WO2020020345A1 - 车辆的集成控制器和车辆 - Google Patents

车辆的集成控制器和车辆 Download PDF

Info

Publication number
WO2020020345A1
WO2020020345A1 PCT/CN2019/097901 CN2019097901W WO2020020345A1 WO 2020020345 A1 WO2020020345 A1 WO 2020020345A1 CN 2019097901 W CN2019097901 W CN 2019097901W WO 2020020345 A1 WO2020020345 A1 WO 2020020345A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor controller
cooling water
controller
drive motor
upper case
Prior art date
Application number
PCT/CN2019/097901
Other languages
English (en)
French (fr)
Inventor
曾露林
齐阿喜
刘存龙
占奇伟
张有新
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP19840064.0A priority Critical patent/EP3819158B1/en
Priority to US17/261,635 priority patent/US11491933B2/en
Priority to KR1020217002804A priority patent/KR102512853B1/ko
Priority to JP2021504414A priority patent/JP7116245B2/ja
Publication of WO2020020345A1 publication Critical patent/WO2020020345A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0231Circuits relating to the driving or the functioning of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0238Electrical distribution centers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0239Electronic boxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0017Casings, cabinets or drawers for electric apparatus with operator interface units
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14324Housings specially adapted for power drive units or power converters comprising modular units, e.g. DIN rail mounted units
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20845Modifications to facilitate cooling, ventilating, or heating for automotive electronic casings
    • H05K7/20872Liquid coolant without phase change
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/05Cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to the technical field of vehicles, and in particular, to an integrated controller and vehicle for a vehicle.
  • each controller module in a vehicle high-voltage system operates independently, and the entire vehicle operation is achieved through a wiring harness between each controller module. Since each controller module operates independently and the entire vehicle is operated through a wiring harness connection between modules, the detection of which modules have problems or aging, etc., has a high investment cost, and increases the difficulty of assembling the entire vehicle.
  • the present disclosure provides an integrated controller of a vehicle and a vehicle, in order to solve the related art because each controller module in the high-voltage system of the vehicle runs independently and realizes the entire vehicle operation through the wiring harness connection, resulting in higher detection costs and increased assembly of the entire vehicle. Difficult technical issues.
  • a first aspect of an embodiment of the present disclosure provides an integrated controller of a vehicle, which includes a box body and a high-voltage power distribution module disposed in the box body, and a left-hand side connected to the high-voltage power distribution module.
  • the box includes an upper box and a lower box; the left drive motor controller and the right drive motor controller are installed in the upper box, the air compressor controller, The steering motor controller and the DC-DC voltage converter are installed in the lower case; the upper case and the lower case are both provided with the high-voltage power distribution module, and the upper case is provided with There are a battery pack interface and a charging gun interface both connected to the high-voltage power distribution module.
  • the upper case is provided with at least two interfaces of the battery pack and two interfaces of the charging gun.
  • a magnetic ring and a Y capacitor are provided on a connection line between the battery pack interface and the high-voltage power distribution module, and on a connection line between the charging gun interface and the high-voltage power distribution module.
  • a leakage sensor connected to the high-voltage power distribution module is further provided in the upper case, and an input-output interface corresponding to the leakage sensor is provided in the upper case.
  • a photocoupler sintering detector connected to the high-voltage power distribution module is further provided in the upper case, and an input / output interface corresponding to the photocoupler sintering detector is provided in the upper case.
  • a first cooling water channel and a second cooling water channel that are independent of each other are provided between the upper case and the lower case, the right drive motor controller, the air compressor controller, and The steering motor controller dissipates heat through the first cooling water channel, and the left drive motor controller and the DC-DC voltage converter dissipate heat through the second cooling water channel.
  • the upper box includes a bottom wall of the upper box and a side wall of the upper box formed around the bottom wall of the upper box, and the lower surfaces of the bottom wall of the upper box are formed independently of each other.
  • a first cooling water tank and a second cooling water tank the lower case includes a top wall of the lower case, a side wall of the lower case formed around the top wall of the lower case, and an upper surface of the top wall of the lower case
  • a third cooling water tank and a fourth cooling water tank which are independent of each other are formed on the bottom surface of the upper box body and the upper surface of the top wall of the lower box body are adhered, so that the first cooling water tank and the The fourth cooling water tank collectively defines the first cooling water channel, the second cooling water tank, and the third cooling water tank together defining the second cooling water channel.
  • the upper case and the lower case are connected by bolts and connected by friction welding.
  • the air compressor controller, the steering motor controller, and the DC-DC voltage converter are in contact with the top wall of the lower case.
  • two openings are formed in the bottom wall of the upper case, and the left drive motor controller is disposed on one opening, so that the left drive motor controls The radiator column of the radiator is in contact with the cooling liquid in the second cooling water channel; the right drive motor controller is disposed on another opening, so that the radiator column of the right drive motor controller and the first cooling water channel The coolant in contact.
  • a reinforcing rib is formed in the opening, two ends of the reinforcing rib are connected to a pair of sides of the opening, and the reinforcing rib is perpendicular to the flow direction of the cooling liquid.
  • a boss is formed on the upper surface of the top wall of the lower box corresponding to the opening, the boss is adapted to the shape of the opening, and a relief is formed on the boss.
  • An escape groove for the reinforcing rib is formed on the boss.
  • the coolant in the first cooling water channel first cools the steering motor controller, and then cools the air compressor controller and the right drive motor controller; in the second cooling water channel
  • the cooling fluid first cools the DC-DC voltage converter, and then cools the left drive motor controller.
  • the first cooling water channel and the second cooling water channel are arranged symmetrically.
  • a vehicle including the integrated controller according to any one of the first aspects.
