WO2020020360A1 - 无线通信方法和设备 - Google Patents

无线通信方法和设备 Download PDF

Info

Publication number
WO2020020360A1
WO2020020360A1 PCT/CN2019/097973 CN2019097973W WO2020020360A1 WO 2020020360 A1 WO2020020360 A1 WO 2020020360A1 CN 2019097973 W CN2019097973 W CN 2019097973W WO 2020020360 A1 WO2020020360 A1 WO 2020020360A1
Authority
WO
WIPO (PCT)
Prior art keywords
preamble signal
time
signal
symbol
preamble
Prior art date
Application number
PCT/CN2019/097973
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to JP2021504413A priority Critical patent/JP2021533611A/ja
Priority to KR1020217002199A priority patent/KR20210036925A/ko
Priority to CN201980049148.5A priority patent/CN112586058B/zh
Priority to AU2019311074A priority patent/AU2019311074A1/en
Priority to EP19841578.8A priority patent/EP3809777A4/en
Publication of WO2020020360A1 publication Critical patent/WO2020020360A1/zh
Priority to US17/109,965 priority patent/US11627611B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/0858Random access procedures, e.g. with 4-step access with collision treatment collision detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • Embodiments of the present invention relate to the field of communications, and more particularly, to a wireless communication method and device.
  • the New Radio (NR) system can support data transmission on unlicensed frequency bands. Specifically, when a network device communicates on an unlicensed spectrum, it needs to be based on Listen Before Talk (LBT). ) Principle, that is, before a network device sends a downlink signal on a channel of an unlicensed spectrum, it needs to perform channel detection (or called channel listening). When the channel detection result is that the channel is idle, the network device can perform downlink Signaling.
  • LBT Listen Before Talk
  • terminal equipment needs to perform blind detection to determine whether network equipment sends downlink signals when receiving downlink signals. This results in higher complexity and power consumption of the terminal equipment.
  • Embodiments of the present invention provide a wireless communication method and device, which can reduce the complexity and power consumption of a terminal device.
  • a wireless communication method including: performing channel detection on a carrier in an unlicensed frequency band; and when the channel detection is successful, transmitting a preamble signal on the carrier from a first moment, the The preamble signal is used to determine that the carrier can be used to transmit a downlink signal.
  • a wireless communication method including: detecting a preamble signal on a carrier in an unlicensed frequency band; and receiving a downlink signal on the carrier when the preamble signal is successfully detected.
  • a network device for performing the method described in the first aspect or any optional implementation manner of the first aspect.
  • the network device includes a functional module for executing the method described in the first aspect or any optional implementation manner of the first aspect.
  • a terminal device for performing the method described in the second aspect or any optional implementation manner of the second aspect.
  • the terminal device includes a functional module for executing the method described in the second aspect or any optional implementation manner of the second aspect.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute the method in the above-mentioned first aspect or its implementations.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or the implementations thereof.
  • a chip for implementing the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • the chip includes a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes the method in the first aspect or any possible implementation manner of the first aspect.
  • a chip for implementing the foregoing second aspect or the method in any possible implementation manner of the second aspect.
  • the chip includes a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes the method in the second aspect or any possible implementation manner of the second aspect.
  • a computer-readable storage medium for storing a computer program that causes a computer to execute the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • a computer-readable storage medium for storing a computer program that causes a computer to execute the foregoing second aspect or the method in any possible implementation manner of the second aspect.
  • a computer program product including computer program instructions that cause a computer to execute the foregoing first aspect or a method in any possible implementation manner of the first aspect.
  • a computer program product including computer program instructions that cause a computer to perform the foregoing second aspect or a method in any possible implementation manner of the second aspect.
  • a computer program that, when run on a computer, causes the computer to execute the above-mentioned first aspect or the method in any possible implementation manner of the first aspect.
  • a computer program is provided that, when run on a computer, causes the computer to execute the second aspect or the method in any possible implementation manner of the second aspect.
  • a network device may send a preamble signal before sending a downlink signal to assist a terminal device in detecting a downlink signal. After the terminal equipment detects the preamble signal, it then receives the downlink signal, which avoids the problems of increased complexity and power consumption caused by the terminal equipment's blind detection of the downlink signal.
  • FIG. 1 is a schematic diagram of a wireless communication system applied in an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a wireless communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a method for determining a first moment according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another method for determining a first moment according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another method for determining a first moment according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another method for determining a first moment according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a method for transmitting a preamble signal according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a mapping manner of a sequence of a preamble signal in a frequency domain according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another mapping manner of a sequence of a preamble signal in a frequency domain according to an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another wireless communication method according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System (Mobile) system
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • NR Universal Mobile Communication System
  • UMTS Universal Mobile Communication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • the embodiments of the present application do not limit the applied frequency spectrum.
  • the embodiments of the present application may be applied to licensed spectrum, and may also be applied to unlicensed spectrum.
  • FIG. 1 shows a wireless communication system 100 applied in an embodiment of the present application.
  • the wireless communication system 100 may include a network device 110.
  • the network device 100 may be a device that communicates with a terminal device.
  • the network device 100 may provide communication coverage for a specific geographic area, and may communicate with terminal devices (such as UEs) located within the coverage area.
  • the network device 100 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or may be an LTE system or an NR system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • Evolution base station (Evolutionary Node B, eNB or eNodeB), or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device may be a relay station, an access point, an in-vehicle device, Wearable devices, network-side devices in 5G networks, or network devices in public land mobile networks (PLMNs) that will evolve in the future.
  • PLMNs public land mobile networks
  • the wireless communication system 100 further includes at least one terminal device 120 located within a coverage area of the network device 110.
  • the terminal device 120 may be mobile or fixed.
  • the terminal device 120 may refer to an access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication Device, user agent, or user device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (PDA), and wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Processing
  • terminal devices 120 may also perform terminal direct device (D2D) communication.
  • D2D terminal direct device
  • the 5G system or network may also be referred to as an NR system or network.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system 100 may include multiple network devices and the coverage range of each network device may include other numbers of terminal devices.
  • the application example does not limit this.
  • the wireless communication system 100 may further include an Access and Mobility Management Function (AMF), a Session Management Function (SMF), and a Unified Data Management (UDM) , Other network entities such as Authentication Server Function (AUSF), which is not limited in this embodiment of the present application.
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UDM Unified Data Management
  • AUSF Authentication Server Function
  • various aspects or features of the application may be implemented as a method, apparatus, or article of manufacture using standard programming and / or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, Compact Disc (CD), Digital Versatile Disc (DVD) Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and / or other machine-readable media used to store information.
  • machine-readable medium may include, but is not limited to, various media capable of storing, containing, and / or carrying instruction (s) and / or data.
  • network equipment needs to detect the channel on the carrier before sending downlink signals to the terminal equipment.
  • the network device detects that the channel is idle, the channel detection is successful, and the channel can be used for transmitting signals.
  • An embodiment of the present application provides a wireless communication method.
  • a network device may send a preamble signal before sending a downlink signal to assist a terminal device in detecting a downlink signal. After the terminal device detects the preamble signal, it then receives the downlink signal, which avoids the problems of increased complexity and power consumption caused by the terminal device's need to blindly detect the downlink signal.
  • the preamble signal transmission method in the embodiments of the present application may be used for downlink transmission or uplink transmission.
  • a terminal device may send an uplink preamble signal before sending an uplink signal.
  • a network device may receive the uplink signal after detecting the uplink preamble signal.
  • the downlink signal may include a downlink physical channel and a downlink reference signal, wherein the downlink physical channel may include a physical downlink control channel (Physical Downlink Control Channel, PDCCH), and a physical downlink shared channel (Physical Downlink (Shared Channel, PDSCH), Physical Multicast Channel (PMCH), Physical Broadcast Channel (PBCH), and so on.
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink shared channel
  • PMCH Physical Multicast Channel
  • PBCH Physical Broadcast Channel
  • the downlink reference signal may include a downlink synchronization signal (Synchronization Signal), a phase tracking reference signal (Phase Tracking Reference Signal, PT-RS), a downlink demodulation reference signal (DeModulation Reference Signal, DMRS), and a channel state information reference signal (Channel StateStateInformation -Reference (Signal, CSI-RS) and so on.
  • a downlink synchronization signal Synchronization Signal
  • PT-RS Phase Tracking Reference Signal
  • DMRS Downlink demodulation reference signal
  • CSI-RS channel state information reference signal
  • the embodiments of the present application may include downlink physical channels or downlink reference signals with the same names and different functions, or may include downlink physical channels or downlink reference signals with the same names and different functions. Not limited.
  • the uplink signal may include an uplink physical channel and an uplink reference signal
  • the uplink physical channel may include a physical random access channel (PRACH, Physical Random Access CHannel), and a physical uplink control channel ( PUCCH, Physical Uplink Control Channel), Physical Uplink Shared Channel (PUSCH, Physical Uplink Shared Channel), etc.
  • the uplink reference signal may include an uplink demodulation reference signal (DMRS), a sounding reference signal (SRS), a phase tracking reference signal (PT-RS), and the like.
  • DMRS uplink demodulation reference signal
  • SRS sounding reference signal
  • PT-RS phase tracking reference signal
  • the embodiments of the present application may include uplink physical channels or uplink reference signals with the same names and different functions, and may also include uplink physical channels or uplink reference signals with different names and the same functions. Not limited.
  • FIG. 2 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. The method of FIG. 2 includes at least part of the following.
  • step 210 channel detection is performed on a carrier in an unlicensed frequency band.
  • step 220 if the channel detection is successful, a preamble signal is sent on the carrier from the first moment.
  • the preamble signal is used to determine that the carrier can be used to transmit a downlink signal.
  • a symbol used to transmit a preamble signal may be referred to as a preamble signal symbol.
  • the symbol used in the actual transmission of the preamble signal is not necessarily a complete symbol, but may refer to the use of a part of the symbol to transmit the preamble signal.
  • the length of time for transmitting the preamble signal may only be 1.5 preamble signal symbols, that is, one symbol may occupy only half a symbol.
  • the first moment may be one moment in a set of candidate moments.
  • a plurality of candidate moments may be set in time length in advance, and one candidate moment among the plurality of candidate moments is used as the first moment.
  • the time interval between any two adjacent candidate moments in the multiple candidate moments may be equal, or may be increasing or decreasing, which is not specifically limited in this embodiment of the present application.
  • the first time may be any one of the preamble signal symbols.
  • the first time may be a time determined according to a format of a preamble signal symbol and / or a time when the channel detection is successful.
  • the candidate time in the embodiment of the present application may also be a time determined according to a format of a preamble signal symbol and / or a time when the channel detection is successful.
  • the preamble signal symbol is used to transmit the preamble signal.
  • the preamble signal symbol may include a cyclic prefix (CP) part and an information segment part.
  • the information segment part may be, for example, a data part sent by a network device.
  • the CP part of the preamble signal may be the content of the tail part of the information segment part.
  • the format of the preamble signal symbol may indicate the number of information segment parts, the number of preamble signal symbols, the position relationship between the information segment part and the CP part, the length of the CP part, the length of the information segment part, and the preamble signal At least one of the subcarrier intervals of the symbol.
  • the network device indicates, through higher layer signaling or physical layer signaling, which of the multiple types of the pilot signal symbol the terminal device is currently using.
  • the preamble symbol includes a first CP part and an information segment part, and each information segment part has a separate first CP part.
  • the preamble signal symbol includes a second CP part and M information segment parts, the M information segment parts share a second CP part, and M is greater than or equal to 2 Positive integer.
  • the M pieces of information are repeatedly transmitted (that is, the signals sent on each of the M pieces of information are the same).
  • the length of the second CP portion is greater than the length of the first CP portion.
  • the length of the second CP part is the length of the M first CP parts.
  • the following describes in detail a manner of determining a first time according to a format of a preamble signal symbol and / or a time when the channel detection succeeds.
  • the first time may be a time determined according to a format of a preamble signal symbol.
  • the first time may be the start time of the information section part, the start time of the CP part, or the start time of the preamble signal symbol.
  • the first time may be a time determined according to a time when the channel detection is successful.
  • the time after a preset time period after the channel detection is successful may be used as the first time.
  • the first time may be the time when the channel detection is successful.
  • the first time may be jointly determined according to the format of the preamble symbol and the time when the channel detection is successful.
  • the first time may be the start time of the preamble signal symbol after the channel detection is successful, or the start time of the CP part after the channel detection is successful, or the start time of the information section part after the channel detection is successful, or It may be the start time of the downlink signal symbol after the channel detection is successful.
  • the first time introduced above may be a time determined according to a format of a preamble signal symbol and / or a time when the channel detection is successful, but it should be understood that the embodiments of the present application are not limited thereto.
  • the subcarrier interval corresponding to the preamble signal symbol may be referred to as a first subcarrier interval.
  • the first subcarrier interval may be equal to the subcarrier interval corresponding to the downlink signal. That is, it can be agreed in the system that the subcarrier interval of the preamble signal is equal to the subcarrier interval of the downlink signal. After the network device obtains the subcarrier interval of the downlink signal, it can be directly determined that the subcarrier interval of the preamble signal is equal to the subcarrier interval of the downlink signal.
  • the first subcarrier interval may be a subcarrier interval indicated by at least one of the following signaling, radio resource control (radio resource control (RRC) signaling, physical layer signaling, and medium access control (media access control (MAC) layer signaling.
  • RRC radio resource control
  • MAC media access control
  • the first subcarrier interval may be a predefined subcarrier interval.
  • the first subcarrier interval may be a subcarrier interval specified in a standard specification.
  • the first time may also be determined based on the format of the downlink signal symbol (that is, it can be used to transmit downlink symbols such as PDCCH or PDSCH). For example, the time aligned with the start time of the downlink signal symbol may be determined as the first time.
  • the start time of the downlink signal symbol here refers to the start time of the downlink signal symbol corresponding to the subcarrier interval of the downlink signal, where the subcarrier interval of the downlink signal may refer to the subcarrier interval of the downlink signal actually transmitted It may also be a subcarrier interval for downlink signal transmission indicated by at least one of radio resource control RRC signaling, physical layer signaling, and media access control MAC layer signaling, or may be a predefined subcarrier. Carrier interval.
  • the subcarrier interval (ie, the first subcarrier interval) of the preamble signal may be greater than or equal to the subcarrier interval of the downlink signal, or the length of the preamble signal symbol may be less than or equal to the length of the downlink signal symbol.
  • the NR system can support a larger subcarrier interval, and the configuration of the subcarrier interval is also more flexible.
  • the subcarrier interval that the NR system can support includes 15kHz, 30kHz, 60kHz, and so on. The greater the subcarrier spacing of the system, the shorter the symbols used by the system to transmit signals can be.
  • the preamble signal can reduce the complexity of the terminal's blind detection of the downlink signal, simplify the terminal equipment and reduce power consumption.
  • the size of the subcarrier interval of the previous pilot signal is equal to the size of the subcarrier interval of the four downlink signals.
  • the division of the time length can be divided according to the length of the downlink signal symbol, that is, the length of the symbol #n and the symbol # (n + 1) are equal to one downlink signal symbol length.
  • the format of the preamble signal symbol may be as shown in FIG. 3.
  • a preamble signal symbol includes a CP section and an information section section, and each information section section has a separate CP section.
  • the preamble signal symbol may also be called Leading signal symbol with CP.
  • the symbol #n includes 4 preamble signal symbols, that is, the length of one downlink signal symbol is equal to the length of the 4 preamble signal symbols.
  • the CP length of the last 3 preamble signal symbols in the 4 preamble signal symbols is the same and smaller than the CP length of the first preamble signal symbol, or the CP length of each preamble signal symbol in the 4 preamble signal symbols All the same.
  • the first time when the network device selects the start time of the CP part or the start time of the preamble signal symbol as the first time, the first time may be the start time of any CP part (as indicated by ⁇ in FIG. 3). Shown moments).
  • the first time When the network device selects the start time of the downlink signal symbol as the first time, the first time may be the start time of the CP part of the first preamble signal symbol (that is, the time indicated by the first ⁇ in FIG. 3) .
  • the format of the preamble signal symbol may be as shown in FIG. 4.
  • a preamble signal symbol includes a CP portion and 4 information segment portions, and the 4 information segment portions share a CP portion.
  • the length of a preamble signal symbol is equal to the length of the symbol #n, that is, the length of a preamble signal symbol is equal to the length of a downlink signal symbol.
  • the length of the information segment of one downlink signal symbol is equal to the length of the information segment of 4 preamble signal symbols.
  • the CP length of the downlink signal symbol #n and the CP length of the downlink signal symbol # (n + 1) may be the same or different (for example, when the symbol #n is the first symbol or the seventh symbol in a time slot) In the case of symbols, the CP length of the symbol #n is greater than the CP length of the symbol # (n + 1)).
  • the first time when the network device selects the start time of the information section part or the start time of the CP section as the first time, the first time may be the start time of the CP section, or one of the four information section parts.
  • the start time of the information segment time shown as ⁇ in Figure 4
  • the first time When the network device selects the start time of the preamble signal symbol or the start time of the downlink signal symbol as the first time, the first time may be the start time of the preamble signal symbol (as indicated by the first ⁇ in FIG. 4) time).
  • a preamble signal symbol in FIG. 4 is understood as a CP part and 4 information segment parts.
  • the preamble signal symbol may also be understood in other ways. For example, in some cases, it may also be understood. Understanding one information segment in FIG. 4 as a preamble signal, or two information segments in FIG. 4 as a preamble signal (that is, the length of the CP part and the length of the information part part are the same), and the understanding of the preamble signal symbol It does not limit the application.
  • the format of the preamble signal symbol may be as shown in FIG. 5.
  • a preamble signal symbol includes a CP part and two information segment parts, where the two information segment parts share a CP part.
  • the symbol #n includes two preamble signal symbols, that is, the length of the two preamble signal symbols is equal to the length of one downlink signal symbol.
  • the first time when the network device selects the start time of the information section part or the start time of the CP section as the first time, the first time may be the start time of the CP section or one of the four information section sections.
  • the start time of the information section (time shown as ⁇ in Fig. 5).
  • the first time When the network device selects the start time of the preamble signal symbol as the first time, the first time may be the start time of one CP part of the two CP parts (as shown by the first ⁇ or the fourth ⁇ in FIG. 5). Shown moments).
  • the first time When the network device selects the start time of the downlink signal symbol as the first time, the first time may be the start time of the CP part of the first preamble signal symbol (as indicated by the first ⁇ in FIG. 5) .
  • preamble signal formats may also be used to transmit the preamble signal.
  • a downlink signal symbol includes a first preamble signal symbol and a second preamble signal symbol, where the first preamble signal symbol includes a CP part and three information segment parts, and the second The preamble symbol includes a CP section and an information section section.
  • the first time may be the start time of the CP portion of the first preamble signal symbol, or the start time of the information segment portion of the first preamble signal symbol, or the start time of the CP portion of the second preamble signal symbol.
  • a preamble symbol in the four cases shown in FIG. 6, the format of the preamble symbol used in each case is different.
  • a preamble symbol in the first case, includes a CP section and 4 information section sections.
  • a preamble symbol in the second case, includes a CP part and three information segment parts.
  • a preamble symbol includes a CP part and two information segment parts.
  • a preamble symbol in the third case, includes a CP section and an information section section.
  • the network device may determine the format of the preamble signal symbol according to the time when the channel detection is successful.
  • the network device may divide the symbol #n into multiple time periods in advance, such as time period 1, time period 2, time period 3, and time period 4, and use the start time of each time period as a candidate time for the first time.
  • the network device may start sending a preamble signal from the start time of the time period 1, as shown in the first case shown in FIG. 6. At this time, the network device may determine that the preamble signal symbol indicated by the format of the preamble signal symbol includes a CP part and (p + 3) preamble signals of the information segment. Among them, p is a positive integer.
  • a network device may send a preamble signal including a CP part and 4 information segments from the beginning of the time segment 1.
  • the network device may send the preamble signal from the start time of the time period 2, as shown in the second case shown in FIG. 6. At this time, the network device may determine that the preamble signal symbol indicated by the format of the preamble signal symbol includes a CP part and a preamble signal of (p + 2) information segments.
  • a network device may send a preamble signal including a CP part and three information segments from the beginning of time period 2.
  • the network device can start sending the preamble signal from the start time of the time period 3, as shown in the third case shown in FIG.
  • the network device may determine that the preamble signal symbol indicated by the format of the preamble signal symbol includes a CP part and (p + 1) preamble signals of the information segment.
  • the network device may send a preamble signal including a CP part and two information part parts from the beginning of the time period 3.
  • the network device may send the preamble signal from the start time of the time period 4, as shown in the fourth case shown in FIG. 6. At this time, the network device may determine that the preamble signal symbol indicated by the format of the preamble signal symbol includes a CP part and preamble signals of p information segments.
  • the network device may send a preamble signal including a CP part and an information part part from the start time of the time period 3.
  • the length of the CP part in the first, second, third, and fourth cases may be the same or different, which is not limited in this application.
  • the length of time used to send the preamble signal in each case is determined as the transmission length of the preamble signal, but the embodiment of the present application is not limited thereto.
  • the length of the symbol #n can also be understood as the length of the preamble signal symbol, that is, in the first case, the symbol used to send the preamble signal is understood as the preamble signal symbol, which is a complete symbol.
  • the symbol used for transmitting the preamble signal is understood as not being a complete symbol.
  • the first time may be the start time of the m-th CP part after the channel detection is successful, or the start time of the m-th information segment part, or the start time of the m-th preamble signal symbol, or the m-th The starting time of the three downlink signal symbols.
  • m is a positive integer.
  • the network device may start the first information segment part after the channel detection succeeds, or the start time of the first CP part, or the start of the first preamble signal symbol.
  • the preamble signal is transmitted at the time, or the start time of the first downlink signal symbol.
  • the network device may also start at the start time of the second and more information segment parts after the channel detection succeeds, or the start time of the CP part, or the start time of the preamble signal symbol. , Or send the preamble at the beginning of the downlink signal symbol.
  • the transmission length of the preamble signal is a fixed length.
  • the transmission length of the preamble signal is S preamble signal symbols, or the transmission length of the preamble signal is S downlink signal symbols, or the transmission length of the preamble signal is (S + 1) information segments, and S is a positive integer.
  • the candidate moment at the first moment may be determined according to a start position of the downlink signal symbol and a transmission length of the preamble signal, where the start position of the downlink signal symbol is a downlink signal symbol in a candidate set of downlink transmission start symbols.
  • the starting moment For example, the start position of the downlink signal symbol is the start time of the symbol #n, and the transmission length of the preamble signal is S downlink signal symbols, then the first time is the start time of the symbol # (n-S).
  • the starting position of the downlink signal symbol is the starting time of one of the symbols # 2, # 6, and # 10 in one slot
  • the transmission length of the preamble signal is 2 downlink signal symbols
  • the first time The candidate moment is the start time of one of the symbols # 0, # 4, and # 8 in a slot.
  • the network device can select the first available one from the candidate moments at the first moment after the channel detection is successful. The moment is the first moment.
  • the first time is the start time of the downlink signal symbol
  • the preamble signal will start from a downlink signal symbol.
  • the transmission starts at the starting position of. For example, when the time when the channel detection succeeds is at any position in the middle of a downlink signal symbol, the network device can start transmitting a downlink signal from the start time of the next downlink signal symbol.
  • the time length of each transmission of the preamble signal is a fixed length.
  • the terminal device can detect the presence of the preamble signal at the candidate position of the preamble signal, which can reduce the detection complexity of the terminal device.
  • the network device may send a preamble signal from the time when the channel detection is successful.
  • the network device may send a placeholder signal.
  • the placeholder signal is used to occupy the channel that has been detected successfully, to prevent other devices from occupying the channel by sending data on the channel.
  • the placeholder signal may be, for example, some clutter, noise, or the like.
  • the placeholder signal may be spatially quasi-co-located (QCL) with a preamble signal located behind the placeholder signal in the time domain.
  • the placeholder signal may be based on the beam used by the placeholder signal and / Or, the beam and / or port used by the port to derive the preamble signal.
  • the network device may send the CP part of the preamble signal.
  • the CP part of the preamble signal transmitted between the time when the channel detection is successful and the first time is referred to as the initial CP part.
  • the initial CP part may be an extended CP of a preamble signal.
  • the initial CP part is not considered as a preamble signal.
  • the initial CP part can be regarded as a part of the preamble signal, that is, the preamble signal includes the initial CP part.
  • the first moment is the moment when the channel detection is successful, and the network device may send the preamble signal from the moment when the channel detection is successful. That is, the transmission length of the preamble signal is variable.
  • the scheme for sending the initial CP part can also be described as: from the time when the channel detection succeeds to the start time of the first CP part or the first information segment part after the channel detection succeeds Or between the start time of the first preamble signal symbol, sending the CP part of the preamble signal on the carrier.
  • FIG. 7 shows a case where the channel detection success time is not the first time.
  • the format of the preamble symbol in Case 1 shown in FIG. 7 is the same as the format of the preamble symbol shown in FIG. 3.
  • the format of the preamble symbol of 2 is the same as that of the preamble symbol shown in FIG. 4.
  • the network device may use the start time of the CP part or the time of the information segment part as the first time.
  • the time when the channel detection is successful is the position shown by ⁇ in the figure.
  • the network device may determine the start time of the CP part closest to the time when the channel detection is successful as the first time, that is, the first time is the position shown by ⁇ in the figure. .
  • the network device may send the initial CP part of the preamble signal. From the time interval from the first moment to the end moment of the symbol #n, the network device may send a preamble signal.
  • the CP part is the content of the tail part of the information section part, for the case 2 shown in FIG. 7, it can also be considered that the time when the channel detection is successful is the first time, and the network device starts transmitting from the time when the channel detection is successful. The remainder of the preamble symbol.
  • the start time of sending the preamble signal multiple times may be the start time of the CP part, or it may be the start time of the CP part, and the other part is not.
  • the starting point of the CP part may be used.
  • the network device may use the start time of the CP part as the first time when the preamble signal is sent for the first time, and use the start time of the information segment part or the start time of the preamble signal symbol when the preamble signal is sent the second time. Or the start time of the downlink signal symbol is taken as the first time.
