WO2020021189A1 - Soudage d'une membrane etanche d'un massif d'isolation thermique d'une cuve - Google Patents

Soudage d'une membrane etanche d'un massif d'isolation thermique d'une cuve Download PDF

Info

Publication number
WO2020021189A1
WO2020021189A1 PCT/FR2019/051820 FR2019051820W WO2020021189A1 WO 2020021189 A1 WO2020021189 A1 WO 2020021189A1 FR 2019051820 W FR2019051820 W FR 2019051820W WO 2020021189 A1 WO2020021189 A1 WO 2020021189A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
thermally insulating
adjacent
raised
supports
Prior art date
Application number
PCT/FR2019/051820
Other languages
English (en)
Inventor
Nicolas LAURAIN
Sylvain KART
Michaël BIDENBACH
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to SG11202100789QA priority Critical patent/SG11202100789QA/en
Priority to CN201980049914.8A priority patent/CN112543691B/zh
Priority to EP19761914.1A priority patent/EP3826796A1/fr
Priority to KR1020217004065A priority patent/KR20210031938A/ko
Publication of WO2020021189A1 publication Critical patent/WO2020021189A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/06Resistance welding; Severing by resistance heating using roller electrodes
    • B23K11/061Resistance welding; Severing by resistance heating using roller electrodes for welding rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/3036Roller electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/14Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed pressurised
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/221Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the subject of the invention is the production of sealed and thermally insulating tanks intended more particularly, but not exclusively, for the transport by sea of liquefied gases or cryogenic liquid and, more specifically, for the transport of liquefied natural gases with a high methane content (LNG). ) or petroleum (LPG).
  • LNG high methane content
  • LPG petroleum
  • the invention relates here to the welding of a waterproof membrane of such a tank, more particularly the invention provides a solution for achieving optimal welding between two adjacent strakes of the membrane as well as two anchoring wings, said two strakes having raised edges and the welding between these two adjoining strakes being carried out at these raised edges.
  • anchor wing and “weld support” will be used interchangeably to designate the same element, the function of which is both to provide a means of anchoring the membrane (its strakes) to the block. thermal insulation and serve as a weld support for fixing with each of the two adjacent strakes.
  • FR 2798358, FR 2709725, FR 2549575 storage or transport tanks for liquefied gases at low temperature including the or each waterproof membrane, in particular a primary waterproof membrane in contact with the product contained in the tank, consists of thin metal sheets which will be carried by a thermally insulating barrier. These thin metal sheets are tightly connected to each other to ensure the tightness of the tank.
  • FIG. 1 illustrates a known method of fixing said metal sheets to the thermally insulating barrier in this type of tank.
  • an upper surface 101 of the thermally insulating barrier has a groove 102 developing in the thickness of the thermally insulating barrier from the support surface 101.
  • This groove 102 has in the thickness of the thermally insulating barrier a retaining zone formed by a groove 103 which develops parallel to the support surface 101.
  • This groove 103 develops at one end of the groove 102 opposite the support surface 101 in the thickness of the thermally insulating barrier, the groove 102 having a cross section in the shape of an inverted "T" whose base is formed by the groove 103.
  • An anchoring wing 104 in the shape of an “L” is inserted in the groove 102.
  • This anchoring wing 104 has a base 105 housed in the groove 103 so as to retain the wing of anchoring 104 on the thermally insulating barrier in a direction perpendicular to the support surface 101.
  • the anchoring wing 104 also comprises an anchoring branch 106 of which a lower part 107 is contiguous of the base 105 and an upper part 108 protrudes above the support surface 101.
  • Two metal sheets 109 are arranged on either side of the anchoring wing 104. These metal sheets 109 each have a flat central portion 110 bearing on the support surface 101 (for the sake of readability of the figure, the support surface 101 and the metal sheets 109 are shown in Figure 1 with a gap). These metal sheets 109 also have raised side edges, hereinafter called raised edges 111. A raised edge 111 of each of the two adjacent metal sheets 109 is welded on either side of the anchoring branch 106 of the anchor wing 104.
  • the raised edges 111 thus form, with the anchoring wing 104, bellows making it possible to absorb the forces associated with the contraction of the waterproof membrane, for example when loading cryogenic liquid into the tank.
  • an anchoring wing 104 constitutes a fixed fixing point for each raised edge 111.
  • the anchoring wing 104 being biased in two opposite directions by the raised edges 111, it remains substantially static in the tank. . Consequently, the anchoring of the raised edges 111 on the support surface 101 via the anchoring wings 104 is substantially fixed in the direction perpendicular to the raised edges 11 1. The flexibility of the waterproof membrane is therefore limited.
  • the present invention intends to remedy the shortcomings of the state of the art by proposing a particularly effective solution for carrying out the welding between two adjacent strakes, when each has or comprises an anchoring wing connecting or fixing it to the insulation block. thermal.
  • the present invention relates to a method for welding a waterproof and thermally insulating tank membrane, in which a waterproof and thermally insulating tank comprises at least one waterproof metal membrane and a thermally insulating block comprising at least one thermally insulating barrier adjacent to said membrane, in which:
  • At least two metal strakes of the waterproof membrane, carried by a support surface of the thermally insulating barrier, are in the form a profiled part comprising a flat central portion resting on the support surface and two raised lateral edges projecting from the support surface, and
  • the method according to the invention characterized in that a conductive strip is inserted between the two aforementioned metal welding supports and in that, subsequently, the joints are welded together, in pairs, by welding with the thumbwheel each of the two raised lateral edges of the two adjacent metal strakes respectively with one of said metallic welding supports, interposed between said adjacent raised edges.
  • the welding method according to the invention makes it possible to ensure the mechanical continuity and the sealing of the weld bead, to weld the length of the raised edges without stopping or resuming thanks to the electrical continuity and not to merge the two. weld supports at the welds with the two edges raised. This process is also compatible with current welding machines and therefore makes it possible to conserve existing equipment, limit investment and manage the machine fleet.
  • a simultaneous weld (at the same time) is carried out of each of the two raised edge / weld support assemblies.
  • “Seam welding” is understood to mean welding in which the parts are assembled by application of an electric current (the application of direct current or not) and of pressure, knobs against the surface to be welded.
  • At least one of the welding supports preferably both, consists of an anchoring wing so as to anchor the waterproof membrane to the thermally insulating barrier of the thermal insulation mass;
  • the anchoring wing is in the form of an L and has a longitudinal portion and a lower portion engaged with the thermally insulating barrier;
  • the lower portion of the anchoring wing extends, parallel to the middle portion of the metal strakes, in a recess in the thermally insulating barrier of the thermal insulation mass;
  • said welding supports Prior to the welding of each of the above edges raised with one of said welding supports, said welding supports have been fixed by welding in a sealed manner to each other;
  • the junction of the two adjacent strakes with the two metal anchoring wings has, thanks to the different welding points, a profile or a section in W.
  • a junction has a double-bellows function which gives it significant elasticity properties allowing the waterproof membrane, in particular at this level, to support or absorb very strong thermal gradients, resulting in particular in (thermal) contractions particularly significant.
  • the seam welding of each of said two adjacent raised edges with respectively one of said welding supports is carried out at a speed of between 1.5 meters per minute (m / min) and 2.5 m / min , preferably at a speed of 1.8 m / min;
  • the above raised edges are made of Invar® or steel containing at least 20% manganese, preferably at least 25% manganese, even more preferably 28% manganese;
  • the thickness of the raised edges is between 0.5 and 0.8 millimeter (mm), preferably equal to 0.7 mm; - when the raised edges, possibly the welding supports have such a thickness (of 0.5 and 0.8 mm), during the seam welding, the intensity of the current is between 1.8 and 3.2 kiloamperes (kA), preferably between 2.2 and 2.8 kA, and the pressure force exerted by each wheel against respectively a raised edge is between 1.2 and 2.8 bars, preferably between 2 and 2, 5 bars;
  • the thickness of the raised edges preferably also the thickness of the aforementioned welding supports, is between 0.9 and 1.2 millimeter (mm), preferably equal to 1 mm;
  • the welding supports have such a thickness (of 0.9 and 1.2 mm)
  • the intensity of the current is between 2.7 and 3.8 kA , preferably between 3 and 3.5 kA
  • the pressure force exerted by each wheel against respectively a raised edge is between 3.5 and 5 bars, preferably between 4 and 4.5 bars;
  • the electric current of the seam welding does not circulate continuously, preferably said electric current circulates during a time range corresponding to 60% to 80% of the time at (or for) a constant frequency, even more preferably for two thirds (2/3) of the time at (or for) a constant frequency;
  • the conductive strip consists of a material or an alloy of materials with a high melting point, greater than the melting point of the raised edges and the welding supports.
  • the conductive strip is (essentially comprises) copper, a molybdenum-based alloy, a tungsten-based alloy or graphite, preferably copper.
  • the invention also relates to a system for welding a sealed and thermally insulating tank membrane, the system comprising a seam welding device comprising two seams, optionally means for holding said seams against a surface to be welded, and a wall of a sealed and thermally insulating tank comprising:
  • the seam welding device carrying out at least one welding respectively between one of the above raised edges and one of the above welding supports
  • the system according to the invention being characterized in that the welding device comprises a conductive blade intended to be inserted between the two welding supports so as to carry out the welding of each of the above two adjacent raised side edges with one of said welding supports respectively, interposed between said adjacent raised edges.
  • the invention also relates to a sealed and thermally insulating tank integrated into a support structure, comprising a sealed and thermally insulating tank comprising at least one waterproof metal membrane composed of a plurality of metallic strakes and a thermally insulating block comprising at least one thermally barrier. insulator adjacent to said membrane, in which:
  • At least two metal strakes of the waterproof membrane, carried by a support surface of the thermally insulating barrier, are in the form of a profiled part comprising a flat central portion resting on the support surface and two raised lateral edges making protruding from the support surface, and
  • the tank according to the invention is characterized in that each of the two adjacent raised lateral edges of the two adjacent metal strakes and respectively one of said weld supports, interposed between said adjacent raised edges, are welded together in pairs waterproof, by seam welding.
  • the production of a weld between a strake (its raised edge) and an anchoring wing is certainly known as such, from the document FR 3054872, but the weld point present, with the use of the method according to the present invention, a section with a shape different from that of this prior art.
  • the section of the weld point has a shape substantially oval (and not symmetrical as in the state of the art) whose protuberance (protuberance or hump) is on the side of the strake, that is to say on the side where the wheel was positioned during welding. It will be noted that, in the event that two knurls, arranged on either side of the welding point, are used, the welding point has a symmetrical shape. This section of slightly different shape - the appended FIG.
  • the invention also relates to a ship for the transport of a cold liquid product, the ship comprising a double hull and a sealed and thermally insulating tank as briefly described above, arranged in the double hull.
  • the vessel according to the invention comprises at least one sealed and insulating tank as described above, said tank comprising two successive sealing barriers, one primary in contact with a product contained in the tank and the other secondary disposed between the primary barrier and a supporting structure, preferably constituted by at least a portion of the walls of the ship, these two sealing barriers being alternated with two thermally insulating barriers or a single thermally insulating barrier disposed between the primary barrier and the load-bearing structure.
  • GMO International Maritime Organization
  • the tank contains a Liquefied Natural Gas (LNG) or a Liquefied Gas (GL).