  • the vehicle layout space can be optimized and development reduced. Cost; among them, these modules are integrated in the box, and the modules and modules can be connected through the transfer copper bar. Compared with the wiring harness connection, it is convenient to detect which modules are aging and reduce the cost; In addition, it is also convenient to replace The modules in the box, for example, can be replaced by modules corresponding to different models, which can be used by dozens of models to realize the platformization of the controller, which solves the problem that each controller module in the high-voltage system of the vehicle runs independently and is connected through a wiring harness in related technologies.
  • the left drive motor controller and the right drive motor controller full-wheel-side drive or single-motor drive can be realized; and by integrating a high-voltage power distribution module in the box, the easy Damaged parts such as charge insurance, main insurance, and pre-charged resistors can be replaced on the entire vehicle without the need to return the integrated controller to the manufacturer for replacement, further saving costs.
  • FIG. 1 is a schematic circuit layout diagram of an integrated controller according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic circuit diagram of a vehicle connection of an integrated controller according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a cabinet in an integrated controller according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic circuit layout diagram of an upper cabinet in an integrated controller according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic circuit layout diagram of a lower case in an integrated controller according to an embodiment of the present disclosure.
  • FIG. 6 is an assembly explosion diagram of an upper case and a lower case in an integrated controller according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic bottom view of an upper case according to an embodiment of the present disclosure.
  • FIG 8 is a schematic top view of a lower case according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic plan view of an upper case according to an embodiment of the present disclosure; the top wall of the upper case is not shown, and the left drive motor controller and the right drive motor controller are shown.
  • FIG. 10 is a schematic bottom view of a lower case according to an embodiment of the present disclosure, wherein the bottom wall of the lower case is not shown, and an air compressor controller, a steering motor controller, and a DC-DC voltage converter are shown.
  • FIG. 11 is a schematic plan view of a lower case according to an embodiment of the present disclosure, in which an IGBT module of a left drive motor controller and an IGBT module of a right drive motor controller are shown.
  • FIG. 12 is a schematic bottom view of a lower case according to an embodiment of the present disclosure, in which an IPM module of an air compressor controller, an IPM module of a steering motor controller, and a DC-DC voltage converter are shown.
  • FIG. 13 is a schematic structural diagram of an IGBT module in an integrated controller according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of a vehicle according to an embodiment of the present disclosure.
  • A1 the first cooling water channel A2: the second cooling water channel
  • orientation words such as “up, down, left, and right” are usually defined with reference to the drawing direction of the corresponding drawing, unless otherwise stated, "inside, outside” means Inside and outside of the corresponding part contour.
  • FIG. 1 is a schematic circuit layout diagram of an integrated controller A according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a cabinet in the integrated controller A according to an embodiment of the present disclosure.
  • the integrated controller A includes a cabinet 10, a left drive motor controller 300, a right drive motor controller 400, an air motor controller 500, a steering motor controller 600, and a DC-DC.
  • the voltage converter 700 and the high-voltage power distribution module 900 are all disposed in the box.
  • the left driving motor controller 300, the right driving motor controller 400, the air motor controller 500, the steering motor controller 600, and the DC-DC voltage converter 700 are all related to each other.
  • the high-voltage power distribution module 900 is connected.
  • the cabinet 10 is provided with a corresponding high-voltage power distribution module 900, a left drive motor controller 300, a right drive motor controller 400, an air motor controller 500, a steering motor controller 600, and a DC-DC voltage. Multiple input-output interfaces of the converter 700.
  • FIG. 2 is a schematic circuit diagram of the entire vehicle connection of the integrated controller A according to an embodiment of the present disclosure.
  • the left drive motor controller 300 and the right drive motor controller 400 are described.
  • the air compressor motor controller 500, the steering motor controller 600, the DC-DC voltage converter 700, and the high-voltage power distribution module 900 are connected to the BMS (Battery Management System; battery management system) through corresponding input and output interfaces on the cabinet 10.
  • BMS Battery Management System
  • the left drive motor controller 300 and the right drive motor controller 400 are connected to corresponding drive motors and sensors through different input and output interfaces on the cabinet 10;
  • the air motor controller 500 is connected through The input / output interface on the cabinet 10 is connected to the air motor and sensors;
  • the steering motor controller 600 is connected to the steering motor and sensors through the input / output interface on the cabinet 10;
  • the converter 700 is connected to a low-voltage battery through an input-output interface on the cabinet 10.
  • the number of sensors connected to the left drive motor controller 300, the right drive motor controller 400, the air motor controller 500, or the steering motor controller 600 may be one or more.
  • the high-voltage power distribution module 900 may use different input-output interfaces on the cabinet 10 and corresponding air-conditioning compressors, PTC (Positive Temperature Coefficient) heaters, and defrost controllers.
  • the battery thermal management system compressor is connected.
  • the box 10 needs to be provided with a battery pack interface 905 and a charging gun interface 906, and the battery pack interface 905 and the charging gun interface 906 are both connected to the high-voltage power distribution module 900.
  • the high-voltage power distribution module 900 needs to be connected to a high-voltage power battery through the battery pack interface 905 so that the high-voltage power battery can supply power to other modules; a charging cabinet needs to be inserted into the charging gun interface 906 through a charging gun to charge the high-voltage power battery.
  • the integrated controller A by integrating the left driving motor controller 300, the right driving motor controller 400, the air motor controller 500, the steering motor controller 600, and the DC-DC voltage converter in the cabinet. 700 and high-voltage power distribution module 900 can optimize the overall vehicle layout space and reduce development costs.
  • these modules are integrated in the box 10, and the modules and the modules can be connected by connecting copper bars, compared to the wiring harness connection. It is convenient to detect which modules are aging, etc., and reduce the cost; In addition, it is also convenient to replace the modules in the cabinet 10, for example, by replacing the modules corresponding to different models, it can be used by dozens of models to realize the platform of the controller and solve the problem.
  • FIG. 4 is a schematic diagram of a circuit layout of an upper case in the integrated controller A according to an embodiment of the present disclosure
  • FIG. 5 is an integrated controller of an embodiment of the present disclosure.