  • the start time of transmission of the preamble signal is determined according to the time of successful channel detection, and the transmission length of the preamble signal is variable length.
  • the transmission length of the preamble signal is variable, the shortest transmission length of the preamble signal needs to be specified, so that the receiving side can correctly receive the preamble signal.
  • the length of time to send the preamble signal is greater than or equal to the length of the P preamble signal symbols; or, the length of time to send the preamble signal is greater than or equal to the length of the P downlink signal symbols; or the length of time to send the preamble signal
  • the length of the information segment part that is greater than or equal to Q said preamble signal symbols, P is a positive integer, and Q is a positive integer greater than or equal to 2.
  • the end time of sending the preamble signal may be the end time of one downlink signal symbol.
  • the length of time to send the preamble signal is less than or equal to the length of the R downlink signal symbols, R is a positive integer, and when the length of time to send the preamble signal is greater than or equal to the length of the P downlink signal symbols, R is greater than P .
  • the P value, Q value, or R value may be predefined, or may be sent by the network device to the terminal device through one of RRC signaling, physical layer signaling, and MAC layer signaling.
  • the time to send the preamble signal is from the first time to the end of symbol #n; If P is the length of one downlink signal symbol and R is the length of two downlink signal symbols, the time to send the preamble signal is from the first moment to the end of the symbol # (n + 1), that is, When the time interval between the time when the channel detection succeeds and the start time of the symbol # (n + 1) is less than the length of a downlink signal symbol, the network device needs to continue transmitting the preamble signal on the symbol # (n + 1).
  • the length of the preamble signal symbol is equal to the length of the downlink signal symbol.
  • the first time is the time when the channel detection is successful. If Q is 2 The length of the information segment part of each preamble signal symbol, R is the length of one downlink signal symbol, then the time to send the preamble signal is from the first moment to the end of symbol #n; if P is one downlink signal symbol Length of a preamble signal symbol, or R is the length of two downlink signal symbols, then the time to send a preamble signal is from the first moment to the end of symbol # (n + 1), that is, When the time interval between the time when the channel detection succeeds and the start time of the symbol # (n + 1) is less than the length of a downlink signal symbol, the network device needs to continue transmitting the preamble signal on the symbol # (n + 1).
  • the time length of transmitting the preamble signal is greater than or equal to the length of 2 * N information segment parts, or the time length of transmitting the preamble signal is greater than or equal to N preamble signal symbols (with CP The length of the preamble signal symbol), or the length of time to send the preamble signal is greater than or equal to the length of N downlink signal symbols, where N is a positive integer.
  • the time length of transmitting the preamble signal is a fixed length.
  • the transmission length of the preamble signal is S * N preamble signal symbols, or the transmission length of the preamble signal is S * N downlink signals.
  • the transmission length of the symbol or preamble signal is (S + 1) * N pieces of information, and S is a positive integer.
  • the network device sends a downlink signal on the channel on which the channel detection succeeds, starting from the second moment.
  • the network device may send a downlink signal to the terminal device after the preamble signal is sent.
  • the second time is the end time of transmitting the preamble signal.
  • the network device does not continue to send the downlink signal, but waits for the terminal device to send the response signal of the preamble signal. After the network device receives the response signal of the preamble signal sent by the terminal device, it sends a downlink signal to the terminal device. If the network device does not receive the response signal of the preamble signal sent by the terminal device, the network device may choose not to send a downlink signal.
  • the time domain characteristics of the preamble signal are described above, and the frequency domain characteristics of the preamble signal are described below.
  • the sequence of the preamble signal can be mapped to M subcarriers on the first bandwidth in the frequency domain, where M is a positive integer.
  • the M value is preset.
  • the first bandwidth is a bandwidth configured by the network device for the terminal device for downlink signal transmission, or the first bandwidth is a bandwidth configured and activated by the network device for the terminal device for downlink signal transmission.
  • the size of the first bandwidth may be an integer multiple of the detection bandwidth of the subband channel.
  • the detection bandwidth of the subband channel is 20 MHz
  • the size of the first bandwidth may be 20 MHz, 40 MHz, 60 MHz, 80 MHz, and the like.
  • the subband channel detection bandwidth is a unit bandwidth used for channel detection.
  • the preamble signal can be transmitted on each first bandwidth. That is, when the frequency domain of the unlicensed spectrum is divided into multiple bandwidths according to the first bandwidth, the preamble signal is transmitted on each of the divided bandwidths.
  • This embodiment of the present application does not specifically limit a mapping manner in which a sequence of a preamble signal is mapped to M subcarriers on a first bandwidth.
  • a sequence element of the preamble signal is mapped on the frequency domain to M consecutive subcarriers on the first bandwidth.
  • the sequence elements of the preamble signal are mapped on the frequency domain to M discrete subcarriers on the first bandwidth.
  • the starting position of the sequence of the preamble signal in the frequency domain is preset, or the network device instructs the terminal device through signaling.
  • the multiple sequences may be mapped to different symbols of the first bandwidth, respectively.
  • the M subcarriers may occupy the full bandwidth, the center bandwidth, or a predefined bandwidth of the first bandwidth.
  • the sequence of the preamble signal may be mapped to M discrete subcarriers on the first bandwidth in the frequency domain.
  • the mapping positions of the M discrete subcarriers in the frequency domain are preset, or the distance between any two adjacent subcarriers in the M discrete subcarriers is equal and the distance is Is preset.
  • signals are not mapped on other subcarriers other than the M subcarriers mapped by the sequence of the preamble on the first bandwidth.
  • the preamble signal is represented in the time domain in the form of information segment repetition, and a preamble signal information segment with a shorter symbol length than the subcarrier interval corresponding to the preamble signal can be generated.
  • the representation of the preamble signal in the time domain is an information segment including k (ie, 4) repeated preamble signals within 66.7 microseconds. Since the length of the information segment part of the preamble signal is short, the processing complexity of the terminal device can be reduced.
  • the sequence of the preamble signal may be mapped to M consecutive subcarriers of the first bandwidth in the frequency domain.
  • no signal is mapped on the subbands other than the M subcarriers mapped by the sequence of the preamble on the first bandwidth.
  • the terminal device detects the preamble signal, it can be processed directly in the time domain without transforming to the frequency domain and then processed, thereby reducing the processing complexity of the terminal device.
  • the information section portion of the shorter preamble signal can also be obtained, which can further reduce The processing complexity of the end device.
  • mapping manner of the sequence of the preamble signal is described below with reference to FIGS. 8 to 9.
  • FIG. 8 is a schematic diagram of a mapping manner of a preamble signal in a frequency domain when the preamble signal includes a sequence.
  • the subcarrier interval of the preamble signal is equal to the subcarrier interval of the downlink signal, and the sequence of the preamble signal is mapped to M discrete subcarriers of the first bandwidth in the frequency domain.
  • both the preamble signal and the downlink signal are transmitted on the first bandwidth
  • the preamble signal is transmitted on the symbol #n
  • the downlink signal is transmitted on the symbol # (n + 1).
  • the sequence length of the preamble signal is 8.
  • the preamble signal can be mapped to 8 subcarriers of the first bandwidth.
  • the 8 subcarriers can be discrete subcarriers. As shown in Type 8 of FIG. 8, each phase of the 8 subcarriers The distance between two adjacent subcarriers separated by 4 subcarriers.
  • the eight subcarriers may be distributed at the center of the first bandwidth, or may be distributed over the full bandwidth of the first bandwidth, or may be distributed over a predefined subcarrier.
  • the full bandwidth distributed on the first bandwidth may mean that the 8 subcarriers are distributed on the first bandwidth evenly or at equal intervals.
  • the subcarrier interval of the preamble signal is greater than the subcarrier interval of the downlink signal, and the sequence of the preamble signal is mapped on the frequency domain to M consecutive subcarriers of the first bandwidth.
  • both the preamble signal and the downlink signal are transmitted on the first bandwidth, the preamble signal is transmitted on the symbol #n, and the downlink signal is transmitted on the symbol # (n + 1).
  • the size of the subcarrier interval of the preamble signal is equal to 4 times the size of the subcarrier interval of the downlink signal, the length of the symbol #n is equal to the length of the 4 preamble signal symbols, and the preamble signal is transmitted on each symbol.
  • the sequence length of the preamble signal is 8, and the preamble signal may be mapped to 8 subcarriers of the first bandwidth, and the 8 subcarriers may be continuous subcarriers. Sequence elements of the preamble are mapped on the 8 subcarriers of each of the 4 preamble signal symbols, as shown in Type 2 of FIG. 8.
  • the eight subcarriers may be distributed at the center of the first bandwidth, or may be distributed over the full bandwidth of the first bandwidth, or may be distributed on a predefined carrier.
  • the full bandwidth distributed on the first bandwidth may mean that the 8 subcarriers are distributed on the first bandwidth evenly or at equal intervals.
  • the subcarrier interval of the preamble signal is equal to the subcarrier interval of the downlink signal, and the sequence of the preamble signal is mapped on the frequency domain to M consecutive subcarriers of the first bandwidth.
  • the continuous subcarrier mapping method for the sequence mapping of the preamble signal can also be used to obtain the shorter information segment part of the preamble signal symbol.
  • the subcarrier interval of the preamble signal is smaller than the subcarrier interval of the downlink signal, and the sequence of the preamble signal is mapped to M discrete subcarriers of the first bandwidth in the frequency domain.
  • the interval when the sequence elements of the preamble signal are mapped in the frequency domain can be increased to achieve the purpose of obtaining a short information segment portion of the preamble signal symbol.
  • the subcarrier interval of the preamble signal is 30kHz and the subcarrier interval of the downlink signal is 60kHz, then when the sequence of the preamble signal is mapped to the discrete subcarriers of the first bandwidth in the frequency domain, one of the two adjacent subcarriers is mapped. The distance between them can be greater than or equal to the subcarrier interval of the downlink signal (for example, two subcarriers with a distance of 30 kHz), so that the information segment portion of the shorter preamble signal symbol can be obtained.
  • mapping manner of each sequence in the frequency domain may adopt one of the foregoing frequency domain mapping manners.
  • the mapping modes of multiple sequences in the frequency domain may be the same or different, which is not limited in this application.
  • FIG. 9 is a schematic diagram of a mapping manner of a preamble signal in a frequency domain when the preamble signal includes two sequences.
  • the preamble signal includes a first sequence and a second sequence
  • the first sequence is transmitted on the symbol #n
  • the second sequence is transmitted on the symbol # (n + 1)
  • the downlink signal is on the symbol # (n + 2) transmission.
  • mapping method of the first sequence on the first bandwidth of the symbol #n and the mapping method of the second sequence on the first bandwidth of the symbol # (n + 1) are the same as the mapping method of type 1 shown in FIG. 8, as Avoid cumbersome, it will not be described in detail here.
  • the first sequence and the second sequence may be mapped to the same subcarrier, or may be mapped to different subcarriers.
  • Type 1 in FIG. 9 shows a case where the first sequence and the second sequence are mapped to different subcarriers, and the subcarriers mapped by the first sequence and the second sequence may be misaligned by two subcarriers.
  • both the first sequence and the second sequence may be transmitted on the symbol #n.
  • the symbol #n includes 4 preamble signal symbols, and the first sequence and the second sequence may be transmitted alternately on the symbol n, that is, the 4 preamble signal symbols transmit the first sequence, the second sequence, the first sequence, and the second sequence in sequence, or The four preamble signal symbols transmit the second sequence, the first sequence, the second sequence, and the first sequence in this order.
  • first sequence and the second sequence may be transmitted sequentially, and the transmission sequence of the first sequence and the second sequence may be: after one sequence is transmitted, the other sequence is transmitted.
  • the four preamble signal symbols may transmit the first sequence, the first sequence, the second sequence, and the second sequence in sequence, or the four preamble signal symbols may transmit the second sequence, the second sequence, the first sequence, and the first sequence in sequence.
  • the network device can directly transmit the downlink signal on the symbol # (n + 1), which can shorten the time interval between the time when the channel detection is successful and the time when the downlink signal is transmitted, which is beneficial to improve the transmission efficiency of the communication system.
  • FIG. 9 shows a case where the first sequence and the second sequence are equal in length, but the embodiment of the present application is not limited thereto, and the lengths of the first sequence and the second sequence may also be different.
  • the mapping manner of the eight discrete subcarriers shown in type 1 can achieve the mapping effect of the eight consecutive subcarriers shown in type 2.
  • the size of the subcarrier corresponding to the type 2 preamble symbol is equal to the size of the subcarrier corresponding to the four type 1 preamble symbols
  • the length of the type 1 preamble symbol is equal to the length of the four type 2 preamble symbols.
  • FIG. 8 and FIG. 9 only schematically show the size of the first bandwidth of the preamble mapping.
  • the number of subcarriers included in the first bandwidth depends on the actual situation.
  • the multiple candidate sequences may be mutually orthogonal.
  • the sequence of the preamble signal may be a sequence of a primary synchronization signal (PSS) and / or a sequence of a secondary synchronization signal (SSS), so that the PSS sequence and / or SSS can be reused The purpose of the sequence.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the sequence of the leader signal may be another newly introduced sequence, such as a Zadoff-Chu (ZC) sequence.
  • ZC sequence can be scrambled using a cell identity (ID) scrambling code, which can enable the terminal device to determine that the network device of the cell has obtained the channel use right on the unlicensed frequency band after receiving the preamble signal.
  • ID cell identity
  • the sequence of the preamble signal is common to a cell, common to a group, or unique to a terminal device.
  • the signal transmitted on the preamble signal includes data bits obtained by encoding the original information bits, wherein the mapping mode of the data bits in the frequency domain after modulation is one of the mapping modes of the above sequence in the frequency domain.
  • the preamble signal carries at least one of the following information: a cell ID, a public land mobile network (PLMN) ID, a request to send (RTS) identification, and a clear to send (clear to send). (CTS) identification, the position of the downlink signal in the time domain, and the channel occupation time.
  • PLMN public land mobile network
  • RTS request to send
  • CTS clear to send
  • the terminal device receives a downlink signal (such as a PDCCH or a PDSCH) according to a predefined rule.
  • a downlink signal such as a PDCCH or a PDSCH
  • the position of the downlink signal in the time domain may indicate that, after receiving the preamble signal, the terminal device receives the downlink signal (such as PDCCH or PDSCH) at a corresponding position according to the information carried by the preamble signal.
  • the downlink signal such as PDCCH or PDSCH
  • the antenna port of the preamble signal may be an omnidirectional antenna port or a directional antenna port.
  • the antenna port used for transmitting the preamble signal may be an omnidirectional antenna port or a directional antenna port.
  • the antenna port used for transmitting the preamble signal is a directional antenna port in a direction corresponding to the directional channel detection.
  • the antenna port used to send the preamble signal is the same as the antenna port used to send a synchronization signal block (SSB).
  • SSB synchronization signal block
  • the preamble signal and the SSB or downlink signal located behind the preamble signal in the time domain are QCL. That is, the transmit or receive beam and / or port corresponding to the SSB or downlink signal may be calculated according to the transmit or receive beam and / or port corresponding to the preamble signal, or the transmit or receive beam and / or port corresponding to the SSB or downlink signal may be calculated. And / or the port calculates a transmit or receive beam and / or port corresponding to the preamble.
  • the transmission parameters of the preamble signal can be indicated to the terminal device in one of the following ways: RRC configuration, physical broadcast channel (PBCH), remaining minimized system information (RMSI).
  • RRC configuration physical broadcast channel (PBCH)
  • PBCH physical broadcast channel
  • RMSI remaining minimized system information
  • an indication manner of a transmission parameter of the preamble signal is the same as an indication manner of a transmission parameter of a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the transmission parameter of the preamble signal may be indicated to the terminal device through a carrier on the licensed spectrum.
  • LAA license assisted access
  • the transmission parameters of the preamble signal may include, but are not limited to, the time domain characteristics, frequency domain characteristics, sequence characteristics, antenna port, and configuration parameters of the preamble signal described above.
  • the embodiment of the present application facilitates AGC adjustment by the terminal device, and there is a certain relationship between the terminal device's received power for receiving the preamble signal and the received power for receiving the downlink signal.
  • the terminal device may adaptively adjust the received power of the downlink signal according to the received power used to receive the preamble signal.
  • the embodiment of the present application can reduce the complexity of the terminal's blind detection of the downlink signal, simplify the terminal device, and reduce power consumption.
  • FIG. 10 is a schematic flowchart of another wireless communication method according to an embodiment of the present application.
  • the method of FIG. 10 includes at least part of the following.
  • step 1010 a preamble signal is detected on a carrier in an unlicensed frequency band.
  • step 1020 if the preamble detection is successful, a downlink signal is received on the carrier.
  • the downlink signal may be, for example, a PDCCH or a PDSCH.
  • the terminal equipment can correctly receive and demodulate the preamble signal, the preamble signal detection is successful.
  • step 1020 may further include: if the detection of the preamble signal is successful, receiving a downlink signal on the carrier from the first moment.
  • a symbol used to transmit a preamble signal may be referred to as a preamble signal symbol.
  • the symbol used in the actual transmission of the preamble signal is not necessarily a complete symbol, but may refer to the use of a part of the symbol to transmit the preamble signal.
  • the length of time for transmitting the preamble signal may only be 1.5 preamble signal symbols, that is, one symbol may occupy only half a symbol.
  • the first moment may be one moment in a set of candidate moments.
  • a plurality of candidate moments may be set in time length in advance, and one candidate moment among the plurality of candidate moments is used as the first moment.
  • the time interval between any two adjacent candidate moments in the multiple candidate moments may be equal, or may be increasing or decreasing, which is not specifically limited in this embodiment of the present application.
  • the first time may be any one of the preamble signal symbols.
  • the first time may be a time determined according to a format of a preamble signal symbol.
  • the terminal device may obtain the format of the preamble signal symbol in advance, and then determine the first time according to the format of the preamble signal symbol.
  • the candidate time in the embodiment of the present application may also be a time determined according to a format of a preamble signal symbol.
  • the preamble signal symbol is used to transmit the preamble signal.
  • the preamble signal symbol may include a CP part and an information segment part, and the information segment part may be, for example, a data part sent by a network device.
  • the CP part of the preamble signal may be the content of the tail part of the information segment part.
  • the format of the preamble signal symbol may indicate the number of information segment parts, the number of preamble signal symbols, the position relationship between the information segment part and the CP part, the length of the CP part, the length of the information segment part, and the preamble signal At least one of the subcarrier intervals of the symbol.
  • the network device indicates, through higher layer signaling or physical layer signaling, which of the multiple types of the pilot signal symbol the terminal device is currently using.
  • the preamble symbol includes a first CP part and an information segment part, and each information segment part has a separate first CP part.
  • the preamble signal symbol includes a second CP part and M information segment parts, the M information segment parts share a second CP part, and M is greater than or equal to 2 Positive integer.
  • the M pieces of information are repeatedly transmitted (that is, the signals sent on each of the M pieces of information are the same).
  • the length of the second CP portion is greater than the length of the first CP portion.
  • the length of the second CP part is the length of the M first CP parts.
  • the following describes the manner of determining the first time according to the format of the preamble signal symbol.
  • the first time may be the start time of the information section part, the start time of the CP part, or the start time of the preamble signal symbol.
  • the first time described above may be a time determined according to a format of a preamble signal symbol, but it should be understood that embodiments of the present application are not limited thereto.
  • the subcarrier interval corresponding to the preamble signal symbol may be referred to as a first subcarrier interval.
  • the first subcarrier interval may be equal to the subcarrier interval corresponding to the downlink signal. That is, it can be agreed in the system that the subcarrier interval of the preamble signal is equal to the subcarrier interval of the downlink signal. After the terminal device obtains the subcarrier interval of the downlink signal, it can directly determine that the subcarrier interval of the preamble signal is equal to the subcarrier interval of the downlink signal.
  • the first subcarrier interval may be a subcarrier interval indicated by at least one of the following signaling, RRC signaling, physical layer signaling, and MAC layer signaling.
  • the first subcarrier interval may be a predefined subcarrier interval.
  • the first subcarrier interval may be a subcarrier interval specified in a standard specification.
  • the first time may also be determined based on the format of the downlink signal symbol (that is, it can be used to transmit downlink symbols such as PDCCH or PDSCH). For example, the time aligned with the start time of the downlink signal symbol may be determined as the first time.
  • the start time of the downlink signal symbol here refers to the start time of the downlink signal symbol corresponding to the subcarrier interval of the downlink signal, where the subcarrier interval of the downlink signal may refer to the subcarrier interval of the downlink signal actually transmitted It may also be a subcarrier interval for downlink signal transmission indicated by at least one of RRC signaling, physical layer signaling, and MAC layer signaling by the network device through radio resource control, and may also be a predefined subcarrier interval.
  • the subcarrier interval (ie, the first subcarrier interval) of the preamble signal may be greater than or equal to the subcarrier interval of the downlink signal, or the length of the preamble signal symbol may be less than or equal to the length of the downlink signal symbol.
  • the NR system can support a larger subcarrier interval, and the configuration of the subcarrier interval is also more flexible.
  • the subcarrier interval that the NR system can support includes 15kHz, 30kHz, 60kHz, and so on. The greater the subcarrier spacing of the system, the shorter the symbols used by the system to transmit signals can be.
  • the preamble signal can reduce the complexity of the terminal's blind detection of the downlink signal, simplify the terminal equipment and reduce power consumption.
  • the size of the subcarrier interval of the previous pilot signal is equal to the size of the subcarrier interval of the four downlink signals.
  • the division of the time length can be divided according to the length of the downlink signal symbol, that is, the length of the symbol #n and the symbol # (n + 1) are equal to one downlink signal symbol length.
  • the format of the preamble signal symbol may be as shown in FIG. 3.
  • a preamble signal symbol includes a CP section and an information section section, and each information section section has a separate CP section.
  • the preamble signal symbol may also be called Leading signal symbol with CP.
  • the symbol #n includes 4 preamble signal symbols, that is, the length of one downlink signal symbol is equal to the length of the 4 preamble signal symbols.
  • the CP length of the last 3 preamble signal symbols in the 4 preamble signal symbols is the same and smaller than the CP length of the first preamble signal symbol, or the CP length of each preamble signal symbol in the 4 preamble signal symbols All the same.
  • the first time when the terminal device selects the start time of the CP part or the start time of the preamble signal symbol as the first time, the first time may be the start time of any CP part (as indicated by ⁇ in FIG. 3). Shown moments).
  • the terminal device can detect the preamble signal from the beginning of any CP part.
  • the first time When the terminal device selects the start time of the downlink signal symbol as the first time, the first time may be the start time of the CP part of the first preamble signal symbol (that is, the time indicated by the first ⁇ in FIG. 3) .
  • the terminal device can detect the preamble signal from the beginning of a downlink signal symbol.
  • the format of the preamble signal symbol may be as shown in FIG. 4.
  • a preamble signal symbol includes a CP portion and 4 information segment portions, and the 4 information segment portions share a CP portion.
  • the length of a preamble signal symbol is equal to the length of the symbol #n, that is, the length of a preamble signal symbol is equal to the length of a downlink signal symbol.
  • the length of the information segment of one downlink signal symbol is equal to the length of the information segment of 4 preamble signal symbols.
  • the CP length of the downlink signal symbol #n and the CP length of the downlink signal symbol # (n + 1) may be the same or different (for example, when the symbol #n is the first symbol or the seventh symbol in a time slot) In the case of symbols, the CP length of the symbol #n is greater than the CP length of the symbol # (n + 1)).
  • the first time when the terminal device selects the start time of the information section part or the start time of the CP section as the first time, the first time may be the start time of the CP section, or one of the four information section sections.
  • the start time of the information segment (time shown as ⁇ in Figure 4).
  • the terminal device may detect the preamble signal from the start time of the CP part or the start time of one information part part of the four information part parts.
  • the first time may be the start time of the preamble signal symbol (as indicated by the first ⁇ in FIG. 4) time).
  • the terminal device can detect the preamble signal from the beginning of the preamble signal symbol.
  • a preamble signal symbol in FIG. 4 is understood as a CP part and 4 information segment parts.
  • the preamble signal symbol may also be understood in other ways.
  • one information segment in FIG. 4 can also be understood as a preamble signal, or two information segments in FIG. 4 can be understood as a preamble signal (that is, the length of the CP part and the information segment part are the same ), The understanding of the preamble signal symbol does not limit this application.
  • the format of the preamble signal symbol may be as shown in FIG. 5.
  • a preamble signal symbol includes a CP part and two information segment parts, where the two information segment parts share a CP part.
  • the symbol #n includes two preamble signal symbols, that is, the length of the two preamble signal symbols is equal to the length of one downlink signal symbol.
  • the first time when the terminal device selects the start time of the information section part or the start time of the CP section as the first time, the first time may be the start time of the CP section, or one of the four information section sections.
  • the start time of the information section (time shown as ⁇ in Fig. 5).
  • the first time When the terminal device selects the start time of the preamble signal symbol as the first time, the first time may be the start time of one CP part of the two CP parts (as shown by the first ⁇ or the fourth ⁇ in FIG. 5). Shown moments).
  • the terminal device selects the start time of the downlink signal symbol as the first time the first time may be the start time of the CP part of the first preamble signal symbol (as indicated by the first ⁇ in FIG. 5) .
  • preamble signal formats may also be used to transmit the preamble signal.
  • a downlink signal symbol includes a first preamble signal symbol and a second preamble signal symbol, where the first preamble signal symbol includes a CP part and three information segment parts, and the second The preamble symbol includes a CP section and an information section section.
  • the first time may be the start time of the CP portion of the first preamble signal symbol, or the start time of the information segment portion of the first preamble signal symbol, or the start time of the CP portion of the second preamble signal symbol.
  • a preamble symbol in the four cases shown in FIG. 6, the format of the preamble symbol used in each case is different.
  • a preamble symbol in the first case, includes a CP section and 4 information section sections.
  • a preamble symbol in the second case, includes a CP part and three information segment parts.
  • a preamble symbol includes a CP part and two information segment parts.
  • a preamble symbol in the third case, includes a CP section and an information section section.
  • the terminal device can learn the different formats of the preamble signal symbols included in a downlink signal symbol in advance, and determine the first time according to the different formats, that is, determine from which time to start the detection of the preamble signal.
  • the terminal device may divide the symbol #n into multiple time periods in advance, such as time period 1, time period 2, time period 3, and time period 4, and use the start time of each time period as a candidate time of the first time.
  • the terminal device may choose to detect the preamble signal from the beginning of any period of time.
  • the terminal device can detect the preamble signal from the start time of the time period 1 to the end time of the symbol #n.
  • the terminal device may detect the preamble signal from the start time of the time period 2 to the end time of the symbol #n.
  • the terminal device may detect the preamble signal from the start time of the time period 3 to the end time of the symbol #n.
  • the terminal device may detect the preamble signal from the start time of the time period 4 to the end time of the symbol #n.
  • the terminal device When the first time is the start time of the downlink signal symbol, it means that the terminal device starts the detection of the preamble signal from the start position of a downlink signal symbol to the end position of the downlink signal symbol. In this way, it is possible to ensure that the lengths of time during which the preamble signals are detected by different terminal devices are equal. In the case of an independent network SA, it is beneficial for the terminal equipment to complete synchronization.
  • the terminal device may also detect the preamble signal by sliding window detection.
  • the time length of each processing in the sliding window detection process is the length of an information segment part in the preamble signal symbol. In this way, it is beneficial to increase the probability that the terminal device detects the preamble signal.
  • the time length of each processing may also be referred to as the window length of the time window, and the terminal device may set the window length to the length of an information segment in a preamble signal symbol.
  • the length of time during which the terminal device detects the preamble signal is greater than or equal to the length of P preamble signal symbols, and P is a positive integer; or the length of time during which the terminal device detects the preamble signal is greater than or equal to Q information segments of the preamble signal
  • the length of the part, Q is a positive integer greater than or equal to 2.
  • the shortest detection length of the preamble signal needs to be specified, so that the terminal device can correctly receive the preamble signal.
  • the end time of detecting the preamble signal may be the end time of one downlink signal symbol.
