ultrasonic cleaning machine, nozzle thereof, and ultrasonic cleaning method - Google Patents

Flowing liquid-type ultrasonic cleaning machine, nozzle thereof, and ultrasonic cleaning method Download PDF

Info

Publication number
WO2020021648A1
WO2020021648A1 PCT/JP2018/027811 JP2018027811W WO2020021648A1 WO 2020021648 A1 WO2020021648 A1 WO 2020021648A1 JP 2018027811 W JP2018027811 W JP 2018027811W WO 2020021648 A1 WO2020021648 A1 WO 2020021648A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
vibrator
nozzle
cleaning liquid
cleaning
Prior art date
Application number
PCT/JP2018/027811
Other languages
French (fr)
Japanese (ja)
Inventor
智美 疋田
Original Assignee
本多電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本多電子株式会社 filed Critical 本多電子株式会社
Priority to JP2018553160A priority Critical patent/JP6507358B1/en
Priority to KR1020197031862A priority patent/KR20200012835A/en
Priority to CN201880027560.2A priority patent/CN110730693A/en
Priority to PCT/JP2018/027811 priority patent/WO2020021648A1/en
Publication of WO2020021648A1 publication Critical patent/WO2020021648A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67023Apparatus for fluid treatment for general liquid treatment, e.g. etching followed by cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2203/00Details of cleaning machines or methods involving the use or presence of liquid or steam
    • B08B2203/02Details of machines or methods for cleaning by the force of jets or sprays
    • B08B2203/0217Use of a detergent in high pressure cleaners; arrangements for supplying the same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2203/00Details of cleaning machines or methods involving the use or presence of liquid or steam
    • B08B2203/02Details of machines or methods for cleaning by the force of jets or sprays
    • B08B2203/0288Ultra or megasonic jets