  • FIG. 6 is an assembly explosion diagram of the upper box and the lower box in the integrated controller A according to an embodiment of the present disclosure. As shown in FIGS.
  • the cabinet 10 includes an upper cabinet 100 and a lower cabinet 200; the left drive motor controller 300 and the right drive motor controller 400 are installed in In the upper case 100, the air compressor controller 500, the steering motor controller 600, and the DC-DC voltage converter 700 are installed in the lower case 200; the upper case 100
  • the lower case 200 is provided with the high-voltage power distribution module 900, and the battery pack interface 905 and the charging gun interface 906 are provided in the upper case 100.
  • the upper case 100 is provided with at least two battery pack interfaces 905 and two charging gun interfaces 906.
  • the number of the battery pack interface 905 and the charging gun interface 906 are two. Because the battery pack interface 905 is dual, it can achieve single battery pack or dual battery pack operation; because the charging gun interface 906 is dual, it can achieve dual DC charging, dual AC charging, AC and DC charging, single gun DC charging, single gun A variety of charging methods such as AC charging.
  • the battery pack interface 905 is connected to the high-voltage power distribution module 900
  • the charging gun interface 906 is connected to the high-voltage power distribution module 900.
  • Each is provided with a magnetic ring 903 and a Y capacitor 904.
  • an electric leakage sensor 902 connected to the high-voltage power distribution module 900 is further provided in the upper case 100, and the upper case 100 is provided with a corresponding leakage sensor. Input and output interface of 902, which is connected to the BMS.
  • the leakage sensor 902 not only the monitoring and protection can be provided when the controller in the box 10 leaks electricity, but also the protection function of the sintering detection of the charging contactor is provided.
  • the upper case 100 is further provided with a photocoupler sintering detector 901 connected to the high-voltage power distribution module 900.
  • the input-output interface of the photocoupler sintering detector 901 is described.
  • the input-output interface is connected to the BMS.
  • the upper case 100 is connected to the lower case 200, and the first and second cooling passages A1 and A2 are provided between the upper and lower cases 100 and 200.
  • the right drive The motor controller 400, the air compressor controller 500, and the steering motor controller 600 dissipate heat through the first cooling water channel A1
  • the left drive motor controller 300 and the DC-DC voltage converter 700 dissipate heat through the second cooling water channel A2.
  • the use of dual-channel cooling has at least the following three advantages: First, the number of modules cooled by the coolant in each channel is reduced when the number of modules to be cooled is unchanged. To a certain extent, the situation that the cooling effect is lost due to the high temperature of the cooling liquid is avoided to ensure the effective cooling of each module to be cooled. Second, the circulation path of each water channel is shortened, which reduces the pressure during the flow of the cooling liquid Loss, thereby reducing the requirements on the pump, that is, allowing the use of pumps with relatively low pressure and flow.
  • shortening the circulation path can also shorten the time for the high-temperature coolant to circulate inside the integrated controller A, and avoid causing the temperature of the entire integrated controller A to increase.
  • the flow area of each water channel is reduced, and the circulation path is shortened. The difficulty of sealing the waterway is reduced, thereby reducing the risk of water leakage.
  • the upper case 100 and the lower case 200 may be formed in any appropriate structure and shape.
  • the upper case 100 includes an upper case bottom wall 101 and an upper case side wall 102 formed around the upper case bottom wall 101.
  • a first cooling water tank 103 and a second cooling water tank 104 are formed on the surface independently of each other.
  • the lower case 200 includes a lower case top wall 201 and a lower case side wall 202 formed around the lower case top wall 201.
  • a third cooling water tank 203 and a fourth cooling water tank 204 which are independent of each other are formed on the upper surface of the lower box top wall 201, and the lower surface of the upper box bottom wall 101 and the upper surface of the lower box top wall 201 are attached to each other.
  • the first cooling water tank 103 and the fourth cooling water tank 204 collectively define a first cooling water channel A1, the second cooling water tank 104 and the third cooling water tank 203 together define a second cooling water channel A2.
  • the structure of the bottom wall 101 and the top wall 201 of the bottom box is fully utilized, and the first and second independent walls are defined by opening a water tank on the bottom wall 101 and the top wall 201 of the bottom box.
  • the cooling water channel A1 and the second cooling water channel A2 avoid the separate processing of the cooling water channel on the cabinet, which saves space and facilitates the arrangement of other components in the integrated controller A.
  • first cooling water channel A1 and the second cooling water channel A2 may be separately disposed on the upper box bottom wall 101 or the lower box top wall 201; or, the first cooling water channel A1 and the second cooling channel One of the water channels A2 may be separately formed on the bottom wall 101 of the upper case, and the other may be separately formed on the top wall 201 of the lower case; or alternatively, two independent water pipes may be separately provided, and the two water pipes may be fastened by The components are fixed on the box of the integrated controller A, and the inside of the two water pipes respectively defines a first cooling water channel A1 and a second cooling water channel A2.
  • the upper case 100 and the lower case 200 pass through Bolted and connected by friction welding.
  • the components to be cooled in the left drive motor controller 300 and the right drive motor controller 400 are mainly IGBT (Insulated Gate Bipolar Transistor) modules, and the air compressor controller 500 and the steering motor controller 600 are to be cooled.
  • the cooling element is an IPM (Intelligent Power Module).
  • the IGBT module usually adopts a method of directly contacting the cooling liquid to dissipate heat, and the IPM 501 of the air compressor controller 500 and the IPM 601 of the steering motor controller 600 generally dissipate heat by contacting the wall of the cooling pipe.
  • the air compressor controller 500, the steering motor controller 600, and the DC-DC voltage converter 700 may be in contact with the top wall 201 of the lower case.
  • the above three modules can perform heat exchange with the cooling liquid through the top wall 201 of the lower box to achieve the purpose of heat dissipation and cooling.