  • LNG Liquefied Natural Gas
  • GL Liquefied Gas
  • the invention also provides a method of loading or unloading of such a vessel, in which a fluid product is conveyed through isolated pipes from or to a floating or land storage installation towards or from the tank. of the ship.
  • the invention also provides a transfer system for a fluid product, in particular cold liquid, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank installed in the hull of the vessel to an installation floating or terrestrial storage and a pump to drive a flow of fluid through the insulated pipes from or to the floating or terrestrial storage facility to or from the vessel of the ship.
  • - Figure 1 is a sectional view of a waterproof metal membrane anchor wing of the prior art, said anchor wing being anchored in a thermally insulating barrier of a sealed and thermally insulating tank;
  • - Figure 2 is a sectional view of two metal membrane anchoring wings, the two anchoring wings having been welded together before their introduction into the thermal insulation block, this figure illustrating a portion of wall d 'a tank, at two adjacent strakes, before the application of the welding process according to the invention;
  • - Figure 3 is a sectional view identical to Figure 2, this time the elements suitable for implementing the welding process according to the invention being visible in this figure;
  • FIG. 4 is a sectional view, showing the elements visible in Figures 2 and 3, of a portion of the wall of the sealed and thermally insulating tank, after the implementation of the welding process according to the invention;
  • FIG. 5 is a cutaway schematic representation of an LNG tank and a loading / unloading terminal of this tank.
  • the gas may in particular be a liquefied natural gas (LNG), that is to say a gaseous mixture mainly comprising methane as well as one or more other hydrocarbons, such as ethane, propane, n-butane, i -butane, n-pentane, i-pentane, neopentane, and nitrogen in small proportion.
  • LNG liquefied natural gas
  • the gas can also be ethane or a liquefied petroleum gas (LPG), that is to say a mixture of hydrocarbons resulting from the refining of petroleum comprising essentially propane and butane.
  • the waterproof membrane rests on a support surface formed by a thermally insulating barrier of the tank.
  • This waterproof membrane has a repeated structure, alternately comprising, on the one hand, sheet metal strips, forming strakes, arranged on the support surface and, on the other hand, elongated welding supports linked to the support surface and s' extending parallel to the sheet metal strips over at least part of the length of the sheet metal strips.
  • the sheet metal strips have raised side edges arranged and welded against the adjacent welding supports.
  • Such a structure is for example used in the type of LNG tanks NO 96 ® marketed by the Applicant.
  • the raised edges of the strakes are preferably arranged in a longitudinal direction perpendicular or parallel to the longitudinal direction of the ship.
  • the raised edges constitute bellows making it possible to absorb the contraction forces in a longitudinal direction of the ship or a transverse direction perpendicular thereto.
  • the sheet metal strips and the welding supports are interrupted at the angles, for example as described in document WO 2012/072906 or else FR2724623.
  • the waterproofing membrane (strakes), one of the waterproofing membranes or the waterproofing membranes can be made of a metal chosen from stainless steel, aluminum, Invar ® , that is to say an alloy of iron and nickel whose coefficient of expansion is typically between 1, 2.10 6 and 2.10 6 K 1 or an alloy of iron with high manganese content whose coefficient of expansion is from 7 to 9.10 6 K 1 .
  • a material having a coefficient of thermal contraction less than 16.10 6 / K is chosen for applications in which the liquid gas is at a temperature between -45 ° C and -100 ° C.
  • Figures 2 to 4 show a sectional view of a wall of a sealed and thermally insulating tank at the connection between two adjacent metal strakes 1, 2 of a sealed membrane of the tank wall and two welding supports 3, 4 anchored on a thermally insulating barrier 5 of the thermal insulation mass of the tank wall.
  • a thermally insulating barrier 5 is formed of juxtaposed insulating elements.
  • suitable insulating elements are described in document W02012 / 072906.
  • This thermal barrier 5 of the thermal insulation mass can be produced in one or more thicknesses responding to the function of thermally isolating the contents of the tank from its environment.
  • the material or materials which may also be present in such a thermal insulation mass consist, for example, of polymer foams, such as polyurethane foams, polystyrene or polyethylene, preferably at very low density (LDPE), manufactured glass wool, loose glass wool, melamine foams, aerogels, polyester wadding in mattresses or in bulk.
  • polymer foams such as polyurethane foams, polystyrene or polyethylene, preferably at very low density (LDPE), manufactured glass wool, loose glass wool, melamine foams, aerogels, polyester wadding in mattresses or in bulk.
  • the thermal insulation block is conventionally anchored to the supporting structure, not shown in the appended figures, for example of a ship or a barge, by retaining members.
  • Each of the insulating elements forming the thermal insulation block here has the shape of a rectangular parallelepiped having two large faces, or main faces, and four small faces, or lateral faces. More specifically, vimres 1, 2 adjacent metal rests on a support surface 10 of the thermal insulation block (or of the thermally insulating barrier 5). This support surface 10 is formed by the upper face of the thermally insulating barrier 5.
  • the welding supports 3, 4 are anchored in the insulating element of the thermally insulating barrier 5 of the thermal insulation block.
  • the upper face of the block (thermally insulating barrier 5) has a groove 11 which has a section in the shape of an inverted "T".
  • the upper part of the thermally insulating barrier 5 can include a plywood or a composite material in which the groove 11 is housed.
  • a retaining zone 12 develops in the thickness of the thermally insulating barrier 5 of the thermal insulation mass. insulator parallel to the support surface 10.
  • the weld supports 3, 4 are inserted by sliding in the grooves 11 of the thermal insulation block.
  • the weld supports 3, 4 are thus slidably anchored on, or in, the thermal insulation block 5, in the longitudinal direction of the weld supports 3, 4.
  • the retaining area 12 is formed by two grooves 13, 14 developing on either side of the groove 11, at the lower end of said groove 11 .
  • the welding supports 3, 4 consist of two metal anchoring wings, preferably of identical shape and nature (material). These metal anchoring wings 3, 4 are essentially symmetrical with respect to a plane perpendicular to the support surface 10 and parallel to a longitudinal direction of the groove 11. Each metal anchoring wing 3 or 4 has a section in the form of “L” comprising a base 21 and an anchoring branch 22. The base 21 corresponds to the lower portion of the metal anchoring wing 3, 4 while the anchoring branch 22 corresponds to the longitudinal portion of these same metal anchor wings 3, 4.
  • each metal anchoring wing 3, 4 is housed in a groove 13, 14, or recess, respectively of the groove 11.
  • the bases 21 of the metal anchoring wings 3, 4 develop parallel to the surface of support 10.
  • a lower part of the anchoring branch 22 of one of the metal anchoring wings 3 or 4 is joined to the other anchor branch 22 of the metal anchor wing 3 or 4.
  • the lower portions of the anchor branches 22 of the two metal anchor wings 3, 4 are welded between them by a weld line 23.
  • This weld line 23 is preferably housed, or located, in the thickness of the thermally insulating barrier 5 (mode shown in FIGS.
  • this weld line 23 is situated at the level of the support surface 10, or even slightly above the latter 10.
  • An upper part of the anchoring branch 22 of each of the metal anchoring wings 3, 4 projects from the support surface 10 from the groove 11, towards the inside of the tank.
  • each metallic strake 1, 2 is arranged on the support surface 10 on either side of the weld supports 3, 4.
  • Each metallic strake 1, 2 has a flat central portion 6, 7.
  • Each strake 1, 2 metallic has two raised edges 8, 9 located along two opposite longitudinal edges of the flat central portion 6, 7.
  • a single raised edge 8, 9 of each of the two metal strakes 1, 2 is shown in Figures 2 to 4.
  • Each raised edge 8, 9 projects from the support surface 10.
  • FIG. 2 illustrates the state in which the various elements 1, 2, 3, 4, 5, 6, 7, 8, 9 are positioned, that are the two adjacent strakes 1, 2, 6, 7, 8, 9, the two anchoring wings 3, 4 (fixed together here at the welding point 23) and the thermal insulation block 5, before the application of the welding process according to the invention.
  • FIG. 3 illustrates the elements specific to said welding process and device according to the invention, adding to the above elements of FIG. 2.
  • a conductive strip 30 (the expression “conductive strip” can also be used to designate the “conductive strip” 30) as well as two welding knobs 31, 32, said conductive strip 30 and said knobs 31, 32 being connected to a welding apparatus with the wheel, not shown in the accompanying figures.
  • the conductive strip 30 is placed in the space defined between the two anchoring wings 3, 4, more precisely at the space between the anchoring branches 22, of each of the anchoring wings 3, 4, projecting from the support surface 10.
  • the two knobs 31, 32 are placed contiguous against the face / external side (face / side being opposite to that where the anchoring wings are located) of each of the raised edges 8, 9 of the two strakes 1, 2.
  • a pressure of the knobs 31, 32, against each of the raised edges 8, 9, directed towards the conductive strip 30, it is possible to pass a current in the thickness constituted by a wheel 31 or 32, a raised edge 8 or 9, an anchoring wing 3 or 4 and the conductive blade 30 so as to carry out a welding with the wheel between each of the raised edges 8, 9 and the adjacent anchor wing 3, 4.
  • the choice of the current intensity as well as the pressure exerted by the knurling wheels is determined, after multiple experiments, to ensure optimum seam welding.
  • the current intensity and pressure ranges are in accordance with those presented above, for defined thicknesses and nature of materials.
  • one knob 31 or 32 serves as a positive terminal and the other knob 31 or 32 as a negative terminal,
  • the two knobs 31, 32 serve as a positive terminal and the conductive strip 30 as a negative terminal
  • the conductive strip 30 serves as a positive terminal and the two knobs 31, 32 as a negative terminal.
  • the conductive strip 30 can also be used as a (simple) electrically conductive element.
  • one of the wheels 31 or 32 serves as a positive terminal and the other wheel 31 or 32 as a negative terminal, the conductive strip 30 having no polarity.
  • the conductive strip 30 consists of an electrically conductive material which must have a high melting point and be sufficiently resistant mechanically not to deform under the pressure forces of the knurls 31, 32. Copper is an economically advantageous material but others materials are possible, such as molybdenum (molybdenum-based alloys), tungsten (tungsten-based alloys) or graphite.
  • the raised edges 8, 9 of strakes 1, 2 advantageously have a thickness of 0.7 millimeter (mm) like the anchoring wings 3, 4, at least at the level of the anchoring branch 22 coming weld to the corresponding raised edge 8, 9.
  • mm millimeter
  • each raised edge 8, 9 of each of the two adjacent metal strakes 1, 2 is welded to an anchoring wing respective metal 3, 4 forming a weld support. More particularly, each raised edge 8, 9 is welded by a weld line 40, 41 to the upper portion of a single metal anchoring wing 3, 4.
  • the technique described above for producing a waterproof membrane for a sealed and thermally insulating tank can be used in different types of tanks, for example to constitute the waterproof membrane for an LNG tank in a land installation or in a floating structure such as a LNG tanker or other.
  • a cutaway view of an LNG tanker 70 shows a sealed and insulating tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary waterproof barrier intended to be in contact with the LNG contained in the tank, a secondary waterproof barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary waterproof barrier and the secondary waterproof barrier and between the secondary waterproof barrier and the double shell 72.
  • loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a maritime or port terminal for transferring a cargo of LNG from or to the tank 71.
  • FIG. 5 represents an example of a maritime terminal comprising a loading and unloading station 75, an underwater pipe 76 and a shore installation 77.
  • the loading and unloading station 75 is a fixed offshore installation comprising an arm mobile 74 and a tower 78 which supports the mobile arm 74.
  • the mobile arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading / unloading pipes 73.
  • the mobile arm 74 can be adjusted to suit all LNG tankers .
  • a connection pipe, not shown, extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the onshore installation 77.
  • This comprises liquefied gas storage tanks 80 and connection pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75.
  • the submarine pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the shore facility 77 over a long distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a long distance from the coast during loading and unloading operations.
  • pumps on board the ship 70 and / or pumps fitted to the shore installation 77 and / or pumps fitted to the loading and unloading station 75 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

