WO2022228038A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2022228038A1
WO2022228038A1 PCT/CN2022/084927 CN2022084927W WO2022228038A1 WO 2022228038 A1 WO2022228038 A1 WO 2022228038A1 CN 2022084927 W CN2022084927 W CN 2022084927W WO 2022228038 A1 WO2022228038 A1 WO 2022228038A1
Authority
WO
WIPO (PCT)
Prior art keywords
starting
subcarrier
preamble sequence
time position
subcarriers
Prior art date
Application number
PCT/CN2022/084927
Other languages
English (en)
French (fr)
Inventor
陈莹
罗禾佳
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22794510.2A priority Critical patent/EP4319445A1/en
Publication of WO2022228038A1 publication Critical patent/WO2022228038A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method and device.
  • Satellite communication has the characteristics of wide coverage and high mobility.
  • the network equipment will introduce a large time offset and frequency offset to the preamble sequence in the process of receiving the preamble sequence from the terminal equipment, thereby introducing inter-carrier interference.
  • the terminal equipment can estimate the time offset and frequency offset introduced by transmitting the preamble sequence according to its own geographic location and ephemeris information, and perform pre-compensation.
  • inaccurate geographic location and ephemeris information, as well as frequency offset introduced by the hardware of the terminal device, etc. will also introduce frequency offset to the preamble sequence, which will increase interference between carriers.
  • the embodiments of the present application provide a communication method and apparatus, which can increase the anti-interference capability between carriers and can reduce the interference between carriers.
  • a communication method includes: acquiring resource configuration information, determining a first start time position for transmitting the first preamble sequence, and sending the first preamble sequence from the first start time position.
  • the resource configuration information is used to indicate random access resources, and the resource configuration information includes information of at least two starting time positions.
  • the first start time position is one of at least two start time positions.
  • the terminal device acquires resource configuration information, where the resource configuration information is used to indicate random access resources and includes information of at least two starting time positions.
  • the terminal device determines a first start time position for transmitting the first preamble sequence from at least two start time positions, and sends the first preamble sequence from the first start time position.
  • the preamble sequences corresponding to different frequency domain resources start to be sent at different starting time positions, which can increase the anti-interference ability between carriers and reduce the inter-carrier interference.
  • the available frequency domain resources are not reduced, which can reduce the collision of random access and ensure the success rate.
  • the random access resources may include narrowband physical random access channel (narrow band physical random access channel, NPRACH) resources or physical random access channel PRACH resources.
  • narrowband physical random access channel narrow band physical random access channel, NPRACH
  • physical random access channel PRACH physical random access channel
  • the resource configuration information may include information of at least two starting subcarriers, and the first starting subcarrier corresponding to the first preamble sequence is one of the at least two starting subcarriers. In this way, different preamble sequences can be transmitted from different starting subcarriers.
  • the first starting time position is determined according to the first starting subcarrier corresponding to the first preamble sequence.
  • the preamble sequences corresponding to different subcarriers are respectively started to be transmitted at different starting time positions, which can reduce the interference between the subcarriers.
  • the subcarriers of the random access resource may include at least two subcarrier groups, and the first start time position may be determined according to the subcarrier group to which the first start subcarrier belongs.
  • Each subcarrier group may include one or more subcarriers.
  • the first starting subcarrier corresponding to the first preamble sequence is determined according to the first starting time position.
  • the first starting time position is determined according to the frequency domain position relationship between the first starting subcarrier and the starting subcarrier of the random access resource.
  • the preamble sequences corresponding to adjacent sub-carriers are transmitted at different starting time positions, which can reduce the interference between sub-carriers.
  • the available frequency domain resources are not reduced, which can reduce the collision of random access and ensure the success. Rate.
  • the frequency domain positional relationship between the first starting subcarrier and the starting subcarrier of the random access resource includes an odd-numbered subcarrier interval, an even-numbered subcarrier interval, and an interval of 0 subcarriers.
  • the starting subcarriers spaced by an odd number of subcarriers have different starting time positions corresponding to the starting subcarriers spaced by an even number of subcarriers, and the starting subcarriers spaced by an even number of subcarriers are different from the starting subcarriers of the random access resource.
  • the starting time positions corresponding to the carriers are the same.
  • the polarization manner for transmitting the first preamble sequence is determined according to the first starting subcarrier.
  • the polarization modes may include left-handed polarization and right-handed polarization.
  • the polarization mode for transmitting the first preamble sequence is the first mode. If the first starting subcarrier belongs to the even-numbered subcarrier of the random access resource, the polarization mode for transmitting the first preamble sequence is the second mode.
  • the polarization modes may include left-handed polarization and right-handed polarization.
  • the first manner may be left-handed polarization
  • the second manner may be right-handed polarization.
  • the second manner may be left-handed polarization
  • the first manner may be right-handed polarization.
  • the polarization modes of the preamble sequences corresponding to the adjacent subcarriers are different, which can reduce the interference between the adjacent subcarriers.
  • the polarization manner for transmitting the first preamble sequence is determined according to the frequency domain positional relationship between the first starting subcarrier and the starting subcarrier of the random access resource.
  • the starting subcarriers spaced by an odd number of subcarriers and the starting subcarriers spaced by an even number of subcarriers have different polarization modes, and the starting subcarriers spaced by an even number of subcarriers are different from the starting subcarriers of the random access resource.
  • the corresponding polarization is the same.
  • the polarization modes of the preamble sequences corresponding to the adjacent subcarriers are different, which can reduce the interference between the adjacent subcarriers.
  • the polarization mode for transmitting the first preamble sequence is determined according to the first polarization mode, and the resource configuration information may include information of the first polarization mode, and the first polarization mode is random access The polarization mode of the preamble sequence corresponding to the starting subcarrier of the resource.
  • the polarization mode for transmitting the first preamble sequence is the same as the first polarization mode. If the frequency domain positional relationship between the first starting subcarrier and the starting subcarrier of the random access resource is an odd number of subcarriers, the polarization mode for transmitting the first preamble sequence is different from the first polarization mode. In this way, the polarization modes of the preamble sequences corresponding to the adjacent subcarriers are different, which can reduce the interference between the subcarriers.
  • obtaining the resource configuration information above may include: receiving the resource configuration information.
  • the terminal device may receive resource configuration information from the network device.
  • the resource configuration information may be received through a system message.
  • the first starting time position is determined according to the information of the first beam.
  • the first beam may be used to transmit resource configuration information.
  • the start time position can be flexibly configured, which can reduce the inter-carrier interference between beams in the cell.
  • different beams correspond to different starting time positions.
  • the cell covered by the network device may include at least two beam groups, and each beam group includes one or more beams. Beams belonging to different beam groups correspond to different starting time positions.
  • the first starting time position is determined according to information of the first cell.
  • different cells correspond to different starting time positions.
  • the cells covered by the network device may include at least two cell groups, and each cell group includes one or more cells. Cells belonging to different cell groups correspond to different starting time positions. In this way, for different cells, the start time position can be flexibly configured, which can reduce inter-carrier interference between cells.
  • the communication method provided by the first aspect may further include: determining a first period for transmitting the first preamble sequence.
  • preamble sequences corresponding to different starting sub-carriers eg, adjacent starting sub-carriers
  • the communication method provided by the first aspect may further include: determining a first period for transmitting the first preamble sequence.
  • the corresponding starting time positions between at least two periods may be different.
  • the preamble sequences corresponding to different starting subcarriers can be transmitted at different starting time positions in different periods.
  • different starting subcarriers may be adjacent in the frequency domain, and the available frequency domain resources are not reduced, which can reduce the collision of random access and ensure the success rate.
  • a communication method includes: acquiring resource configuration information, determining a first start time position for transmitting the first preamble sequence, and receiving the first preamble sequence from the first start time position.
  • the resource configuration information is used to indicate random access resources, and the resource configuration information includes information of at least two starting time positions.
  • the first start time position is one of at least two start time positions.
  • the resource configuration information may include information of at least two starting subcarriers, and the first starting subcarrier corresponding to the first preamble sequence is one of the at least two starting subcarriers.
  • the first starting time position is determined according to the first starting subcarrier corresponding to the first preamble sequence.
  • the first starting subcarrier corresponding to the first preamble sequence is determined according to the first starting time position.
  • the first starting time position is determined according to the frequency domain position relationship between the first starting subcarrier and the starting subcarrier of the random access resource.
  • the first starting time position is determined according to the information of the first beam, and the first beam can be used to transmit resource configuration information.
  • the polarization manner for transmitting the first preamble sequence is determined according to the first starting subcarrier.
  • the polarization manner for transmitting the first preamble sequence is determined according to the frequency domain positional relationship between the first starting subcarrier and the starting subcarrier of the random access resource.
  • the polarization mode for transmitting the first preamble sequence is determined according to the first polarization mode, and the resource configuration information may include information of the first polarization mode, and the first polarization mode is random access The polarization mode of the preamble sequence corresponding to the starting subcarrier of the resource.
  • the communication method described in the second aspect may further include: sending resource configuration information.
  • resource configuration information may be configured for the terminal device through a system message.
  • the resource configuration information may be acquired by the network device and sent to the terminal device.
  • a communication device in a third aspect, includes: a processing module and a transceiver module.
  • the processing module is used to obtain resource configuration information.
  • the resource configuration information is used to indicate random access resources, and the resource configuration information includes information of at least two starting time positions.
  • the processing module is further configured to determine the first start time position for transmitting the first preamble sequence.
  • the first starting time position is one of at least two starting time positions.
  • the transceiver module is used for sending the first preamble sequence from the first start time position.
  • the resource configuration information may include information of at least two starting subcarriers, and the first starting subcarrier corresponding to the first preamble sequence is one of the at least two starting subcarriers.
  • the first starting time position is determined according to the first starting subcarrier corresponding to the first preamble sequence.
  • the first starting subcarrier corresponding to the first preamble sequence is determined according to the first starting time position.
  • the first starting time position is determined according to the frequency domain position relationship between the first starting subcarrier and the starting subcarrier of the random access resource.
  • the polarization manner for transmitting the first preamble sequence is determined according to the first starting subcarrier.
  • the polarization manner for transmitting the first preamble sequence is determined according to the frequency domain positional relationship between the first starting subcarrier and the starting subcarrier of the random access resource.
  • the polarization mode for transmitting the first preamble sequence is determined according to the first polarization mode, and the resource configuration information may include information of the first polarization mode, and the first polarization mode is random access The polarization mode of the preamble sequence corresponding to the starting subcarrier of the resource.
  • the transceiver module is further configured to receive resource configuration information.
  • the first starting time position is determined according to the information of the first beam.
  • the first beam can be used to transmit resource configuration information.
  • the transceiver module described in the third aspect may include a receiving module and a sending module.
  • the receiving module is used for receiving data and/or signaling from the network device;
  • the sending module is used for sending data and/or signaling to the network device.
  • This application does not specifically limit the specific implementation manner of the transceiver module.
  • the communication device of the third aspect may further include a storage module, where the storage module stores programs or instructions.
  • the processing module executes the program or the instruction
  • the communication apparatus described in the third aspect can execute the method described in the first aspect.
  • the communication device described in the third aspect may be a terminal device, or may be a chip (system) or other components or components that can be provided in the terminal device, which is not limited in this application.
  • a communication device in a fourth aspect, includes: a processing module and a transceiver module.
  • the processing module is used to obtain resource configuration information.
  • the resource configuration information is used to indicate random access resources, and the resource configuration information includes information of at least two starting time positions.
  • the processing module is further configured to determine the first start time position for transmitting the first preamble sequence.
  • the first starting time position is one of at least two starting time positions.
  • the transceiver module is used for receiving the first preamble sequence from the first start time position.
  • the resource configuration information may include information of at least two starting subcarriers, and the first starting subcarrier corresponding to the first preamble sequence is one of the at least two starting subcarriers.
  • the first starting time position is determined according to the first starting subcarrier corresponding to the first preamble sequence.
  • the first starting subcarrier corresponding to the first preamble sequence is determined according to the first starting time position.
  • the first starting time position is determined according to the frequency domain position relationship between the first starting subcarrier and the starting subcarrier of the random access resource.
  • the first starting time position is determined according to the information of the first beam, and the first beam can be used to transmit resource configuration information.
  • the polarization manner for transmitting the first preamble sequence is determined according to the first starting subcarrier.
  • the polarization manner for transmitting the first preamble sequence is determined according to the frequency domain positional relationship between the first starting subcarrier and the starting subcarrier of the random access resource.
  • the polarization mode for transmitting the first preamble sequence is determined according to the first polarization mode, and the resource configuration information may include information of the first polarization mode, and the first polarization mode is random access The polarization mode of the preamble sequence corresponding to the starting subcarrier of the resource.
  • the transceiver module is also used for sending resource configuration information.
  • the transceiver module described in the fourth aspect may include a receiving module and a sending module.
  • the receiving module is used for receiving data and/or signaling from the terminal equipment;
  • the sending module is used for sending data and/or signaling to the terminal equipment. This application does not specifically limit the specific implementation manner of the transceiver module.
  • the communication device may further include a storage module, where the storage module stores programs or instructions.
  • the processing module executes the program or instruction
  • the communication apparatus described in the fourth aspect can execute the method described in the second aspect.
  • the communication device described in the fourth aspect may be a network device, or may be a chip (system) or other components or components that can be provided in the network device, which is not limited in this application.
  • a communication device in a fifth aspect, includes a processor coupled to a memory for storing a computer program.
  • the processor is configured to execute the computer program stored in the memory, so that the communication apparatus executes the communication method according to any one of the possible implementations of the first aspect to the second aspect.
  • the communication device described in the fifth aspect may further include a transceiver.
  • the transceiver may be a transceiver circuit or an input/output port.
  • the transceiver may be used for the communication device to communicate with other devices.
  • the input port can be used to implement the receiving function involved in the first to second aspects
  • the output port can be used to implement the sending function involved in the first aspect to the second aspect.
  • the communication apparatus described in the fifth aspect may be a terminal device or a network device, or a chip or a chip system provided inside the terminal device or the network device.
  • a communication system in a sixth aspect, includes terminal equipment and network equipment.
  • a chip system in a seventh aspect, includes a logic circuit and an input/output port.
  • the logic circuit is used to implement the processing functions involved in the first aspect to the second aspect
  • the input/output port is used to implement the transceiver functions involved in the first aspect to the second aspect.
  • the input port can be used to implement the receiving function involved in the first to second aspects
  • the output port can be used to implement the sending function involved in the first aspect to the second aspect.
  • the chip system further includes a memory for storing program instructions and data for implementing the functions involved in the first aspect to the second aspect.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a computer-readable storage medium comprising: a computer program or instruction; when the computer program or instruction is run on a computer, any one of the possible implementations of the first aspect to the second aspect is described The communication method is implemented.
  • a ninth aspect provides a computer program product, comprising a computer program or instruction, when the computer program or instruction is run on a computer, the communication method described in any one of the possible implementations of the first aspect to the second aspect is enabled be executed.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the architecture of another communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a preamble sequence provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of frequency hopping of a preamble sequence provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a random access resource provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of frequency hopping of another preamble sequence provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 8 is an application schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 9 is an application schematic diagram of another communication method provided by an embodiment of the present application.
  • FIG. 10 is an application schematic diagram of another communication method provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • WiFi wireless fidelity
  • V2X vehicle-to-everything
  • D2D device-todevie
  • Communication systems Internet of Vehicles communication systems
  • 4th generation (4G) mobile communication systems such as long term evolution (LTE) systems
  • WiMAX worldwide interoperability for microwave access
  • 5th generation (5G) mobile communication systems such as new radio (NR) systems
  • 6G 6th generation
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided by the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 1 is a schematic structural diagram of a communication system to which the communication method provided by the embodiment of the present application is applied.
  • the communication system includes terminal equipment and network equipment.
  • the above-mentioned terminal equipment is a terminal that is connected to the above-mentioned communication system and has a wireless transceiver function, or a chip or a chip system that can be provided in the terminal.
  • the terminal equipment may also be referred to as User Equipment (UE), User Equipment, Access Terminal, Subscriber Unit, Subscriber Station, Mobile Station, Mobile Station (MS), Remote Station, Remote Terminal, Mobile Equipment, User terminal, terminal, terminal unit, end station, terminal device, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a wireless data card, a personal digital assistant (personal digital assistant, PDA) computer, a laptop computer (laptop computer), a tablet computer (Pad), Computer with wireless transceiver function, machine type communication (MTC) terminal, virtual reality (VR) terminal device, augmented reality (AR) terminal device, internet of things (IoT) Terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security Wireless terminals in (transportation safety), wireless terminals in smart cities, wireless terminals in smart homes (such as game consoles, smart TVs, smart speakers, smart refrigerators and fitness equipment, etc.), vehicle-mounted Terminal, RSU with terminal function.
  • MTC machine type communication
  • VR virtual reality
  • AR augmented reality
  • IoT internet of things
  • IoT internet of things
  • wireless terminals in industrial control wireless terminals in self driving
  • wireless terminals in remote medical wireless terminals in smart grid
  • the access terminal can be a cellular phone (cellular phone), a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) , a handheld device with wireless communication capabilities, a computing device or other processing device connected to a wireless modem, a wearable device, etc.
  • cellular phone cellular phone
  • cordless phone a cordless phone
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • handheld device with wireless communication capabilities a computing device or other processing device connected to a wireless modem, a wearable device, etc.
  • the terminal device in the embodiment of the present application may be an express terminal in smart logistics (for example, a device that can monitor the position of goods vehicles, a device that can monitor the temperature and humidity of goods, etc.), a wireless terminal in smart agriculture (for example, a device that can collect poultry wearable devices for animal-related data, etc.), wireless terminals in smart buildings (such as smart elevators, fire monitoring equipment, and smart meters, etc.), wireless terminals in smart medical care (such as wireless terminals that can monitor the physiological state of humans or animals) wearable devices), wireless terminals in smart transportation (such as smart buses, smart vehicles, shared bicycles, charging pile monitoring equipment, smart traffic lights, and smart monitoring and smart parking equipment, etc.), wireless terminals in smart retail (such as automatic vending machines) cargo planes, self-checkout machines, and unmanned convenience stores, etc.).
  • smart logistics for example, a device that can monitor the position of goods vehicles, a device that can monitor the temperature and humidity of goods, etc.
  • a wireless terminal in smart agriculture for example, a device that
  • the terminal device of the present application may be an on-board module, on-board module, on-board component, on-board chip or on-board unit built into the vehicle as one or more components or units.
  • a pack, on-board component, on-board chip, or on-board unit may implement the methods provided herein.
  • the above-mentioned network device is a device located on the network side of the above-mentioned communication system and has a function of wireless transmission and reception, or a chip or a chip system that can be provided in the device.
  • the network devices include but are not limited to: access points (APs) in wireless fidelity (WiFi) systems, such as home gateways, routers, servers, switches, bridges, etc., evolved Node B (evolved Node B (eNB), Radio Network Controller (RNC), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), Home Base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP) etc., it can also be 5G, such as a gNB in a new radio (NR) system, or a transmission point (TRP or TP), one
  • FIG. 1 is only a simplified schematic diagram for easy understanding, and the communication system may also include other devices, which are not shown in FIG. 1 .
  • FIG. 2 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • the network device may be mounted on the satellite.
  • the communication system shown in FIG. 1 may be the communication architecture shown in FIG. 2 .
  • the terminal device can communicate with the network device through a logical interface (eg, an air interface, which can be various types of air interfaces, such as a 5G air interface).
  • Network devices are deployed on satellites or other flight platforms (such as drones and other aircraft).
  • the communication system includes multiple network devices carried on satellites, the network devices can be connected to the network devices through logical interfaces (such as Xn interface) to communicate.
  • logical interfaces such as Xn interface
  • the above-mentioned satellites may include geostationary orbit satellites, non-geostationary orbit satellites, low orbit satellites, medium orbit satellites, geosynchronous orbit satellites, or high orbit satellites, etc., without limitation.
  • low-orbit and medium-orbit satellites can have their own motion trajectories, and generally, multiple satellites cooperate to provide communication for fixed areas.
  • High-orbit satellites are generally in a stationary state, and one or a few high-orbit satellites provide communications for a fixed area.
  • the communication system may further include a ground station, a core network element, and a data network (DN).
  • the ground station may include a network device arranged on the ground, and may perform uplink and downlink data communication based on a wireless communication protocol.
  • the ground station can be used to forward signaling (for example, non-access stratum (NAS) signaling), service data, and network equipment between the network equipment carried on the satellite and the core network elements. It communicates with the ground station through a logical interface (eg NG interface).
  • NAS non-access stratum
  • the core network element can be used to send the data of the terminal device sent by the network device to the data network.
  • the core network element can be used to implement services such as user access control, mobility management, session management, user security authentication, and charging.
  • the core network element may be composed of multiple functional units.
  • the core network element may be divided into functional entities of a control plane and a data plane.
  • the functional entities of the control plane may include an access and mobility management function (AMF), a session management function (SMF), etc.
  • the functional entities of the data plane may include a user plane function (user plane function, UPF) etc.
  • the access and mobility management unit is mainly responsible for the access authentication of user equipment, mobility management, signaling interaction between various functional network elements, etc., such as: user registration status, user connection status, user registration and access to the network, Tracking area update, cell handover user authentication and key security are managed.
  • the session management unit may also be called a session management function or a multicast/broadcast-service management function (MB-SMF) or a multicast session management network element, etc., which is not limited.
  • the session management network element is mainly used to implement user plane transmission logical channels, such as session management functions such as establishment, release and modification of a packet data unit (PDU) session.
  • PDU packet data unit
  • the user plane unit may also be referred to as a PDU session anchor, a user plane function, or a multicast/multicast user plane function (multicast/broadcast user plane fuction, MB-UPF).
  • the user plane unit can be used as the anchor point on the user plane transmission logical channel, and is mainly used to complete functions such as routing and forwarding of user plane data, such as: establishing a channel with the terminal (ie, the user plane transmission logical channel), and forwarding on the channel
  • the data packets between the terminal device and the DN are also responsible for data packet filtering, data forwarding, rate control, generation of billing information, and traffic statistics for the terminal.
  • the multicast/broadcast (MB) service controller (MB service controller) has service management functions such as group management, security management and service announcement.
  • the core network device may also include a policy control unit (policy control function, PCF), an application function (application function, AF), etc., which are not limited.
  • policy control function PCF
  • application function application function, AF
  • the above-mentioned data network can be an operator network that provides data transmission services to terminal equipment, such as an operator network that can provide IP multimedia services (IP multi-media service, IMS) to terminal equipment, etc.
  • An application server (application server, AS) may be deployed in the DN, and the application server may provide data transmission services to terminal devices.
  • the preamble sequence can be used in random access procedures.
  • the terminal device sends a preamble sequence to the network device to notify the network device that the terminal device will send a random access request to the network device.
  • the random access process may be a process of establishing an initial communication connection between the terminal device and the network device.
  • the preamble sequence includes a cyclic prefix (CP) and a symbol.
  • the preamble sequence may be transmitted in a single-tone mode based on frequency hopping in a narrowband physical random access channel NPRACH or a physical random access channel PRACH.
  • NPRACH narrowband physical random access channel
  • PRACH physical random access channel
  • the preamble sequence includes 1 CP and 5 symbols.
  • the length of the CP is 66.7us, which can support a cell coverage radius of 10km, and the length of each symbol is 266.7us. This may correspond to sub-carriers spaced at 3.75 kHz.
  • the preamble sequence includes 1 CP and 5 symbols.
  • the length of the CP is 266.7us, which can support a cell coverage radius of 40km, and the length of each symbol is 266.7us. This may correspond to sub-carriers spaced at 3.75 kHz. That is to say, if the subcarrier spacing is 3.75kHz, the length of the CP of the corresponding preamble sequence may be 66.7us or 266.7us.
  • the preamble sequence includes 1 CP and 3 symbols.
  • the length of the CP is 800us, the length of each symbol is 800us, and the CP occupies the length of one symbol. This may correspond to sub-carriers spaced at 1.25 kHz.
  • the preamble sequence can be repeated, and the number of repetitions of the preamble sequence is configurable, for example, the set of repetition times is ⁇ 1, 2, 4, 8, 16, 32, 64, 128 ⁇ .
  • the leading sequence may be repeated in units of symbol groups.
  • a preamble sequence may be composed of four symbol groups in a frequency hopping manner. The starting positions of the subcarriers of each preamble sequence are different, and the frequency hopping is also in accordance with a certain rule. For example, four symbol groups can be frequency hopped according to a pattern of a single carrier in the first stage and six sub-carriers in the second stage.
  • the first-level single-carrier mode indicates that the frequency hopping interval between two symbol groups is a single subcarrier
  • the second-level six-subcarrier mode indicates that the frequency hopping interval between two symbol groups is 6 subcarriers.
  • Frequency hopping may be limited to a contiguous set of ⁇ 12/24/36/48 ⁇ subcarriers.
  • the preamble sequence is repeated 4 times in units of symbol groups, and resources of 12 subcarriers (subcarrier 0 to subcarrier 11 ) are allocated to the preamble sequence.
  • the frequency hopping interval between symbol group 1 and symbol group 2 is a single subcarrier
  • the frequency hopping interval between symbol group 2 and symbol group 3 is 6 subcarriers
  • the frequency hopping interval between symbol group 3 and symbol group 4 is single subcarrier.
  • the frequency utilization rate of the frequency hopping of the preamble sequence is 100%, and allocating 12 subcarrier resources for the preamble sequence can ensure that the frequency hopping of the 12 preamble sequences just fills the entire frequency domain resources.
  • the information of the random access resource includes the period of the random access resource, the starting time position of each period (also called the time offset, or the starting position in the time domain), the number of subcarriers, and the starting frequency. Domain location.
  • the resources of random access are NPRACH resources.
  • the period of the NPRACH resource (nprach-Periodicity-r13) is 80 milliseconds (ms), that is, 8 system frames (system frame number (system frame number, SFN) 8-system frame number 15), that is, the starting system of the NPRACH resource
  • the frame number is an integer multiple of 8.
  • the start time position (nprach-StartTime-r13) of the NPRACH resource is 8ms, that is, the NPRACH resource starts from subframe (subframe) 8.
  • the number of subcarriers occupied by the NPRACH resource (nprach-NumSubcarriers-r13) is 36.