  • two openings 105 penetrating the bottom wall 101 of the upper case are formed on the bottom wall 101 of the upper case, and the left drive motor controller 300 is provided in one opening 105. So that the heat sink column (the heat sink column 801 of the IGBT module) of the left drive motor controller 300 is in contact with the coolant in the second cooling water channel A2; the right drive motor controller 400 is disposed on the other opening 105 so that the right The heat dissipation column of the drive motor controller 400 is in contact with the cooling liquid in the first cooling water passage A1.
  • a reinforcing rib 106 may be formed in the opening 105. Both ends of the reinforcing rib 106 are connected to a pair of sides of the opening 105, and the reinforcing rib 106 is perpendicular to the flow direction of the cooling liquid.
  • a boss 205 is formed on the upper surface of the lower box top wall 201 at a position corresponding to the opening 105, the boss 205 is adapted to the shape of the opening 105, and an avoidance reinforcement is formed on the boss 205. Avoiding groove 206 of rib 106.
  • the boss 205 is inserted into the opening 105, the rib 106 is inserted into the avoidance groove 206, and the upper surface of the rib 106 and the boss 205 The top surface is flush.
  • the heat dissipation column 801 of the IGBT module is placed on the boss 205, and the cooling liquid flows between the gaps of the plurality of heat dissipation columns 801, thereby achieving heat exchange.
  • the structural strength of the bottom wall 101 of the upper case can be improved to meet the strength requirements for the installation of components such as the left drive motor controller 300 and the right drive motor controller 400.
  • the rib 106 is perpendicular to the flow direction of the coolant, it acts as a barrier to the lower coolant, which increases the allowable amount of the width dimension of the boss 205 less than the width dimension of the opening 105. In other words, if there is no rib 106.
  • the width of the boss 205 is generally increased as much as possible. To reduce the gap.
  • the cooling liquid will not pass through the gap between the left and right side walls of the boss 205 and the left and right side walls of the opening 105. Medium flow, which can improve the cooling effect of the cooling liquid on the IGBT module.
  • the coolant in the first cooling water channel A1 may first cool the steering motor controller 600 and then the air compressor controller. 500 and right drive motor controller 400, that is, the coolant first cools the steering motor controller 600 with a relatively low heat generation, and finally cools the right drive motor controller 400 with a high heat output.
  • the coolant After passing through the steering motor controller 600, the temperature does not increase significantly, and then it can still play an effective cooling role in the process of flowing through the air compressor controller 500 and the right drive motor controller 400.
