WO2019222883A1 - 通信方法、通信设备和网络设备 - Google Patents

通信方法、通信设备和网络设备 Download PDF

Info

Publication number
WO2019222883A1
WO2019222883A1 PCT/CN2018/087690 CN2018087690W WO2019222883A1 WO 2019222883 A1 WO2019222883 A1 WO 2019222883A1 CN 2018087690 W CN2018087690 W CN 2018087690W WO 2019222883 A1 WO2019222883 A1 WO 2019222883A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol group
symbol
random access
interval
frequency
Prior art date
Application number
PCT/CN2018/087690
Other languages
English (en)
French (fr)
Inventor
苏俞婉
罗之虎
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880093533.5A priority Critical patent/CN112136300B/zh
Priority to PCT/CN2018/087690 priority patent/WO2019222883A1/zh
Publication of WO2019222883A1 publication Critical patent/WO2019222883A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present application relates to the field of communications, and more particularly, to a communication method, a communication device, and a network device.
  • NPRACH Narrowband Physical, Random Access
  • the first step needs to be on NPRACH
  • a random access preamble is sent to tell the network device that there is a random access request, and at the same time enable the network device to estimate the transmission delay between it and the terminal and use this to calibrate the uplink timing.
  • the random access preamble supports a cell radius of 40 kilometers (kilometer, km).
  • random access preambles need to support larger cells.
  • the format of the random access preamble needs to be redesigned.
  • the current frequency hopping pattern of the random access preamble may not be applicable.
  • the present application provides a communication method, a communication device, and a network device, which can perform random access according to a frequency hopping pattern matched with a redesigned random access preamble.
  • a communication method includes: a terminal device determining a random access preamble, wherein the random access preamble includes six symbol groups, and the six symbol groups include a first symbol Group, second symbol group, third symbol group, fourth symbol group, fifth symbol group, and sixth symbol group;
  • the interval between the frequency points of each adjacent two symbol groups in the six symbol groups is a frequency hopping interval, and the frequency hopping interval between the first symbol group and the second symbol group and the second
  • the frequency hopping interval between the three symbol groups and the third symbol group is equal to the first interval
  • the frequency hopping interval between the five symbol groups and the sixth symbol group is equal and is the second interval
  • the frequency hopping interval between the third symbol group and the fourth symbol group is the third Intervals, the first interval, the second interval, and the third interval are not equal and are not equal to zero;
  • the terminal device sends the random access preamble to a network device according to the frequency point position.
  • the terminal device can send a random access preamble by determining a frequency hopping pattern of the random access preamble including six symbol groups (that is, the frequency position of each symbol group). To perform random access.
  • the frequency hopping interval refers to the interval between the frequency points of two adjacent symbol groups in the time domain, or the absolute value of the difference between the frequency points of two adjacent symbol groups in the time domain is frequency hopping. interval.
  • the frequency point location involved in this application refers to the index or number of the subcarrier.
  • the frequency position interval of every two adjacent symbol groups is the absolute value of the difference in frequency position.
  • the frequency position interval of a certain two adjacent symbol groups multiplied by the subcarrier bandwidth is equal to the frequency hopping of these two adjacent symbol groups. interval.
  • the frequency position can be a relative frequency position or an absolute frequency position.
  • the relative frequency position of the symbol group is the difference between the absolute frequency position of the symbol group and the offset frequency position.
  • the absolute frequency position of the symbol group is the relative frequency position of the symbol group and the offset. Sum of the frequency points. It should be understood that when the terminal device sends the random access preamble, it is sent at the frequency corresponding to the absolute frequency of the symbol group.
  • the frequency point position after offset may be specified by a protocol or notified by a network device, which is not limited in this application.
  • the network device may carry the offset frequency point position through the random access configuration information.
  • the frequency hopping interval may be an integer multiple of the subcarrier bandwidth.
  • the subcarrier bandwidth is 1.25kHz
  • the frequency hopping interval between adjacent symbol groups may be N * 1.25kHz, where N is a positive integer.
  • the frequency hopping interval between adjacent symbol groups may not be an integer multiple of the subcarrier bandwidth. This application does not limit whether the frequency hopping interval between adjacent symbol groups is an integer multiple of the subcarrier bandwidth.
  • the frequency hopping range of the random access preamble is 36 subcarriers.
  • the existing random access preamble can perform frequency hopping in 12 subcarriers (that is, 45kHz).
  • the frequency hopping range of the random access preamble of the present application can be increased from 12 subcarriers to 36 subcarriers. Therefore, the frequency hopping scheme provided in this application can support more users to multiplex NPRACH resources for random access. That is, compared with the existing 45 kHz supporting 12 users, this application can support 36 user multiplexing.
  • any one of the six symbol groups included in the random access preamble may include: 1 cyclic prefix (CP) and 1 symbol; or, 1 CP and 2 symbols; or, 1 CP and 3 symbols.
  • CP cyclic prefix
  • the length of CP and symbol can be 800 microseconds ( ⁇ s).
  • Such a random access preamble can support a larger cell radius.
  • the maximum cell radius is related to the guard time (Gard Time, GT).
  • V is the speed of light 3.0 * 10 8 m / s
  • S 2 * 100 * 10 3 m
  • sequence carried on each symbol in the symbol group may be the same.
  • sequence carried on each symbol is a
  • sequence that E symbols can carry a can be a real number, such as 1 or -1
  • the sequence carried on each symbol in the symbol group may also be different, or the sequence carried on some symbols in the symbol group may be the same, and the sequence carried on another symbol may be different.
  • sequences carried on any two symbol groups may be the same or different.
  • the random access preamble of the present application may be a random access preamble that is not scrambled with a scrambling sequence, or a random access preamble that is scrambled with a scrambling sequence.
  • the scrambling is to improve the randomization performance of interference and avoid false alarms caused by inter-cell interference.
  • the length of the scrambling code sequence obtained by the terminal device through the base sequence can be divided into multiple cases.
  • the length of the scrambling sequence may be the same as the sum of the number of symbols in a symbol group of the random access preamble, and the length of the scrambling sequence may also be the number of symbols in a repetition period of the random access preamble.
  • the sum is the same, and the length of the scrambling code sequence can also be the same as the sum of the number of symbols in all repetition periods of the random access preamble.
  • the length of the scrambling sequence can be the same as the sum of the cyclic prefix and the number of symbols in a symbol group of the random access preamble, and the length of the scrambling sequence can be the same as the cyclic prefix and The sum of the number of symbols is the same, and the length of the scrambling code sequence may also be the same as the sum of the number of cyclic prefixes and symbols in all repetition periods of the random access preamble. This application does not limit the length of the scrambling code sequence.
  • the terminal device may generate a base sequence by itself according to a method set internally by the terminal device, or obtain the base sequence through a query.
  • One optional method is that the scrambling sequence is the base sequence, and the two are equal.
  • the base sequence is ABC
  • the scrambling sequence is ABC
  • Optional method 2 is to repeat each element in the base sequence M times in order to obtain the scrambling code sequence, that is, the terminal device repeats the first element in the base sequence M times, and then the second element is repeated. M times, ... the last element is repeated M times, for example, the base sequence is ABC, and the base sequence is repeated twice for each element, which is AABBCC. .
  • the terminal device can obtain the scrambling code indication information sent by the network device, and the scrambling code indication information is used to instruct the terminal device to scramble the random access preamble using method 1 or method 2.
  • the parameter index may have different values corresponding to method 1 and / or method 2. For example, when the parameter index value is 0, it means that the terminal device uses method 1 to randomly connect The preamble is scrambled. When the parameter index is 1, it indicates that the terminal device uses the method 2 to scramble the random access preamble.
  • the terminal device When the terminal device receives the scrambling code indication information sent by the network device, the terminal device scrambles the random access preamble using method 1; when the terminal device does not receive the network device transmission When the scrambling code indicates information, the terminal device uses method 2 to scramble the random access preamble.
  • the scrambling code indication information includes two states, a first state and a second state.
  • the terminal device uses method 1 to randomly access The preamble is scrambled; when the scrambling code indication information indicates the second state, the terminal device scrambles the random access preamble using method 2.
  • the base sequence or scrambling code sequence may be an orthogonal sequence, a ZC sequence, a pseudo-random sequence, a differential orthogonal sequence, or a sequence obtained after the difference of the scrambling codes added to the symbol group in each repetition period is orthogonal, or A subset of the sequence obtained after the difference of the scrambling codes on the symbol group within the repetition period is orthogonal.
  • the orthogonal sequence may be a Walsh sequence
  • the pseudo-random sequence may be an m sequence, an M sequence, a Gold sequence, or the like.
  • the initialization seed of the pseudo-random sequence is a function of at least one of cell identification, superframe number, frame number, symbol index, symbol group index, number of repetitions, subcarrier index, and carrier index.
  • the first interval is 1.25 kHz.
  • the second interval is 3.75 kHz.
  • the third interval is 22.5 kHz.
  • the present application does not specifically limit the sizes of the first interval, the second interval, and the third interval, and the foregoing embodiments are merely exemplary descriptions, and should not be construed as limiting the application in any way.
  • the first interval may also be 2.5 kHz
  • the second interval may also be 1.25 kHz
  • the third interval may be 12.5 kHz.
  • a frequency hopping direction of the first symbol group to the second symbol group is opposite to a frequency hopping direction of the second symbol group to the third symbol group, and the fourth symbol The frequency hopping direction of the group to the fifth symbol group is opposite to the frequency hopping direction of the fifth symbol group to the sixth symbol group.
  • the frequency hopping direction of the first symbol group to the second symbol group is the same as the frequency hopping direction of the fourth symbol group to the fifth symbol group.
  • the frequency hopping direction of the first symbol group to the second symbol group is different from the frequency hopping direction of the fourth symbol group to the fifth symbol group.
  • the six symbol groups of the random access preamble can be divided into two groups, and each group includes three symbol groups.
  • the frequency hopping interval between the first symbol group and the second symbol group in the first group and the frequency hopping interval between the second symbol group and the third symbol group are equal and both are the first interval.
  • the frequency hopping interval between the first symbol group and the second symbol group in the second group and the frequency hopping interval between the second symbol group and the third symbol group are equal and both are the second interval.
  • the frequency hopping interval between the third symbol group in the first group and the first symbol group in the second group is a third interval.
  • the frequency hopping direction of the first symbol group to the second symbol group in the first group is opposite to the frequency hopping direction of the second symbol group to the third symbol group.
  • the frequency hopping direction of the first symbol group to the second symbol group in the second group is opposite to that of the second symbol group to the third symbol group.
  • the accuracy of the estimated uplink timing can be improved.
  • the random access configuration information includes the number of repetitions W of the random access preamble, and the 6 * W symbol groups included in the W repetitions of the random access preamble are in accordance with
  • the time sequence numbers are 0, 1, ..., i, ..., 6W-2, 6W-1, and W are positive integers
  • the preset rule includes a first formula and a second formula
  • the determining, by the terminal device, the frequency position of the random access preamble according to the random access configuration information and a preset rule includes:
  • the symbol group Q is a number satisfies i> 0 in the 6 * W symbol groups.
  • the symbol group of imod6 ⁇ 0, mod means take the remainder.
  • the terminal device determines the frequency position of the symbol group numbered 0 according to the random access configuration information, and may determine the frequency position of the symbol group P according to the first formula and the number i of the symbol group P, and according to The second formula and the number i of the symbol group Q determine the frequency position of the symbol group Q.
  • the preset rule may be, for example, stipulated by a protocol or configured by a network device, which is not limited in the embodiment of the present application.
  • the first formula is related to a frequency position of the symbol group with the number 0 and a function determined by the number i and a pseudo-random sequence; or the first formula is related to the The frequency position of the symbol group numbered i-6 is related to the function determined by the number i and the pseudo-random sequence; wherein the number i is the number of the symbol group P.
  • the frequency position of the symbol group P is related to the frequency position of the symbol group numbered 0, or to the frequency position of the sixth symbol group before the symbol group P, and is related to the frequency of other symbol groups.
  • the point position is irrelevant.
  • the second formula and the frequency point position of the symbol group numbered i-1 and the frequency point position interval of the symbol group numbered i with respect to the symbol group numbered i-1 and The frequency hopping direction is related, wherein the number i is the number of the symbol group Q.
  • the frequency point of the symbol group Q is only related to the frequency point position of its adjacent previous symbol group, and has nothing to do with the frequency point positions of other symbol groups.
  • the frequency position interval is the absolute value of the difference between the indexes of the subcarriers.
  • the preset rule includes Formula One or Formula Two:
  • network devices can be carried in random access configuration information
  • the subcarrier bandwidth is 1.25kHz, It can be equal to 36, which is not limited here. E.g, It can also be 72.
  • a parameter in the random access configuration information sent by the network device to the terminal device indicates the number of subcarriers used for random access.
  • the frequency position of the symbol group numbered 0 n init is the media access control (MAC) layer slave
  • the index of the selected subcarrier Represents the number of subcarriers used for random access.
  • n start is the frequency point position after offset. According to this expression, it can be known that the absolute frequency position of the i-th symbol group can be determined according to the frequency position of the i-th symbol group determined by the terminal device and the offset frequency position.
  • the offset frequency position n start satisfies:
  • n init is the MAC layer slave
  • the value of f (i / 6) can be determined according to the function f (t) of the pseudo-random sequence c (n).
  • f (t) can be expressed as:
  • f (-1) 0.
  • c (n) may be an m sequence, an M sequence, a gold sequence, or the like.
  • the initialization seed of c (n) may be a function of the physical layer cell identity or the physical layer cell identity of the terminal device.
  • a communication method includes: a network device determines random access configuration information and sends the random access configuration information to a terminal device, wherein the random access configuration information is used to instruct the terminal device to determine a random access preamble Code, the random access preamble includes six symbol groups, and the six symbol groups include a first symbol group, a second symbol group, a third symbol group, a fourth symbol group, and a fifth symbol Group and the sixth symbol group;
  • the random access preamble sent by the terminal device according to the random access configuration information, where the random access preamble is sent by the terminal device according to a determined frequency point location, the The frequency point position is determined according to the random access configuration information and a preset rule.
  • An interval between frequency points of two adjacent symbol groups in the six symbol groups is a frequency hopping interval
  • the first symbol group is The frequency hopping interval between the second symbol group and the frequency hopping interval between the second symbol group and the third symbol group is equal to the first interval
  • the fourth symbol The frequency hopping interval between the group and the fifth symbol group and the frequency hopping interval between the fifth symbol group and the sixth symbol group are equal and both are the second interval
  • the third The frequency hopping interval between the symbol group and the fourth symbol group is a third interval, and the first interval, the second interval, and the third interval are all not equal and are not equal to zero.
  • the terminal device can send a random access preamble by determining a frequency hopping pattern of the random access preamble including six symbol groups (that is, the frequency position of each symbol group). To perform random access.
  • the first interval is 1.25 kHz
  • the second interval is 3.75 kHz
  • the third interval is 22.5 kHz.
  • a frequency hopping direction of the first symbol group to the second symbol group is opposite to a frequency hopping direction of the second symbol group to the third symbol group
  • the frequency hopping direction of the fourth symbol group to the fifth symbol group is opposite to the frequency hopping direction of the fifth symbol group to the sixth symbol group.
  • the random access configuration information includes the number of repetitions W of the random access preamble, and the 6 * W symbol groups included in the W repetitions of the random access preamble are in accordance with
  • the time sequence numbers are 0, 1, ..., i, ..., 6W-2, 6W-1, and W are positive integers
  • the preset rule includes a first formula and a second formula
  • the determining, by the terminal device, the frequency position of the random access preamble according to the random access configuration information and a preset rule includes:
  • the symbol group Q is a number satisfies i> 0 in the 6 * W symbol groups.
  • the symbol group of imod6 ⁇ 0, mod means take the remainder.
  • the first formula is related to a frequency position of the symbol group with the number 0 and a function determined by the number i and a pseudo-random sequence; or the first formula is related to the The frequency position of the symbol group numbered i-6 is related to the function determined by the number i and the pseudo-random sequence;
  • the number i is a number of the symbol group P.
  • the second formula and the frequency point position of the symbol group numbered i-1 and the frequency point position interval of the symbol group numbered i with respect to the symbol group numbered i-1 and The frequency hopping direction is related, wherein the number i is the number of the symbol group Q.
  • the preset rule includes Formula One or Formula Two:
  • the six symbol groups of the random access preamble may be continuous or discontinuous in time.
  • This application implements Examples do not limit this.
  • the terminal device may repeatedly send the random access preamble to the network device according to the configured number of repetitions, or may not repeatedly send the random access preamble to the network device according to the repeated number of times. For example, in each transmission, the random access preamble is repeated only once, that is, only six symbol groups are transmitted.
  • a communication device for performing the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • the present application provides a network device for performing the foregoing second aspect or the method in any possible implementation manner of the second aspect.
  • the present application provides a terminal device.
  • the terminal device includes: a memory, a processor, and a transceiver.
  • the memory stores a computer program that can run on the processor.
  • the processor executes the computer program when the processor executes the computer program.
  • the present application provides a network device.
  • the network device includes: a memory, a processor, and a transceiver.
  • the memory stores a computer program that can run on the processor.
  • the processor executes the computer program when the processor executes the computer program.
  • the second aspect or the method in any possible implementation manner of the second aspect.
  • the present application provides a computer-readable medium for storing a computer program, the computer program including instructions for performing the foregoing aspects or the methods in any possible implementation manner of the foregoing aspects.
  • the present application provides a computer program product containing instructions that, when run on a computer, causes the computer to execute the above-mentioned aspects or the methods in any possible implementation manner of the above-mentioned aspects.
  • the present application provides a chip, including: an input interface, an output interface, at least one processor, and a memory; the input interface, the output interface, the processor, and the memory communicate with each other through an internal connection path; Communication, the processor is configured to execute code in the memory, and when the code is executed, the processor is configured to execute the foregoing aspects or a method in any possible implementation manner of the foregoing aspects.
  • FIG. 1 is a schematic diagram of a communication system applicable to a communication method according to an embodiment of the present application.
  • Figure 2 is a NB-IoT random access preamble format and its frequency hopping pattern.
  • FIG. 3 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 4 is a random access preamble format and a frequency hopping pattern provided by an embodiment of the present application.
  • FIG. 5 is a format of a random access preamble and a frequency hopping pattern provided by an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another terminal device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another network device according to an embodiment of the present application.
  • GSM Global System
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Global Interoperability for Microwave Access
  • 5G 5G
  • 5G New Radio
  • the terminal device in the embodiments of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or User device.