  • the length of time for detecting the preamble signal is less than or equal to the length of the R downlink signal symbols, R is a positive integer, and when the length of time for detecting the preamble signal is greater than or equal to the length of the P downlink signal symbols, R is greater than P .
  • the P value, Q value, or R value may be predefined, or may be sent by the network device to the terminal device through one of RRC signaling, physical layer signaling, and MAC layer signaling.
  • the length of time during which the terminal device detects the preamble signal is greater than or equal to the length of 2 * N information segment parts, or the length of time during which the terminal device detects the preamble signal is greater than or equal to N preamble signals.
  • the length of the symbol (preamble signal symbol with CP), or the length of time for the terminal device to detect the preamble signal is greater than or equal to the length of N downlink signal symbols, where N is a positive integer.
  • the time length for detecting the preamble signal may be a fixed length.
  • the time length for detecting the preamble signal may be S * N preamble signal symbols, or the time length for detecting the preamble signal may be S * N downlink signal symbols, or the length of time for detecting a preamble signal may be (S + 1) * N information segments, S is a positive integer.
  • the terminal device receives the downlink signal on the channel on which the detection is successful from the second moment.
  • the terminal device may receive the downlink signal after the preamble signal is successfully detected.
  • the second time is the time when the detection of the preamble signal is successful.
  • the terminal device does not continue to receive the downlink signal, but sends a response signal of the preamble signal to the network device. After the terminal equipment sends the response signal of the preamble signal, it then receives the downlink signal. If the terminal device does not send a response signal of the preamble signal to the network device, the terminal device may choose not to receive the downlink signal.
  • the time domain characteristics of the preamble signal are described above, and the frequency domain characteristics of the preamble signal are described below.
  • the sequence of the preamble signal can be mapped to M subcarriers on the first bandwidth in the frequency domain, where M is a positive integer.
  • the M value is preset.
  • the first bandwidth is a bandwidth configured by the network device for the terminal device for downlink signal transmission, or the first bandwidth is a bandwidth configured and activated by the network device for the terminal device for downlink signal transmission.
  • the size of the first bandwidth may be an integer multiple of the detection bandwidth of the subband channel.
  • the detection bandwidth of the subband channel is 20 MHz
  • the size of the first bandwidth may be 20 MHz, 40 MHz, 60 MHz, 80 MHz, and the like.
  • the subband channel detection bandwidth is a unit bandwidth used for channel detection.
  • the preamble signal can be transmitted on each first bandwidth. That is, when the frequency domain of the unlicensed spectrum is divided into multiple bandwidths according to the first bandwidth, the preamble signal is transmitted on each of the divided bandwidths.
  • This embodiment of the present application does not specifically limit a mapping manner in which a sequence of a preamble signal is mapped to M subcarriers on a first bandwidth.
  • a sequence element of the preamble signal is mapped on the frequency domain to M consecutive subcarriers on the first bandwidth.
  • the terminal device can receive the preamble signal on the M consecutive subcarriers.
  • the sequence elements of the preamble signal are mapped on the frequency domain to M discrete subcarriers on the first bandwidth.
  • the starting position of the sequence of the preamble signal in the frequency domain is preset, or the network device instructs the terminal device through signaling.
  • the multiple sequences may be mapped to different symbols of the first bandwidth, respectively.
  • the M subcarriers may occupy the full bandwidth, the center bandwidth, or a predefined bandwidth of the first bandwidth.
  • the terminal device may determine the number and position of the subcarriers occupied by the preamble signal in the frequency domain through higher layer signaling, and then receive the preamble signal at the corresponding position.
  • the sequence of the preamble signal may be mapped to M discrete subcarriers on the first bandwidth in the frequency domain.
  • the mapping positions of the M discrete subcarriers in the frequency domain are preset, or the distance between any two adjacent subcarriers in the M discrete subcarriers is equal and the distance is Is preset.
  • no signal is mapped on the subbands other than the M subcarriers mapped by the sequence of the preamble on the first bandwidth.
  • the preamble signal is represented in the time domain in the form of information segment repetition, and a preamble signal information segment with a shorter symbol length than the subcarrier interval corresponding to the preamble signal can be generated.
  • the representation of the preamble signal in the time domain is an information segment including k (ie, 4) repeated preamble signals within 66.7 microseconds. Since the length of the information segment part of the preamble signal is short, the processing complexity of the terminal device can be reduced.
  • the sequence of the preamble signal may be mapped to M consecutive subcarriers of the first bandwidth in the frequency domain.
  • no signal is mapped on the subbands other than the M subcarriers mapped by the sequence of the preamble on the first bandwidth.
  • the terminal device detects the preamble signal, it can be processed directly in the time domain without transforming to the frequency domain and then processed, thereby reducing the processing complexity of the terminal device.
  • the information section portion of the shorter preamble signal can also be obtained, which can further reduce The processing complexity of the end device.
  • mapping manner of the sequence of the preamble signal is described below with reference to FIGS. 8 to 9.
  • FIG. 8 is a schematic diagram of a mapping manner of a preamble signal in a frequency domain when the preamble signal includes a sequence.
  • the subcarrier interval of the preamble signal is equal to the subcarrier interval of the downlink signal, and the sequence of the preamble signal is mapped to M discrete subcarriers of the first bandwidth in the frequency domain.
  • both the preamble signal and the downlink signal are transmitted on the first bandwidth
  • the preamble signal is transmitted on the symbol #n
  • the downlink signal is transmitted on the symbol # (n + 1).
  • the sequence length of the preamble signal is 8.
  • the preamble signal can be mapped to 8 subcarriers of the first bandwidth.
  • the 8 subcarriers can be discrete subcarriers. As shown in Type 8 of FIG. 8, each phase of the 8 subcarriers The distance between two adjacent subcarriers separated by 4 subcarriers.
  • the terminal equipment can receive the preamble signal on the 8 discrete subcarriers.
  • the eight subcarriers may be distributed on the center bandwidth of the first bandwidth, or may be distributed on the full bandwidth of the first bandwidth, or may be distributed on a predefined carrier.
  • the full bandwidth distributed on the first bandwidth may mean that the 8 subcarriers are distributed on the first bandwidth evenly or at equal intervals.
  • the terminal device may receive the preamble signal on the center bandwidth of the first bandwidth, or the full bandwidth, or on a predefined carrier.
  • the subcarrier interval of the preamble signal is greater than the subcarrier interval of the downlink signal, and the sequence of the preamble signal is mapped to M consecutive subcarriers of the first bandwidth in the frequency domain.
  • both the preamble signal and the downlink signal are transmitted on the first bandwidth, the preamble signal is transmitted on the symbol #n, and the downlink signal is transmitted on the symbol # (n + 1).
  • the size of the subcarrier interval of the preamble signal is equal to 4 times the size of the subcarrier interval of the downlink signal, the length of the symbol #n is equal to the length of the 4 preamble signal symbols, and the preamble signal is transmitted on each symbol.
  • the sequence length of the preamble signal is 8, and the preamble signal may be mapped to 8 subcarriers of the first bandwidth, and the 8 subcarriers may be continuous subcarriers. Sequence elements of the preamble are mapped on the 8 subcarriers of each of the 4 preamble signal symbols, as shown in Type 2 of FIG. 8.
  • the eight subcarriers may be distributed on the center bandwidth of the first bandwidth, or may be distributed on the full bandwidth of the first bandwidth, or may be distributed on a predefined carrier.
  • the full bandwidth distributed on the first bandwidth may mean that the 8 subcarriers are distributed on the first bandwidth evenly or at equal intervals.
  • the subcarrier interval of the preamble signal is equal to the subcarrier interval of the downlink signal, and the sequence of the preamble signal is mapped on the frequency domain to M consecutive subcarriers of the first bandwidth.
  • the continuous subcarrier mapping method for the sequence mapping of the preamble signal can also be used to obtain the shorter information segment part of the preamble signal symbol.
  • the subcarrier interval of the preamble signal is smaller than the subcarrier interval of the downlink signal, and the sequence of the preamble signal is mapped to M discrete subcarriers of the first bandwidth in the frequency domain.
  • the interval when the sequence elements of the preamble signal are mapped in the frequency domain can be increased to achieve the purpose of obtaining a short information segment portion of the preamble signal symbol.
  • the subcarrier interval of the preamble signal is 30kHz and the subcarrier interval of the downlink signal is 60kHz, then when the sequence of the preamble signal is mapped to the discrete subcarriers of the first bandwidth in the frequency domain, one of the two adjacent subcarriers is mapped. The distance between them can be greater than or equal to the subcarrier interval of the downlink signal (for example, two subcarriers with a distance of 30 kHz), so that the information segment portion of the shorter preamble signal symbol can be obtained.
  • mapping manner of each sequence in the frequency domain may adopt one of the foregoing frequency domain mapping manners.
  • the mapping modes of multiple sequences in the frequency domain may be the same or different, which is not limited in this application.
  • FIG. 9 is a schematic diagram of a mapping manner of a preamble signal in a frequency domain when the preamble signal includes two sequences.
  • the preamble signal includes a first sequence and a second sequence
  • the first sequence is transmitted on the symbol #n
  • the second sequence is transmitted on the symbol # (n + 1)
  • the downlink signal is on the symbol # (n + 2) transmission.
  • mapping method of the first sequence on the first bandwidth of the symbol #n and the mapping method of the second sequence on the first bandwidth of the symbol # (n + 1) are the same as the mapping method of type 1 shown in FIG. 8, as Avoid cumbersome, it will not be described in detail here.
  • the first sequence and the second sequence may be mapped to the same subcarrier, or may be mapped to different subcarriers.
  • Type 1 in FIG. 9 shows a case where the first sequence and the second sequence are mapped to different subcarriers, and the subcarriers mapped to the first sequence and the second sequence may be misaligned by two subcarriers.
  • the terminal device may receive the first sequence of the preamble signal on the carrier mapped by the first sequence, and receive the second sequence of the preamble signal on the carrier mapped by the second sequence.
  • both the first sequence and the second sequence may be transmitted on the symbol #n.
  • the symbol #n includes 4 preamble signal symbols, and the first sequence and the second sequence may be transmitted alternately on the symbol n, that is, the 4 preamble signal symbols transmit the first sequence, the second sequence, the first sequence, and the second sequence in sequence, or The four preamble signal symbols transmit the second sequence, the first sequence, the second sequence, and the first sequence in this order.
  • the terminal device can detect the preamble signal from the start time of the first, second, and third preamble signal symbols among the four preamble signal symbols, and can successfully detect the preamble signal.
  • first sequence and the second sequence may be transmitted sequentially, and the transmission sequence of the first sequence and the second sequence may be: after one sequence is transmitted, the other sequence is transmitted.
  • the four preamble signal symbols may transmit the first sequence, the first sequence, the second sequence, and the second sequence in sequence, or the four preamble signal symbols may transmit the second sequence, the second sequence, the first sequence, and the first sequence in sequence.
  • the terminal device detects the preamble signal from the start time of the first preamble signal symbol among the four preamble signal symbols, and can successfully detect the preamble signal.
  • the terminal device detects the downlink preamble signal from the beginning of the second preamble signal symbol of the symbol #n, and adopts the method of alternate transmission of the first sequence and the second sequence to successfully detect the complete signal on the symbol #n.
  • the first sequence and the second sequence At this time, the terminal device can directly receive the downlink signal on the symbol # (n + 1), which can increase the probability of successful detection of the preamble signal, and is conducive to improving the transmission efficiency of the communication system.
  • FIG. 9 shows a case where the first sequence and the second sequence are equal in length, but the embodiment of the present application is not limited thereto, and the lengths of the first sequence and the second sequence may also be different.
  • the mapping manner of the eight discrete subcarriers shown in type 1 can achieve the mapping effect of the eight consecutive subcarriers shown in type 2.
  • the size of the subcarrier corresponding to the type 2 preamble symbol is equal to the size of the subcarrier corresponding to the four type 1 preamble symbols
  • the length of the type 1 preamble symbol is equal to the length of the four type 2 preamble symbols.
  • FIG. 8 and FIG. 9 only schematically show the size of the first bandwidth of the preamble mapping.
  • the number of subcarriers included in the first bandwidth depends on the actual situation.
  • the multiple candidate sequences may be orthogonal to each other.
  • the sequence of the preamble signal may be the sequence of the PSS and / or the sequence of the SSS, so that the purpose of reusing the PSS sequence and / or the SSS sequence can be achieved.
  • the sequence of the leader signal may be another newly introduced sequence, such as a ZC sequence.
  • the ZC sequence can be scrambled using a cell ID scrambling code, which can enable the terminal device to determine that the network device of the cell has obtained the right to use the channel on the unlicensed frequency band after receiving the preamble signal.
  • the sequence of the preamble signal is common to a cell, common to a group, or unique to a terminal device.
  • the signal transmitted on the preamble signal includes data bits obtained by encoding the original information bits, wherein the mapping mode of the data bits in the frequency domain after modulation is one of the mapping modes of the above sequence in the frequency domain.
  • the preamble signal carries at least one of the following information: a cell ID, a PLMN ID, an RTS identifier, a CTS identifier, a position of the downlink signal in the time domain, and a channel occupation time.
  • the terminal device receives a downlink signal (such as a PDCCH or a PDSCH) according to a predefined rule.
  • a downlink signal such as a PDCCH or a PDSCH
  • the position of the downlink signal in the time domain may indicate that, after receiving the preamble signal, the terminal device may receive the downlink signal (such as PDCCH or PDSCH) at a corresponding position according to the information carried by the preamble signal.
  • the downlink signal such as PDCCH or PDSCH
  • the antenna port of the preamble signal may be an omnidirectional antenna port or a directional antenna port.
  • the antenna port used to receive the preamble signal is the same as the antenna port used to receive the SSB.
  • the preamble signal and the SSB or downlink signal located behind the preamble signal in the time domain are QCL. That is, the receive beam and / or port corresponding to the SSB or downlink signal may be calculated based on the receive beam and / or port corresponding to the preamble signal, or the transmit or receive beam and / or port corresponding to the SSB or downlink signal may be calculated. The transmit or receive beam and / or port corresponding to the preamble signal.
  • the terminal device can obtain the transmission parameters of the preamble signal in one of the following ways: RRC configuration, PBCH, RMSI.
  • an indication manner of a transmission parameter of the preamble signal is the same as an indication manner of a transmission parameter of PRACH.
  • the transmission parameter of the preamble signal may be indicated to the terminal device through a carrier on the authorized spectrum.
  • the transmission parameters of the preamble signal may include, but are not limited to, the time domain characteristics, frequency domain characteristics, sequence characteristics, antenna port, and configuration parameters of the preamble signal described above.
  • the embodiment of the present application facilitates AGC adjustment by the terminal device, and there is a certain relationship between the terminal device's received power for receiving the preamble signal and the received power for receiving the downlink signal.
  • the terminal device may adaptively adjust the received power of the downlink signal according to the received power used to receive the preamble signal.
  • the embodiment of the present application can reduce the complexity of the terminal's blind detection of the downlink signal, simplify the terminal device, and reduce power consumption.
  • the wireless communication method according to the embodiment of the present application is described in detail above.
  • the device according to the embodiment of the present application will be described below with reference to FIGS. 11 to 15.
  • the technical features described in the method embodiment are applicable to the following device embodiments.
  • FIG. 11 is a schematic block diagram of a network device 1100 according to an embodiment of the present application.
  • the network device includes a processing unit 1110 and a communication unit 1120. among them:
  • the processing unit 1110 is configured to perform channel detection on a carrier in an unlicensed frequency band.
  • the communication unit 1120 is configured to send a preamble signal on the carrier from the first moment when the channel detection is successful, and the preamble signal is used to determine that the carrier can be used to transmit a downlink signal.
  • the first time is a time determined according to a format of a preamble signal symbol and / or a time when the channel detection is successful.
  • the first time includes a candidate time in the preamble signal symbol.
  • the first time includes a start time of the preamble signal symbol.
  • the first time includes the start time of the first preamble signal symbol after the channel detection is successful.
  • the first time includes a start time of a CP part or a start time of an information segment part in the preamble symbol.
  • the first time includes a start time of the first CP part or a start time of the first information segment part after the channel detection succeeds.
  • the preamble signal symbol includes a first CP part and an information segment part.
  • the first time includes a start time of the first CP part in the preamble signal symbol.
  • the preamble signal symbol includes a second CP part and M information segment parts, where M is a positive integer greater than or equal to two.
  • the first time includes a start time of the second CP part in the preamble symbol or a start time of one information part part of the M information part parts.
  • the communication unit 1120 is further configured to: when the first time is not the time when the channel detection is successful, from the time when the channel detection is successful to the first time, on the carrier Send a placeholder signal on.
  • the communication unit 1120 is further configured to: when the first time is not the time when the channel detection is successful, from the time when the channel detection is successful to the first time, on the carrier The CP part of the preamble signal is transmitted on.
  • the first time includes a start time of the downlink signal symbol.
  • the communication unit 1120 is further configured to: after the transmission of the preamble signal ends, send the downlink signal on the carrier from a second moment.
  • the second time is a start time of a downlink signal symbol.
  • the preamble signal symbol corresponds to a first subcarrier interval, wherein the first subcarrier interval is a subcarrier interval corresponding to the downlink signal; or the first subcarrier interval is RRC through radio resource control A subcarrier interval indicated by at least one of signaling, physical layer signaling, and medium access control MAC layer signaling; or the first subcarrier interval is a predefined subcarrier interval.
  • the length of time for sending the preamble signal is greater than or equal to the length of P preamble signal symbols, and P is a positive integer; or the length of time for sending the preamble signal is greater than or equal to Q the preamble signal symbols
  • the length of the information segment part, Q is a positive integer greater than or equal to 2.
  • the preamble signal includes N types of sequences, and N is a positive integer.
  • the subcarrier interval of the preamble signal is greater than or equal to the subcarrier interval of the downlink signal; or the length of the preamble signal symbol is less than or equal to the length of the downlink signal symbol.
  • the sequence of the preamble signal is mapped to M consecutive subcarriers on the first bandwidth in the frequency domain, where the sequence length of the preamble signal is M and M is a positive integer.
  • a subcarrier interval of the preamble signal is greater than a subcarrier interval of the downlink signal.
  • the sequence of the preamble signal is mapped on the frequency domain to M discrete subcarriers on the first bandwidth, where any adjacent two subcarriers among the M discrete subcarriers are The distances are equal, and the sequence length of the preamble signal is M, and M is a positive integer.
  • a subcarrier interval of the preamble signal is equal to a subcarrier interval of the downlink signal.
  • the M subcarriers occupy a full bandwidth, a center bandwidth, or a predefined bandwidth of the first bandwidth.
  • no signal is mapped on the subbands other than the subcarriers mapped by the sequence of the preamble on the first bandwidth.
  • the at least two sequences are alternately transmitted in the time domain.
  • the transmission mode of the at least two sequences in the time domain is: after one sequence is transmitted, the next sequence is transmitted.
  • sequence of the preamble signal is at least one of the following sequences: PSS, SSS, and Zadoff-Chu sequences.
  • the sequence of the preamble signal is common to a cell, common to a group, or unique to a terminal device.
  • the preamble signal carries at least one of the following information: a cell identification ID, a public land mobile network PLMN ID, a request to send an RTS identification, a clear send CTS identification, a position and a channel of the downlink signal in a time domain Take time.
  • the antenna port used to send the preamble signal is an omnidirectional antenna port or a directional antenna port; or when the channel is detected as a directional channel
  • the antenna port used to send the preamble signal is a directional antenna port in a direction corresponding to the directional channel detection.
  • the antenna port used to send the preamble signal is the same as the antenna port used to send the synchronization signal block SSB.
  • the preamble signal and the SSB or PDCCH located behind the preamble signal in the time domain are QCL.
  • the transmission parameter of the preamble signal is indicated to the terminal device in one of the following ways: RRC, PBCH, and RMSI.
  • an indication manner of the transmission parameter of the preamble signal is the same as an indication manner of a transmission parameter of the PRACH.
  • FIG. 12 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1200 includes a processing unit 1210 and a communication unit 1220. among them:
  • the processing unit 1210 is configured to detect a preamble signal on a carrier in an unlicensed frequency band.
  • the communication unit 1220 is configured to receive a downlink signal on the carrier when the preamble signal is successfully detected.
  • the communication unit 1220 is specifically configured to detect a preamble signal on a carrier of the unlicensed frequency band from a first moment.
  • the first time is a time determined according to a format of a preamble signal symbol.
  • the first time includes a candidate time in the preamble signal symbol.
  • the first time includes a start time of the preamble signal symbol.
  • the first time includes a start time of a cyclic prefix CP part in the preamble symbol or a start time of an information segment part.
  • the preamble signal symbol includes a first CP part and an information segment part.
  • the first time includes a start time of the first CP part in the preamble signal symbol.
  • the preamble signal symbol includes a second CP part and M information segment parts, where M is a positive integer greater than or equal to two.
  • the first time includes a start time of the second CP part in the preamble symbol or a start time of one information part part of the M information part parts.
  • the first time includes a start time of the downlink signal symbol.
  • the processing unit 1210 is specifically configured to detect a preamble signal by using a sliding window detection method on a carrier of the unlicensed frequency band.
  • the time length of each processing in the sliding window detection process is the length of an information segment part in the preamble signal symbol.
  • the communication unit 1220 is specifically configured to: after the preamble signal is successfully detected, start receiving a downlink signal on the carrier from a second moment.
  • the second time is a start time of a downlink signal symbol.
  • the preamble signal symbol corresponds to a first subcarrier interval, wherein the first subcarrier interval is a subcarrier interval corresponding to the downlink signal; or the first subcarrier interval is RRC through radio resource control A subcarrier interval indicated by at least one of signaling, physical layer signaling, and medium access control MAC layer signaling; or the first subcarrier interval is a predefined subcarrier interval.
  • the time length of detecting the preamble signal is greater than or equal to the length of P preamble signal symbols, and P is a positive integer; or the time length of detecting the preamble signal is greater than or equal to Q the preamble signal symbols.
  • the length of the information segment part, Q is a positive integer greater than or equal to 2.
  • the preamble signal includes N types of sequences, and N is a positive integer.
  • the subcarrier interval of the preamble signal is greater than or equal to the subcarrier interval of the downlink signal; or the length of the preamble signal symbol is less than or equal to the length of the downlink signal symbol.
  • the sequence of the preamble signal is mapped to M consecutive subcarriers on the first bandwidth in the frequency domain, where the sequence length of the preamble signal is M and M is a positive integer.
  • a subcarrier interval of the preamble signal is greater than a subcarrier interval of the downlink signal.
  • the sequence of the preamble signal is mapped on the frequency domain to M discrete subcarriers on the first bandwidth, where any adjacent two subcarriers among the M discrete subcarriers are The distances are equal, and the sequence length of the preamble signal is M, and M is a positive integer.
  • a subcarrier interval of the preamble signal is equal to a subcarrier interval of the downlink signal.
  • the M subcarriers occupy a full bandwidth, a center bandwidth, or a predefined bandwidth of the first bandwidth.
  • no signal is mapped on the subbands other than the subcarriers mapped by the sequence of the preamble on the first bandwidth.
  • the at least two sequences are alternately transmitted in the time domain.
  • the transmission mode of the at least two sequences in the time domain is: after one sequence is transmitted, the next sequence is transmitted.
  • sequence of the preamble signal is at least one of the following sequences: PSS, SSS, and Zadoff-Chu sequences.
  • the sequence of the preamble signal is common to a cell, common to a group, or unique to a terminal device.
  • the preamble signal carries at least one of the following information: a cell identification ID, a public land mobile network PLMN ID, a request to send an RTS identification, a clear send CTS identification, a position and a channel of the downlink signal in a time domain Take time.
  • the antenna port used to receive the preamble signal is an omnidirectional antenna port or a directional antenna port.
  • the antenna port used for detecting the preamble signal is the same as the antenna port used for receiving the synchronization signal block SSB.
  • the preamble signal and the SSB or PDCCH located behind the preamble signal in the time domain are QCL.
  • the transmission parameters of the preamble signal are obtained in one of the following ways: RRC, PBCH, and RMSI.
  • the manner of acquiring transmission parameters of the preamble signal is the same as the manner of acquiring transmission parameters of PRACH.
  • FIG. 13 is a schematic structural diagram of a communication device 1300 according to an embodiment of the present application.
  • the communication device 1300 shown in FIG. 13 includes a processor 1310, and the processor 1310 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1300 may further include a memory 1320.
  • the processor 1310 may call and run a computer program from the memory 1320 to implement the method in the embodiment of the present application.
  • the memory 1320 may be a separate device independent of the processor 1310, or may be integrated in the processor 1310.
  • the communication device 1300 may further include a transceiver 1330, and the processor 1310 may control the transceiver 1330 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the processor 1310 may control the transceiver 1330 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 1330 may include a transmitter and a receiver.
  • the transceiver 1330 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1300 may specifically be a network device according to an embodiment of the present application, and the communication device 1300 may implement a corresponding process implemented by a network device in each method in the embodiments of the present application. For brevity, details are not described herein. .
  • the communication device 1300 may specifically be a mobile terminal / terminal device in the embodiment of the present application, and the communication device 1300 may implement the corresponding process implemented by the mobile terminal / terminal device in each method in the embodiments of the present application, for the sake of simplicity , Will not repeat them here.
  • FIG. 14 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1400 shown in FIG. 14 includes a processor 1410, and the processor 1410 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 1400 may further include a memory 1420.
  • the processor 1410 may call and run a computer program from the memory 1420 to implement the method in the embodiment of the present application.
  • the memory 1420 may be a separate device independent of the processor 1410, or may be integrated in the processor 1410.
  • the chip 1400 may further include an input interface 1430.
  • the processor 1410 may control the input interface 1430 to communicate with other devices or chips. Specifically, the processor 1410 may obtain information or data sent by other devices or chips.
  • the chip 1400 may further include an output interface 1440.
  • the processor 1410 can control the output interface 1440 to communicate with other devices or chips. Specifically, the processor 1410 can output information or data to other devices or chips.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal / terminal device in the embodiments of the present application, and the chip can implement the corresponding process implemented by the mobile terminal / terminal device in each method of the embodiments of the present application. For simplicity, here No longer.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip.
  • FIG. 15 is a schematic block diagram of a communication system 1500 according to an embodiment of the present application. As shown in FIG. 15, the communication system 1500 includes a terminal device 1510 and a network device 1520.
  • the terminal device 1510 may be used to implement the corresponding function implemented by the terminal device in the foregoing method
  • the network device 1520 may be used to implement the corresponding function implemented by the network device in the foregoing method.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field, Programmable Gate Array, FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchronous DRAM Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Synchrobus RAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (Double SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on. That is, the memories in the embodiments of the present application are intended to include, but not limited to, these and any other suitable types of memories.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application. For simplicity, here No longer.
  • the computer-readable storage medium may be applied to the mobile terminal / terminal device in the embodiment of the present application, and the computer program causes the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiment of the present application.
  • the computer program causes the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiment of the present application.
  • An embodiment of the present application further provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instruction causes the computer to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. More details.
  • the computer program product can be applied to a mobile terminal / terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiments of the present application, For brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to a network device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. , Will not repeat them here.
  • the computer program may be applied to a mobile terminal / terminal device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer executes each method in the embodiment of the application by the mobile terminal / terminal device. The corresponding processes are not repeated here for brevity.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法和设备,网络设备可以在发送下行信号之前发送前导信号,以辅助终端设备进行下行信号的检测。终端设备在检测到前导信号后,再去接收下行信号,避免了终端设备需要对下行信号盲检造成的复杂度和耗电量增加的问题。该方法包括:对非授权频段的载波进行信道检测;在所述信道检测成功的情况下,从第一时刻开始在所述载波上发送前导信号,所述前导信号用于确定所述载波能够用于传输下行信号。