  • the coolant in the second cooling water channel A2 first cools the DC-DC voltage converter 700 with a lower heat generation, and then cools the left drive motor controller 300 with a higher heat generation.
  • the cross-sectional shapes of the first cooling water channel A1 and the second cooling water channel A2 and the position on the box of the integrated controller A can be flexibly arranged according to the structure and position of the surrounding components, which is not limited in the present disclosure.
  • the cross sections of the first cooling water channel A1 and the second cooling water channel A2 may be rectangular.
  • the first cooling water channel A1 and the second cooling water channel A2 may be symmetrically arranged. On the bonding surface between the upper case 100 and the lower case 200.
  • the integrated controller A by integrating the left driving motor controller 300, the right driving motor controller 400, the air motor controller 500, and the steering motor control in the cabinet 10 Device 600, DC-DC voltage converter 700, and high-voltage power distribution module 900, so that the consumable parts in the high-voltage power distribution module 900 such as charge insurance, main insurance, power distribution small insurance, and pre-charge resistance can be installed in the vehicle. It does not need to return the integrated controller A to the manufacturer for replacement, which further saves costs.
  • the present disclosure also provides a vehicle B, which includes the integrated controller A described above.
  • the vehicle B further includes a first water pump B1 and a second water pump B2.
  • the first water pump B1 is used to drive the coolant in the first cooling water channel A1
  • the second water pump B2 is used to drive the second cooling water channel
  • the coolant is circulated in A2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种车辆的集成控制器(A),集成控制器(A)包括箱体(10)以及设置于箱体(10)内的高压配电模块(900)以及均与高压配电模块(900)连接的左驱动电机控制器(300)、右驱动电机控制器(400)、空压电机控制器(500)、转向电机控制器(600)和DC-DC电压转换器(700);箱体(10)设有对应于高压配电模块(900)、左驱动电机控制器(300)、右驱动电机控制器(400)、空压电机控制器(500)、转向电机控制器(600)和DC-DC电压转换器(700)的多个输入输出接口。还公开了一种车辆(B)。

Description

车辆的集成控制器和车辆
相关申请的交叉引用
本公开基于申请号为201810847799.6、申请日为2018年07月27日的中国专利申请,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及车辆技术领域,具体地,涉及一种的车辆的集成控制器和车辆。
背景技术
相关技术中,车辆高压系统中的各个控制器模块独立运行,并且各个控制器模块之间通过转接线束实现整车运行。由于各个控制器模块独立运行以及模块之间通过线束连接实现整车运行,使得检测哪些模块出现问题或者老化等情况时,投入成本较高,并且增加了整车的装配难度。
发明内容
本公开提供一种车辆的集成控制器和车辆,以解决相关技术中因车辆的高压系统中各个控制器模块独立运行且通过线束连接来实现整车运行造成检测成本较高以及增加整车的装配难度的技术问题。
为实现上述目的,本公开实施例的第一方面,提供一种车辆的集成控制器,包括箱体以及设置于所述箱体内的高压配电模块以及均与所述高压配电模块连接的左驱动电机控制器、右驱动电机控制器、空压电机控制器、转向电机控制器和DC-DC电压转换器;所述箱体设有对应于所述的高压配电模块、左驱动电机控制器、右驱动电机控制器、空压电机控制器、转向电机控制器和DC-DC电压转换器的多个输入输出接口。
在一些实施例中,所述箱体包括上箱体和下箱体;所述左驱动电机控制器和所述右驱动电机控制器安装在所述上箱体内,所述空压机控制器、所述转向电机控制器和所述DC-DC电压转换器安装在所述下箱体内;所述上箱体和所述下箱体内均设置有所述高压配电模块,所述上箱体设有均连接于所述高压配电模块的电池包接口和充电枪接口。
在一些实施例中,所述上箱体至少设有两个所述电池包接口和两个所述充电枪接口。
在一些实施例中,所述电池包接口与所述高压配电模块的连接线路上、以及所述充电 枪接口与所述高压配电模块的连接线路上均设有磁环和Y电容。
在一些实施例中,所述上箱体内还设有连接于所述高压配电模块的漏电传感器,所述上箱体设有对应于所述漏电传感器的输入输出接口。
在一些实施例中,所述上箱体内还设有连接于所述高压配电模块的光耦烧结检测器,所述上箱体设有对应于所述光耦烧结检测器的输入输出接口。
在一些实施例中,所述上箱体和所述下箱体之间设置有相互独立的第一冷却水道和第二冷却水道,所述右驱动电机控制器、所述空压机控制器和所述转向电机控制器通过所述第一冷却水道散热,所述左驱动电机控制器和所述DC-DC电压转换器通过所述第二冷却水道散热。