  • the starting frequency domain position of the NPRACH resource (nprach-SubcarrierOffset-r13) is subcarrier 12.
  • satellite communication Compared with ground communication, satellite communication has its unique advantages. For example, it can provide a wider coverage area, and satellites are not easily damaged by natural disasters or external forces, and can be used for areas such as oceans and forests that cannot be covered by ground communication networks.
  • Provide communication services to enhance the reliability of the communication system for example, to ensure that planes, trains, and terminal equipment on these transportations can obtain higher-quality communication services, provide more data transmission resources for the communication system, and increase the network speed. Therefore, a communication system that supports both ground and satellite has the advantages of wide coverage, high reliability, multiple connections, and high throughput.
  • IoT has communication characteristics such as data burst, delay insensitivity, massive links, and wide coverage.
  • 5G communication such as enhanced mobile broadband (eMBB) scenarios with long communication duration, delay-sensitive scenarios Ultra-reliable low-latency communication (URLLC) scenarios
  • eMBB enhanced mobile broadband
  • URLLC Ultra-reliable low-latency communication
  • these features of IoT can be better supported by satellite communications, and satellites can provide services for IoT terminal devices.
  • satellites can provide services for IoT terminal devices.
  • satellites can provide services for IoT terminal devices directly from satellites.
  • This application can solve the problems existing in the fusion of IoT and satellite communication.
  • the subcarrier interval of the random access resource is small, and the transmission of the preamble sequence on the adjacent frequency domain resources will cause inter-carrier interference due to the introduction of frequency offset.
  • a method of reducing available frequency hopping resources is adopted. As shown in FIG. 6 , when two adjacent preamble sequences are frequency hopping, the frequency domain is staggered by one subcarrier, which increases the ability to resist frequency offset. Although this solution solves the influence of frequency offset, the method of reducing the available frequency domain resources will reduce the number of available preamble sequences, thereby increasing the probability of random access collision. Increasing the probability of collision in a non-terrestrial (non-terrestrial, NTN) network will increase the delay of random access, thereby increasing the power consumption of the terminal device.
  • NTN non-terrestrial
  • the communication method and device provided by the present application can increase the anti-interference capability between carriers, and can reduce the interference between carriers.
  • the present application does not reduce the frequency domain resources available for the random access sequence while reducing the inter-carrier interference, does not affect the delay of the random access, and can reduce the power consumption of the terminal device.
  • FIG. 7 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the communication method can be applied to the communication between the network device and the terminal device shown in FIG. 1 and FIG. 2 .
  • the communication method includes the following steps:
  • a network device acquires resource configuration information.
  • the resource configuration information is used to indicate random access resources.
  • the resources for random access may include NPRACH resources or PRACH resources.
  • the resource configuration information may include, but is not limited to, one or more of the following: information on at least two starting time positions, information on at least two periods, information on at least two starting subcarriers, and information in a polarized manner.
  • the first polarization mode is the polarization mode of the preamble sequence corresponding to the starting subcarrier of the random access resource.
  • all of the at least two start time locations are different from each other.
  • the information of the starting time position may include, but is not limited to, one or more of the following: a time offset, an index number of a subframe, and an absolute position of the starting time.
  • the resource configuration information may include the index number of the subframe 7 in the system frame 8 and the index number of the subframe 8 in the system frame 8 .
  • the at least two starting time positions may be different subframes in the same system frame.
  • the period of the NPRACH resource (nprach-Periodicity-r13) is 640 ms, including 64 system frames.
  • the resource configuration information may include a first time offset of 21ms (subframe 1 of system frame 2) and a second time offset of 10ms (subframe 0 of system frame 1).
  • the at least two starting time positions may be different subframes in different system frames.
  • the at least two starting time positions may be the same subframe in different system frames.
  • the resource configuration information may include a first time offset of 21ms (subframe 1 of system frame 2) and a second time offset of 11ms (subframe 1 of system frame 1).
  • the resource configuration information may include the absolute position of the start time, subframe 1 of the system frame 2, and the absolute position of the start time.
  • the information for the at least two starting time positions may include a time offset and one or more differential time offsets.
  • the differential time offset is an offset relative to the time offset.
  • a new time offset can be obtained from the time offset and the differential time offset.
  • the second time offset is the sum of the first time offset of 10ms and the differential time offset of 11ms , ie 21ms.
  • the resource configuration information includes a first time offset of 10ms and a second time offset of 21ms.
  • the above description is made by taking as an example that the at least two starting time positions include two starting time positions.
  • the embodiment of the present application does not determine whether all or part of the start time positions are different subframes in the same system frame, different subframes in different system frames, or The same subframes in different system frames are limited, as long as the multiple start time positions are different from each other, which is not repeated in this embodiment of the present application.
  • all of the at least two cycles are different from one another.
  • the resource configuration information may include period 1 (ie 640ms, system frame 0 to system frame 63) and period 2 (ie 80ms, system frame 64 to system frame 67ms).
  • the starting time positions corresponding to each cycle may be different.
  • the resource configuration information may include information of at least two starting time positions and information of at least two periods.
  • period 1 may correspond to 10ms for the first start time position
  • period 2 corresponds to 9ms for the second start time position.
  • the corresponding starting time positions between at least two periods may be the same.
  • the corresponding period 1 may correspond to the starting time position of 10 ms
  • the corresponding period 2 may correspond to the starting time position of 10 ms.
  • the corresponding starting time positions between some of the at least two cycles are the same.
  • Period 1 corresponds to a start time position of 10ms
  • period 2 corresponds to a start time position of 9ms
  • period 3 corresponds to a start time position of 10ms.
  • all the starting sub-carriers in the at least two starting sub-carriers are different from each other.
  • the information of the starting subcarrier may include, but is not limited to, one or more of the following: the offset of the starting subcarrier, the index number of the starting subcarrier, and the absolute position of the starting subcarrier.
  • the resource configuration information may include the index number of the subcarrier 12 and the index number of the subcarrier 13 .
  • the offset of the starting subcarrier may be the offset of the starting subcarrier for transmitting the preamble sequence relative to the random access.
  • the offset of the starting subcarrier for the resource Assuming that the resource configuration information can include the offset 0 of the starting subcarrier and the offset 1 of the starting subcarrier, the starting subcarrier of the random access resource is the subcarrier 12, and one starting subcarrier is the subcarrier 12. Another starting sub-carrier is sub-carrier 13.
  • the information of the at least two starting subcarriers may include the starting subcarrier and one or more frequency offsets.
  • the frequency offset is an offset relative to the starting subcarrier, and a new starting subcarrier can be obtained according to the starting subcarrier and the frequency offset.
  • the resource configuration information includes that the starting subcarrier 1 is the subcarrier 12 and the frequency offset 1, the starting subcarrier 2 is the sum of the subcarrier 12 and the frequency offset 1, that is, the subcarrier 13 .
  • the resource configuration information includes the starting subcarrier 1 (ie, the subcarrier 12 ) and the starting subcarrier 2 (ie, the subcarrier 13 ).
  • the transmission of preamble sequences corresponding to different terminal equipments can be started at different starting subcarriers.
  • the preamble sequence corresponding to the terminal device 1 is transmitted on the initial subcarrier 1
  • the preamble sequence corresponding to the terminal device 2 is transmitted on the initial subcarrier 2.
  • the resource configuration information includes information of at least two starting time positions and information of at least two starting subcarriers
  • the resource configuration information includes information of at least two starting subcarriers and information of at least two periods
  • the resource configuration information includes information of at least two starting time positions, information of at least two starting subcarriers, and at least two starting subcarriers. information for two cycles.
  • the first polarization mode is the polarization mode of the preamble sequence corresponding to the initial subcarrier of the random access resource.
  • the starting subcarrier of the random access resource is the subcarrier 12
  • the resource configuration information may include the polarization mode of the subcarrier 12 .
  • the polarization modes may include left-handed polarization and right-handed polarization.
  • the polarization mode of the preamble sequence corresponding to the starting subcarrier of the random access resource may be flexibly configured according to neighboring cells or beams.
  • the resource configuration information may include information of at least two starting time positions, information of at least two starting subcarriers, information of at least two periods, and/or information of the first polarization mode, a specific example Reference may be made to the combination of the above-mentioned examples corresponding to the information of at least two starting time positions, the information of at least two starting subcarriers, the information of at least two periods, and the information of the first polarization mode respectively, and the embodiments of this application will not Repeat.
  • the resource configuration information may further include the number of subcarriers occupied by the random access resource.
  • the number of subcarriers occupied by the random access resource is 36.
  • the resource configuration information may be determined by the network device.
  • the resource configuration information may be pre-configured for the network device.
  • the terminal device acquires resource configuration information.
  • the above S702 may include: the terminal device receives resource configuration information.
  • the terminal device may receive resource configuration information from the network device.
  • the resource configuration information may be received through a system message.
  • the communication method provided by the embodiment of the present application may further include: the network device sends resource configuration information.
  • the network device may configure resource configuration information for the terminal device through a system message. That is to say, the resource configuration information may be acquired by the network device and sent to the terminal device.
  • the above S702 may include: the terminal device determines resource configuration information. That is, the resource configuration information may be determined by the terminal device.
  • the resource configuration information may be pre-configured for the terminal device.
  • the terminal device determines to transmit the first information of the first preamble sequence.
  • the first information may include, but is not limited to, one or more of the following: a first starting time position, a first starting subcarrier, and a first period.
  • the above S703 may include: the terminal device determines a first start time position for transmitting the first preamble sequence.
  • the first start time position is one of at least two start time positions.
  • the first starting time position may be one of subframe 7 or subframe 8 .
  • the first start time position may be one of 10ms or 21ms.
  • the first starting time position is determined by the terminal device according to the first starting subcarrier corresponding to the first preamble sequence.
  • the subcarriers of the random access resource include at least two subcarrier groups, and the first start time position may be determined according to the subcarrier group corresponding to the first start subcarrier.
  • Each subcarrier group includes one or more subcarriers.
  • starting subcarriers belonging to different subcarrier groups correspond to different starting time positions.
  • the at least two subcarrier groups include a first subcarrier group and a second subcarrier group.
  • the at least two start time locations include a first start time location and a second start time location.
  • the first subcarrier group corresponds to the first starting time position
  • the second subcarrier group corresponds to the second starting time position.
  • the first starting time position is the first starting time position among the at least two starting time positions; if the first starting subcarrier belongs to the second subcarrier group, the first start time position is the second start time position of the at least two start time positions.
  • the first preamble sequence and the second preamble sequence can be sent respectively at different start time positions, and the second preamble sequence and the first preamble sequence belong to preamble sequences corresponding to start subcarriers in different subcarrier groups.
  • the first starting subcarrier corresponding to the first preamble sequence belongs to the first subcarrier group
  • the second starting subcarrier corresponding to the second preamble sequence belongs to the second subcarrier group.
  • the frequency hopping manner of the second preamble sequence and the first preamble sequence may be the same.
  • the second preamble sequence and the first preamble sequence are transmitted using the same frequency hopping rule. For example, if the transmission of the second preamble sequence is adjacent to the starting subcarrier of the first preamble sequence, during the coexistence period, the subcarriers of the transmission of the second preamble sequence and the first preamble sequence are adjacent to each other, stop sending the second preamble sequence, and continue Send the first preamble sequence, or stop sending the first preamble sequence, and continue to send the second preamble sequence.
  • the following describes the grouping manner of the subcarriers of the random access resource in combination with the manner 1 to the manner 3. Take the example of dividing the subcarriers of the random access resource into two groups.
  • the grouping manner of the subcarriers of the random access resource may be pre-agreed or pre-configured between the terminal device and the network device.
  • the first subcarrier group includes the odd-numbered subcarriers of the random access resource
  • the second subcarrier group includes the even-numbered subcarriers of the random access resource
  • the subcarriers of the random access resource may be divided into two groups, the odd-numbered subcarriers are one group, and the even-numbered subcarriers are one group.
  • the subcarrier 12 is the first subcarrier
  • the subcarrier 13 is the second subcarrier
  • the subcarrier 23 is the 12th subcarrier
  • the first subcarrier group includes the subcarrier 12, the subcarrier Carrier 14, Subcarrier 16, Subcarrier 18, Subcarrier 20, Subcarrier 22.
  • the second subcarrier group includes subcarrier 13 , subcarrier 15 , subcarrier 17 , subcarrier 19 , subcarrier 21 , and subcarrier 23 . In this way, adjacent subcarriers in the frequency domain can be divided into different subcarrier groups.
  • the first subcarrier group includes even-numbered subcarriers of random access resources
  • the second subcarrier group includes odd-numbered subcarriers of random access resources.
  • the first subcarrier group may also include a starting subcarrier of the randomly accessed resource.
  • the odd-numbered sub-carriers are sub-carriers with odd-numbered indices
  • the even-numbered sub-carriers are sub-carriers with even-numbered indices.
  • the first subcarrier group may further include subcarrier 0.
  • the first subcarrier group includes subcarrier 12 , subcarrier 14 , subcarrier 16 , subcarrier 18 , subcarrier 20 , and subcarrier 22 .
  • the second subcarrier group includes subcarrier 13, subcarrier 15, subcarrier 17, subcarrier 19, subcarrier 21, and subcarrier 23. In this way, adjacent subcarriers in the frequency domain can be divided into different subcarrier groups.
  • the first subcarrier group includes even-numbered subcarriers and starting subcarriers of randomly accessed resources, and the second subcarrier group includes odd-numbered subcarriers.
  • the number of subcarriers spaced between the even-numbered subcarriers and the initial subcarriers of the random access resources is an even number
  • the number of subcarriers spaced between the odd-numbered subcarriers and the initial subcarriers of the random access resources is: odd number
  • the starting subcarrier of the random access resource is the subcarrier 12
  • the subcarrier 13 and the subcarrier 12 are separated by one subcarrier, that is, the subcarriers are separated by an odd number of subcarriers.
  • the subcarrier 14 and the subcarrier 12 are separated by 2 subcarriers, ie, the subcarriers are separated by an even number of subcarriers.
  • the subcarrier 15 and the subcarrier 12 are separated by 3 subcarriers, that is, separated by an odd number of subcarriers.
  • the first subcarrier group includes subcarrier 12 , subcarrier 14 , subcarrier 16 , subcarrier 18 , subcarrier 20 , and subcarrier 22 .
  • the second subcarrier group includes subcarrier 13 , subcarrier 15 , subcarrier 17 , subcarrier 19 , subcarrier 21 , and subcarrier 23 .
  • grouping manners of the subcarriers of the random access resources include but are not limited to the foregoing manners 1 to 3, which are not limited in this application.
  • the transmission of the first preamble sequence of the terminal device 1 can start at subframe 7 and subcarrier 14 of the system frame 8 .
  • the second starting time position for transmitting the second preamble sequence is the subcarrier of system frame 8 Frame 8.
  • the transmission of the second preamble sequence of the terminal device 2 can be started at subframe 8 and subcarrier 15 of the system frame 8 .
  • the preamble sequences corresponding to adjacent sub-carriers are transmitted at different starting time positions, which can reduce the interference between sub-carriers.
  • the available frequency domain resources are not reduced, which can reduce the collision of random access and ensure the success. Rate.
  • the first starting time position is determined by the terminal device according to the frequency domain position relationship between the first starting subcarrier and the starting subcarrier of the random access resource.
  • the frequency domain positional relationship between the first starting subcarrier and the starting subcarrier of the random access resource includes an odd-numbered subcarrier, an even-numbered subcarrier, and an interval of 0 subcarriers, and can also be determined according to a preset rule.
  • the interval of 0 subcarriers indicates that the first initial subcarrier is the initial subcarrier of the random access resource. It should be noted that, in this application, the number of spaced subcarriers between two subcarriers is the difference between the sequence numbers of the two subcarriers.
  • the embodiments of the present application do not limit the implementation of the frequency domain position relationship, and can represent the frequency domain position relationship between the first starting subcarrier and the starting subcarrier of the random access resource.
  • the starting subcarriers spaced by an odd number of subcarriers and the starting subcarriers spaced by an even number of subcarriers have different starting time positions, and the starting subcarriers spaced by an even number of subcarriers are different from the starting subcarriers of the random access resource.
  • the starting time positions corresponding to the subcarriers are the same.
  • start subcarriers spaced by an even number or 0 subcarriers correspond to the first start time position
  • start subcarriers spaced by an odd number of subcarriers correspond to the second start time position
  • the first starting time position is the first starting time position. If the frequency domain position relationship between the first starting subcarrier and the starting subcarrier of the random access resource is an even number or 0 subcarriers, the first starting time position is the first starting time position. If the frequency domain position relationship between the first starting subcarrier and the starting subcarrier of the random access resource is an odd number of subcarriers, the first starting time position is the second starting time position.
  • the starting subcarrier of the random access resource is the subcarrier 12
  • the subcarrier 13 and the subcarrier 12 are separated by one subcarrier, that is, the subcarriers are separated by an odd number of subcarriers.
  • the subcarrier 14 and the subcarrier 12 are separated by 2 subcarriers, ie, the subcarriers are separated by an even number of subcarriers.
  • the subcarrier 15 and the subcarrier 12 are separated by 3 subcarriers, that is, separated by an odd number of subcarriers.
  • the transmission of the first preamble sequence of the terminal device 1 can start at subframe 7 and subcarrier 14 of the system frame 8 .
  • the second starting time position for transmitting the second preamble sequence is the second starting time position, that is, the second starting time position.
  • the second starting time position is the subframe 8 of the system frame 8 .
  • the transmission of the second preamble sequence of the terminal device 2 can be started at subframe 8 and subcarrier 15 of the system frame 8 .
  • the preamble sequences corresponding to adjacent sub-carriers are transmitted at different starting time positions, which can reduce the interference between sub-carriers.
  • the available frequency domain resources are not reduced, which can reduce the collision of random access and ensure the success. Rate.
  • the first start time position is determined by the terminal device according to the information of the first beam.
  • the first beam may be used to transmit resource configuration information.
  • the first beam can be used for communication between the network device and the terminal device.
  • the information of the first beam may include an identifier of the beam, or an index of a synchronization signal and a physical broadcast channel block (synchronization signal and physical broadcast channel block, SSB).
  • a synchronization signal and a physical broadcast channel block synchronization signal and physical broadcast channel block, SSB.
  • the cell covered by the network device may include one or more beams.
  • the information of the beam may correspond to the information of the starting time position.
  • different beams correspond to different starting time positions.
  • the correspondence between the beam and the starting time position may be pre-configured.
  • the multiple beams include beam 1 and beam 2, the at least two starting time positions include a first starting time position and a second starting time position, beam 1 corresponds to the first starting time position, and the beam 2 corresponds to the second starting time position.
  • the first starting time position is subframe 7 of system frame 8
  • the second starting time position is subframe 8 of system frame 8
  • the first beam is beam 1
  • the first starting time position is the first starting time position. That is, subframe 7 of system frame 8.
  • the cell covered by the network device may include at least two beam groups. That is, the beams are grouped.
  • the first beam group corresponds to the first starting time position
  • the second beam group corresponds to the first starting time position.
  • each beam group includes one or more beams.
  • the first start time position is the first start time position. If the first beam belongs to the second beam group, the first starting time position is the second starting time position.
  • flexibly configuring the starting time position for different beams can reduce inter-carrier interference between beams in a cell, and can increase the anti-interference capability of preamble sequences corresponding to the same frequency domain resources between beams.
  • the terminal device may randomly select one start time position from at least two start time positions as the first start time position. In this way, intra-cell interference between beams can be reduced.
  • the first starting time position is determined by the terminal device according to information of the first cell.
  • the first cell may be a cell serving the terminal device.
  • the information of the cell may correspond to the information of the starting time position.
  • different cells correspond to different starting time positions.
  • the correspondence between the cell and the starting time position may be pre-configured.
  • the cells covered by the network device include cell 1 and cell 2, the at least two starting time positions include a first starting time position and a second starting time position, and cell 1 corresponds to the first starting time position. , and cell 2 corresponds to the second starting time position.
  • the first starting time position is subframe 7 of system frame 8
  • the second starting time position is subframe 8 of system frame 8
  • the first cell is cell 1
  • the first starting time position is the first starting time position. That is, subframe 7 of system frame 8.
  • the cells covered by the network device may include at least two cell groups. That is, the cells are grouped. The first cell group corresponds to the first starting time position, and the second cell group corresponds to the first starting time position.
  • each cell group includes one or more cells.
  • the first starting time position is the first starting time position. If the first cell belongs to the second cell group, the first starting time position is the second starting time position.
  • the start time position can be flexibly configured, which can reduce the interference between cells.
  • the terminal device may randomly select one start time position from at least two start time positions as the first start time position. In this way, inter-cell interference can be reduced.
  • the above S703 may include: the terminal device determines a first period for transmitting the first preamble sequence.
  • different periods correspond to different starting subcarriers for transmitting the first preamble sequence.
  • preamble sequences corresponding to different starting sub-carriers are transmitted in different periods, so that inter-carrier interference can be reduced.
  • the foregoing Manners 1 to 3 may be used to group the subcarriers of the randomly accessed resources.
  • the first subcarrier group includes the odd-numbered subcarriers of the random access resource
  • the second subcarrier group includes the even-numbered subcarriers of the random access resource.
  • the first period for transmitting the first preamble sequence is period 1. If the first starting subcarrier belongs to the even-numbered subcarrier of the random access resource, the first period for transmitting the first preamble sequence is period 2.
  • preamble sequences corresponding to adjacent starting subcarriers are transmitted in different periods, which can reduce inter-carrier interference.
  • the determination of the first period for transmitting the first preamble sequence may be combined with the determination of the first start time position, and the corresponding start time positions between at least two periods may be different.
  • the first preamble sequence may be transmitted at the start time position of cycle 1 at 10ms
  • the second preamble sequence may be transmitted at the start time position of cycle 2 at 9ms.
  • the preamble sequences corresponding to different starting subcarriers can be transmitted at different starting time positions in different periods.
  • different starting subcarriers may be adjacent in the frequency domain, and the available frequency domain resources are not reduced, which can reduce the collision of random access and ensure the success rate.
  • the above S703 may include: the terminal device determines the first starting subcarrier for transmitting the first preamble sequence.
  • the first starting subcarrier is one of at least two starting subcarriers.
  • the at least two starting subcarriers include subcarrier 12 and subcarrier 13
  • the first starting subcarrier may be one of subcarrier 12 or subcarrier 13 .
  • the at least two starting subcarriers include subcarrier 14 and subcarrier 15
  • the first starting subcarrier may be one of subcarrier 14 or subcarrier 15 .
  • the first starting subcarrier corresponding to the first preamble sequence is determined by the terminal device according to the first starting time position.
  • the start time position of the random access resource may include at least two start time groups, and the first start subcarrier may be determined according to the start time group corresponding to the first start time position.
  • Each start time group includes one or more start time locations.
  • start time positions belonging to different start time groups correspond to different start subcarriers.
  • the at least two start time groups include a first start time group and a second start time group.
  • Each start time group includes one or more start times.
  • the at least two starting subcarriers include a first starting subcarrier and a second starting subcarrier.
  • the first starting time group corresponds to the first starting subcarrier
  • the second starting time group corresponds to the second starting subcarrier.
  • the first starting subcarrier is the first starting subcarrier among the at least two starting subcarriers. If the first starting time position belongs to the second starting time group, the first starting subcarrier is the second starting subcarrier among the at least two starting subcarriers.
  • the time domain resources of the random access resources can be divided into two groups, subframe 0-subframe 3 is a group, and subframe 4-subframe 9 is a group.
  • the first starting time group includes subframe 0-subframe 3
  • the second starting time group includes subframe 4-subframe 9.
  • the first starting subcarrier is the subcarrier 14
  • the second starting subcarrier is the subcarrier 15 .
  • the first starting subcarrier is the first starting subcarrier, that is, the first starting subcarrier is subcarrier 14 .
  • the transmission of the first preamble sequence of the terminal device 1 can start at subframe 2 and subcarrier 14 of the system frame 8 .
  • the second starting subcarrier is the second starting subcarrier, that is, the second starting subcarrier
  • the subcarrier is subcarrier 15 .
  • the above-mentioned methods 1 to 3 may be used to group the sub-carriers of the random access resources, the first starting sub-carrier belongs to the first sub-carrier group, and the second starting sub-carrier belongs to the second sub-carrier group. Subcarrier group.
  • the first start time group corresponds to the first subcarrier group
  • the second start time group corresponds to the first subcarrier group
  • the first subcarrier group includes the odd-numbered subcarriers of the random access resource
  • the second subcarrier group includes the even-numbered subcarriers of the random access resource
  • the first starting subcarrier is the odd-numbered subcarrier of the random access resource. If the first starting time position belongs to the second starting time group, the first starting subcarrier is the even-numbered subcarrier of the random access resource.
  • the first starting time group includes subframe 0-subframe 3
  • the second starting time group includes subframe 4-subframe 9.
  • the first start subcarrier is random
  • the odd-numbered subcarrier of the access resource for example, the first starting subcarrier is subcarrier 14 (in conjunction with FIG. 10 )
  • the second starting subcarrier is the even-numbered subcarrier of the random access resource, such as the first starting subcarrier. is subcarrier 15 (in conjunction with FIG. 10 ).
  • the first starting time group includes subframe 0-subframe 3
  • the second starting time group includes subframe 4-subframe 9.
  • the first start subcarrier is randomly connected.
  • the odd-numbered subcarrier of the incoming resource for example, the first starting subcarrier is subcarrier 14 (in conjunction with FIG. 10 )
  • the third starting subcarrier for transmitting the third preamble sequence is the odd-numbered subcarrier of the random access resource, for example
  • the first starting sub-carrier is sub-carrier 16 (in conjunction with FIG. 10).
  • the starting subcarriers corresponding to the preamble sequences belonging to the same starting time group are not adjacent in the frequency domain position, but are separated by two subcarriers in the frequency domain position, and the starting subcarriers corresponding to the preamble sequences belonging to different starting time groups are not adjacent in the frequency domain position.
  • the initial subcarriers may be adjacent in the frequency domain.
  • the preamble sequences corresponding to the adjacent subcarriers in the frequency domain may start to be transmitted at different start time groups.
  • the time-staggered method is adopted to reduce the interference between the carriers.
  • the frequency domain staggering method is adopted to reduce the inter-carrier interference in the same starting time group.
  • the available frequency domain resources are not reduced, which can reduce the collision of random access and ensure the success rate.
  • the first starting subcarrier corresponding to the first preamble sequence is determined by the terminal device according to the first grouping information.
  • the first grouping information includes information of at least two cell groups and/or information of at least two beam groups.
  • each cell group includes one or more cells
  • each beam group includes one or more beams.
  • the first starting subcarrier corresponding to the first preamble sequence is determined according to information of the first cell.
  • the first starting subcarrier corresponding to the first preamble sequence is determined according to the information of the first beam.
  • the cell group or beam group where the terminal equipment is located can be determined according to the location where the terminal equipment is located.
  • the terminal device may determine the cell group or beam group in which the terminal device is located according to the relative position of the terminal device and the satellite.
  • the terminal device may determine the cell group or beam group in which it is located according to its own location.
  • the terminal device may be capable of global navigation satellite system (GNSS).
  • GNSS global navigation satellite system
  • the first grouping information may be preconfigured, or the first grouping information may be configured by the network device for the terminal device.
  • the at least two cell groups include a first cell group and a second cell group
  • the at least two beam groups include a first beam group and a second beam group.
  • the at least two starting subcarriers include a first starting subcarrier and a second starting subcarrier.
  • the sub-carriers of the random access resources can be grouped by the above-mentioned methods 1 to 3, the first starting sub-carrier belongs to the first sub-carrier group, and the second starting sub-carrier belongs to the second sub-carrier. Group.
  • the first cell group corresponds to the first subcarrier group
  • the second cell group corresponds to the first subcarrier group
  • the first beam group corresponds to the first subcarrier group
  • the second beam group corresponds to the first subcarrier group