  • Terminal equipment can also be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, Wireless Local Loop (WLL) stations, Personal Digital Processing (PDA), wireless communications Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or public land mobile network (PLMN) in the future evolution Terminal equipment and the like are not limited in this embodiment of the present application.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Processing
  • wireless communications Functional handheld devices computing devices or other processing devices connected to wireless modems
  • in-vehicle devices wearable devices
  • terminal devices in the future 5G network or public land mobile network (PLMN) in the future evolution Terminal
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a Global System for Mobile (GSM) system or a Code Division Multiple Access (CDMA) system.
  • the base station (Base Transceiver Station, BTS) can also be a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, or an evolutionary base station (Evolutional base station in an LTE system).
  • NodeB NodeB, eNB, or eNodeB
  • the network device can be a relay station, an access point, an in-vehicle device, a wearable device, and a future
  • the network equipment in the 5G network or the network equipment in the future evolved PLMN network is not limited in the embodiments of the present application.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to a communication method according to an embodiment of the present application.
  • the communication system 100 includes at least two communication devices, for example, a network device 110 and a terminal device 120, wherein the network device 110 and the terminal device 120 can perform data communication through a wireless connection.
  • FIG. 1 may further include more terminal devices, which are not limited in the embodiment of the present application.
  • the system 100 shown in FIG. 1 may be an NB-IoT system.
  • the terminal device 120 can be scheduled for uplink transmission only after its uplink transmission time is synchronized.
  • the terminal device 120 establishes a connection with the network device 110 and obtains uplink synchronization through a random access process.
  • the random access process is an important method for the terminal device 120 to obtain a dedicated channel resource from an idle state and change to a connected state.
  • a narrowband random access channel (Narrowband physical access channel, NPRACH) is a channel that transmits random access requests.
  • the random access process is divided into a contention-based random access process and a non-contention-based random access process. Whether it is a contention-based random access process or a non-contention-based random access process, it is necessary to send a random access on NPRACH. Enter the preamble, that is, send a message (Message, Msg) 1.
  • the bandwidth of one NB-IoT carrier is 180 kHz, and the bandwidth of one sub-carrier is 3.75 kHz.
  • a NB-IoT random access preamble is composed of four symbol groups. One symbol group occupies one subcarrier. There is frequency hopping between symbol groups. Each symbol group transmission will be limited to 12 subcarriers. At the same time, frequency domain frequency hopping The range is also within 12 subcarriers, the subcarrier bandwidth is 3.75kHz, the frequency hopping interval between symbol groups is an integer multiple of the subcarrier bandwidth, and the minimum frequency hopping interval is 3.75kHz.
  • network devices configure different random access configuration parameters for different coverage enhancement levels, such as the number of repetitions of the random access preamble.
  • the terminal device In actual transmission, the terminal device repeatedly sends the random access preamble according to the repetition times configured by the network device.
  • the existing NB-IoT random access preamble and its frequency hopping pattern are described in detail with reference to FIG. 2.
  • a NB-IoT random access preamble is composed of four symbol groups, and the four symbol groups are recorded as a first symbol group, a second symbol group, a third symbol group, and a fourth symbol in chronological order.
  • the four symbol groups are represented by rectangles and numbers filled with patterns. Among them, the symbol group with the number 1 represents the first symbol group, the symbol group with the number 2 represents the second symbol group, and the number with 3 The symbol group represents the third symbol group, and the symbol group with the number 4 represents the fourth symbol group.
  • the number of repetitions of the random access preamble is 4 times (ie, repeat # 0 to repeat # 3).
  • the terminal device repeatedly sends the random access preamble 4 times in one transmission, that is, sends 4 * 4 symbol groups.
  • # 0 to # 11 indicate 12 subcarriers.
  • the random access preamble has two frequency hopping intervals in a repetition period, which are 3.75kHz and 22.5kHz, respectively.
  • the frequency hopping interval between the first symbol group and the second symbol group is 3.75kHz
  • the frequency hopping interval between the third symbol group and the fourth symbol group is 3.75kHz
  • the first symbol group and the second symbol group The frequency hopping direction between the symbol groups is opposite to the frequency hopping direction between the third symbol group and the fourth symbol group.
  • the frequency hopping interval between the second symbol group and the third symbol group is 22.5kHz.
  • Pseudo-random frequency hopping is used between adjacent two repetitions (as indicated by the dotted oval in FIG. 3), and the range of the pseudo-random frequency hopping is limited to 12 subcarriers.
  • Each symbol group in the above NB-IoT random access preamble is composed of 1 CP and 5 symbols (that is, symbol # 0 to symbol # 4 in FIG. 2). Each symbol carries a sequence, and each symbol The symbol duration is the inverse of the NB-IoT uplink subcarrier bandwidth.
  • the format of the existing NB-IoT random access preamble includes Format 0 or Format 1. There is a difference in the time length T CP of CPs in Format 0 and Format 1. The maximum cell radius supported by Format 0 is 10 km, and the maximum cell radius supported by Format 1 is 40 km. The total time length T SEQ of the five symbols of format 0 and format 1 is equal.
  • the existing NB-IoT random access preamble supports a cell radius of 40 kilometers (kilometer, km).
  • random access preambles need to support larger cells.
  • the format of the random access preamble needs to be redesigned.
  • the current frequency hopping pattern of the random access preamble may not be applicable.
  • FIG. 3 is a schematic flowchart of a communication method 300 according to an embodiment of the present application.
  • the method 300 may include S310, S320, and S330.
  • the terminal device and the network device in FIG. 3 may be the terminal device 120 and the network device 110 shown in FIG. 1 respectively, but this embodiment of the present application is not limited thereto.
  • S310 The terminal device determines a random access preamble.
  • the terminal device determines a frequency position of the random access preamble.
  • the terminal device sends the random access preamble to the network device according to the frequency point position. Accordingly, the network device receives the random access preamble sent by the terminal device.
  • the random access preamble may include six symbol groups.
  • the random access preamble includes six symbol groups.
  • the random access preamble includes six symbol groups.
  • the format of the random access preamble may be Format 2, Format 3, or Format 4 in Table 2.
  • Preamble format T CP ( ⁇ s) T SEQ ( ⁇ s) Maximum cell radius (km) 2 800 1 * 800 120 3 800 2 * 800 120 4 800 3 * 800 120
  • any one of the six symbol groups it may include: 1 CP + 1 symbols; or 1 CP + 2 symbols; or 1 CP + 3 symbols.
  • the length of CP and symbol here can be 800 ⁇ s.
  • the time length of CP is T CP
  • the total length of symbols included in a symbol group is T SEQ .
  • the maximum cell radius is related to the guard time (Gard Time, GT).
  • V is the speed of light 3.0 * 10 8 m / s
  • S 2 * 100 * 10 3 m
  • each symbol group can also include: 1 CP + 4 symbols.
  • the duration of the symbol may be 700us and so on.
  • any symbol group may include: 1 CP + 2 symbols.
  • any symbol group in a random access preamble includes: 1 CP + 3 symbols, the format index of the random access preamble is 2.
  • sequence carried on each symbol in the symbol group may be the same.
  • sequence carried on each symbol is a
  • the sequence carried on each symbol in the symbol group may also be different, or the sequence carried on some symbols in the symbol group may be the same, and the sequence carried on another symbol may be different, which is not limited in this embodiment of the present application.
  • sequences carried on any two symbol groups may be the same or different, which is not limited in the embodiment of the present application.
  • the random access preamble in the embodiment of the present application may be a random access preamble that is not scrambled with a scrambling sequence, or a random access preamble that is scrambled with a scrambling sequence, which is not limited here. .
  • the scrambling is to improve the randomization performance of interference and avoid false alarms caused by inter-cell interference.
  • the length of the scrambling code sequence obtained by the terminal device through the base sequence can be divided into multiple cases.
  • the length of the scrambling sequence may be the same as the sum of the number of symbols in a symbol group of the random access preamble, and the length of the scrambling sequence may also be the number of symbols in a repetition period of the random access preamble.
  • the sum is the same, and the length of the scrambling code sequence can also be the same as the sum of the number of symbols in all repetition periods of the random access preamble.
  • the length of the scrambling sequence can be the same as the sum of the cyclic prefix and the number of symbols in a symbol group of the random access preamble, and the length of the scrambling sequence can be the same as the cyclic prefix and The sum of the number of symbols is the same, and the length of the scrambling code sequence may also be the same as the sum of the number of cyclic prefixes and symbols in all repetition periods of the random access preamble. This application does not limit the length of the scrambling code sequence.
  • the terminal device may generate a base sequence by itself according to a method set internally by the terminal device, or obtain the base sequence through a query.
  • One optional method is that the scrambling sequence is the base sequence, and the two are equal.
  • the base sequence is ABC
  • the scrambling sequence is ABC
  • Optional method 2 is to repeat each element in the base sequence M times in order to obtain the scrambling code sequence, that is, the terminal device repeats the first element in the base sequence M times, and then the second element is repeated. M times, ... the last element is repeated M times, for example, the base sequence is ABC, and the base sequence is repeated twice for each element, which is AABBCC. .
  • the terminal device can obtain the scrambling code indication information sent by the network device, and the scrambling code indication information is used to instruct the terminal device to scramble the random access preamble using method 1 or method 2.
  • the parameter index may have different values corresponding to method 1 and / or method 2. For example, when the parameter index value is 0, it means that the terminal device uses method 1 to randomly connect The preamble is scrambled. When the parameter index is 1, it indicates that the terminal device uses the method 2 to scramble the random access preamble. See Table 3 for details.
  • the terminal device When the terminal device receives the scrambling code indication information sent by the network device, the terminal device scrambles the random access preamble using method 1; when the terminal device does not receive the network device transmission When the scrambling code indicates information, the terminal device uses method 2 to scramble the random access preamble.
  • the scrambling code indication information includes two states, a first state and a second state.
  • the terminal device uses method 1 to randomly access The preamble is scrambled; when the scrambling code indication information indicates the second state, the terminal device scrambles the random access preamble using method 2.
  • the base sequence or scrambling code sequence may be an orthogonal sequence, a ZC sequence, a pseudo-random sequence, a differential orthogonal sequence, or a sequence obtained after the difference of the scrambling codes added to the symbol group in each repetition period is orthogonal, or A subset of the sequence obtained after the difference of the scrambling codes on the symbol group within the repetition period is orthogonal.
  • the orthogonal sequence may be a Walsh sequence
  • the pseudo-random sequence may be an m sequence, an M sequence, a Gold sequence, or the like.
  • the initialization seed of the pseudo-random sequence is a function of at least one of cell identification, superframe number, frame number, symbol index, symbol group index, number of repetitions, subcarrier index, and carrier index.
  • the method may further include:
  • the network device sends random access configuration information to the terminal device.
  • the random access configuration information is used to instruct the terminal device to determine a random access preamble, or in other words, the random access configuration information may include format information of the random access preamble.
  • the terminal device may determine the random access preamble according to the random access configuration information.
  • the network device determines the random access configuration information and sends the random access configuration information to the terminal device, and the terminal device may determine the random access preamble according to the random access configuration information.
  • the random access configuration information may include a format index of a random access preamble, a number of symbols included in each symbol group, or a CP length.
  • the format index of the random access preamble, the number of symbols included in each symbol group, or the CP length can be used to indicate the format of the random access preamble or the random access preamble.
  • the terminal device may determine that the random access preamble includes 1 CP and 1 symbol, and The length of CP and each symbol is 800 ⁇ s.
  • the random access configuration information may also include: random access resource period, starting subcarrier frequency domain position, the number of subcarriers allocated for random access, the number of repetitions of the random access preamble, and random access At the start time, the maximum number of random access preamble coverage enhancement levels, the maximum number of random access preamble attempts, the initial target received power of the random access preamble, and the reference signal received power (Reference Signal Received Power, RSRP) threshold.
  • RSRP Reference Signal Received Power
  • the network device may send random access configuration information to the terminal device through system information, such as System Information Block 2 (System Information Block 2) (SIB 2).
  • SIB 2 System Information Block 2
  • a network device may use broadcast, radio resource control (RRC) dedicated signaling, media access control (MAC) control elements, or downlink control information (Downlink control). Information (DCI), etc. to send the random access configuration information.
  • RRC radio resource control
  • MAC media access control
  • DCI Downlink control Information
  • the network device may also send the random access configuration information to the terminal device in other ways, which is not limited in the embodiment of the present application.
  • step S320 the six symbol groups included in the random access preamble are recorded in the order of time: the first symbol group, the second symbol group, the third symbol group, and the fourth symbol group.
  • the fifth symbol group and the sixth symbol group are equal and both are the first interval.
  • the frequency hopping interval between the fourth symbol group and the fifth symbol group and the frequency hopping interval between the fifth symbol group and the sixth symbol group are equal and both are the second interval.
  • the frequency hopping interval between the third symbol group and the fourth symbol group is a third interval.
  • the first interval, the second interval, and the third interval are all not equal and are not equal to zero.
  • the interval between the frequency points of any two adjacent symbol groups in the six symbol groups is the frequency hopping interval of the two symbol groups;
  • the absolute value of the difference between the frequency points of any two adjacent symbol groups is the frequency hopping interval of the two symbol groups; or, regardless of the time sequence, for any two adjacent symbol groups in the six symbol groups, the frequency
  • the difference in frequency between a symbol group with a large point and a symbol group with a small frequency is the frequency hopping interval.
  • the frequency position interval of each adjacent two symbol groups is the absolute value of the difference between the frequency position, and the frequency position interval of two adjacent symbol groups multiplied by the subcarrier bandwidth is equal to The frequency hopping interval of these two adjacent symbol groups.
  • the frequency hopping interval between adjacent symbol groups may be an integer multiple of the subcarrier bandwidth, for example, the subcarrier bandwidth is 1.25kHz, and the frequency hopping interval between adjacent symbol groups may be N * 1.25kHz, where, N is a positive integer.
  • the frequency hopping interval between adjacent symbol groups may not be an integer multiple of the subcarrier bandwidth, and the embodiment of the present application does not limit whether the frequency hopping interval between adjacent symbol groups is an integer multiple of the subcarrier bandwidth.
  • any two adjacent symbol groups in the six symbol groups are a symbol group A and a symbol group B.
  • the symbol group B is the time sequence of the symbol group A.
  • the frequency hopping direction of the symbol group A to the symbol group B is a positive direction;
  • the frequency point or frequency point position of the symbol group B When it is smaller than the frequency point or frequency point position of the symbol group A, the frequency hopping direction of the symbol group A to the symbol group B is a negative direction.
  • the first interval may be smaller than the second interval, and the second interval may be smaller than the third interval.
  • the definition of the size relationship between the first interval, the second interval, and the third interval is only an exemplary description, and should not constitute any limitation in this application.
  • the first interval may be greater than the second interval, and the second interval Can be larger than the third interval.
  • the first interval may be 1.25 kHz.
  • the second interval may be 3.75 kHz.
  • the third interval may be 22.5 kHz.
  • the embodiments of the present application do not specifically limit the sizes of the first interval, the second interval, and the third interval.
  • the foregoing embodiments are merely exemplary descriptions, and should not be construed as limiting the application in any way.
  • the first interval may also be 2.5 kHz
  • the second interval may also be 1.25 kHz
  • the third interval may be 12.5 kHz.
  • the first interval may be 3.75 kHz
  • the second interval may be 22.5 kHz
  • the third interval may be 1.25 kHz.
  • the first interval may be 3.75 kHz
  • the second interval may be 1.25 kHz
  • the third interval may be 22.5 kHz.
  • the first interval may be 1.25 kHz
  • the second interval may be 22.5 kHz
  • the third interval may be 3.75 kHz.
  • the first interval may be 22.5 kHz
  • the second interval may be 1.25 kHz
  • the third interval may be 3.75 kHz.
  • the first interval may be 22.5 kHz
  • the second interval may be 3.75 kHz
  • the third interval may be 1.25 kHz.
  • the frequency hopping direction of the first symbol group to the second symbol group is opposite to that of the second symbol group to the third symbol group, and the frequency hopping direction of the fourth symbol group to the fifth symbol group is opposite.
  • the direction is opposite to the frequency hopping direction of the fifth symbol group to the sixth symbol group.
  • the frequency of the second symbol group is greater than the frequency of the third symbol group. If the frequency of the first symbol group is greater than the frequency of the second symbol group, then the frequency of the second symbol group is smaller than the frequency of the third symbol group. If the frequency of the fourth symbol group is smaller than the frequency of the fifth symbol group, then the frequency of the fifth symbol group is greater than the frequency of the sixth symbol group. If the frequency of the fourth symbol group is greater than the frequency of the fifth symbol group, then the frequency of the fifth symbol group is smaller than the frequency of the sixth symbol group.
  • the frequency hopping direction of the first symbol group to the second symbol group and the frequency hopping direction of the fourth symbol group to the fifth symbol group may be the same. That is, the frequency of the first symbol group is smaller than that of the second symbol group, and the frequency of the fourth symbol group is smaller than that of the fifth symbol group. Or the frequency of the first symbol group is greater than the frequency of the second symbol group, and the frequency of the fourth symbol group is greater than the frequency of the fifth symbol group.
  • the frequency hopping direction of the first symbol group to the second symbol group may be different from the frequency hopping direction of the fourth symbol group to the fifth symbol group.
  • the embodiment of the present application does not limit the relationship between the frequency hopping direction of the first symbol group to the second symbol group and the frequency hopping direction of the fourth symbol group to the fifth symbol group.
  • the terminal device can send a random access preamble by determining a frequency hopping pattern of the random access preamble including six symbol groups (that is, the frequency point position of each symbol group), thereby Perform random access.
  • the random access preamble includes six symbol groups, which are: symbol group 1, symbol group 2, symbol group 3, symbol group 4, symbol group 5, and symbol group 6.
  • Each symbol group includes: 1 CP, symbol # 0, symbol # 1, and symbol # 2.
  • # 0 to # 35 indicate 36 subcarriers.
  • the frequency hopping interval between symbol group 1 and symbol group 2 is the frequency of symbol group 2 minus the frequency of the first symbol group to obtain 1.25 kHz, that is, the frequency hopping interval between symbol group 1 and symbol group 2 is 1.25 kHz.
  • the frequency hopping interval of symbol group 2 and symbol group 3 is 1.25 kHz
  • the frequency hopping interval of symbol group 3 and symbol group 4 is 22.5 kHz
  • the frequency hopping interval of symbol group 4 and symbol group 5 is 3.75 kHz
  • the hopping interval of group 6 is 3.75 kHz.
  • the frequency hopping directions of the symbol groups 1 to 2 are opposite to the frequency hopping directions of the symbol groups 2 to 3
  • the frequency hopping directions of the symbol groups 4 to 5 are the same as the frequency hopping directions of the symbol groups 5 to 6. in contrast.
  • symbol groups 1 to 6 may correspond to the first symbol group to the sixth symbol group, respectively.
  • the existing random access preamble can perform frequency hopping in 12 subcarriers (that is, 45kHz).
  • the subcarrier bandwidth is reduced from 3.75kHz to 1.25kHz in the embodiment of the present application, the basis of maintaining the 45kHz NPRACH resource is maintained.
  • the frequency hopping range of the random access preamble in the embodiment of the present application can be increased from 12 subcarriers to 36 subcarriers. Therefore, the frequency hopping pattern provided in FIG. 4 can support more users to multiplex NPRACH resources for random access. That is, compared with the existing 45 kHz supporting 12 users, this application can support 36 user multiplexing.
  • the six symbol groups of the random access preamble can be divided into two groups, and each group includes three symbol groups.
  • the frequency hopping interval between the first symbol group and the second symbol group in the first group and the frequency hopping interval between the second symbol group and the third symbol group are equal and both are the first interval.