在一些实施例中,所述上箱体包括上箱体底壁和形成在所述上箱体底壁四周的上箱体侧壁,所述上箱体底壁的下表面上形成有相互独立的第一冷却水槽和第二冷却水槽,所述下箱体包括下箱体顶壁和形成在所述下箱体顶壁四周的下箱体侧壁,所述下箱体顶壁的上表面上形成有相互独立的第三冷却水槽和第四冷却水槽,所述上箱体底壁的下表面与所述下箱体顶壁的上表面贴合,以使所述第一冷却水槽和所述第四冷却水槽共同限定出所述第一冷却水道、所述第二冷却水槽和所述第三冷却水槽共同限定出所述第二冷却水道。
在一些实施例中,所述上箱体与所述下箱体通过螺栓连接且通过摩擦焊连接。
在一些实施例中,所述空压机控制器、所述转向电机控制器、所述DC-DC电压转换器与所述下箱体顶壁接触。
在一些实施例中,所述上箱体底壁上形成有贯穿所述上箱体底壁的两个开口,所述左驱动电机控制器设置在一个开口上,以使所述左驱动电机控制器的散热柱与所述第二冷却水道中的冷却液接触;所述右驱动电机控制器设置在另一个开口上,以使所述右驱动电机控制器的散热柱与所述第一冷却水道中的冷却液接触。
在一些实施例中,所述开口内形成有加强筋,所述加强筋的两端与所述开口的一对侧边相连,所述加强筋与冷却液的流向垂直。
在一些实施例中,所述下箱体顶壁的上表面上与所述开口对应的位置形成有凸台,所述凸台与所述开口的形状适配,所述凸台上形成有避让所述加强筋的避让槽。
在一些实施例中,所述第一冷却水道中的冷却液先冷却所述转向电机控制器,再冷却所述空压机控制器和所述右驱动电机控制器;所述第二冷却水道中的冷却液先冷却所述DC-DC电压转换器,再冷却所述左驱动电机控制器。
在一些实施例中,所述第一冷却水道和所述第二冷却水道对称设置。
本公开实施例的第二方面,提供一种车辆,所述车辆包括上述第一方面中任一项所述的集成控制器。
采用上述技术方案,至少能够达到如下技术效果:
通过在箱体内集成左驱动电机控制器、右驱动电机控制器、空压电机控制器、转向电机控制器和DC-DC电压转换器以及高压配电模块,可优化整车布置空间、降低开发成本;其中,这些模块都集成在箱体内,模块与模块之间可以通过转接铜排进行连接,相比于线束连接,方便检测哪些模块出现老化等情况,并且降低成本;另外,也方便更换箱体中的模块,比如通过更换不同车型对应的模块,可供几十种车型利用,实现控制器平台化,解决了相关技术中因车辆的高压系统中各个控制器模块独立运行且通过线束连接来实现整车运行造成检测成本较高以及增加整车的装配难度的技术问题。另外,通过集成左驱动电机控制器和右驱动电机控制器,可以实现整车轮边驱动或者单电机驱动;并且,通过在箱体内集成高压配电模块,使得所述高压配电模块中的易损件如出充电保险、主保险和预充电阻可在整车上实现更换,无需将集成控制器返回厂商替换,进一步节约了成本。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是本公开一种实施方式的集成控制器的电路布局示意图。
图2是本公开一种实施方式的集成控制器的整车连接的电路示意图。
图3是本公开一种实施方式的集成控制器中箱体的结构示意图。
图4是本公开一种实施方式的集成控制器中上箱体的电路布局示意图。
图5是本公开一种实施方式的集成控制器中下箱体的电路布局示意图。
图6是本公开一种实施方式的集成控制器中上箱体和下箱体的装配爆炸示意图。
图7是本公开一种实施方式的上箱体的仰视示意图。
图8是本公开一种实施方式的下箱体的俯视示意图。
图9是本公开一种实施方式的上箱体的俯视示意图;其中未示出上箱体的顶壁,示出了左驱动电机控制器和右驱动电机控制器。
图10是本公开一种实施方式的下箱体的仰视示意图,其中未示出下箱体的底壁,示出了空压机控制器、转向电机控制器和DC-DC电压转换器。
图11是本公开一种实施方式的下箱体的俯视示意图,其中示出了左驱动电机控制器的IGBT模块和右驱动电机控制器的IGBT模块。
图12是本公开一种实施方式的下箱体的仰视示意图,其中示出了空压机控制器的IPM模块、转向电机控制器的IPM模块、以及DC-DC电压转换器。
图13是本公开一种实施方式的集成控制器中IGBT模块的结构示意图。
图14是本公开一种实施方式的车辆的示意图。
附图标记说明
A    集成控制器        B    车辆
A1   第一冷却水道      A2   第二冷却水道
B1   第一水泵          B2   第二水泵
10   箱体              900  高压配电模块
100  上箱体            101  上箱体底壁
102  上箱体侧壁        103  第一冷却水槽
104  第二冷却水槽      105  开口
106  加强筋            200  下箱体
201  下箱体顶壁        202  下箱体侧壁
203  第三冷却水槽      204  第四冷却水槽
205  凸台              206  避让槽
300  左驱动电机控制器  400  右驱动电机控制器
500  空压机控制器      501  空压机控制器的IPM
600  转向电机控制器    601  转向电机控制器的IPM
700  DC-DC电压转换器   800  IGBT模块
801  散热柱            901  光耦烧结检测器
902  漏电传感器        903  磁环
904  Y电容             905  电池包接口
906  充电枪接口
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的 具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在本公开中,在未作相反说明的情况下,使用的方位词如“上、下、左、右”通常是以相应附图的图面方向为基准定义的,“内、外”是指相应部件轮廓的内和外。
图1是本公开一种实施方式的集成控制器A的电路布局示意图,图3是本公开一种实施方式的集成控制器A中箱体的结构示意图。如图1和图3所示,该集成控制器A包括箱体10、左驱动电机控制器300、右驱动电机控制器400、空压电机控制器500、转向电机控制器600和DC-DC电压转换器700以及高压配电模块900。其中,左驱动电机控制器300、右驱动电机控制器400、空压电机控制器500、转向电机控制器600和DC-DC电压转换器700以及高压配电模块900均设置于所述箱体10内。
如图1和图3所示,所述的左驱动电机控制器300、右驱动电机控制器400、空压电机控制器500、转向电机控制器600和DC-DC电压转换器700均与所述高压配电模块900连接。所述箱体10设有对应于所述的高压配电模块900、左驱动电机控制器300、右驱动电机控制器400、空压电机控制器500、转向电机控制器600和DC-DC电压转换器700的多个输入输出接口。