Description

无线通信方法和设备
本申请要求于2018年7月27日递交中国专利局,申请号为201810848129.6,发明名称为“无线通信方法和设备”的优先权,其全部内容通过引用合并于此。
技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种无线通信方法和设备。
背景技术
新无线(New Radio,NR)系统可以支持非授权频谱(unlicensed frequency bands)上的数据传输,具体地,网络设备在非授权频谱上进行通信时,需要基于先听后说(Listen Before Talk,LBT)的原则,即,网络设备在非授权频谱的信道上进行下行信号发送前,需要先进行信道检测(或称为信道侦听),当信道检测结果为信道空闲时,该网络设备才能进行下行信号发送。
由于网络设备进行下行信号发送时具有不确定性,终端设备在接收下行信号时,需要进行盲检测来确定网络设备是否进行下行信号的发送。这导致终端设备的复杂度和耗电量均较高。
发明内容
本发明实施例提供一种无线通信方法和设备,能够降低终端设备的复杂度和耗电量。
第一方面,提供了一种无线通信方法,包括:对非授权频段的载波进行信道检测;在所述信道检测成功的情况下,从第一时刻开始在所述载波上发送前导信号,所述前导信号用于确定所述载波能够用于传输下行信号。
第二方面,提供了一种无线通信方法,包括:在非授权频段的载波上对前导信号进行检测;在前导信号检测成功的情况下,在所述载波上接收下行信号。
第三方面,提供一种网络设备,用于执行上述第一方面或第一方面的任意可选的实现方式中所述的方法。具体地,该网络设备包括用于执行上述第一方面或第一方面的任意可选的实现方式中所述的方法的功能模块。
第四方面,提供了一种终端设备,用于执行上述第二方面或第二方面的任意可选的实现方式中所述的方法。具体地,该终端设备包括用于执行上述第二方面或第二方面的任意可选的实现方式中所述的方法的功能模块。
第五方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种芯片,用于实现上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第十一方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十二方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第十三方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十四方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
本申请实施例提供的技术方案,网络设备可以在发送下行信号之前发送前导信号,以辅助终端设备进行下行信号的检测。终端设备在检测到前导信号后,再去接收下行信号,避免了终端设备需要对 下行信号盲检造成的复杂度和耗电量增加的问题。
附图说明
图1是本申请实施例应用的无线通信系统的示意图。
图2是本申请实施例提供的一种无线通信方法的示意性流程图。
图3是本申请实施例提供的一种第一时刻的确定方式的示意图。
图4是本申请实施例提供的另一种第一时刻的确定方式的示意图。
图5是本申请实施例提供的另一种第一时刻的确定方式的示意图。
图6是本申请实施例提供的另一种第一时刻的确定方式的示意图。
图7是本申请实施例提供的一种传输前导信号的方法的示意图。
图8是本申请实施例提供的前导信号的序列在频域上的映射方式的示意图。
图9是本申请实施例提供的另一种前导信号的序列在频域上的映射方式的示意图。
图10是本申请实施例提供的另一种无线通信方法的示意性流程图。
图11是本申请实施例提供的一种网络设备的示意性框图。
图12是本申请实施例提供的一种终端设备的示意性框图。
图13是本申请实施例提供的一种通信设备的示意性结构图。
图14是本申请实施例提供的一种芯片的示意性结构图。
图15是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
图1示出了本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110。网络设备100可以是与终端设备通信的设备。网络设备100可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备(例如UE)进行通信。可选地,该网络设备100可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统或NR系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。终端设备120可以是移动的或固定的。可选地,终端设备120可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN中的终端设备等。其中,可选地,终端设备120之间也可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或网络还可以称为NR系统或网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统100可以包括多个 网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括接入与移动性管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、统一数据管理(Unified Data Management,UDM),认证服务器功能(Authentication Server Function,AUSF)等其他网络实体,本申请实施例对此不作限定。
此外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,CD)、数字通用盘(Digital Versatile Disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,能够存储、包含和/或承载指令和/或数据的各种介质。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在非授权频谱上,网络设备在向终端设备发送下行信号之前,需要对载波上的信道进行检测。当网络设备检测到信道为空闲态时,表示信道检测成功,该信道可以用于传输信号。当信道检测失败,表示该信道不能用于传输信号。由于网络设备发送下行信号的时间具有不确定性,终端设备在接收下行信号时,需要对下行信号进行盲检测,判断网络设备是否有下行信号的发送,终端设备对下行信号的盲检有可能会造成终端设备的复杂度和耗电量的增加。
本申请实施例提供了一种无线通信方法,网络设备可以在发送下行信号之前发送前导信号,以辅助终端设备进行下行信号的检测。终端设备在检测到前导信号后,再去接收下行信号,避免了终端设备需要对下行信号盲检造成的复杂度和耗电量增加的问题。
应理解,本申请实施例中的前导信号传输方法可用于下行传输或上行传输。例如,当本申请实施例中的方法应用于上行传输时,终端设备在进行上行信号发送前可以先发送上行前导信号,相应地,网络设备在检测到该上行前导信号后,再去接收上行信号。
为便于描述,本申请实施例中以下行传输为例进行说明,对上行传输过程不再赘述。
需要说明的是,在本申请实施例中,下行信号可以包括下行物理信道和下行参考信号,其中,下行物理信道可以包括物理下行控制信道(Physical Downlink Control Channel,PDCCH),物理下行共享信道(Physical Downlink Shared Channel,PDSCH),物理多播信道(Physical Multicast Channel,PMCH),物理广播信道(Physical Broadcast Channel,PBCH),等等。下行参考信号可以包括下行同步信号(Synchronization Signal),相位跟踪参考信号(Phase Tracking Reference Signal,PT-RS),下行解调参考信号(DeModulation Reference Signal,DMRS),信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)等等。应理解,本申请实施例中可以包括和上述名称相同、功能不同的下行物理信道或下行参考信号,也可以包括和上述名称不同、功能相同的下行物理信道或下行参考信号,本申请对此并不限定。
需要说明的是,在本申请实施例中,上行信号可以包括上行物理信道和上行参考信号,其中,上行物理信道可以包括物理随机接入信道(PRACH,Physical Random Access CHannel)、物理上行控制信道(PUCCH,Physical Uplink Control CHannel)、物理上行共享信道(PUSCH,Physical Uplink Shared CHannel)等。上行参考信号可以包括上行解调参考信号(DeModulation Reference Signal,DMRS)、探测参考信号(Sounding Reference Signal,SRS)、相位跟踪参考信号(Phase Tracking Reference Signal,PT-RS)等。应理解,本申请实施例中可以包括和上述名称相同、功能不同的上行物理信道或上行参考信号,也可以包括和上述名称不同、功能相同的上行物理信道或上行参考信号,本申请对此并不限定。
图2是本申请实施例提供的无线通信方法200的示意性流程图。图2的方法包括以下内容中的至少部分内容。
在步骤210中,对非授权频段的载波进行信道检测。
在步骤220中,在所述信道检测成功的情况下,从第一时刻开始在所述载波上发送前导信号。其中,所述前导信号用于确定所述载波能够用于传输下行信号。
在本申请实施例中,可以将发送前导信号所使用的符号称为前导信号符号。
实际传输前导信号所使用的符号不一定是使用完整的符号,可以指使用符号的一部分来传输前导信号。
举例说明,假如前导信号会在该2个前导信号符号上传输,但实际上传输前导信号的时间长度可能只有1.5个前导信号符号的长度,也即在其中一个符号可以只占有半个符号。
第一时刻的确定方式有多种。作为一个示例,第一时刻可以是候选时刻的集合中的一个时刻。例如可以预先在时间长度上设置多个候选时刻,将多个候选时刻中的一个候选时刻作为第一时刻。多个候选时刻中任意两个相邻候选时刻之间的时间间隔可以是相等的,也可以是递增的或递减的,本申请实施例对此不做具体限定。
作为另一个示例,第一时刻可以是前导信号符号中的任意一个时刻。
作为另一个示例,第一时刻可以是根据前导信号符号的格式,和/或所述信道检测成功的时刻确定的时刻。
需要说明的是,本申请实施例中的候选时刻也可以是根据前导信号符号的格式,和/或所述信道检测成功的时刻确定的时刻。
前导信号符号用于传输前导信号,前导信号符号例如可以包括循环前缀(cyclic prefix,CP)部分和信息段部分,信息段部分例如可以是网络设备发送的数据部分。其中前导信号的CP部分可以是信息段部分的尾部部分的内容。
可选地,前导信号符号的格式可以指示前导信号符号包括的信息段部分数量、前导信号符号的数量、信息段部分与CP部分的位置关系、CP部分的长度、信息段部分的长度以及前导信号符号的子载波间隔中的至少一种。
前导信号符号的格式可以有多种,也可以只有一种。可选地,当前导信号符号的格式有多种时,网络设备通过高层信令或物理层信令指示终端设备当前使用的是该多种前导信号符号的格式中的哪一种。
作为一个示例,针对一种格式的前导信号符号而言,前导信号符号包括一个第一CP部分和一个信息段部分,每个信息段部分都有单独的第一CP部分。
作为一个示例,针对一种格式的前导信号符号而言,前导信号符号包括一个第二CP部分和M个信息段部分,M个信息段部分共用一个第二CP部分,M为大于或等于2的正整数。其中,即该M个信息段是重复发送的(即该M个信息段中每个信息段上发送的信号都是相同的)。
作为一个示例,第二CP部分的长度大于第一CP部分的长度。
作为一个示例,第二CP部分的长度为M个第一CP部分的长度。
下面对根据前导信号符号的格式,和/或所述信道检测成功的时刻确定第一时刻的方式进行详细描述。
作为一个示例,第一时刻可以是根据前导信号符号的格式确定的时刻。例如,第一时刻可以是信息段部分的起始时刻,也可以是CP部分的起始时刻,也可以是前导信号符号的起始时刻。
作为另一个示例,第一时刻可以是根据信道检测成功的时刻确定的时刻。例如,可以将信道检测成功后预设时间段后的时刻作为第一时刻。例如,第一时刻可以是信道检测成功的时刻。
作为另一个示例,第一时刻可以是根据前导信号符号的格式和信道检测成功的时刻共同确定的。例如,第一时刻可以是信道检测成功后前导信号符号的起始时刻,也可以是信道检测成功后CP部分的起始时刻,也可以是信道检测成功后信息段部分的起始时刻,或者也可以是信道检测成功后下行信号符号的起始时刻。
应理解,以上介绍了第一时刻可以是根据前导信号符号的格式,和/或所述信道检测成功的时刻确定的时刻,但应理解,本申请实施例并不限于此。
前导信号的子载波间隔的确定方式可以有多种。下面对前导信号的子载波间隔的确定方式进行描述,本申请实施例可以将前导信号符号对应的子载波间隔称为第一子载波间隔。
作为一个示例,第一子载波间隔可以等于下行信号对应的子载波间隔。即可以在系统中约定前导信号的子载波间隔等于下行信号的子载波间隔,当网络设备获取到下行信号的子载波间隔后,可以直接确定前导信号的子载波间隔等于下行信号的子载波间隔。
作为另一个示例,第一子载波间隔可以是通过以下信令中的至少一种所指示的子载波间隔,无线资源控制(radio resource control,RRC)信令、物理层信令、介质访问控制(media access control,MAC)层信令。
作为另一个示例,第一子载波间隔可以是预定义的子载波间隔。例如,第一子载波间隔可以是标准规范中规定的子载波间隔。
第一时刻也可以是基于下行信号符号(即,可以用于传输PDCCH或PDSCH等下行符号)的格式来确定的。例如,可以将与下行信号符号的起始时刻对齐的时刻确定为第一时刻。这里所说的下行信号符号的起始时刻是指与下行信号的子载波间隔对应的下行信号符号的起始时刻,其中,下行信号的子载波间隔可以是指实际传输的下行信号的子载波间隔,也可以是网络设备通过无线资源控制RRC信令、物理层信令、介质访问控制MAC层信令中的至少一种指示的用于下行信号传输的子载波间隔,还可以是预定义的子载波间隔。
可选地,前导信号的子载波间隔(即第一子载波间隔)可以大于或等于下行信号的子载波间隔,或前导信号符号的长度可以小于或等于下行信号符号的长度。
以NR系统为例,NR系统相比于LTE系统,能够支持更大的子载波间隔,子载波间隔的配置也比较灵活。例如,NR系统可支持的子载波间隔包括15kHz、30kHz、60kHz等。系统的子载波间隔越大,系统传输信号所使用的符号就可以越短。
基于此,如果对下行信号(例如,PDSCH或PDCCH)每次均进行盲检测,将会增加终端的复杂度和增加功耗,本申请实施例通过发送用于确定当前载波能够用于传输下行信号的前导信号,可以减少终端对下行信号的盲检测的复杂度,简化终端设备和降低功耗。
下面结合图3-图6,对前导信号符号的格式和对第一时刻的确定方式进行详细描述。图3-图6中,以前导信号的子载波间隔的大小等于4个下行信号的子载波间隔的大小为例进行说明。
需要说明的是,在图3-图6中,对时间长度的划分可以是按照下行信号符号的长度进行划分,即符号#n和符号#(n+1)的长度都等于一个下行信号符号的长度。
可选地,前导信号符号的格式可以如图3所示,一个前导信号符号包括一个CP部分和一个信息段部分,每个信息段部分都单独有一个CP部分,该前导信号符号也可称为带CP的前导信号符号。符号#n包括4个前导信号符号,即一个下行信号符号的长度等于4个前导信号符号的长度。可选地,该4个前导信号符号中后3个前导信号符号的CP长度相同且小于第一个前导信号符号的CP长度,或者,该4个前导信号符号中每个前导信号符号的CP长度都相同。
在图3中,当网络设备选择CP部分的起始时刻或者前导信号符号的起始时刻作为第一时刻时,则第一时刻可以是任一CP部分的起始时刻(如图3中↓所示的时刻)。当网络设备选择下行信号符号的起始时刻作为第一时刻时,则第一时刻可以是第一个前导信号符号的CP部分的起始时刻(即图3中第一个↓所指示的时刻)。
可选地,前导信号符号的格式可以如图4所示,一个前导信号符号包括一个CP部分和4个信息段部分,该4个信息段部分共用一个CP部分。一个前导信号符号的长度等于符号#n的长度,即一个前导信号符号的长度等于一个下行信号符号的长度。一个下行信号符号的信息段的长度等于4个前导信号符号的信息段的长度。应理解,下行信号符号#n的CP长度和下行信号符号#(n+1)的CP长度可以相同,也可以不同(例如当符号#n是一个时隙中的第一个符号或第七个符号时,符号#n的CP长度大于符号#(n+1)的CP长度)。
在图4中,当网络设备选择信息段部分的起始时刻或CP部分的起始时刻作为第一时刻时,则第一时刻可以是CP部分的起始时刻,或4个信息段部分的一个信息段部分的起始时刻(如图4中↓所示的时刻)。当网络设备选择前导信号符号的起始时刻或下行信号符号的起始时刻作为第一时刻时,则第一时刻可以是前导信号符号的起始时刻(如图4中第一个↓所指示的时刻)。
需要说明的是,本申请实施例是将图4中一个前导信号符号理解为一个CP部分和4个信息段部分,当然对前导信号符号也可以有其他的理解,例如,有些情况下,也可以将图4中的一个信息段理解为一个前导信号,或者将图4中的两个信息段理解为一个前导信号(即CP部分的长度和信息段部分的长度相同),对前导信号符号的理解并不能对本申请造成限定。
可选地,前导信号符号的格式可以如图5所示,一个前导信号符号包括一个CP部分和2个信息段部分,其中2个信息段部分共用一个CP部分。符号#n包括两个前导信号符号,即2个前导信号符号的长度等于一个下行信号符号的长度。
在图5中,当网络设备选择信息段部分的起始时刻或CP部分的起始时刻作为第一时刻时,则第一时刻可以是CP部分的起始时刻,或4个信息段部分的一个信息段部分的起始时刻(如图5中↓所示的时刻)。当网络设备选择前导信号符号的起始时刻作为第一时刻时,则第一时刻可以是两个CP部分的一个CP部分的起始时刻(如图5中第一个↓或第四个↓所示的时刻)。当网络设备选择下行信号符号的起始时刻作为第一时刻时,则第一时刻可以是第一个前导信号符号的CP部分的起始时刻(如图5中第一个↓所指示的时刻)。
在一个下行信号符号的长度上,除了上文描述的使用相同的前导信号符号的格式来传输前导信号外,还可以使用不同的前导信号符号的格式来传输前导信号。
作为一个示例,在一个下行信号符号的长度上,一个下行信号符号包括第一前导信号符号和第二前导信号符号,其中,第一前导信号符号包括一个CP部分和3个信息段部分,第二前导信号符号包括一个CP部分和一个信息段部分。此时,第一时刻可以是第一前导信号符号的CP部分的起始时刻,或第一前导信号符号的信息段部分的起始时刻,或第二前导信号符号的CP部分的起始时刻。
作为另一个示例,如图6所示的4种情况,每种情况所使用的前导信号符号的格式并不相同。例如,第一种情况,一个前导信号符号包括一个CP部分和4个信息段部分。第二种情况,一个前导信号符号包括一个CP部分和3个信息段部分。第三种情况,一个前导信号符号包括一个CP部分和2个信息段部分。第四种情况,一个前导信号符号包括一个CP部分和一个信息段部分。
下面对图6所示的方案进行详细描述。
可选地,网络设备可以根据信道检测成功的时刻来确定前导信号符号的格式。
网络设备可以预先将符号#n划分为多个时间段,如时间段1、时间段2、时间段3、时间段4,将每个时间段的起始时刻作为第一时刻的候选时刻。
当信道检测成功的时刻是在时间段1之前的时刻,网络设备可以从时间段1的起始时刻开始发送前导信号,如图6所示的第一种情况。此时,网络设备可以确定前导信号符号的格式所指示的前导信号符号包括一个CP部分和(p+3)个信息段的前导信号。其中,p为正整数。
以图6为例,网络设备可以从时间段1的起始时刻开始,发送包含一个CP部分和4个信息段的前导信号。
当信道检测成功的时刻是在时间段1内,网络设备可以从时间段2的起始时刻开始发送前导信号,如图6所示的第二种情况。此时,网络设备可以确定前导信号符号的格式所指示的前导信号符号包括一个CP部分和(p+2)个信息段的前导信号。
以图6为例,网络设备可以从时间段2的起始时刻开始,发送包含一个CP部分和3个信息段的前导信号。
当信道检测成功的时刻是在时间段2内,网络设备可以从时间段3的起始时刻开始发送前导信号,如图6所示的第三种情况。此时,网络设备可以确定前导信号符号的格式所指示的前导信号符号包括一个CP部分和(p+1)个信息段的前导信号。
以图6为例,网络设备可以从时间段3的起始时刻开始,发送包含一个CP部分和2个信息段部分的前导信号。
当信道检测成功的时刻是在时间段3内,网络设备可以从时间段4的起始时刻开始发送前导信号,如图6所示的第四种情况。此时,网络设备可以确定前导信号符号的格式所指示的前导信号符号包括一个CP部分和p个信息段的前导信号。
以图6为例,网络设备可以从时间段3的起始时刻开始,发送包含一个CP部分和1个信息段部分的前导信号。
应理解,上述第一、二、三、四种情况中CP部分的长度可以相同,也可以不同,本申请对此并不限定。
上文的描述是将每种情况下发送前导信号所使用的时间长度确定为前导信号的传输长度,但是本申请实施例并不限于此。也可以将符号#n的长度理解为前导信号符号的长度,即第一种情况下,将发送前导信号所使用的符号理解为前导信号符号,是一个完整的符号。在第二种情况、第三种情况、第四种情况下,将发送前导信号所使用的符号理解为不是一个完整的符号。
可选地,第一时刻可以为信道检测成功后第m个CP部分的起始时刻,或第m个信息段部分的起始时刻,或第m个前导信号符号的起始时刻,或第m个下行信号符号的起始时刻。其中,m为正整数。
可选地,网络设备在信道检测成功后,可以在信道检测成功后第一个信息段部分的起始时刻,或第一个CP部分的起始时刻,或第一个前导信号符号的起始时刻,或第一个下行信号符号的起始时刻发送前导信号。
可选地,网络设备在信道检测成功后,也可以在信道检测成功后的第2个及以上的信息段部分的起始时刻,或CP部分的起始时刻,或前导信号符号的起始时刻,或下行信号符号的起始时刻发送前导信号。
可选地,前导信号的传输长度为固定长度。例如,前导信号的传输长度为S个前导信号符号,或前导信号的传输长度为S个下行信号符号,或前导信号的传输长度为(S+1)个信息段,S为正整数。
可选地,第一时刻的候选时刻可以根据下行信号符号的起始位置和前导信号的传输长度确定,其中,下行信号符号的起始位置是下行传输起始符号候选集合中的一个下行信号符号的起始时刻。例如,下行信号符号的起始位置为符号#n的起始时刻,前导信号的传输长度为S个下行信号符号,那么第 一时刻为符号#(n-S)的起始时刻。又例如,下行信号符号的起始位置为一个时隙中的符号#2、#6、#10中的一个符号的起始时刻,前导信号的传输长度为2个下行信号符号,那么第一时刻的候选时刻为一个时隙中的符号#0、#4、#8中的一个符号的起始时刻,网络设备可以在信道检测成功后从上述第一时刻的候选时刻中的选择第一个可用的时刻作为第一时刻。
当第一时刻是下行信号符号的起始时刻时,表示不论信道检测成功的时刻是在下行信号符号的哪个位置时,如起始时刻或中间时刻或结束时刻,前导信号都会从一个下行信号符号的起始位置开始传输。例如,当信道检测成功的时刻是在一个下行信号符号的中间任意一个位置时,网络设备都可以从下一个下行信号符号的起始时刻开始传输下行信号。并且,前导信号每次传输的时间长度为固定长度。在这种传输格式下,终端设备可以在前导信号的候选位置上检测是否存在前导信号,可以降低终端设备的检测复杂度。可选地,当信道检测成功的时刻就是第一时刻时,网络设备可以从信道检测成功的时刻开始发送前导信号。
可选地,当信道检测成功的时刻不是第一时刻时,从信道检测成功的时刻到第一时刻之间,网络设备可以发送占位信号。占位信号用于对检测成功的信道进行占用,防止其他的设备在该信道上发送数据而占用该信道。占位信号例如可以是一些杂波、噪声等信号。
可选地,该占位信号可以与在时域上位于该占位信号后的前导信号是空间准共址(quasi co-located,QCL)的,例如可以根据占位信号所使用的波束和/或端口推算出前导信号所使用的波束和/或端口。
可选地,当信道检测成功的时刻不是第一时刻时,从信道检测成功的时刻到第一时刻之间,网络设备可以发送前导信号的CP部分。
为方便描述,将信道检测成功的时刻到第一时刻之间发送的前导信号的CP部分称为初始CP部分。其中,初始CP部分可以是前导信号的延长CP。
上文的描述中,没有将初始CP部分看作是前导信号。但是在一些情况下,可以将初始CP部分看作是前导信号的一部分信号,即前导信号包括初始CP部分。在这种情况下,第一时刻即为信道检测成功的时刻,网络设备可以从信道检测成功的时刻开始发送前导信号。即前导信号的传输长度是可变的。
在该情况下,发送初始CP部分的方案也可以描述为,从信道检测成功的时刻开始到所述信道检测成功后第一个CP部分的起始时刻或第一个信息段部分的起始时刻或第一个所述前导信号符号的起始时刻之间,在所述载波上发送所述前导信号的CP部分。
下面结合图7,对本申请实施例的方案进行描述。
图7所示的是信道检测成功的时刻不是第一时刻的情况,图7所示的情况1的前导信号符号的格式与图3所示的前导信号符号的格式相同,图7所示的情况2的前导信号符号的格式与图4所示的前导信号符号格式相同。
如图7所示,网络设备可以将CP部分的起始时刻或信息段部分的时刻作为第一时刻。信道检测成功的时刻为图中↘所示的位置,网络设备可以将离信道检测成功的时刻最近的CP部分的起始时刻确定为第一时刻,即第一时刻为图中↓所示的位置。
从信道检测成功的时刻到第一时刻之间,网络设备可以发送前导信号的初始CP部分。从第一时刻到符号#n的结束时刻之间的时间间隔,网络设备可以发送前导信号。