  • the frequency hopping interval between the first symbol group and the second symbol group in the second group and the frequency hopping interval between the second symbol group and the third symbol group are equal and both are the second interval.
  • the frequency hopping interval between the third symbol group in the first group and the first symbol group in the second group is a third interval.
  • the frequency hopping direction of the first symbol group to the second symbol group in the first group is opposite to the frequency hopping direction of the second symbol group to the third symbol group.
  • the frequency hopping direction of the first symbol group to the second symbol group in the second group is opposite to that of the second symbol group to the third symbol group.
  • the first group includes a symbol group 1 to a symbol group 3, and the second group includes a symbol group 4 to a symbol group 6.
  • the frequency hopping interval between symbol group 1 and symbol group 2 and the frequency hopping interval between symbol group 2 and symbol group 3 are the first interval
  • the frequency hopping interval between symbol group 4 and symbol group 5 and symbol group 5 The frequency hopping interval with the symbol group 6 is the second interval
  • the frequency hopping interval between the symbol group 3 and the symbol group 4 is the third interval.
  • the frequency hopping directions of the symbol groups 1 to 2 are opposite to the frequency hopping directions of the symbol groups 2 to 3
  • the frequency hopping directions of the symbol groups 4 to 5 are opposite to the frequency hopping directions of the symbol groups 5 to 6.
  • symbol groups 1 to 3 in FIG. 4 may correspond to the first symbol group to the third symbol group in the first group, and the symbol groups 4 to 6 may respectively correspond to the second group.
  • the terminal device may determine the frequency point position of the random access preamble according to the random access configuration information and a preset rule.
  • frequency point position refers to the index or number of the subcarrier.
  • the random access configuration information may include: the number of repetitions W of the random access preamble.
  • the 6 * W symbol groups included in the W repetitions of the random access preamble may be numbered 0, 1, ..., i, ..., 6W-2, 6W-1, and W are positive integers in chronological order. It should be understood that the number i of the 6 * W symbol groups is greater than or equal to 0 and less than or equal to 6W-1.
  • W 2
  • the random access configuration information may also be used to determine the frequency point position of the symbol group numbered 0.
  • the preset rule includes a first formula and a second formula, and the first formula and the second formula can be used to calculate a frequency point position of each symbol group.
  • the first formula and the number i of the symbol group P are used to determine the frequency position of the symbol group P
  • the second formula and the number i of the symbol group Q are used to determine the frequency position of the symbol group Q.
  • the symbol group Q is a symbol whose number satisfies i> 0 and imod6 ⁇ 0 in the 6 * W symbol groups group.
  • the preset rule may be, for example, stipulated by a protocol or configured by a network device, which is not limited in the embodiment of the present application.
  • the terminal device determines the frequency position of the symbol group numbered 0 according to the random access configuration information, and can determine the frequency position of the symbol group P according to the first formula and the number i of the symbol group P, and The second formula and the number i of the symbol group Q determine the frequency position of the symbol group Q.
  • the random access configuration information may also include the number of repetitions W, the frequency position of each symbol group in the first repetition, and the first symbol group in the subsequent repetition relative to the sixth symbol in the previous repetition. Frequency hopping interval of the group. Based on this information, the terminal device can determine the frequency position of each symbol group in each repetition period in the W repetitions.
  • the terminal device may also determine the frequency position of the random access preamble based on the random access configuration information.
  • the random access configuration information may include the frequency position of each symbol group in the 6 * W symbol groups. It should be understood that the embodiment of the present application does not limit the manner in which the terminal device determines the frequency point position of the random access preamble.
  • the first formula is related to the frequency point position of the symbol group numbered 0 and the function determined by the number i and the pseudo-random sequence, and may also be related to Correlation; or, the first formula is related to the frequency position of the symbol group numbered i-6 and the function determined by the number i and the pseudo-random sequence, and can also be related to Related.
  • the number i is the number of the symbol group P.
  • the symbol group P may be the frequency point position of the symbol group numbered 0, the number i, And the function determined by the pseudo-random sequence is determined.
  • the symbol group P may be the frequency position of the symbol group numbered i-6, the number i, And the function determined by the pseudo-random sequence is determined. It can be seen that the frequency position of the symbol group P is related to the frequency position of the symbol group numbered 0, or to the frequency position of the sixth symbol group before the symbol group P, and is related to the frequency of other symbol groups. The point position is irrelevant.
  • the number i is the number of the symbol group Q.
  • the frequency point position of the symbol group Q may be the frequency point position of the previous symbol group number i-1 adjacent to it, its frequency hopping interval and frequency hopping direction with respect to the previous symbol group adjacent to it. determine. It can be seen that the frequency position of the symbol group Q is only related to the frequency position of its adjacent previous symbol group, and has nothing to do with the frequency position of other symbol groups.
  • frequency point position interval herein is the absolute value of the difference between the frequency point positions.
  • the preset rule may include formula one or formula two:
  • network devices can be carried in random access configuration information
  • the subcarrier bandwidth is 1.25kHz, It can be equal to 36, which is not limited here. E.g, It can also be 72.
  • a parameter in the random access configuration information sent by the network device to the terminal device indicates the number of subcarriers used for random access.
  • the first line in formula one or formula two may be the first formula above
  • the second to seventh lines in formula one or formula two may be the second formula above.
  • the frequency point position interval and frequency hopping direction of the symbol group numbered i with respect to the symbol group numbered i-1 can be determined. For example, if you take the second line example in formula one or formula two, Is the frequency point position of the symbol group numbered i-1, and "+1" after it indicates that the frequency point position of the symbol group numbered i is greater than the frequency point position of the symbol group numbered i-1, and the number is i
  • the frequency hopping interval between the symbol group and symbol group numbered i-1 is 1 subcarrier.
  • the first The position of the frequency of each symbol group after the symbol groups.
  • the frequency position of the symbol group with the number 0 n init for the MAC layer from The index of the selected subcarrier Represents the number of subcarriers used for random access.
  • the value of f (i / 6) may be determined according to a function f (t) of the pseudo-random sequence c (n).
  • f (t) can be expressed as:
  • c (n) may be an m sequence, an M sequence, a gold sequence, or the like, which is not limited in the embodiment of the present application.
  • the initialization seed of c (n) may be a function of the physical layer cell identity or the physical layer cell identity of the terminal device.
  • c (n) can be a 31-long Gold sequence.
  • x 1 (n + 31) (x 1 (n + 3) + x 1 (n)) mod2,
  • x 2 (n + 31) (x 2 (n + 3) + x 2 (n + 2) + x 2 (n + 1) + x 2 (n)) mod2,
  • N C 1600
  • the seed is represented as among them It is the physical layer cell identifier.
  • the above expressions are merely examples, and the present application does not limit the specific expression form of the index expressions, and other forms of expressions are also within the protection scope of the present application.
  • the above formulae 1 and 2 and the examples related to formulae 1 and 2 can be applied to the following configuration: the subcarrier bandwidth is configured to 1.25kHz, and the transmission of the random access preamble is limited to Within the number of subcarriers, the frequency hopping range between symbol groups is within 36 subcarriers.
  • Formula one and formula two, and examples related to formula one and formula two can also be applied to other configurations, which are not specifically limited in the embodiments of the present application.
  • pseudo-random frequency hopping may not be used between different repetitions of the random access preamble.
  • the first symbol group among the six symbol groups included in any two repeated random access preambles is located.
  • the frequency points can be the same.
  • the “frequency point position” described in this application may be a relative frequency point position or an absolute frequency point position. It should be understood that when the terminal device sends the random access preamble, it is sent at the frequency corresponding to the absolute frequency of the symbol group.
  • n start is the frequency point position after offset. According to this expression, it can be known that the absolute frequency position of the i-th symbol group can be determined according to the frequency position of the i-th symbol group determined by the terminal device and the offset frequency position.
  • the offset frequency position n start satisfies:
  • n init is the MAC layer slave
  • the six symbol groups of the random access preamble may be continuous or discontinuous in time, which is not limited in the embodiment of the present application. .
  • the terminal device may repeatedly send the random access preamble to the network device according to the configured repetition times, or may not repeatedly send the random access preamble to the network device according to the repetition times. For example, in each transmission, the random access preamble is repeated only once, that is, only six symbol groups are transmitted.
  • the following describes a frequency hopping pattern of a random access preamble with reference to FIG. 5.
  • W 2, that is, the number of repetitions of the random access preamble is 2 (that is, repeat # 0 and repeat # 1).
  • Pseudo-random frequency hopping is used between repeat # 0 and repeat # 1 (as indicated by the dotted ellipse in Figure 5).
  • the range of pseudo-random frequency hopping can be limited to 36 subcarriers. Can not be limited to 36 subcarriers The values are the same.
  • the random access preamble includes 6 symbol groups, which are: symbol group 1, symbol group 2, symbol group 3, symbol group 4, symbol group 5, and symbol group 6.
  • Each symbol group includes: 1 CP, symbol # 0, symbol # 1, and symbol # 2.
  • # 0 to # 35 indicate 36 subcarriers.
  • the frequency hopping interval of symbol group 1 and symbol group 2 is 1.25 kHz
  • the frequency hopping interval of symbol group 2 and symbol group 3 is 1.25 kHz
  • the frequency hopping interval of symbol group 3 and symbol group 4 is 22.5 kHz
  • the frequency hopping interval of group 5 is 3.75 kHz
  • the frequency hopping interval of symbol group 5 and symbol group 6 is 3.75 kHz.
  • the frequency hopping directions of the symbol groups 1 to 2 are opposite to the frequency hopping directions of the symbol groups 2 to 3, and the frequency hopping directions of the symbol groups 4 to 5 are the same as the frequency hopping directions of the symbol groups 5 to 6. in contrast.
  • symbol groups 1 to 6 may correspond to the first symbol group to the sixth symbol group, respectively.
  • the existing random access preamble can perform frequency hopping in 12 subcarriers (that is, 45kHz).
  • the subcarrier bandwidth is reduced from 3.75kHz to 1.25kHz in the embodiment of the present application, the basis of maintaining the 45kHz NPRACH resource is maintained.
  • the frequency hopping range of the random access preamble in the embodiment of the present application can be increased from 12 subcarriers to 36 subcarriers. Therefore, the frequency hopping pattern provided in FIG. 5 can support more users to multiplex NPRACH resources for random access. That is, compared with the existing 45 kHz supporting 12 users, this application can support 36 user multiplexing.
  • FIG. 6 is a schematic block diagram of a communication device 600 according to an embodiment of the present application. As shown in FIG. 6, the communication device 600 may include a processing unit 610 and a sending unit 620.
  • the processing unit 610 is configured to determine a random access preamble.
  • the processing unit 610 is further configured to determine a frequency point position of the random access preamble according to the random access configuration information and a preset rule.
  • a sending unit 620 is configured to send the random access preamble to a network device according to the frequency point position.
  • the random access preamble includes six symbol groups, and the six symbol groups include a first symbol group, a second symbol group, a third symbol group, a fourth symbol group, and a fifth symbol. Group and sixth symbol group.
  • the interval between the frequency points of each adjacent two symbol groups in the six symbol groups is a frequency hopping interval, and the frequency hopping interval between the first symbol group and the second symbol group and the second
  • the frequency hopping interval between the three symbol groups and the third symbol group is equal to the first interval
  • the frequency hopping interval between the five symbol groups and the sixth symbol group is equal and is the second interval
  • the frequency hopping interval between the third symbol group and the fourth symbol group is the third Interval, the first interval, the second interval, and the third interval are all unequal and all are not equal to zero.
  • the communication device 600 may correspond to the terminal device in the communication method 300 according to the embodiment of the present application, and the communication device 600 may include a unit for executing a method performed by the terminal device in the communication method 300 in FIG. 3, and Each unit in the communication device 600 and the other operations and / or functions described above are used to implement the corresponding process of the communication method 300 in FIG. 3, and the specific process for each unit to perform the corresponding steps has been described in detail in the method 300. For simplicity, in This is not repeated here.
  • FIG. 7 is a schematic block diagram of a network device 700 according to an embodiment of the present application.
  • the network device 700 may include a processing unit 710, a sending unit 720, and a receiving unit 730.
  • a processing unit 710 configured to determine random access configuration information, and send the random access configuration information to a terminal device through a sending unit 720, where the random access configuration information is used to instruct the terminal device to determine a random access preamble;
  • a receiving unit 730 configured to receive the random access preamble sent by a terminal device according to the random access configuration information, where the random access preamble is sent by the terminal device according to a determined frequency point location, where The frequency point position is determined according to the random access configuration information and a preset rule.
  • the random access preamble includes six symbol groups, and the six symbol groups include a first symbol group, a second symbol group, a third symbol group, a fourth symbol group, and a fifth symbol. Group and sixth symbol group.
  • the interval between the frequency points of each adjacent two symbol groups in the six symbol groups is a frequency hopping interval, and the frequency hopping interval between the first symbol group and the second symbol group and the second
  • the frequency hopping interval between the three symbol groups and the third symbol group is equal to the first interval
  • the frequency hopping interval between the five symbol groups and the sixth symbol group is equal and is the second interval
  • the frequency hopping interval between the third symbol group and the fourth symbol group is the third Interval, the first interval, the second interval, and the third interval are all unequal and all are not equal to zero.
  • the network device 700 may correspond to the network device in the communication method 300 according to the embodiment of the present application, and the network device 700 may include a module for executing a method performed by the network device in the communication method 300 in FIG. 3, and Each module in the network device 700 and the other operations and / or functions described above are used to implement the corresponding process of the communication method 300 in FIG. 3, and the specific process for each module to perform the corresponding steps is described in detail in the method 300. This is not repeated here.
  • FIG. 8 is a schematic structural diagram of a terminal device 800 according to an embodiment of the present application.
  • the terminal device 800 may be applicable to the system shown in FIG. 1 and execute the functions of the terminal device in the foregoing method embodiment.
  • the terminal device 800 may be a specific implementation of the communication device 600 shown in FIG. 6.
  • FIG. 8 shows only the main components of the terminal device.
  • the terminal device 800 includes a processor, a memory, a control circuit, an antenna, and an input / output device.
  • the processor is mainly used to process the communication protocol and communication data, and control the entire terminal device, execute a software program, and process the data of the software program, for example, to support the terminal device to perform the actions described in the foregoing method embodiments, such as To determine the random access preamble and the frequency position of the random access preamble.
  • the memory is mainly used for storing software programs and data, for example, storing the preset rules described in the foregoing embodiments.
  • the control circuit is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • the control circuit and the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input / output devices such as a touch screen, a display screen, and a keyboard, are mainly used to receive data input by the user and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit. After the radio frequency circuit processes the baseband signal, the radio frequency signal is sent out in the form of electromagnetic waves through the antenna.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 8 shows only one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, which is not limited in the embodiments of the present application.
  • the processor may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processor is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 8 may integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, which are interconnected through technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing communication protocols and communication data may be built in the processor or stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and the control circuit having the transmitting and receiving function may be regarded as the transmitting and receiving unit 801 of the terminal device 800, for example, for supporting the terminal device to perform the receiving function and the transmitting function as described in the part of FIG.
  • a processor having a processing function is regarded as a processing unit 802 of the terminal device 800.
  • the terminal device 800 includes a transceiver unit 801 and a processing unit 802.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • a device used to implement the receiving function in the transceiver unit 801 may be regarded as a receiving unit, and a device used to implement the transmitting function in the transceiver unit 801 may be regarded as a transmitting unit, that is, the transceiver unit 801 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit.
  • the processor 802 may be configured to execute instructions stored in the memory, to control the transceiver unit 801 to receive signals and / or send signals to complete functions of the terminal device in the foregoing method embodiments.
  • the function of the transceiver unit 801 may be considered to be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the base station may be applied to the system shown in FIG. 1 to perform functions of a network device in the foregoing method embodiment.
  • the base station 900 may include one or more radio frequency units, such as a remote radio unit (RRU) 910 and one or more baseband units (BBU) (also referred to as a digital unit, DU).
  • RRU 910 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and may include at least one antenna 911 and a radio frequency unit 912.
  • the RRU 910 part is mainly used for receiving and transmitting radio frequency signals and converting radio frequency signals to baseband signals.
  • the BBU 920 part is mainly used for baseband processing and controlling base stations.
  • the RRU 910 and the BBU 920 may be physically located together or physically separated, that is, a distributed base station.
  • the BBU 920 is a control center of a base station, and may also be referred to as a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU (Processing Unit) 920 may be used to control a base station to execute an operation procedure on a network device in the foregoing method embodiment.
  • the BBU 920 may be composed of one or more boards, and multiple boards may jointly support a single access indication wireless access network (such as an LTE network), or may separately support different access systems. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 920 further includes a memory 921 and a processor 922.
  • the memory 921 is configured to store necessary instructions and data.
  • the memory 921 stores the preset rule in the foregoing embodiment.
  • the processor 922 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 921 and the processor 922 may serve one or more boards. That is, the memory and processor can be set separately on each board. It may also be that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • the present application also provides a communication system including one or more network devices described above, and one or more terminal devices.
  • the processor in the embodiment of the present application may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and special-purpose integrations.
  • Circuit application specific integrated circuit, ASIC
  • ready-made programmable gate array field programmable gate array, FPGA
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), or Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access Access memory
  • SDRAM synchronous dynamic random access Access memory
  • double SDRAM double SDRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access Fetch memory
  • direct RAMbus RAM direct RAMbus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware, or any other combination.
  • the above embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, a computer, a server, or a data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, a data center, and the like, including one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • the size of the sequence numbers of the above processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not deal with the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the foregoing storage media include: U disks, mobile hard disks, read-only memories (ROMs), random access memories (RAMs), magnetic disks or compact discs and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法、通信设备和网络设备,该方法包括:终端设备确定随机接入前导码,随机接入前导码包括六个符号组;终端设备根据随机接入配置信息和预设规则确定随机接入前导码的频点位置,第一个符号组与第二个符号组之间的跳频间隔和第二个符号组与第三个符号组之间的跳频间隔相等且均为第一间隔,第四个符号组与第五个符号组之间的跳频间隔和第五个符号组与第六个符号组之间的跳频间隔相等且均为第二间隔,第三个符号组与第四个符号组之间的跳频间隔为第三间隔,第一间隔为1.25kHz,第二间隔为3.75kHz,第三间隔为22.5kHz;终端设备根据频点位置发送随机接入前导码。本申请的通信方法,终端设备通过确定随机接入前导码的跳频图样,可以进行随机接入前导码的发送,从而进行随机接入。本申请实施例提供的方法和设备提高了网络的覆盖能力,可以应用于互联网,例如MTC、IoT、LTE-M、M2M等。