Definitions

  • the present invention relates to a flowing-water type ultrasonic cleaner nozzle for ultrasonically cleaning an object to be cleaned by discharging a cleaning liquid to which ultrasonic waves are propagated as running water, a flowing-water type ultrasonic cleaner provided with the nozzle, and the cleaning machine.
  • the present invention relates to an ultrasonic cleaning method using the method.
  • FIG. 8 shows a nozzle 101 in a conventional flowing water type ultrasonic cleaning machine.
  • the nozzle main body 102 constituting the nozzle 101 has a tapered hollow portion 105 forming a part of a flow path 104 through which the cleaning liquid 103 flows.
  • a discharge port 106 for discharging the cleaning liquid 103 in the cavity 105 is provided at the tip of the cavity 105.
  • On the base end side of the cavity 105 a plate-shaped ultrasonic vibrator 107 formed by bonding a protective layer to a vibrator main body made of, for example, ceramic is arranged.
  • the ultrasonic vibrator 107 is driven, and the cleaning liquid 103 is introduced into the cavity 105 through the flow path 104.
  • the ultrasonic vibrator 107 is driven in a state where the inside of the cavity 105 is filled with the cleaning liquid 103, the ultrasonic vibrator 107 is It becomes a no-load operation and becomes an empty-fired state.
  • the adhesive is peeled off from the ultrasonic vibrator 107 due to the heat generated by the vibration, and the ultrasonic vibrator 107 is damaged in a very short time.
  • the present invention has been made in view of the above problems, and its purpose is to not only start ultrasonic waves almost simultaneously with the start of the supply of the cleaning liquid, but also to allow empty heating for a short time. It is an object of the present invention to provide a flowing water type ultrasonic cleaner nozzle and a flowing water type ultrasonic cleaner provided with the same. Another object of the present invention is to provide an ultrasonic cleaning method for efficiently and reliably cleaning a semiconductor wafer or a tool for manufacturing a semiconductor.
  • the invention according to claim 1 is a flowing water type ultrasonic cleaner nozzle for ultrasonically cleaning an object to be cleaned by discharging a cleaning liquid on which ultrasonic waves are superimposed as flowing water
  • a nozzle body having a tapered cavity forming a part of a flow path through which the cleaning liquid flows, and having a discharge port for discharging the cleaning liquid in the cavity at a distal end of the cavity, and a base end side of the cavity;
  • the cleaning liquid flowing through the gap between the outer surface of the vibrator and the inner wall surface of the cavity is discharged from the discharge port as flowing water
  • the cleaning liquid is supplied by the ultrasonic vibrator and the vibrator. Is superimposed on the ultrasonic wave.
  • most of the internal space of the cavity is filled in advance by the vibrator closely fixed to the ultrasonic vibrator, so that the cavity is filled with the cleaning liquid in a very short time after the start of inflow. Therefore, it is possible to start the ultrasonic wave almost simultaneously with the start of the supply of the cleaning liquid.
  • the vibrator closely attached to the ultrasonic vibrator becomes a load when vibrating, even if the ultrasonic vibrator is driven in a state where the inside of the cavity is not filled with the cleaning liquid, the empty firing is performed with no load. Does not generate heat in a short time. Therefore, for a short time, empty heating can be permitted. Since the vibrator is made of a nonmetallic inorganic material having chemical resistance, it is possible to select, for example, a highly corrosive cleaning liquid in order to increase the cleaning power.
  • the vibrating body is a solid body having a shape that becomes thinner toward a distal end side, and a base end surface of the vibrating body is formed of the front end surface of the ultrasonic vibrator.
  • the gist is that it is closely fixed to substantially the entirety.
  • the vibrator can be firmly adhered and fixed to the ultrasonic vibrator, and the vibration of the ultrasonic vibrator can be reliably and efficiently transmitted to the vibrator.
  • the vibrating body has a vibrating body main part having a cone shape.
  • the third aspect of the present invention it is easy to concentrate the ultrasonic wave on the tip of the vibrating body, and it is easy to form a gap having a substantially constant size with the inner wall surface of the tapered hollow portion.
  • the invention of claim 4 is the gist of any one of claims 1 to 3, wherein the vibrating body is made of quartz.
  • the vibrator is made of quartz, not only does it have suitable chemical resistance, but it can transmit ultrasonic waves efficiently.
  • the base end surface of the vibrator is bonded to the front end surface of the ultrasonic vibrator via a heat-resistant adhesive.
  • the gist is that it has been done.
  • the joint between the vibrating body and the ultrasonic vibrator is resistant to heat, so that the resistance to empty heating is improved.
  • the cleaning liquid can be smoothly guided to the discharge port through the gap.
  • the vibrating body occupies a volume of 60% or more and 95% or less of the internal space of the cavity. .
  • the vibrator while securing a certain flow rate of the cleaning liquid, the vibrator can reliably fill most of the internal space of the cavity and allow the vibrator to function as a sufficient load.
  • a nozzle according to any one of the first to seventh aspects, a cleaning liquid supply device configured to supply the cleaning liquid into the hollow portion of the nozzle, and the ultrasonic vibrator of the nozzle.
  • a running water type ultrasonic cleaner characterized by comprising an ultrasonic oscillator for driving the apparatus is provided.
  • the ultrasonic oscillator is driven by the ultrasonic oscillator in a state where the cleaning liquid is supplied into the cavity of the nozzle by the cleaning liquid supply device, so that the cleaning liquid on which the ultrasonic wave is superimposed flows from the nozzle. Can be ejected. Then, the object to be cleaned can be ultrasonically cleaned by applying the cleaning liquid that has become the running water to the object to be cleaned.
  • An invention according to claim 9 is a method for cleaning an object to be cleaned using the flowing water ultrasonic cleaner according to claim 8, wherein the object to be cleaned is a semiconductor wafer or a tool for manufacturing a semiconductor.
  • the gist of the present invention is an ultrasonic cleaning method, wherein the cleaning liquid is a foaming chemical liquid for cleaning the semiconductor wafer or the semiconductor manufacturing tool.
  • the ninth aspect of the present invention even when a foaming chemical solution suitable for cleaning a semiconductor wafer or a tool for manufacturing a semiconductor is used, ultrasonic waves can be reliably superimposed.
  • the object to be cleaned can be efficiently and reliably cleaned by both of these functions.
  • the ultrasonic wave be started almost simultaneously with the start of the supply of the cleaning liquid, but also it is possible to allow empty heating for a short time. It is possible to provide a flowing water type ultrasonic cleaner nozzle and a flowing water type ultrasonic cleaner provided with the nozzle. According to a ninth aspect of the present invention, there is provided an ultrasonic cleaning method for efficiently and reliably cleaning a semiconductor wafer or a tool for manufacturing a semiconductor.
  • FIG. 3 is a perspective view showing a vibrating body provided in the nozzle.
  • FIG. 2 is a block diagram for explaining an electrical configuration and the like in the flowing water type ultrasonic cleaner according to the embodiment.
  • Sectional drawing which shows the principal part which shows the flowing water type ultrasonic cleaner nozzle of another embodiment.
  • Sectional drawing which shows the principal part which shows the flowing water type ultrasonic cleaner nozzle of another embodiment.
  • FIG. 1 is a cross-sectional view of a main portion showing a nozzle 11 of a flowing water type ultrasonic cleaner according to the present embodiment.
  • the nozzle 11 is a component of a flowing water type ultrasonic cleaning machine 1 which is an apparatus for ultrasonically cleaning a silicon wafer (semiconductor wafer) 2 as an object to be cleaned. It plays the role of discharging as running water.
  • a nozzle body 12 constituting a nozzle 11 is a member formed in a cylindrical shape with a bottom, and a cap 13 for sealing an opening at a rear end (upper end in FIG. 1). Is screwed.
  • the nozzle body 12 has a tapered hollow portion 14 that forms a part of a flow path R1 through which the cleaning liquid W1 flows. Further, the nozzle body 12 has a discharge port 15 for discharging the cleaning liquid W1 in the hollow portion 14 at the tip of the hollow portion 14.
  • the material for forming the nozzle body 12 is not particularly limited as long as it is a material having chemical resistance and heat resistance, but a fluororesin (PTFE or the like) is used here.
  • a supply port 16 protrudes from a side surface of the hollow portion 14, and a supply pipe 17 is connected to the supply port 16. The cleaning liquid W1 is supplied to the internal space 18 of the cavity 14 via the supply pipe 17 and the supply port 16.
  • the nozzle 11 includes an ultrasonic vibrator 31 and a vibrator 41 in the nozzle body 12.
  • the ultrasonic vibrator 31 of the present embodiment is a so-called solid element formed in the shape of a disc having a diameter of 20 mm using piezoelectric ceramics such as PZT, and has a relatively high frequency of 200 kHz or more (here, 1 MHz). Is configured to occur.
  • a pair of electrodes (not shown) is formed on the upper end surface 31a side of the ultrasonic transducer 31, and wirings 23 constituting the power supply cable 22 are electrically connected to the electrodes.
  • the power supply cable 22 passes through the center of the cap 13 and is drawn out of the nozzle 11.
  • the ultrasonic vibrator 31 of the present embodiment includes the vibrator 41.
  • the vibrating body 41 is a solid body having a shape that becomes thinner toward the distal end side.
  • a vibrating body main portion 42 having a substantially conical shape and a bottom portion of the vibrating body main portion 42 are provided.
  • a disk-shaped flange 43 provided.
  • the diameter of the flange portion 43 is equal to the diameter of the ultrasonic transducer 31 and is 20 mm ⁇ here.
  • the vibrator 41 is fixedly attached to the ultrasonic vibrator 31. More specifically, the base end face 41b of the vibrator 41 is firmly bonded to the entire lower end face 31b (front end face) of the ultrasonic transducer 31 via the heat-resistant adhesive 47. As a result, the vibrating body 41 vibrates integrally with the ultrasonic vibrator 31.
  • the vibrating body 41 plays a role as a load during vibration. When such a load is provided, there is an advantage that a change in impedance is reduced as compared with a case where the ultrasonic transducer 31 and the cleaning liquid W1 are in direct contact.
  • the vibrator 41 of the present embodiment is made of a nonmetallic inorganic material having chemical resistance and heat resistance, and is made of quartz here. Quartz is suitable as a material for forming the vibrating body 41 because quartz has good chemical resistance and heat resistance and can transmit ultrasonic waves efficiently.
  • “chemical resistance” means that corrosion or the like does not occur even when the silicon wafer 2 is exposed to a strongly acidic or strongly alkaline chemical solution used for cleaning.
  • the term "heat resistance” used herein refers to, for example, corrosion, melting, denaturation, etc., even when the above-mentioned strongly acidic or strongly alkaline chemical solution is heated to 100 ° C. or more (preferably 150 ° C. or more). Does not occur.
  • Examples of the strongly acidic or strongly alkaline chemical solution used as the cleaning solution W1 for cleaning the silicon wafer 2 include a mixed solution of sulfuric acid and hydrogen peroxide, a mixed solution of hydrochloric acid and hydrogen peroxide, and a mixed solution of hydrofluoric acid and hydrogen peroxide. And a mixed solution of ammonia and hydrogen peroxide, and these have foaming properties.
  • a mixture of sulfuric acid and hydrogen peroxide, which are strongly acidic chemicals, is used as the cleaning liquid W1.
  • a step portion 19 is formed on the inner wall surface of the hollow portion 14 of the nozzle body 12 just above the supply port 16, and a vibrating body 41 is provided near the step portion 19.
  • the ultrasonic transducer 31 provided on the lower side is arranged. More specifically, a ring-shaped packing 21 is disposed on the step portion 19, and the lower end surface of the ultrasonic transducer 31 is provided on the packing 21 via the flange portion 43 of the vibrator 41. The outer peripheral portion on the 31b side is placed.
  • a sleeve-shaped pressing portion 13 a forming a part of the cap 13 is in contact with the outer peripheral portion on the upper end surface 31 a side of the ultrasonic transducer 31.
  • the ultrasonic vibrator 31 and the vibrating body 41 are held and fixed in a state where the ultrasonic vibrator 31 and the vibrating body 41 are sandwiched between the packing 21 and the pressing portion 13a from above and below.
  • the ultrasonic transducer 31 is arranged on the base end side of the cavity 14.
  • the vibrating body 41 occupies a half or more of the volume of the internal space 18 of the hollow portion 14, and preferably occupies a volume of 60% to 95% of the internal space. Good to be. If the occupied volume ratio is too small, not only is it difficult to sufficiently exert the function as a load, but also it is impossible to reliably fill most of the internal space 18 of the cavity 14 with the vibrating body 41, It becomes difficult to fill the interior space 18 with the cleaning liquid W1 within a very short time from the start of inflow. Conversely, if the occupied volume ratio is too large, the gap 46 between the outer surface of the vibrating body 41 and the inner wall surface of the cavity 14 becomes narrower, and the flow of the cleaning liquid W1 becomes difficult.
  • the flow rate of the cleaning liquid W1 is secured. It may not be possible.
  • the occupied volume ratio is set to about 70%.
  • a gap 46 having a size of approximately several mm and a substantially constant size is secured between the outer surface of the vibrating body 41 and the inner wall surface of the cavity 14. Then, the cleaning liquid W1 can flow through the gap 46.
  • FIG. 3 is a block diagram for explaining an electrical configuration and the like in the flowing water type ultrasonic cleaner 1 of the present embodiment.
  • the running water type ultrasonic cleaning machine 1 includes a cleaning liquid supply device 51, an ultrasonic oscillator 61, and an ultrasonic control device 62.
  • the cleaning liquid supply device 51 has a cleaning liquid tank 52 for storing the cleaning liquid W1, and a pump 53 connected to the cleaning liquid tank 52.
  • the cleaning liquid supply device 51 is connected to the supply port 16 of the nozzle 11 via the supply pipe 17. By driving the pump 53, the cleaning liquid W1 in the cleaning liquid tank 52 is supplied to the internal space 18 of the cavity 14 of the nozzle 11.
  • the ultrasonic oscillator 61 is electrically connected to the ultrasonic transducer 31 provided on the nozzle 11 via the power supply cable 22.
  • the ultrasonic oscillator 61 drives the ultrasonic transducer 31 by outputting a drive signal having a predetermined oscillation frequency (here, 1 MHz).
  • a predetermined oscillation frequency here, 1 MHz.
  • the ultrasonic controller 62 is constituted by a known computer including a CPU 63, a ROM 64, a RAM 65, and the like, and controls the ultrasonic oscillator 61 and the pump 53.
  • FIG. 4 is a schematic perspective view for explaining an installation state when the nozzle 11 is used. As shown in FIG. 4, the nozzle 11 is installed so as to face obliquely downward above the vicinity of the outer peripheral portion of the silicon wafer 2 to be cleaned, and is fixed to a nozzle support (not shown). You.
  • the ultrasonic cleaning method using the flowing water ultrasonic cleaning machine 1 is as follows. With the nozzle 11 installed as described above, a start switch (not shown) is turned on, and the flowing water type ultrasonic cleaner 1 is operated. Then, the ultrasonic oscillator 61 starts operating according to the control signal from the ultrasonic control device 62, and outputs a drive signal to the ultrasonic transducer 31. As a result, the ultrasonic vibrator 31 ultrasonically vibrates, and the vibrating body 41 that is tightly fixed to the ultrasonic vibrator 31 also ultrasonically vibrates integrally therewith.
  • the pump 53 starts operating according to a control signal from the ultrasonic control device 62, and sends the cleaning liquid W ⁇ b> 1 in the cleaning liquid tank 52 toward the nozzle 11 under pressure. Then, the cleaning liquid W ⁇ b> 1 that has entered the cavity 14 from the supply port 16 of the nozzle 11 flows through the gap 46 between the outer surface of the vibrator 41 and the inner wall surface of the cavity 14, and the discharge port 15 on the tip end side of the nozzle 11. Move towards. Then, at the time of the movement, the ultrasonic waves are superposed on the cleaning liquid W1 by the vibrating body 41 that ultrasonically vibrates.
  • the cleaning liquid W1 on which the ultrasonic waves are superposed is discharged as flowing water from the discharge port 15, and the surface of the silicon wafer 2 thereunder is exposed to the cleaning liquid W1 to perform ultrasonic cleaning.
  • the flow rate from the tip of the nozzle 11 is not particularly limited, and is appropriately set according to the size and type of the object to be cleaned. In the present embodiment, the flow rate is, for example, about 0.1 L / min to 0.5 L / min. Is set to
  • the cleaning liquid W1 flowing through the gap 46 between the outer surface of the vibrator 41 and the inner wall surface of the cavity 14 is discharged from the discharge port 15 as flowing water. Then, at the time of the ejection, the ultrasonic wave is superimposed on the cleaning liquid W1 by the ultrasonic vibrator 31 and the vibrator 41. In this case, most of the internal space 18 of the cavity 14 is buried in advance by the vibrator 41 fixedly attached to the ultrasonic transducer 31. It is filled with the cleaning liquid W1. Therefore, it is possible to start the ultrasonic wave almost simultaneously with the start of the supply of the cleaning liquid W1.
  • the vibrator 41 closely fixed to the ultrasonic vibrator 31 becomes a load when vibrating, even if the ultrasonic vibrator 31 is driven in a state where the inside of the cavity 14 is not filled with the cleaning liquid W1, no load is applied. Does not generate heat in a short time as compared to when it is fired in the air. Therefore, for a short time, empty heating can be permitted. Since the vibrating body 41 is made of a nonmetallic inorganic material having chemical resistance and heat resistance, it is possible to use, for example, a highly corrosive cleaning liquid W1 in a heated state in order to increase the cleaning power. Become.
  • the present embodiment not only the use of the foaming chemical solution for cleaning the semiconductor becomes possible, but also the amount of use thereof can be reduced, so that the cleaning cost can be reduced. Further, since the amount of waste liquid can be reduced, there is an advantage that the influence on the environment is small.
  • the vibrating body 41 is a solid body having a shape that becomes thinner toward the distal end side, and the base end face 41 b of the vibrating body 41 is substantially the same as the lower end face 31 b of the ultrasonic vibrator 31. Closely fixed. Accordingly, the vibrator 41 can be firmly fixed to the ultrasonic vibrator 31 and the vibration of the ultrasonic vibrator 31 can be transmitted to the vibrator 41 reliably and efficiently.
  • the vibrating body 41 has the vibrating body main portion 42 in the shape of a cone. For this reason, while making it easy to concentrate an ultrasonic wave on the front-end
  • the base end face 41 b of the vibrating body 41 is bonded to the lower end face 31 b of the ultrasonic vibrator 31 via the heat-resistant adhesive 47. Therefore, since the joint between the vibrating body 41 and the ultrasonic vibrator 31 is resistant to heat, the resistance to empty heating is improved, and the ultrasonic vibrator 31 is hardly damaged.
  • the cleaning liquid W1 can be smoothly guided to the discharge port 15 through the gap 46 even when the relatively large vibrator 41 is used. Can be.
  • a relatively large vibrator 41 occupying a volume of 60% or more and 95% or less of the internal space 18 of the hollow portion 14 is used, the flow rate of the cleaning liquid W1 is secured to some extent. 41 can reliably fill most of the internal space 18 and allow the vibrating body 41 to function as a sufficient load.
  • the object to be cleaned is the silicon wafer 2, and the ultrasonic cleaning is performed using the foaming chemical solution suitable for cleaning the silicon wafer 2 as the cleaning liquid W1. ing. Even in this case, since the ultrasonic wave can be reliably superimposed on the foaming chemical solution, the silicon wafer 2 can be efficiently and reliably cleaned by both the chemical action and the physical action.
  • the nozzle 11 of the above-described embodiment has the vibrating body main portion 42 having a substantially conical shape.
  • the substantially conical shape for example, a substantially triangular pyramid, a substantially quadrangular pyramid, a substantially hexagonal pyramid, a substantially eight
  • the vibrating body main portion 42 having a pyramid shape such as a pyramid may of course be provided.
  • the vibrating body 41 has the vibrating body main part 42 having a substantially conical shape, but the shape of the vibrating body main part 42 is not limited to this.
  • it may be shaped like the nozzle 11A of another embodiment shown in FIG.
  • the base-side half of the vibrating body main part 42A has a cylindrical shape, and the distal-side half has a substantially conical shape.
  • the gap 46 has a constant size further than in the above embodiment.
  • it may be shaped like the nozzle 11B of another embodiment shown in FIG.
  • the base-side half of the vibrating body main part 42B has a cylindrical shape, and the distal-side half has a hemispherical shape. Furthermore, it may be shaped like the nozzle 11C of another embodiment shown in FIG. In the case of the vibrating body 41C of the nozzle 11C, the vibrating body main portion 42C is formed in a stepped shape, and becomes thinner toward the tip end.
  • the vibrating body 41 has the flange portion 43, but the flange portion 43 is not an essential structure and may be omitted.
  • the vibrating body 41 is made of quartz.
  • the vibrating body 41 may be formed by using a mineral material other than quartz (for example, sapphire) instead of quartz.
  • the vibrating body 41 may be formed using a ceramic material (for example, alumina, titania, silica, silicon carbide, or the like) which is a nonmetallic inorganic material other than the mineral-based material.
  • the base end surface 41b of the vibrator 41 and the lower end surface 31b of the ultrasonic vibrator 31 are joined by using the heat-resistant adhesive 47, but they are joined by an adhesive other than the heat-resistant adhesive 47. May be. Alternatively, it is a matter of course that these may be joined by a method other than adhesion using an adhesive.
  • the ultrasonic cleaning of the silicon wafer 2 was performed using a foaming chemical as the cleaning liquid W1, but the ultrasonic cleaning may be performed using a non-foaming chemical (eg, ultrapure water).
  • a foaming chemical e.g, ultrapure water
  • the example in which the ultrasonic cleaning of the silicon wafer 2 is performed using the flowing water ultrasonic cleaning machine 1 has been described.
  • a semiconductor manufacturing tool such as a dicing blade is used. Ultrasonic cleaning may be performed.
  • the object to be cleaned is not limited to a plate-like object such as the silicon wafer 2 or a dicing blade, but may be of various shapes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