La présente invention concerne un procédé de soudage de soudage d'une membrane de cuve étanche et thermiquement isolante, dans lequel sont présents : - au moins deux virures (1, 2) métalliques de la membrane étanche, et - au moins deux supports métalliques de soudure, une lame conductrice (30) étant insérée entre les deux susdits supports de soudure et, à la suite, on soude de manière étanche, ensemble deux à deux, par un soudage à la molette chacun des deux bords latéraux relevés des deux virures (1, 2) métalliques adjacentes avec respectivement l'un desdits supports de soudure, intercalés entre lesdits bords relevés adjacents.

Description

SOUDAGE D’UNE MEMBRANE ETANCHE D’UN MASSIF
D’ISOLATION THERMIQUE D’UNE CUVE
Domaine de l’invention
L’invention a pour objet la réalisation de cuves étanches et thermiquement isolantes destinées plus particulièrement, mais non exclusivement, au transport par mer des gaz liquéfiés ou liquide cryogénique et, plus spécifiquement, au transport des gaz naturels liquéfiés à forte teneur en méthane (GNL) ou pétrole (GPL). De telles cuves peuvent également être installées à terre ou sur un ouvrage flottant destiné au stockage.
L’invention concerne ici le soudage d’une membrane étanche d’une telle cuve, plus particulièrement l’invention propose une solution pour réaliser un soudage optimal entre deux virures adjacentes de la membrane ainsi que deux ailes d’ancrage, lesdites deux virures présentant des bords relevés et la soudure entre ces deux virures contiguës étant réalisée au niveau de ces bords relevés.
Dans la suite, les expressions « aile d’ancrage » et « support de soudure » seront utilisées indifféremment pour désigner un même élément dont la fonction est à la fois d’offrir un moyen d’ancrage de la membrane (ses virures) au massif d’isolation thermique et de servir en tant que support de soudure pour la fixation avec chacune des deux virures adjacentes.
Etat de l’art On connaît par exemple d’après FR 2798358, FR 2709725, FR 2549575, des cuves de stockage ou de transport pour des gaz liquéfiés à basse température dont la ou chaque membrane étanche, notamment une membrane étanche primaire en contact avec le produit contenu dans la cuve, est constituée de tôles métalliques minces qui seront portées par une barrière thermiquement isolante. Ces tôles métalliques minces sont reliées entre elles de manière étanche afin d’assurer l’étanchéité de la cuve.
La figure 1 illustre un mode de fixation connu desdites tôles métalliques sur la barrière thermiquement isolante dans ce type de cuve. Sur cette figure 1, une surface supérieure 101 de la barrière thermiquement isolante présente une rainure 102 se développant dans l'épaisseur de la barrière thermiquement isolante depuis la surface de support 101. Cette rainure 102 présente dans l'épaisseur de la barrière thermiquement isolante une zone de retenue formée par une gorge 103 qui se développe parallèlement à la surface de support 101. Cette gorge 103 se développe au niveau d'une extrémité de la rainure 102 opposée à la surface de support 101 dans l'épaisseur de la barrière thermiquement isolante, la rainure 102 présentant une section en coupe en forme en « T » inversé dont la base est formée par la gorge 103. Une aile d'ancrage 104 en forme de « L » est insérée dans la rainure 102. Cette aile d'ancrage 104 présente une base 105 logée dans la gorge 103 de manière à retenir l'aile d'ancrage 104 sur la barrière thermiquement isolante selon une direction perpendiculaire à la surface de support 101. L'aile d'ancrage 104 comporte en outre une branche d'ancrage 106 dont une partie inférieure 107 est jointive de la base 105 et une partie supérieure 108 fait saillie au-dessus de la surface de support 101.
Deux tôles métalliques 109 sont disposées de part et d'autre de l'aile d'ancrage 104. Ces tôles métalliques 109 présentent chacune une portion médiane plane 110 en appui sur la surface de support 101 (pour une question de lisibilité de la figure, la surface de support 101 et les tôles métalliques 109 sont représentées sur la figure 1 avec un écart). Ces tôles métalliques 109 présentent en outre des bords latéraux relevés, ci-après appelés bords relevés 111. Un bord relevé 111 de chacune des deux tôles métalliques 109 adjacentes est soudé de part et d'autre de la branche d'ancrage 106 de l'aile d'ancrage 104.
Les bords relevés 111 forment ainsi avec l'aile d'ancrage 104 des soufflets permettant d'absorber les efforts liés à la contraction de la membrane étanche, par exemple lors d'un chargement de liquide cryogénique dans la cuve.
Cependant, une telle aile d'ancrage 104 constitue un point de fixation fixe pour chaque bord relevé 111. En effet, l'aile d'ancrage 104 étant sollicitée selon deux directions opposées par les bords relevés 111, elle reste sensiblement statique dans la cuve. En conséquence, l'ancrage des bords relevés 111 sur la surface de support 101 via les ailes d'ancrage 104 est sensiblement fixe dans le sens perpendiculaire aux bords relevées 11 1. La souplesse de la membrane étanche est donc limitée.
C’est pourquoi il a été proposé, d’après FR 3054872, d’utiliser deux ailes d’ancrage, chacune de ces deux ailes d’ancrage ayant respectivement pour fonction d’ancrer l’une des deux virures adjacentes. Néanmoins, la jonction entre les bords relevés de deux virures adjacentes présente alors quatre épaisseurs de matière (deux bords relevés de virures et deux ailes d’ancrage) à souder de manière totalement étanche entre elles. Or, compte tenu notamment des épaisseurs des bords relevés des virures ainsi que celles des ailes d’ancrage, la fixation des deux virures aux ailes d’ancrage est rendue particulièrement difficile à réaliser, étant considéré par ailleurs que l’on cherche à conserver une souplesse, ou une élasticité, importante au niveau de ces jonctions étanches de manière à pouvoir absorber en particulier les sollicitations thermiques. On connaît aussi des méthodes de soudage décrites par FR1589316 et DE44l l888.
II n’existe pas à l’heure actuelle de procédé permettant de souder efficacement et rapidement, soit au minimum de manière totalement étanche sur toute la longueur des soudures, au niveau de deux virures adjacentes, lorsque ces dernières disposent chacune d’une aile d’ancrage au massif d’isolation thermique.
Brève description de l’invention
La présente invention entend remédier aux lacunes de l’état de la technique en proposant une solution particulièrement efficace pour réaliser la soudure entre deux virures adjacentes, lorsque chacune dispose de ou comporte une aile d’ancrage la reliant ou la fixant au massif d’isolation thermique.
Il a été découvert par la demanderesse, après diverses études et analyses, une solution techniquement simple à mettre en œuvre permettant de réaliser une soudure parfaite, à savoir totalement étanche et très résistante mécaniquement, entre deux virures adjacentes/contiguës d’une membrane, par l’intermédiaire de leurs ailes d’ancrage respectives et rapidement.
Ainsi, la présente invention concerne un procédé de soudage d’une membrane de cuve étanche et thermiquement isolante, dans lequel une cuve étanche et thermiquement isolante comprend au moins une membrane métallique étanche et un massif thermiquement isolant comportant au moins une barrière thermiquement isolante adjacente à ladite membrane, dans lequel :
- au moins deux virures métalliques de la membrane étanche, portées par une surface de support de la barrière thermiquement isolante, se présentent sous la forme d’une pièce profilée comportant une portion médiane plane reposant sur la surface de support et deux bords latéraux relevés faisant saillie depuis la surface de support, et
- au moins deux supports métalliques de soudure, portés par la barrière thermiquement isolante, font saillie depuis la surface de support entre les deux bords latéraux relevés adjacents des deux virures adjacentes,
le procédé selon l’invention se caractérisant en en ce que l’on insère une lame conductrice entre les deux susdits supports métalliques de soudure et en ce que, à la suite, on soude de manière étanche, ensemble deux à deux, par un soudage à la molette chacun des deux bords latéraux relevés des deux virures métalliques adjacentes avec respectivement l’un desdits supports métalliques de soudure, intercalés entre lesdits bords relevés adjacents.
Grâce à ce procédé selon l’invention, on peut dorénavant réaliser une soudure de qualité optimum de façon automatique de sorte que le temps d’installation de la cuve étanche et thermiquement isolante s’en trouve significativement réduit. Ainsi, on obtient un gain de productivité. Par ailleurs, le procédé de soudage selon l’invention permet d’assurer la continuité mécanique et l’étanchéité du cordon de soudage, de souder la longueur des bords relevés sans arrêt ni reprise grâce à la continuité électrique et de ne pas fusionner les deux supports de soudure au niveau des soudures avec les deux bords relevés. Ce procédé est également compatible avec les machines actuelles de soudage et permet donc de conserver le matériel existant, de limiter les investissements et la gestion du parc machine.