Description

通信方法、通信设备和网络设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法、通信设备和网络设备。
背景技术
在窄带物联网(Narrow Band Internet of Things,NB-IoT)中,随机接入过程(Random Access Procedure)是终端设备从空闲态获取专用信道资源转变为连接态的重要方法手段。窄带随机接入信道(Narrowband Physical Random Access Channel,NPRACH)就是传输随机接入请求的信道。随机接入过程分为基于竞争的随机接入过程和基于非竞争的随机接入过程,无论是基于竞争的随机接入过程还是基于非竞争的随机接入过程,第一步都需要在NPRACH上发送随机接入前导码(preamble),以告诉网络设备有一个随机接入请求,同时使得网络设备能估计其与终端之间的传输时延并以此校准上行定时(timing)。
现有的NB-IoT中,随机接入前导码支持小区半径40千米(kilometer,km)。对于物联网面向开阔区域的应用,比如:智能湖泊、与长期演进(Long Term Evolution,LTE)系统共站等,随机接入前导码需支持更大的小区。为支持更大的小区半径,需要对随机接入前导码的格式重新设计。而针对重新设计的随机接入前导码,目前的随机接入前导码的跳频图样可能并不适用。
发明内容
本申请提供一种通信方法、通信设备和网络设备,能够根据与重新设计的随机接入前导码匹配的跳频图样,进行随机接入。
第一方面,提供了一种通信方法,该方法包括:终端设备确定随机接入前导码,其中,所述随机接入前导码包括六个符号组,所述六个符号组包括第一个符号组、第二个符号组、第三个符号组、第四个符号组、第五个符号组和第六个符号组;
所述终端设备根据随机接入配置信息和预设规则确定所述随机接入前导码的频点位置,
所述六个符号组中每相邻两个符号组的频点的间隔为跳频间隔,所述第一个符号组与所述第二个符号组之间的跳频间隔和所述第二个符号组与所述第三个符号组之间的跳频间隔相等且均为第一间隔,所述第四个符号组与所述第五个符号组之间的跳频间隔和所述第五个符号组与所述第六个符号组之间的跳频间隔相等且均为第二间隔,所述第三个符号组与所述第四个符号组之间的跳频间隔为第三间隔,所述第一间隔、所述第二间隔以及所述第三间隔均不相等且均不等于零;
所述终端设备根据所述频点位置向网络设备发送所述随机接入前导码。
因此,本申请实施例的通信方法,终端设备通过确定包括六个符号组的随机接入前导码的跳频图样(即,各符号组的频点位置),可以进行随机接入前导码的发送,从而进行 随机接入。
应理解,跳频间隔是指在时域上相邻的两个符号组的频点的间隔,或者说,在时域上相邻的两个符号组的频点之差的绝对值为跳频间隔。
还应理解,本申请所涉及的频点位置是指子载波的索引或编号。每相邻两个符号组的频点位置间隔为频点位置之差的绝对值,某两个相邻符号组的频点位置间隔乘以子载波带宽等于这两个相邻符号组的跳频间隔。频点位置可以是相对频点位置,也可以是绝对频点位置。符号组的相对频点位置为该符号组的绝对频点位置与偏置后的频点位置之差,相应地,符号组的绝对频点位置为该符号组的相对频点位置与偏置后的频点位置之和。应理解,终端设备发送随机接入前导码时,是在符号组的绝对频点位置所对应的频点上发送的。
这里,偏置后的频点位置可以由协议规定或者网络设备通知的,本申请对此不作限定。例如,网络设备可以通过随机接接入配置信息携带偏置后的频点位置。
可选地,跳频间隔可以是子载波带宽的整数倍。例如,子载波带宽为1.25kHz,相邻符号组之间的跳频间隔可以是N*1.25kHz,其中,N为正整数。相邻符号组之间的跳频间隔也可以不是子载波带宽的整数倍,本申请对于相邻符号组之间的跳频间隔是否是子载波带宽的整数倍不作限定。
可选地,随机接入前导码的跳频范围为36个子载波。
现有的随机接入前导码可在12个子载波(即45kHz)中进行跳频,当子载波带宽由3.75kHz降低为本申请实施例的1.25kHz时,在保持45kHz的NPRACH资源的基础上,本申请的随机接入前导码的跳频范围可由12个子载波增加为36个子载波。从而,本申请提供的跳频方案可以支持更多的用户复用NPRACH资源进行随机接入。即,相对于现有的45kHz支持12个用户,本申请可支持36个用户复用。
可选地,对于该随机接入前导码所包括的六个符号组中的任一符号组,其可以包括:1个循环前缀(Cyclic Prefix,CP)和1个符号;或者,1个CP和2个符号;或者,1个CP和3个符号。这里的CP和符号的时间长度都可以是800微秒(μs)。这样的随机接入前导码可以支持更大的小区半径。
最大小区半径与保护时间(Gard Time,GT)有关,保护时间越大,覆盖的最大小区半径越大,而保护时间与CP和符号组内各符号的总长度有关。此外,CP的时间长度应该覆盖最大小区半径,由公式S=V*T,此时,V为光速3.0*10 8m/s,S=2*100*10 3m,带入公式S=V*T可得T=666.7μs。而CP的时间长度T CP=800μs,大于666.7μs,因此,本申请中通过设置上述随机接入前导码的格式,能够使随机接入前导码支持更大的小区半径,大约为100km。
进一步地,符号组内每个符号上承载的序列可以相同。比如,每个符号上承载的序列为a,E个符号可以承载的序列为
Figure PCTCN2018087690-appb-000001
a可以为实数,比如1或者-1,a也可以为复数,比如j或者-j,其中j表示虚数单位,满足j 2=-1。符号组内每个符号上承载的序列也可以不同,或者符号组内一部分符号上承载的序列可以相同,另一部分符号上承载的序列可以不同。
此外,任意两个符号组上承载的序列可以相同,也可以不同。
本申请的随机接入前导码,可以是没有用加扰序列进行加扰的随机接入前导码,也可以是用加扰序列加扰后的随机接入前导码。其中加扰是为了提高干扰随机化性能,避免小 区间干扰引起的虚警问题。
终端设备通过基序列得到的扰码序列的长度可以分为多种情况。具体的,扰码序列的长度可以与随机接入前导码的一个符号组内的符号个数之和相同,扰码序列的长度也可以与随机接入前导码的一个重复周期内的符号个数之和相同,扰码序列的长度还可以与随机接入前导码的所有重复周期内的符号个数之和相同。扰码序列的长度可以与随机接入前导码的一个符号组内的循环前缀和符号个数之和相同,扰码序列的长度也可以与随机接入前导码的一个重复周期内的循环前缀和符号个数之和相同,扰码序列的长度还可以与随机接入前导码的所有重复周期内的循环前缀和符号个数之和相同。本申请并不对扰码序列的长度进行限定。
终端设备可以根据终端设备内部设定的方式自行生成基序列,或者通过查询的方式得到基序列。终端设备通过基序列得到扰码序列的方法可以有多种,一种可选的方法1是加扰序列就是基序列,二者相等,例如基序列为ABC,得到扰码序列为ABC;一种可选的方法2是对所述基序列中的每个元素依次重复M次,得到所述扰码序列,即终端设备对基序列中的第一个元素重复M次,然后第二个元素重复M次,…最后一个元素重复M次,例如基序列为ABC,基序列对每个元素依次重复2次,为AABBCC,例如基序列为AB,基序列对每个元素依次重复3次,为AAABBB。
终端设备可以获得网络设备发送的扰码指示信息,所述扰码指示信息用于指示所述终端设备使用方法1或方法2对随机接入前导码进行加扰。
一种可选的方法,所述参数的索引可以有不同的取值对应方法1和/或方法2,如:所述参数索引取值为0时,表示所述终端设备使用方法1对随机接入前导码进行加扰;所述参数索引取值为1时,表示所述终端设备使用方法2对随机接入前导码进行加扰。
一种可选的方法,当终端设备收到网络设备发送的所述扰码指示信息时,所述终端设备使用方法1对随机接入前导码进行加扰;当终端设备没有收到网络设备发送的所述扰码指示信息时,所述终端设备使用方法2对随机接入前导码进行加扰。
一种可选的方法,所述扰码指示信息包含两种状态,第一状态和第二状态,当所述扰码指示信息指示第一状态时,所述终端设备使用方法1对随机接入前导码进行加扰;当所述扰码指示信息指示第二状态时,所述终端设备使用方法2对随机接入前导码进行加扰。
所述基序列或者扰码序列可以为正交序列、ZC序列、伪随机序列、差分正交序列,或者每个重复周期内符号组上所加扰码差分后得到的序列正交,或者每个重复周期内符号组上所加扰码差分后得到的序列的子集正交等。其中,正交序列可以是沃尔什序列,伪随机序列可以是m序列,M序列,Gold序列等。伪随机序列的初始化种子为小区标识、超帧号、帧号、符号索引、符号组索引、重复次数、子载波索引和载波索引等至少一种的函数。优选地,基序列或者扰码序列可以用公式c(m)=e j2umπk表示,其中,m=0,1,2,…,k-1,u为扰码序列的索引,
Figure PCTCN2018087690-appb-000002
或者
Figure PCTCN2018087690-appb-000003
Figure PCTCN2018087690-appb-000004
为小区标识,k为该扰码序列的长度。
在一种可能的实现方式中,第一间隔为1.25kHz。
在一种可能的实现方式中,第二间隔为3.75kHz。
在一种可能的实现方式中,第三间隔为22.5kHz。
应理解,本申请并不具体限定第一间隔、第二间隔和第三间隔的大小,上述实施例仅 是示例性说明,并不应对本申请构成任何限定。比如,第一间隔还可以是2.5kHz,第二间隔还可以是1.25kHz。再如,第三间隔可以是12.5kHz。
进一步地,所述第一个符号组至所述第二个符号组的跳频方向与所述第二个符号组至所述第三个符号组的跳频方向相反,所述第四个符号组至所述第五个符号组的跳频方向与所述第五个符号组至所述第六个符号组的跳频方向相反。
可选地,第一个符号组至第二个符号组的跳频方向与第四个符号组至第五个符号组的跳频方向相同。或者,第一个符号组至第二个符号组的跳频方向与第四个符号组至第五个符号组的跳频方向不相同。
在本申请实施例中,随机接入前导码的六个符号组可以分为两个群组,每个群组包括三个符号组。第一个群组中的第一个符号组与第二个符号组之间的跳频间隔和第二个符号组与第三个符号组之间的跳频间隔相等且均为第一间隔。第二个群组中的第一个符号组与第二个符号组之间的跳频间隔和第二个符号组与第三个符号组之间的跳频间隔相等且均为第二间隔。第一个群组中的第三个符号组与第二个群组中的第一个符号组之间的跳频间隔为第三间隔。
可选地,第一个群组中第一个符号组至第二个符号组的跳频方向与第二个符号组至第三个符号组的跳频方向相反。第二个群组中第一个符号组至第二个符号组的跳频方向与第二个符号组至第三个符号组的跳频方向相反。
通过仿真可以发现,当根据第一间隔为1.25kHz、第二间隔为3.75kHz、第三间隔为22.5kHz,以及上述跳频方向发送随机接入前导码时,能够提高估算的上行timing的精度。
在一种可能的实现方式中,所述随机接入配置信息包括所述随机接入前导码的重复次数W,所述随机接入前导码的W次重复所包括的6*W个符号组按照时间顺序编号为0,1,…,i,…,6W-2,6W-1,W为正整数,所述预设规则包括第一公式和第二公式;
以及,所述终端设备根据随机接入配置信息和预设规则,确定所述随机接入前导码的频点位置,包括:
所述终端设备根据所述随机接入配置信息确定编号为0的符号组的频点位置,并且根据所述第一公式及符号组P的编号i确定所述符号组P的频点位置,以及根据所述第二公式及符号组Q的编号i确定所述符号组Q的频点位置;
其中,所述符号组P为所述6*W个符号组中编号满足i>0且imod6=0的符号组,所述符号组Q为所述6*W个符号组中编号满足i>0且imod6≠0的符号组,mod表示取余。
具体来讲,终端设备根据所述随机接入配置信息确定编号为0的符号组的频点位置,并且可以根据第一公式及符号组P的编号i确定符号组P的频点位置,以及根据第二公式及符号组Q的编号i确定符号组Q的频点位置。
该预设规则,例如可以是协议规定的,也可以是网络设备配置的,本申请实施例对此不作限定。
在一种可能的实现方式中,所述第一公式与所述编号为0的符号组的频点位置以及由编号i和伪随机序列所确定的函数相关;或者,所述第一公式与所述编号为i-6的符号组的频点位置以及由编号i和伪随机序列所确定的函数相关;其中,所述编号i为所述符号组P的编号。
可以看出,符号组P的频点位置与编号为0的符号组的频点位置有关,或者与符号组 P之前的第六个符号组的频点位置有关,而与其他的符号组的频点位置无关。
在一种可能的实现方式中,所述第二公式与编号为i-1的符号组的频点位置以及编号为i的符号组相对于编号为i-1的符号组的频点位置间隔和跳频方向相关,其中,所述编号i为所述符号组Q的编号。
可以看出,符号组Q的频点仅与其相邻的前一个符号组的频点位置有关,而与其他的符号组的频点位置无关。
应理解,频点位置间隔为子载波的索引之差的绝对值。
在一种可能的实现方式中,所述预设规则包括公式一或公式二:
公式一:
Figure PCTCN2018087690-appb-000005
公式二:
Figure PCTCN2018087690-appb-000006
其中,
Figure PCTCN2018087690-appb-000007
为编号为i的符号组的频点位置,f(i/6)是根据符号组的编号i、
Figure PCTCN2018087690-appb-000008
和伪随机序列确定的函数,
Figure PCTCN2018087690-appb-000009
为随机接入前导码的传输限制,
Figure PCTCN2018087690-appb-000010
表示向下取整,
Figure PCTCN2018087690-appb-000011
Figure PCTCN2018087690-appb-000012
这里,
Figure PCTCN2018087690-appb-000013
可以是协议规定的,也可以是网络设备通知终端设备的,或者为一固定数值,或者可以是一些候选数值中的一个。比如,网络设备可在随机接入配置信息中携带
Figure PCTCN2018087690-appb-000014
当子载波带宽为1.25kHz的时候,
Figure PCTCN2018087690-appb-000015
可以等于36,这里不做限定。例如,
Figure PCTCN2018087690-appb-000016
也可以是72。
Figure PCTCN2018087690-appb-000017
的取值可以等于
Figure PCTCN2018087690-appb-000018
Figure PCTCN2018087690-appb-000019
的取值也可以和
Figure PCTCN2018087690-appb-000020
相关联或者绑定,例如,通过一个表格中的一些对应关系将
Figure PCTCN2018087690-appb-000021
Figure PCTCN2018087690-appb-000022
相关联,这里不做限定。
Figure PCTCN2018087690-appb-000023
为网络设备向终端设备发送的随机接入配置信息中的一个参数,表示用于随机接入的子载波数。
可选地,编号为0的符号组的频点位置
Figure PCTCN2018087690-appb-000024
n init为媒体接入控制(Media Access Control,MAC)层从
Figure PCTCN2018087690-appb-000025
中选择的子载波的索引,
Figure PCTCN2018087690-appb-000026
表示用于随机接入的子载波数。
Figure PCTCN2018087690-appb-000027
频点位置为相对频点位置时,即
Figure PCTCN2018087690-appb-000028
为第i个符号组的相对频点位置,将第i个符号组的绝对频点位置记为:
Figure PCTCN2018087690-appb-000029
Figure PCTCN2018087690-appb-000030
其中,n start为偏置后的频点位置。根据这一表达式可知,第i个符号组的绝对频点位置可以根据终端设备确定的第i个符号组的频点位置和偏置后的频点位置确定。
示例性的,偏置后的频点位置n start满足:
Figure PCTCN2018087690-appb-000031
其中,n init为MAC层从
Figure PCTCN2018087690-appb-000032
中选择的子载波的索引。
Figure PCTCN2018087690-appb-000033
Figure PCTCN2018087690-appb-000034
为随机接入配置信息中的两个参数,其中
Figure PCTCN2018087690-appb-000035
表示NPRACH公共的起始子载波频点位置,
Figure PCTCN2018087690-appb-000036
表示用于随机接入的子载波数。
可选地,f(i/6)的取值可以根据伪随机序列c(n)的函数f(t)确定。其中,f(t)可以表示为:
Figure PCTCN2018087690-appb-000037
其中,f(-1)=0。c(n)可以是m序列,M序列,gold序列等。
进一步地,c(n)的初始化种子可以为终端设备的物理层小区标识或物理层小区标识的函数。
第二方面,提供了一种通信方法,该方法包括:网络设备确定随机接入配置信息并发送给终端设备,其中,所述随机接入配置信息用于指示所述终端设备确定随机接入前导码,所述随机接入前导码包括六个符号组,所述六个符号组包括第一个符号组、第二个符号组、第三个符号组、第四个符号组、第五个符号组和第六个符号组;
所述网络设备接收所述终端设备根据所述随机接入配置信息发送的所述随机接入前导码,所述随机接入前导码是所述终端设备根据确定的频点位置发送的,所述频点位置是根据所述随机接入配置信息和预设规则确定的,所述六个符号组中每相邻两个符号组的频点的间隔为跳频间隔,所述第一个符号组与所述第二个符号组之间的跳频间隔和所述第二个符号组与所述第三个符号组之间的跳频间隔相等且均为第一间隔,所述第四个符号组与所述第五个符号组之间的跳频间隔和所述第五个符号组与所述第六个符号组之间的跳频间隔相等且均为第二间隔,所述第三个符号组与所述第四个符号组之间的跳频间隔为第三间隔,所述第一间隔、所述第二间隔以及所述第三间隔均不相等且均不等于零。
因此,本申请实施例的通信方法,终端设备通过确定包括六个符号组的随机接入前导码的跳频图样(即,各符号组的频点位置),可以进行随机接入前导码的发送,从而进行随机接入。
在一种可能的实现方式中,所述第一间隔为1.25kHz,所述第二间隔为3.75kHz,所述第三间隔为22.5kHz。
在一种可能的实现方式中,所述第一个符号组至所述第二个符号组的跳频方向与所述第二个符号组至所述第三个符号组的跳频方向相反,所述第四个符号组至所述第五个符号组的跳频方向与所述第五个符号组至所述第六个符号组的跳频方向相反。
在一种可能的实现方式中,所述随机接入配置信息包括所述随机接入前导码的重复次数W,所述随机接入前导码的W次重复所包括的6*W个符号组按照时间顺序编号为0,1,…,i,…,6W-2,6W-1,W为正整数,所述预设规则包括第一公式和第二公式;
以及,所述终端设备根据随机接入配置信息和预设规则,确定所述随机接入前导码的 频点位置,包括:
所述终端设备根据所述随机接入配置信息确定编号为0的符号组的频点位置,并且根据所述第一公式及符号组P的编号i确定所述符号组P的频点位置,以及根据所述第二公式及符号组Q的编号i确定所述符号组Q的频点位置;
其中,所述符号组P为所述6*W个符号组中编号满足i>0且imod6=0的符号组,所述符号组Q为所述6*W个符号组中编号满足i>0且imod6≠0的符号组,mod表示取余。
在一种可能的实现方式中,所述第一公式与所述编号为0的符号组的频点位置以及由编号i和伪随机序列所确定的函数相关;或者,所述第一公式与所述编号为i-6的符号组的频点位置以及由编号i和伪随机序列所确定的函数相关;
其中,所述编号i为所述符号组P的编号。
在一种可能的实现方式中,所述第二公式与编号为i-1的符号组的频点位置以及编号为i的符号组相对于编号为i-1的符号组的频点位置间隔和跳频方向相关,其中,所述编号i为所述符号组Q的编号。
在一种可能的实现方式中,所述预设规则包括公式一或公式二:
公式一:
Figure PCTCN2018087690-appb-000038
公式二:
Figure PCTCN2018087690-appb-000039
其中,
Figure PCTCN2018087690-appb-000040