Provided is a nozzle of a flowing liquid-type ultrasonic cleaning machine that is capable of initiating ultrasonic waves almost simultaneously with starting supply of a cleaning liquid and that can allow a short period of heating without liquid. This nozzle (11) of a flowing liquid-type cleaning machine discharges a cleaning liquid (W1), on which ultrasonic waves have been superimposed, as a stream and ultrasonically cleans an object (2). The nozzle is provided with a main nozzle body (12), a plate-shaped ultrasonic vibrator (31), and a vibrating body 41. The main nozzle body (12) has: a tapered cavity (14) that forms a portion of a flow channel (R1) through which the cleaning liquid (W1) flows; and a discharge port (15) for discharging the cleaning liquid (W1) in the cavity (14). The plate-shaped ultrasonic vibrator (31) is disposed on the base end-side of the cavity (14). The vibrating body (41) comprises a chemically resistant non-metallic inorganic material. The vibrating body (41) is tightly fixed to the front end face (31b) of the ultrasonic vibrator (31) and occupies at least half of the volume of the internal space (18) of the cavity (14). The cleaning liquid (W1) flows in the gap (46) between the outer surface of the vibrating body (41) and the inner wall surface of the cavity (14).

Description

流水式超音波洗浄機及びそのノズル、超音波洗浄方法Running water ultrasonic cleaner, its nozzle, and ultrasonic cleaning method
 本発明は、超音波を伝搬させた洗浄液を流水として吐出することで被洗浄物を超音波洗浄する流水式超音波洗浄機ノズル、及びそれを備えた流水式超音波洗浄機、並びに当該洗浄機を用いた超音波洗浄方法に関するものである。 The present invention relates to a flowing-water type ultrasonic cleaner nozzle for ultrasonically cleaning an object to be cleaned by discharging a cleaning liquid to which ultrasonic waves are propagated as running water, a flowing-water type ultrasonic cleaner provided with the nozzle, and the cleaning machine. The present invention relates to an ultrasonic cleaning method using the method.
 ICチップ等に代表される半導体を製造するプロセスでは、シリコンウェハやダイシングブレードなどに付着した微細な塵をきれいに除去しておく必要がある。そのため、例えば流水式の超音波洗浄機を用いて被洗浄物であるシリコンウェハやダイシングブレードなどを超音波洗浄することが従来行われている。 (2) In a process of manufacturing a semiconductor represented by an IC chip or the like, it is necessary to remove fine dust adhering to a silicon wafer, a dicing blade, or the like. For this reason, ultrasonic cleaning of an object to be cleaned, such as a silicon wafer or a dicing blade, is conventionally performed using, for example, a flowing water type ultrasonic cleaner.
 図8には、従来の流水式超音波洗浄機におけるノズル101が示されている。ノズル101を構成するノズル本体102は、洗浄液103が流れる流路104の一部をなす先細り形状の空洞部105を有している。空洞部105の先端には、空洞部105内の洗浄液103を吐出する吐出口106が設けられている。空洞部105の基端側には、例えばセラミック製の振動子本体に保護層を接着してなる板状の超音波振動子107が配置されている。このように構成されたノズル101の使用時には、超音波振動子107を駆動させるとともに、流路104を介して空洞部105内に洗浄液103を導入する。すると、空洞部105の内部空間108において超音波が畳重された洗浄液103が、吐出口106から流水として放出される。そして、この流水となった洗浄液103を被洗浄物に当てることにより、被洗浄物の表面に付着した塵等が超音波振動の作用により効率よく除去されるようになっている。なお、この種の流水式超音波洗浄機ノズルは従来いくつか提案されている(例えば、特許文献1、2参照)。また、被洗浄物が歯や義歯である場合の流水式超音波洗浄機も従来提案されている(例えば、特許文献3参照)。 FIG. 8 shows a nozzle 101 in a conventional flowing water type ultrasonic cleaning machine. The nozzle main body 102 constituting the nozzle 101 has a tapered hollow portion 105 forming a part of a flow path 104 through which the cleaning liquid 103 flows. A discharge port 106 for discharging the cleaning liquid 103 in the cavity 105 is provided at the tip of the cavity 105. On the base end side of the cavity 105, a plate-shaped ultrasonic vibrator 107 formed by bonding a protective layer to a vibrator main body made of, for example, ceramic is arranged. When using the nozzle 101 configured as described above, the ultrasonic vibrator 107 is driven, and the cleaning liquid 103 is introduced into the cavity 105 through the flow path 104. Then, the cleaning liquid 103 on which the ultrasonic waves are superposed in the internal space 108 of the cavity 105 is discharged from the discharge port 106 as flowing water. Then, by applying the washing liquid 103 which has become the running water to the object to be cleaned, dust or the like attached to the surface of the object to be cleaned is efficiently removed by the action of ultrasonic vibration. Heretofore, there have been several proposals of this type of flowing water type ultrasonic cleaner nozzle (for example, see Patent Documents 1 and 2). In addition, a flush-type ultrasonic cleaner in which the object to be cleaned is a tooth or a denture has been conventionally proposed (for example, see Patent Document 3).
特開2000-334403号公報JP 2000-334403 A 特開2004-148179号公報JP 2004-148179 A 特許第5786166号公報Japanese Patent No. 5786166
 ところで、図8に示した上記従来の流水式超音波洗浄機ノズル101の場合、空洞部105内が洗浄液103で満たされた状態で超音波振動子107を駆動させないと、超音波振動子107が無負荷運転となって空焚き状態となる。その結果、振動による発熱の影響により超音波振動子107に接着剥離が生じて、ごく短時間のうちに超音波振動子107が破損してしまう。このため、最小流量をあらかじめ規定しておき、それ以下の流量となった場合には、超音波発振を止めるインターロック機構を設ける等の対策をとる必要があった。また、洗浄液103を必要以上に使うのを避けるため、電磁バルブで流路104の開閉制御を行う場合、流入開始から空洞部105の内部空間108が洗浄液103で満たされるまでの時間が長くかかるという問題があった。それゆえ、ランニングコストの低減のため、できるだけ短時間で始動可能な状態とすることができる装置が望まれていた。 By the way, in the case of the above-mentioned conventional flowing water type ultrasonic cleaner nozzle 101 shown in FIG. 8, unless the ultrasonic vibrator 107 is driven in a state where the inside of the cavity 105 is filled with the cleaning liquid 103, the ultrasonic vibrator 107 is It becomes a no-load operation and becomes an empty-fired state. As a result, the adhesive is peeled off from the ultrasonic vibrator 107 due to the heat generated by the vibration, and the ultrasonic vibrator 107 is damaged in a very short time. For this reason, it has been necessary to preliminarily define the minimum flow rate and to take measures such as providing an interlock mechanism for stopping the ultrasonic oscillation when the flow rate becomes lower than the minimum flow rate. In addition, when the opening and closing of the flow path 104 is controlled by an electromagnetic valve in order to avoid using the cleaning liquid 103 more than necessary, it takes a long time from the start of inflow until the internal space 108 of the cavity 105 is filled with the cleaning liquid 103. There was a problem. Therefore, in order to reduce the running cost, there has been a demand for a device which can be started in a short time as possible.
 また、シリコンウェハやダイシングブレードは高清浄度が求められるため、洗浄効果の高い発泡性の薬液を洗浄液103として用いて洗浄することが望ましいが、このような薬液を使用すると、気泡の存在によって超音波が伝達されなくなる。それゆえ、従来では有効な超音波洗浄を実施することができなかった。さらに、上記のような半導体洗浄用の発泡性薬液は比較的高価なものであるため、コスト低減の観点からできるだけ使用量を少なくしたいという要請があった。 In addition, since high cleanliness is required for silicon wafers and dicing blades, it is desirable to clean using a foaming chemical having a high cleaning effect as the cleaning liquid 103. Sound waves are not transmitted. Therefore, conventionally, effective ultrasonic cleaning could not be performed. Furthermore, since the foaming chemical solution for cleaning semiconductors as described above is relatively expensive, there has been a demand to reduce the amount of use as much as possible from the viewpoint of cost reduction.
 本発明は上記の課題に鑑みてなされたものであり、その目的は、洗浄液の供給開始とほぼ同時に超音波を始動することができるばかりでなく、短時間であれば空焚きを許容することができる流水式超音波洗浄機ノズル及びそれを備えた流水式超音波洗浄機を提供することにある。また、本発明の別の目的は、半導体ウェハまたは半導体製造用ツールを効率よく確実に洗浄することが超音波洗浄方法を提供することにある。 The present invention has been made in view of the above problems, and its purpose is to not only start ultrasonic waves almost simultaneously with the start of the supply of the cleaning liquid, but also to allow empty heating for a short time. It is an object of the present invention to provide a flowing water type ultrasonic cleaner nozzle and a flowing water type ultrasonic cleaner provided with the same. Another object of the present invention is to provide an ultrasonic cleaning method for efficiently and reliably cleaning a semiconductor wafer or a tool for manufacturing a semiconductor.
 上記課題を解決するために、請求項1に記載の発明は、超音波を重畳させた洗浄液を流水として吐出することで被洗浄物を超音波洗浄する流水式超音波洗浄機ノズルであって、前記洗浄液が流れる流路の一部をなす先細り形状の空洞部を有し、前記空洞部内の前記洗浄液を吐出する吐出口を前記空洞部の先端に有するノズル本体と、前記空洞部の基端側に配置された板状の超音波振動子と、耐薬品性を有する非金属無機材料からなり、前記超音波振動子の前端面に密着固定され、前記空洞部の内部空間の半分以上の容積を占有する振動体とを備え、前記振動体の外表面と前記空洞部の内壁面との隙間を介して、前記洗浄液が流れるように構成されていることを特徴とする流水式超音波洗浄機ノズルをその要旨とする。 In order to solve the above problems, the invention according to claim 1 is a flowing water type ultrasonic cleaner nozzle for ultrasonically cleaning an object to be cleaned by discharging a cleaning liquid on which ultrasonic waves are superimposed as flowing water, A nozzle body having a tapered cavity forming a part of a flow path through which the cleaning liquid flows, and having a discharge port for discharging the cleaning liquid in the cavity at a distal end of the cavity, and a base end side of the cavity; A plate-shaped ultrasonic vibrator and a non-metallic inorganic material having chemical resistance, which are tightly fixed to the front end face of the ultrasonic vibrator, and have a volume of half or more of the internal space of the cavity. A vibrating body to be occupied, wherein the cleaning liquid is configured to flow through a gap between an outer surface of the vibrating body and an inner wall surface of the cavity, and a flowing-water type ultrasonic cleaning nozzle. Is the gist.
 請求項1に記載の発明によると、振動体の外表面と空洞部の内壁面との隙間を介して流れる洗浄液が吐出口から流水として吐出される際に、超音波振動子及び振動体によって洗浄液に超音波が重畳される。この場合、超音波振動子に密着固定された振動体によって、空洞部の内部空間の大部分があらかじめ埋められているため、流入開始からごく短時間のうちに空洞部内が洗浄液で満たされる。よって、洗浄液の供給開始とほぼ同時に超音波を始動することが可能となる。また、超音波振動子に密着固定された振動体は振動時に負荷となるため、空洞部内が洗浄液で満たされていない状態で超音波振動子を駆動したとしても、無負荷で空焚きを行ったときほど短時間では発熱しない。ゆえに、短時間であれば空焚きを許容することができる。なお、振動体は耐薬品性を有する非金属無機材料からなるものであるため、洗浄力を高めるために例えば腐食性の強い洗浄液を選択すること等が可能となる。 According to the first aspect of the present invention, when the cleaning liquid flowing through the gap between the outer surface of the vibrator and the inner wall surface of the cavity is discharged from the discharge port as flowing water, the cleaning liquid is supplied by the ultrasonic vibrator and the vibrator. Is superimposed on the ultrasonic wave. In this case, most of the internal space of the cavity is filled in advance by the vibrator closely fixed to the ultrasonic vibrator, so that the cavity is filled with the cleaning liquid in a very short time after the start of inflow. Therefore, it is possible to start the ultrasonic wave almost simultaneously with the start of the supply of the cleaning liquid. In addition, since the vibrator closely attached to the ultrasonic vibrator becomes a load when vibrating, even if the ultrasonic vibrator is driven in a state where the inside of the cavity is not filled with the cleaning liquid, the empty firing is performed with no load. Does not generate heat in a short time. Therefore, for a short time, empty heating can be permitted. Since the vibrator is made of a nonmetallic inorganic material having chemical resistance, it is possible to select, for example, a highly corrosive cleaning liquid in order to increase the cleaning power.