Egalement, grâce au procédé selon l’invention, on réalise une soudure simultanée (au même moment) de chacun des deux ensembles bord relevé/support de soudure.
De nombreux tests ont été réalisés pour apprécier la qualité de la soudure entre chacune des ailes d’ancrage et la virure (son bord relevé) et ces tests montrent une qualité de soudure optimum (notamment aucune trace du matériau formant la lame conductrice) présentant d’excellentes qualités mécaniques, en particulier au niveau de sa résistance aux chocs, sa résistance en traction/flexion/compression et sa tenue aux gradients thermiques (la jonction entre l’aile d’ancrage et la virure devant toujours rester étanche).
On entend par « soudage à la molette » un soudage dans lequel les pièces sont assemblées par application d’un courant électrique (l’application du courant continu ou non) et d’une pression, des molettes contre la surface à souder. D’autres caractéristiques avantageuses de l’invention sont présentées succinctement ci-dessous :
- avantageusement, l’un au moins des supports de soudure, de préférence les deux, consiste en une aile d’ancrage de manière à ancrer la membrane étanche à la barrière thermiquement isolante du massif d’isolation thermique ;
- selon un mode d’exécution, l’aile d’ancrage se présente sous la forme d’un L et comporte une portion longitudinale et une portion inférieure en prise avec la barrière thermiquement isolante ;
- selon un mode d’exécution, la portion inférieure de l’aile d’ancrage s’étend, parallèlement à la portion médiane des virures métalliques, dans un évidement de la barrière thermiquement isolante du massif d’isolation thermique ;
- de préférence, préalablement à la soudure de chacun des susdits bords relevés avec l’un desdits supports de soudure, lesdits supports de soudure ont été fixés par soudure de façon étanche l’un à l’autre ;
Ainsi, comme cela est représenté sur la figure 4 annexée, la jonction des deux virures adjacentes avec les deux ailes d’ancrage métallique présente, grâce aux différents points de soudure, un profil ou une section en W. Autrement dit, une telle jonction présente une fonction de double-soufflet qui lui confère d’importantes propriétés d’élasticité permettant à la membrane étanche, en particulier à ce niveau, de supporter ou d’encaisser de très forts gradients thermiques, se traduisant en particulier par des contractions (thermiques) particulièrement significatives.
- Avantageusement, le soudage à la molette de chacun desdits deux bords relevés adjacents avec respectivement l’un desdits supports de soudure s’effectue à une vitesse comprise entre 1,5 mètre par minute (m/min) et 2,5 m/min, de préférence à une vitesse de 1,8 m/min ;
- selon un mode d’exécution de l’invention, les susdits bords relevés, de préférence également les supports de soudure, sont en Invar® ou en acier contenant au moins 20% de manganèse, de préférence au moins 25% de manganèse, de façon encore plus préférée à 28% de manganèse ;
- selon un mode de réalisation, l’épaisseur des bords relevés, de préférence également l’épaisseur des susdits supports de soudure, est comprise entre 0,5 et 0,8 millimètre (mm), de préférence égale à 0,7 mm ; - lorsque les bords relevés, éventuellement les supports de soudure présentent une telle épaisseur (de 0,5 et 0,8 mm), lors du soudage à la molette, l’intensité du courant est comprise entre 1,8 et 3,2 kiloampères (kA), de préférence comprise entre 2,2 et 2,8 kA, et la force de pression exercée par chaque molette contre respectivement un bord relevé est comprise entre 1,2 et 2,8 bars, de préférence entre 2 et 2,5 bars ;
- selon un autre mode de réalisation, l’épaisseur des bords relevés, de préférence également l’épaisseur des susdits supports de soudure, est comprise entre 0,9 et 1,2 millimètre (mm), de préférence égale à 1 mm ;
- lorsque les bords relevés, éventuellement les supports de soudure présentent une telle épaisseur (de 0,9 et 1,2 mm), lors du soudage à la molette, l’intensité du courant est comprise entre 2,7 et 3,8 kA, de préférence comprise entre 3 et 3,5 kA, et la force de pression exercée par chaque molette contre respectivement un bord relevé est comprise entre 3,5 et 5 bars, de préférence entre 4 et 4,5 bars ;
- avantageusement, lors du soudage à la molette, le courant électrique du soudage à la molette ne circule pas de façon continue, de préférence ledit courant électrique circule pendant une plage de temps correspondant de 60% à 80% du temps à (ou pour) une fréquence constante, de façon encore plus préférée pendant deux tiers (2/3) du temps à (ou pour) une fréquence constante ;
- avantageusement, la lame conductrice consiste en un matériau ou un alliage de matériaux à haut point de fusion, supérieur au point de fusion des bords relevés et des supports de soudure. Selon un mode de réalisation, la lame conductrice est (comprend essentiellement) en cuivre, en alliage à base de molybdène, en alliage à base de tungstène ou en graphite, de préférence en cuivre.
L’invention se rapporte aussi à un système de soudage d’une membrane de cuve étanche et thermiquement isolante, le système comprenant un dispositif de soudage à la molette comportant deux molettes, éventuellement un moyen de maintien desdites molettes contre une surface à souder, et une paroi d’une cuve étanche et thermiquement isolante comprenant :
- deux virures adjacentes métalliques de la membrane étanche, portées par une surface de support de la barrière thermiquement isolante de la cuve étanche et thermiquement isolante, se présentant sous la forme d’une pièce profilée comportant une portion médiane plane reposant sur la surface de support et deux bords latéraux relevés faisant saillie depuis la surface de support, et
- deux supports métalliques de soudure, portés par la barrière thermiquement isolante, faisant saillie depuis la surface de support entre les deux bords latéraux relevés adjacents des deux virures adjacentes,
le dispositif de soudage à la molette réalisant au moins une soudure entre respectivement l’un des susdits bords relevés et l’un des susdits supports de soudure, le système selon l’invention se caractérisant en ce que le dispositif de soudage comprend une lame conductrice destinée à être insérée entre les deux supports de soudure de manière à réaliser la soudure de chacun des deux susdits bords latéraux relevés adjacents avec respectivement l’un desdits supports de soudure, intercalés entre lesdits bords relevés adjacents.
On doit noter que toutes les caractéristiques présentées précédemment en lien avec le procédé de soudage selon l’invention trouvent à s’appliquer au système de soudage succinctement défini ci-dessus.
L’invention concerne également une cuve étanche et thermiquement isolante intégrée dans une structure porteuse, comportant une cuve étanche et thermiquement isolante comprenant au moins une membrane métallique étanche composée d’une pluralité de virures métalliques et un massif thermiquement isolant comportant au moins une barrière thermiquement isolante adjacente à ladite membrane, dans laquelle :
- au moins deux virures métalliques de la membrane étanche, portées par une surface de support de la barrière thermiquement isolante, se présentent sous la forme d’une pièce profilée comportant une portion médiane plane reposant sur la surface de support et deux bords latéraux relevés faisant saillie depuis la surface de support, et
- au moins deux supports métalliques de soudure, portés par la barrière thermiquement isolante, font saillie depuis la surface de support entre les deux bords latéraux relevés adjacents des deux virures adjacentes,