为编号为i的符号组的频点位置,f(i/6)是根据符号组的编号i、
Figure PCTCN2018087690-appb-000041
和伪随机序列确定的函数,
Figure PCTCN2018087690-appb-000042
为随机接入前导码的传输限制,
Figure PCTCN2018087690-appb-000043
表示向下取整,
Figure PCTCN2018087690-appb-000044
Figure PCTCN2018087690-appb-000045
关于第二方面,可以参照第一方面的相关描述,这里不再赘述。
对于上述的各方面,应理解,终端设备向网络设备发送随机接入前导码时,随机接入前导码的六个符号组在时间上可以是连续的,也可以是不连续的,本申请实施例对此不作 限定。
还应理解,终端设备可以按照配置的重复次数,向网络设备重复发送随机接入前导码,也可以不按照重复次数,向网络设备重复发送随机接入前导码。比如,每次传输中,随机接入前导码仅重复一次,即只发六个符号组。
需要说明的是,在终端设备需要按照配置的重复次数,向网络设备重复发送随机接入前导码时,随机接入前导码的不同重复的副本之间在时间上可以是连续的,也可以是不连续的,本申请实施例对此不作限定。
第三方面,提供了一种通信设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第四方面,本申请提供了一种网络设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第五方面,本申请提供了一种终端设备,该终端设备包括:存储器、处理器和收发器,该存储器上存储可在该处理器上运行的计算机程序,该处理器执行该计算机程序时执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,本申请提供了一种网络设备,该网络设备包括:存储器、处理器和收发器,该存储器上存储可在该处理器上运行的计算机程序,该处理器执行该计算机程序时执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,本申请提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行上述各方面或上述各方面的任意可能的实现方式中的方法的指令。
第八方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面或上述各方面的任意可能的实现方式中的方法。
第九方面,本申请提供了一种芯片,包括:输入接口、输出接口、至少一个处理器、存储器,所述输入接口、输出接口、所述处理器以及所述存储器之间通过内部连接通路互相通信,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各方面或上述各方面的任意可能的实现方式中的方法。
附图说明
图1是适用于本申请实施例的通信方法的通信系统的示意图。
图2是一种NB-IoT随机接入前导码的格式及其跳频图样。
图3是本申请实施例提供的通信方法的示意性流程图。
图4是本申请实施例提供的一种随机接入前导码的格式及其跳频图样。
图5是本申请实施例提供的一种随机接入前导码的格式及其跳频图样。
图6是本申请实施例提供的通信设备的示意性框图。
图7是本申请实施例提供的网络设备的示意性框图。
图8是本申请实施例提供的另一终端设备的结构示意图。
图9是本申请实施例提供的另一网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
为便于理解本申请实施例,首先结合图1简单介绍适用于本申请实施例的通信系统。
图1是适用于本申请实施例的通信方法的通信系统100的示意图。如图1所示,该通信系统100包括至少两个通信设备,例如,网络设备110和终端设备120,其中,网络设备110与终端设备120之间可以通过无线连接进行数据通信。应理解,图1还可以包括更多个终端设备,本申请实施例对此不作限定。
图1所示的系统100可以是NB-IoT系统。系统100中,终端设备120只有当其上行传输时间同步后,才能被调度进行上行传输。终端设备120通过随机接入过程与网络设备110建立连接并取得上行同步。在NB-IoT中,随机接入过程是终端设备120从空闲态获取专用信道资源转变为连接态的重要方法手段。窄带随机接入信道(Narrowband physical random access channel,NPRACH)就是传输随机接入请求的信道。
随机接入过程分为基于竞争的随机接入过程和基于非竞争的随机接入过程,无论是基于竞争的随机接入过程还是基于非竞争的随机接入过程,都需要在NPRACH上发送随机接入前导码,即发送消息(Message,Msg)1。
现有NB-IoT中的上行频域资源中,一个NB-IoT载波的带宽是180kHz,一个子载波带宽是3.75kHz。一个NB-IoT随机接入前导码由四个符号组组成,一个符号组占用一个 子载波,符号组之间存在跳频,每个符号组传输会限制在12个子载波内,同时频域跳频的范围也是在12个子载波内,子载波带宽为3.75kHz,符号组之间的跳频间隔是子载波带宽的整数倍,最小的跳频间隔为3.75kHz。并且,为了支持不同的覆盖增强等级,网络设备给不同的覆盖增强等级配置不同随机接入配置参数,如:随机接入前导码的重复次数。终端设备在实际传输中,按照网络设备配置的重复次数重复发送随机接入前导码。下面,结合图2,对现有NB-IoT随机接入前导码及其跳频图样进行详细说明。
参见图2,一个NB-IoT随机接入前导码由四个符号组组成,这四个符号组按照时间先后顺序记为第一个符号组、第二个符号组、第三符号组和第四个符号组。图2中,用填充图案的矩形和数字表示该四个符号组,其中,数字为1的符号组表示第一个符号组,数字为2的符号组表示第二个符号组,数字为3的符号组表示第三个符号组,数字为4的符号组表示第四个符号组。随机接入前导码的重复次数为4次(即,重复#0~重复#3)。也就是说,终端设备在一次传输中,重复发送4次随机接入前导码,也就是发送4*4个符号组。#0~#11表示12个子载波。随机接入前导码在一个重复周期内有两种跳频间隔,分别为3.75kHz和22.5kHz。第一个符号组和第二个符号组之间的跳频间隔为3.75kHz,第三个符号组和第四个符号组之间的跳频间隔为3.75kHz,第一个符号组和第二个符号组之间的跳频方向与第三个符号组和第四个符号组之间的跳频方向相反。第二个符号组和第三个符号组之间的跳频间隔为22.5kHz。相邻两次重复之间采用伪随机跳频(如图3中虚线椭圆中的标注),伪随机跳频范围限制在12个子载波内。
上述NB-IoT随机接入前导码中的每个符号组由1个CP和5个符号(即,图2中的符号#0~符号#4)组成,每个符号上承载有序列,每个符号的时间长度为NB-IoT上行子载波带宽的倒数。如表1所示,现有NB-IoT随机接入前导码的格式包括格式0或格式1。格式0、格式1的CP的时间长度T CP存在差异,格式0支持的最大小区半径为10km,格式1支持的最大小区半径为40km。格式0、格式1的5个符号的总时间长度T SEQ相等。
表1
Preamble格式 T CP(μs) T SEQ(μs) 最大小区半径(km)
0 66.7 5*266.67 10
1 266.67 5*266.67 40
根据表1,现有的NB-IoT随机接入前导码支持小区半径40千米(kilometer,km)。对于物联网面向开阔区域的应用,比如:智能湖泊、与长期演进(Long Term Evolution,LTE)系统共站等,随机接入前导码需支持更大的小区。为支持更大的小区半径,需要对随机接入前导码的格式重新设计。而针对重新设计的随机接入前导码,目前的随机接入前导码的跳频图样可能并不适用。
有鉴于此,本申请提供了一种通信方法,该方法可基于与重新设计的随机接入前导码匹配的跳频图样,进行随机接入。下面,对本申请进行详细描述。图3是根据本申请实施例的通信方法300的示意性流程图。如图3所示,该方法300可以包括S310、S320和S330。应理解,图3中的终端设备和网络设备可以分别图1所示的终端设备120和网络设备110,但本申请实施例对此并不限定。
S310,终端设备确定随机接入前导码。
S320,终端设备确定所述随机接入前导码的频点位置。
S330,终端设备根据所述频点位置向网络设备发送所述随机接入前导码。相应地,网络设备接收终端设备发送的随机接入前导码。
本申请实施例中,随机接入前导码可以包括六个符号组。以下,对随机接入前导码包括六个符号组时的情况进行详细描述。
在步骤S310中,该随机接入前导码包括六个符号组。
可选地,所述随机接入前导码的格式可以是表2中的格式2、格式3或格式4。
表2
Preamble格式 T CP(μs) T SEQ(μs) 最大小区半径(km)
2 800 1*800 120
3 800 2*800 120
4 800 3*800 120
也就是说,对于六个符号组中的任意一个符号组,其可以包括:1个CP+1个符号;或者,1个CP+2个符号;或者,1个CP+3个符号。这里的CP和符号的时间长度都可以是800μs。CP的时间长度为T CP,一个符号组所包括的符号的总长度为T SEQ
最大小区半径与保护时间(Gard Time,GT)有关,保护时间越大,覆盖的最大小区半径越大,而保护时间与CP和符号组内各符号的总长度有关。此外,CP的时间长度应该覆盖最大小区半径,由公式S=V*T,此时,V为光速3.0*10 8m/s,S=2*100*10 3m,带入公式S=V*T可得T=666.7μs。而CP的时间长度T CP=800μs,大于666.7μs,因此,本申请中通过设置如表2所示的随机接入前导码的格式,能够使随机接入前导码支持最大小区半径100km。
应理解,上述随机接入前导码的格式以及CP和符号的时间长度仅是示例性说明,本申请并不对随机接入前导码的格式以及CP和符号的时间长度作具体限定。比如,每个符号组也可以包括:1个CP+4个符号。或者,符号的时间长度可以是700us等。
还应理解,上述中随机接入前导码的格式索引,以及格式索引与具体格式的对应关系也仅是示意性说明,并不对本申请构成任何限定。比如,格式索引为2的随机接入前导码中,任意一个符号组可以包括:1个CP+2个符号。又如,若一个随机接入前导码中任意一个符号组包括:1个CP+3个符号,则该随机接入前导码的格式索引为2。
进一步地,符号组内每个符号上承载的序列可以相同。比如,每个符号上承载的序列为a,E个符号可以承载的序列为
Figure PCTCN2018087690-appb-000046
a可以为实数,比如1或者-1,a也可以为复数,比如j或者-j,其中j表示虚数单位,满足j 2=-1。符号组内每个符号上承载的序列也可以不同,或者符号组内一部分符号上承载的序列可以相同,另一部分符号上承载的序列可以不同,本申请实施例对此不作限定。
此外,任意两个符号组上承载的序列可以相同,也可以不同,本申请实施例对此不作限定。
本申请实施例中的随机接入前导码,可以是没有用加扰序列进行加扰的随机接入前导 码,也可以是用加扰序列加扰后的随机接入前导码,这里不做限定。其中加扰是为了提高干扰随机化性能,避免小区间干扰引起的虚警问题。
终端设备通过基序列得到的扰码序列的长度可以分为多种情况。具体的,扰码序列的长度可以与随机接入前导码的一个符号组内的符号个数之和相同,扰码序列的长度也可以与随机接入前导码的一个重复周期内的符号个数之和相同,扰码序列的长度还可以与随机接入前导码的所有重复周期内的符号个数之和相同。扰码序列的长度可以与随机接入前导码的一个符号组内的循环前缀和符号个数之和相同,扰码序列的长度也可以与随机接入前导码的一个重复周期内的循环前缀和符号个数之和相同,扰码序列的长度还可以与随机接入前导码的所有重复周期内的循环前缀和符号个数之和相同。本申请并不对扰码序列的长度进行限定。
终端设备可以根据终端设备内部设定的方式自行生成基序列,或者通过查询的方式得到基序列。终端设备通过基序列得到扰码序列的方法可以有多种,一种可选的方法1是加扰序列就是基序列,二者相等,例如基序列为ABC,得到扰码序列为ABC;一种可选的方法2是对所述基序列中的每个元素依次重复M次,得到所述扰码序列,即终端设备对基序列中的第一个元素重复M次,然后第二个元素重复M次,…最后一个元素重复M次,例如基序列为ABC,基序列对每个元素依次重复2次,为AABBCC,例如基序列为AB,基序列对每个元素依次重复3次,为AAABBB。
终端设备可以获得网络设备发送的扰码指示信息,所述扰码指示信息用于指示所述终端设备使用方法1或方法2对随机接入前导码进行加扰。
一种可选的方法,所述参数的索引可以有不同的取值对应方法1和/或方法2,如:所述参数索引取值为0时,表示所述终端设备使用方法1对随机接入前导码进行加扰;所述参数索引取值为1时,表示所述终端设备使用方法2对随机接入前导码进行加扰。具体见表3。
表3
参数索引 加扰方法
0 方法1
1 方法2
一种可选的方法,当终端设备收到网络设备发送的所述扰码指示信息时,所述终端设备使用方法1对随机接入前导码进行加扰;当终端设备没有收到网络设备发送的所述扰码指示信息时,所述终端设备使用方法2对随机接入前导码进行加扰。
一种可选的方法,所述扰码指示信息包含两种状态,第一状态和第二状态,当所述扰码指示信息指示第一状态时,所述终端设备使用方法1对随机接入前导码进行加扰;当所述扰码指示信息指示第二状态时,所述终端设备使用方法2对随机接入前导码进行加扰。
所述基序列或者扰码序列可以为正交序列、ZC序列、伪随机序列、差分正交序列,或者每个重复周期内符号组上所加扰码差分后得到的序列正交,或者每个重复周期内符号组上所加扰码差分后得到的序列的子集正交等。其中,正交序列可以是沃尔什序列,伪随机序列可以是m序列,M序列,Gold序列等。伪随机序列的初始化种子为小区标识、超帧号、帧号、符号索引、符号组索引、重复次数、子载波索引和载波索引等至少一种的函 数。优选地,基序列或者扰码序列可以用公式
Figure PCTCN2018087690-appb-000047
表示,其中,m=0,1,2,…,k-1,u为扰码序列的索引,
Figure PCTCN2018087690-appb-000048
或者
Figure PCTCN2018087690-appb-000049
Figure PCTCN2018087690-appb-000050
为小区标识,k为该扰码序列的长度。
可选地,作为本申请一个实施例,在S310之前,该方法还可以包括:
S302,网络设备向终端设备发送随机接入配置信息。该随机接入配置信息用于指示终端设备确定随机接入前导码,或者说,该随机接入配置信息可以包括随机接入前导码的格式信息。相应地,在S310中,终端设备可以根据该随机接入配置信息确定该随机接入前导码。
具体地,网络设备确定随机接入配置信息,向终端设备发送该随机接入配置信息,终端设备根据该随机接入配置信息可以确定随机接入前导码。例如,该随机接入配置信息可以包括随机接入前导码的格式索引、每个符号组所包括的符号数量、或者CP长度等。随机接入前导码的格式索引、每个符号组所包括的符号数量、或者CP长度都可以用于指示随机接入前导码或者随机接入前导码的格式。比如,以表2所示的随机接入前导码的格式为例,若该随机接入配置信息包括索引2,那么终端设备可以确定该随机接入前导码包括1个CP和1个符号,并且CP和每个符号的时间长度都是800μs。
除上述信息外,随机接入配置信息还可以包括:随机接入资源周期,起始子载波频域位置,分配用于随机接入的子载波数,随机接入前导码的重复次数,随机接入起始时刻,随机接入前导码每个覆盖增强等级的最大尝试次数,随机接入前导码最大尝试次数,随机接入前导码的初始目标接收功率,参考信号接收功率(Reference Signal Received Power,RSRP)门限等。随机接入配置信息所包括的参数的含义具体可以参见现有技术中的描述,为了简洁,此处不再赘述。
作为一种可能的实现方式,在S302中,网络设备可以通过系统信息,例如系统信息块2(System Information Block Type2,SIB2),向终端设备发送随机接入配置信息。
作为另一种可能实现的方式,网络设备可以通过广播,无线资源控制(Radio Resource Control,RRC)专用信令、媒体接入控制(Media Access Control,MAC)控制元素、或者下行控制信息(Downlink Control Information,DCI)等方式发送该随机接入配置信息。此外,网络设备还可以通过其他的方式将该随机接入配置信息发送至终端设备,本申请实施例对此不做限定。
在步骤S320中,将该随机接入前导码所包括的六个符号组按照时间的先后顺序记作:第一个符号组、第二个符号组、第三个符号组、第四个符号组、第五个符号组,第六个符号组。其中,第一个符号组与第二个符号组之间的跳频间隔和第二个符号组与第三个符号组之间的跳频间隔相等且均为第一间隔。第四个符号组与第五个符号组之间的跳频间隔和第五个符号组与第六个符号组之间的跳频间隔相等且均为第二间隔。第三个符号组与第四个符号组之间的跳频间隔为第三间隔。第一间隔、第二间隔以及第三间隔均不相等且均不等于零。
应理解,在本申请实施例中,所述六个符号组中任意相邻两个符号组的频点的间隔为该两个符号组的跳频间隔;或者说,所述六个符号组中任意相邻两个符号组的频点之差的绝对值为该两个符号组的跳频间隔;或者说,不论时序顺序,对于所述六个符号组中任意相邻两个符号组,频点大的符号组与频点小的符号组之间的频点之差为跳频间隔。还应理 解,本申请实施例中,每相邻两个符号组的频点位置间隔为频点位置之差的绝对值,某两个相邻符号组的频点位置间隔乘以子载波带宽等于这两个相邻符号组的跳频间隔。
作为示例,相邻符号组之间的跳频间隔可以是子载波带宽的整数倍,如,子载波带宽为1.25kHz,相邻符号组之间的跳频间隔可以是N*1.25kHz,其中,N为正整数。相邻符号组之间的跳频间隔也可以不是子载波带宽的整数倍,本申请实施例对于相邻符号组之间的跳频间隔是否是子载波带宽的整数倍不作限定。
应理解,在本申请实施例中,所述六个符号组中任意相邻两个符号组为符号组A和符号组B,按照时序顺序,符号组B是符号组A在时间顺序上的下一个符号组。符号组B的频点或频点位置大于或等于符号组A的频点或频点位置时,符号组A至符号组B的跳频方向为正方向;符号组B的频点或频点位置小于符号组A的频点或频点位置时,符号组A至符号组B的跳频方向为负方向。两个跳频方向为一个正方向和一个负方向时,表示两个跳频方向相反;两个跳频方向为两个正方向时,表示两个跳频方向相同;两个跳频方向为两个负方向时,表示两个跳频方向相同。
可选地,第一间隔可以小于第二间隔,第二间隔可以小于第三间隔。
应理解,这里对第一间隔、第二间隔和第三间隔的大小关系的限定仅是示例性说明,并不应对本申请构成任何限定,比如第一间隔也可以大于第二间隔,第二间隔可以大于第三间隔。
可选地,第一间隔可以为1.25kHz。
可选地,第二间隔可以为3.75kHz。
可选地,第三间隔可以为22.5kHz。
应理解,本申请实施例并不具体限定第一间隔、第二间隔和第三间隔的大小,上述实施例仅是示例性说明,并不应对本申请构成任何限定。比如,第一间隔还可以是2.5kHz,第二间隔还可以是1.25kHz,第三间隔可以是12.5kHz。又如,第一间隔还可以是3.75kHz,第二间隔还可以是22.5kHz,第三间隔可以是1.25kHz。又如,第一间隔还可以是3.75kHz,第二间隔还可以是1.25kHz,第三间隔可以是22.5kHz。又如,第一间隔还可以是1.25kHz,第二间隔还可以是22.5kHz,第三间隔可以是3.75kHz。又如,第一间隔还可以是22.5kHz,第二间隔还可以是1.25kHz,第三间隔可以是3.75kHz。又如,第一间隔还可以是22.5kHz,第二间隔还可以是3.75kHz,第三间隔可以是1.25kHz。
进一步地,第一个符号组至第二个符号组的跳频方向与第二个符号组至第三个符号组的跳频方向相反,第四个符号组至第五个符号组的跳频方向与第五个符号组至第六个符号组的跳频方向相反。
也就是说,若第一个符号组的频点小于第二个符号组的频点,则第二个符号组的频点大于第三个符号组的频点。若第一个符号组的频点大于第二个符号组的频点,则第二个符号组的频点小于第三个符号组的频点。若第四个符号组的频点小于第五个符号组的频点,则第五个符号组的频点大于第六个符号组的频点。若第四个符号组的频点大于第五个符号组的频点,则第五个符号组的频点小于第六个符号组的频点。
进一步地,第一个符号组至第二个符号组的跳频方向与第四个符号组至第五个符号组的跳频方向可以相同。也就是说,第一个符号组的频点小于第二个符号组的频点,且第四个符号组的频点小于第五个符号组的频点。或者第一个符号组的频点大于第二个符号组的 频点,且第四个符号组的频点大于第五个符号组的频点。