 請求項2に記載の発明は、請求項1において、前記振動体は先端側に行くほど細くなる形状をなす中実体であり、前記振動体の基端面は前記超音波振動子の前記前端面の略全体に対して密着固定されていることをその要旨とする。 According to a second aspect of the present invention, in the first aspect, the vibrating body is a solid body having a shape that becomes thinner toward a distal end side, and a base end surface of the vibrating body is formed of the front end surface of the ultrasonic vibrator. The gist is that it is closely fixed to substantially the entirety.
 請求項2に記載の発明によると、振動体を超音波振動子に強固に密着固定することができるとともに、超音波振動子の振動を振動体に確実にかつ効率よく伝達することができる。 According to the second aspect of the present invention, the vibrator can be firmly adhered and fixed to the ultrasonic vibrator, and the vibration of the ultrasonic vibrator can be reliably and efficiently transmitted to the vibrator.
 請求項3に記載の発明は、請求項2において、前記振動体は、錐体の形状をなす振動体主部を有することをその要旨とする。 According to a third aspect of the present invention, in the second aspect, the vibrating body has a vibrating body main part having a cone shape.
 請求項3に記載の発明によると、振動体の先端に超音波を集中させやすくなるとともに、先細り形状の空洞部の内壁面との間に大きさが略一定の隙間を形成しやすくなる。 According to the third aspect of the present invention, it is easy to concentrate the ultrasonic wave on the tip of the vibrating body, and it is easy to form a gap having a substantially constant size with the inner wall surface of the tapered hollow portion.
 請求項4に記載の発明は、請求項1乃至3のいずれか1項において、前記振動体は、石英製であることをその要旨とする。 発 明 The invention of claim 4 is the gist of any one of claims 1 to 3, wherein the vibrating body is made of quartz.
 請求項4に記載の発明によると、石英製の振動体であるため、好適な耐薬品性を有するばかりでなく、超音波を効率よく伝達させることができる。 According to the fourth aspect of the present invention, since the vibrator is made of quartz, not only does it have suitable chemical resistance, but it can transmit ultrasonic waves efficiently.
 請求項5に記載の発明は、請求項1乃至4のいずれか1項において、前記振動体の前記基端面は、前記超音波振動子の前記前端面に対して耐熱性接着剤を介して接着されていることをその要旨とする。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the base end surface of the vibrator is bonded to the front end surface of the ultrasonic vibrator via a heat-resistant adhesive. The gist is that it has been done.
 請求項5に記載の発明によると、振動体と超音波振動子との接合部分が熱に強くなるため、空焚きに対する耐性が向上する。 According to the fifth aspect of the present invention, the joint between the vibrating body and the ultrasonic vibrator is resistant to heat, so that the resistance to empty heating is improved.
 請求項6に記載の発明は、請求項1乃至5のいずれか1項において、前記隙間の大きさは略一定であることをその要旨とする。 (6) The gist of the invention described in claim 6 is that, in any one of claims 1 to 5, the size of the gap is substantially constant.
 請求項6に記載の発明によると、大きい振動体を用いた場合であっても隙間を介して洗浄液をスムーズに吐出口に導くことができる。 According to the sixth aspect of the invention, even when a large vibrator is used, the cleaning liquid can be smoothly guided to the discharge port through the gap.
 請求項7に記載の発明は、請求項1乃至6のいずれか1項において、前記振動体は、前記空洞部の内部空間の60%以上95%以下の容積を占有することをその要旨とする。 According to a seventh aspect of the present invention, in any one of the first to sixth aspects, the vibrating body occupies a volume of 60% or more and 95% or less of the internal space of the cavity. .
 請求項7に記載の発明によると、洗浄液の流量をある程度確保したうえで、振動体によって空洞部の内部空間の大部分を確実に埋めるとともに、振動体を十分な負荷として機能させることができる。 According to the seventh aspect of the present invention, while securing a certain flow rate of the cleaning liquid, the vibrator can reliably fill most of the internal space of the cavity and allow the vibrator to function as a sufficient load.
 請求項8に記載の発明は、請求項1乃至7のいずれか1項に記載のノズルと、前記ノズルの前記空洞部内に前記洗浄液を供給する洗浄液供給装置と、前記ノズルの前記超音波振動子を駆動させる超音波発振器とを備えたことを特徴とする流水式超音波洗浄機をその要旨とする。 According to an eighth aspect of the present invention, there is provided a nozzle according to any one of the first to seventh aspects, a cleaning liquid supply device configured to supply the cleaning liquid into the hollow portion of the nozzle, and the ultrasonic vibrator of the nozzle. A running water type ultrasonic cleaner characterized by comprising an ultrasonic oscillator for driving the apparatus is provided.
 請求項8に記載の発明によると、洗浄液供給装置によりノズルの空洞部内に洗浄液を供給した状態で超音波発振器により超音波振動子を駆動することにより、超音波が重畳された洗浄液をノズルから流水として吐出させることができる。そして、この流水となった洗浄液を被洗浄物に当てることにより、被洗浄物を超音波洗浄することができる。 According to the invention described in claim 8, the ultrasonic oscillator is driven by the ultrasonic oscillator in a state where the cleaning liquid is supplied into the cavity of the nozzle by the cleaning liquid supply device, so that the cleaning liquid on which the ultrasonic wave is superimposed flows from the nozzle. Can be ejected. Then, the object to be cleaned can be ultrasonically cleaned by applying the cleaning liquid that has become the running water to the object to be cleaned.
 請求項9に記載の発明は、請求項8に記載の流水式超音波洗浄機を用いて被洗浄物を洗浄する方法であって、前記被洗浄物が半導体ウェハまたは半導体製造用ツールであり、前記洗浄液が前記半導体ウェハまたは半導体製造用ツールを洗浄するための発泡性の薬液であることを特徴とする超音波洗浄方法をその要旨とする。 An invention according to claim 9 is a method for cleaning an object to be cleaned using the flowing water ultrasonic cleaner according to claim 8, wherein the object to be cleaned is a semiconductor wafer or a tool for manufacturing a semiconductor. The gist of the present invention is an ultrasonic cleaning method, wherein the cleaning liquid is a foaming chemical liquid for cleaning the semiconductor wafer or the semiconductor manufacturing tool.
 請求項9に記載の発明によると、半導体ウェハまたは半導体製造用ツールの洗浄に適した発泡性の薬液を用いた場合でも超音波を確実に重畳させることができるため、化学的な作用及び物理的な作用の両方によって被洗浄物を効率よく確実に洗浄することができる。 According to the ninth aspect of the present invention, even when a foaming chemical solution suitable for cleaning a semiconductor wafer or a tool for manufacturing a semiconductor is used, ultrasonic waves can be reliably superimposed. The object to be cleaned can be efficiently and reliably cleaned by both of these functions.
 以上詳述したように、請求項1~8に記載の発明によると、洗浄液の供給開始とほぼ同時に超音波を始動することができるばかりでなく、短時間であれば空焚きを許容することができる流水式超音波洗浄機ノズル及びそれを備えた流水式超音波洗浄機を提供することができる。また、請求項9に記載の発明によると、半導体ウェハまたは半導体製造用ツールを効率よく確実に洗浄することが超音波洗浄方法を提供することにある。 As described in detail above, according to the first to eighth aspects of the present invention, not only can the ultrasonic wave be started almost simultaneously with the start of the supply of the cleaning liquid, but also it is possible to allow empty heating for a short time. It is possible to provide a flowing water type ultrasonic cleaner nozzle and a flowing water type ultrasonic cleaner provided with the nozzle. According to a ninth aspect of the present invention, there is provided an ultrasonic cleaning method for efficiently and reliably cleaning a semiconductor wafer or a tool for manufacturing a semiconductor.
実施形態の流水式超音波洗浄機ノズルを示す要部断面図。The principal part sectional view which shows the flowing water type ultrasonic cleaner nozzle of embodiment. 同ノズルが備える振動体を示す斜視図。FIG. 3 is a perspective view showing a vibrating body provided in the nozzle. 実施形態の流水式超音波洗浄機における電気的構成等を説明するためのブロック図。FIG. 2 is a block diagram for explaining an electrical configuration and the like in the flowing water type ultrasonic cleaner according to the embodiment. 実施形態の流水式超音波洗浄機ノズルの使用時の設置状態を説明するための概略斜視図。The schematic perspective view for explaining the installation state at the time of use of the flowing water type ultrasonic cleaner nozzle of an embodiment. 別の実施の形態の流水式超音波洗浄機ノズルを示す要部断面図。Sectional drawing which shows the principal part which shows the flowing water type ultrasonic cleaner nozzle of another embodiment. 別の実施の形態の流水式超音波洗浄機ノズルを示す要部断面図。Sectional drawing which shows the principal part which shows the flowing water type ultrasonic cleaner nozzle of another embodiment. 別の実施の形態の流水式超音波洗浄機ノズルを示す要部断面図。Sectional drawing which shows the principal part which shows the flowing water type ultrasonic cleaner nozzle of another embodiment. 従来の流水式超音波洗浄機ノズルを示す要部断面図。Sectional drawing of the principal part which shows the conventional flowing water type ultrasonic cleaner nozzle.
 以下、本発明を流水式超音波洗浄機に具体化した実施形態を図面に基づき詳細に説明する。 Hereinafter, an embodiment in which the present invention is embodied in a flowing water ultrasonic cleaner will be described in detail with reference to the drawings.
 図1は、本実施形態の流水式超音波洗浄機ノズル11を示す要部断面図である。このノズル11は、被洗浄物であるシリコンウェハ(半導体ウェハ)2を超音波洗浄するための装置である流水式超音波洗浄機1を構成する部品であって、超音波を重畳した洗浄液W1を流水として吐出する役割を果たす。 FIG. 1 is a cross-sectional view of a main portion showing a nozzle 11 of a flowing water type ultrasonic cleaner according to the present embodiment. The nozzle 11 is a component of a flowing water type ultrasonic cleaning machine 1 which is an apparatus for ultrasonically cleaning a silicon wafer (semiconductor wafer) 2 as an object to be cleaned. It plays the role of discharging as running water.
 図1に示されるように、ノズル11を構成するノズル本体12は、有底円筒状に形成された部材であって、その後端部(図1の上端部)には開口を封止するキャップ13が螺着されている。このノズル本体12は、洗浄液W1が流れる流路R1の一部をなす先細り形状の空洞部14を有している。また、このノズル本体12は、空洞部14内の洗浄液W1を吐出する吐出口15を空洞部14の先端に有している。ノズル本体12の形成材料としては耐薬品性や耐熱性を有する材料であれば特に限定されないが、ここではふっ素樹脂(PTFE等)が用いられている。空洞部14の側面には供給口16が突設されており、その供給口16には供給配管17が接続されている。そして、この供給配管17及び供給口16を介して、空洞部14の内部空間18に洗浄液W1が供給されるようになっている。 As shown in FIG. 1, a nozzle body 12 constituting a nozzle 11 is a member formed in a cylindrical shape with a bottom, and a cap 13 for sealing an opening at a rear end (upper end in FIG. 1). Is screwed. The nozzle body 12 has a tapered hollow portion 14 that forms a part of a flow path R1 through which the cleaning liquid W1 flows. Further, the nozzle body 12 has a discharge port 15 for discharging the cleaning liquid W1 in the hollow portion 14 at the tip of the hollow portion 14. The material for forming the nozzle body 12 is not particularly limited as long as it is a material having chemical resistance and heat resistance, but a fluororesin (PTFE or the like) is used here. A supply port 16 protrudes from a side surface of the hollow portion 14, and a supply pipe 17 is connected to the supply port 16. The cleaning liquid W1 is supplied to the internal space 18 of the cavity 14 via the supply pipe 17 and the supply port 16.
 図1に示されるように、ノズル11は、ノズル本体12内に超音波振動子31及び振動体41を備えている。本実施形態の超音波振動子31は、PZTなどの圧電セラミックスを用いて直径20mmφの円板状に形成されたいわゆるソリッド素子であり、200kHz以上の比較的高い周波数(ここでは1MHz)の超音波を発生するように構成されている。超音波振動子31の上端面31a側には図示しない一対の電極が形成され、それらの電極には給電ケーブル22を構成する配線23がそれぞれ電気的に接続されている。そして、この給電ケーブル22はキャップ13の中央部を貫通してノズル11の外部に引き出されている。 As shown in FIG. 1, the nozzle 11 includes an ultrasonic vibrator 31 and a vibrator 41 in the nozzle body 12. The ultrasonic vibrator 31 of the present embodiment is a so-called solid element formed in the shape of a disc having a diameter of 20 mm using piezoelectric ceramics such as PZT, and has a relatively high frequency of 200 kHz or more (here, 1 MHz). Is configured to occur. A pair of electrodes (not shown) is formed on the upper end surface 31a side of the ultrasonic transducer 31, and wirings 23 constituting the power supply cable 22 are electrically connected to the electrodes. The power supply cable 22 passes through the center of the cap 13 and is drawn out of the nozzle 11.