应理解,由于CP部分是信息段部分的尾部部分的内容,因此,对于图7所示的情况2,也可以认为信道检测成功的时刻就是第一时刻,网络设备从信道检测成功的时刻开始发送前导信号符号的剩余部分。
可选地,当网络设备需要多次发送前导信号时,多次发送前导信号的起始时刻可以都是以CP部分的起始时刻,也可以是部分是CP部分的起始时刻,另外一部分不是CP部分的起始时刻。例如,网络设备可以在第一次发送前导信号时以CP部分的起始时刻作为第一时刻,第二次发送前导信号时以信息段部分的起始时刻,或前导信号符号的起始时刻,或下行信号符号的起始时刻作为第一时刻。
可选地,前导信号传输的起始时刻是根据信道检测成功的时刻确定的,前导信号的传输长度为可变长度。
应理解,如果前导信号的传输长度可变,那么需要规定前导信号的最短传输长度,从而使接收侧能正确接收前导信号。
可选地,发送前导信号的时间长度大于或等于P个所述前导信号符号的长度;或,发送前导信号的时间长度大于或等于P个下行信号符号的长度;或,发送前导信号的时间长度大于或等于Q个所述前导信号符号的信息段部分的长度,P为正整数,Q为大于或等于2的正整数。
可选地,发送前导信号的结束时刻可以为一个下行信号符号的结束时刻。
可选地,发送前导信号的时间长度小于或等于R个下行信号符号的长度,R为正整数,并且,当发送前导信号的时间长度大于或等于P个下行信号符号的长度时,R大于P。
可选地,P值、Q值或R值可以是预定义的,或者可以是网络设备通过RRC信令、物理层信令和MAC层信令中的一种发送给终端设备的。
以图7的情况1为例举例说明,在情况1所示的前导信号符号的格式中,当第一时刻根据信道检测成功的时刻确定为下行信号符号#n中的第三个前导信号符号的CP部分的起始时刻时,如果P为2个前导信号符号的长度,R为1个下行信号符号的长度,那么发送前导信号的时间为从第一时刻开始到符号#n的结束时刻为止;如果P为1个下行信号符号的长度,R为2个下行信号符号的长度,那么发送前导信号的时间为从第一时刻开始到符号#(n+1)的结束时刻为止,也就是说,当信道检测成功的时刻到符号#(n+1)的起始时刻之间的时间间隔小于一个下行信号符号的长度时,网络设备需要在符号#(n+1)上继续传输前导信号。
以图7的情况2为例举例说明,在情况2所示的前导信号符号的格式中,前导信号符号的长度等于下行信号符号的长度,第一时刻为信道检测成功的时刻,如果Q为2个前导信号符号的信息段部分的长度,R为1个下行信号符号的长度,那么发送前导信号的时间为从第一时刻开始到符号#n的结束时刻为止;如果P为1个下行信号符号的长度或1个前导信号符号的长度,R为2个下行信号符号的长度,那么发送前导信号的时间为从第一时刻开始到符号#(n+1)的结束时刻为止,也就是说,当信道检测成功的时刻到符号#(n+1)的起始时刻之间的时间间隔小于一个下行信号符号的长度时,网络设备需要在符号#(n+1)上继续传输前导信号。
可选地,当前导信号包括N种序列时,发送前导信号的时间长度大于或等于2*N个信息段部分的长度,或者发送前导信号的时间长度大于或等于N个前导信号符号(带CP的前导信号符号)的长度,或者发送前导信号的时间长度大于或等于N个下行信号符号的长度,N为正整数。
可选地,传输前导信号的时间长度是固定长度,当前导信号包括N种序列时,前导信号的传输长度为S*N个前导信号符号,或前导信号的传输长度为S*N个下行信号符号,或前导信号的传输长度为(S+1)*N个信息段,S为正整数。
可选地,网络设备在前导信号发送结束后,从第二时刻开始,在信道检测成功的信道上发送下行信号。
在一些情况下,网络设备可以在前导信号发送结束后,接着就向终端设备发送下行信号。此时,第二时刻即为前导信号的发送结束时刻。
在另外一些情况下,网络设备在前导信号发送结束后,并没有接着发送下行信号,而是等待终端设备发送前导信号的响应信号。当网络设备收到终端设备发送的前导信号的响应信号后,再向终端设备发送下行信号。如果网络设备没有收到终端设备发送的前导信号的响应信号,网络设备可以选择不发送下行信号。
上文描述了前导信号的时域特征,下面对前导信号的频域特征进行描述。
当前导信号的序列的长度为M时,前导信号的序列在频域上可以映射到第一带宽上的M个子载波上,M为正整数。
可选地,M值是预设的。
可选地,第一带宽是网络设备为终端设备配置的用于下行信号传输的带宽,或者,第一带宽是网络设备为终端设备配置并激活的用于下行信号传输的带宽。
可选地,第一带宽的大小可以为子带信道检测带宽的整数倍,例如,子带信道检测带宽为20MHz,第一带宽的大小可以为20MHz,40MHz,60MHz,80MHz等。其中,子带信道检测带宽为用于进行信道检测的单位带宽。前导信号可以在每个第一带宽大小的带宽上传输,即当非授权频谱的频域按照第一带宽的大小被划分为多个带宽时,前导信号在每个被划分后的带宽上传输。
本申请实施例对前导信号的序列映射到第一带宽上M个子载波的映射方式不做具体限定。作为一个示例,前导信号的序列元素在频域上映射到第一带宽上的M个连续的子载波上。作为另一个示例,前导信号的序列元素在频域上映射到第一带宽上的M个离散的子载波上。
可选地,该前导信号的序列在频域上映射的起始位置是预设的,或者是网络设备通过信令指示给终端设备的。
应理解,当前导信号包括多种序列时,该多种序列可以分别映射到第一带宽的不同符号上。
可选地,M个子载波可以占用第一带宽的全带宽、中心带宽或预定义的带宽。
可选地,前导信号的序列在频域上可以映射到第一带宽上的M个离散的子载波上。可选地,该M个离散的子载波在频域上的映射位置是预设的,或者,该M个离散的子载波中的任意相邻两个子载波之间的距离相等且该距离的大小是预设的。可选地,第一带宽上除所述前导信号的序列映射的M 个子载波外的其他子载波上不映射信号。通过这种映射方式,前导信号在时域上的表现形式为信息段重复,可以生成相较于前导信号的子载波间隔对应的符号长度更短的前导信号的信息段。例如,假设前导信号的子载波间隔为15kHz,对应符号长度为1/15kHz=66.7微秒,前导信号的序列元素在映射到子载波上时相邻两个子载波之间的距离为k(例如k=4)个子载波,那么前导信号在时域上的表现形式为66.7微秒内包括k个(即4个)重复的前导信号的信息段。由于前导信号的信息段部分的长度较短,可以减小终端设备的处理复杂度。
可选地,前导信号的序列在频域上可以映射到第一带宽的M个连续的子载波上。可选地,第一带宽上除所述前导信号的序列映射的M个子载波外的其他子载波上不映射信号。通过这种映射方式,终端设备在检测前导信号时,可以直接在时域处理而不需要变换到频域再处理,从而可以减小终端设备的处理复杂度。另外,如果为前导信号的传输选择较大的子载波间隔(例如前导信号的子载波间隔大于下行信号的子载波间隔),也可以获得较短的前导信号的信息段部分,从而可以进一步减小终端设备的处理复杂度。
下面结合图8-图9,对前导信号的序列的映射方式进行描述。
图8是在前导信号包括一种序列的情况下,前导信号在频域上的映射方式的示意图。
作为一个示例,前导信号的子载波间隔等于下行信号的子载波间隔,前导信号的序列在频域上映射到第一带宽的M个离散的子载波上。例如,前导信号和下行信号都在第一带宽上传输,前导信号在符号#n上传输,下行信号在符号#(n+1)上传输。前导信号的序列长度为8,该前导信号可以映射到第一带宽的8个子载波上,该8个子载波可以是离散的子载波,如图8类型1所示,该8个子载波中的每相邻两个子载波之间间隔4个子载波的距离。
可选地,该8个子载波可以分布在第一带宽的中心位置,也可以分布在第一带宽的全带宽上,或者也可以分布在预定义的子载波上。其中,分布在第一带宽上的全带宽可以指该8个子载波均匀地或等间隔地分布在第一带宽上。
作为一个示例,前导信号的子载波间隔大于下行信号的子载波间隔,前导信号的序列在频域上映射到第一带宽的M个连续的子载波上。例如,前导信号和下行信号都在第一带宽上传输,前导信号在符号#n上传输,下行信号在符号#(n+1)上传输。前导信号的子载波间隔的大小等于下行信号的子载波间隔的大小的4倍,符号#n的长度等于4个前导信号符号的长度,前导信号在每个符号上传输。
前导信号的序列长度为8,该前导信号可以映射到第一带宽的8个子载波上,该8个子载波可以是连续的子载波。在4个前导信号符号的每个前导信号符号的8个子载波上都映射前导信号的序列元素,如图8类型2所示。
可选地,该8个子载波可以分布在第一带宽的中心位置,也可以分布在第一带宽的全带宽上,或者也可以分布在预定义的载波上。其中,分布在第一带宽上的全带宽可以指该8个子载波均匀地或等间隔地分布在第一带宽上。
作为一个示例,前导信号的子载波间隔等于下行信号的子载波间隔,前导信号的序列在频域上映射到第一带宽的M个连续的子载波上。例如,前导信号的子载波间隔和下行信号的子载波间隔均为60kHz时,对前导信号的序列映射采用连续子载波映射的方式也可以得到较短的前导信号符号的信息段部分。
作为一个示例,前导信号的子载波间隔小于下行信号的子载波间隔,前导信号的序列在频域上映射到第一带宽的M个离散的子载波上。在这种情况下,可以将前导信号的序列元素在频域上映射时的间隔加大,以达到获得较短的前导信号符号的信息段部分的目的。例如,前导信号的子载波间隔为30kHz,下行信号的子载波间隔为60kHz,那么前导信号的序列在频域上映射到第一带宽的离散子载波上时相邻两个被映射的子载波之间的距离可以大于或等于下行信号的子载波间隔(例如距离为2个30kHz的子载波),从而可以获得较短的前导信号符号的信息段部分。
应理解,当前导信号包括多种序列时,每种序列在频域上的映射方式都可以采用上述频域映射方式中的一种。多种序列在频域上的映射方式可以相同,也可以不同,本申请对此并不限定。
图9是在前导信号包括两种序列的情况下,前导信号在频域上的映射方式的示意图。
作为一个示例,前导信号包括第一序列和第二序列,第一序列在符号#n上传输,第二序列在符号#(n+1)上传输,下行信号在符号#(n+2)上传输。
第一序列在符号#n的第一带宽的映射方式,及第二序列在符号#(n+1)的第一带宽上的映射方式与图8所示的类型1的映射方式类型相同,为避免累赘,这里不再详细描述。
可选地,第一序列和第二序列可以映射到相同的子载波上,也可以映射到不同的子载波上。图9中类型1示出的是第一序列和第二序列映射到不同的子载波的情况,第一序列和第二序列映射的子载 波可以错位2个子载波。
作为一个示例,类型2中,由于前导信号的子载波间隔大于下行信号的子载波间隔,第一序列和第二序列可以都在符号#n上传输。符号#n包括4个前导信号符号,第一序列和第二序列可以在符号n上交替传输,即4个前导信号符号依次传输第一序列、第二序列、第一序列、第二序列,或4个前导信号符号依次传输第二序列、第一序列、第二序列、第一序列。
或者,第一序列和第二序列可以顺序传输,第一序列和第二序列的传输顺序可以为:其中一种序列传输完之后再传另外一种序列。4个前导信号符号可以依次传输第一序列、第一序列、第二序列、第二序列,或4个前导信号符号可以依次传输第二序列、第二序列、第一序列、第一序列。
假设信道检测成功的时刻是在符号#n的第二个前导信号符号的起始时刻时,采用第一序列和第二序列交替传输的方式,在符号#n上可以传输完整的第一序列和第二序列,这时网络设备可以直接在符号#(n+1)上传输下行信号,能够缩短信道检测成功的时刻与传输下行信号之间的时间间隔,有利于提高通信系统的传输效率。
需要说明的是,图9所示的是第一序列和第二序列长度相等的情况,但本申请实施例不限于此,第一序列和第二序列的长度也可以不同。
图8和图9中,类型1所示的8个离散的子载波的映射方式可以达到类型2所示的8个连续的子载波的映射效果。类型2的前导信号符号对应的子载波大小等于4个类型1的前导信号符号对应的子载波的大小,类型1的前导信号符号的长度等于4个类型2的前导信号符号的长度。当相同的前导信号映射在类型2的4个前导信号符号上的M个连续的子载波上时,可以达到前导信号映射在类型1的一个前导信号符号的M个离散的子载波上传输的效果。
另外,图8和图9只是示意性的给出了前导信号映射的第一带宽的大小,实际中第一带宽包括的子载波的数量根据实际情况而定。
可选地,当前导信号的一种序列包括多个候选序列时,该多个候选序列之间可以是相互正交的。
可选地,前导信号的序列可以是主同步信号(primary synchronization signal,PSS)的序列,和/或,辅同步信号(secondary synchronization signal,SSS)的序列,这样可以达到重用PSS序列和/或SSS序列的目的。
可选地,前导信号的序列可以是其他新引入的序列,如Zadoff-Chu(ZC)序列。该ZC序列可以使用小区身份(identity,ID)扰码来进行加扰,能够使终端设备在接收到前导信号后确定该小区的网络设备获得了该非授权频段上的信道的使用权。
可选地,前导信号的序列为小区公共的、组公共的或终端设备特有的。
可选地,前导信号上传输的信号包括原始信息比特编码后得到的数据比特,其中,该数据比特调制后在频域上的映射方式为上述序列在频域上的映射方式中的一种。
可选地,前导信号携带以下信息中的至少一种:小区ID、公共陆地移动网络(public land mobile network,PLMN)ID、请求发送(request to send,RTS)标识、清除发送(clear to send,CTS)标识、所述下行信号在时域上的位置和信道占用时间。
可选地,终端设备在非授权频谱上检测到前导信号后,根据预定义的规则接收下行信号(如PDCCH或PDSCH)。
可选地,下行信号在时域上的位置可以表示终端设备在收到前导信号后,根据前导信号携带的信息在相应的位置上接收下行信号(如PDCCH或PDSCH)。
可选地,前导信号的天线端口可以全向天线端口,也可以是方向性的天线端口。
例如,当信道检测为非方向性的信道检测时,发送前导信号采用的天线端口可以是全向天线端口或方向性的天线端口。又例如,当信道检测为方向性的信道检测时,发送前导信号采用的天线端口是和所述方向性的信道检测对应的方向上的方向性的天线端口。
可选地,发送所述前导信号所使用的天线端口与发送同步信号块(synchronization signal block,SSB)所使用的天线端口相同。
可选地,前导信号与时域上位于前导信号后的SSB或下行信号是QCL的。也就说,可以根据前导信号对应的发送或接收波束和/或端口推算出SSB或下行信号对应的发送或接收波束和/或端口,或者,可以根据SSB或下行信号对应的发送或接收波束和/或端口推算出前导信号对应的发送或接收波束和/或端口。
前导信号的传输参数可以通过以下方式中的一种指示给终端设备:RRC配置、物理广播信道(physical broadcast channel,PBCH)、剩余的最小化的系统信息(remaining minimized system information,RMSI)。
可选地,前导信号的传输参数的指示方式与物理随机接入信道(physical random access channel, PRACH)的传输参数的指示方式相同。
可选地,对于授权辅助接入(license assisted access,LAA)场景,前导信号的传输参数可以通过授权频谱上的载波指示给终端设备。
其中,前导信号的传输参数可以包括但不限于上文描述的前导信号的时域特征、频域特征、序列特征、天线端口、配置等参数。
可选地,本申请实施例有利于终端设备进行AGC调整,终端设备接收前导信号的接收功率与接收下行信号的接收功率之间存在一定的关系。具体地,终端设备在接收到网络设备发送的前导信号后,可以根据接收前导信号所使用的接收功率,自适应地调整对下行信号的接收功率。
因此,本申请实施例通过发送用于确定当前载波能够用于传输下行信号的前导信号,可以减少终端对下行信号的盲检测复杂度,简化终端设备和降低功耗。
图10是本申请实施例提供的另一种无线通信方法的示意性流程图。图10的方法包括以下内容中的至少部分内容。
在步骤1010中,在非授权频段的载波上对前导信号进行检测。
在步骤1020中,在前导信号检测成功的情况下,在所述载波上接收下行信号。
下行信号例如可以是PDCCH或PDSCH。
如果终端设备能够正确接收并解调出前导信号,表明前导信号检测成功。
可选地,步骤1020可以进一步包括:在前导信号检测成功的情况下,从第一时刻开始在所述载波上接收下行信号。
在本申请实施例中,可以将发送前导信号所使用的符号称为前导信号符号。
实际传输前导信号所使用的符号不一定是使用完整的符号,可以指使用符号的一部分来传输前导信号。
举例说明,假如前导信号会在该2个前导信号符号上传输,但实际上传输前导信号的时间长度可能只有1.5个前导信号符号的长度,也即在其中一个符号可以只占有半个符号。
第一时刻的确定方式有多种。作为一个示例,第一时刻可以是候选时刻的集合中的一个时刻。例如可以预先在时间长度上设置多个候选时刻,将多个候选时刻中的一个候选时刻作为第一时刻。多个候选时刻中任意两个相邻候选时刻之间的时间间隔可以是相等的,也可以是递增的或递减的,本申请实施例对此不做具体限定。
作为另一个示例,第一时刻可以是前导信号符号中的任意一个时刻。
作为另一个示例,第一时刻可以是根据前导信号符号的格式确定的时刻。
可选地,终端设备可以提前获取前导信号符号的格式,然后根据前导信号符号的格式来确定第一时刻。
需要说明的是,本申请实施例中的候选时刻也可以是根据前导信号符号的格式确定的时刻。
前导信号符号用于传输前导信号,前导信号符号例如可以包括CP部分和信息段部分,信息段部分例如可以是网络设备发送的数据部分。其中前导信号的CP部分可以是信息段部分的尾部部分的内容。
可选地,前导信号符号的格式可以指示前导信号符号包括的信息段部分数量、前导信号符号的数量、信息段部分与CP部分的位置关系、CP部分的长度、信息段部分的长度以及前导信号符号的子载波间隔中的至少一种。
前导信号符号的格式可以有多种,也可以只有一种。可选地,当前导信号符号的格式有多种时,网络设备通过高层信令或物理层信令指示终端设备当前使用的是该多种前导信号符号的格式中的哪一种。
作为一个示例,针对一种格式的前导信号符号而言,前导信号符号包括一个第一CP部分和一个信息段部分,每个信息段部分都有单独的第一CP部分。
作为另一个示例,针对一种格式的前导信号符号而言,前导信号符号包括一个第二CP部分和M个信息段部分,M个信息段部分共用一个第二CP部分,M为大于或等于2的正整数。其中,即该M个信息段是重复发送的(即该M个信息段中每个信息段上发送的信号都是相同的)。
作为一个示例,第二CP部分的长度大于第一CP部分的长度。
作为一个示例,第二CP部分的长度为M个第一CP部分的长度。
下面对根据前导信号符号的格式确定第一时刻的方式进行描述。
例如,第一时刻可以是信息段部分的起始时刻,也可以是CP部分的起始时刻,也可以是前导信号符号的起始时刻。
应理解,以上介绍了第一时刻可以是根据前导信号符号的格式确定的时刻,但应理解,本申请实 施例并不限于此。
前导信号的子载波间隔的确定方式可以有多种。下面对前导信号的子载波间隔的确定方式进行描述,本申请实施例可以将前导信号符号对应的子载波间隔称为第一子载波间隔。
作为一个示例,第一子载波间隔可以等于下行信号对应的子载波间隔。即可以在系统中约定前导信号的子载波间隔等于下行信号的子载波间隔,当终端设备获取到下行信号的子载波间隔后,可以直接确定前导信号的子载波间隔等于下行信号的子载波间隔。
作为另一个示例,第一子载波间隔可以是通过以下信令中的至少一种所指示的子载波间隔,RRC信令、物理层信令、MAC层信令。
作为另一个示例,第一子载波间隔可以是预定义的子载波间隔。例如,第一子载波间隔可以是标准规范中规定的子载波间隔。
第一时刻也可以是基于下行信号符号(即,可以用于传输PDCCH或PDSCH等下行符号)的格式来确定的。例如,可以将与下行信号符号的起始时刻对齐的时刻确定为第一时刻。这里所说的下行信号符号的起始时刻是指与下行信号的子载波间隔对应的下行信号符号的起始时刻,其中,下行信号的子载波间隔可以是指实际传输的下行信号的子载波间隔,也可以是网络设备通过无线资源控制RRC信令、物理层信令、MAC层信令中的至少一种指示的用于下行信号传输的子载波间隔,还可以是预定义的子载波间隔。
可选地,前导信号的子载波间隔(即第一子载波间隔)可以大于或等于下行信号的子载波间隔,或前导信号符号的长度可以小于或等于下行信号符号的长度。
以NR系统为例,NR系统相比于LTE系统,能够支持更大的子载波间隔,子载波间隔的配置也比较灵活。例如,NR系统可支持的子载波间隔包括15kHz、30kHz、60kHz等。系统的子载波间隔越大,系统传输信号所使用的符号就可以越短。
基于此,如果对下行信号(例如,PDSCH或PDCCH)每次均进行盲检测,将会增加终端的复杂度和增加功耗,本申请实施例通过发送用于确定当前载波能够用于传输下行信号的前导信号,可以减少终端对下行信号的盲检测的复杂度,简化终端设备和降低功耗。
下面结合图3-图6,对前导信号符号的格式和对第一时刻的确定方式进行详细描述。图3-图6中,以前导信号的子载波间隔的大小等于4个下行信号的子载波间隔的大小为例进行说明。
需要说明的是,在图3-图6中,对时间长度的划分可以是按照下行信号符号的长度进行划分,即符号#n和符号#(n+1)的长度都等于一个下行信号符号的长度。
可选地,前导信号符号的格式可以如图3所示,一个前导信号符号包括一个CP部分和一个信息段部分,每个信息段部分都单独有一个CP部分,该前导信号符号也可称为带CP的前导信号符号。符号#n包括4个前导信号符号,即一个下行信号符号的长度等于4个前导信号符号的长度。可选地,该4个前导信号符号中后3个前导信号符号的CP长度相同且小于第一个前导信号符号的CP长度,或者,该4个前导信号符号中每个前导信号符号的CP长度都相同。
在图3中,当终端设备选择CP部分的起始时刻或者前导信号符号的起始时刻作为第一时刻时,则第一时刻可以是任一CP部分的起始时刻(如图3中↓所示的时刻)。终端设备可以从任一CP部分的起始时刻开始检测前导信号。当终端设备选择下行信号符号的起始时刻作为第一时刻时,则第一时刻可以是第一个前导信号符号的CP部分的起始时刻(即图3中第一个↓所指示的时刻)。终端设备可以从一个下行信号符号的起始时刻开始检测前导信号。
可选地,前导信号符号的格式可以如图4所示,一个前导信号符号包括一个CP部分和4个信息段部分,该4个信息段部分共用一个CP部分。一个前导信号符号的长度等于符号#n的长度,即一个前导信号符号的长度等于一个下行信号符号的长度。一个下行信号符号的信息段的长度等于4个前导信号符号的信息段的长度。应理解,下行信号符号#n的CP长度和下行信号符号#(n+1)的CP长度可以相同,也可以不同(例如当符号#n是一个时隙中的第一个符号或第七个符号时,符号#n的CP长度大于符号#(n+1)的CP长度)。
在图4中,当终端设备选择信息段部分的起始时刻或CP部分的起始时刻作为第一时刻时,则第一时刻可以是CP部分的起始时刻,或4个信息段部分的一个信息段部分的起始时刻(如图4中↓所示的时刻)。终端设备可以从CP部分的起始时刻,或4个信息段部分的一个信息段部分的起始时刻开始检测前导信号。当终端设备选择前导信号符号的起始时刻或下行信号符号的起始时刻作为第一时刻时,则第一时刻可以是前导信号符号的起始时刻(如图4中第一个↓所指示的时刻)。终端设备可以从前导信号符号的起始时刻开始检测前导信号。
需要说明的是,本申请实施例是将图4中一个前导信号符号理解为一个CP部分和4个信息段部分,当然对前导信号符号也可以有其他的理解。例如,有些情况下,也可以将图4中的一个信息段 理解为一个前导信号,或者将图4中的两个信息段理解为一个前导信号(即CP部分的长度和信息段部分的长度相同),对前导信号符号的理解并不能对本申请造成限定。
可选地,前导信号符号的格式可以如图5所示,一个前导信号符号包括一个CP部分和2个信息段部分,其中2个信息段部分共用一个CP部分。符号#n包括两个前导信号符号,即2个前导信号符号的长度等于一个下行信号符号的长度。
在图5中,当终端设备选择信息段部分的起始时刻或CP部分的起始时刻作为第一时刻时,则第一时刻可以是CP部分的起始时刻,或4个信息段部分的一个信息段部分的起始时刻(如图5中↓所示的时刻)。当终端设备选择前导信号符号的起始时刻作为第一时刻时,则第一时刻可以是两个CP部分的一个CP部分的起始时刻(如图5中第一个↓或第四个↓所示的时刻)。当终端设备选择下行信号符号的起始时刻作为第一时刻时,则第一时刻可以是第一个前导信号符号的CP部分的起始时刻(如图5中第一个↓所指示的时刻)。
在一个下行信号符号的长度上,除了上文描述的使用相同的前导信号符号的格式来传输前导信号外,还可以使用不同的前导信号符号的格式来传输前导信号。
作为一个示例,在一个下行信号符号的长度上,一个下行信号符号包括第一前导信号符号和第二前导信号符号,其中,第一前导信号符号包括一个CP部分和3个信息段部分,第二前导信号符号包括一个CP部分和一个信息段部分。此时,第一时刻可以是第一前导信号符号的CP部分的起始时刻,或第一前导信号符号的信息段部分的起始时刻,或第二前导信号符号的CP部分的起始时刻。
作为另一个示例,如图6所示的4种情况,每种情况所使用的前导信号符号的格式并不相同。例如,第一种情况,一个前导信号符号包括一个CP部分和4个信息段部分。第二种情况,一个前导信号符号包括一个CP部分和3个信息段部分。第三种情况,一个前导信号符号包括一个CP部分和2个信息段部分。第四种情况,一个前导信号符号包括一个CP部分和一个信息段部分。
终端设备可以提前获知在一个下行信号符号上包括的前导信号符号的不同格式,根据不同的格式确定第一时刻,即确定从哪个时刻开始进行前导信号的检测。
下面对图6所示的方案进行详细描述。
终端设备可以预先将符号#n划分为多个时间段,如时间段1、时间段2、时间段3、时间段4,将每个时间段的起始时刻作为第一时刻的候选时刻。
终端设备可以选择从任一时间段的起始时刻开始检测前导信号。
以图6为例,终端设备可以从时间段1的起始时刻开始,到符号#n的结束时刻的时间间隔内,检测前导信号。
或者,终端设备可以从时间段2的起始时刻开始,到符号#n的结束时刻的时间间隔内,检测前导信号。
或者,终端设备可以从时间段3的起始时刻开始,到符号#n的结束时刻的时间间隔内,检测前导信号。