  • the first subcarrier group includes the odd-numbered subcarriers of the random access resource
  • the second subcarrier group includes the even-numbered subcarriers of the random access resource
  • the first starting subcarrier is the odd-numbered subcarrier of the random access resource. If the first cell belongs to the second cell group, the first starting subcarrier is the even-numbered subcarrier of the random access resource.
  • the first starting subcarrier is the odd-numbered subcarrier of the random access resource. If the first beam belongs to the second beam group, the first starting subcarrier is the even-numbered subcarrier of the random access resource.
  • the starting subcarriers corresponding to the preamble sequences of the terminal equipment belonging to the same cell group or beam group are not adjacent in the frequency domain position, and are separated by two subcarriers in the frequency domain position, which can reduce interference and belong to different cell groups.
  • the starting subcarriers corresponding to the preamble sequences of the terminal equipment of the beam group may be adjacent in the frequency domain. That is to say, the terminal equipments of the preamble sequences corresponding to the adjacent subcarriers in the frequency domain are located in different regions, which can reduce the inter-carrier interference in the block or beam group.
  • the above-mentioned grouping of terminal devices according to their locations may also be used to group terminal devices in other ways, such as the capabilities of the terminal devices, and the first grouping information may include other grouping information, which will not be repeated here.
  • the first information may include a polarization manner in which the first preamble sequence is transmitted.
  • the above S703 may include: the terminal device determines a polarization manner for transmitting the first preamble sequence.
  • the polarization manner for transmitting the first preamble sequence is determined by the terminal device according to the first starting subcarrier.
  • the polarization mode for transmitting the first preamble sequence is determined according to the offset, index number, and frequency domain position of the first starting subcarrier.
  • the foregoing Manners 1 to 3 may be used to group the subcarriers of the randomly accessed resources.
  • the first subcarrier group includes the odd-numbered subcarriers of the random access resource
  • the second subcarrier group includes the even-numbered subcarriers of the random access resource.
  • the polarization mode for transmitting the first preamble sequence is the first mode. If the first starting subcarrier belongs to the even-numbered subcarrier of the random access resource, the polarization mode for transmitting the first preamble sequence is the second mode.
  • the polarization modes may include left-handed polarization and right-handed polarization.
  • the first manner may be left-handed polarization
  • the second manner may be right-handed polarization.
  • the second manner may be left-handed polarization
  • the first manner may be right-handed polarization.
  • the first mode is left-handed polarization and the second mode is right-handed polarization.
  • the first starting subcarrier for transmitting the first preamble sequence is the subcarrier 14, and the polarization modes for transmitting the first preamble sequence are all left-handed polarization.
  • the second starting subcarrier for transmitting the second preamble sequence is subcarrier 15, and the polarization modes for transmitting the second preamble sequence are all right-handed polarization.
  • the polarization mode of transmitting the first preamble sequence through subcarrier 14 is left-handed polarization
  • the polarization mode of transmitting the first preamble sequence through subcarrier 15 is right-handed polarization
  • the polarization modes of the preamble sequences corresponding to adjacent subcarriers are different.
  • the polarization mode of transmitting the first preamble sequence through subcarrier 15 is left-handed polarization
  • the polarization mode of transmitting the first preamble sequence through subcarrier 16 is right-handed polarization.
  • the polarization modes of the preamble sequences corresponding to the adjacent subcarriers are different, which can reduce the interference between the adjacent subcarriers.
  • the polarization manner for transmitting the first preamble sequence is determined by the terminal device according to the subcarriers on which the first preamble sequence is transmitted.
  • the subcarriers on which the first preamble sequence is transmitted include subcarriers at each time position where the preamble sequence is transmitted.
  • the polarization mode for transmitting the first preamble sequence at each time position is determined according to the subcarriers on which the first preamble sequence is transmitted at the corresponding time position.
  • the foregoing Manners 1 to 3 may be used to group the subcarriers of the randomly accessed resources.
  • the first subcarrier group includes the odd-numbered subcarriers of the random access resource
  • the second subcarrier group includes the even-numbered subcarriers of the random access resource.
  • the corresponding polarization mode for transmitting the first preamble sequence is the first mode; if the subcarrier belongs to the even-numbered subcarrier of the random access resource, then The corresponding polarization mode for transmitting the first preamble sequence is the second mode.
  • the first mode is left-handed polarization and the second mode is right-handed polarization.
  • the subcarrier for transmitting the first preamble sequence is subcarrier 14, and the polarization mode for transmitting the first preamble sequence at time position 1 is left-handed polarization.
  • the subcarrier for transmitting the first preamble sequence is subcarrier 15, and the polarization mode for transmitting the first preamble sequence at time position 2 is right-handed polarization. And so on, and will not be repeated here.
  • the subcarrier for transmitting the second preamble sequence is subcarrier 15, and the polarization mode for transmitting the second preamble sequence at time position 1 is right-handed polarization.
  • the subcarrier for transmitting the second preamble sequence is subcarrier 16 and the polarization mode for transmitting the second preamble sequence at time position 2 is left-handed polarization. And so on, and will not be repeated here.
  • the polarization mode of transmitting the first preamble sequence through subcarrier 14 is left-handed polarization
  • the polarization mode of transmitting the first preamble sequence through subcarrier 15 is right-handed polarization, and no longer a One more elaboration.
  • the polarization modes of the preamble sequences corresponding to adjacent subcarriers are different, which can reduce the interference between adjacent subcarriers.
  • the polarization mode for transmitting the first preamble sequence is determined by the terminal device according to the frequency domain positional relationship between the first starting subcarrier and the starting subcarrier of the random access resource. Similar to the specific implementation manner in which the first starting time position is determined according to the frequency domain position relationship between the first starting subcarrier and the starting subcarrier of the random access resource.
  • the starting subcarriers spaced by an odd number of subcarriers and the starting subcarriers spaced by an even number of subcarriers have different polarization modes, and the starting subcarriers spaced by an even number of subcarriers are different from the starting subcarriers of the random access resource.
  • the polarization modes corresponding to the carriers are the same.
  • the starting subcarriers spaced by an even number or 0 subcarriers correspond to the first manner
  • the starting subcarriers spaced apart by an odd number of subcarriers correspond to the second manner.
  • the polarization mode is the first mode. If the positional relationship in the frequency domain between the first starting subcarrier and the starting subcarrier of the random access resource is an odd number of subcarriers, the polarization mode is the second mode.
  • the polarization modes of the preamble sequences corresponding to the adjacent subcarriers are different, which can reduce the interference between the adjacent subcarriers.
  • the polarization mode for transmitting the first preamble sequence is determined by the terminal device according to the first polarization mode.
  • the first polarization mode is the polarization mode of the preamble sequence corresponding to the starting subcarrier of the random access resource.
  • the polarization mode for transmitting the first preamble sequence is the same as the first polarization mode. if the first polarization mode is left-handed polarization, the polarization mode for transmitting the first preamble sequence is left-handed polarization.
  • the polarization mode for transmitting the first preamble sequence is different from the first polarization mode. For example, if the first polarization mode is left-handed polarization, the polarization mode for transmitting the first preamble sequence is right-handed polarization.
  • the first polarization mode may be configured by the network device, so that the polarization mode of the preamble sequence corresponding to the starting subcarrier of the random access resource can be flexibly configured.
  • the above-mentioned determination of the polarization mode for transmitting the first preamble sequence, determination of the first start time position, determination of the first start subcarrier, and determination of one or more items of the first period are combined.
  • the anti-interference capability between the carriers can be further increased, the interference caused by a larger frequency offset can be eliminated, and the interference among multiple sub-carriers can be reduced.
  • the polarization mode of the preamble sequence corresponding to the subcarrier 1 is left-handed polarization
  • the start time position of the transmission preamble sequence is the start time position 1.
  • the polarization mode of the preamble sequence corresponding to the subcarrier 2 is left-handed polarization
  • the start time position of the transmission preamble sequence is the start time position 2 .
  • the polarization mode of the preamble sequence corresponding to the subcarrier 3 is right-handed polarization
  • the start time position of the transmission preamble sequence is the start time position 1 .
  • the polarization mode of the preamble sequence corresponding to subcarrier 4 is right-handed polarization
  • the start time position of the transmission preamble sequence is the start time position 2. In this way, it can be ensured that no interference will occur between the four adjacent subcarriers.
  • the method provided by the embodiment of the present application is applicable to the following situation: at a certain time position, the subcarrier transmitting the first preamble sequence is adjacent to the subcarrier transmitting the second preamble sequence, but the subcarrier transmitting the first preamble sequence is adjacent to the subcarrier transmitting the second preamble sequence.
  • the starting subcarrier of 1 is not adjacent to the starting subcarrier for transmitting the second preamble sequence, which can reduce the interference between carriers.
  • the network device determines to transmit the first information of the first preamble sequence.
  • the first information may include, but is not limited to, one or more of the following: a first starting time position, a first starting subcarrier, a first period, and a polarization mode for transmitting the first preamble sequence.
  • the above S704 may include: the network device determines a first start time position for transmitting the first preamble sequence.
  • the network device determines a first start time position for transmitting the first preamble sequence.
  • the first starting time position is determined by the network device according to the first starting subcarrier corresponding to the first preamble sequence.
  • the first starting time position is a specific implementation manner determined by the terminal device according to the first starting subcarrier corresponding to the first preamble sequence, which will not be repeated here.
  • the first starting time position is determined by the network device according to the frequency domain positional relationship between the first starting subcarrier and the starting subcarrier of the random access resource.
  • the specific implementation can refer to the above S703
  • the first starting time position is a specific implementation determined by the terminal device according to the frequency domain position relationship between the first starting subcarrier and the starting subcarrier of the random access resource, and will not be repeated here. .
  • the first starting time position is determined by the network device according to the information of the first beam.
  • the first starting time position is a specific implementation manner determined by the terminal device according to the information of the first beam, and details are not described herein again.
  • the first starting time position is determined by the network device according to information of the first cell.
  • the first starting time position is a specific implementation manner determined by the terminal device according to the information of the first cell, and details are not repeated here.
  • the above S704 may include: the network device determines a first period for transmitting the first preamble sequence.
  • the network device determines a first period for transmitting the first preamble sequence.
  • the above S704 may include: the network device determines the first starting subcarrier for transmitting the first preamble sequence.
  • the network device determines the first starting subcarrier for transmitting the first preamble sequence.
  • the first starting subcarrier corresponding to the first preamble sequence is determined by the network device according to the first starting time position.
  • the first starting subcarrier corresponding to the first preamble sequence is a specific implementation manner determined by the terminal device according to the first starting time position, and details are not repeated here.
  • the first starting subcarrier corresponding to the first preamble sequence is determined by the network device according to the first grouping information.
  • the first starting subcarrier corresponding to the first preamble sequence is a specific implementation manner determined by the terminal device according to the first grouping information, and details are not repeated here.
  • the above S704 may include: the network device determines a polarization manner for transmitting the first preamble sequence.
  • the network device determines a polarization manner for transmitting the first preamble sequence.
  • the polarization mode for transmitting the first preamble sequence is determined by the network device according to the first starting subcarrier.
  • the polarization manner for transmitting the first preamble sequence is a specific implementation manner determined by the terminal device according to the first starting subcarrier, which will not be repeated here.
  • the polarization mode for transmitting the first preamble sequence is determined by the network device according to the subcarriers on which the first preamble sequence is transmitted.
  • the polarization manner for transmitting the first preamble sequence is a specific implementation manner determined by the terminal device according to the subcarriers for transmitting the first preamble sequence, which will not be repeated here.
  • the polarization mode for transmitting the first preamble sequence is determined by the network device according to the frequency domain positional relationship between the first starting subcarrier and the starting subcarrier of the random access resource.
  • the polarization mode for transmitting the first preamble sequence is a specific implementation determined by the terminal device according to the frequency domain positional relationship between the first starting subcarrier and the starting subcarrier of the random access resource. It is not repeated here.
  • the polarization mode for transmitting the first preamble sequence is determined by the network device according to the first polarization mode.
  • the polarization manner for transmitting the first preamble sequence is a specific implementation manner determined by the terminal device according to the first polarization manner, and details are not described herein again.
  • the terminal device sends the first preamble sequence according to the first information.
  • the network device receives the first preamble sequence according to the first information.
  • the first information may include, but is not limited to, one or more of the following: a first starting time position, a first starting subcarrier, a first period, and a polarization mode for transmitting the first preamble sequence.
  • the above S705 may include: the terminal device starts to send the first preamble sequence from the first start time position.
  • the network device starts to receive the first preamble sequence from the first start time position. In this way, the terminal device sends the first preamble sequence at the first start time position, and the network device detects the first preamble sequence at the first start time position.
  • the above S705 may include: the terminal device sends the first preamble sequence in the first cycle.
  • the network device receives the first preamble sequence in the first cycle.
  • the above S705 may include: the terminal device starts to send the first preamble sequence from the first starting subcarrier.
  • the network device starts to receive the first preamble sequence from the first starting subcarrier.
  • the above S705 may include: the terminal device transmits the first preamble sequence by using the determined polarization mode for transmitting the first preamble sequence.
  • the network device receives the first preamble sequence by adopting the determined polarization mode for transmitting the first preamble sequence. In this way, the terminal device sends the first preamble sequence in a certain polarization mode, and the network device detects the first preamble sequence in a corresponding polarization mode.
  • the terminal device obtains resource configuration information, where the resource configuration information is used to indicate random access resources, and the resource configuration information may include at least two start time position information and at least two period information , one or more of the information of at least two starting subcarriers, and the information of the first polarization mode.
  • the terminal device determines the first information for transmitting the first preamble sequence according to the resource configuration information, and uses the first information to send the first preamble sequence.
  • the first information may include one or more of the following: a first starting time position, a first starting subcarrier, a first period, and a polarization mode for transmitting the first preamble sequence. In this way, the anti-interference capability between the carriers can be increased, and the inter-carrier interference can be reduced. In addition, the available frequency domain resources are not reduced, which can reduce the collision of random access and ensure the success rate.
  • the communication method shown in FIG. 7 is suitable for both the terminal equipment that supports both left-handed and right-handed polarization, and the terminal equipment that only supports left-handed polarization and only right-handed polarization, and only needs to be determined according to the above method
  • the resources in the first information that are suitable for the self-polarization mode can be sent.
  • the same method as the terminal device that supports both left-handed and right-handed polarization can be used, or only the resources corresponding to the left-handed polarization or only the resources corresponding to the right-handed polarization can be used. resource sending.
  • FIG. 11 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the communication method can be applied to the communication between the network device and the terminal device shown in FIG. 1 and FIG. 2 .
  • the communication method includes the following steps:
  • a network device acquires resource configuration information.
  • the terminal device acquires resource configuration information.
  • S1103 The terminal device determines a first start time position for transmitting the first preamble sequence.
  • the communication method provided by the embodiment of the present application may further include: the terminal device determines a first period for transmitting the first preamble sequence. And/or, the terminal device determines the first starting subcarrier for transmitting the first preamble sequence. And/or, the terminal device determines the polarization mode for transmitting the first preamble sequence.
  • the terminal device determines a first period for transmitting the first preamble sequence. And/or, the terminal device determines the first starting subcarrier for transmitting the first preamble sequence. And/or, the terminal device determines the polarization mode for transmitting the first preamble sequence.
  • the network device determines a first start time position for transmitting the first preamble sequence.
  • the communication method provided by the embodiment of the present application may further include: the terminal device determines a first period for transmitting the first preamble sequence. And/or, the terminal device determines the first starting subcarrier for transmitting the first preamble sequence. And/or, the terminal device determines the polarization mode for transmitting the first preamble sequence.
  • the terminal device determines a first period for transmitting the first preamble sequence. And/or, the terminal device determines the first starting subcarrier for transmitting the first preamble sequence. And/or, the terminal device determines the polarization mode for transmitting the first preamble sequence.
  • the terminal device starts to send the first preamble sequence from the first start time position.
  • the network device starts to receive the first preamble sequence from the first start time position.
  • the terminal device sends the first preamble sequence at the first start time position, and the network device detects the first preamble sequence at the first start time position.
  • the communication method provided by the embodiment of the present application may further include: the terminal device sends the first preamble sequence in the first cycle.
  • the network device receives the first preamble sequence in the first cycle.
  • the terminal device starts to send the first preamble sequence from the first starting subcarrier.
  • the network device starts to receive the first preamble sequence from the first starting subcarrier.
  • the terminal device transmits the first preamble sequence by using the determined polarization mode for transmitting the first preamble sequence.
  • the network device receives the first preamble sequence by adopting the determined polarization mode for transmitting the first preamble sequence.
  • the terminal device acquires resource configuration information, where the resource configuration information is used to indicate random access resources and includes information of at least two starting time positions.
  • the terminal device determines a first start time position for transmitting the first preamble sequence from at least two start time positions, and starts to send the first preamble sequence from the first start time position. In this way, by selecting the start time for sending the first preamble sequence position, so that the preamble sequences corresponding to different frequency domain resources are sent at different starting time positions, which can increase the anti-interference ability between carriers and reduce the interference between carriers.
  • the available frequency domain resources are not reduced, which can reduce the collision of random access and ensure the success rate.
  • the communication method provided by the embodiment of the present application has been described in detail above with reference to FIGS. 7-11 .
  • the communication apparatus provided by the embodiments of the present application will be described in detail below with reference to FIG. 12 to FIG. 13 .
  • FIG. 12 is a schematic structural diagram of a communication device that can be used to execute the communication method provided by the embodiment of the present application.
  • the communication apparatus 1200 may be a terminal device or a network device, or may be a chip applied in the terminal device or the network device or other components with corresponding functions.
  • the communication apparatus 1200 may include a processor 1201 and a transceiver 1203 .
  • Memory 1202 may also be included.
  • the processor 1201 is coupled with the memory 1202 and the transceiver 1203.
  • the processor 1201 can be connected through a communication bus, and the processor 1201 can also be used alone.
  • the processor 1201 is the control center of the communication device 1200, and may be a processor or a general term for multiple processing elements.
  • the processor 1201 is one or more central processing units (CPUs), may also be a specific integrated circuit (application specific integrated circuit, ASIC), or is configured to implement one or more embodiments of the present application
  • An integrated circuit such as: one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate array (field programmable gate array, FPGA).
  • the processor 1201 can execute various functions of the communication device 1200 by running or executing software programs stored in the memory 1202 and calling data stored in the memory 1202 .
  • the processor 1201 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 12 .
  • the communication apparatus 1200 may also include multiple processors, for example, the processor 1201 and the processor 1204 shown in FIG. 12 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more communication devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the memory 1202 may be read-only memory (ROM) or other type of static storage communication device that can store static information and instructions, random access memory (RAM) or other type of static storage communication device that can store information and instructions.
  • Type of dynamic storage communication device it can also be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, Optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage communication devices, or capable of carrying or storing desired program code in the form of instructions or data structures and Any other medium that can be accessed by a computer, but is not limited to this.
  • the memory 1202 may be integrated with the processor 1201, or may exist independently, and be coupled to the processor 1201 through an input/output port (not shown in FIG. 12) of the communication device 1200, which is not specifically limited in this embodiment of the present
  • the input port may be used to implement the receiving function performed by the terminal device or the network device in any of the above method embodiments
  • the output port may be used to implement the sending function performed by the terminal device or the network device in any of the above method embodiments. Function.
  • the memory 1202 is used for storing the software program for executing the solution of the present application, and the execution is controlled by the processor 1201 .
  • the processor 1201 controls the execution of the software program for executing the solution of the present application.
  • the transceiver 1203 is used for communication with other communication devices.
  • the transceiver 1203 can be used to communicate with the network device.
  • the transceiver 1203 may be used to communicate with the terminal device.
  • the transceiver 1203 may include a receiver and a transmitter (not shown separately in FIG. 12). Among them, the receiver is used to realize the receiving function, and the transmitter is used to realize the sending function.
  • the transceiver 1203 may be integrated with the processor 1201, or may exist independently, and be coupled to the processor 1201 through an input/output port (not shown in FIG. 12) of the communication device 1200, which is not specifically limited in this embodiment of the present application .
  • the structure of the communication device 1200 shown in FIG. 12 does not constitute a limitation on the communication device, and an actual communication device may include more or less components than those shown in the figure, or combine some components, or Different component arrangements.
  • the actions of the terminal device in the above steps S702, S703, S705, S1102, S1103, and S1105 can be performed by the processor 1201 in the communication apparatus 1200 shown in FIG. 12 calling the application code stored in the memory 1202 to instruct the terminal device to execute .
  • FIG. 13 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application. For convenience of explanation, FIG. 13 only shows the main components of the communication device.
  • the communication device 1300 includes a transceiver module 1301 and a processing module 1302 .
  • the communication apparatus 1300 may be a terminal device or a network device in the foregoing method embodiments.
  • the transceiver module 1301, which may also be called a transceiver unit, is used to implement the transceiver function performed by the terminal device or the network device in any of the foregoing method embodiments.
  • the transceiver module 1301 may include a receiving module and a sending module (not shown in FIG. 13 ).
  • the receiving module is used to receive data and/or signaling from other devices; the sending module is used to send data and/or signaling to other devices.
  • This application does not specifically limit the specific implementation manner of the transceiver module.
  • the transceiver module can be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the processing module 1302 may be configured to implement the processing functions performed by the terminal device or the network device in any of the foregoing method embodiments.
  • the processing module 1302 can be a processor.
  • the communication apparatus 1300 is presented in the form of dividing each functional module in an integrated manner.
  • Module herein may refer to a specific ASIC, circuit, processor and memory executing one or more software or firmware programs, integrated logic circuit, and/or other device that may provide the functions described above.
  • the communication apparatus 1300 may take the form of the communication apparatus 1200 shown in FIG. 12 .
  • the processor 1201 in the communication apparatus 1200 shown in FIG. 12 can execute the instructions by calling the computer stored in the memory 1202, so that the communication method in the above method embodiment is executed.
  • the functions/implementation process of the transceiver module 1301 and the processing module 1302 in FIG. 13 can be implemented by the processor 1201 in the communication device 1200 shown in FIG. 12 calling the computer execution instructions stored in the memory 1202.
  • the function/implementation process of the processing module 1302 in FIG. 13 can be implemented by the processor 1201 in the communication device 1200 shown in FIG. 12 calling the computer-executed instructions stored in the memory 1202, and the function of the transceiver module 1301 in FIG. 13
  • the implementation process can be implemented by the transceiver 1203 in the communication device 1200 shown in FIG. 12 .
  • the communication apparatus 1300 shown in FIG. 13 can be applied to the communication systems shown in FIG. 1 and FIG. 2 , and the terminal equipment in the communication method shown in FIG. 7 or FIG. Function.
  • the processing module 1302 is used to obtain resource configuration information.
  • the resource configuration information is used to indicate random access resources, and the resource configuration information includes information of at least two starting time positions.
  • the processing module 1302 is further configured to determine the first start time position for transmitting the first preamble sequence.
  • the first starting time position is one of at least two starting time positions.
  • the transceiver module 1301 is configured to send the first preamble sequence from the first start time position.
  • the communication apparatus 1300 may further include a storage module (not shown in FIG. 13 ), where the storage module stores programs or instructions.
  • the processing module 1302 executes the program or instruction, the communication apparatus 1300 can perform the function of the terminal device in the communication method shown in FIG. 7 or FIG. 11 .
  • the communication apparatus 1300 may be a terminal device, or may be a chip (system) or other components or components that can be provided in the terminal device, which is not limited in this application.
  • the communication apparatus 1300 shown in FIG. 13 can be applied to the communication systems shown in FIG. 1 and FIG. 2 to perform the network equipment in the communication method shown in FIG. 7 or FIG. Function.
  • the processing module 1302 is used to obtain resource configuration information.
  • the resource configuration information is used to indicate random access resources, and the resource configuration information includes information of at least two starting time positions.
  • the processing module 1302 is further configured to determine the first start time position for transmitting the first preamble sequence.
  • the first starting time position is one of at least two starting time positions.
  • the transceiver module 1301 is configured to receive the first preamble sequence from the first start time position.
  • the communication apparatus 1300 may further include a storage module (not shown in FIG. 13 ), where the storage module stores programs or instructions.
  • the processing module 1302 executes the program or the instruction, the communication apparatus 1300 can perform the function of the network device in the communication method shown in FIG. 7 or FIG. 11 .
  • the communication apparatus 1300 may be a network device, or may be a chip (system) or other components or components that can be provided in the network device, which is not limited in this application.
  • Embodiments of the present application provide a communication system.
  • the communication system includes: terminal equipment and network equipment.
  • the terminal device is configured to perform the actions of the terminal device in the foregoing method embodiments, and the specific execution method and process may refer to the foregoing method embodiments, which will not be repeated here.
  • the network device is configured to execute the actions of the network device in the foregoing method embodiments, and the specific execution method and process may refer to the foregoing method embodiments, which will not be repeated here.
  • An embodiment of the present application provides a chip system, where the chip system includes a logic circuit and an input/output port.
  • the logic circuit may be used to implement the processing function involved in the communication method provided by the embodiment of the present application, and the input/output port may be used for the transceiver function involved in the communication method provided by the embodiment of the present application.
  • the input port may be used to implement the receiving function involved in the communication method provided by the embodiment of the present application
  • the output port may be used to implement the sending function involved in the communication method provided by the embodiment of the present application.
  • the chip system further includes a memory, where the memory is used to store program instructions and data for implementing the functions involved in the communication method provided by the embodiment of the present application.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • An embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium includes a computer program or instruction, and when the computer program or instruction runs on a computer, the communication method provided by the embodiment of the present application is executed.
  • An embodiment of the present application provides a computer program product, the computer program product includes: a computer program or an instruction, when the computer program or the instruction runs on a computer, the communication method provided by the embodiment of the present application is executed.
  • processors in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware (eg, circuits), firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one means one or more, and “plurality” means two or more.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one item (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,能够增加载波间的抗干扰能力,可以降低载波间干扰。该方法包括:获取资源配置信息,确定传输第一前导序列的第一起始时间位置,从第一起始时间位置开始发送第一前导序列。其中,资源配置信息用于指示随机接入的资源,资源配置信息包括至少两个起始时间位置的信息。第一起始时间位置为至少两个起始时间位置中的一个。