 本実施形態の超音波振動子31は振動体41を備えたものとなっている。振動体41は、先端側に行くほど細くなる形状をなす中実体であって、図2に示されるように、略円錐の形状をなす振動体主部42と、振動体主部42の底部に設けられた円板状のフランジ部43とを有したものとなっている。フランジ部43の直径は超音波振動子31の直径と等しく、ここでは20mmφとなっている。 超 The ultrasonic vibrator 31 of the present embodiment includes the vibrator 41. The vibrating body 41 is a solid body having a shape that becomes thinner toward the distal end side. As shown in FIG. 2, a vibrating body main portion 42 having a substantially conical shape and a bottom portion of the vibrating body main portion 42 are provided. And a disk-shaped flange 43 provided. The diameter of the flange portion 43 is equal to the diameter of the ultrasonic transducer 31 and is 20 mmφ here.
 振動体41は超音波振動子31に密着固定されている。より具体的にいうと、 振動体41の基端面41bは、超音波振動子31の下端面31b(前端面)の全体に対して、耐熱性接着剤47を介して強固に接着されている。その結果、振動体41は超音波振動子31と一体で振動するようになっている。この振動体41は振動時における負荷としての役割を果たすものである。このような負荷が設けられていると、超音波振動子31と洗浄液W1とが直接接触する場合に比べて、インピーダンスの変動が小さくなるという利点がある。 (4) The vibrator 41 is fixedly attached to the ultrasonic vibrator 31. More specifically, the base end face 41b of the vibrator 41 is firmly bonded to the entire lower end face 31b (front end face) of the ultrasonic transducer 31 via the heat-resistant adhesive 47. As a result, the vibrating body 41 vibrates integrally with the ultrasonic vibrator 31. The vibrating body 41 plays a role as a load during vibration. When such a load is provided, there is an advantage that a change in impedance is reduced as compared with a case where the ultrasonic transducer 31 and the cleaning liquid W1 are in direct contact.
 本実施形態の振動体41は、耐薬品性及び耐熱性を有する非金属無機材料からなり、ここでは石英からなる。石英は好適な耐薬品性及び耐熱性を有することに加え、超音波を効率よく伝達させることが可能であるため、振動体41の形成材料として適しているからである。ここで「耐薬品性」とは、シリコンウェハ2の洗浄に用いるような強酸性あるいは強アルカリの薬液に晒されても腐食等が起こらないことを意味している。また、ここで「耐熱性」とは、例えば上記の強酸性あるいは強アルカリの薬液を100℃以上(望ましくは150℃以上)に加熱して使用した場合であっても、腐食、溶融、変性等が起こらないことを意味している。なお、シリコンウェハ2を洗浄する洗浄液W1として用いる強酸性あるいは強アルカリの薬液としては、例えば、硫酸と過酸化水素との混合液、塩酸と過酸化水素との混合液、ふっ酸と過酸化水素との混合液、アンモニアと過酸化水素との混合液などがあり、これらは発泡性を有している。ここでは、強酸性の薬液である硫酸と過酸化水素との混合液を洗浄液W1として使用している。 The vibrator 41 of the present embodiment is made of a nonmetallic inorganic material having chemical resistance and heat resistance, and is made of quartz here. Quartz is suitable as a material for forming the vibrating body 41 because quartz has good chemical resistance and heat resistance and can transmit ultrasonic waves efficiently. Here, “chemical resistance” means that corrosion or the like does not occur even when the silicon wafer 2 is exposed to a strongly acidic or strongly alkaline chemical solution used for cleaning. The term "heat resistance" used herein refers to, for example, corrosion, melting, denaturation, etc., even when the above-mentioned strongly acidic or strongly alkaline chemical solution is heated to 100 ° C. or more (preferably 150 ° C. or more). Does not occur. Examples of the strongly acidic or strongly alkaline chemical solution used as the cleaning solution W1 for cleaning the silicon wafer 2 include a mixed solution of sulfuric acid and hydrogen peroxide, a mixed solution of hydrochloric acid and hydrogen peroxide, and a mixed solution of hydrofluoric acid and hydrogen peroxide. And a mixed solution of ammonia and hydrogen peroxide, and these have foaming properties. Here, a mixture of sulfuric acid and hydrogen peroxide, which are strongly acidic chemicals, is used as the cleaning liquid W1.
 図1に示されるように、ノズル本体12の空洞部14の内壁面において供給口16のすぐ上側の位置には段部19が形成されており、その段部19の近傍には振動体41を下側に有する超音波振動子31が配置されている。より具体的にいうと、前記段部19上にはリング状のパッキング21が配設されるとともに、そのパッキング21上には振動体41のフランジ部43を介して超音波振動子31の下端面31b側の外周部が載置されている。一方、超音波振動子31の上端面31a側の外周部には、キャップ13の一部分をなすスリーブ形状の押圧部13aが当接している。その結果、超音波振動子31及び振動体41が、パッキング21と押圧部13aとにより上下方向から挟持された状態で保持固定されている。その結果、空洞部14の基端側に超音波振動子31が配置された状態となっている。 As shown in FIG. 1, a step portion 19 is formed on the inner wall surface of the hollow portion 14 of the nozzle body 12 just above the supply port 16, and a vibrating body 41 is provided near the step portion 19. The ultrasonic transducer 31 provided on the lower side is arranged. More specifically, a ring-shaped packing 21 is disposed on the step portion 19, and the lower end surface of the ultrasonic transducer 31 is provided on the packing 21 via the flange portion 43 of the vibrator 41. The outer peripheral portion on the 31b side is placed. On the other hand, a sleeve-shaped pressing portion 13 a forming a part of the cap 13 is in contact with the outer peripheral portion on the upper end surface 31 a side of the ultrasonic transducer 31. As a result, the ultrasonic vibrator 31 and the vibrating body 41 are held and fixed in a state where the ultrasonic vibrator 31 and the vibrating body 41 are sandwiched between the packing 21 and the pressing portion 13a from above and below. As a result, the ultrasonic transducer 31 is arranged on the base end side of the cavity 14.
 図1に示されるように、この振動体41は、空洞部14の内部空間18の半分以上の容積を占有するものであり、好ましくは内部空間の60%以上95%以下の容積を占有していることがよい。上記の占有容積比率が小さすぎると、負荷としての機能を十分に発揮することが難しくなるばかりでなく、振動体41によって空洞部14の内部空間18の大部分を確実に埋めることができず、流入開始からごく短時間のうちに内部空間18内を洗浄液W1で満たすことが難しくなる。逆に、上記の占有容積比率が大きすぎると、振動体41の外表面と空洞部14の内壁面との間の隙間46が狭くなり、洗浄液W1が流れにくくなる結果、洗浄液W1の流量を確保できなくなるおそれがある。このような事情に鑑みて、本実施形態では上記の占有容積比率を約70%程度に設定している。その結果、数mm程度であって略一定の大きさの隙間46が振動体41の外表面と空洞部14の内壁面との間に確保されている。そして、洗浄液W1はこの隙間46を介して流れることが可能となっている。 As shown in FIG. 1, the vibrating body 41 occupies a half or more of the volume of the internal space 18 of the hollow portion 14, and preferably occupies a volume of 60% to 95% of the internal space. Good to be. If the occupied volume ratio is too small, not only is it difficult to sufficiently exert the function as a load, but also it is impossible to reliably fill most of the internal space 18 of the cavity 14 with the vibrating body 41, It becomes difficult to fill the interior space 18 with the cleaning liquid W1 within a very short time from the start of inflow. Conversely, if the occupied volume ratio is too large, the gap 46 between the outer surface of the vibrating body 41 and the inner wall surface of the cavity 14 becomes narrower, and the flow of the cleaning liquid W1 becomes difficult. As a result, the flow rate of the cleaning liquid W1 is secured. It may not be possible. In view of such circumstances, in the present embodiment, the occupied volume ratio is set to about 70%. As a result, a gap 46 having a size of approximately several mm and a substantially constant size is secured between the outer surface of the vibrating body 41 and the inner wall surface of the cavity 14. Then, the cleaning liquid W1 can flow through the gap 46.
 図3は、本実施形態の流水式超音波洗浄機1における電気的構成等を説明するためのブロック図である。この流水式超音波洗浄機1は、洗浄液供給装置51、超音波発振器61及び超音波制御装置62を備えている。洗浄液供給装置51は、洗浄液W1を貯留する洗浄液タンク52と、その洗浄液タンク52に接続されたポンプ53とを有している。洗浄液供給装置51は、供給配管17を介してノズル11の供給口16に接続されている。そして、このポンプ53を駆動することにより、ノズル11の空洞部14の内部空間18に洗浄液タンク52内の洗浄液W1が供給されるようになっている。 FIG. 3 is a block diagram for explaining an electrical configuration and the like in the flowing water type ultrasonic cleaner 1 of the present embodiment. The running water type ultrasonic cleaning machine 1 includes a cleaning liquid supply device 51, an ultrasonic oscillator 61, and an ultrasonic control device 62. The cleaning liquid supply device 51 has a cleaning liquid tank 52 for storing the cleaning liquid W1, and a pump 53 connected to the cleaning liquid tank 52. The cleaning liquid supply device 51 is connected to the supply port 16 of the nozzle 11 via the supply pipe 17. By driving the pump 53, the cleaning liquid W1 in the cleaning liquid tank 52 is supplied to the internal space 18 of the cavity 14 of the nozzle 11.
 超音波発振器61は、ノズル11に設けられた超音波振動子31と給電ケーブル22を介して電気的に接続されている。超音波発振器61は、所定の発振周波数(ここでは1MHz)の駆動信号を出力することで超音波振動子31を駆動する。その結果、超音波振動子31は、超音波発振器61の発振周波数に応じた超音波を発生するようになっている。 The ultrasonic oscillator 61 is electrically connected to the ultrasonic transducer 31 provided on the nozzle 11 via the power supply cable 22. The ultrasonic oscillator 61 drives the ultrasonic transducer 31 by outputting a drive signal having a predetermined oscillation frequency (here, 1 MHz). As a result, the ultrasonic transducer 31 generates an ultrasonic wave according to the oscillation frequency of the ultrasonic oscillator 61.
 超音波制御装置62は、CPU63、ROM64、RAM65等からなる周知のコンピュータにより構成されており、超音波発振器61及びポンプ53を制御するようになっている。 The ultrasonic controller 62 is constituted by a known computer including a CPU 63, a ROM 64, a RAM 65, and the like, and controls the ultrasonic oscillator 61 and the pump 53.
 図4は、ノズル11の使用時の設置状態を説明するための概略斜視図である。図4に示されるように、ノズル11は、被洗浄物であるシリコンウェハ2の外周部近傍の上方にて斜め下方を向くようにして設置されるとともに、図示しないノズル支持体に対して固定される。 FIG. 4 is a schematic perspective view for explaining an installation state when the nozzle 11 is used. As shown in FIG. 4, the nozzle 11 is installed so as to face obliquely downward above the vicinity of the outer peripheral portion of the silicon wafer 2 to be cleaned, and is fixed to a nozzle support (not shown). You.
 この流水式超音波洗浄機1を用いた超音波洗浄方法は以下のとおりである。上記のようにノズル11を設置した状態で、図示しない開始スイッチをオンし、流水式超音波洗浄機1を作動させる。すると、超音波制御装置62からの制御信号により超音波発振器61が動作を開始し、超音波振動子31に駆動信号を出力する。その結果、超音波振動子31が超音波振動するとともに、超音波振動子31に密着固定されている振動体41もそれと一体的に超音波振動する。超音波発振器61の動作開始から数秒後、超音波制御装置62からの制御信号によりポンプ53が動作を開始し、洗浄液タンク52内の洗浄液W1をノズル11に向けて圧送する。すると、ノズル11の供給口16から空洞部14内に入り込んだ洗浄液W1は、振動体41の外表面と空洞部14の内壁面との隙間46を流れ、ノズル11の先端側にある吐出口15に向かって移動する。そしてその移動の際に、超音波振動する振動体41によって洗浄液W1に超音波が畳重される。超音波が畳重された洗浄液W1は、吐出口15から流水として吐出され、その下方にあるシリコンウェハ2の表面が洗浄液W1に晒されて、超音波洗浄される。なお、ノズル11の先端からの流量は、特に限定されず被洗浄物のサイズや種類等に応じて適宜設定されるが、本実施形態では例えば0.1L/min~0.5L/min程度となるように設定される。 超 The ultrasonic cleaning method using the flowing water ultrasonic cleaning machine 1 is as follows. With the nozzle 11 installed as described above, a start switch (not shown) is turned on, and the flowing water type ultrasonic cleaner 1 is operated. Then, the ultrasonic oscillator 61 starts operating according to the control signal from the ultrasonic control device 62, and outputs a drive signal to the ultrasonic transducer 31. As a result, the ultrasonic vibrator 31 ultrasonically vibrates, and the vibrating body 41 that is tightly fixed to the ultrasonic vibrator 31 also ultrasonically vibrates integrally therewith. A few seconds after the operation of the ultrasonic oscillator 61 starts, the pump 53 starts operating according to a control signal from the ultrasonic control device 62, and sends the cleaning liquid W <b> 1 in the cleaning liquid tank 52 toward the nozzle 11 under pressure. Then, the cleaning liquid W <b> 1 that has entered the cavity 14 from the supply port 16 of the nozzle 11 flows through the gap 46 between the outer surface of the vibrator 41 and the inner wall surface of the cavity 14, and the discharge port 15 on the tip end side of the nozzle 11. Move towards. Then, at the time of the movement, the ultrasonic waves are superposed on the cleaning liquid W1 by the vibrating body 41 that ultrasonically vibrates. The cleaning liquid W1 on which the ultrasonic waves are superposed is discharged as flowing water from the discharge port 15, and the surface of the silicon wafer 2 thereunder is exposed to the cleaning liquid W1 to perform ultrasonic cleaning. The flow rate from the tip of the nozzle 11 is not particularly limited, and is appropriately set according to the size and type of the object to be cleaned. In the present embodiment, the flow rate is, for example, about 0.1 L / min to 0.5 L / min. Is set to