Le cuve selon l’invention se caractérise en ce que chacun des deux bords latéraux relevés adjacents des deux virures métalliques adjacentes et respectivement l’un desdits supports de soudure, intercalés entre lesdits bords relevés adjacents, sont soudés, ensemble deux à deux, de manière étanche, par un soudage à la molette. La réalisation d’une soudure entre une virure (son bord relevé) et une aile d’ancrage est certes connue en tant que telle, par le document FR 3054872, mais le point de soudure présente, avec l’utilisation du procédé selon la présente invention, une section de forme différente de celle de cet état de la technique. En effet, compte tenu du positionnement de la lame conductrice du côté (contiguë) de l’aile d’ancrage et d’une molette du côté (contiguë) au bord relevé d’une virure, la section du point de soudure présente une forme sensiblement ovale (et non symétrique comme dans l’état de la technique) dont l’excroissance (protubérance ou bosse) se trouve du côté de la virure, c’est-à-dire du côté où était positionnée la molette lors du soudage. On notera que, dans l’hypothèse où deux molettes, disposées de part et d’autre du point de soudure, sont utilisées, le point de soudure présente une forme symétrique. Cette section de forme légèrement différente - la figure 4 annexée n’étant pas représentative au regard de cette caractéristique de forme du pointe de soudure - par rapport à l’état de la technique n’implique évidemment aucune conséquence négative concernant la qualité du point de soudure mais elle permet de différencier un point de soudure réalisé selon le procédé de la présente invention d’un autre procédé de soudage. Ainsi, une telle cuve, comportant l’ensemble des caractéristiques ci-dessus énoncées et caractérisée par au moins un point de soudure réalisé par une paire « molette/lame conductrice », est bien nouvelle.
Enfin, l’invention se rapporte également à un navire pour le transport d’un produit liquide froid, le navire comportant une double coque et une cuve étanche et thermiquement isolante telle que décrite succinctement ci-dessus, disposée dans la double coque.
Avantageusement, le navire selon l’invention comprend au moins une cuve étanche et isolante telle que décrite ci-dessus, ladite cuve comportant deux barrières d'étanchéité successives, l'une primaire au contact avec un produit contenu dans la cuve et l'autre secondaire disposée entre la barrière primaire et une structure porteuse, de préférence constituée par au moins une partie des parois du navire, ces deux barrières d'étanchéité étant alternées avec deux barrières thermiquement isolantes ou une unique barrière thermiquement isolante disposée entre la barrière primaire et la structure porteuse. De telles cuves sont désignées classiquement en tant que cuves intégrées suivant le code de G Organisation Maritime Internationale (GMO), telles que par exemple des cuves de type NO 96®.
De préférence, la cuve contient un Gaz Naturel Liquéfié (GNL) ou un Gaz Liquéfié (GL).
Selon un mode de réalisation, l’invention fournit aussi un procédé de chargement ou déchargement d’un tel navire, dans lequel on achemine un produit fluide à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire. Selon un mode de réalisation, l’invention fournit aussi un système de transfert pour un produit fluide, notamment liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de produit fluide à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Description des Figures annexées La description qui va suivre est donnée uniquement à titre illustratif et non limitatif en référence aux figures annexées, dans lesquelles :
- la figure 1 est une vue en coupe d’une aile d’ancrage de membrane métallique étanche de l’art antérieur, ladite aile d’ancrage étant ancrée dans une barrière thermiquement isolante d’une cuve étanche et thermiquement isolante ; - la figure 2 est une vue en coupe de deux ailes d’ancrage de membrane métallique, les deux ailes d’ancrage ayant été soudés entre elles préalablement à leur introduction dans le massif d’isolation thermique, cette figure illustrant une portion de paroi d’une cuve, au niveau de deux virures adjacentes, avant l’application du procédé de soudage selon l’invention ; - la figure 3 est une vue en coupe identique à la figure 2, cette fois-ci les éléments propres à mettre en œuvre le procédé de soudage selon l’invention étant visibles sur cette figure ;
- la figure 4 est une vue en coupe, reprenant les éléments visibles sur les figures 2 et 3, d’une portion de paroi de cuve étanche et thermiquement isolante, après la mise en œuvre du procédé de soudage selon l’invention ;
- la figure 5 est une représentation schématique écorchée d’une cuve de navire méthanier et d’un terminal de chargement/déchargement de cette cuve.
Description détaillée de modes de réalisation de l’invention
Dans la description ci-dessous, on fait référence à une membrane étanche dans le cadre d'une cuve étanche et thermiquement isolante. Une telle cuve comporte un espace interne destiné à être rempli de gaz combustible ou non combustible. Le gaz peut notamment être un gaz naturel liquéfié (GNL), c'est-dire un mélange gazeux comportant majoritairement du méthane ainsi qu'un ou plusieurs autres hydrocarbures, tels que l'éthane, le propane, le n-butane, le i-butane, le n-pentane, le i-pentane, le néopentane, et de l'azote en faible proportion. Le gaz peut également être de l'éthane ou un gaz de pétrole liquéfié (GPL), c'est-à-dire un mélange d'hydrocarbures issu du raffinage du pétrole comportant essentiellement du propane et du butane.
De façon générale, la membrane étanche repose sur une surface de support formée par une barrière thermiquement isolante de la cuve. Cette membrane étanche présente une structure répétée, comportant alternativement d'une part des bandes de tôle, formant des virures, disposées sur la surface de support et, d'autre part, des supports de soudure allongés liés à la surface de support et s'étendant parallèlement aux bandes de tôle sur au moins une partie de la longueur des bandes de tôle. Les bandes de tôle comportent des bords latéraux relevés disposés et soudés contre les supports de soudure adjacents. Une telle structure est par exemple utilisée dans les cuves de méthanier de type NO 96® commercialisées par la déposante.
Au niveau de la cuve étanche et thermiquement isolante, non représentée dans sa globalité sur les figures annexées, les bords relevés des virures sont préférablement disposés selon une direction longitudinale perpendiculaire ou parallèle à la direction longitudinale du navire. Ainsi, les bords relevés constituent des soufflets permettant d'absorber les efforts de contraction dans une direction longitudinale du navire ou une direction transversale perpendiculaire à celle-ci. Les bandes de tôle ainsi que les supports de soudure sont interrompus au niveau des angles, par exemple de la façon décrite dans le document WO 2012/072906 ou bien FR2724623.
Selon un mode de réalisation, la membrane d’étanchéité (virures), l’une des membranes d’étanchéités ou les membranes d’étanchéité peuvent être réalisées dans un métal choisi parmi l’acier inoxydable, l’aluminium, l’Invar®, c’est-à-dire un alliage de fer et de nickel dont le coefficient de dilatation est typiquement compris entre 1 ,2.10 6 et 2.10 6 K 1 ou un alliage de fer à forte teneur en manganèse dont le coefficient de dilatation est de l’ordre de 7 à 9.10 6 K 1. Selon un mode de réalisation, un matériau présentant un coefficient de contraction thermique inférieur à 16.10 6/K est choisi pour les applications dont le gaz liquide est à une température comprise entre -45°C et -l00°C.
Les figures 2 à 4 représentent une vue en coupe d'une paroi d'une cuve étanche et thermiquement isolante au niveau de la liaison entre deux virures 1, 2 métalliques adjacentes d'une membrane étanche de la paroi de cuve et deux supports de soudure 3, 4 ancrés sur une barrière thermiquement isolante 5 du massif d’isolation thermique de la paroi de cuve. Une telle barrière thermiquement isolante 5 est formée d'éléments isolants juxtaposés. Par exemple, des éléments isolants adaptés sont décrits dans le document W02012/072906. Cette barrière thermique 5 du massif d’isolation thermique pourra être réalisée en une ou plusieurs épaisseurs répondant à la fonction d’isoler thermiquement le contenu de la cuve de son environnement. Le ou les matériaux également susceptibles d’être présents dans un tel massif d’isolation thermique consistent par exemple en des mousses polymères, telles que des mousses polyuréthane, du polystyrène ou du polyéthylène, de préférence à très basse densité (PEBD), de la laine de verre manufacturée, de la laine de verre en vrac, des mousses de mélamine, des aérogels, de la ouate de polyester en matelas ou en vrac.
Le massif d’isolation thermique est classiquement ancré à la structure porteuse, non représenté sur les figures annexées, par exemple d’un navire ou d’une barge, par des organes de retenue. Chacun des éléments isolants formant le massif d’isolation thermique présente ici une forme de parallélépipède rectangle présentant deux grandes faces, ou faces principales, et quatre petites faces, ou faces latérales. Plus particulièrement, les vimres 1, 2 métalliques adjacentes reposent sur une surface de support 10 du massif d’isolation thermique (ou de la barrière thermiquement isolante 5). Cette surface de support 10 est formée par la face supérieure de la barrière thermiquement isolante 5. Les supports de soudure 3, 4 sont ancrés dans l’élément isolant de la barrière thermiquement isolante 5 du massif d’isolation thermique.