Description

通信方法及装置
本申请要求于2021年04月30日提交国家知识产权局、申请号为202110486366.4、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法及装置。
背景技术
卫星通信具有覆盖范围广、高移动性等特点。在随机接入过程中,由于卫星通信的高移动性,网络设备接收来自终端设备的前导(preamble)序列的过程中,会对前导序列引入较大的时偏和频偏,从而引入载波间的干扰。
为了降低载波间的干扰,终端设备可以根据自身的地理位置和星历信息,估计传输前导序列引入的时偏和频偏,并进行预补偿。但是,地理位置和星历信息的不准确、以及终端设备的硬件引入的频率偏差等,同样会对前导序列引入频偏,会增加载波间的干扰。
发明内容
本申请实施例提供一种通信方法及装置,能够增加载波间的抗干扰能力,可以降低载波间干扰。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种通信方法。该通信方法包括:获取资源配置信息,确定传输第一前导序列的第一起始时间位置,从第一起始时间位置开始发送第一前导序列。其中,资源配置信息用于指示随机接入的资源,资源配置信息包括至少两个起始时间位置的信息。第一起始时间位置为至少两个起始时间位置中的一个。
基于第一方面所述的通信方法,终端设备获取资源配置信息,该资源配置信息用于指示随机接入的资源并包括至少两个起始时间位置的信息。终端设备从至少两个起始时间位置中确定传输第一前导序列的第一起始时间位置,从第一起始时间位置开始发送第一前导序列。如此,通过选择发送第一前导序列的起始时间位置,使不同频域资源对应的前导序列在不同的起始时间位置开始发送,可以增加载波间的抗干扰能力,降低载波间干扰。另外,未减少可利用的频域资源,可以减少随机接入的冲突,保证成功率。
可选地,随机接入的资源可以包括窄带物理随机接入信道(narrow band physical random access channel,NPRACH)的资源、或物理随机接入信道PRACH的资源。
在一种可能的设计方式中,资源配置信息可以包括至少两个起始子载波的信息,第一前导序列对应的第一起始子载波为至少两个起始子载波中的一个。如此,可以在不同的起始子载波开始传输不同的前导序列。
在一种可能的设计方式中,第一起始时间位置是根据第一前导序列对应的第一起始子载波确定的。如此,在不同的起始时间位置分别开始传输不同子载波对应的前导序列,可以降低子载波间的干扰。另外,不需要减少可利用的频域资源,可以减少随机接入的冲突,保证成功率。
可选地,随机接入的资源的子载波可以包括至少两个子载波组,可以根据第一起始子载波所属的子载波组,确定第一起始时间位置。每个子载波组可以包括一个或多个子载波。
在一种可能的设计方式中,第一前导序列对应的第一起始子载波是根据第一起始时间位置确定的。
在一种可能的设计方式中,第一起始时间位置是根据第一起始子载波与随机接入的资源的起始子载波的频域位置关系确定的。如此,在不同的起始时间位置分别开始传输相邻子载波对应的前导序列,可以降低子载波间的干扰,另外,未减少可利用的频域资源,可以减少随机接入的冲突,保证成功率。
可选地,第一起始子载波与随机接入的资源的起始子载波的频域位置关系包括间隔奇数个子载波、间隔偶数个子载波、和间隔0个子载波。
可选地,间隔奇数个子载波的起始子载波与间隔偶数个子载波的起始子载波对应的起始时间位置不同,间隔偶数个子载波的起始子载波与随机接入的资源的起始子载波对应的起始时间位置相同。
在一种可能的设计方式中,传输第一前导序列的极化方式是根据第一起始子载波确定的。
可选地,极化方式可以包括左旋极化和右旋极化。
可选地,若第一起始子载波属于随机接入的资源的第奇数个子载波,则传输第一前导序列的极化方式为第一方式。若第一起始子载波属于随机接入的资源的第偶数个子载波,则传输第一前导序列的极化方式为第二方式。
示例性地,极化方式可以包括左旋极化和右旋极化。第一方式可以为左旋极化,第二方式可以为右旋极化。或者,第二方式可以为左旋极化,第一方式可以为右旋极化。
如此,相邻的子载波对应的前导序列的极化方式不相同,可以降低相邻子载波间的干扰。
在一种可能的设计方式中,传输第一前导序列的极化方式是根据第一起始子载波与随机接入的资源的起始子载波的频域位置关系确定的。
可选地,间隔奇数个子载波的起始子载波与间隔偶数个子载波的起始子载波对应的极化方式不同,间隔偶数个子载波的起始子载波与随机接入的资源的起始子载波对应的极化方式相同。
如此,相邻的子载波对应的前导序列的极化方式不相同,可以降低相邻子载波间的干扰。
在一种可能的设计方式中,传输第一前导序列的极化方式是根据第一极化方式确定的,资源配置信息可以包括第一极化方式的信息,第一极化方式为随机接入的资源的起始子载波对应的前导序列的极化方式。
可选地,若第一起始子载波与随机接入的资源的起始子载波的频域位置关系为间隔偶数个子载波,则传输第一前导序列的极化方式与第一极化方式相同。若第一起始子载波与随机接入的资源的起始子载波的频域位置关系为间隔奇数个子载波,则传输第一前导序列的极化方式与第一极化方式不相同。如此,相邻的子载波对应的前导序列的极化方式不相同,可以降低子载波间的干扰。
在一种可能的设计方式中,上述获取资源配置信息,可以包括:接收资源配置信息。
可选地,终端设备可以接收来自网络设备的资源配置信息。例如,该资源配置信息可以是通过系统消息接收的。
在一种可能的设计方式中,第一起始时间位置是根据第一波束的信息确定的。其中,第一波束可用于传输资源配置信息。如此,针对不同的波束,灵活配置起始时间位置,可以减少小区内波束间的载波间干扰。
可选地,不同的波束对应不同的起始时间位置。
或者,可选地,网络设备覆盖的小区可以包括至少两个波束组,每个波束组中包括一个或多个波束。属于不同的波束组的波束对应不同的起始时间位置。
在一些实施方式中,第一起始时间位置是根据第一小区的信息确定的。
可选地,不同的小区对应不同的起始时间位置。
或者,可选地,网络设备覆盖的小区可以包括至少两个小区组,每个小区组中包括一个或多个小区。属于不同的小区组的小区对应不同的起始时间位置。如此,针对不同的小区,灵活配置起始时间位置,可以减少小区间的载波间干扰。
在一些实施方式中,第一方面提供的通信方法,还可以包括:确定传输第一前导序列的第一周期。如此,在不同的周期传输不同起始子载波(例如相邻的起始子载波)对应的前导序列,可以降低载波间干扰。
可选地,至少两个周期之间对应的起始时间位置可以不相同。
如此,不同的周期与不同的起始时间位置相结合,可以在不同周期的不同起始时间位置开始传输不同起始子载波(不同起始子载波之间可以相邻)对应的前导序列,可以降低载波间干扰。并且,不同起始子载波之间在频域位置可以相邻,未减少可利用的频域资源,可以减少随机接入的冲突,保证成功率。
第二方面,提供一种通信方法。该通信方法包括:获取资源配置信息,确定传输第一前导序列的第一起始时间位置,从第一起始时间位置开始接收第一前导序列。其中,资源配置信息用于指示随机接入的资源,资源配置信息包括至少两个起始时间位置的信息。第一起始时间位置为至少两个起始时间位置中的一个。
在一种可能的设计方式中,资源配置信息可以包括至少两个起始子载波的信息,第一前导序列对应的第一起始子载波为至少两个起始子载波中的一个。
在一种可能的设计方式中,第一起始时间位置是根据第一前导序列对应的第一起始子载波确定的。
在一种可能的设计方式中,第一前导序列对应的第一起始子载波是根据第一起始时间位置确定的。
在一种可能的设计方式中,第一起始时间位置是根据第一起始子载波与随机接入 的资源的起始子载波的频域位置关系确定的。
在一种可能的设计方式中,第一起始时间位置是根据第一波束的信息确定的,第一波束可用于传输资源配置信息。
在一种可能的设计方式中,传输第一前导序列的极化方式是根据第一起始子载波确定的。
在一种可能的设计方式中,传输第一前导序列的极化方式是根据第一起始子载波与随机接入的资源的起始子载波的频域位置关系确定的。
在一种可能的设计方式中,传输第一前导序列的极化方式是根据第一极化方式确定的,资源配置信息可以包括第一极化方式的信息,第一极化方式为随机接入的资源的起始子载波对应的前导序列的极化方式。
在一种可能的设计方式中,第二方面所述的通信方法,还可以包括:发送资源配置信息。
可选地,可以通过系统消息为终端设备配置资源配置信息。例如,资源配置信息可以是网络设备获取后,发送给终端设备的。
此外,第二方面所述的通信方法的技术效果可以参考第一方面所述的通信方法的技术效果,此处不再赘述。
第三方面,提供一种通信装置。该通信装置包括:处理模块和收发模块。
其中,处理模块,用于获取资源配置信息。其中,资源配置信息用于指示随机接入的资源,资源配置信息包括至少两个起始时间位置的信息。
处理模块,还用于确定传输第一前导序列的第一起始时间位置。其中,第一起始时间位置为至少两个起始时间位置中的一个。
收发模块,用于从第一起始时间位置开始发送第一前导序列。
在一种可能的设计方式中,资源配置信息可以包括至少两个起始子载波的信息,第一前导序列对应的第一起始子载波为至少两个起始子载波中的一个。
在一种可能的设计方式中,第一起始时间位置是根据第一前导序列对应的第一起始子载波确定的。
在一种可能的设计方式中,第一前导序列对应的第一起始子载波是根据第一起始时间位置确定的。
在一种可能的设计方式中,第一起始时间位置是根据第一起始子载波与随机接入的资源的起始子载波的频域位置关系确定的。
在一种可能的设计方式中,传输第一前导序列的极化方式是根据第一起始子载波确定的。
在一种可能的设计方式中,传输第一前导序列的极化方式是根据第一起始子载波与随机接入的资源的起始子载波的频域位置关系确定的。
在一种可能的设计方式中,传输第一前导序列的极化方式是根据第一极化方式确定的,资源配置信息可以包括第一极化方式的信息,第一极化方式为随机接入的资源的起始子载波对应的前导序列的极化方式。
在一种可能的设计方式中,收发模块,还用于接收资源配置信息。
在一种可能的设计方式中,第一起始时间位置是根据第一波束的信息确定的。其 中,第一波束可用于传输资源配置信息。
需要说明的是,第三方面所述的收发模块可以包括接收模块和发送模块。其中,接收模块用于接收来自网络设备的数据和/或信令;发送模块用于向网络设备发送数据和/或信令。本申请对于收发模块的具体实现方式,不做具体限定。
可选地,第三方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第三方面所述的通信装置可以执行第一方面所述的方法。
需要说明的是,第三方面所述的通信装置可以是终端设备,也可以是可设置于终端设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第三方面所述的通信装置的技术效果可以参考第一方面中任一种可能的实现方式所述的通信方法的技术效果,此处不再赘述。
第四方面,提供一种通信装置。该通信装置包括:处理模块和收发模块。
其中,处理模块,用于获取资源配置信息。其中,资源配置信息用于指示随机接入的资源,资源配置信息包括至少两个起始时间位置的信息。
处理模块,还用于确定传输第一前导序列的第一起始时间位置。其中,第一起始时间位置为至少两个起始时间位置中的一个。
收发模块,用于从第一起始时间位置开始接收第一前导序列。
在一种可能的设计方式中,资源配置信息可以包括至少两个起始子载波的信息,第一前导序列对应的第一起始子载波为至少两个起始子载波中的一个。
在一种可能的设计方式中,第一起始时间位置是根据第一前导序列对应的第一起始子载波确定的。
在一种可能的设计方式中,第一前导序列对应的第一起始子载波是根据第一起始时间位置确定的。
在一种可能的设计方式中,第一起始时间位置是根据第一起始子载波与随机接入的资源的起始子载波的频域位置关系确定的。
在一种可能的设计方式中,第一起始时间位置是根据第一波束的信息确定的,第一波束可用于传输资源配置信息。
在一种可能的设计方式中,传输第一前导序列的极化方式是根据第一起始子载波确定的。
在一种可能的设计方式中,传输第一前导序列的极化方式是根据第一起始子载波与随机接入的资源的起始子载波的频域位置关系确定的。
在一种可能的设计方式中,传输第一前导序列的极化方式是根据第一极化方式确定的,资源配置信息可以包括第一极化方式的信息,第一极化方式为随机接入的资源的起始子载波对应的前导序列的极化方式。
在一种可能的设计方式中,收发模块,还用于发送资源配置信息。
需要说明的是,第四方面所述的收发模块可以包括接收模块和发送模块。其中,接收模块用于接收来自终端设备的数据和/或信令;发送模块用于向终端设备发送数据和/或信令。本申请对于收发模块的具体实现方式,不做具体限定。
可选地,第四方面所述的通信装置还可以包括存储模块,该存储模块存储有 程序或指令。当处理模块执行该程序或指令时,使得第四方面所述的通信装置可以执行第二方面所述的方法。
需要说明的是,第四方面所述的通信装置可以是网络设备,也可以是可设置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第四方面所述的通信装置的技术效果可以参考第二方面中任一种可能的实现方式所述的通信方法的技术效果,此处不再赘述。
第五方面,提供一种通信装置。该通信装置包括:处理器,该处理器与存储器耦合,存储器用于存储计算机程序。
处理器用于执行存储器中存储的计算机程序,以使得该通信装置执行如第一方面至第二方面中任一种可能的实现方式所述的通信方法。
在一种可能的设计中,第五方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或输入/输出端口。所述收发器可以用于该通信装置与其他设备通信。
需要说明的是,输入端口可用于实现第一方面至第二方面所涉及的接收功能,输出端口可用于实现第一方面至第二方面所涉及的发送功能。
在本申请中,第五方面所述的通信装置可以为终端设备、或网络设备,或者设置于终端设备、或网络设备内部的芯片或芯片系统。
此外,第五方面所述的通信装置的技术效果可以参考第一方面至第二方面中任一种实现方式所述的通信方法的技术效果,此处不再赘述。
第六方面,提供一种通信系统。该通信系统包括终端设备和网络设备。
第七方面,提供了一种芯片系统,该芯片系统包括逻辑电路和输入/输出端口。其中,逻辑电路用于实现第一方面至第二方面所涉及的处理功能,输入/输出端口用于实现第一方面至第二方面所涉及的收发功能。具体地,输入端口可用于实现第一方面至第二方面所涉及的接收功能,输出端口可用于实现第一方面至第二方面所涉及的发送功能。
在一种可能的设计中,该芯片系统还包括存储器,该存储器用于存储实现第一方面至第二方面所涉及功能的程序指令和数据。
该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
第八方面,提供一种计算机可读存储介质,包括:计算机程序或指令;当该计算机程序或指令在计算机上运行时,使得第一方面至第二方面中任意一种可能的实现方式所述的通信方法被执行。
第九方面,提供一种计算机程序产品,包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得第一方面至第二方面中任意一种可能的实现方式所述的通信方法被执行。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的另一种通信系统的架构示意图;
图3为本申请实施例提供的一种前导序列的示意图;
图4为本申请实施例提供的一种前导序列的跳频的示意图;
图5为本申请实施例提供的随机接入的资源的示意图;
图6为本申请实施例提供的另一种前导序列的跳频的示意图;
图7为本申请实施例提供的一种通信方法的流程示意图;
图8为本申请实施例提供的一种通信方法的应用示意图;
图9为本申请实施例提供的另一种通信方法的应用示意图;
图10为本申请实施例提供的又一种通信方法的应用示意图;
图11为本申请实施例提供的另一种通信方法的流程示意图;
图12为本申请实施例提供的一种通信装置的结构示意图;
图13为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如无线保真(wireless fidelity,WiFi)系统,车到任意物体(vehicle to everything,V2X)通信系统、设备间(device-todevie,D2D)通信系统、车联网通信系统、第4代(4th generation,4G)移动通信系统,如长期演进(long term evolution,LTE)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)移动通信系统,如新空口(new radio,NR)系统,以及未来的通信系统,如第六代(6th generation,6G)移动通信系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。示例性地,图1为本申请实施例提供的通信方法所适用的一种通信系统的架构示意图。
如图1所示,该通信系统包括终端设备和网络设备。
其中,上述终端设备为接入上述通信系统,且具有无线收发功能的终端或可设置于该终端的芯片或芯片系统。该终端设备也可以称为用户设备(User Equipment,UE)、用户装置、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、远方站、远程终端、移动设备、用户终端、终端、终端单元、终端站、终端装置、无线通信设备、用户代理或用户装置。
例如,本申请的实施例中的终端设备可以是手机(mobile phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、膝上型电脑(laptop  computer)、平板电脑(Pad)、带无线收发功能的电脑、机器类型通信(machine type communication,MTC)终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、物联网(internet of things,IoT)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端(例如游戏机、智能电视、智能音箱、智能冰箱和健身器材等)、车载终端、具有终端功能的RSU。接入终端可以是蜂窝电话(cellular phone)、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备(handset)、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备等。
又例如,本申请实施例中的终端设备可以是智慧物流中的快递终端(例如可监控货物车辆位置的设备、可监控货物温湿度的设备等)、智慧农业中的无线终端(例如可收集禽畜的相关数据的可穿戴设备等)、智慧建筑中的无线终端(例如智慧电梯、消防监测设备、以及智能电表等)、智能医疗中的无线终端(例如可监测人或动物的生理状态的可穿戴设备)、智能交通中的无线终端(例如智能公交车、智能车辆、共享单车、充电桩监测设备、智能红绿灯、以及智能监控以及智能停车设备等)、智能零售中的无线终端(例如自动售货机、自助结账机、以及无人便利店等)。又例如,本申请的终端设备可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请提供的方法。
其中,上述网络设备为位于上述通信系统的网络侧,且具有无线收发功能的设备或可设置于该设备的芯片或芯片系统。该网络设备包括但不限于:无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP),如家庭网关、路由器、服务器、交换机、网桥等,演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,新空口(new radio,NR)系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)、具有基站功能的路边单元(road side unit,RSU)等。
需要说明的是,本申请实施例提供的通信方法,可以适用于图1所示的任意两个节点之间,具体实现可以参考下述方法实施例,此处不再赘述。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他设备,图1中未予以画出。图2为本申请实施例提供的另一种通信系统的架构示意 图。
示例性的,参照图2,网络设备可以搭载在卫星上,当网络设备搭载在卫星上时,图1所示的通信系统可以为图2所示的通信架构。终端设备可以通过逻辑接口(例如空口,该空口可以是各种类型的空口,例如5G空口)与网络设备进行通信。网络设备部署在卫星上或其他飞行平台上(如无人机等飞行器)另外,当通信系统中包括多个搭载在卫星上的网络设备时,网络设备与网络设备之间可以通过逻辑接口(例如Xn接口)进行通信。卫星与卫星之间存在无线链路,该无线链路可用于完成网络设备与网络设备之间的信令交互和数据传输。
上述卫星可以包括静止轨道卫星、非静止轨道卫星、低轨道卫星、中轨道卫星、地球同步轨道卫星、或高轨道卫星等,不予限制。其中,低轨道和中轨道卫星可以有自己的运动轨迹,一般由多个卫星协作对固定区域提供通信。高轨道卫星一般处于静止状态,由一个或少数几个高轨道卫星为固定的区域提供通信。
另外,上述图1至图2中,通信系统还可以包括地面站、核心网网元和数据网络(data network,DN)。其中,地面站可以包括设置在地面上的网络设备,可基于无线通信协议执行上下行数据通信。示例性地,地面站可以用于转发搭载在卫星上的网络设备与核心网网元之间的信令(例如非接入层(non-access stratum,NAS)信令)、业务数据,网络设备与地面站之间通过逻辑接口(例如NG接口)进行通信。
核心网网元可用于将网络设备发送的终端设备的数据发送给数据网络。具体地,核心网网元可以用于实现用户接入控制、移动性管理、会话管理、用户安全认证、计费等业务。核心网网元可以由多个功能单元组成,示例性地,核心网网元可以分为控制面和数据面的功能实体。控制面的功能实体可以包括接入和移动管理单元(access and mobility management function,AMF)、会话管理单元(session management function,SMF)等,数据面的功能实体可以包括用户面单元(user plane function,UPF)等。
其中,接入和移动管理单元,主要负责用户设备的接入认证、移动性管理、各个功能网元间的信令交互等,如:对用户的注册状态、用户的连接状态、用户注册入网、跟踪区更新、小区切换用户认证和密钥安全等进行管理。
其中,会话管理单元,还可以称为会话管理功能或者多播/组播业务管理功能(multicast/broadcast-service management function,MB-SMF)或者多播会话管理网元等,不予限制。会话管理网元主要用于实现用户面传输逻辑通道,如:分组数据单元(packet data unit,PDU)会话的建立、释放和更改等会话管理功能。
其中,用户面单元,还可以称为PDU会话锚点、用户面功能或者多播/组播用户面功能(multicast/broadcast user plane fuction,MB-UPF)。用户面单元可以作为用户面传输逻辑通道上的锚点,主要用于完成用户面数据的路由转发等功能,如:与终端之间建立通道(即用户面传输逻辑通道),在该通道上转发终端设备和DN之间的数据包以及负责对终端的数据报文过滤、数据转发、速率控制、生成计费信息、流量统计等。多播/组播(multicast/broadcast,MB)业务控制器(MB service controller),具有群组管理、安全管理以及业务公告等业务管理功能。
需要说明的是,核心网设备除了包括上述单元外,还可以包括策略控制单元 (policy control function,PCF)、应用功能单元(application function,AF)等,不予限制。
上述数据网络可以为向终端设备提供数据传输服务的运营商网络,如:可以为向终端设备提供IP多媒体业务(IP multi-media service,IMS)的运营商网络等。DN中可以部署有应用服务器(application server,AS),该应用服务器可以向终端设备提供数据传输服务。
通信方法另外,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为了使得本申请实施例更加清楚,以下对与本申请实施例相关的部分内容以及概念作统一介绍。
1、前导序列
前导序列可应用于随机接入过程中。示例性地,终端设备向网络设备发送前导序列,以通知网络设备,终端设备将要向网络设备发送随机接入请求。其中,随机接入过程可以是终端设备与网络设备建立初始通信连接的过程。
示例性地,前导序列包括循环前缀(cyclic prefix,CP)和符号。其中,前导序列可在窄带物理随机接入信道NPRACH或物理随机接入信道PRACH中基于跳频以单载波(single-tone)的方式传输。当子载波的间隔不同时,前导序列的格式可能不同,例如CP的长度、符号的数量、和/或符号的长度可能不相同。
例如,结合图3中的(a),前导序列包括1个CP和5个符号。其中,CP的长度为66.7us,可支持10km的小区覆盖半径,每个符号的长度为266.7us。这可对应于间隔为3.75kHz的子载波。
又例如,结合图3中的(b),前导序列包括1个CP和5个符号。其中,CP的长度为266.7us,可支持40km的小区覆盖半径,每个符号的长度为266.7us。这可对应于间隔为3.75kHz的子载波。也就是说,若子载波间隔为3.75kHz,对应的前导序列的CP的长度可以为66.7us或266.7us。
又例如,结合图3中的(c),前导序列包括1个CP和3个符号。其中,CP的长度为800us,每个符号的长度为800us,CP占用一个符号的长度。这可对应于间隔为1.25kHz的子载波。
2、前导序列的跳频
为了增强覆盖,可重复前导序列,前导序列的重复次数是可配置的,例如重复次数的集合为{1,2,4,8,16,32,64,128}。其中,可以符号组为单位重复前导序列。一个前导序列可以由四个符号组按照跳频的方式组成,每个前导序列的子载波起始位置不同,且跳频也是按照一定规律的。例如,四个符号组可以按照一级单载波和二级六个子载波的模式进行跳频。其中,一级单载波模表示两个符号组之间的跳频间隔为单个子载波,二级六个子载波模式表示两个符号组之间的跳频间隔为6个子载波。跳频可以被限制在一个连续的{12/24/36/48}个子载波的集合内。
结合图4,前导序列以符号组为单位重复4次数,为前导序列分配12个子载波(子载波0至子载波11)的资源。符号组1和符号组2之间的跳频间隔为单个子载波,符号组2和符号组3之间的跳频间隔为6个子载波,符号组3和符号组4之间的 跳频间隔为单个子载波。前导序列的跳频的频率利用率是100%,为前导序列分配12个子载波的资源,可以保证有12个前导序列的跳频正好填满整个频域资源。