此外,第一个符号组至第二个符号组的跳频方向与第四个符号组至第五个符号组的跳频方向也可以不相同。本申请实施例并不限定第一个符号组至第二个符号组的跳频方向与第四个符号组至第五个符号组的跳频方向的关系。
本申请实施例的通信方法,终端设备通过确定包括六个符号组的随机接入前导码的跳频图样(即,各符号组的频点位置),可以进行随机接入前导码的发送,从而进行随机接入。
下面,结合图4,介绍一种随机接入前导码的跳频图样。
如图4所示,随机接入前导码包括6个符号组,分别为:符号组1、符号组2、符号组3、符号组4、符号组5和符号组6。每个符号组包括:1个CP、符号#0、符号#1和符号#2。#0~#35表示36个子载波。符号组1与符号组2之间的跳频间隔为符号组2的频点减去第一个符号组的频点得到1.25kHz,即符号组1和符号组2的跳频间隔为1.25kHz,符号组2和符号组3的跳频间隔为1.25kHz,符号组3和符号组4的跳频间隔为22.5kHz,符号组4和符号组5的跳频间隔为3.75kHz,符号组5和符号组6的跳频间隔为3.75kHz。其中,符号组1至符号组2的跳频方向与符号组2至符号组3的跳频方向相反,符号组4至符号组5的跳频方向与符号组5至符号组6的跳频方向相反。
应理解,符号组1~符号组6可以分别对应于前述的第一个符号组~第六个符号组。
通过仿真,根据图4所示的跳频图案发送随机接入前导码时,序列相关性较好,能够提高估算的上行timing的精度。并且,现有的随机接入前导码可在12个子载波(即45kHz)中进行跳频,当子载波带宽由3.75kHz降低为本申请实施例的1.25kHz时,在保持45kHz的NPRACH资源的基础上,本申请实施例的随机接入前导码的跳频范围可由12个子载波增加为36个子载波。从而,图4提供的跳频图案可以支持更多的用户复用NPRACH资源进行随机接入。即,相对于现有的45kHz支持12个用户,本申请可支持36个用户复用。
在本申请实施例中,随机接入前导码的六个符号组可以分为两个群组,每个群组包括三个符号组。第一个群组中的第一个符号组与第二个符号组之间的跳频间隔和第二个符号组与第三个符号组之间的跳频间隔相等且均为第一间隔。第二个群组中的第一个符号组与第二个符号组之间的跳频间隔和第二个符号组与第三个符号组之间的跳频间隔相等且均为第二间隔。第一个群组中的第三个符号组与第二个群组中的第一个符号组之间的跳频间隔为第三间隔。
可选地,第一个群组中第一个符号组至第二个符号组的跳频方向与第二个符号组至第三个符号组的跳频方向相反。第二个群组中第一个符号组至第二个符号组的跳频方向与第二个符号组至第三个符号组的跳频方向相反。
例如,参见图4,第一个群组包括符号组1~符号组3,第二个群组包括符号组4~符号组6。符号组1与符号组2之间的跳频间隔与符号组2与符号组3之间的跳频间隔均为第一间隔,符号组4与符号组5之间的跳频间隔与符号组5与符号组6之间的跳频间隔均为第二间隔,符号组3与符号组4之间的跳频间隔为第三间隔。符号组1至符号组2的跳频方向与符号组2至符号组3的跳频方向相反,符号组4至符号组5的跳频方向与符号组5至符号组6的跳频方向相反。
应理解,图4中的符号组1~符号组3可以分别对应于第一个群组中的第一个符号组~ 第三个符号组,符号组4~符号组6可以分别对应于第二个群组中的第一个符号组~第三个符号组。
可选地,作为S320的一种具体实现方式,终端设备可以根据随机接入配置信息和预设规则确定该随机接入前导码的频点位置。
需要说明的是,本申请所涉及的“频点位置”均指子载波的索引或编号。
比如,该随机接入配置信息可以包括:随机接入前导码的重复次数W。该随机接入前导码的W次重复所包括的6*W个符号组可以按照时间顺序编号为0,1,…,i,…,6W-2,6W-1,W为正整数。应理解,该6*W个符号组的编号i大于或等于0,且小于或等于6W-1。比如,若W=2,则该随机接入前导码的2次重复所包括的12个符号组按照时间顺序分别编号为0,1,2,3,4,5,6,7,8,9,10,11。应理解,在W=2的情况下,终端设备在S330中发送的符号组的个数为12。该随机接入配置信息还可以用于确定编号为0的符号组的频点位置。
所述预设规则包括第一公式和第二公式,第一公式和第二公式可用于计算各符号组的频点位置。其中,第一公式及符号组P的编号i用于确定所述符号组P的频点位置,第二公式及符号组Q的编号i用于确定符号组Q的频点位置。符号组P为所述6*W个符号组中编号满足i>0且imod6=0的符号组,所述符号组Q为6*W个符号组中编号满足i>0且imod6≠0的符号组。或者说,符号组P为所述6*W个符号组中编号为i的符号组,i满足i>0,且imod6=0,mod表示取余,符号组Q为所述6*W个符号组中除编号为0的符号组和符号组P之外的其他符号组。比如,若W=2,则该随机接入前导码的重复2次共包括12个符号组,符号组P为所述12个符号组中编号为6的符号组,符号组Q为12个符号组中编号为1,2,3,4,5,7,8,9,10,11的符号组。
该预设规则,例如可以是协议规定的,也可以是网络设备配置的,本申请实施例对此不作限定。
也就是说,终端设备根据所述随机接入配置信息确定编号为0的符号组的频点位置,并且可以根据第一公式及符号组P的编号i确定符号组P的频点位置,以及根据第二公式及符号组Q的编号i确定符号组Q的频点位置。
再如,随机接入配置信息也可以包括重复次数W、第一次重复中每个符号组的频点位置、后一次重复中的第一个符号组相对于前一次重复中的第六个符号组的跳频间隔。根据这些信息,终端设备可以确定W次重复中的每个重复周期内,各个符号组的频点位置。
在本申请中,终端设备也可以仅根据随机接入配置信息确定该随机接入前导码的频点位置。比如,该随机接入配置信息可以包括6*W个符号组中每个符号组的频点位置。应理解,本申请实施例并不限定终端设备通过何种方式确定随机接入前导码的频点位置。
作为第一公式的一个示例,第一公式与编号为0的符号组的频点位置以及由编号i和伪随机序列所确定的函数相关,还可以和
Figure PCTCN2018087690-appb-000051
相关;或者,第一公式与编号为i-6的符号组的频点位置以及由编号i和伪随机序列所确定的函数相关,还可以和
Figure PCTCN2018087690-appb-000052
相关。其中,编号i为符号组P的编号。
也就是说,符号组P可以由编号为0的符号组的频点位置、符号组P的编号i、
Figure PCTCN2018087690-appb-000053
以及伪随机序列所确定的函数确定。或者说,符号组P可以由编号为i-6的符号组的频点位置、符号组P的编号i、
Figure PCTCN2018087690-appb-000054
以及伪随机序列所确定的函数确定。可以看出,符号组P的频点位置与编号为0的符号组的频点位置有关,或者与符号组P之前的第六个符号组 的频点位置有关,而与其他的符号组的频点位置无关。
作为第二公式的一个示例,第二公式与编号为i-1的符号组的频点位置以及编号为i的符号组相对于编号为i-1的符号组的频点位置间隔和跳频方向相关。其中,编号i为所述符号组Q的编号。
也就是说,符号组Q的频点位置可以由与其相邻的之前的一个符号组的编号i-1的频点位置、其相对于与其相邻的前一个符号组跳频间隔和跳频方向确定。可以看出,符号组Q的频点位置仅与其相邻的前一个符号组的频点位置有关,而与其他的符号组的频点位置无关。
应理解,这里的频点位置间隔为频点位置之差的绝对值。
可选地,预设规则可以包括公式一或公式二:
公式一:
Figure PCTCN2018087690-appb-000055
公式二:
Figure PCTCN2018087690-appb-000056
其中,
Figure PCTCN2018087690-appb-000057
为编号为i的符号组的频点位置,f(i/6)是根据符号组的编号i、
Figure PCTCN2018087690-appb-000058
和伪随机序列确定的函数,
Figure PCTCN2018087690-appb-000059
为随机接入前导码的传输限制,
Figure PCTCN2018087690-appb-000060
表示向下取整,
Figure PCTCN2018087690-appb-000061
Figure PCTCN2018087690-appb-000062
这里,
Figure PCTCN2018087690-appb-000063
可以是协议规定的,也可以是网络设备通知终端设备的,或者为一固定数值,或者可以是一些候选数值中的一个。比如,网络设备可在随机接入配置信息中携带
Figure PCTCN2018087690-appb-000064
当子载波带宽为1.25kHz的时候,
Figure PCTCN2018087690-appb-000065
可以等于36,这里不做限定。例如,
Figure PCTCN2018087690-appb-000066
也可以是72。
Figure PCTCN2018087690-appb-000067
的取值可以等于
Figure PCTCN2018087690-appb-000068
Figure PCTCN2018087690-appb-000069
的取值也可以和
Figure PCTCN2018087690-appb-000070
相关联或者绑定,例如,通过一个表格中的一些对应关系将
Figure PCTCN2018087690-appb-000071
Figure PCTCN2018087690-appb-000072
相关联,这里不做限定。
Figure PCTCN2018087690-appb-000073
为网络设备向终端设备发送的随机接入配置信息中的一个参数,表示用于随机接入的子载波数。
应理解,公式一或者公式二中的第1行可以是上文中的第一公式,公式一或公式二中的第2行至第7行可以是上文中的第二公式。还应理解,根据第2行至第7行的公式,可 以确定编号为i的符号组相对于编号为i-1的符号组的频点位置间隔和跳频方向。比如,以公式一或公式二中的第2行为例,
Figure PCTCN2018087690-appb-000074
为编号为i-1的符号组的频点位置,其后的“+1”表示编号为i的符号组的频点位置大于编号为i-1的符号组的频点位置,并且编号为i的符号组与编号为i-1的符号组的跳频间隔为1个子载波。按照递推关系,只要确定了第1个符号组的频点位置,根据编号为i的符号组相对于编号为i-1的符号组的频点位置间隔和跳频方向,就可以确定第一个符号组之后的每个符号组的频点位置。
作为一个示例,在本申请实施例中,编号为0的符号组的频点位置
Figure PCTCN2018087690-appb-000075
n init为MAC层从
Figure PCTCN2018087690-appb-000076
中选择的子载波的索引,
Figure PCTCN2018087690-appb-000077
表示用于随机接入的子载波数。
示例性的,在本申请实施例中,f(i/6)的取值可以根据伪随机序列c(n)的函数f(t)确定。其中,f(t)可以表示为:
Figure PCTCN2018087690-appb-000078
其中,f(-1)=0。c(n)可以是m序列,M序列,gold序列等,本申请实施例对此不作限制。进一步地,c(n)的初始化种子可以为终端设备的物理层小区标识或物理层小区标识的函数。
例如,c(n)可以31长的Gold序列。Gold序列的长度记为M PN,其中n=0,1,...,M PN-1,c(n)可以表示为:
c(n)=(x 1(n+N C)+x 2(n+N C))mod2,
x 1(n+31)=(x 1(n+3)+x 1(n))mod2,
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod2,
其中,N C=1600,第一个m序列初始化种子满足x 1(0)=1,x 1(n)=0,n=1,2,...,30,第二个m序列的初始化种子表示为
Figure PCTCN2018087690-appb-000079
Figure PCTCN2018087690-appb-000080
其中
Figure PCTCN2018087690-appb-000081
为物理层小区标识。
需要说明的是,上述表达式仅为示例,本申请并不限制索引表达式的具体表现形式,其它形式的表达也在本申请的保护范围之内。应理解,上述中的公式一和公式二,以及与公式一和公式二相关的举例,均可以应用于下述配置:子载波带宽配置为1.25kHz,随机接入前导码的传输限制在
Figure PCTCN2018087690-appb-000082
个子载波内,符号组间的跳频范围在36个子载波内。公式一和公式二,以及与公式一和公式二相关的举例还可以应用于其他的配置,本申请实施例对此不作具体限定。
还应理解,上述中仅以随机接入前导码的不同重复之间的跳频间隔采用伪随机跳频为例,但这不应对本申请构成任何限定。本申请中,随机接入前导码的不同重复之间也可以不采用伪随机跳频,如任意两次重复的随机接入前导码所包括的六个符号组中的第一个符号组所在的频点位置可以一样。
需要说明的是,本申请描述的“频点位置”可以是相对频点位置,也可以是绝对频点位置。应理解,终端设备发送随机接入前导码时,是在符号组的绝对频点位置所对应的频点上发送的。
Figure PCTCN2018087690-appb-000083
频点位置为相对频点位置时,即
Figure PCTCN2018087690-appb-000084
为第i个符号组的相对频点位置,将第i个符号组的绝对频点位置引记为:
Figure PCTCN2018087690-appb-000085
Figure PCTCN2018087690-appb-000086
其中,n start为偏 置后的频点位置。根据这一表达式可知,第i个符号组的绝对频点位置可以根据终端设备确定的第i个符号组的频点位置和偏置后的频点位置确定。
示例性的,偏置后的频点位置n start满足:
Figure PCTCN2018087690-appb-000087
其中,n init为MAC层从
Figure PCTCN2018087690-appb-000088
中选择的子载波的索引。
Figure PCTCN2018087690-appb-000089
Figure PCTCN2018087690-appb-000090
为随机接入配置信息中的两个参数,其中
Figure PCTCN2018087690-appb-000091
表示NPRACH公共的起始子载波频点位置,
Figure PCTCN2018087690-appb-000092
表示用于随机接入的子载波数。
应理解,在终端设备向网络设备发送随机接入前导码时,随机接入前导码的六个符号组在时间上可以是连续的,也可以是不连续的,本申请实施例对此不作限定。
还应理解,本申请实施例中,终端设备可以按照配置的重复次数,向网络设备重复发送随机接入前导码,也可以不按照重复次数,向网络设备重复发送随机接入前导码。比如,每次传输中,随机接入前导码仅重复一次,即只发六个符号组。
需要说明的是,在终端设备需要按照配置的重复次数,向网络设备重复发送随机接入前导码时,随机接入前导码的不同重复的副本之间在时间上可以是连续的,也可以是不连续的,本申请实施例对此不作限定。
下面,结合图5,介绍一种随机接入前导码的跳频图样。图5中,W=2,即随机接入前导码的重复次数为2(即,重复#0和重复#1)。重复#0和重复#1之间采用伪随机跳频(如图5中虚线椭圆中的标注),作为一种示例,伪随机跳频范围可以限制在36个子载波内,伪随机跳频范围也可以不限制在36个子载波内,可以与
Figure PCTCN2018087690-appb-000093
的取值相同。
如图5所示,随机接入前导码包括6个符号组,分别为:符号组1、符号组2、符号组3、符号组4、符号组5和符号组6。每个符号组包括:1个CP、符号#0、符号#1和符号#2。#0~#35表示36个子载波。符号组1和符号组2的跳频间隔为1.25kHz,符号组2和符号组3的跳频间隔为1.25kHz,符号组3和符号组4的跳频间隔为22.5kHz,符号组4和符号组5的跳频间隔为3.75kHz,符号组5和符号组6的跳频间隔为3.75kHz。其中,符号组1至符号组2的跳频方向与符号组2至符号组3的跳频方向相反,符号组4至符号组5的跳频方向与符号组5至符号组6的跳频方向相反。
应理解,符号组1~符号组6可以分别对应于前述的第一个符号组~第六个符号组。
通过仿真,根据图5所示的跳频图案发送随机接入前导码时,序列相关性较好,能够提高估算的上行timing的精度。并且,现有的随机接入前导码可在12个子载波(即45kHz)中进行跳频,当子载波带宽由3.75kHz降低为本申请实施例的1.25kHz时,在保持45kHz的NPRACH资源的基础上,本申请实施例的随机接入前导码的跳频范围可由12个子载波增加为36个子载波。从而,图5提供的跳频图案可以支持更多的用户复用NPRACH资源进行随机接入。即,相对于现有的45kHz支持12个用户,本申请可支持36个用户复用。
以上,结合图3至图5详细说明了本申请实施例提供的方法。以下,结合图6至图9详细说明本申请实施例提供的装置。
图6是本申请实施例提供的通信设备600的示意性框图。如图6所示,该通信设备600可包括:处理单元610和发送单元620。
处理单元610,用于确定随机接入前导码。
所述处理单元610还用于,根据随机接入配置信息和预设规则确定所述随机接入前导码的频点位置。
发送单元620,用于根据所述频点位置向网络设备发送所述随机接入前导码。
其中,所述随机接入前导码包括六个符号组,所述六个符号组包括第一个符号组、第二个符号组、第三个符号组、第四个符号组、第五个符号组和第六个符号组。所述六个符号组中每相邻两个符号组的频点的间隔为跳频间隔,所述第一个符号组与所述第二个符号组之间的跳频间隔和所述第二个符号组与所述第三个符号组之间的跳频间隔相等且均为第一间隔,所述第四个符号组与所述第五个符号组之间的跳频间隔和所述第五个符号组与所述第六个符号组之间的跳频间隔相等且均为第二间隔,所述第三个符号组与所述第四个符号组之间的跳频间隔为第三间隔,所述第一间隔、所述第二间隔以及所述第三间隔均不相等且均不等于零。
应理解,该通信设备600可以对应于根据本申请实施例的通信方法300中的终端设备,该通信设备600可以包括用于执行图3中通信方法300的终端设备执行的方法的单元,并且,该通信设备600中的各单元和上述其他操作和/或功能分别为了实现图3中通信方法300的相应流程,各单元执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
图7是本申请实施例提供的网络设备700的示意性框图。如图7所示,该网络设备700可包括:处理单元710、发送单元720和接收单元730。
处理单元710,用于确定随机接入配置信息,并通过发送单元720发送给终端设备,其中,所述随机接入配置信息用于指示所述终端设备确定随机接入前导码;
接收单元730,用于接收终端设备根据所述随机接入配置信息发送的所述随机接入前导码,所述随机接入前导码是所述终端设备根据确定的频点位置发送的,所述频点位置是根据所述随机接入配置信息和预设规则确定的。
其中,所述随机接入前导码包括六个符号组,所述六个符号组包括第一个符号组、第二个符号组、第三个符号组、第四个符号组、第五个符号组和第六个符号组。所述六个符号组中每相邻两个符号组的频点的间隔为跳频间隔,所述第一个符号组与所述第二个符号组之间的跳频间隔和所述第二个符号组与所述第三个符号组之间的跳频间隔相等且均为第一间隔,所述第四个符号组与所述第五个符号组之间的跳频间隔和所述第五个符号组与所述第六个符号组之间的跳频间隔相等且均为第二间隔,所述第三个符号组与所述第四个符号组之间的跳频间隔为第三间隔,所述第一间隔、所述第二间隔以及所述第三间隔均不相等且均不等于零。
应理解,该网络设备700可以对应于根据本申请实施例的通信方法300中的网络设备,该网络设备700可以包括用于执行图3中通信方法300的网络设备执行的方法的模块,并且,该网络设备700中的各模块和上述其他操作和/或功能分别为了实现图3中通信方法300的相应流程,各模块执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