Afin d'ancrer les supports de soudure 3, 4 dans le massif d’isolation thermique, la face supérieure du massif (barrière thermiquement isolante 5) comporte une rainure 1 1 dont la section est en forme de « T » inversé. La partie supérieure de la barrière thermiquement isolante 5 peut comporter un contre-plaqué ou un matériau composite dans lequel est logée la rainure 11. Une zone de retenue 12 se développe dans l'épaisseur de la barrière thermiquement isolante 5 du massif d’isolation thermique isolant parallèlement à la surface de support 10. Les supports de soudure 3, 4 sont insérés par coulissement dans les rainures 11 du massif d’isolation thermique. Les supports de soudure 3, 4 sont ainsi ancrés de manière coulissante sur, ou dans, le massif d’isolation thermique 5, selon la direction longitudinale des supports de soudure 3, 4.
On pourra également prévoir que la zone de retenue 12 se développe selon une direction qui est généralement oblique par rapport à la surface de support 10 et comporte éventuellement une composante parallèle à la surface de support 10.
Dans le mode de réalisation illustré sur les figures 2 à 4, la zone de retenue 12 est formée par deux gorges 13, 14 se développant de part et d'autre de la rainure 11, au niveau de l'extrémité inférieure de ladite rainure 11.
Les supports de soudure 3, 4 consistent en deux ailes d’ancrage métalliques, de préférence de forme et de nature (matériau) identiques. Ces ailes d’ancrage métalliques 3, 4 sont essentiellement symétriques par rapport à un plan perpendiculaire à la surface de support 10 et parallèle à une direction longitudinale de la rainure 11. Chaque aile d’ancrage métallique 3 ou 4 présente une section en forme de « L » comportant une base 21 et une branche d'ancrage 22. La base 21 correspond à la portion inférieure de l’aile d’ancrage métallique 3, 4 tandis que la branche d’ancrage 22 correspond à la portion longitudinale de ces mêmes ailes d’ancrage métalliques 3, 4.
La base 21 de chaque aile d’ancrage métallique 3, 4 est logée dans une gorge 13, 14, ou évidement, respective de la rainure 11. Les bases 21 des ailes d’ancrage métalliques 3, 4 se développent parallèlement à la surface de support 10. Une partie inférieure de la branche d'ancrage 22 de l’une des ailes d’ancrage métalliques 3 ou 4 est jointive de l’autre branche d’ancrage 22 de l’aile d’ancrage métallique 3 ou 4. Ainsi, selon une possibilité offerte par l’invention, les portions inférieures des branches d'ancrage 22 des deux ailes d’ancrage métalliques 3, 4 sont soudées entre elles par une ligne de soudure 23. Cette ligne de soudure 23 est de préférence logée, ou située, dans l'épaisseur de la barrière thermiquement isolante 5 (mode représenté sur les figures 2 à 4) mais on peut prévoir que cette ligne de soudure 23 soit située au niveau de la surface de support 10, voire légèrement au-dessus de cette dernière 10. Une partie supérieure de la branche d'ancrage 22 de chacune des ailes d’ancrage métalliques 3, 4 fait saillie, à partir de la surface de support 10 depuis la rainure 11, vers l'intérieur de la cuve.
Autrement dit, les deux virures 1, 2 métalliques adjacentes sont disposées sur la surface de support 10 de part et d'autre des supports de soudure 3, 4. Chaque virure 1, 2 métallique présente une portion médiane plane 6, 7. Chaque virure 1, 2 métallique présente deux bords relevés 8, 9 situés le long de deux bords longitudinaux opposés de la portion médiane plane 6, 7. Un seul bord relevé 8, 9 de chacune des deux virures 1, 2 métalliques est représenté sur les figures 2 à 4. Chaque bord relevé 8, 9 fait saillie par rapport à la surface de support 10.
La figure 2 illustre l’état dans lequel sont positionnés les différents éléments 1, 2, 3, 4, 5, 6, 7, 8, 9 que sont les deux virures adjacentes 1, 2, 6, 7, 8, 9, les deux ailes d’ancrage 3, 4 (fixées entre elles ici au niveau du point de soudure 23) et le massif d’isolation thermique 5, avant l’application du procédé de soudage selon l’invention.
La figure 3 illustre les éléments propres audit procédé et dispositif de soudage selon l’invention, se rajoutant aux susdits éléments de la figure 2. Ainsi, par rapport à la figure 2, il est présent, sur cette figure 3, une lame conductrice 30 (l’expression de « bande conductrice » peut également être utilisée pour désigner la « lame conductrice » 30) ainsi que deux molettes de soudage 31, 32, ladite lame conductrice 30 et lesdites molettes 31, 32 étant reliées à un appareil de soudage à la molette, non représenté sur les figures annexées. La lame conductrice 30 vient se placer dans l’espace défini entre les deux ailes d’ancrage 3, 4, plus précisément au niveau de l’espace entre les branches d’ancrage 22, de chacune des ailes d’ancrage 3, 4, faisant saillie de la surface de support 10. Les deux molettes 31, 32 viennent se placer contiguës contre la face/côté extérieur (face/côté se trouvant opposé à celui où se situe les ailes d’ancrage) de chacun des bords relevés 8, 9 des deux virures 1, 2. En appliquant une pression des molettes 31, 32, contre chacun des bords relevés 8, 9, dirigée vers la lame conductrice 30, il est possible de faire passer un courant dans l’épaisseur constituée par une molette 31 ou 32, un bord relevé 8 ou 9, une aile d’ancrage 3 ou 4 et la lame conductrice 30 de manière à réaliser un soudage à la molette entre chacun des bords relevés 8, 9 et l’aile d’ancrage contiguë 3, 4.
Dans le cadre de la présente invention, le choix de l’intensité de courant ainsi que de la pression exercée par les molettes est déterminé, après de multiples expérimentations, pour assurer un soudage à la molette optimum. Les gammes d’intensité de courant et de pression (par exemple exprimée en bars) sont conformes à celles présentées précédemment, pour des épaisseurs et nature de matériaux définies.
D’un point de vue du fonctionnement du dispositif de soudage selon l’invention, on peut envisager plusieurs configurations quant à la polarité des différents éléments pour réaliser l’opération de soudage. Ainsi, on pourra prévoir que :
une molette 31 ou 32 serve de borne positive et l’autre molette 31 ou 32 de borne négative,
les deux molettes 31, 32 servent de borne positive et la lame conductrice 30 de borne négative,
la lame conductrice 30 serve de borne positive et les deux molettes 31, 32 de borne négative.
Bien entendu, la lame conductrice 30 peut également être utilisée comme (simple) élément conducteur électrique. Ainsi, dans ce mode de réalisation préféré, l’une des molettes 31 ou 32 sert de borne positive et l’autre molette 31 ou 32 de borne négative, la lame conductrice 30 ne présentant aucune polarité.
La lame conductrice 30 consiste en un matériau conducteur électrique qui doit présenter un point de fusion élevé et être suffisamment résistant mécaniquement pour ne pas se déformer sous les efforts de pression des molettes 31, 32. Le cuivre est un matériau économiquement avantageux mais d’autres matériaux sont possibles, tels que les molybdènes (alliages à base de molybdène), les tungstènes (alliages à base de tungstène) ou les graphites.
Les bords relevés 8, 9 des virures 1, 2 présentent avantageusement une épaisseur de 0,7 millimètre (mm) à l’instar des ailes d’ancrage 3, 4, à tout le moins au niveau de la branche d’ancrage 22 venant se souder au bord relevé 8, 9 correspondant. Bien entendu, on peut prévoir que les épaisseurs des bords relevés 8, 9 soient supérieures ainsi que celle des ailes d’ancrage 3, 4, ce qui conduit à imposer une intensité de courant supérieur. On peut également choisir des épaisseurs différentes pour les bords relevés 8, 9 et les ailes d’ancrage 3, 4, tout comme la nature du ou des matériaux constituant les bords relevés 8, 9 (virures 1, 2) et les ailes d’ancrage 3, 4 peut éventuellement être différente.
Comme cela est visible sur la figure 4, une fois que le procédé de soudage selon l’invention a été mis en œuvre, le bord relevé 8, 9 de chacune des deux virures 1, 2 métalliques adjacentes est soudé à une aile d’ancrage métallique 3, 4 respective formant support de soudure. Plus particulièrement, chaque bord relevé 8, 9 est soudé par une ligne de soudure 40, 41 à la portion supérieure d’une unique aile d’ancrage métallique 3, 4.
La technique décrite ci-dessus pour réaliser une membrane étanche de cuve étanche et thermiquement isolante peut être utilisée dans différents types de réservoirs, par exemple pour constituer la membrane étanche d'un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre.
En référence à la figure 5, une vue écorchée d'un navire méthanier 70 montre une cuve étanche et isolante 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.
De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.
La figure 5 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