3、随机接入的资源
随机接入的资源的信息包括随机接入的资源的周期、每个周期的起始时间位置(也可称为时间偏移量、或时域起始位置)、子载波的数量和起始频域位置。
结合图5,以随机接入的资源为NPRACH资源为例。NPRACH资源的周期(nprach-Periodicity-r13)为80毫秒(ms),即8个系统帧(系统帧号(system frame number,SFN)8-系统帧号15),即NPRACH资源的起始的系统帧号为8的整数倍。NPRACH资源的起始时间位置(nprach-StartTime-r13)为8ms,即从子帧(subframe)8开始为NPRACH资源。NPRACH资源占用的子载波的数量(nprach-NumSubcarriers-r13)为36个。NPRACH资源的起始频域位置(nprach-SubcarrierOffset-r13)为子载波12。
由于卫星通信相比地面通信有其独有的优点,例如,可以提供更广的覆盖范围,且卫星不容易受到自然灾害或者外力的破坏,可以为海洋,森林等一些地面通信网络不能覆盖的地区提供通信服务,从而增强通信系统的可靠性,例如,确保飞机,火车,以及这些交通上的终端设备可以获得更加优质的通信服务,为通信系统提供更多数据传输的资源,提升网络速率。因此,同时支持地面与卫星的通信系统存在广覆盖,高可靠性,多连接,高吞吐量等优势。
IoT具有数据突发、延迟不敏感、海量链接、广覆盖等通信特点,与5G通信的其他通信场景相比(例如通信持续时间长的增强移动宽带(enhanced mobile broadband,eMBB)场景、延迟敏感的超可靠低时延通信(ultra reliable low latency communication,URLLC)场景),IoT的这些特点能够更好的被卫星通信所支持,可以由卫星为IoT终端设备提供服务。但是与地面通信相比,直接由卫星为IoT终端设备提供服务,需要根据卫星的高移动性,对现有的IoT/NB IoT标准做一定的增强,才能满足相关的通信要求。本申请能够解决IoT与卫星通信融合存在的问题。
例如,随机接入的资源的子载波间隔较小,在相邻频域资源上传输前导序列会由于频偏的引入而引起载波间干扰。
现有技术中,为了减少载波间干扰,采用减少可用跳频资源的方式。如图6所示,相邻的两个前导序列在跳频时,频域错开一个子载波,增加抗频偏的能力。虽然该方案解决了频偏的影响,但是减少可利用的频域资源的方式,会减少可用的前导序列的数量,从而会增加随机接入的冲突的概率。非地面(non-terrestrial,NTN)网络中增加冲突的概率,会导致增加随机接入的延迟,进而增加终端设备的功耗开销。
本申请提供的通信方法和装置能够增加载波间的抗干扰能力,可以减少载波间干扰。另外,本申请在减少载波间干扰的同时,不减少随机接入序列可利用的频域资源,不影响随机接入的延迟,可降低终端设备的功耗。
下面将结合图7-图11对本申请实施例提供的通信方法进行具体阐述。
示例性地,图7为本申请实施例提供的一种通信方法的流程示意图。该通信方法可以适用于图1、和图2所示的网络设备与终端设备之间的通信。
如图7所示,该通信方法包括如下步骤:
S701,网络设备获取资源配置信息。
示例性地,资源配置信息用于指示随机接入的资源。例如,随机接入的资源可以包括NPRACH资源、或PRACH资源。
在一些实施例中,资源配置信息可以包括但不限于如下一项或多项:至少两个起始时间位置的信息、至少两个周期的信息、至少两个起始子载波的信息、和第一极化方式的信息。其中,第一极化方式为随机接入的资源的起始子载波对应的前导序列的极化方式。
一些实施例中,至少两个起始时间位置中的所有的起始时间位置之间互不相同。
如此,可以在不同起始时间位置开始传输不同的前导序列。
示例性地,起始时间位置的信息可以包括但不限于如下一项或多项:时间偏移量、子帧的索引号、和起始时间的绝对位置。
例如,如图5所示,以起始时间位置的信息是子帧的索引号为例,资源配置信息可以包括系统帧8中子帧7的索引号和系统帧8中子帧8的索引号。
也就是说,至少两个起始时间位置可以为同一个系统帧中的不同子帧。
又例如,如图8所示,以起始时间位置的信息是时间偏移量为例,NPRACH资源的周期(nprach-Periodicity-r13)为640ms,包括64个系统帧。资源配置信息可以包括第一时间偏移量21ms(系统帧2的子帧1)、第二时间偏移量10ms(系统帧1的子帧0)。
也就是说,至少两个起始时间位置可以为不同系统帧中的不同子帧。
类似地,至少两个起始时间位置可以为不同系统帧中的相同子帧。例如,结合图8,资源配置信息可以包括第一时间偏移量21ms(系统帧2的子帧1)、和第二时间偏移量11ms(系统帧1的子帧1)。
又例如,如图8所示,以起始时间位置的信息是起始时间的绝对位置为例,资源配置信息可以包括起始时间的绝对位置系统帧2的子帧1、起始时间的绝对位置系统帧1的子帧0。
或者,至少两个起始时间位置的信息可以包括时间偏移量和一个或多个差分时间偏移量。其中,差分时间偏移量为相对于时间偏移量的偏移量。根据时间偏移量和差分时间偏移量可以获得新的时间偏移量。
例如,结合图8,假设资源配置信息包括第一时间偏移量10ms和差分时间偏移量11ms,则第二时间偏移量为第一时间偏移量10ms与差分时间偏移量11ms的和,即21ms。相当于资源配置信息包括第一时间偏移量10ms和第二时间偏移量21ms。
需要说明的是,上述以至少两个起始时间位置中包括两个起始时间位置为例进行阐述。当起始时间位置的数量为三个或大于三个时,本申请实施例不对全部或部分起始时间位置是否为同一个系统帧中的不同子帧、不同系统帧中的不同子帧、或不同系统帧中的相同子帧进行限定,满足多个起始时间位置之间互不相同即可,本申请实施例不再一一赘述。
一些实施例中,至少两个周期中所有周期之间互不相同。
例如,如图9所示,资源配置信息可以包括周期1(即640ms,系统帧0至系统帧63)和周期2(即80ms,系统帧64至系统帧67ms)。
可选地,每个周期对应的起始时间位置可以不相同。资源配置信息可以包括至少两个起始时间位置的信息和至少两个周期的信息。
例如,周期1可以对应第一个起始时间位置10ms,周期2对应第二个起始时间位置9ms。
或者,可选地,至少两个周期之间对应的起始时间位置可以相同。
例如,结合图9,周期1对应可以对应起始时间位置10ms,周期2对应可以对应起始时间位置10ms。
或者,可选地,至少两个周期中的部分周期之间对应的起始时间位置相同。
例如,至少两个周期包括周期1、周期2和周期3,周期1对应可以对应起始时间位置10ms,周期2对应可以对应起始时间位置9ms,周期3对应可以对应起始时间位置10ms。
一些实施例中,至少两个起始子载波中的所有的起始子载波之间互不相同。
如此,可以在不同的起始子载波开始传输不同的前导序列。
示例性地,起始子载波的信息可以包括但不限于如下一项或多项:起始子载波的偏移量、起始子载波的索引号、和起始子载波的绝对位置。
例如,结合图5,以起始子载波的信息是起始子载波的索引号或绝对位置为例,资源配置信息可以包括子载波12的索引号和子载波13的索引号。
又例如,结合图5,以起始子载波的信息是起始子载波的偏移量为例,起始子载波的偏移量可以是传输前导序列的起始子载波相对于随机接入的资源的起始子载波的偏移量。假设资源配置信息可以包括起始子载波的偏移量0和起始子载波的偏移量1,随机接入的资源的起始子载波为子载波12,则一个起始子载波为子载波12,另一个起始子载波为子载波13。
或者,至少两个起始子载波的信息可以包括起始子载波和一个或多个频率偏移量。其中,频率偏移量为相对于起始子载波的偏移量,根据起始子载波和频率偏移量可以获得新的起始子载波。
例如,结合图5,假设资源配置信息包括起始子载波1为子载波12和频率偏移量1,则起始子载波2为子载波12与频率偏移量1的和,即子载波13。相当于资源配置信息包括起始子载波1(即子载波12)和起始子载波2(即子载波13)。
可选地,可以在不同起始子载波开始传输不同终端设备对应的前导序列。在起始子载波1传输终端设备1对应的前导序列,在起始子载波2传输终端设备2对应的前导序列。
需要说明的是,不同起始子载波可以与不同起始时间位置、和/或不同周期相结合,资源配置信息包括至少两个起始时间位置的信息和至少两个起始子载波的信息,或者,资源配置信息包括至少两个起始子载波的信息和至少两个周期的信息,或者,资源配置信息包括至少两个起始时间位置的信息、至少两个起始子载波的信息和至少两个周期的信息。具体示例可参照上述至少两个起始时间位置的信息、至少两个起始子载波的信息、至少两个周期的信息分别对应的示例的结合,本申请实施例不再赘述。
一些实施例中,第一极化方式为随机接入的资源的起始子载波对应的前导序列的 极化方式。
结合图5,随机接入的资源的起始子载波为子载波12,资源配置信息可以包括子载波12的极化方式。
可选地,极化方式可以包括左旋极化和右旋极化。
示例性地,可以根据相邻小区或波束,灵活配置随机接入的资源的起始子载波对应的前导序列的极化方式。
需要说明的是,资源配置信息可以包括至少两个起始时间位置的信息、至少两个起始子载波的信息、至少两个周期的信息、和/或第一极化方式的信息,具体示例可参照上述至少两个起始时间位置的信息、至少两个起始子载波的信息、至少两个周期的信息、第一极化方式的信息分别对应的示例的结合,本申请实施例不再赘述。
在一些实施例中,资源配置信息还可以包括随机接入的资源占用的子载波的数量。
结合图5,随机接入的资源占用的子载波的数量为36个。
在一种可能的设计方式中,资源配置信息可以是网络设备确定的。
在另一种可能的设计方式中,资源配置信息可以是预配置给网络设备的。
S702,终端设备获取资源配置信息。
关于资源配置信息的具体实现方式可参照上述S701,此处不再赘述。
可选地,上述S702,可以包括:终端设备接收资源配置信息。
示例性地,终端设备可以接收来自网络设备的资源配置信息。该资源配置信息可以是通过系统消息接收的。
在一种可能的设计方式中,本申请实施例提供的通信方法,还可以包括:网络设备发送资源配置信息。
示例性地,网络设备可以通过系统消息为终端设备配置资源配置信息。也就是说,资源配置信息可以是网络设备获取后,发送给终端设备的。
或者,可选地,上述S702,可以包括:终端设备确定资源配置信息。也就是说,资源配置信息可以是终端设备确定的。
或者,可选地,资源配置信息可以是预配置给终端设备的。
S703,终端设备确定传输第一前导序列的第一信息。
在一些实施例中,第一信息可以包括但不限于如下一项或多项:第一起始时间位置、第一起始子载波、和第一周期。
在一种可能的设计方式中,上述S703,可以包括:终端设备确定传输第一前导序列的第一起始时间位置。
示例性地,第一起始时间位置为至少两个起始时间位置中的一个。
结合图5,第一起始时间位置可以为子帧7或子帧8中的一个。
又示例性地,结合图8,第一起始时间位置可以为10ms或21ms中的一个。
在一些实施例中,第一起始时间位置是终端设备根据第一前导序列对应的第一起始子载波确定的。
可选地,随机接入的资源的子载波包括至少两个子载波组,可以根据第一起始子载波对应的子载波组,确定第一起始时间位置。每个子载波组包括一个或多个子载 波。
例如,属于不同子载波组中的起始子载波对应不同的起始时间位置。
可选地,至少两个子载波组包括第一子载波组和第二子载波组。至少两个起始时间位置包括第一个起始时间位置和第二个起始时间位置。第一子载波组对应第一个起始时间位置,第二子载波组对应第二个起始时间位置。
例如,若第一起始子载波属于第一子载波组,则第一起始时间位置为至少两个起始时间位置中的第一个起始时间位置;若第一起始子载波属于第二子载波组,则第一起始时间位置为至少两个起始时间位置中的第二个起始时间位置。
从而,可以在不同的起始时间位置开始分别发送第一前导序列和第二前导序列,第二前导序列与第一前导序列属于不同的子载波组中的起始子载波对应的前导序列。例如,第一前导序列对应的第一起始子载波属于第一子载波组,第二前导序列对应的第二起始子载波属于第二子载波组。如此,可以降低载波间干扰,可以降低相同频域资源对应的前导序列间的干扰。
可选地,第二前导序列与第一前导序列的跳频方式可以相同。采用相同的跳频规则传输第二前导序列和第一前导序列。例如,若传输第二前导序列与第一前导序列的起始子载波相邻,则共存期间传输第二前导序列与第一前导序列的子载波均相邻,停止发送第二前导序列,可以继续发送第一前导序列,或者,停止发送第一前导序列,可以继续发送第二前导序列。
下面结合方式1-方式3对随机接入的资源的子载波的分组方式进行阐述。以将随机接入的资源的子载波划分为两组为例。
可选地,随机接入的资源的子载波的分组方式可以是终端设备与网络设备预先约定的,或预配置的。
方式1,第一子载波组包括随机接入的资源的第奇数个子载波,第二子载波组包括随机接入的资源的第偶数个子载波。
也就是说,可以将随机接入的资源的子载波划分为两组,第奇数个子载波为一组,第偶数个子载波为一组。
示例性地,结合图10,子载波12为第1个子载波,子载波13为第2个子载波,依次类推,子载波23为第12个子载波,则第一子载波组包括子载波12、子载波14、子载波16、子载波18、子载波20、子载波22。第二子载波组包括子载波13、子载波15、子载波17、子载波19、子载波21、子载波23。如此,可以将频域位置相邻的子载波划分为不同的子载波组。
方式2,第一子载波组包括随机接入的资源的偶数子载波,第二子载波组包括随机接入的资源的奇数子载波。第一子载波组还可以包括随机接入的资源的起始子载波。
示例性地,奇数子载波为索引号为奇数的子载波,偶数子载波为索引号为偶数的子载波。当随机接入的资源的起始子载波的索引号为0时,第一子载波组还可以包括子载波0。
示例性地,结合图10,第一子载波组包括子载波12、子载波14、子载波16、子载波18、子载波20、子载波22。第二子载波组包括子载波13、子载波15、子载波 17、子载波19、子载波21、子载波23。如此,可以将频域位置相邻的子载波划分为不同的子载波组。
方式3,第一子载波组包括间隔偶数子载波和随机接入的资源的起始子载波,第二子载波组包括间隔奇数子载波。
可选地,间隔偶数子载波与随机接入的资源的起始子载波间隔的子载波的数量为偶数,间隔奇数子载波与随机接入的资源的起始子载波间隔的子载波的数量为奇数。
示例性地,结合图10,随机接入的资源的起始子载波为子载波12,子载波13与子载波12间隔1个子载波,即间隔奇数个子载波。子载波14与子载波12间隔2个子载波,即间隔偶数个子载波。子载波15与子载波12间隔3个子载波,即间隔奇数个子载波。则第一子载波组包括子载波12、子载波14、子载波16、子载波18、子载波20、子载波22。第二子载波组包括子载波13、子载波15、子载波17、子载波19、子载波21、子载波23。
需要说明的是,随机接入的资源的子载波的分组方式包括但不限于上述方式1-方式3,本申请对此不进行限定。
结合图5、图10以及方式1,假设第一前导序列对应的第一起始子载波为子载波14,子载波14属于第一子载波组,第一子载波组对应第一个起始时间位置,假设第一个起始时间位置为子帧7,第二个起始时间位置为子帧8,则第一起始时间位置为系统帧8的子帧7。从而,可以在系统帧8的子帧7和子载波14开始传输终端设备1的第一前导序列。
类似地,假设第二前导序列对应的第二起始子载波为子载波15,子载波15属于第二子载波组,则传输第二前导序列的第二起始时间位置为系统帧8的子帧8。从而,可以在系统帧8的子帧8和子载波15开始传输终端设备2的第二前导序列。如此,在不同的起始时间位置分别开始传输相邻子载波对应的前导序列,可以降低子载波间的干扰,另外,未减少可利用的频域资源,可以减少随机接入的冲突,保证成功率。需要说明的是,图5、图10以及方式2的结合具有类似的效果,图5、图10以及方式3的结合具有类似的效果,图8、图10以及方式1(或方式2、或方式3)的结合具有类似的效果,此处不再赘述。
在一些实施例中,第一起始时间位置是终端设备根据第一起始子载波与随机接入的资源的起始子载波的频域位置关系确定的。
可选地,第一起始子载波与随机接入的资源的起始子载波的频域位置关系包括间隔奇数个子载波、间隔偶数个子载波、和间隔0个子载波,还可以是根据预设规则确定的间隔的子载波数目。其中间隔0个子载波表示第一起始子载波即为随机接入的资源的起始子载波。需要指出的是,本申请中,两个子载波之间的间隔子载波的个数为该两个子载波序号的差值。
需要说明的是,本申请实施例不对频域位置关系的实现方式进行限定,能够表示第一起始子载波与随机接入的资源的起始子载波的频域位置关系即可。
一些实施例中,间隔奇数个子载波的起始子载波与间隔偶数个子载波的起始子载波对应的起始时间位置不同,间隔偶数个子载波的起始子载波与随机接入的资源的起始子载波对应的起始时间位置相同。
可选地,间隔偶数或0个子载波的起始子载波对应第一个起始时间位置,间隔奇数个子载波的起始子载波对应第二个起始时间位置。
若第一起始子载波与随机接入的资源的起始子载波的频域位置关系为间隔偶数或0个子载波,则第一起始时间位置为第一个起始时间位置。若第一起始子载波与随机接入的资源的起始子载波的频域位置关系为间隔奇数个子载波,则第一起始时间位置为第二个起始时间位置。
示例性地,结合图10,随机接入的资源的起始子载波为子载波12,子载波13与子载波12间隔1个子载波,即间隔奇数个子载波。子载波14与子载波12间隔2个子载波,即间隔偶数个子载波。子载波15与子载波12间隔3个子载波,即间隔奇数个子载波。结合图5,假设第一个起始时间位置为子帧7,第二个起始时间位置为子帧8。
假设第一前导序列对应的第一起始子载波为子载波14,间隔偶数个子载波,第一起始时间位置为第一个起始时间位置,则第一起始时间位置为系统帧8的子帧7。从而,可以在系统帧8的子帧7和子载波14开始传输终端设备1的第一前导序列。
类似地,假设第二前导序列对应的第二起始子载波为子载波15,间隔奇数个子载波,则传输第二前导序列的第二起始时间位置为第二个起始时间位置,即第二起始时间位置为系统帧8的子帧8。从而,可以在系统帧8的子帧8和子载波15开始传输终端设备2的第二前导序列。如此,在不同的起始时间位置分别开始传输相邻子载波对应的前导序列,可以降低子载波间的干扰,另外,未减少可利用的频域资源,可以减少随机接入的冲突,保证成功率。
在一些实施例中,第一起始时间位置是终端设备根据第一波束的信息确定的。
可选地,第一波束可用于传输资源配置信息。第一波束可用于网络设备与终端设备之间进行通信。
示例性地,第一波束的信息可以包括波束的标识,或者,同步信号和物理广播信道块(synchronization signal and physical broadcast channel block,SSB)的索引。
可选地,网络设备覆盖的小区可以包括一个或多个波束。
一些实施例中,波束的信息可以与起始时间位置的信息对应。
可选地,不同的波束对应不同的起始时间位置。可选地,波束与起始时间位置的对应关系可以是预配置的。
示例性地,多个波束包括波束1和波束2,至少两个起始时间位置包括第一个起始时间位置和第二个起始时间位置,波束1对应第一个起始时间位置,波束2对应第二个起始时间位置。
结合图5,假设第一个起始时间位置为系统帧8的子帧7,第二个起始时间位置为系统帧8的子帧8,第一波束为波束1,则第一起始时间位置为第一个起始时间位置。即系统帧8的子帧7。
或者,可选地,网络设备覆盖的小区可以包括至少两个波束组。也就是说,将波束分组。第一波束组对应第一个起始时间位置,第二波束组对应第一个起始时间位置。
可选地,每个波束组中包括一个或多个波束。
若第一波束属于第一波束组,则第一起始时间位置为第一个起始时间位置。若第一波束属于第二波束组,则第一起始时间位置为第二个起始时间位置。
如此,针对不同的波束,灵活配置起始时间位置,可以减少小区内波束间的载波间干扰,可以增加波束间相同频域资源对应的前导序列的抗干扰能力。
另一些实施例中,终端设备可以随机从至少两个起始时间位置中选择一个起始时间位置作为第一起始时间位置。如此,可以减少小区内波束间的干扰。
在一些实施例中,第一起始时间位置是终端设备根据第一小区的信息确定的。
可选地,第一小区可以是为终端设备服务的小区。
一些实施例中,小区的信息可以与起始时间位置的信息对应。
可选地,不同的小区对应不同的起始时间位置。可选地,小区与起始时间位置的对应关系可以是预配置的。
示例性地,网络设备覆盖的小区包括小区1和小区2,至少两个起始时间位置包括第一个起始时间位置和第二个起始时间位置,小区1对应第一个起始时间位置,小区2对应第二个起始时间位置。
结合图5,假设第一个起始时间位置为系统帧8的子帧7,第二个起始时间位置为系统帧8的子帧8,第一小区为小区1,则第一起始时间位置为第一个起始时间位置。即系统帧8的子帧7。
或者,可选地,网络设备覆盖的小区可以包括至少两个小区组。也就是说,将小区分组。第一小区组对应第一个起始时间位置,第二小区组对应第一个起始时间位置。
可选地,每个小区组中包括一个或多个小区。
若第一小区属于第一小区组,则第一起始时间位置为第一个起始时间位置。若第一小区属于第二小区组,则第一起始时间位置为第二个起始时间位置。
如此,针对不同的小区,灵活配置起始时间位置,可以减少小区间的干扰。
另一些实施例中,终端设备可以随机从至少两个起始时间位置中选择一个起始时间位置作为第一起始时间位置。如此,可以减少小区间的干扰。
在一种可能的设计方式中,上述S703,可以包括:终端设备确定传输第一前导序列的第一周期。
可选地,不同的周期对应不同的传输第一前导序列的起始子载波。
如此,在不同的周期传输不同起始子载波(例如相邻的起始子载波)对应的前导序列,可以降低载波间干扰。
可选地,可以采用上述方式1-方式3将随机接入的资源的子载波进行分组。以方式1为例,第一子载波组包括随机接入的资源的第奇数个子载波,第二子载波组包括随机接入的资源的第偶数个子载波。
示例性地,结合图9,若第一起始子载波属于随机接入的资源的第奇数个子载波,则传输第一前导序列的第一周期为周期1。若第一起始子载波属于随机接入的资源的第偶数个子载波,则传输第一前导序列的第一周期为周期2。
如此,在不同的周期传输相邻起始子载波对应的前导序列,可以降低载波间干扰。
需要说明的是,确定传输第一前导序列的第一周期可以与确定第一起始时间位置相结合,至少两个周期之间对应的起始时间位置可以不相同。
例如,可以在周期1的起始时间位置10ms传输第一前导序列,可以在周期2的起始时间位置9ms传输第二前导序列。
如此,不同的周期与不同的起始时间位置相结合,可以在不同周期的不同起始时间位置开始传输不同起始子载波(不同起始子载波之间可以相邻)对应的前导序列,可以降低载波间干扰。并且,不同起始子载波之间在频域位置可以相邻,未减少可利用的频域资源,可以减少随机接入的冲突,保证成功率。
在一种可能的设计方式中,上述S703,可以包括:终端设备确定传输第一前导序列的第一起始子载波。
示例性地,第一起始子载波为至少两个起始子载波中的一个。
结合图5,假设至少两个起始子载波包括子载波12和子载波13,第一起始子载波可以为子载波12或子载波13中的一个。
结合图10,假设至少两个起始子载波包括子载波14和子载波15,第一起始子载波可以为子载波14或子载波15中的一个。
在一些实施例中,第一前导序列对应的第一起始子载波是终端设备根据第一起始时间位置确定的。
可选地,随机接入的资源的起始时间位置可以包括至少两个起始时间组,可以根据第一起始时间位置对应的起始时间组,确定第一起始子载波。每个起始时间组包括一个或多个起始时间位置。
例如,属于不同起始时间组中的起始时间位置对应不同的起始子载波。
可选地,至少两个起始时间组包括第一起始时间组和第二起始时间组。每个起始时间组包括一个或多个起始时间。
一些实施例中,至少两个起始子载波包括第一个起始子载波和第二个起始子载波。可选地,第一起始时间组对应第一个起始子载波,第二起始时间组对应第二个起始子载波。
例如,若第一起始时间位置属于第一起始时间组,则第一起始子载波为至少两个起始子载波中的第一个起始子载波。若第一起始时间位置属于第二起始时间组,则第一起始子载波为至少两个起始子载波中的第二个起始子载波。
结合图5,可以将随机接入的资源的时域资源划分为两组,子帧0-子帧3为一组,子帧4-子帧9为一组。例如,第一起始时间组包括子帧0-子帧3,第二起始时间组包括子帧4-子帧9。结合图10,第一个起始子载波为子载波14,第二个起始子载波为子载波15。
假设第一前导序列对应的第一起始时间位置为子帧2,属于第一起始时间组,则第一起始子载波为第一个起始子载波,即第一起始子载波为子载波14。从而,可以在系统帧8的子帧2和子载波14开始传输终端设备1的第一前导序列。
类似地,假设第二前导序列对应的第二起始时间位置为子帧6,属于第二起始时间组,则第二起始子载波为第二个起始子载波,即第二起始子载波为子载波15。从而,可以在系统帧8的子帧6和子载波15开始传输终端设备2的第二前导序列。
如此,对于相同起始时间组采用频域错开的方式,减小相同起始时间组内的载波间干扰。另外,未减少可利用的频域资源,可以减少随机接入的冲突,保证成功率。
另一些实施例中,可以采用上述方式1-方式3将随机接入的资源的子载波进行分组,第一个起始子载波属于第一子载波组,第二个起始子载波属于第二子载波组。
可选地,第一起始时间组对应第一子载波组,第二起始时间组对应第一子载波组。
以方式1为例,第一子载波组包括随机接入的资源的第奇数个子载波,第二子载波组包括随机接入的资源的第偶数个子载波。
示例性地,若第一起始时间位置属于第一起始时间组,则第一起始子载波为随机接入的资源的第奇数个子载波。若第一起始时间位置属于第二起始时间组,则第一起始子载波为随机接入的资源的第偶数个子载波。
例如,结合图5,假设第一起始时间组包括子帧0-子帧3,第二起始时间组包括子帧4-子帧9。假设第一前导序列对应的第一起始时间位置为子帧2,第二前导序列对应的第二起始时间位置为子帧6,属于第二起始时间组,则第一起始子载波为随机接入的资源的第奇数个子载波,例如第一起始子载波为子载波14(结合图10),第二起始子载波为随机接入的资源的第偶数个子载波,例如第一起始子载波为子载波15(结合图10)。
又例如,结合图5,假设第一起始时间组包括子帧0-子帧3,第二起始时间组包括子帧4-子帧9。假设第一前导序列对应的第一起始时间位置为子帧2,第三前导序列对应的第二起始时间位置为子帧3,属于第一起始时间组,则第一起始子载波为随机接入的资源的第奇数个子载波,例如第一起始子载波为子载波14(结合图10),传输第三前导序列的第三起始子载波为随机接入的资源的第奇数个子载波,例如第一起始子载波为子载波16(结合图10)。
如此,属于同一个起始时间组的前导序列对应的起始子载波在频域位置上不相邻,在频域位置上间隔了两个子载波,属于不同起始时间组的前导序列对应的起始子载波在频域位置可以相邻。例如,频域位置相邻的子载波对应的前导序列可以在不同的起始时间组开始传输。如此,采用时间错开的方式,减小载波间的干扰。对于相同起始时间组采用频域错开的方式,减小相同起始时间组内的载波间干扰。另外,未减少可利用的频域资源,可以减少随机接入的冲突,保证成功率。
在一些实施例中,第一前导序列对应的第一起始子载波是终端设备根据第一分组信息确定的。