 従って、本実施の形態によれば以下の効果を得ることができる。 Therefore, according to the present embodiment, the following effects can be obtained.
 (1)本実施形態の流水式超音波洗浄機1では、振動体41の外表面と空洞部14の内壁面との隙間46を介して流れる洗浄液W1が吐出口15から流水として吐出される。そしてその吐出の際に、超音波振動子31及び振動体41によって洗浄液W1に超音波が重畳される。この場合、超音波振動子31に密着固定された振動体41によって、空洞部14の内部空間18の大部分があらかじめ埋められているため、流入開始からごく短時間のうちに空洞部14内が洗浄液W1で満たされる。よって、洗浄液W1の供給開始とほぼ同時に超音波を始動することが可能となる。また、超音波振動子31に密着固定された振動体41は振動時に負荷となるため、空洞部14内が洗浄液W1で満たされていない状態で超音波振動子31を駆動したとしても、無負荷で空焚きを行ったときほど短時間では発熱しない。ゆえに、短時間であれば空焚きを許容することができる。なお、振動体41は耐薬品性及び耐熱性を有する非金属無機材料からなるものであるため、洗浄力を高めるために、例えば腐食性の強い洗浄液W1を加熱した状態で使用することが可能となる。また、本実施形態によれば、半導体洗浄用の発泡性薬液の使用が可能となるばかりでなく、その使用量が少なくて済むため、洗浄コストの低減を図ることができる。さらに、廃液の量も減らすことができるため、環境に与える影響も小さいという利点がある。 (1) In the flowing water type ultrasonic cleaning machine 1 of the present embodiment, the cleaning liquid W1 flowing through the gap 46 between the outer surface of the vibrator 41 and the inner wall surface of the cavity 14 is discharged from the discharge port 15 as flowing water. Then, at the time of the ejection, the ultrasonic wave is superimposed on the cleaning liquid W1 by the ultrasonic vibrator 31 and the vibrator 41. In this case, most of the internal space 18 of the cavity 14 is buried in advance by the vibrator 41 fixedly attached to the ultrasonic transducer 31. It is filled with the cleaning liquid W1. Therefore, it is possible to start the ultrasonic wave almost simultaneously with the start of the supply of the cleaning liquid W1. In addition, since the vibrator 41 closely fixed to the ultrasonic vibrator 31 becomes a load when vibrating, even if the ultrasonic vibrator 31 is driven in a state where the inside of the cavity 14 is not filled with the cleaning liquid W1, no load is applied. Does not generate heat in a short time as compared to when it is fired in the air. Therefore, for a short time, empty heating can be permitted. Since the vibrating body 41 is made of a nonmetallic inorganic material having chemical resistance and heat resistance, it is possible to use, for example, a highly corrosive cleaning liquid W1 in a heated state in order to increase the cleaning power. Become. Further, according to the present embodiment, not only the use of the foaming chemical solution for cleaning the semiconductor becomes possible, but also the amount of use thereof can be reduced, so that the cleaning cost can be reduced. Further, since the amount of waste liquid can be reduced, there is an advantage that the influence on the environment is small.
 (2)本実施形態では、振動体41は先端側に行くほど細くなる形状をなす中実体であり、振動体41の基端面41bは超音波振動子31の下端面31bの略全体に対して密着固定されている。従って、振動体41が超音波振動子31に強固に密着固定された状態とすることができるとともに、超音波振動子31の振動を振動体41に確実にかつ効率よく伝達することができる。 (2) In the present embodiment, the vibrating body 41 is a solid body having a shape that becomes thinner toward the distal end side, and the base end face 41 b of the vibrating body 41 is substantially the same as the lower end face 31 b of the ultrasonic vibrator 31. Closely fixed. Accordingly, the vibrator 41 can be firmly fixed to the ultrasonic vibrator 31 and the vibration of the ultrasonic vibrator 31 can be transmitted to the vibrator 41 reliably and efficiently.
 (3)本実施形態では、振動体41は円錐体の形状をなす振動体主部42を有している。このため、振動体41の先端に超音波を集中させやすくなるとともに、先細り形状の空洞部14の内壁面との間に大きさが略一定の隙間46を形成しやすくなる。 (3) In the present embodiment, the vibrating body 41 has the vibrating body main portion 42 in the shape of a cone. For this reason, while making it easy to concentrate an ultrasonic wave on the front-end | tip of the vibrating body 41, it becomes easy to form the clearance gap 46 with a substantially constant size with the inner wall surface of the tapered hollow part 14.
 (4)本実施形態では、振動体41の基端面41bは、超音波振動子31の下端面31bに対して耐熱性接着剤47を介して接着されている。従って、振動体41と超音波振動子31との接合部分が熱に強くなるため、空焚きに対する耐性が向上し、超音波振動子31が破損しにくくなる。 (4) In the present embodiment, the base end face 41 b of the vibrating body 41 is bonded to the lower end face 31 b of the ultrasonic vibrator 31 via the heat-resistant adhesive 47. Therefore, since the joint between the vibrating body 41 and the ultrasonic vibrator 31 is resistant to heat, the resistance to empty heating is improved, and the ultrasonic vibrator 31 is hardly damaged.
 (5)本実施形態では、隙間46の大きさは略一定であるため、比較的大きい振動体41を用いた場合であっても隙間46を介して洗浄液W1をスムーズに吐出口15に導くことができる。また、比較的大きい振動体41として、空洞部14の内部空間18の60%以上95%以下の容積を占有するものを使用しているため、洗浄液W1の流量をある程度確保したうえで、振動体41によって内部空間18の大部分を確実に埋めるとともに、振動体41を十分な負荷として機能させることができる。 (5) In the present embodiment, since the size of the gap 46 is substantially constant, the cleaning liquid W1 can be smoothly guided to the discharge port 15 through the gap 46 even when the relatively large vibrator 41 is used. Can be. In addition, since a relatively large vibrator 41 occupying a volume of 60% or more and 95% or less of the internal space 18 of the hollow portion 14 is used, the flow rate of the cleaning liquid W1 is secured to some extent. 41 can reliably fill most of the internal space 18 and allow the vibrating body 41 to function as a sufficient load.
 (6)本実施形態では、流水式超音波洗浄機1を用いるとともに、被洗浄物をシリコンウェハ2とし、シリコンウェハ2の洗浄に適した発泡性の薬液を洗浄液W1として、超音波洗浄を行っている。この場合でも発泡性の薬液に超音波を確実に重畳させることができるため、化学的な作用及び物理的な作用の両方によって、シリコンウェハ2を効率よく確実に洗浄することができる。 (6) In the present embodiment, while using the flowing water type ultrasonic cleaner 1, the object to be cleaned is the silicon wafer 2, and the ultrasonic cleaning is performed using the foaming chemical solution suitable for cleaning the silicon wafer 2 as the cleaning liquid W1. ing. Even in this case, since the ultrasonic wave can be reliably superimposed on the foaming chemical solution, the silicon wafer 2 can be efficiently and reliably cleaned by both the chemical action and the physical action.
 なお、本発明の各実施の形態は以下のように変更してもよい。 Note that each embodiment of the present invention may be modified as follows.
 ・上記実施形態のノズル11は、略円錐形状をなす振動体主部42を有するものであったが、略円錐形状に代えて、例えば、略三角錐、略四角錐、略六角錐、略八角錐などの角錐形状をなす振動体主部42を有するものとしても勿論よい。 The nozzle 11 of the above-described embodiment has the vibrating body main portion 42 having a substantially conical shape. However, instead of the substantially conical shape, for example, a substantially triangular pyramid, a substantially quadrangular pyramid, a substantially hexagonal pyramid, a substantially eight The vibrating body main portion 42 having a pyramid shape such as a pyramid may of course be provided.
 ・上記実施形態のノズル11の場合、振動体41が略円錐形状をなす振動体主部42を有していたが、振動体主部42の形状はこれに限定されない。例えば、図5に示す別の実施形態のノズル11Aのような形状としてもよい。このノズル11Aの振動体41Aの場合、振動体主部42Aの基端側半分が円柱形状をなしており、先端側半分が略円錐形状をなしている。その結果、上記実施形態のものよりもさらに隙間46が一定の大きさとなっている。また、図6に示す別の実施形態のノズル11Bのような形状としてもよい。このノズル11Bの振動体41Bの場合、振動体主部42Bの基端側半分が円柱形状をなしており、先端側半分が半球形状をなしている。さらに、図7に示す別の実施形態のノズル11Cのような形状としてもよい。このノズル11Cの振動体41Cの場合、振動体主部42Cは段差状に形成されており、先端側に行くほど細くなっている。 In the case of the nozzle 11 of the above embodiment, the vibrating body 41 has the vibrating body main part 42 having a substantially conical shape, but the shape of the vibrating body main part 42 is not limited to this. For example, it may be shaped like the nozzle 11A of another embodiment shown in FIG. In the case of the vibrating body 41A of the nozzle 11A, the base-side half of the vibrating body main part 42A has a cylindrical shape, and the distal-side half has a substantially conical shape. As a result, the gap 46 has a constant size further than in the above embodiment. Further, it may be shaped like the nozzle 11B of another embodiment shown in FIG. In the case of the vibrating body 41B of the nozzle 11B, the base-side half of the vibrating body main part 42B has a cylindrical shape, and the distal-side half has a hemispherical shape. Furthermore, it may be shaped like the nozzle 11C of another embodiment shown in FIG. In the case of the vibrating body 41C of the nozzle 11C, the vibrating body main portion 42C is formed in a stepped shape, and becomes thinner toward the tip end.
 ・上記実施形態では、振動体41がフランジ部43を有するものであったが、フランジ部43は必須の構造ではないため省略されてもよい。 In the above embodiment, the vibrating body 41 has the flange portion 43, but the flange portion 43 is not an essential structure and may be omitted.
 ・上記実施形態では、振動体41が石英製であったが、石英に代えて、石英以外の鉱物系材料(例えばサファイヤ等)を用いて振動体41を形成してもよい。また、鉱物系材料以外の非金属無機材料であるセラミック材料(例えばアルミナ、チタニア、シリカ、炭化珪素等)を用いて振動体41を形成してもよい。 In the above embodiment, the vibrating body 41 is made of quartz. However, the vibrating body 41 may be formed by using a mineral material other than quartz (for example, sapphire) instead of quartz. Further, the vibrating body 41 may be formed using a ceramic material (for example, alumina, titania, silica, silicon carbide, or the like) which is a nonmetallic inorganic material other than the mineral-based material.
 ・上記実施形態では、耐熱性接着剤47を用いて振動体41の基端面41bと超音波振動子31の下端面31bとを接合したが、耐熱性接着剤47以外の接着剤でこれらを接合してもよい。あるいは、接着剤を用いた接着以外の手法によりこれらを接合しても勿論よい。 In the above embodiment, the base end surface 41b of the vibrator 41 and the lower end surface 31b of the ultrasonic vibrator 31 are joined by using the heat-resistant adhesive 47, but they are joined by an adhesive other than the heat-resistant adhesive 47. May be. Alternatively, it is a matter of course that these may be joined by a method other than adhesion using an adhesive.
 ・上記実施形態では、洗浄液W1として発泡性の薬液を用いてシリコンウェハ2の超音波洗浄を行ったが、非発泡性の薬液(例えば超純水など)を用いて超音波洗浄を行っても勿論よい。 In the above embodiment, the ultrasonic cleaning of the silicon wafer 2 was performed using a foaming chemical as the cleaning liquid W1, but the ultrasonic cleaning may be performed using a non-foaming chemical (eg, ultrapure water). Of course.
 ・上記実施形態では、流水式超音波洗浄機1を用いてシリコンウェハ2の超音波洗浄を行う例を示したが、シリコンウェハ2以外のもの、例えばダイシングブレード等のような半導体製造用ツールの超音波洗浄を行ってもよい。また、シリコンウェハ2やダイシングブレード等のような板状物のみに限らず、種々の形状のものを被洗浄物としてもよい。 In the above embodiment, the example in which the ultrasonic cleaning of the silicon wafer 2 is performed using the flowing water ultrasonic cleaning machine 1 has been described. However, other than the silicon wafer 2, for example, a semiconductor manufacturing tool such as a dicing blade is used. Ultrasonic cleaning may be performed. The object to be cleaned is not limited to a plate-like object such as the silicon wafer 2 or a dicing blade, but may be of various shapes.
1…流水式超音波洗浄機
2…被洗浄物としてのシリコンウェハ
11、11A、11B、11C…流水式超音波洗浄機ノズル
12…ノズル本体
14…空洞部
15…吐出口
17…流路
18…内部空間
31…超音波振動子
31b…(超音波振動子の)前端面としての下端面
41、41A、41B、41C…振動体
42、42A、42B、42C…振動体主部
46…隙間
51…洗浄液供給装置
61…超音波発振器
W1…洗浄液
DESCRIPTION OF SYMBOLS 1 ... Water-flow type ultrasonic cleaner 2 ... Silicon wafer 11, 11A, 11B, 11C as a to-be-cleaned object ... Water-flow type ultrasonic cleaner nozzle 12 ... Nozzle body 14 ... Cavity part 15 ... Discharge port 17 ... Flow path 18 ... Internal space 31 Ultrasonic transducer 31b Lower end faces 41, 41A, 41B, 41C as front end faces (of ultrasonic transducers) Vibrators 42, 42A, 42B, 42C Vibrator main part 46 Gap 51 Cleaning liquid supply device 61: Ultrasonic oscillator W1: Cleaning liquid