图8是本申请实施例提供的一种终端设备800的结构示意图。该终端设备800可适用于图1所示出的系统中,执行上述方法实施例中终端设备的功能。该终端设备800可以是图6所示的通信设备600的一种具体实现。为了便于说明,图8仅示出了终端设备的主要部件。如图8所示,终端设备800包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制, 执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作,如,确定随机接入前导码、随机接入前导码的频点位置等。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的预设规则等。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图8仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限定。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图8中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备800的收发单元801,例如,用于支持终端设备执行如图3部分所述的接收功能和发送功能。将具有处理功能的处理器视为终端设备800的处理单元802。如图8所示,终端设备800包括收发单元801和处理单元802。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元801中用于实现接收功能的器件视为接收单元,将收发单元801中用于实现发送功能的器件视为发送单元,即收发单元801包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器802可用于执行该存储器存储的指令,以控制收发单元801接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元801的功能可以考虑通过收发电路或者收发的专用芯片实现。
图9是本申请实施例提供的一种网络设备的结构示意图,如可以为基站的结构示意图。如图9所示,该基站可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。基站900可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)910 和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)920。所述RRU 910可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线911和射频单元912。所述RRU 910部分主要用于射频信号的收发以及射频信号与基带信号的转换。所述BBU 920部分主要用于进行基带处理,对基站进行控制等。所述RRU 910与BBU 920可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 920为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)920可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个实例中,所述BBU 920可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 920还包括存储器921和处理器922,所述存储器921用于存储必要的指令和数据。例如存储器921存储上述实施例中的预设规则。所述处理器922用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器921和处理器922可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请还提供一种通信系统,其包括前述的一个或多个网络设备,和,一个或多个终端设备。
应理解,在本申请实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机 程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而 前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种通信方法,其特征在于,包括:
    终端设备确定随机接入前导码,其中,所述随机接入前导码包括六个符号组,所述六个符号组包括第一个符号组、第二个符号组、第三个符号组、第四个符号组、第五个符号组和第六个符号组;
    所述终端设备根据随机接入配置信息和预设规则确定所述随机接入前导码的频点位置,
    所述六个符号组中每相邻两个符号组的频点的间隔为跳频间隔,所述第一个符号组与所述第二个符号组之间的跳频间隔和所述第二个符号组与所述第三个符号组之间的跳频间隔相等且均为第一间隔,所述第四个符号组与所述第五个符号组之间的跳频间隔和所述第五个符号组与所述第六个符号组之间的跳频间隔相等且均为第二间隔,所述第三个符号组与所述第四个符号组之间的跳频间隔为第三间隔,所述第一间隔为1.25kHz,所述第二间隔为3.75kHz,所述第三间隔为22.5kHz;
    所述终端设备根据所述频点位置向网络设备发送所述随机接入前导码。
  2. 如权利要求1所述的方法,其特征在于,所述第一个符号组至所述第二个符号组的跳频方向与所述第二个符号组至所述第三个符号组的跳频方向相反,所述第四个符号组至所述第五个符号组的跳频方向与所述第五个符号组至所述第六个符号组的跳频方向相反。
  3. 如权利要求1至2中任一项所述的方法,特征在于,所述随机接入配置信息包括所述随机接入前导码的重复次数W,所述随机接入前导码的W次重复所包括的6*W个符号组按照时间顺序编号为0,1,…,i,…,6W-2,6W-1,W为正整数,所述预设规则包括第一公式和第二公式;
    以及,所述终端设备根据随机接入配置信息和预设规则,确定所述随机接入前导码的频点位置,包括:
    所述终端设备根据所述随机接入配置信息确定编号为0的符号组的频点位置,并且根据所述第一公式及符号组P的编号i确定所述符号组P的频点位置,以及根据所述第二公式及符号组Q的编号i确定所述符号组Q的频点位置;
    其中,所述符号组P为所述6*W个符号组中编号满足i>0且imod6=0的符号组,所述符号组Q为所述6*W个符号组中编号满足i>0且imod6≠0的符号组,mod表示取余。
  4. 根据权利要求3所述的方法,其特征在于,所述第一公式与所述编号为0的符号组的频点位置以及由编号i和伪随机序列所确定的函数相关;或者,所述第一公式与所述编号为i-6的符号组的频点位置以及由编号i和伪随机序列所确定的函数相关;
    其中,所述编号i为所述符号组P的编号。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第二公式与编号为i-1的符号组的频点位置以及编号为i的符号组相对于编号为i-1的符号组的频点位置间隔和跳频方向相关,其中,所述编号i为所述符号组Q的编号。
  6. 如权利要求3至5中任一项所述的方法,其特征在于,所述预设规则包括公式一 或公式二:
    公式一:
    Figure PCTCN2018087690-appb-100001
    公式二:
    Figure PCTCN2018087690-appb-100002
    其中,
    Figure PCTCN2018087690-appb-100003
    为编号为i的符号组的频点位置,f(i/6)是根据符号组的编号i、
    Figure PCTCN2018087690-appb-100004
    和伪随机序列确定的函数,
    Figure PCTCN2018087690-appb-100005
    为随机接入前导码的传输限制,
    Figure PCTCN2018087690-appb-100006
    表示向下取整,
    Figure PCTCN2018087690-appb-100007
    Figure PCTCN2018087690-appb-100008
  7. 一种通信方法,其特征在于,包括:
    网络设备确定随机接入配置信息并发送给终端设备,其中,所述随机接入配置信息用于指示所述终端设备确定随机接入前导码,所述随机接入前导码包括六个符号组,所述六个符号组包括第一个符号组、第二个符号组、第三个符号组、第四个符号组、第五个符号组和第六个符号组;
    所述网络设备接收所述终端设备根据所述随机接入配置信息发送的所述随机接入前导码,所述随机接入前导码是所述终端设备根据确定的频点位置发送的,所述频点位置是根据所述随机接入配置信息和预设规则确定的,所述六个符号组中每相邻两个符号组的频点的间隔为跳频间隔,所述第一个符号组与所述第二个符号组之间的跳频间隔和所述第二个符号组与所述第三个符号组之间的跳频间隔相等且均为第一间隔,所述第四个符号组与所述第五个符号组之间的跳频间隔和所述第五个符号组与所述第六个符号组之间的跳频间隔相等且均为第二间隔,所述第三个符号组与所述第四个符号组之间的跳频间隔为第三间隔,所述第一间隔为1.25kHz,所述第二间隔为3.75kHz,所述第三间隔为22.5kHz。
  8. 如权利要求7所述的方法,其特征在于,所述第一个符号组至所述第二个符号组的跳频方向与所述第二个符号组至所述第三个符号组的跳频方向相反,所述第四个符号组至所述第五个符号组的跳频方向与所述第五个符号组至所述第六个符号组的跳频方向相 反。
  9. 如权利要求7至8中任一项所述的方法,特征在于,所述随机接入配置信息包括所述随机接入前导码的重复次数W,所述随机接入前导码的W次重复所包括的6*W个符号组按照时间顺序编号为0,1,…,i,…,6W-2,6W-1,W为正整数,所述随机接入配置信息还用于确定编号为0的符号组的频点位置;
    所述预设规则包括第一公式和第二公式,所述第一公式及符号组P的编号i用于确定所述符号组P的频点位置,所述第二公式及符号组Q的编号i用于确定所述符号组Q的频点位置,其中,所述符号组P为所述6*W个符号组中编号满足i>0且imod6=0的符号组,所述符号组Q为所述6*W个符号组中编号满足i>0且imod6≠0的符号组,mod表示取余。
  10. 根据权利要求9所述的方法,其特征在于,所述第一公式与所述编号为0的符号组的频点位置以及由编号i和伪随机序列所确定的函数相关;或者,所述第一公式与所述编号为i-6的符号组的频点位置以及由编号i和伪随机序列所确定的函数相关;
    其中,所述编号i为所述符号组P的编号。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第二公式与编号为i-1的符号组的频点位置以及编号为i的符号组相对于编号为i-1的符号组的频点位置间隔和跳频方向相关,其中,所述编号i为所述符号组Q的编号。
  12. 如权利要求9至11中任一项所述的方法,其特征在于,其特征在于,所述预设规则包括公式一或公式二:
    公式一:
    Figure PCTCN2018087690-appb-100009
    公式二:
    Figure PCTCN2018087690-appb-100010
    其中,
    Figure PCTCN2018087690-appb-100011
    为编号为i的符号组的频点位置,f(i/6)是根据符号组的编号i、
    Figure PCTCN2018087690-appb-100012
    和 伪随机序列确定的函数,
    Figure PCTCN2018087690-appb-100013
    为随机接入前导码的传输限制,
    Figure PCTCN2018087690-appb-100014
    表示向下取整,
    Figure PCTCN2018087690-appb-100015
    Figure PCTCN2018087690-appb-100016
  13. 一种通信设备,其特征在于,包括:
    处理单元,用于确定随机接入前导码,其中,所述随机接入前导码包括六个符号组,所述六个符号组包括第一个符号组、第二个符号组、第三个符号组、第四个符号组、第五个符号组和第六个符号组;
    所述处理单元,还用于根据随机接入配置信息和预设规则确定所述随机接入前导码的频点位置,
    所述六个符号组中每相邻两个符号组的频点的间隔为跳频间隔,所述第一个符号组与所述第二个符号组之间的跳频间隔和所述第二个符号组与所述第三个符号组之间的跳频间隔相等且均为第一间隔,所述第四个符号组与所述第五个符号组之间的跳频间隔和所述第五个符号组与所述第六个符号组之间的跳频间隔相等且均为第二间隔,所述第三个符号组与所述第四个符号组之间的跳频间隔为第三间隔,所述第一间隔为1.25kHz,所述第二间隔为3.75kHz,所述第三间隔为22.5kHz;
    发送单元,用于根据所述频点位置向网络设备发送所述随机接入前导码。
  14. 如权利要求13所述的通信设备,其特征在于,所述第一个符号组至所述第二个符号组的跳频方向与所述第二个符号组至所述第三个符号组的跳频方向相反,所述第四个符号组至所述第五个符号组的跳频方向与所述第五个符号组至所述第六个符号组的跳频方向相反。
  15. 如权利要求13至14中任一项所述的通信设备,特征在于,所述随机接入配置信息包括所述随机接入前导码的重复次数W,所述随机接入前导码的W次重复所包括的6*W个符号组按照时间顺序编号为0,1,…,i,…,6W-2,6W-1,W为正整数,所述预设规则包括第一公式和第二公式;
    以及,所述处理单元具体用于:
    所述通信设备根据所述随机接入配置信息确定编号为0的符号组的频点位置,并且根据所述第一公式及符号组P的编号i确定所述符号组P的频点位置,以及根据所述第二公式及符号组Q的编号i确定所述符号组Q的频点位置;
    其中,所述符号组P为所述6*W个符号组中编号满足i>0且imod6=0的符号组,所述符号组Q为所述6*W个符号组中编号满足i>0且imod6≠0的符号组,mod表示取余。
  16. 根据权利要求15所述的通信设备,其特征在于,所述第一公式与所述编号为0的符号组的频点位置以及由编号i和伪随机序列所确定的函数相关;或者,所述第一公式与所述编号为i-6的符号组的频点位置以及由编号i和伪随机序列所确定的函数相关;
    其中,所述编号i为所述符号组P的编号。
  17. 根据权利要求15或16所述的通信设备,其特征在于,所述第二公式与编号为i-1的符号组的频点位置以及编号为i的符号组相对于编号为i-1的符号组的频点位置间隔和跳频方向相关,其中,所述编号i为所述符号组Q的编号。
  18. 如权利要求15至17中任一项所述的通信设备,其特征在于,其特征在于,所述预设规则包括公式一或公式二:
    公式一:
    Figure PCTCN2018087690-appb-100017
    公式二:
    Figure PCTCN2018087690-appb-100018
    其中,
    Figure PCTCN2018087690-appb-100019
    为编号为i的符号组的频点位置,f(i/6)是根据符号组的编号i、
    Figure PCTCN2018087690-appb-100020
    和伪随机序列确定的函数,
    Figure PCTCN2018087690-appb-100021
    为随机接入前导码的传输限制,
    Figure PCTCN2018087690-appb-100022
    表示向下取整,
    Figure PCTCN2018087690-appb-100023
    Figure PCTCN2018087690-appb-100024
  19. 一种网络设备,其特征在于,包括:
    处理单元,用于确定随机接入配置信息,并通过所述网络设备的发送单元发送给终端设备,其中,所述随机接入配置信息用于指示所述终端设备确定随机接入前导码,所述随机接入前导码包括六个符号组,所述六个符号组包括第一个符号组、第二个符号组、第三个符号组、第四个符号组、第五个符号组和第六个符号组;
    接收单元,用于接收所述终端设备根据所述随机接入配置信息发送的所述随机接入前导码,所述随机接入前导码是所述终端设备根据确定的频点位置发送的,所述频点位置是根据随机接入配置信息和预设规则确定的,其中,所述六个符号组中每相邻两个符号组的频点的间隔为跳频间隔,所述第一个符号组与所述第二个符号组之间的跳频间隔和所述第二个符号组与所述第三个符号组之间的跳频间隔相等且均为第一间隔,所述第四个符号组与所述第五个符号组之间的跳频间隔和所述第五个符号组与所述第六个符号组之间的跳频间隔相等且均为第二间隔,所述第三个符号组与所述第四个符号组之间的跳频间隔为第三间隔,所述第一间隔为1.25kHz,所述第二间隔为3.75kHz,所述第三间隔为22.5kHz。
  20. 如权利要求19所述的网络设备,其特征在于,所述第一个符号组至所述第二个符号组的跳频方向与所述第二个符号组至所述第三个符号组的跳频方向相反,所述第四个符号组至所述第五个符号组的跳频方向与所述第五个符号组至所述第六个符号组的跳频方向相反。
  21. 如权利要求19至20中任一项所述的网络设备,特征在于,所述随机接入配置信 息包括所述随机接入前导码的重复次数W,所述随机接入前导码的W次重复所包括的6*W个符号组按照时间顺序编号为0,1,…,i,…,6W-2,6W-1,W为正整数,所述随机接入配置信息还用于确定编号为0的符号组的频点位置;
    所述预设规则包括第一公式和第二公式,所述第一公式及符号组P的编号i用于确定所述符号组P的频点位置,所述第二公式及符号组Q的编号i用于确定所述符号组Q的频点位置,其中,所述符号组P为所述6*W个符号组中编号满足i>0且imod6=0的符号组,所述符号组Q为所述6*W个符号组中编号满足i>0且imod6≠0的符号组,mod表示取余。
  22. 根据权利要求21所述的网络设备,其特征在于,所述第一公式与所述编号为0的符号组的频点位置以及由编号i和伪随机序列所确定的函数相关;或者,所述第一公式与所述编号为i-6的符号组的频点位置以及由编号i和伪随机序列所确定的函数相关;
    其中,所述编号i为所述符号组P的编号。
  23. 根据权利要求21或22所述的网络设备,其特征在于,所述第二公式与编号为i-1的符号组的频点位置以及编号为i的符号组相对于编号为i-1的符号组的频点位置间隔和跳频方向相关,其中,所述编号i为所述符号组Q的编号。
  24. 如权利要求21至23中任一项所述的网络设备,其特征在于,其特征在于,所述预设规则包括公式一或公式二:
    公式一:
    Figure PCTCN2018087690-appb-100025
    公式二:
    Figure PCTCN2018087690-appb-100026
    其中,
    Figure PCTCN2018087690-appb-100027
    为编号为i的符号组的频点位置,f(i/6)是根据符号组的编号i、
    Figure PCTCN2018087690-appb-100028
    和伪随机序列确定的函数,
    Figure PCTCN2018087690-appb-100029
    为随机接入前导码的传输限制,
    Figure PCTCN2018087690-appb-100030
    表示向下取整,
    Figure PCTCN2018087690-appb-100031
    Figure PCTCN2018087690-appb-100032
PCT/CN2018/087690 2018-05-21 2018-05-21 通信方法、通信设备和网络设备 WO2019222883A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880093533.5A CN112136300B (zh) 2018-05-21 2018-05-21 通信方法、通信设备和网络设备
PCT/CN2018/087690 WO2019222883A1 (zh) 2018-05-21 2018-05-21 通信方法、通信设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/087690 WO2019222883A1 (zh) 2018-05-21 2018-05-21 通信方法、通信设备和网络设备