可选地,第一分组信息包括至少两个小区组的信息、和/或至少两个波束组的信息。其中,每个小区组包括一个或多个小区,每个波束组包括一个或多个波束。
可选地,第一前导序列对应的第一起始子载波是根据第一小区的信息确定的。
或者,可选地,第一前导序列对应的第一起始子载波是根据第一波束的信息确定的。
也就是说,可以根据终端设备所在的位置确定终端设备所处的小区组或波束组。
例如,终端设备可以根据终端设备与卫星的相对位置确定所处的小区组或波束组。或者,终端设备可以根据自身的位置确定所处的小区组或波束组。
可选地,终端设备可具备全球导航卫星系统(global navigation satellite system,GNSS)能力。
可选地,第一分组信息可以是预配置的,或,第一分组信息可以是网络设备为终端设备配置的。
示例性地,至少两个小区组包括第一小区组和第二小区组,至少两个波束组包括第一波束组和第二波束组。
一些实施例中,至少两个起始子载波包括第一个起始子载波和第二个起始子载波。
可选地,可以采用上述方式1-方式3将随机接入的资源的子载波进行分组,第一个起始子载波属于第一子载波组,第二个起始子载波属于第二子载波组。
可选地,第一小区组对应第一子载波组,第二小区组对应第一子载波组。第一波束组对应第一子载波组,第二波束组对应第一子载波组。
以方式1为例,第一子载波组包括随机接入的资源的第奇数个子载波,第二子载波组包括随机接入的资源的第偶数个子载波。
示例性地,若第一小区属于第一小区组,则第一起始子载波为随机接入的资源的第奇数个子载波。若第一小区属于第二小区组,则第一起始子载波为随机接入的资源的第偶数个子载波。
示例性地,若第一波束属于第一波束组,则第一起始子载波为随机接入的资源的第奇数个子载波。若第一波束属于第二波束组,则第一起始子载波为随机接入的资源的第偶数个子载波。
如此,属于同一小区组或波束组终端设备的前导序列对应的起始子载波,在频域位置上不相邻,在频域位置上间隔了两个子载波,可以减小干扰,属于不同小区组或波束组终端设备的前导序列对应的起始子载波在频域位置可以相邻。也就是说,频域位置相邻的子载波对应的前导序列的终端设备处于不同的区域,可以减小区组或波束组内的载波间干扰。
需要说明的是,上述根据终端设备的位置将终端设备进行分组,还可以采用其他方式将终端设备分组,例如终端设备的能力,第一分组信息可以包括其他分组信息,此处不再赘述。
在一些实施例中,第一信息可以包括传输第一前导序列的极化方式。
在一种可能的设计方式中,上述S703,可以包括:终端设备确定传输第一前导序列的极化方式。
在一种可能的设计方式中,传输第一前导序列的极化方式是终端设备根据第一起始子载波确定的。
例如,传输第一前导序列的极化方式是根据第一起始子载波的偏移量、索引号、频域位置确定的。
可选地,可以采用上述方式1-方式3将随机接入的资源的子载波进行分组。以方式1为例,第一子载波组包括随机接入的资源的第奇数个子载波,第二子载波组包括随机接入的资源的第偶数个子载波。
可选地,若第一起始子载波属于随机接入的资源的第奇数个子载波,则传输第一 前导序列的极化方式为第一方式。若第一起始子载波属于随机接入的资源的第偶数个子载波,则传输第一前导序列的极化方式为第二方式。
示例性地,极化方式可以包括左旋极化和右旋极化。第一方式可以为左旋极化,第二方式可以为右旋极化。或者,第二方式可以为左旋极化,第一方式可以为右旋极化。
例如,以第一方式为左旋极化、第二方式为右旋极化为例。结合图10,传输第一前导序列的第一起始子载波为子载波14,则传输第一前导序列的极化方式均为左旋极化。传输第二前导序列的第二起始子载波为子载波15,则传输第二前导序列的极化方式均为右旋极化。具体地,在时间位置1,通过子载波14传输第一前导序列的极化方式为左旋极化,在时间位置1,通过子载波15传输第一前导序列的极化方式为右旋极化,相邻的子载波对应的前导序列的极化方式不相同。在时间位置2,通过子载波15传输第一前导序列的极化方式为左旋极化,在时间位置2,通过子载波16传输第一前导序列的极化方式为右旋极化,不一一赘述。
如此,相邻的子载波对应的前导序列的极化方式不相同,可以降低相邻子载波间的干扰。
在一种可能的设计方式中,传输第一前导序列的极化方式是终端设备根据传输第一前导序列的子载波确定的。
可选地,传输第一前导序列的子载波包括传输前导序列的每个时间位置的子载波。
每个时间位置传输第一前导序列的极化方式是根据对应时间位置传输第一前导序列的子载波确定的。
可选地,可以采用上述方式1-方式3将随机接入的资源的子载波进行分组。以方式1为例,第一子载波组包括随机接入的资源的第奇数个子载波,第二子载波组包括随机接入的资源的第偶数个子载波。
可选地,若子载波属于随机接入的资源的第奇数个子载波,则对应的传输第一前导序列的极化方式为第一方式;若子载波属于随机接入的资源的第偶数个子载波,则对应的传输第一前导序列的极化方式为第二方式。
例如,以第一方式为左旋极化、第二方式为右旋极化为例。结合图10,在时间位置1,传输第一前导序列的子载波为子载波14,则在时间位置1传输第一前导序列的极化方式为左旋极化。在时间位置2,传输第一前导序列的子载波为子载波15,在时间位置2传输第一前导序列的极化方式为右旋极化。依次类推,此处不再一一赘述。
在时间位置1,传输第二前导序列的子载波为子载波15,则在时间位置1传输第二前导序列的极化方式为右旋极化。在时间位置2,传输第二前导序列的子载波为子载波16,在时间位置2传输第二前导序列的极化方式为左旋极化。依次类推,此处不再一一赘述。在时间位置1,通过子载波14传输第一前导序列的极化方式为左旋极化,在时间位置1,通过子载波15传输第一前导序列的极化方式为右旋极化,不再一一赘述。
如此,相邻的子载波对应的前导序列的极化方式不相同,可以降低相邻子载波间 的干扰。
在一些实施例中,传输第一前导序列的极化方式是终端设备根据第一起始子载波与随机接入的资源的起始子载波的频域位置关系确定的。与第一起始时间位置是根据第一起始子载波与随机接入的资源的起始子载波的频域位置关系确定的具体实现方式类似。
需要说明的是,第一起始子载波与随机接入的资源的起始子载波的频域位置关系可参照上述具体实现方式,此处不再赘述。
一些实施例中,间隔奇数个子载波的起始子载波与间隔偶数个子载波的起始子载波对应的极化方式不同,间隔偶数个子载波的起始子载波与随机接入的资源的起始子载波对应的极化方式相同。
可选地,间隔偶数或0个子载波的起始子载波对应第一方式,间隔奇数个子载波的起始子载波对应第二方式。
示例性地,若第一起始子载波与随机接入的资源的起始子载波的频域位置关系为间隔偶数或0个子载波,则极化方式为第一方式。若第一起始子载波与随机接入的资源的起始子载波的频域位置关系为间隔奇数个子载波,则极化方式为第二方式。
如此,相邻的子载波对应的前导序列的极化方式不相同,可以降低相邻子载波间的干扰。
在一些实施例中,传输第一前导序列的极化方式是终端设备根据第一极化方式确定的。
可选地,第一极化方式为随机接入的资源的起始子载波对应的前导序列的极化方式。
一些实施例中,若第一起始子载波与随机接入的资源的起始子载波的频域位置关系为间隔偶数个子载波,则传输第一前导序列的极化方式与第一极化方式相同。例如,若第一极化方式为左旋极化,则传输第一前导序列的极化方式为左旋极化。
若第一起始子载波与随机接入的资源的起始子载波的频域位置关系为间隔奇数个子载波,则传输第一前导序列的极化方式与第一极化方式不相同。例如,若第一极化方式为左旋极化,则传输第一前导序列的极化方式为右旋极化。
如此,相邻的子载波对应的前导序列的极化方式不相同,可以降低相邻子载波间的干扰。第一极化方式可以是网络设备配置的,从而可以灵活配置随机接入的资源的起始子载波对应的前导序列的极化方式。
需要说明的是,上述确定传输第一前导序列的极化方式、确定第一起始时间位置、确定第一起始子载波、和确定第一周期中的一项或多项相结合。如此,可以进一步增加载波间的抗干扰能力,能够消除更大的频偏带来的干扰,可以减少多个子载波间的干扰。
示例性地,子载波1对应的前导序列的极化方式为左旋极化,且传输前导序列的起始时间位置为起始时间位置1。子载波2对应的前导序列的极化方式为左旋极化,且传输前导序列的起始时间位置为起始时间位置2。子载波3对应的前导序列的极化方式为右旋极化,且传输前导序列的起始时间位置为起始时间位置1。子载波4对应的前导序列的极化方式为右旋极化,且传输前导序列的起始时间位置为起始时间位置 2。这样,可以保证四个相邻的子载波间不会产生干扰。
需要说明的是,本申请实施例提供的方法适用于如下情况:在某一时间位置上,传输第一前导序列的子载波与传输第二前导序列的子载波相邻,但传输第一前导序列的起始子载波与传输第二前导序列的起始子载波不相邻,可以降低载波间的干扰。
S704,网络设备确定传输第一前导序列的第一信息。
在一些实施例中,第一信息可以包括但不限于如下一项或多项:第一起始时间位置、第一起始子载波、第一周期、和传输第一前导序列的极化方式。
在一种可能的设计方式中,上述S704,可以包括:网络设备确定传输第一前导序列的第一起始时间位置。具体实现方式可参照上述S703中,终端设备确定传输第一前导序列的第一起始时间位置的具体实现方式,此处不再赘述。
在一些实施例中,第一起始时间位置是网络设备根据第一前导序列对应的第一起始子载波确定的。具体实现方式可参照上述S703中,第一起始时间位置是终端设备根据第一前导序列对应的第一起始子载波确定的具体实现方式,此处不再赘述。
在一些实施例中,第一起始时间位置是网络设备根据第一起始子载波与随机接入的资源的起始子载波的频域位置关系确定的。具体实现方式可参照上述S703中,第一起始时间位置是终端设备根据第一起始子载波与随机接入的资源的起始子载波的频域位置关系确定的具体实现方式,此处不再赘述。
在一些实施例中,第一起始时间位置是网络设备根据第一波束的信息确定的。具体实现方式可参照上述S703中,第一起始时间位置是终端设备根据第一波束的信息确定的具体实现方式,此处不再赘述。
在一些实施例中,第一起始时间位置是网络设备根据第一小区的信息确定的。具体实现方式可参照上述S703中,第一起始时间位置是终端设备根据第一小区的信息确定的具体实现方式,此处不再赘述。
在一种可能的设计方式中,上述S704,可以包括:网络设备确定传输第一前导序列的第一周期。具体实现方式可参照上述S703中,终端设备确定传输第一前导序列的第一周期具体实现方式,此处不再赘述。
在一种可能的设计方式中,上述S704,可以包括:网络设备确定传输第一前导序列的第一起始子载波。具体实现方式可参照上述S703中,终端设备确定传输第一前导序列的第一起始子载波的具体实现方式,此处不再赘述。
在一些实施例中,第一前导序列对应的第一起始子载波是网络设备根据第一起始时间位置确定的。具体实现方式可参照上述S703中,第一前导序列对应的第一起始子载波是终端设备根据第一起始时间位置确定的具体实现方式,此处不再赘述。
在一些实施例中,第一前导序列对应的第一起始子载波是网路设备根据第一分组信息确定的。具体实现方式可参照上述S703中,第一前导序列对应的第一起始子载波是终端设备根据第一分组信息确定的具体实现方式,此处不再赘述。
在一种可能的设计方式中,上述S704,可以包括:网络设备确定传输第一前导序列的极化方式。具体实现方式可参照上述S703中,终端设备确定传输第一前导序列的极化方式的具体实现方式,此处不再赘述。
在一些实施例中,传输第一前导序列的极化方式是网络设备根据第一起始子载波 确定的。具体实现方式可参照上述S703中,传输第一前导序列的极化方式是终端设备根据第一起始子载波确定的具体实现方式,此处不再赘述。
在一些实施例中,传输第一前导序列的极化方式是网络设备根据传输第一前导序列的子载波确定的。具体实现方式可参照上述S703中,传输第一前导序列的极化方式是终端设备根据传输第一前导序列的子载波确定的具体实现方式,此处不再赘述。
在一些实施例中,传输第一前导序列的极化方式是网络设备根据第一起始子载波与随机接入的资源的起始子载波的频域位置关系确定的。具体实现方式可参照上述S703中,传输第一前导序列的极化方式是终端设备根据第一起始子载波与随机接入的资源的起始子载波的频域位置关系确定的具体实现方式,此处不再赘述。
在一些实施例中,传输第一前导序列的极化方式是网络设备根据第一极化方式确定的。具体实现方式可参照上述S703中,传输第一前导序列的极化方式是终端设备根据第一极化方式确定的具体实现方式,此处不再赘述。
S705,终端设备根据第一信息发送第一前导序列。相应地,网络设备根据第一信息接收第一前导序列。
在一些实施例中,第一信息可以包括但不限于如下一项或多项:第一起始时间位置、第一起始子载波、第一周期、和传输第一前导序列的极化方式。
在一种可能的设计方式中,上述S705,可以包括:终端设备从第一起始时间位置开始发送第一前导序列。相应地,网络设备从第一起始时间位置开始接收第一前导序列。如此,终端设备在第一起始时间位置发送第一前导序列,网络设备在第一起始时间位置进行第一前导序列的检测。
在一种可能的设计方式中,上述S705,可以包括:终端设备在第一周期发送第一前导序列。相应地,网络设备在第一周期接收第一前导序列。
在一种可能的设计方式中,上述S705,可以包括:终端设备从第一起始子载波开始发送第一前导序列。相应地,网络设备从第一起始子载波开始接收第一前导序列。
在一种可能的设计方式中,上述S705,可以包括:终端设备采用确定的传输第一前导序列的极化方式发送第一前导序列。相应地,网络设备采用确定的传输第一前导序列的极化方式接收第一前导序列。如此,终端设备以某种极化方式发送第一前导序列,网络设备以相应的极化方式进行第一前导序列的检测。
基于图7所示的通信方法,终端设备获取资源配置信息,该资源配置信息用于指示随机接入的资源,资源配置信息可以包括至少两个起始时间位置的信息、至少两个周期的信息、至少两个起始子载波的信息、和第一极化方式的信息中的一个或多个。终端设备根据资源配置信息确定传输第一前导序列的第一信息,采用第一信息发送第一前导序列。第一信息可以包括如下一项或多项第一起始时间位置、第一起始子载波、第一周期、和传输第一前导序列的极化方式。如此,可以增加载波间的抗干扰能力,降低载波间干扰。另外,未减少可利用的频域资源,可以减少随机接入的冲突,保证成功率。
图7所示的通信方法既适合于同时支持左旋极化和右旋极化的终端设备,也适用于只支持左旋极化和只支持右旋极化的终端设备,只需在根据上述方法确定的第一信 息中适合自身极化方式的资源进行发送即可。而对于只支持线极化的终端设备,可以采用与同时支持左旋极化和右旋极化的终端设备相同的方式,也可以只采用左旋极化对应的资源或者只采用右旋极化对应的资源发送。
示例性地,图11为本申请实施例提供的一种通信方法的流程示意图。该通信方法可以适用于图1、和图2所示的网络设备与终端设备之间的通信。
如图11所示,该通信方法包括如下步骤:
S1101,网络设备获取资源配置信息。
具体实现方式可参照上述S701,此处不再赘述。
S1102,终端设备获取资源配置信息。
具体实现方式可参照上述S702,此处不再赘述。
S1103,终端设备确定传输第一前导序列的第一起始时间位置。
关于终端设备确定传输第一前导序列的第一起始时间位置的具体实现方式可参照上述S703,此处不再赘述。
在一种可能的设计方式中,本申请实施例提供的通信方法,还可以包括:终端设备确定传输第一前导序列的第一周期。和/或,终端设备确定传输第一前导序列的第一起始子载波。和/或,终端设备确定传输第一前导序列的极化方式。具体实现方式可参照上述S703,此处不再赘述。
S1104,网络设备确定传输第一前导序列的第一起始时间位置。
关于网络设备确定传输第一前导序列的第一起始时间位置的具体实现方式可参照上述S704,此处不再赘述。
在一种可能的设计方式中,本申请实施例提供的通信方法,还可以包括:终端设备确定传输第一前导序列的第一周期。和/或,终端设备确定传输第一前导序列的第一起始子载波。和/或,终端设备确定传输第一前导序列的极化方式。具体实现方式可参照上述S704,此处不再赘述。
S1105,终端设备从第一起始时间位置开始发送第一前导序列。相应地,网络设备从第一起始时间位置开始接收第一前导序列。
如此,终端设备在第一起始时间位置发送第一前导序列,网络设备在第一起始时间位置进行第一前导序列的检测。
关于S1105的具体实现方式可参照上述S705中对应的实现方式,此处不再赘述。
在一种可能的设计方式中,本申请实施例提供的通信方法,还可以包括:终端设备在第一周期发送第一前导序列。相应地,网络设备在第一周期接收第一前导序列。和/或,终端设备从第一起始子载波开始发送第一前导序列。相应地,网络设备从第一起始子载波开始接收第一前导序列。和/或,终端设备采用确定的传输第一前导序列的极化方式发送第一前导序列。相应地,网络设备采用确定的传输第一前导序列的极化方式接收第一前导序列。具体实现方式可参照上述S705,此处不再赘述。
基于图11所示的通信方法,终端设备获取资源配置信息,该资源配置信息用于指示随机接入的资源并包括至少两个起始时间位置的信息。终端设备从至少两个起始时间位置中确定传输第一前导序列的第一起始时间位置,从第一起始时间位置开始发 送第一前导序列,如此,通过选择发送第一前导序列的起始时间位置,使不同频域资源对应的前导序列在不同的起始时间位置开始发送,可以增加载波间的抗干扰能力,降低载波间干扰。另外,未减少可利用的频域资源,可以减少随机接入的冲突,保证成功率。
以上结合图7-图11详细说明了本申请实施例提供的通信方法。以下结合图12-图13详细说明本申请实施例提供的通信装置。
图12为可用于执行本申请实施例提供的通信方法的一种通信装置的结构示意图。通信装置1200可以是终端设备、或网络设备,也可以是应用于终端设备、或网络设备中的芯片或者其他具有相应功能的部件。如图12所示,通信装置1200可以包括处理器1201和收发器1203。还可以包括存储器1202。其中,处理器1201与存储器1202和收发器1203耦合,如可以通过通信总线连接,处理器1201也可以单独使用。
下面结合图12对通信装置1200的各个构成部件进行具体的介绍:
处理器1201是通信装置1200的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器1201是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
其中,处理器1201可以通过运行或执行存储在存储器1202内的软件程序,以及调用存储在存储器1202内的数据,执行通信装置1200的各种功能。
在具体的实现中,作为一种实施例,处理器1201可以包括一个或多个CPU,例如图12中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置1200也可以包括多个处理器,例如图12中所示的处理器1201和处理器1204。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个通信设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器1202可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储通信设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储通信设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储通信设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1202可以和处理器1201集成在一起,也可以独立存在,并通过通信装置1200的输入/输出端口(图12中未示出)与处理器1201耦合,本申请实施例对此不作具体限定。
示例性地,输入端口可用于实现上述任一方法实施例中由终端设备、或网络设备 执行的接收功能,输出端口可用于实现上述任一方法实施例中由终端设备、或网络设备执行的发送功能。
其中,所述存储器1202用于存储执行本申请方案的软件程序,并由处理器1201来控制执行。上述具体实现方式可以参考下述方法实施例,此处不再赘述。
收发器1203,用于与其他通信装置之间的通信。例如,通信装置1200为终端设备时,收发器1203可以用于与网络设备通信。又例如,通信装置1200为网络设备时,收发器1203可以用于与终端设备通信。此外,收发器1203可以包括接收器和发送器(图12中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。收发器1203可以和处理器1201集成在一起,也可以独立存在,并通过通信装置1200的输入/输出端口(图12中未示出)与处理器1201耦合,本申请实施例对此不作具体限定。
需要说明的是,图12中示出的通信装置1200的结构并不构成对该通信装置的限定,实际的通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
其中,上述步骤S702、S703、S705、S1102、S1103、和S1105中终端设备的动作可以由图12所示的通信装置1200中的处理器1201调用存储器1202中存储的应用程序代码以指令终端设备执行。
上述步骤S701、S704、S1101、和S1104中定位服务器的动作可以由图12所示的通信装置1200中的处理器1201调用存储器1202中存储的应用程序代码以指令网络设备执行,本实施例对此不作任何限制。
图13为本申请实施例提供的另一种通信装置的结构示意图。为了便于说明,图13仅示出了该通信装置的主要部件。
该通信装置1300包括收发模块1301、和处理模块1302。该通信装置1300可以是前述方法实施例中的终端设备、或网络设备。收发模块1301,也可以称为收发单元,用以实现上述任一方法实施例中由终端设备、或网络设备执行的收发功能。
需要说明的是,收发模块1301可以包括接收模块和发送模块(图13中未示出)。其中,接收模块用于接收来自其他设备的数据和/或信令;发送模块用于向其他设备发送数据和/或信令。本申请对于收发模块的具体实现方式,不做具体限定。该收发模块可以由收发电路,收发机,收发器或者通信接口构成。
处理模块1302,可以用于实现上述任一方法实施例中由终端设备或网络设备执行的处理功能。该处理模块1302可以为处理器。
在本实施例中,该通信装置1300以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置1300可以采用图12所示的通信装置1200的形式。
比如,图12所示的通信装置1200中的处理器1201可以通过调用存储器1202中存储的计算机执行指令,使得上述方法实施例中的通信方法被执行。
具体的,图13中的收发模块1301和处理模块1302的功能/实现过程可以通过图 12所示的通信装置1200中的处理器1201调用存储器1202中存储的计算机执行指令来实现。或者,图13中的处理模块1302的功能/实现过程可以通过图12所示的通信装置1200中的处理器1201调用存储器1202中存储的计算机执行指令来实现,图13中的收发模块1301的功能/实现过程可以通过图12中所示的通信装置1200中的收发器1203来实现。
由于本实施例提供的通信装置1300可执行上述通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
在一种可能的设计方案中,图13所示出的通信装置1300可适用于图1和图2所示出的通信系统中,执行图7或图11所示的通信方法中的终端设备的功能。
其中,处理模块1302,用于获取资源配置信息。其中,资源配置信息用于指示随机接入的资源,资源配置信息包括至少两个起始时间位置的信息。
处理模块1302,还用于确定传输第一前导序列的第一起始时间位置。其中,第一起始时间位置为至少两个起始时间位置中的一个。
收发模块1301,用于从第一起始时间位置开始发送第一前导序列。
可选的,通信装置1300还可以包括存储模块(图13中未示出),该存储模块存储有程序或指令。当处理模块1302执行该程序或指令时,使得通信装置1300可以执行图7或图11所示的通信方法中的终端设备的功能。
需要说明的是,通信装置1300可以是终端设备,也可以是可设置于终端设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,通信装置1300的技术效果可以参考图7或图11所示的通信方法的技术效果,此处不再赘述。
在另一种可能的设计方案中,图13所示出的通信装置1300可适用于图1和图2所示出的通信系统中,执行图7或图11所示的通信方法中网络设备的功能。
其中,处理模块1302,用于获取资源配置信息。其中,资源配置信息用于指示随机接入的资源,资源配置信息包括至少两个起始时间位置的信息。
处理模块1302,还用于确定传输第一前导序列的第一起始时间位置。其中,第一起始时间位置为至少两个起始时间位置中的一个。
收发模块1301,用于从第一起始时间位置开始接收第一前导序列。
可选的,通信装置1300还可以包括存储模块(图13中未示出),该存储模块存储有程序或指令。当处理模块1302执行该程序或指令时,使得通信装置1300可以执行图7或图11所示的通信方法中网络设备的功能。
需要说明的是,通信装置1300可以是网络设备,也可以是可设置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,通信装置1300的技术效果可以参考图7或图11所示的通信方法的技术效果,此处不再赘述。
本申请实施例提供一种通信系统。该通信系统包括:终端设备、和网络设备。其中,终端设备用于执行上述方法实施例中终端设备的动作,具体执行方法和过程可参照上述方法实施例,此处不再赘述。
网络设备用于执行上述方法实施例中网络设备的动作,具体执行方法和过程可参 照上述方法实施例,此处不再赘述。
本申请实施例提供一种芯片系统,该芯片系统包括逻辑电路和输入/输出端口。其中,逻辑电路可用于实现本申请实施例提供的通信方法所涉及的处理功能,输入/输出端口可用于本申请实施例提供的通信方法所涉及的收发功能。
示例性地,输入端口可用于实现本申请实施例提供的通信方法所涉及的接收功能,输出端口可用于实现本申请实施例提供的通信方法所涉及的发送功能。
在一种可能的设计中,该芯片系统还包括存储器,该存储器用于存储实现本申请实施例提供的通信方法所涉及功能的程序指令和数据。
该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质包括计算机程序或指令,当计算机程序或指令在计算机上运行时,使得本申请实施例提供的通信方法被执行。
本申请实施例提供一种计算机程序产品,该计算机程序产品包括:计算机程序或指令,当计算机程序或指令在计算机上运行时,使得本申请实施例提供的通信方法被执行。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其 他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (41)