在一些实施例中,如图2所示,图2是本公开一种实施方式的集成控制器A的整车连接的电路示意图,所述的左驱动电机控制器300、右驱动电机控制器400、空压电机控制器500、转向电机控制器600和DC-DC电压转换器700、高压配电模块900通过所述箱体10上对应的输入输出接口与BMS(Battery Management System;电池管理系统)连接;所述的左驱动电机控制器300、右驱动电机控制器400通过所述箱体10上不同的输入输出接口与对应的驱动电机和传感器连接;所述空压电机控制器500通过所述箱体10上的输入输出接口与空压电机和传感器连接;所述转向电机控制器600通过所述箱体10上的输入输出接口与转向电机和传感器连接;所述DC-DC电压转换器700通过所述箱体10上的输入输出接口与低压蓄电池连接。
需要说明的是,所述的左驱动电机控制器300、右驱动电机控制器400、空压电机控制器500或转向电机控制器600连接的传感器数量可以是一个也可以是多个。
继续参照图2,所述高压配电模块900可以通过所述箱体10上不同的输入输出接口与对应的空调压缩机、PTC(Positive Temperature Coefficient;整的温度系数)取暖器、除霜控制器、电池热管理系统压缩机连接。
如图2所示,所述箱体10上需设有电池包接口905和充电枪接口906,所述的电池包接口905和充电枪接口906均连接于所述高压配电模块900。所述高压配电模块900需要通 过所述电池包接口905连接于高压动力电池以使得高压动力电池供电给其它模块;充电柜需要通过充电枪插入所述充电枪接口906以给高压动力电池充电。
在本公开提供的集成控制器A中,通过在箱体内集成左驱动电机控制器300、右驱动电机控制器400、空压电机控制器500、转向电机控制器600和DC-DC电压转换器700以及高压配电模块900,可优化整车布置空间、降低开发成本;其中,这些模块都集成在箱体10内,模块与模块之间可以通过转接铜排进行连接,相比于线束连接,方便检测哪些模块出现老化等情况,并且降低成本;另外,也方便更换箱体10中的模块,比如通过更换不同车型对应的模块,可供几十种车型利用,实现控制器平台化,解决了相关技术中因车辆的高压系统中各个控制器模块独立运行且通过线束连接来实现整车运行造成检测成本较高以及增加整车的装配难度的技术问题。另外,通过集成左驱动电机控制器300和右驱动电机控制器400,可以实现整车轮边驱动或者单电机驱动。
请参照图3、图4、图5和图6,图4是本公开一种实施方式的集成控制器A中上箱体的电路布局示意图,图5是本公开一种实施方式的集成控制器A中下箱体的电路布局示意图,图6是本公开一种实施方式的集成控制器A中上箱体和下箱体的装配爆炸示意图。如图3、图4、图5和图6所示,所述箱体10包括上箱体100和下箱体200;所述左驱动电机控制器300和所述右驱动电机控制器400安装在所述上箱体100内,所述空压机控制器500、所述转向电机控制器600和所述DC-DC电压转换器700安装在所述下箱体200内;所述上箱体100和所述下箱体200内均设置有所述高压配电模块900,所述的电池包接口905和充电枪接口906均设置于所述上箱体100。
在一些实施例中,所述上箱体100至少设有两个所述电池包接口905和两个所述充电枪接口906。在附图所给的实施例中,所述的电池包接口905和充电枪接口906的数量均为两个。由于电池包接口905为双路,可实现单电池包或者双电池包运行;由于充电枪接口906为双路,可实现双直流充电、双交流充电、交直流充电、单枪直流充电、单枪交流充电等多种充电方式。
如图1、图2和图4所示,所述电池包接口905与所述高压配电模块900的连接线路上、以及所述充电枪接口906与所述高压配电模块900的连接线路上均设有磁环903和Y电容904。通过在充放电输入接口采用磁环903加Y电容904设计,可以节约空间,改善EMC(Electro Magnetic Compatibility;电磁兼容性)。
如图1、图2和图4所示,所述上箱体100内还设有连接于所述高压配电模块900的漏电传感器902,所述上箱体100设有对应于所述漏电传感器902的输入输出接口,该输入输 出接口连接于BMS。通过设置漏电传感器902,不仅能在所述箱体10内的控制器漏电时提供监测保护,同时还提供了充电接触器烧结检测的保护功能。
如图1、图2和图4所示,所述上箱体100内还设有连接于所述高压配电模块900的光耦烧结检测器901,所述上箱体100设有对应于所述光耦烧结检测器901的输入输出接口,该输入输出接口连接于BMS。通过设置光耦烧结检测器901,可以实现所述集成控制器A中所有接触器的烧结检测功能。
如图6至图13所示,上箱体100与下箱体200连接,上箱体100和下箱体200之间设置有相互独立的第一冷却水道A1和第二冷却水道A2,右驱动电机控制器400、空压机控制器500和转向电机控制器600通过第一冷却水道A1散热,左驱动电机控制器300和DC-DC电压转换器700通过第二冷却水道A2散热。
在本公开提供的集成控制器A中,设置相互独立的两条冷却水道以对集成控制器A上的不同模块进行散热。相较于现有技术中单水道的设置方式,采用双水道冷却至少具有以下三个优势:第一,在待冷却模块数量不变的情况下,每条水道中冷却液冷却的模块数量得以减少,一定程度上避免出现因冷却液温度较高失去冷却作用的情况,保证了对每一个待冷却模块的有效冷却;第二,每条水道的循环路径缩短,降低了冷却液流动过程中的压损,从而降低了对水泵的要求,即,允许采用压力、流量相对较小的水泵。另外,循环路径缩短亦可缩短高温冷却液在集成控制器A内部循环的时间,避免造成整个集成控制器A温度的升高;第三,每条水道流经面积减小,循环路径缩短,使得水道密封的难度降低,从而降低了水道漏水的风险。
其中,上箱体100和下箱体200可以形成为任意适当的结构和形状。在一种实施方式中,如图6所示,上箱体100包括上箱体底壁101和形成在上箱体底壁101四周的上箱体侧壁102,上箱体底壁101的下表面上形成有相互独立的第一冷却水槽103和第二冷却水槽104,下箱体200包括下箱体顶壁201和形成在下箱体顶壁201四周的下箱体侧壁202。下箱体顶壁201的上表面上形成有相互独立的第三冷却水槽203和第四冷却水槽204,上箱体底壁101的下表面与下箱体顶壁201的上表面贴合,以使第一冷却水槽103和第四冷却水槽204共同限定出第一冷却水道A1、第二冷却水槽104和第三冷却水槽203共同限定出第二冷却水道A2。
在本实施方式中,充分利用上箱体底壁101和下箱体顶壁201结构,通过在箱体底壁101和下箱体顶壁201上开设水槽的方式,限定出相互独立的第一冷却水道A1和第二冷却水道A2,避免了在箱体上单独加工冷却水道,节约空间,便于集成控制器A中其他零部件 的布置。在其他可替代的实施方式中,第一冷却水道A1和第二冷却水道A2可单独设置在上箱体底壁101或下箱体顶壁201上;或者,第一冷却水道A1和第二冷却水道A2中的一者可单独形成在上箱体底壁101上,另一者可单独形成在下箱体顶壁201上;再或者,可单独设置两条独立的水管,两条水管通过紧固件固定在集成控制器A的箱体上,两条水管的内部分别限定出第一冷却水道A1和第二冷却水道A2。
其中,为了实现上箱体100和下箱体200的可靠连接并提升第一冷却水道A1和第二冷却水道A2的密封性,在一种实施方式中,上箱体100与下箱体200通过螺栓连接且通过摩擦焊连接。