或者,终端设备可以从时间段4的起始时刻开始,到符号#n的结束时刻的时间间隔内,检测前导信号。
当第一时刻是下行信号符号的起始时刻时,表示终端设备从一个下行信号符号的起始位置开始,到该下行信号符号的结束位置进行前导信号的检测。这样,能够保证不同终端设备对前导信号检测的时间长度相等。对于独立布网SA的情况下,有利于终端设备完成同步。
可选地,终端设备除了按照上文描述的从预设的第一时刻开始检测前导信号外,还可以通过滑窗检测的方式对前导信号进行检测。
可选地,所述滑窗检测过程中每次处理的时间长度为前导信号符号中的一个信息段部分的长度。这样,有利于提高终端设备检测到前导信号的概率。
可选地,每次处理的时间长度也可以称为时间窗的窗长,终端设备可以将窗长设置为一个前导信号符号中的一个信息段的长度。
终端设备检测所述前导信号的时间长度大于或等于P个所述前导信号符号的长度,P为正整数;或终端设备检测前导信号的时间长度大于或等于Q个所述前导信号符号的信息段部分的长度,Q为大于或等于2的正整数。
应理解,如果检测前导信号的时间长度可变,那么需要规定前导信号的最短检测长度,从而使终端设备能正确接收前导信号。
可选地,检测前导信号的结束时刻可以为一个下行信号符号的结束时刻。
可选地,检测前导信号的时间长度小于或等于R个下行信号符号的长度,R为正整数,并且,当检测前导信号的时间长度大于或等于P个下行信号符号的长度时,R大于P。
可选地,P值、Q值或R值可以是预定义的,或者可以是网络设备通过RRC信令、物理层信令和MAC层信令中的一种发送给终端设备的。
可选地,当前导信号包括N种序列时,终端设备检测前导信号的时间长度大于或等于2*N个信息段部分的长度,或者终端设备检测前导信号的时间长度大于或等于N个前导信号符号(带CP的前导信号符号)的长度,或者终端设备检测前导信号的时间长度大于或等于N个下行信号符号的长度,N为正整数。
可选地,检测前导信号的时间长度可以是固定长度,当前导信号包括N种序列时,检测前导信号的时间长度可以为S*N个前导信号符号,或检测前导信号的时间长度可以为S*N个下行信号符号,或检测前导信号的时间长度可以为(S+1)*N个信息段,S为正整数。
可选地,终端设备在前导信号检测成功后,从第二时刻开始,在检测成功的信道上接收下行信号。
在一些情况下,终端设备可以在前导信号检测成功后,接着就接收下行信号。此时,第二时刻即为前导信号的检测成功时刻。
在另外一些情况下,终端设备在前导信号检测成功后,并没有接着去接收下行信号,而是向网络设备发送前导信号的响应信号。终端设备发送前导信号的响应信号后,再去接收下行信号。如果终端设备没有向网络设备发送前导信号的响应信号,终端设备可以选择不接收下行信号。
上文描述了前导信号的时域特征,下面对前导信号的频域特征进行描述。
当前导信号的序列的长度为M时,前导信号的序列在频域上可以映射到第一带宽上的M个子载波上,M为正整数。
可选地,M值是预设的。
可选地,第一带宽是网络设备为终端设备配置的用于下行信号传输的带宽,或者,第一带宽是网络设备为终端设备配置并激活的用于下行信号传输的带宽。
可选地,第一带宽的大小可以为子带信道检测带宽的整数倍,例如,子带信道检测带宽为20MHz,第一带宽的大小可以为20MHz,40MHz,60MHz,80MHz等。其中,子带信道检测带宽为用于进行信道检测的单位带宽。前导信号可以在每个第一带宽大小的带宽上传输,即当非授权频谱的频域按照第一带宽的大小被划分为多个带宽时,前导信号在每个被划分后的带宽上传输。
本申请实施例对前导信号的序列映射到第一带宽上M个子载波的映射方式不做具体限定。作为一个示例,前导信号的序列元素在频域上映射到第一带宽上的M个连续的子载波上。终端设备可以在该M个连续的子载波上接收前导信号。作为另一个示例,前导信号的序列元素在频域上映射到第一带宽上的M个离散的子载波上。
可选地,该前导信号的序列在频域上映射的起始位置是预设的,或者是网络设备通过信令指示给终端设备的。
应理解,当前导信号包括多种序列时,该多种序列可以分别映射到第一带宽的不同符号上。
可选地,M个子载波可以占用第一带宽的全带宽、中心带宽或预定义的带宽。
可选地,终端设备可以通过高层信令来确定前导信号在频域上所占的子载波的数量及位置,然后在相应的位置上接收前导信号。
可选地,前导信号的序列在频域上可以映射到第一带宽上的M个离散的子载波上。可选地,该M个离散的子载波在频域上的映射位置是预设的,或者,该M个离散的子载波中的任意相邻两个子载波之间的距离相等且该距离的大小是预设的。可选地,第一带宽上除所述前导信号的序列映射的M个子载波外的其他子载波上不映射信号。通过这种映射方式,前导信号在时域上的表现形式为信息段重复,可以生成相较于前导信号的子载波间隔对应的符号长度更短的前导信号的信息段。例如,假设前导信号的子载波间隔为15kHz,对应符号长度为1/15kHz=66.7微秒,前导信号的序列元素在映射到子载波上时相邻两个子载波之间的距离为k(例如k=4)个子载波,那么前导信号在时域上的表现形式为66.7微秒内包括k个(即4个)重复的前导信号的信息段。由于前导信号的信息段部分的长度较短,可以减小终端设备的处理复杂度。
可选地,前导信号的序列在频域上可以映射到第一带宽的M个连续的子载波上。可选地,第一带宽上除所述前导信号的序列映射的M个子载波外的其他子载波上不映射信号。通过这种映射方式,终端设备在检测前导信号时,可以直接在时域处理而不需要变换到频域再处理,从而可以减小终端设备的处理复杂度。另外,如果为前导信号的传输选择较大的子载波间隔(例如前导信号的子载波间隔大于下行信号的子载波间隔),也可以获得较短的前导信号的信息段部分,从而可以进一步减小终端设备的处理复杂度。
下面结合图8-图9,对前导信号的序列的映射方式进行描述。
图8是在前导信号包括一种序列的情况下,前导信号在频域上的映射方式的示意图。
作为一个示例,前导信号的子载波间隔等于下行信号的子载波间隔,前导信号的序列在频域上映射到第一带宽的M个离散的子载波上。例如,前导信号和下行信号都在第一带宽上传输,前导信号在符号#n上传输,下行信号在符号#(n+1)上传输。前导信号的序列长度为8,该前导信号可以映射到第一带宽的8个子载波上,该8个子载波可以是离散的子载波,如图8类型1所示,该8个子载波中的每相邻两个子载波之间间隔4个子载波的距离。终端设备可以在该8个离散的子载波上接收前导信号。
可选地,该8个子载波可以分布在第一带宽的中心带宽,也可以分布在第一带宽的全带宽上,或者也可以分布在预定义的载波上。其中,分布在第一带宽上的全带宽可以指该8个子载波均匀地或等间隔地分布在第一带宽上。终端设备可以在第一带宽的中心带宽,或全带宽,或预定义的载波上来接收前导信号。
作为另一个示例,前导信号的子载波间隔大于下行信号的子载波间隔,前导信号的序列在频域上映射到第一带宽的M个连续的子载波上。例如,前导信号和下行信号都在第一带宽上传输,前导信号在符号#n上传输,下行信号在符号#(n+1)上传输。前导信号的子载波间隔的大小等于下行信号的子载波间隔的大小的4倍,符号#n的长度等于4个前导信号符号的长度,前导信号在每个符号上传输。
前导信号的序列长度为8,该前导信号可以映射到第一带宽的8个子载波上,该8个子载波可以是连续的子载波。在4个前导信号符号的每个前导信号符号的8个子载波上都映射前导信号的序列元素,如图8类型2所示。
可选地,该8个子载波可以分布在第一带宽的中心带宽,也可以分布在第一带宽的全带宽上,或者也可以分布在预定义的载波上。其中,分布在第一带宽上的全带宽可以指该8个子载波均匀地或等间隔地分布在第一带宽上。
作为一个示例,前导信号的子载波间隔等于下行信号的子载波间隔,前导信号的序列在频域上映射到第一带宽的M个连续的子载波上。例如,前导信号的子载波间隔和下行信号的子载波间隔均为60kHz时,对前导信号的序列映射采用连续子载波映射的方式也可以得到较短的前导信号符号的信息段部分。
作为一个示例,前导信号的子载波间隔小于下行信号的子载波间隔,前导信号的序列在频域上映射到第一带宽的M个离散的子载波上。在这种情况下,可以将前导信号的序列元素在频域上映射时的间隔加大,以达到获得较短的前导信号符号的信息段部分的目的。例如,前导信号的子载波间隔为30kHz,下行信号的子载波间隔为60kHz,那么前导信号的序列在频域上映射到第一带宽的离散子载波上时相邻两个被映射的子载波之间的距离可以大于或等于下行信号的子载波间隔(例如距离为2个30kHz的子载波),从而可以获得较短的前导信号符号的信息段部分。
应理解,当前导信号包括多种序列时,每种序列在频域上的映射方式都可以采用上述频域映射方式中的一种。多种序列在频域上的映射方式可以相同,也可以不同,本申请对此并不限定。
图9是在前导信号包括两种序列的情况下,前导信号在频域上的映射方式的示意图。
作为一个示例,前导信号包括第一序列和第二序列,第一序列在符号#n上传输,第二序列在符号#(n+1)上传输,下行信号在符号#(n+2)上传输。
第一序列在符号#n的第一带宽的映射方式,及第二序列在符号#(n+1)的第一带宽上的映射方式与图8所示的类型1的映射方式类型相同,为避免累赘,这里不再详细描述。
可选地,第一序列和第二序列可以映射到相同的子载波上,也可以映射到不同的子载波上。图9中类型1示出的是第一序列和第二序列映射到不同的子载波的情况,第一序列和第二序列映射的子载波可以错位2个子载波。终端设备可以在第一序列映射的载波上接收前导信号的第一序列,在第二序列映射的载波上接收前导信号的第二序列。
类型2中,由于前导信号的子载波间隔大于下行信号的子载波间隔,第一序列和第二序列可以都在符号#n上传输。符号#n包括4个前导信号符号,第一序列和第二序列可以在符号n上交替传输,即4个前导信号符号依次传输第一序列、第二序列、第一序列、第二序列,或4个前导信号符号依次传输第二序列、第一序列、第二序列、第一序列。
可选地,终端设备可以从4个前导信号符号中的第一个、第二个、第三个前导信号符号的起始时刻开始检测前导信号,都能成功地检测到前导信号。
或者,第一序列和第二序列可以顺序传输,第一序列和第二序列的传输顺序可以为:其中一种序列传输完之后再传另外一种序列。4个前导信号符号可以依次传输第一序列、第一序列、第二序列、第二序列,或4个前导信号符号可以依次传输第二序列、第二序列、第一序列、第一序列。
可选地,终端设备从4个前导信号符号中的第一个前导信号符号的起始时刻开始检测前导信号, 能够成功地检测到前导信号。
假设终端设备是从符号#n的第二个前导信号符号的起始时刻开始检测下行前导信号,采用第一序列和第二序列交替传输的方式,在符号#n上可以成功地检测到完整的第一序列和第二序列,这时终端设备可以直接在符号#(n+1)上接收下行信号,能够提高前导信号检测成功的概率,有利于提高通信系统的传输效率。
需要说明的是,图9所示的是第一序列和第二序列长度相等的情况,但本申请实施例不限于此,第一序列和第二序列的长度也可以不同。
图8和图9中,类型1所示的8个离散的子载波的映射方式可以达到类型2所示的8个连续的子载波的映射效果。类型2的前导信号符号对应的子载波大小等于4个类型1的前导信号符号对应的子载波的大小,类型1的前导信号符号的长度等于4个类型2的前导信号符号的长度。当相同的前导信号映射在类型2的4个前导信号符号上的M个连续的子载波上传输时,可以达到前导信号映射在类型1的一个前导信号符号的M个离散的子载波上传输的效果。
另外,图8和图9只是示意性的给出了前导信号映射的第一带宽的大小,实际中第一带宽包括的子载波的数量根据实际情况而定。
可选地,当前导信号的某一种序列包括多个候选序列时,该多个候选序列之间可以是相互正交的。
可选地,前导信号的序列可以是PSS的序列、和/或SSS的序列,这样可以达到重用PSS序列和/或SSS序列的目的。
可选地,前导信号的序列可以是其他新引入的序列,如ZC序列。该ZC序列可以使用小区ID扰码来进行加扰,能够使终端设备在接收到前导信号后确定该小区的网络设备获得了该非授权频段上的信道的使用权。
可选地,前导信号的的序列为小区公共的、组公共的或终端设备特有的。
可选地,前导信号上传输的信号包括原始信息比特编码后得到的数据比特,其中,该数据比特调制后在频域上的映射方式为上述序列在频域上的映射方式中的一种。
可选地,前导信号携带以下信息中的至少一种:小区ID、PLMN ID、RTS标识、CTS标识、所述下行信号在时域上的位置和信道占用时间。
可选地,终端设备在非授权频谱上检测到前导信号后,根据预定义的规则接收下行信号(如PDCCH或PDSCH)。
可选地,下行信号在时域上的位置可以表示终端设备在收到前导信号后,可以根据前导信号携带的信息在相应的位置上接收下行信号(如PDCCH或PDSCH)。
可选地,前导信号的天线端口可以全向天线端口,也可以是方向性的天线端口。
可选地,接收所述前导信号所使用的天线端口与接收SSB所使用的天线端口相同。
可选地,前导信号与时域上位于前导信号后的SSB或下行信号是QCL的。也就说,可以根据前导信号对应的接收波束和/或端口推算出SSB或下行信号对应的接收波束和/或端口,或者,可以根据SSB或下行信号对应的发送或接收波束和/或端口推算出前导信号对应的发送或接收波束和/或端口。
终端设备可以通过以下方式中的一种来获取前导信号的传输参数:RRC配置、PBCH、RMSI。
可选地,前导信号的传输参数的指示方式与PRACH的传输参数的指示方式相同。
可选地,对于LAA场景,前导信号的传输参数可以通过授权频谱上的载波指示给终端设备。
其中,前导信号的传输参数可以包括但不限于上文描述的前导信号的时域特征、频域特征、序列特征、天线端口、配置等参数。
可选地,本申请实施例有利于终端设备进行AGC调整,终端设备接收前导信号的接收功率与接收下行信号的接收功率之间存在一定的关系。具体地,终端设备在接收到网络设备发送的前导信号后,可以根据接收前导信号所使用的接收功率,自适应地调整对下行信号的接收功率。
因此,本申请实施例通过发送用于确定当前载波能够用于传输下行信号的前导信号,可以减少终端对下行信号的盲检测的复杂度,简化终端设备和降低功耗。
上文中详细描述了根据本申请实施例的无线通信的方法,下面将结合图11至图15,描述根据本申请实施例的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图11是本申请实施例的网络设备1100的示意性框图。如图11所示,该网络设备包括处理单元1110和通信单元1120。其中:
处理单元1110,用于对非授权频段的载波进行信道检测。
通信单元1120,用于在所述信道检测成功的情况下,从第一时刻开始在所述载波上发送前导信号,所述前导信号用于确定所述载波能够用于传输下行信号。
可选地,所述第一时刻是根据前导信号符号的格式,和/或所述信道检测成功的时刻确定的时刻。
可选地,所述第一时刻包括所述前导信号符号中的候选时刻。
可选地,所述第一时刻包括所述前导信号符号的起始时刻。
可选地,所述第一时刻包括所述信道检测成功后第一个所述前导信号符号的起始时刻。
可选地,所述第一时刻包括所述前导信号符号中CP部分的起始时刻或信息段部分的起始时刻。
可选地,所述第一时刻包括所述信道检测成功后第一个所述CP部分的起始时刻或第一个所述信息段部分的起始时刻。
可选地,所述前导信号符号包括一个第一CP部分和一个信息段部分。
可选地,所述第一时刻包括所述前导信号符号中所述第一CP部分的起始时刻。
可选地,所述前导信号符号包括一个第二CP部分和M个信息段部分,其中,M为大于或等于2的正整数。
可选地,所述第一时刻包括所述前导信号符号中所述第二CP部分的起始时刻或所述M个信息段部分中的一个信息段部分的起始时刻。
可选地,所述通信单元1120还用于:在所述第一时刻不为信道检测成功的时刻时,从所述信道检测成功的时刻开始到所述第一时刻之间,在所述载波上发送占位信号。
可选地,所述通信单元1120还用于:在所述第一时刻不为信道检测成功的时刻时,从所述信道检测成功的时刻开始到所述第一时刻之间,在所述载波上发送所述前导信号的CP部分。
可选地,所述第一时刻包括所述下行信号符号的起始时刻。
可选地,所述通信单元1120还用于:在所述前导信号发送结束后,从第二时刻开始,在所述载波上发送所述下行信号。
可选地,所述第二时刻为下行信号符号的起始时刻。
可选地,所述前导信号符号对应第一子载波间隔,其中,所述第一子载波间隔是所述下行信号对应的子载波间隔;或所述第一子载波间隔是通过无线资源控制RRC信令、物理层信令、介质访问控制MAC层信令中的至少一种所指示的子载波间隔;或所述第一子载波间隔是预定义的子载波间隔。
可选地,发送所述前导信号的时间长度大于或等于P个所述前导信号符号的长度,P为正整数;或发送所述前导信号的时间长度大于或等于Q个所述前导信号符号的信息段部分的长度,Q为大于或等于2的正整数。
可选地,所述前导信号包括N种序列,N为正整数。
可选地,所述前导信号的子载波间隔大于或等于所述下行信号的子载波间隔;或所述前导信号符号的长度小于或等于所述下行信号符号的长度。
可选地,所述前导信号的序列在频域上映射到第一带宽上的M个连续的子载波上,其中,所述前导信号的序列长度为M,M为正整数。
可选地,所述前导信号的子载波间隔大于所述下行信号的子载波间隔。
可选地,所述前导信号的序列在频域上映射到第一带宽上的M个离散的子载波上,其中,所述M个离散的子载波中的任意相邻两个子载波之间的距离相等,所述前导信号的序列长度为M,M为正整数。
可选地,所述前导信号的子载波间隔等于所述下行信号的子载波间隔。
可选地,所述M个子载波占用所述第一带宽的全带宽、中心带宽或预定义的带宽。
可选地,所述第一带宽上除所述前导信号的序列映射的子载波外的其他子载波上不映射信号。
可选地,当所述前导信号包括至少两种序列时,所述至少两种序列在时域上交替传输。
可选地,当所述前导信号包括至少两种序列时,所述至少两种序列在时域上的传输方式为:一种序列传输完之后再开始传下一种序列。
可选地,所述前导信号的序列为以下序列中的至少一种:PSS、SSS和Zadoff-Chu序列。
可选地,所述前导信号的序列为小区公共的、组公共的或终端设备特有的。
可选地,所述前导信号携带以下信息中的至少一种:小区标识ID、公共陆地移动网络PLMN ID、请求发送RTS标识、清除发送CTS标识、所述下行信号在时域上的位置和信道占用时间。
可选地,当所述信道检测为非方向性的信道检测时,发送所述前导信号采用的天线端口是全向天线端口或方向性的天线端口;或当所述信道检测为方向性的信道检测时,发送所述前导信号采用的天线端口是和所述方向性的信道检测对应的方向上的方向性的天线端口。
可选地,发送所述前导信号所使用的天线端口与发送同步信号块SSB所使用的天线端口相同。
可选地,所述前导信号与时域上位于所述前导信号后的SSB或PDCCH是QCL的。
可选地,所述前导信号的传输参数通过以下方式中的一种指示给终端设备:RRC、PBCH和RMSI。
可选地,所述前导信号的传输参数的指示方式与PRACH的传输参数的指示方式相同。
图12是本申请实施例提供的终端设备的示意性框图。如图12所示,该终端设备1200包括处理单元1210和通信单元1220。其中:
处理单元1210,用于在非授权频段的载波上对前导信号进行检测。
通信单元1220,用于在前导信号检测成功的情况下,在所述载波上接收下行信号。
可选地,所述通信单元1220具体用于:从第一时刻开始在所述非授权频段的载波上对前导信号进行检测。
可选地,所述第一时刻是根据前导信号符号的格式确定的时刻。
可选地,所述第一时刻包括所述前导信号符号中的候选时刻。
可选地,所述第一时刻包括所述前导信号符号的起始时刻。
可选地,所述第一时刻包括所述前导信号符号中循环前缀CP部分的起始时刻或信息段部分的起始时刻。
可选地,所述前导信号符号包括一个第一CP部分和一个信息段部分。
可选地,所述第一时刻包括所述前导信号符号中所述第一CP部分的起始时刻。
可选地,所述前导信号符号包括一个第二CP部分和M个信息段部分,其中,M为大于或等于2的正整数。
可选地,所述第一时刻包括所述前导信号符号中所述第二CP部分的起始时刻或所述M个信息段部分中的一个信息段部分的起始时刻。
可选地,所述第一时刻包括所述下行信号符号的起始时刻。
可选地,所述处理单元1210具体用于:在所述非授权频段的载波上通过滑窗检测的方式对前导信号进行检测。
可选地,所述滑窗检测过程中每次处理的时间长度为前导信号符号中的一个信息段部分的长度。
可选地,所述通信单元1220具体用于:在所述前导信号检测成功后,从第二时刻开始,在所述载波上接收下行信号。
可选地,所述第二时刻为下行信号符号的起始时刻。
可选地,所述前导信号符号对应第一子载波间隔,其中,所述第一子载波间隔是所述下行信号对应的子载波间隔;或所述第一子载波间隔是通过无线资源控制RRC信令、物理层信令、介质访问控制MAC层信令中的至少一种所指示的子载波间隔;或所述第一子载波间隔是预定义的子载波间隔。
可选地,检测所述前导信号的时间长度大于或等于P个所述前导信号符号的长度,P为正整数;或检测所述前导信号的时间长度大于或等于Q个所述前导信号符号的信息段部分的长度,Q为大于或等于2的正整数。
可选地,所述前导信号包括N种序列,N为正整数。
可选地,所述前导信号的子载波间隔大于或等于所述下行信号的子载波间隔;或所述前导信号符号的长度小于或等于所述下行信号符号的长度。
可选地,所述前导信号的序列在频域上映射到第一带宽上的M个连续的子载波上,其中,所述前导信号的序列长度为M,M为正整数。
可选地,所述前导信号的子载波间隔大于所述下行信号的子载波间隔。
可选地,所述前导信号的序列在频域上映射到第一带宽上的M个离散的子载波上,其中,所述M个离散的子载波中的任意相邻两个子载波之间的距离相等,所述前导信号的序列长度为M,M为正整数。
可选地,所述前导信号的子载波间隔等于所述下行信号的子载波间隔。
可选地,所述M个子载波占用所述第一带宽的全带宽、中心带宽或预定义的带宽。
可选地,所述第一带宽上除所述前导信号的序列映射的子载波外的其他子载波上不映射信号。
可选地,当所述前导信号包括至少两种序列时,所述至少两种序列在时域上交替传输。
可选地,当所述前导信号包括至少两种序列时,所述至少两种序列在时域上的传输方式为:一种序列传输完之后再开始传下一种序列。
可选地,所述前导信号的序列为以下序列中的至少一种:PSS、SSS和Zadoff-Chu序列。
可选地,所述前导信号的序列为小区公共的、组公共的或终端设备特有的。
可选地,所述前导信号携带以下信息中的至少一种:小区标识ID、公共陆地移动网络PLMN ID、请求发送RTS标识、清除发送CTS标识、所述下行信号在时域上的位置和信道占用时间。
可选地,接收所述前导信号采用的天线端口是全向天线端口或方向性的天线端口。
可选地,检测所述前导信号所使用的天线端口与接收同步信号块SSB所使用的天线端口相同。
可选地,所述前导信号与时域上位于所述前导信号后的SSB或PDCCH是QCL的。
可选地,通过以下方式中的一种获取前导信号的传输参数:RRC、PBCH和RMSI。
可选地,获取前导信号的传输参数的方式与获取PRACH的传输参数的方式相同。
图13是本申请实施例提供的一种通信设备1300示意性结构图。图13所示的通信设备1300包括处理器1310,处理器1310可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,通信设备1300还可以包括存储器1320。其中,处理器1310可以从存储器1320中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1320可以是独立于处理器1310的一个单独的器件,也可以集成在处理器1310中。
可选地,如图13所示,通信设备1300还可以包括收发器1330,处理器1310可以控制该收发器1330与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1330可以包括发射机和接收机。收发器1330还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1300具体可为本申请实施例的网络设备,并且该通信设备1300可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1300具体可为本申请实施例的移动终端/终端设备,并且该通信设备1300可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图14是本申请实施例的芯片的示意性结构图。图14所示的芯片1400包括处理器1410,处理器1410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图14所示,芯片1400还可以包括存储器1420。其中,处理器1410可以从存储器1420中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1420可以是独立于处理器1410的一个单独的器件,也可以集成在处理器1410中。
可选地,该芯片1400还可以包括输入接口1430。其中,处理器1410可以控制该输入接口1430与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1400还可以包括输出接口1440。其中,处理器1410可以控制该输出接口1440与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图15是本申请实施例提供的一种通信系统1500的示意性框图。如图15所示,该通信系统1500包括终端设备1510和网络设备1520。
其中,该终端设备1510可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1520可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器 (Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘 等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (152)