  1. 一种通信方法,其特征在于,包括:
    获取资源配置信息;其中,所述资源配置信息用于指示随机接入的资源,所述资源配置信息包括至少两个起始时间位置的信息;
    确定传输第一前导序列的第一起始时间位置;其中,所述第一起始时间位置为所述至少两个起始时间位置中的一个;
    从所述第一起始时间位置开始发送所述第一前导序列。
  2. 根据权利要求1所述的通信方法,其特征在于,所述资源配置信息还包括至少两个起始子载波的信息,所述第一前导序列对应的第一起始子载波为所述至少两个起始子载波中的一个。
  3. 根据权利要求2所述的通信方法,其特征在于,所述第一起始时间位置是根据所述第一前导序列对应的第一起始子载波确定的。
  4. 根据权利要求2所述的通信方法,其特征在于,所述第一前导序列对应的第一起始子载波是根据所述第一起始时间位置确定的。
  5. 根据权利要求2所述的通信方法,其特征在于,所述第一起始时间位置是根据所述第一起始子载波与所述随机接入的资源的起始子载波的频域位置关系确定的。
  6. 根据权利要求2所述的通信方法,其特征在于,所述第一起始时间位置是根据第一波束的信息确定的;其中,所述第一波束用于传输所述资源配置信息。
  7. 根据权利要求2-6中任一项所述的通信方法,其特征在于,传输所述第一前导序列的极化方式是根据所述第一起始子载波确定的。
  8. 根据权利要求2-6中任一项所述的通信方法,其特征在于,传输所述第一前导序列的极化方式是根据所述第一起始子载波与所述随机接入的资源的起始子载波的频域位置关系确定的。
  9. 根据权利要求2-6中任一项所述的通信方法,其特征在于,传输所述第一前导序列的极化方式是根据第一极化方式确定的,所述资源配置信息还包括所述第一极化方式的信息,所述第一极化方式为所述随机接入的资源的起始子载波对应的前导序列的极化方式。
  10. 根据权利要求1-9中任一项所述的通信方法,其特征在于,所述获取资源配置信息,包括:
    接收所述资源配置信息。
  11. 一种通信方法,其特征在于,包括:
    获取资源配置信息;其中,所述资源配置信息用于指示随机接入的资源,所述资源配置信息包括至少两个起始时间位置的信息;
    确定传输第一前导序列的第一起始时间位置;其中,所述第一起始时间位置为所述至少两个起始时间位置中的一个;
    从所述第一起始时间位置开始接收所述第一前导序列。
  12. 根据权利要求11所述的通信方法,其特征在于,所述资源配置信息还包括至少两个起始子载波的信息,所述第一前导序列对应的第一起始子载波为所述至少两个起始子载波中的一个。
  13. 根据权利要求12所述的通信方法,其特征在于,所述第一起始时间位置是根据所述第一前导序列对应的第一起始子载波确定的。
  14. 根据权利要求12所述的通信方法,其特征在于,所述第一前导序列对应的第一起始子载波是根据所述第一起始时间位置确定的。
  15. 根据权利要求12所述的通信方法,其特征在于,所述第一起始时间位置是根据所述第一起始子载波与所述随机接入的资源的起始子载波的频域位置关系确定的。
  16. 根据权利要求11-15中任一项所述的通信方法,其特征在于,传输所述第一前导序列的极化方式是根据所述第一起始子载波确定的。
  17. 根据权利要求11-15中任一项所述的通信方法,其特征在于,传输所述第一前导序列的极化方式是根据所述第一起始子载波与所述随机接入的资源的起始子载波的频域位置关系确定的。
  18. 根据权利要求11-17中任一项所述的通信方法,其特征在于,所述方法还包括:
    发送所述资源配置信息。
  19. 一种通信装置,其特征在于,包括:处理模块和收发模块;其中,
    所述处理模块,用于获取资源配置信息;其中,所述资源配置信息用于指示随机接入的资源,所述资源配置信息包括至少两个起始时间位置的信息;
    所述处理模块,还用于确定传输第一前导序列的第一起始时间位置;其中,所述第一起始时间位置为所述至少两个起始时间位置中的一个;
    所述收发模块,用于从所述第一起始时间位置开始发送所述第一前导序列。
  20. 根据权利要求19所述的通信装置,其特征在于,所述资源配置信息还包括至少两个起始子载波的信息,所述第一前导序列对应的第一起始子载波为所述至少两个起始子载波中的一个。
  21. 根据权利要求20所述的通信装置,其特征在于,所述第一起始时间位置是根据所述第一前导序列对应的第一起始子载波确定的。
  22. 根据权利要求20所述的通信装置,其特征在于,所述第一前导序列对应的第一起始子载波是根据所述第一起始时间位置确定的。
  23. 根据权利要求20所述的通信装置,其特征在于,所述第一起始时间位置是根据所述第一起始子载波与所述随机接入的资源的起始子载波的频域位置关系确定的。
  24. 根据权利要求20所述的通信装置,其特征在于,所述第一起始时间位置是根据第一波束的信息确定的;其中,所述第一波束用于传输所述资源配置信息。
  25. 根据权利要求20-24中任一项所述的通信装置,其特征在于,传输所述第一前导序列的极化方式是根据所述第一起始子载波确定的。
  26. 根据权利要求20-24中任一项所述的通信装置,其特征在于,传输所述第一前导序列的极化方式是根据所述第一起始子载波与所述随机接入的资源的起始子载波的频域位置关系确定的。
  27. 根据权利要求20-24中任一项所述的通信装置,其特征在于,传输所述第一前导序列的极化方式是根据第一极化方式确定的,所述资源配置信息还包括所述第一极化方式的信息,所述第一极化方式为所述随机接入的资源的起始子载波对应的前导序 列的极化方式。
  28. 根据权利要求19-27中任一项所述的通信装置,其特征在于,
    所述收发模块,还用于接收所述资源配置信息。
  29. 一种通信装置,其特征在于,包括:处理模块和收发模块;其中,
    所述处理模块,用于获取资源配置信息;其中,所述资源配置信息用于指示随机接入的资源,所述资源配置信息包括至少两个起始时间位置的信息;
    所述处理模块,还用于确定传输第一前导序列的第一起始时间位置;其中,所述第一起始时间位置为所述至少两个起始时间位置中的一个;
    所述收发模块,用于从所述第一起始时间位置开始接收所述第一前导序列。
  30. 根据权利要求29所述的通信装置,其特征在于,所述资源配置信息还包括至少两个起始子载波的信息,所述第一前导序列对应的第一起始子载波为所述至少两个起始子载波中的一个。
  31. 根据权利要求30所述的通信装置,其特征在于,所述第一起始时间位置是根据所述第一前导序列对应的第一起始子载波确定的。
  32. 根据权利要求30所述的通信装置,其特征在于,所述第一前导序列对应的第一起始子载波是根据所述第一起始时间位置确定的。
  33. 根据权利要求30所述的通信装置,其特征在于,所述第一起始时间位置是根据所述第一起始子载波与所述随机接入的资源的起始子载波的频域位置关系确定的。
  34. 根据权利要求29-33中任一项所述的通信装置,其特征在于,传输所述第一前导序列的极化方式是根据所述第一起始子载波确定的。
  35. 根据权利要求29-33中任一项所述的通信装置,其特征在于,传输所述第一前导序列的极化方式是根据所述第一起始子载波与所述随机接入的资源的起始子载波的频域位置关系确定的。
  36. 根据权利要求29-35中任一项所述的通信装置,其特征在于,
    所述收发模块,还用于发送所述资源配置信息。
  37. 一种通信装置,其特征在于,所述通信装置包括:处理器,所述处理器与存储器耦合;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的所述计算机程序,以使得如权利要求1-18中任一项所述的通信方法被执行。
  38. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得如权利要求1-18中任一项所述的通信方法被执行。
  39. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得如权利要求1-18中任一项所述的通信方法被执行。
  40. 一种通信装置,其特征在于,包括逻辑电路和输入/输出端口,其中,所述输入/输出端口用于获取资源配置信息,所述逻辑电路用于根据所述资源配置信息和权利要求1-9中任意一项所述的方法生成第一前导序列,所述输入/输出端口还用于输 出所述第一前导序列。
  41. 一种通信装置,其特征在于,包括逻辑电路和输入/输出端口,其中,所述逻辑电路用于根据权利要求11-17中任意一项所述的方法确定第一前导序列的第一起始时间位置,所述输入/输出端口还用于在所述第一起始时间位置获取所述第一前导序列。
PCT/CN2022/084927 2021-04-30 2022-04-01 通信方法及装置 WO2022228038A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22794510.2A EP4319445A1 (en) 2021-04-30 2022-04-01 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110486366.4 2021-04-30
CN202110486366.4A CN115278918A (zh) 2021-04-30 2021-04-30 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2022228038A1 true WO2022228038A1 (zh) 2022-11-03