Claims (9)

  1.  超音波を重畳させた洗浄液を流水として吐出することで被洗浄物を超音波洗浄する流水式超音波洗浄機ノズルであって、
     前記洗浄液が流れる流路の一部をなす先細り形状の空洞部を有し、前記空洞部内の前記洗浄液を吐出する吐出口を前記空洞部の先端に有するノズル本体と、
     前記空洞部の基端側に配置された板状の超音波振動子と、
     耐薬品性を有する非金属無機材料からなり、前記超音波振動子の前端面に密着固定され、前記空洞部の内部空間の半分以上の容積を占有する振動体と
    を備え、
     前記振動体の外表面と前記空洞部の内壁面との隙間を介して、前記洗浄液が流れるように構成されている
    ことを特徴とする流水式超音波洗浄機ノズル。
    A flushing type ultrasonic cleaner nozzle for ultrasonically cleaning an object to be cleaned by discharging a cleaning liquid with superimposed ultrasonic waves as running water,
    A nozzle body having a tapered cavity forming a part of a flow path through which the cleaning liquid flows, and having a discharge port for discharging the cleaning liquid in the cavity at the tip of the cavity,
    A plate-shaped ultrasonic vibrator arranged on the base end side of the hollow portion,
    A vibrator made of a non-metallic inorganic material having chemical resistance, closely adhered to the front end face of the ultrasonic vibrator, and occupying a volume equal to or more than half of the internal space of the hollow portion,
    A flowing water type ultrasonic cleaner nozzle, wherein the cleaning liquid is configured to flow through a gap between an outer surface of the vibrator and an inner wall surface of the cavity.
  2.  前記振動体は先端側に行くほど細くなる形状をなす中実体であり、前記振動体の基端面は前記超音波振動子の前記前端面の略全体に対して密着固定されていることを特徴とする請求項1に記載の流水式超音波洗浄機ノズル。 The vibrating body is a solid body having a shape that becomes thinner toward the distal end side, and a base end surface of the vibrating body is tightly fixed to substantially the entire front end surface of the ultrasonic vibrator. The flowing water ultrasonic cleaner nozzle according to claim 1.
  3.  前記振動体は、錐体の形状をなす振動体主部を有することを特徴とする請求項2に記載の流水式超音波洗浄機ノズル。 The nozzle according to claim 2, wherein the vibrator has a vibrator main part having a cone shape.
  4.  前記振動体は、石英製であることを特徴とする請求項1乃至3のいずれか1項に記載の流水式超音波洗浄機ノズル。 The running-fluid ultrasonic cleaner nozzle according to any one of claims 1 to 3, wherein the vibrator is made of quartz.
  5.  前記振動体の前記基端面は、前記超音波振動子の前記前端面に対して耐熱性接着剤を介して接着されていることを特徴とする請求項1乃至4のいずれか1項に記載の流水式超音波洗浄機ノズル。 The method according to any one of claims 1 to 4, wherein the base end surface of the vibrator is bonded to the front end surface of the ultrasonic vibrator via a heat-resistant adhesive. Flow-through ultrasonic cleaner nozzle.
  6.  前記隙間の大きさは略一定であることを特徴とする請求項1乃至5のいずれか1項に記載の流水式超音波洗浄機ノズル。 The nozzle according to any one of claims 1 to 5, wherein the size of the gap is substantially constant.
  7.  前記振動体は、前記空洞部の内部空間の60%以上95%以下の容積を占有することを特徴とする請求項1乃至6のいずれか1項に記載の流水式超音波洗浄機ノズル。 The nozzle according to any one of claims 1 to 6, wherein the vibrator occupies 60% or more and 95% or less of the internal space of the hollow portion.
  8.  請求項1乃至7のいずれか1項に記載のノズルと、前記ノズルの前記空洞部内に前記洗浄液を供給する洗浄液供給装置と、前記ノズルの前記超音波振動子を駆動させる超音波発振器とを備えたことを特徴とする流水式超音波洗浄機。 A nozzle according to claim 1, a cleaning liquid supply device that supplies the cleaning liquid into the hollow portion of the nozzle, and an ultrasonic oscillator that drives the ultrasonic vibrator of the nozzle. A running water ultrasonic cleaner.
  9.  請求項8に記載の流水式超音波洗浄機を用いて被洗浄物を洗浄する方法であって、前記被洗浄物が半導体ウェハまたは半導体製造用ツールであり、前記洗浄液が前記半導体ウェハまたは半導体製造用ツールを洗浄するための発泡性の薬液であることを特徴とする超音波洗浄方法。 9. A method for cleaning an object to be cleaned using the flowing water ultrasonic cleaning machine according to claim 8, wherein the object to be cleaned is a semiconductor wafer or a tool for manufacturing semiconductors, and the cleaning liquid is the semiconductor wafer or semiconductor manufacturing. Ultrasonic cleaning method characterized in that it is an effervescent chemical solution for cleaning a tool for use.
PCT/JP2018/027811 2018-07-25 2018-07-25 Flowing liquid-type ultrasonic cleaning machine, nozzle thereof, and ultrasonic cleaning method WO2020021648A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018553160A JP6507358B1 (en) 2018-07-25 2018-07-25 Flow-through ultrasonic cleaning machine and nozzle thereof, ultrasonic cleaning method
KR1020197031862A KR20200012835A (en) 2018-07-25 2018-07-25 Flow type ultrasonic cleaner and its nozzle, ultrasonic cleaning method
CN201880027560.2A CN110730693A (en) 2018-07-25 2018-07-25 Water flow type ultrasonic cleaning machine, spray head thereof and ultrasonic cleaning method
PCT/JP2018/027811 WO2020021648A1 (en) 2018-07-25 2018-07-25 Flowing liquid-type ultrasonic cleaning machine, nozzle thereof, and ultrasonic cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027811 WO2020021648A1 (en) 2018-07-25 2018-07-25 Flowing liquid-type ultrasonic cleaning machine, nozzle thereof, and ultrasonic cleaning method