  1. 一种无线通信方法,其特征在于,包括:
    对非授权频段的载波进行信道检测;
    在所述信道检测成功的情况下,从第一时刻开始在所述载波上发送前导信号,所述前导信号用于确定所述载波能够用于传输下行信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时刻是根据前导信号符号的格式,和/或所述信道检测成功的时刻确定的时刻。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一时刻包括前导信号符号中的候选时刻。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一时刻包括前导信号符号的起始时刻。
  5. 根据权利要求4所述的方法,其特征在于,所述第一时刻包括所述信道检测成功后第一个所述前导信号符号的起始时刻。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一时刻包括前导信号符号中循环前缀CP部分的起始时刻或信息段部分的起始时刻。
  7. 根据权利要求6所述的方法,其特征在于,所述第一时刻包括所述信道检测成功后第一个所述CP部分的起始时刻或第一个所述信息段部分的起始时刻。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,前导信号符号包括一个第一CP部分和一个信息段部分。
  9. 根据权利要求8所述的方法,其特征在于,所述第一时刻包括所述前导信号符号中所述第一CP部分的起始时刻。
  10. 根据权利要求1至7中任一项所述的方法,其特征在于,前导信号符号包括一个第二CP部分和M个信息段部分,其中,M为大于或等于2的正整数。
  11. 根据权利要求10所述的方法,其特征在于,所述第一时刻包括所述前导信号符号中所述第二CP部分的起始时刻或所述M个信息段部分中的一个信息段部分的起始时刻。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一时刻不为信道检测成功的时刻时,从所述信道检测成功的时刻开始到所述第一时刻之间,在所述载波上发送占位信号。
  13. 根据权利要求1至11中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一时刻不为信道检测成功的时刻时,从所述信道检测成功的时刻开始到所述第一时刻之间,在所述载波上发送所述前导信号的CP部分。
  14. 根据权利要求1至3中任一项所述的方法,所述第一时刻包括所述下行信号符号的起始时刻。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述方法还包括:
    在所述前导信号发送结束后,从第二时刻开始,在所述载波上发送所述下行信号。
  16. 根据权利要求15所述的方法,其特征在于,所述第二时刻为下行信号符号的起始时刻。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,前导信号符号对应第一子载波间隔,其中,所述第一子载波间隔是所述下行信号对应的子载波间隔;或,
    所述第一子载波间隔是通过无线资源控制RRC信令、物理层信令、介质访问控制MAC层信令中的至少一种所指示的子载波间隔;或,
    所述第一子载波间隔是预定义的子载波间隔。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,发送所述前导信号的时间长度大于或等于P个前导信号符号的长度,P为正整数;或,
    发送所述前导信号的时间长度大于或等于Q个前导信号符号的信息段部分的长度,Q为大于或等于2的正整数。
  19. 根据权利要求1至18中任一项所述的方法,其特征在于,所述前导信号包括N种序列,N为正整数。
  20. 根据权利要求1至19中任一项所述的方法,其特征在于,所述前导信号的子载波间隔大于或等于所述下行信号的子载波间隔;或,
    前导信号符号的长度小于或等于所述下行信号符号的长度。
  21. 根据权利要求1至20中任一项所述的方法,其特征在于,所述前导信号的序列在频域上映射到第一带宽上的M个连续的子载波上,其中,所述前导信号的序列长度为M,M为正整数。
  22. 根据权利要求21所述的方法,其特征在于,所述前导信号的子载波间隔大于所述下行信号的子载波间隔。
  23. 根据权利要求1至20中任一项所述的方法,其特征在于,所述前导信号的序列在频域上映射到第一带宽上的M个离散的子载波上,其中,所述M个离散的子载波中的任意相邻两个子载波之间的距离相等,所述前导信号的序列长度为M,M为正整数。
  24. 根据权利要求23所述的方法,其特征在于,所述前导信号的子载波间隔等于所述下行信号的子载波间隔。
  25. 根据权利要求21至24中任一项所述的方法,其特征在于,所述M个子载波占用所述第一带宽的全带宽、中心带宽或预定义的带宽。
  26. 根据权利要求21至25中任一项所述的方法,其特征在于,所述第一带宽上除所述前导信号的序列映射的子载波外的其他子载波上不映射信号。
  27. 根据权利要求1至26中任一项所述的方法,其特征在于,当所述前导信号包括至少两种序列时,所述至少两种序列在时域上交替传输。
  28. 根据权利要求1至26中任一项所述的方法,其特征在于,当所述前导信号包括至少两种序列时,所述至少两种序列在时域上的传输方式为:一种序列传输完之后再开始传下一种序列。
  29. 根据权利要求1至28中任一项所述的方法,其特征在于,所述前导信号的序列为以下序列中的至少一种:主同步信号PSS、辅同步信号SSS和Zadoff-Chu序列。
  30. 根据权利要求1至29中任一项所述的方法,其特征在于,所述前导信号的序列为小区公共的、组公共的或终端设备特有的。
  31. 根据权利要求1至30中任一项所述的方法,其特征在于,所述前导信号携带以下信息中的至少一种:小区标识ID、公共陆地移动网络PLMN ID、请求发送RTS标识、清除发送CTS标识、所述下行信号在时域上的位置和信道占用时间。
  32. 根据权利要求1至31中任一项所述的方法,其特征在于,当所述信道检测为非方向性的信道检测时,发送所述前导信号采用的天线端口是全向天线端口或方向性的天线端口;
    或,当所述信道检测为方向性的信道检测时,发送所述前导信号采用的天线端口是和所述方向性的信道检测对应的方向上的方向性的天线端口。
  33. 根据权利要求1至32中任一项所述的方法,其特征在于,发送所述前导信号所使用的天线端口与发送同步信号块SSB所使用的天线端口相同。
  34. 根据权利要求1至33中任一项所述的方法,其特征在于,所述前导信号与时域上位于所述前导信号后的SSB或下行控制信道PDCCH是空间准共址QCL的。
  35. 根据权利要求1至34中任一项所述的方法,其特征在于,所述前导信号的传输参数通过以下方式中的一种指示给终端设备:RRC、物理广播信道PBCH和剩余的最小化系统信息RMSI。
  36. 根据权利要求1至35中任一项所述的方法,其特征在于,所述前导信号的传输参数的指示方式与物理随机接入信道PRACH的传输参数的指示方式相同。
  37. 一种无线通信方法,其特征在于,包括:
    在非授权频段的载波上对前导信号进行检测;
    在前导信号检测成功的情况下,在所述载波上接收下行信号。
  38. 根据权利要求37所述的方法,其特征在于,所述在非授权频段的载波上对前导信号进行检测,包括:
    从第一时刻开始在所述非授权频段的载波上对前导信号进行检测。
  39. 根据权利要求38所述的方法,其特征在于,所述第一时刻是根据前导信号符号的格式确定的时刻。
  40. 根据权利要求38或39所述的方法,其特征在于,所述第一时刻包括前导信号符号中的候选时刻。
  41. 根据权利要求38至40中任一项所述的方法,其特征在于,所述第一时刻包括前导信号符号的起始时刻。
  42. 根据权利要求38至41中任一项所述的方法,其特征在于,所述第一时刻包括前导信号符号中循环前缀CP部分的起始时刻或信息段部分的起始时刻。
  43. 根据权利要求38至42中任一项所述的方法,其特征在于,前导信号符号包括一个第一CP部分和一个信息段部分。
  44. 根据权利要求43所述的方法,其特征在于,所述第一时刻包括前导信号符号中所述第一CP部分的起始时刻。
  45. 根据权利要求38至44中任一项所述的方法,其特征在于,前导信号符号包括一个第二CP部分和M个信息段部分,其中,M为大于或等于2的正整数。
  46. 根据权利要求45所述的方法,其特征在于,所述第一时刻包括前导信号符号中所述第二CP部分的起始时刻或所述M个信息段部分中的一个信息段部分的起始时刻。
  47. 根据权利要求38至40中任一项所述的方法,其特征在于,所述第一时刻包括所述下行信号符号的起始时刻。
  48. 根据权利要求37所述的方法,其特征在于,所述在非授权频段的载波上对前导信号进行检测,包括:
    在所述非授权频段的载波上采用滑窗检测的方式对前导信号进行检测。
  49. 根据权利要求48所述的方法,其特征在于,所述滑窗检测过程中每次处理的时间长度为前导信号符号中的一个信息段部分的长度。
  50. 根据权利要求37至49中任一项所述的方法,其特征在于,所述在前导信号检测成功的情况下,在所述载波上接收下行信号,包括:
    在所述前导信号检测成功后,从第二时刻开始,在所述载波上接收下行信号。
  51. 根据权利要求50所述的方法,其特征在于,所述第二时刻为下行信号符号的起始时刻。
  52. 根据权利要求37至51中任一项所述的方法,其特征在于,前导信号符号对应第一子载波间隔,其中,所述第一子载波间隔是所述下行信号对应的子载波间隔;或,
    所述第一子载波间隔是通过无线资源控制RRC信令、物理层信令、介质访问控制MAC层信令中的至少一种所指示的子载波间隔;或,
    所述第一子载波间隔是预定义的子载波间隔。
  53. 根据权利要求37至52中任一项所述的方法,其特征在于,检测所述前导信号的时间长度大于或等于P个前导信号符号的长度,P为正整数;或,
    检测所述前导信号的时间长度大于或等于Q个前导信号符号的信息段部分的长度,Q为大于或等于2的正整数。
  54. 根据权利要求37至53中任一项所述的方法,其特征在于,所述前导信号包括N种序列,N为正整数。
  55. 根据权利要求37至54中任一项所述的方法,其特征在于,所述前导信号的子载波间隔大于或等于所述下行信号的子载波间隔;或,
    前导信号符号的长度小于或等于所述下行信号符号的长度。
  56. 根据权利要求37至55中任一项所述的方法,其特征在于,所述前导信号的序列在频域上映射到第一带宽上的M个连续的子载波上,其中,所述前导信号的序列长度为M,M为正整数。
  57. 根据权利要求56所述的方法,其特征在于,所述前导信号的子载波间隔大于所述下行信号的子载波间隔。
  58. 根据权利要求37至57中任一项所述的方法,其特征在于,所述前导信号的序列在频域上映射到第一带宽上的M个离散的子载波上,其中,所述M个离散的子载波中的任意相邻两个子载波之间的距离相等,所述前导信号的序列长度为M,M为正整数。
  59. 根据权利要求58所述的方法,其特征在于,所述前导信号的子载波间隔等于所述下行信号的子载波间隔。
  60. 根据权利要求56至59中任一项所述的方法,其特征在于,所述M个子载波占用所述第一带宽的全带宽、中心带宽或预定义的带宽。
  61. 根据权利要求56至60中任一项所述的方法,其特征在于,所述第一带宽上除所述前导信号的序列映射的子载波外的其他子载波上不映射信号。
  62. 根据权利要求37至61中任一项所述的方法,其特征在于,当所述前导信号包括至少两种序列时,所述至少两种序列在时域上交替传输。
  63. 根据权利要求37至61中任一项所述的方法,其特征在于,当所述前导信号包括至少两种序列时,所述至少两种序列在时域上的传输方式为:一种序列传输完之后再开始传下一种序列。
  64. 根据权利要求37至63中任一项所述的方法,其特征在于,所述前导信号的序列为以下序列中的至少一种:主同步信号PSS、辅同步信号SSS和Zadoff-Chu序列。
  65. 根据权利要求37至64中任一项所述的方法,其特征在于,所述前导信号的序列为小区公共的、组公共的或终端设备特有的。
  66. 根据权利要求37至65中任一项所述的方法,其特征在于,所述前导信号携带以下信息中的至少一种:小区标识ID、公共陆地移动网络PLMN ID、请求发送RTS标识、清除发送CTS标识、 所述下行信号在时域上的位置和信道占用时间。
  67. 根据权利要求37至66中任一项所述的方法,其特征在于,检测所述前导信号采用的天线端口是全向天线端口或方向性的天线端口。
  68. 根据权利要求37至67中任一项所述的方法,其特征在于,接收所述前导信号所使用的天线端口与接收同步信号块SSB所使用的天线端口相同。
  69. 根据权利要求37至68中任一项所述的方法,其特征在于,所述前导信号与时域上位于所述前导信号后的SSB或下行控制信道PDCCH是空间准共址QCL的。
  70. 根据权利要求37至69中任一项所述的方法,其特征在于,通过以下方式中的一种获取前导信号的传输参数:RRC、物理广播信道PBCH和剩余的最小化系统信息RMSI。
  71. 根据权利要求37至70中任一项所述的方法,其特征在于,获取所述前导信号的传输参数的方式与获取物理随机接入信道PRACH的传输参数的方式相同。
  72. 一种网络设备,其特征在于,包括:
    处理单元,用于对非授权频段的载波进行信道检测;
    通信单元,在所述信道检测成功的情况下,从第一时刻开始在所述载波上发送前导信号,所述前导信号用于确定所述载波能够用于传输下行信号。
  73. 根据权利要求72所述的网络设备,其特征在于,所述第一时刻是根据前导信号符号的格式,和/或所述信道检测成功的时刻确定的时刻。
  74. 根据权利要求72或73所述的网络设备,其特征在于,所述第一时刻包括前导信号符号中的候选时刻。
  75. 根据权利要求72至74中任一项所述的网络设备,其特征在于,所述第一时刻包括前导信号符号的起始时刻。
  76. 根据权利要求75所述的网络设备,其特征在于,所述第一时刻包括所述信道检测成功后第一个所述前导信号符号的起始时刻。
  77. 根据权利要求72至76中任一项所述的网络设备,其特征在于,所述第一时刻包括前导信号符号中循环前缀CP部分的起始时刻或信息段部分的起始时刻。
  78. 根据权利要求77所述的网络设备,其特征在于,所述第一时刻包括所述信道检测成功后第一个所述CP部分的起始时刻或第一个所述信息段部分的起始时刻。
  79. 根据权利要求72至78中任一项所述的网络设备,其特征在于,前导信号符号包括一个第一CP部分和一个信息段部分。
  80. 根据权利要求79所述的网络设备,其特征在于,所述第一时刻包括所述前导信号符号中所述第一CP部分的起始时刻。
  81. 根据权利要求72至78中任一项所述的网络设备,其特征在于,前导信号符号包括一个第二CP部分和M个信息段部分,其中,M为大于或等于2的正整数。
  82. 根据权利要求81所述的网络设备,其特征在于,所述第一时刻包括所述前导信号符号中所述第二CP部分的起始时刻或所述M个信息段部分中的一个信息段部分的起始时刻。
  83. 根据权利要求72至82中任一项所述的网络设备,其特征在于,所述通信单元具体用于:
    在所述第一时刻不为信道检测成功的时刻时,从所述信道检测成功的时刻开始到所述第一时刻之间,在所述载波上发送占位信号。
  84. 根据权利要求72至82中任一项所述的网络设备,其特征在于,所述通信单元具体用于:
    在所述第一时刻不为信道检测成功的时刻时,从所述信道检测成功的时刻开始到所述第一时刻之间,在所述载波上发送所述前导信号的CP部分。
  85. 根据权利要求72至74中任一项所述的网络设备,其特征在于,所述第一时刻包括所述下行信号符号的起始时刻。
  86. 根据权利要求72至85中任一项所述的网络设备,其特征在于,所述通信单元具体用于:
    在所述前导信号发送结束后,从第二时刻开始,在所述载波上发送所述下行信号。
  87. 根据权利要求86所述的网络设备,其特征在于,所述第二时刻为下行信号符号的起始时刻。
  88. 根据权利要求72至87中任一项所述的网络设备,其特征在于,前导信号符号对应第一子载波间隔,其中,所述第一子载波间隔是所述下行信号对应的子载波间隔;或,
    所述第一子载波间隔是通过无线资源控制RRC信令、物理层信令、介质访问控制MAC层信令中的至少一种所指示的子载波间隔;或,
    所述第一子载波间隔是预定义的子载波间隔。
  89. 根据权利要求72至88中任一项所述的网络设备,其特征在于,发送所述前导信号的时间长 度大于或等于P个前导信号符号的长度,P为正整数;或,
    发送所述前导信号的时间长度大于或等于Q个前导信号符号的信息段部分的长度,Q为大于或等于2的正整数。
  90. 根据权利要求72至89中任一项所述的网络设备,其特征在于,所述前导信号包括N种序列,N为正整数。
  91. 根据权利要求72至90中任一项所述的网络设备,其特征在于,所述前导信号的子载波间隔大于或等于所述下行信号的子载波间隔;或,
    前导信号符号的长度小于或等于所述下行信号符号的长度。
  92. 根据权利要求72至91中任一项所述的网络设备,其特征在于,所述前导信号的序列在频域上映射到第一带宽上的M个连续的子载波上,其中,所述前导信号的序列长度为M,M为正整数。
  93. 根据权利要求92所述的网络设备,其特征在于,所述前导信号的子载波间隔大于所述下行信号的子载波间隔。
  94. 根据权利要求72至91中任一项所述的网络设备,其特征在于,所述前导信号的序列在频域上映射到第一带宽上的M个离散的子载波上,其中,所述M个离散的子载波中的任意相邻两个子载波之间的距离相等,所述前导信号的序列长度为M,M为正整数。
  95. 根据权利要求94所述的网络设备,其特征在于,所述前导信号的子载波间隔等于所述下行信号的子载波间隔。
  96. 根据权利要求92至95中任一项所述的网络设备,其特征在于,所述M个子载波占用所述第一带宽的全带宽、中心带宽或预定义的带宽。
  97. 根据权利要求92至96中任一项所述的网络设备,其特征在于,所述第一带宽上除所述前导信号的序列映射的子载波外的其他子载波上不映射信号。
  98. 根据权利要求72至97中任一项所述的网络设备,其特征在于,当所述前导信号包括至少两种序列时,所述至少两种序列在时域上交替传输。
  99. 根据权利要求72至98中任一项所述的网络设备,其特征在于,当所述前导信号包括至少两种序列时,所述至少两种序列在时域上的传输方式为:一种序列传输完之后再开始传下一种序列。
  100. 根据权利要求72至99中任一项所述的网络设备,其特征在于,所述前导信号的序列为以下序列中的至少一种:主同步信号PSS、辅同步信号SSS和Zadoff-Chu序列。
  101. 根据权利要求72至100中任一项所述的网络设备,其特征在于,所述前导信号的序列为小区公共的、组公共的或终端设备特有的。
  102. 根据权利要求72至101中任一项所述的网络设备,其特征在于,所述前导信号携带以下信息中的至少一种:小区标识ID、公共陆地移动网络PLMN ID、请求发送RTS标识、清除发送CTS标识、所述下行信号在时域上的位置和信道占用时间。
  103. 根据权利要求72至102中任一项所述的网络设备,其特征在于,当所述信道检测为非方向性的信道检测时,发送所述前导信号采用的天线端口是全向天线端口或方向性的天线端口;
    或,当所述信道检测为方向性的信道检测时,发送所述前导信号采用的天线端口是和所述方向性的信道检测对应的方向上的方向性的天线端口。
  104. 根据权利要求72至103中任一项所述的网络设备,其特征在于,发送所述前导信号所使用的天线端口与发送同步信号块SSB所使用的天线端口相同。
  105. 根据权利要求72至104中任一项所述的网络设备,其特征在于,所述前导信号与时域上位于所述前导信号后的SSB或下行控制信道PDCCH是空间准共址QCL的。
  106. 根据权利要求72至105中任一项所述的网络设备,其特征在于,所述前导信号的传输参数通过以下方式中的一种指示给终端设备:RRC、物理广播信道PBCH和剩余的最小化系统信息RMSI。
  107. 根据权利要求72至106中任一项所述的网络设备,其特征在于,所述前导信号的传输参数的指示方式与物理随机接入信道PRACH的传输参数的指示方式相同。
  108. 一种终端设备,其特征在于,包括:
    处理单元,用于在非授权频段的载波上对前导信号进行检测;
    通信单元,用于在前导信号检测成功的情况下,在所述载波上接收下行信号。
  109. 根据权利要求108所述的终端设备,其特征在于,所述处理单元具体用于:
    从第一时刻开始在所述非授权频段的载波上对前导信号进行检测。
  110. 根据权利要求109所述的终端设备,其特征在于,所述第一时刻是根据前导信号符号的格式确定的时刻。
  111. 根据权利要求109或110所述的终端设备,其特征在于,所述第一时刻包括前导信号符号 中的候选时刻。
  112. 根据权利要求109至111中任一项所述的终端设备,其特征在于,所述第一时刻包括前导信号符号的起始时刻。
  113. 根据权利要求109至112中任一项所述的终端设备,其特征在于,所述第一时刻包括前导信号符号中循环前缀CP部分的起始时刻或信息段部分的起始时刻。
  114. 根据权利要求109至113中任一项所述的终端设备,其特征在于,前导信号符号包括一个第一CP部分和一个信息段部分。
  115. 根据权利要求114所述的终端设备,其特征在于,所述第一时刻包括所述前导信号符号中所述第一CP部分的起始时刻。
  116. 根据权利要求109至115中任一项所述的终端设备,其特征在于,前导信号符号包括一个第二CP部分和M个信息段部分,其中,M为大于或等于2的正整数。
  117. 根据权利要求116所述的终端设备,其特征在于,所述第一时刻包括所述前导信号符号中所述第二CP部分的起始时刻或所述M个信息段部分中的一个信息段部分的起始时刻。
  118. 根据权利要求109至111中任一项所述的终端设备,其特征在于,所述第一时刻包括所述下行信号符号的起始时刻。
  119. 根据权利要求108所述的终端设备,其特征在于,所述处理单元具体用于:
    在所述非授权频段的载波上采用滑窗检测的方式对前导信号进行检测。
  120. 根据权利要求119所述的终端设备,其特征在于,所述滑窗检测过程中每次处理的时间长度为下行信号符号中的一个信息段部分的长度。
  121. 根据权利要求108至120中任一项所述的终端设备,其特征在于,所述通信单元具体用于:
    在所述前导信号检测成功后,从第二时刻开始,在所述载波上接收下行信号。
  122. 根据权利要求121所述的终端设备,其特征在于,所述第二时刻为下行信号符号的起始时刻。
  123. 根据权利要求108至122中任一项所述的终端设备,其特征在于,前导信号符号对应第一子载波间隔,其中,所述第一子载波间隔是所述下行信号对应的子载波间隔;或,
    所述第一子载波间隔是通过无线资源控制RRC信令、物理层信令、介质访问控制MAC层信令中的至少一种所指示的子载波间隔;或,
    所述第一子载波间隔是预定义的子载波间隔。
  124. 根据权利要求108至123中任一项所述的终端设备,其特征在于,检测所述前导信号的时间长度大于或等于P个前导信号符号的长度,P为正整数;或,
    检测所述前导信号的时间长度大于或等于Q个前导信号符号的信息段部分的长度,Q为大于或等于2的正整数。
  125. 根据权利要求108至124中任一项所述的终端设备,其特征在于,所述前导信号包括N种序列,N为正整数。
  126. 根据权利要求108至125中任一项所述的终端设备,其特征在于,所述前导信号的子载波间隔大于或等于所述下行信号的子载波间隔;或,
    前导信号符号的长度小于或等于所述下行信号符号的长度。
  127. 根据权利要求108至126中任一项所述的终端设备,其特征在于,所述前导信号的序列在频域上映射到第一带宽上的M个连续的子载波上,其中,所述前导信号的序列长度为M,M为正整数。
  128. 根据权利要求127所述的终端设备,其特征在于,所述前导信号的子载波间隔大于所述下行信号的子载波间隔。
  129. 根据权利要求108至128中任一项所述的终端设备,其特征在于,所述前导信号的序列在频域上映射到第一带宽上的M个离散的子载波上,其中,所述M个离散的子载波中的任意相邻两个子载波之间的距离相等,所述前导信号的序列长度为M,M为正整数。
  130. 根据权利要求129所述的终端设备,其特征在于,所述前导信号的子载波间隔等于所述下行信号的子载波间隔。
  131. 根据权利要求127至130中任一项所述的终端设备,其特征在于,所述M个子载波占用所述第一带宽的全带宽、中心带宽或预定义的带宽。
  132. 根据权利要求127至131中任一项所述的终端设备,其特征在于,所述第一带宽上除所述前导信号的序列映射的子载波外的其他子载波上不映射信号。
  133. 根据权利要求108至132中任一项所述的终端设备,其特征在于,当所述前导信号包括至 少两种序列时,所述至少两种序列在时域上交替传输。
  134. 根据权利要求108至133中任一项所述的终端设备,其特征在于,当所述前导信号包括至少两种序列时,所述至少两种序列在时域上的传输方式为:一种序列传输完之后再开始传下一种序列。
  135. 根据权利要求108至134中任一项所述的终端设备,其特征在于,所述前导信号的序列为以下序列中的至少一种:主同步信号PSS、辅同步信号SSS和Zadoff-Chu序列。
  136. 根据权利要求108至135中任一项所述的终端设备,其特征在于,所述前导信号的序列为小区公共的、组公共的或终端设备特有的。
  137. 根据权利要求108至136中任一项所述的终端设备,其特征在于,所述前导信号携带以下信息中的至少一种:小区标识ID、公共陆地移动网络PLMN ID、请求发送RTS标识、清除发送CTS标识、所述下行信号在时域上的位置和信道占用时间。
  138. 根据权利要求108至137中任一项所述的终端设备,其特征在于,检测所述前导信号采用的天线端口是全向天线端口或方向性的天线端口。
  139. 根据权利要求108至138中任一项所述的终端设备,其特征在于,接收所述前导信号所使用的天线端口与接收同步信号块SSB所使用的天线端口相同。
  140. 根据权利要求108至139中任一项所述的终端设备,其特征在于,所述前导信号与时域上位于所述前导信号后的SSB或下行控制信道PDCCH是空间准共址QCL的。
  141. 根据权利要求108至140中任一项所述的终端设备,其特征在于,通过以下方式中的一种获取前导信号的传输参数:RRC、物理广播信道PBCH和剩余的最小化系统信息RMSI。
  142. 根据权利要求108至141中任一项所述的终端设备,其特征在于,获取所述前导信号的传输参数的方式与获取物理随机接入信道PRACH的传输参数的方式相同。
  143. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至36中任一项所述的方法。
  144. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求37至71中任一项所述的方法。
  145. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的网络设备执行如权利要求1至36中任一项所述的传输下行控制信息的方法。
  146. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的终端设备执行如权利要求37至71中任一项所述的传输下行控制信息的方法。
  147. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至36中任一项所述的方法。
  148. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求37至71中任一项所述的方法。
  149. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至36中任一项所述的无线通信方法。
  150. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求37至71中任一项所述的无线通信方法。
  151. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至36中任一项所述的方法。
  152. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求37至71中任一项所述的方法。
PCT/CN2019/097973 2018-07-27 2019-07-26 无线通信方法和设备 WO2020020360A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021504413A JP2021533611A (ja) 2018-07-27 2019-07-26 無線通信方法及びデバイス
KR1020217002199A KR20210036925A (ko) 2018-07-27 2019-07-26 무선 통신 방법 및 장치
CN201980049148.5A CN112586058B (zh) 2018-07-27 2019-07-26 无线通信方法和设备
AU2019311074A AU2019311074A1 (en) 2018-07-27 2019-07-26 Wireless communication method and device
EP19841578.8A EP3809777A4 (en) 2018-07-27 2019-07-26 WIRELESS COMMUNICATION PROCESS AND DEVICE
US17/109,965 US11627611B2 (en) 2018-07-27 2020-12-02 Wireless communication method and device for blind detection of downlink signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810848129.6 2018-07-27
CN201810848129 2018-07-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/109,965 Continuation US11627611B2 (en) 2018-07-27 2020-12-02 Wireless communication method and device for blind detection of downlink signals