Family

ID=83744960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084927 WO2022228038A1 (zh) 2021-04-30 2022-04-01 通信方法及装置

Country Status (3)

Country Link
EP (1) EP4319445A1 (zh)
CN (1) CN115278918A (zh)
WO (1) WO2022228038A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108260108A (zh) * 2018-01-16 2018-07-06 重庆邮电大学 一种基于非正交的窄带物联网NB-IoT随机接入方法
CN108809602A (zh) * 2017-05-05 2018-11-13 北京三星通信技术研究有限公司 基站、终端及随机接入前导检测、随机接入信道配置方法
CN110214464A (zh) * 2017-03-24 2019-09-06 华为技术有限公司 资源调度方法、终端设备及网络设备
WO2020020360A1 (zh) * 2018-07-27 2020-01-30 Oppo广东移动通信有限公司 无线通信方法和设备
WO2020092166A2 (en) * 2018-10-29 2020-05-07 Qualcomm Incorporated Uplink (ul) transmission with flexible starting positions for new radio-unlicensed (nr-u)
CN112087805A (zh) * 2019-06-13 2020-12-15 北京三星通信技术研究有限公司 随机接入前导序列分配、确定、数据传输方法和设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110214464A (zh) * 2017-03-24 2019-09-06 华为技术有限公司 资源调度方法、终端设备及网络设备
CN108809602A (zh) * 2017-05-05 2018-11-13 北京三星通信技术研究有限公司 基站、终端及随机接入前导检测、随机接入信道配置方法
CN108260108A (zh) * 2018-01-16 2018-07-06 重庆邮电大学 一种基于非正交的窄带物联网NB-IoT随机接入方法
WO2020020360A1 (zh) * 2018-07-27 2020-01-30 Oppo广东移动通信有限公司 无线通信方法和设备
WO2020092166A2 (en) * 2018-10-29 2020-05-07 Qualcomm Incorporated Uplink (ul) transmission with flexible starting positions for new radio-unlicensed (nr-u)
CN112087805A (zh) * 2019-06-13 2020-12-15 北京三星通信技术研究有限公司 随机接入前导序列分配、确定、数据传输方法和设备

Also Published As

Publication number Publication date
EP4319445A1 (en) 2024-02-07
CN115278918A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
US20210168574A1 (en) Beamforming and grouping for nr v2x
KR102270533B1 (ko) 무선 통신 시스템에서 통신 방법 및 장치
US10440689B2 (en) Method and apparatus for resource allocation in V2V communications system
CA3128860C (en) Structure of message from user equipment to base station in 2-step random access
CN107409402B (zh) 用于车辆通信智能无线电接入区的方法、装置、系统和计算机程序
US11617143B2 (en) Sidelink broadcast channel transmission
CN113825235A (zh) 用于多trp场景中的ul传输的装置和方法
US20220038240A1 (en) Frequency configuration for control resource set in non-terrestrial networks
EP4266808A1 (en) Communication method and apparatus applicable to non-terrestrial network (ntn)
CN114026952B (zh) 截断的标识指示符
WO2022228038A1 (zh) 通信方法及装置
CN114765485A (zh) 用在用户设备中的装置
CN116073967A (zh) 资源映射方法与装置、终端和网络设备
CN116569627A (zh) 用于节点的单元选择
CN114026950A (zh) 在无线通信系统中的两步随机接入过程中执行退避的方法和设备
WO2023202536A1 (zh) 通信方法及装置
WO2023065276A1 (en) Systems and methods for enhanced random access procedure
WO2023151508A1 (zh) 通信方法与装置、终端设备和网络设备
US20170238281A1 (en) Device and system
CN114765523A (zh) 用在用户设备中的装置
KR20220152135A (ko) 사이드링크 릴레이를 통하여 사이드링크 리모트 단말에 의한 시스템 정보 획득을 지원하는 방법 및 장치
KR20230095475A (ko) 무선 통신 시스템에서 사이드링크 단말의 위치 등록 절차를 처리하는 방법 및 장치
CN114205917A (zh) 用在用户设备中的装置
EP4397119A1 (en) Preamble transmission on random-access channel occasion overlapping with downlink symbols
WO2023030654A1 (en) Preamble transmission on random-access channel occasion overlapping with downlink symbols

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794510

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022794510

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022794510

Country of ref document: EP

Effective date: 20231103

NENP Non-entry into the national phase

Ref country code: DE