REVENDICATIONS
1. Procédé de soudage d’une membrane de cuve étanche et thermiquement isolante, dans lequel une cuve étanche et thermiquement isolante comprend au moins une membrane métallique étanche et un massif thermiquement isolant comportant au moins une barrière thermiquement isolante (5) adjacente à ladite membrane, dans lequel :
- au moins deux virures (1, 2) métalliques de la membrane étanche, portées par une surface de support (10) de la barrière thermiquement isolante (5), se présentent sous la forme d’une pièce profilée comportant une portion médiane plane (6, 7) reposant sur la surface de support (10) et deux bords latéraux relevés (8, 9) faisant saillie depuis la surface de support (10), et
- au moins deux supports métalliques de soudure (3, 4), portés par la barrière thermiquement isolante (5), font saillie depuis la surface de support (10) entre les deux bords latéraux relevés (8, 9) adjacents des deux virures (1, 2) adjacentes,
caractérisé en ce qu’on insère une lame conductrice (30) entre les deux susdits supports de soudure métalliques (3, 4) et en ce que, à la suite, on soude de manière étanche, ensemble deux à deux, par un soudage à la molette chacun des deux bords latéraux relevés (8, 9) des deux virures (1, 2) métalliques adjacentes avec respectivement l’un desdits supports de soudure métalliques (3, 4), intercalés entre lesdits bords relevés (8, 9) adjacents.
2. Procédé selon la revendication 1, dans lequel l’un au moins des supports de soudure (3 ou 4), de préférence les deux (3, 4), consiste en une aile d’ancrage de manière à ancrer la membrane étanche à la barrière thermiquement isolante (5) du massif d’isolation thermique.
3. Procédé selon la revendication 2, dans lequel l’aile d’ancrage (3, 4) se présente sous la forme d’un L et comporte une portion longitudinale (22) et une portion inférieure (21) en prise avec la barrière thermiquement isolante (5).
4. Procédé selon la revendication 3, dans lequel la portion inférieure (21) de l’aile d’ancrage (3, 4) s’étend, parallèlement à la portion médiane (6, 7) des virures (1, 2) métalliques, dans un évidement (13, 14) de la barrière thermiquement isolante (5) du massif d’isolation thermique.
5. Procédé selon l’une quelconque des revendications précédentes, dans lequel, préalablement à la soudure de chacun des susdits bords relevés (8, 9) avec l’un desdits supports de soudure (3, 4), lesdits supports de soudure (3, 4) ont été fixés par soudure, de façon étanche, l’un à l’autre.
6. Procédé selon l’une quelconque des revendications précédentes, dans lequel le soudage à la molette de chacun desdits deux bords relevés (8, 9) adjacents avec respectivement l’un desdits supports de soudure (3, 4) s’effectue à une vitesse comprise entre 1,5 mètre par minute (m/min) et 2,5 m/min, de préférence à une vitesse de 1,8 m/min.
7. Procédé selon l’une quelconque des revendications précédentes, dans lequel les susdits bords relevés (8, 9), de préférence également les supports de soudure (3, 4), sont en Invar ou en acier contenant au moins 20% de manganèse, de préférence au moins 25% de manganèse. 8. Procédé selon la revendication 7, dans lequel l’épaisseur des bords relevés
(8, 9), de préférence également l’épaisseur des susdits supports de soudure, est comprise entre 0,5 et 0,
8 millimètre (mm), de préférence égale à 0,7 mm.
9. Procédé selon la revendication 8, dans lequel, lors du soudage à la molette, l’intensité du courant est comprise entre 1,8 et 3,2 kiloampères, de préférence comprise entre 2,2 et 2,8 kiloampères, et la force de pression exercée par chaque molette (31, 32) contre respectivement un bord relevé (8, 9) est comprise entre 1,2 et 2,8 bars, de préférence entre 2 et 2,5 bars.
10. Procédé selon la revendication 7, dans lequel l’épaisseur des bords relevés
(8, 9), de préférence également l’épaisseur des susdits supports de soudure (3, 4), est comprise entre 0,9 et 1,2 millimètre (mm), de préférence égale à 1 mm.
11. Procédé selon la revendication 10, dans lequel, lors du soudage à la molette, l’intensité du courant est comprise entre 2,7 et 3,8 kiloampères, de préférence comprise entre 3 et 3,5 kiloampères, et la force de pression exercée par chaque molette (31, 32) contre respectivement un bord relevé (8, 9) est comprise entre 3,5 et 5 bars, de préférence entre 4 et 4,5 bars.
12. Procédé selon l’une quelconque des revendications précédentes, dans lequel, lors du soudage à la molette, le courant électrique du soudage à la molette ne circule pas de façon continue, de préférence ledit courant électrique circule pendant une plage de temps correspondant de 60% à 80% du temps à une fréquence constante.
13. Procédé selon l’une quelconque des revendications précédentes, dans lequel la lame conductrice (30) consiste en un matériau ou un alliage de matériaux à haut point de fusion, supérieur au point de fusion des bords relevés (8, 9) et des supports de soudure (3, 4).
14. Système de soudage d’une membrane de cuve étanche et thermiquement isolante, le système comprenant un dispositif de soudage à la molette comportant deux molettes (31, 32), un moyen de maintien desdites molettes (31, 32) contre une surface à souder, et une paroi d’une cuve étanche et thermiquement isolante comprenant :
- deux virures (1, 2) adjacentes métalliques de la membrane étanche, portées par une surface de support (10) de la barrière thermiquement isolante (5) de la cuve étanche et thermiquement isolante, se présentant sous la forme d’une pièce profilée comportant une portion médiane (6, 7) plane reposant sur la surface de support (10) et deux bords latéraux relevés (8, 9) faisant saillie depuis la surface de support (10), et
- deux supports métalliques de soudure (3, 4), portés par la barrière thermiquement isolante (5), faisant saillie depuis la surface de support (10) entre les deux bords latéraux relevés (8, 9) adjacents des deux virures (1, 2) adjacentes,
le dispositif de soudage à la molette réalisant au moins une soudure entre respectivement l’un des susdits bords relevés (8, 9) et l’un des susdits supports de soudure (3, 4),
caractérisé en ce que le dispositif de soudage comprend une lame conductrice (30) destinée à être insérée entre les deux supports de soudure (3, 4) de manière à réaliser la soudure de chacun des deux susdits bords latéraux relevés (8, 9) adjacents avec respectivement l’un desdits supports de soudure (3, 4), intercalés entre lesdits bords relevés (8, 9) adjacents.
15. Cuve étanche et thermiquement isolante intégrée dans une structure porteuse, comportant une cuve étanche et thermiquement isolante comprenant au moins une membrane métallique étanche composée d’une pluralité de virures (1, 2) métalliques et un massif thermiquement isolant comportant au moins une barrière thermiquement isolante (5) adjacente à ladite membrane, dans laquelle :
- au moins deux virures (1, 2) métalliques de la membrane étanche, portées par une surface de support (10) de la barrière thermiquement isolante (5), se présentent sous la forme d’une pièce profilée comportant une portion médiane plane (6, 7) reposant sur la surface de support (10) et deux bords latéraux relevés (8, 9) faisant saillie depuis la surface de support (10), et
- au moins deux supports métalliques de soudure (3, 4), portés par la barrière thermiquement isolante (5), font saillie depuis la surface de support (10) entre les deux bords latéraux relevés (8, 9) adjacents des deux virures (1, 2) adjacentes,
caractérisée en ce que chacun des deux bords latéraux relevés (8, 9) adjacents des deux virures (1, 2) métalliques adjacentes et respectivement l’un desdits supports de soudure (3, 4), intercalés entre lesdits bords relevés (8, 9) adjacents, sont soudés, ensemble deux à deux, de manière étanche, par un procédé de soudage selon l’une quelconque des revendications 1 à 13.
16. Navire (70) pour le transport d’un produit liquide froid, le navire comportant une double coque (72) et une cuve étanche et thermiquement isolante (71), selon la revendication 15, disposée dans la double coque.
17. Système de transfert pour un fluide, le système comportant un navire (70) selon la revendication 16, des canalisations isolées agencées de manière à relier la cuve (71) installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de fluide à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
18. Procédé de chargement ou déchargement d’un navire (70) selon la revendication 17, dans lequel on achemine un fluide à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire (71).
PCT/FR2019/051820 2018-07-26 2019-07-22 Soudage d'une membrane etanche d'un massif d'isolation thermique d'une cuve WO2020021189A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11202100789QA SG11202100789QA (en) 2018-07-26 2019-07-22 Welding a sealing membrane of a thermal insulation body of a tank
CN201980049914.8A CN112543691B (zh) 2018-07-26 2019-07-22 焊接罐的隔热体的密封膜
EP19761914.1A EP3826796A1 (fr) 2018-07-26 2019-07-22 Soudage d'une membrane etanche d'un massif d'isolation thermique d'une cuve
KR1020217004065A KR20210031938A (ko) 2018-07-26 2019-07-22 탱크의 단열 바디의 실링 멤브레인의 용접