Publications (1)

Publication Number Publication Date
WO2019222883A1 true WO2019222883A1 (zh) 2019-11-28

Family

ID=68616224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087690 WO2019222883A1 (zh) 2018-05-21 2018-05-21 通信方法、通信设备和网络设备

Country Status (2)

Country Link
CN (1) CN112136300B (zh)
WO (1) WO2019222883A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115378463A (zh) * 2022-10-24 2022-11-22 北京和熵通信科技有限公司 用于变周期跳频通信的跳频同步方法、装置和介质
WO2023184442A1 (zh) * 2022-03-31 2023-10-05 Oppo广东移动通信有限公司 无线通信方法、装置、设备、存储介质及程序产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106464627A (zh) * 2014-06-11 2017-02-22 瑞典爱立信有限公司 处理随机接入前导码序列
WO2017131577A1 (en) * 2016-01-29 2017-08-03 Telefonaktiebolaget Lm Ericsson (Publ) Frequency hopping for random access
WO2017160210A1 (en) * 2016-03-16 2017-09-21 Telefonaktiebolaget Lm Ericsson (Publ) Network access of a wireless device to a communications network
WO2017191522A1 (en) * 2016-05-06 2017-11-09 Telefonaktiebolaget Lm Ericsson (Publ) Preamble detection and time-of-arrival estimation for a single- tone frequency hopping random access preamble

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10291451B2 (en) * 2016-11-07 2019-05-14 Qualcomm Incorporated PRACH design for larger cell radius

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106464627A (zh) * 2014-06-11 2017-02-22 瑞典爱立信有限公司 处理随机接入前导码序列
WO2017131577A1 (en) * 2016-01-29 2017-08-03 Telefonaktiebolaget Lm Ericsson (Publ) Frequency hopping for random access
WO2017160210A1 (en) * 2016-03-16 2017-09-21 Telefonaktiebolaget Lm Ericsson (Publ) Network access of a wireless device to a communications network
WO2017191522A1 (en) * 2016-05-06 2017-11-09 Telefonaktiebolaget Lm Ericsson (Publ) Preamble detection and time-of-arrival estimation for a single- tone frequency hopping random access preamble

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023184442A1 (zh) * 2022-03-31 2023-10-05 Oppo广东移动通信有限公司 无线通信方法、装置、设备、存储介质及程序产品
CN115378463A (zh) * 2022-10-24 2022-11-22 北京和熵通信科技有限公司 用于变周期跳频通信的跳频同步方法、装置和介质

Also Published As

Publication number Publication date
CN112136300B (zh) 2022-02-08
CN112136300A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
WO2019153357A1 (zh) 通信方法、通信设备和网络设备
US11757603B2 (en) Method and device for transmitting uplink demodulation reference signal
CN111133715B (zh) Tdd模式下传输随机接入前导码的方法和设备
JP2020509630A (ja) サウンディング基準信号伝送方法、端末装置とネットワーク装置
WO2019080153A1 (zh) 无线通信方法和设备
WO2020063482A1 (zh) 传输随机接入信号的方法和装置
WO2020020360A1 (zh) 无线通信方法和设备
JP2021532654A (ja) ランダムアクセスの方法及び通信デバイス
TW201919427A (zh) 無線通訊方法、終端和網路設備
US20220255668A1 (en) Sequence-based signal transmission method and communication apparatus
WO2019222883A1 (zh) 通信方法、通信设备和网络设备
EP4040711B1 (en) Wireless communication method, network device and terminal device
CN108781472B (zh) 使用多个符号的随机接入消息传输
WO2020000299A1 (zh) 调度资源的方法、终端设备和网络设备
WO2019047182A1 (zh) 无线通信方法、网络设备和终端设备
WO2018028343A1 (zh) 传输信号的方法和装置
WO2018006741A1 (zh) 传输信号的方法和装置
US20240048419A1 (en) Sounding reference signal (srs) enhancement for multi-transmission and reception point (trp) operation
US20240048323A1 (en) Sounding reference signal (srs) enhancement for multi-transmission and reception point (trp) operation
US20240049146A1 (en) Sounding reference signal (srs) enhancement for multi-transmission and reception point (trp) operation
TW201822519A (zh) 用於解調共用參考訊號的方法、終端設備和網路設備
JP2019536338A (ja) ランダムアクセス・プリアンブル・シーケンスを送信する方法、装置、及びシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920100

Country of ref document: EP

Kind code of ref document: A1