Publications (1)

Publication Number Publication Date
WO2020020360A1 true WO2020020360A1 (zh) 2020-01-30

Family

ID=69180845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097973 WO2020020360A1 (zh) 2018-07-27 2019-07-26 无线通信方法和设备

Country Status (7)

Country Link
US (1) US11627611B2 (zh)
EP (1) EP3809777A4 (zh)
JP (1) JP2021533611A (zh)
KR (1) KR20210036925A (zh)
CN (1) CN112586058B (zh)
AU (1) AU2019311074A1 (zh)
WO (1) WO2020020360A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383386A (zh) * 2020-11-11 2021-02-19 腾讯科技(深圳)有限公司 数据传输方法、装置、计算机设备及计算机可读存储介质
WO2022228038A1 (zh) * 2021-04-30 2022-11-03 华为技术有限公司 通信方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10877578B2 (en) * 2018-07-18 2020-12-29 Wacom Co., Ltd. Sensor controller and active pen
JP2021182654A (ja) * 2018-08-09 2021-11-25 ソニーグループ株式会社 無線通信装置、無線通信方法及びコンピュータプログラム
US11234134B2 (en) * 2018-11-21 2022-01-25 Qualcomm Incorporated Initial network access for licensed supplemental downlink paired with unlicensed primary component carrier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160100404A1 (en) * 2014-10-06 2016-04-07 Intel IP Corporation Opportunistic signal transmission for inter-rat co-existence
CN105577339A (zh) * 2014-11-06 2016-05-11 中兴通讯股份有限公司 数据传输方法及装置
CN106332297A (zh) * 2015-06-29 2017-01-11 上海贝尔股份有限公司 一种无线通信方法
CN106685614A (zh) * 2015-11-06 2017-05-17 电信科学技术研究院 一种指示信息的传输方法和设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9854446B2 (en) * 2011-07-07 2017-12-26 Lg Electronics Inc. Method and apparatus for transmitting a signal in a wireless communication system
CN104904300B (zh) * 2013-01-15 2019-10-22 华为技术有限公司 无线通信方法、用户设备和网络侧设备
CN105101223A (zh) * 2014-05-16 2015-11-25 北京三星通信技术研究有限公司 一种在免许可频段上进行数据传输的方法和设备
CN105635017B (zh) * 2014-11-04 2019-03-19 电信科学技术研究院 一种前导信号的传输方法及设备
WO2016129809A1 (ko) * 2015-02-09 2016-08-18 한국전자통신연구원 주파수 공동사용 무선통신시스템의 채널점유 방법
US9647864B2 (en) * 2015-04-10 2017-05-09 Motorola Mobility Llc Method and apparatus for reception of control signaling
CN105898883B (zh) * 2016-04-01 2019-10-11 宇龙计算机通信科技(深圳)有限公司 一种前导码的配置方法、发送方法和相关设备
CN107734682B (zh) * 2016-08-12 2023-09-29 中兴通讯股份有限公司 信息传输方法、传输节点及传输系统
US10840746B2 (en) * 2018-06-20 2020-11-17 Apple Inc. Methods and apparatus for performing demodulation using maximum likelihood sequence matching in a wireless charging device
US10631333B2 (en) * 2018-07-06 2020-04-21 Qualcomm Incorporated Synchronized medium sharing with private network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160100404A1 (en) * 2014-10-06 2016-04-07 Intel IP Corporation Opportunistic signal transmission for inter-rat co-existence
CN105577339A (zh) * 2014-11-06 2016-05-11 中兴通讯股份有限公司 数据传输方法及装置
CN106332297A (zh) * 2015-06-29 2017-01-11 上海贝尔股份有限公司 一种无线通信方法
CN106685614A (zh) * 2015-11-06 2017-05-17 电信科学技术研究院 一种指示信息的传输方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3809777A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383386A (zh) * 2020-11-11 2021-02-19 腾讯科技(深圳)有限公司 数据传输方法、装置、计算机设备及计算机可读存储介质
CN112383386B (zh) * 2020-11-11 2024-01-05 腾讯科技(深圳)有限公司 数据传输方法、装置、计算机设备及计算机可读存储介质
WO2022228038A1 (zh) * 2021-04-30 2022-11-03 华为技术有限公司 通信方法及装置

Also Published As

Publication number Publication date
JP2021533611A (ja) 2021-12-02
KR20210036925A (ko) 2021-04-05
EP3809777A4 (en) 2021-09-08
CN112586058B (zh) 2023-11-17
CN112586058A (zh) 2021-03-30
US11627611B2 (en) 2023-04-11
AU2019311074A1 (en) 2021-02-04
EP3809777A1 (en) 2021-04-21
US20210092779A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
WO2020020360A1 (zh) 无线通信方法和设备
JP6583746B2 (ja) アンライセンスバンドでのlteライセンス補助アクセス(laa)における同期
EP3165028B1 (en) Cell discovery in a wireless network using an unlicensed radio frequency spectrum band
CN112219377A (zh) 经由大带宽信道的无线通信
CN116545601A (zh) 无线通信系统中的用户设备、基站及其方法
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
WO2020047856A1 (zh) 配置信息的传输方法和终端设备
TW201804847A (zh) 信息傳輸方法和信息傳輸設備
US20200137703A1 (en) Synchronization method and apparatus
US10484151B2 (en) Controlling random-access channel (RACH) retransmissions for wireless communication
EP3637818B1 (en) Signal sending and receiving method and device
WO2017193338A1 (zh) 传输系统信息的方法、基站和终端
WO2020063482A1 (zh) 传输随机接入信号的方法和装置
WO2018027915A1 (zh) 信息指示装置、方法以及通信系统
WO2017101018A1 (zh) 载波跳转的方法、终端和基站
WO2020014947A1 (en) Systems and methods for channel access
WO2021062811A1 (zh) 数据传输方法及相关设备
WO2020143060A1 (zh) 数据传输方法及装置
US20210250966A1 (en) Data transmission method and apparatus
WO2022126637A1 (zh) 资源确定方法、终端设备和网络设备
WO2020061945A1 (zh) 用于随机接入的方法、网络设备和终端设备
JP7052014B2 (ja) 無線通信方法、ネットワークデバイス及び端末デバイス
WO2019222883A1 (zh) 通信方法、通信设备和网络设备
WO2020034187A1 (zh) 通信方法、终端设备和网络设备
WO2020056777A1 (zh) 无线通信的方法、发送节点和接收节点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504413

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019841578

Country of ref document: EP

Effective date: 20210118

ENP Entry into the national phase

Ref document number: 2019311074

Country of ref document: AU

Date of ref document: 20190726

Kind code of ref document: A