Publications (1)

Publication Number Publication Date
WO2020021648A1 true WO2020021648A1 (en) 2020-01-30

Family

ID=66429800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027811 WO2020021648A1 (en) 2018-07-25 2018-07-25 Flowing liquid-type ultrasonic cleaning machine, nozzle thereof, and ultrasonic cleaning method

Country Status (4)

Country Link
JP (1) JP6507358B1 (en)
KR (1) KR20200012835A (en)
CN (1) CN110730693A (en)
WO (1) WO2020021648A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7088461B1 (en) * 2021-04-16 2022-06-21 守 笹川 Ultrasonic cleaner

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7283542B2 (en) 2020-03-19 2023-05-30 株式会社村田製作所 Vibration device and vibration control method
KR102446082B1 (en) * 2020-08-12 2022-09-23 한국기계연구원 Ultrasonic Fluid Injection Module
JP7282472B2 (en) * 2020-09-28 2023-05-29 株式会社カイジョー ultrasonic shower cleaner
KR20230075323A (en) 2020-09-28 2023-05-31 가부시끼가이샤가이죠 ultrasonic shower cleaning device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181378A (en) * 1989-12-11 1991-08-07 Matsushita Electric Ind Co Ltd Washing device
JP2000334403A (en) * 1999-05-31 2000-12-05 Honda Electronic Co Ltd Ultrasonic cleaning device
JP2003340386A (en) * 2002-05-23 2003-12-02 Toshiba Corp Ultrasonic cleaning apparatus and method therefor
JP2004148179A (en) * 2002-10-30 2004-05-27 Honda Electronic Co Ltd Ultrasonic washing apparatus
JP2004275721A (en) * 2003-02-25 2004-10-07 Matsushita Electric Works Ltd Ultrasonic living body washing device
JP2008080293A (en) * 2006-09-28 2008-04-10 Hitachi Plant Technologies Ltd Washing apparatus
JP2012043830A (en) * 2010-08-12 2012-03-01 Fujitsu Ltd Cleaning device and cleaning method
JP5786166B2 (en) * 2011-07-19 2015-09-30 学校法人昭和大学 Flowing water type ultrasonic oral cleaning equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786166A (en) 1980-11-17 1982-05-29 Sony Corp Tape tension detector
CN100443036C (en) * 2003-02-25 2008-12-17 松下电工株式会社 Ultrasonic washing device
JP2010238744A (en) * 2009-03-30 2010-10-21 Toshiba Corp Ultrasonic cleaning unit, and ultrasonic cleaning device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181378A (en) * 1989-12-11 1991-08-07 Matsushita Electric Ind Co Ltd Washing device
JP2000334403A (en) * 1999-05-31 2000-12-05 Honda Electronic Co Ltd Ultrasonic cleaning device
JP2003340386A (en) * 2002-05-23 2003-12-02 Toshiba Corp Ultrasonic cleaning apparatus and method therefor
JP2004148179A (en) * 2002-10-30 2004-05-27 Honda Electronic Co Ltd Ultrasonic washing apparatus
JP2004275721A (en) * 2003-02-25 2004-10-07 Matsushita Electric Works Ltd Ultrasonic living body washing device
JP2008080293A (en) * 2006-09-28 2008-04-10 Hitachi Plant Technologies Ltd Washing apparatus
JP2012043830A (en) * 2010-08-12 2012-03-01 Fujitsu Ltd Cleaning device and cleaning method
JP5786166B2 (en) * 2011-07-19 2015-09-30 学校法人昭和大学 Flowing water type ultrasonic oral cleaning equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7088461B1 (en) * 2021-04-16 2022-06-21 守 笹川 Ultrasonic cleaner

Also Published As

Publication number Publication date
JP6507358B1 (en) 2019-05-08
CN110730693A (en) 2020-01-24
JPWO2020021648A1 (en) 2020-08-06
KR20200012835A (en) 2020-02-05

Similar Documents

Publication Publication Date Title
WO2020021648A1 (en) Flowing liquid-type ultrasonic cleaning machine, nozzle thereof, and ultrasonic cleaning method
KR20130079600A (en) Ultrasonic cleaning device and ultrasonic cleaning method
JP5045423B2 (en) Inkjet head cleaning apparatus and inkjet recording apparatus
JP3938129B2 (en) Ultrasonic cleaning equipment
JP4255818B2 (en) Ultrasonic cleaning nozzle and ultrasonic cleaning device
KR101017104B1 (en) Supersonic nozzle and wafer cleaning apparatus compring the same
JP2007050701A (en) Inkjet head for prevention of nozzle clogging
JP3839154B2 (en) Ultrasonic vibration generator and ultrasonic cleaning device
KR101798452B1 (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
JPH10165910A (en) Ultrasonic cleaning apparatus
KR101576827B1 (en) Nozzle assembly of bidet
JP2004167377A (en) Ultrasonic washing machine
JP7282472B2 (en) ultrasonic shower cleaner
JP4349244B2 (en) Ultrasonic cleaning equipment
TW202212016A (en) Ultrasonic shower cleaning apparatus
US20240025120A1 (en) Method for cleaning a print head
JP2007237157A (en) Ultrasonic washing apparatus
JP4349245B2 (en) Ultrasonic cleaning equipment
JP2000228385A (en) Cleaning apparatus
JPH11204479A (en) Ultrasonic cleaning device
JPH1133508A (en) Ultrasonic cleaning device
KR101448580B1 (en) Nozzle device of fine cleaning
JPH0994544A (en) Ultrasonic cleaning device
JP3808951B2 (en) Ultrasonic vibration device and ultrasonic cleaning device using the same
JP2007245129A (en) Ultrasonic cleaner

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018553160

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927755

Country of ref document: EP

Kind code of ref document: A1