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1856991 2018-07-26
FR1856991A FR3084270B1 (fr) 2018-07-26 2018-07-26 Soudage d'une membrane etanche d'un massif d'isolation thermique d'une cuve

Publications (1)

Publication Number Publication Date
WO2020021189A1 true WO2020021189A1 (fr) 2020-01-30

Family

ID=63896356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/051820 WO2020021189A1 (fr) 2018-07-26 2019-07-22 Soudage d'une membrane etanche d'un massif d'isolation thermique d'une cuve

Country Status (6)

Country Link
EP (1) EP3826796A1 (fr)
KR (1) KR20210031938A (fr)
CN (1) CN112543691B (fr)
FR (1) FR3084270B1 (fr)
SG (1) SG11202100789QA (fr)
WO (1) WO2020021189A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1589316A (fr) 1967-10-19 1970-03-23
FR2549575A1 (fr) 1983-07-18 1985-01-25 Gaz Transport Cuve de navire etanche et isotherme, notamment pour le transport de gaz naturel liquefie
FR2709725A1 (fr) 1993-09-09 1995-03-17 Gaz Transport Cuve étanche et thermiquement isolante intégrée à la structure porteuse d'un navire ayant une structure d'angle simplifiée.
DE4411888A1 (de) 1994-04-07 1995-10-12 Fritz Werner Praezismaschbau Verfahren zur Herstellung von Latentwärmespeicherzellen
FR2724623A1 (fr) 1994-09-20 1996-03-22 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante perfectionnee integree dans une structure porteuse
FR2798358A1 (fr) 1999-09-14 2001-03-16 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse de navire, a structure d'angle simplifiee
WO2012072906A1 (fr) 2010-12-01 2012-06-07 Gaztransport Et Technigaz Barriere d'etancheite pour une paroi de cuve
FR3054872A1 (fr) 2016-08-02 2018-02-09 Gaztransport Et Technigaz Structure de paroi etanche

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB210130A (en) * 1922-10-17 1924-01-17 John Pressly Scott Methods of welding and products thereof
US3130291A (en) * 1961-05-12 1964-04-21 Yoder Co Rotating welding transformer
TW320583B (fr) * 1994-07-11 1997-11-21 Elpatronic Ag
CA2303336C (fr) * 1997-09-16 2006-11-21 Edison Welding Institute Soudage continu par resistance thermique conductrice
BR112013005319B1 (pt) * 2010-09-06 2018-02-06 Honda Motor Co., Ltd. Welding method and welding device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1589316A (fr) 1967-10-19 1970-03-23
FR2549575A1 (fr) 1983-07-18 1985-01-25 Gaz Transport Cuve de navire etanche et isotherme, notamment pour le transport de gaz naturel liquefie
FR2709725A1 (fr) 1993-09-09 1995-03-17 Gaz Transport Cuve étanche et thermiquement isolante intégrée à la structure porteuse d'un navire ayant une structure d'angle simplifiée.
DE4411888A1 (de) 1994-04-07 1995-10-12 Fritz Werner Praezismaschbau Verfahren zur Herstellung von Latentwärmespeicherzellen
FR2724623A1 (fr) 1994-09-20 1996-03-22 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante perfectionnee integree dans une structure porteuse
FR2798358A1 (fr) 1999-09-14 2001-03-16 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse de navire, a structure d'angle simplifiee
WO2012072906A1 (fr) 2010-12-01 2012-06-07 Gaztransport Et Technigaz Barriere d'etancheite pour une paroi de cuve
FR3054872A1 (fr) 2016-08-02 2018-02-09 Gaztransport Et Technigaz Structure de paroi etanche

Also Published As

Publication number Publication date
FR3084270A1 (fr) 2020-01-31
FR3084270B1 (fr) 2022-01-07
KR20210031938A (ko) 2021-03-23
CN112543691A (zh) 2021-03-23
SG11202100789QA (en) 2021-03-30
CN112543691B (zh) 2022-09-16
EP3826796A1 (fr) 2021-06-02

Similar Documents

Publication Publication Date Title
EP3320256B1 (fr) Cuve etanche et thermiquement isolante ayant une membrane d'etancheite secondaire equipee d'un arrangement d'angle a toles metalliques ondulees
EP3198186A1 (fr) Cuve étanche et isolante comportant un élément de pontage entre les panneaux de la barrière isolante secondaire
EP2646737A1 (fr) Barriere d'etancheite pour une paroi de cuve
FR3054872A1 (fr) Structure de paroi etanche
EP3365592B1 (fr) Cuve comprenant des blocs isolants de coin equipes de fentes de relaxation
FR3069044A1 (fr) Cuve etanche et thermiquement isolante
FR3058498A1 (fr) Structure d'angle d'une cuve etanche et thermiquement isolante et son procede d'assemblage
WO2018024982A1 (fr) Structure de paroi etanche
WO2021074435A1 (fr) Cuve étanche et thermiquement isolante
WO2012123656A1 (fr) Bloc isolant pour la fabrication d'une paroi de cuve etanche
WO2019239048A1 (fr) Cuve etanche et thermiquement isolante
FR3085199A1 (fr) Paroi de cuve etanche et thermiquement isolante
FR3072759A1 (fr) Cuve etanche et thermiquement isolante
WO2019162596A1 (fr) Paroi de cuve etanche comprenant une membrane d'etancheite comportant une zone renforcee
WO2019215404A1 (fr) Paroi de cuve étanche comprenant une membrane d'étanchéité
WO2020021189A1 (fr) Soudage d'une membrane etanche d'un massif d'isolation thermique d'une cuve
WO2019145635A1 (fr) Cuve etanche et thermiquement isolante
WO2020079347A1 (fr) Soudage d'une membrane etanche d'une cuve
FR3111411A1 (fr) Dôme liquide d’une cuve de stockage pour gaz liquéfié
FR3111410A1 (fr) Dôme liquide d’une cuve de stockage pour gaz liquéfié
FR3069903B1 (fr) Cuve etanche et themiquement isolante
FR3110669A1 (fr) Installation de stockage pour gaz liquéfié
WO2019239053A1 (fr) Cuve etanche munie d'un element de jonction ondule
WO2020021208A1 (fr) Cuve etanche et thermiquement isolante
WO2019012237A1 (fr) Cuve etanche et thermiquement isolante a bande de support incurvee

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217004065

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021101083

Country of ref document: RU

Ref document number: 2019761914

Country of ref document: EP