在本公开中,左驱动电机控制器300和右驱动电机控制器400中的待冷却元件主要为IGBT(绝缘栅双极型晶体管)模块,空压机控制器500和转向电机控制器600中待冷却元件为IPM(智能功率模块)。其中IGBT模块通常采用直接与冷却液接触的方式散热,空压机控制器500的IPM 501和转向电机控制器600的IPM 601通常采用与冷却管道管壁接触的方式散热。因此,在本公开的一种实施方式中,安装时,空压机控制器500、转向电机控制器600和DC-DC电压转换器700可与下箱体顶壁201接触,这样,当冷却液流在下箱体顶壁201上流动时,上述三个模块可通过下箱体顶壁201与冷却液进行热交换,以到达散热冷却的目的。
此外,如图6、图7、图11和图13所示,上箱体底壁101上形成有贯穿上箱体底壁101的两个开口105,左驱动电机控制器300设置在一个开口105上,以使左驱动电机控制器300的散热柱(IGBT模块的散热柱801)与第二冷却水道A2中的冷却液接触;右驱动电机控制器400设置在另一个开口105上,以使右驱动电机控制器400的散热柱与第一冷却水道A1中的冷却液接触。
如图6和图7所示,开口105内可以形成有加强筋106,加强筋106的两端与开口105的一对侧边相连,加强筋106与冷却液的流向垂直。
如图6和图8所示,下箱体顶壁201的上表面上与开口105对应的位置形成有凸台205,凸台205与开口105的形状适配,凸台205上形成有避让加强筋106的避让槽206。这样,在将上箱体底壁101和下箱体顶壁201贴合之后,凸台205插入到开口105中,加强筋106插入到避让槽206中并且加强筋106的上表面与凸台205的上表面齐平。此时,IGBT模块的散热柱801放置在凸台205上,冷却液在多个散热柱801的缝隙之间流动,从而实现热交换。
这里,通过设置加强筋106,一方面能够提升上箱体底壁101的结构强度,以满足对左 驱动电机控制器300和右驱动电机控制器400等零部件安装的强度需求,另一方面,由于加强筋106垂直于冷却液的流向,起到了对下层冷却液的阻绝作用,这样就增大了凸台205的宽度尺寸小于开口105的宽度尺寸的允许量,换句话说,如果没有加强筋106,为了避免冷却液从凸台205的左右侧壁与开口105的左右侧壁的缝隙中快速流过而减弱冷却液对IGBT模块的冷却效果,通常尽可能地增大凸台205的宽度尺寸,以减小上述缝隙。在本公开中,由于加强筋106的存在,即便凸台205的宽度尺寸比开口105的宽度尺寸小很多,冷却液也不会从凸台205的左右侧壁与开口105的左右侧壁的缝隙中流过,从而能够提升冷却液对IGBT模块的冷却效果。
为了能够最大程度实现待冷却件的冷却,提高冷却效率,在本公开的一种实施方式中,第一冷却水道A1中的冷却液可先冷却转向电机控制器600,再冷却空压机控制器500和右驱动电机控制器400,即,使得冷却液先对发热量相对较低的转向电机控制器600进行冷却,最后冷却发热量高的右驱动电机控制器400,这样的好处在于,冷却液在流经转向电机控制器600后温度不会有大幅升高,之后在流经空压机控制器500和右驱动电机控制器400的过程中仍然能够起到有效冷却作用。同样地,第二冷却水道A2中的冷却液先冷却发热量较低的DC-DC电压转换器700,再冷却发热量较高的左驱动电机控制器300。
在本公开中,第一冷却水道A1和第二冷却水道A2的截面形状以及在集成控制器A的箱体上的位置可以根据周围零部件的结构和位置进行灵活布置,本公开对此不作限制。在一种实施方式中,为了便于加工,第一冷却水道A1和第二冷却水道A2的横截面可以呈矩形,为了便于布置其他零部件,第一冷却水道A1和第二冷却水道A2可对称设置在上箱体100与下箱体200之间的贴合面上。
还需要说明的是,由于在本公开提供的集成控制器A中,通过在箱体10内集成左驱动电机控制器300、右驱动电机控制器400、空压电机控制器500、转向电机控制器600和DC-DC电压转换器700以及高压配电模块900,使得所述高压配电模块900中的易损件如出充电保险、主保险、配电小保险和预充电阻可在整车上实现更换,无需将集成控制器A返回厂商替换,进一步节约了成本。
结合图14,本公开还提供一种车辆B,所述车辆B包括上述的集成控制器A。在一些实施例中,该车辆B还包括第一水泵B1和第二水泵B2,第一水泵B1用于驱动第一冷却水道A1中的冷却液循环,第二水泵B2用于驱动第二冷却水道A2中的冷却液循环。相较于只设置单个水泵的方式,通过设置两个独立水泵能够避免出现因单个水泵故障引起集成控制器A冷却失效的情况,提升了整车正常运行的可靠性。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (16)

  1. 一种车辆的集成控制器集成控制器(A),其特征在于,包括箱体(10)以及设置于所述箱体(10)内的高压配电模块(900)以及均与所述高压配电模块(900)连接的左驱动电机控制器(300)、右驱动电机控制器(400)、空压电机控制器(500)、转向电机控制器(600)和DC-DC电压转换器(700);所述箱体(10)设有对应于所述的高压配电模块(900)、左驱动电机控制器(300)、右驱动电机控制器(400)、空压电机控制器(500)、转向电机控制器(600)和DC-DC电压转换器(700)的多个输入输出接口。
  2. 根据权利要求1所述的集成控制器(A),其特征在于,所述箱体(10)包括上箱体(100)和下箱体(200);所述左驱动电机控制器(300)和所述右驱动电机控制器(400)安装在所述上箱体(100)内,所述空压机控制器(500)、所述转向电机控制器(600)和所述DC-DC电压转换器(700)安装在所述下箱体(200)内;所述上箱体(100)和所述下箱体(200)内均设置有所述高压配电模块(900),所述上箱体(100)设有均连接于所述高压配电模块(900)的电池包接口(905)和充电枪接口(906)。
  3. 根据权利要求2所述的集成控制器(A),其特征在于,所述上箱体(100)至少设有两个所述电池包接口(905)和两个所述充电枪接口(906)。
  4. 根据权利要求3所述的集成控制器(A),其特征在于,所述电池包接口(905)与所述高压配电模块(900)的连接线路上、以及所述充电枪接口(906)与所述高压配电模块(900)的连接线路上均设有磁环(903)和Y电容(904)。
  5. 根据权利要求2-4中任一项所述的集成控制器(A),其特征在于,所述上箱体(100)内还设有连接于所述高压配电模块(900)的漏电传感器(902),所述上箱体(100)设有对应于所述漏电传感器(902)的输入输出接口。
  6. 根据权利要求2-5中任一项所述的集成控制器(A),其特征在于,所述上箱体(100)内还设有连接于所述高压配电模块(900)的光耦烧结检测器(901),所述上箱体(100)设有对应于所述光耦烧结检测器(901)的输入输出接口。
  7. 根据权利要求2-6中任一项所述的集成控制器(A),其特征在于,所述上箱体(100)和所述下箱体(200)之间设置有相互独立的第一冷却水道(A1)和第二冷却水道(A2),所述右驱动电机控制器(400)、所述空压电机控制器(500)和所述转向电机控制器(600)通过所述第一冷却水道(A1)散热,所述左驱动电机控制器(300)和所述DC-DC电压转换器(700)通过所述第二冷却水道(A2)散热。
  8. 根据权利要求7所述的集成控制器(A),其特征在于,所述上箱体(100)包括上 箱体底壁(101)和形成在所述上箱体底壁(101)四周的上箱体侧壁(102),所述上箱体底壁(101)的下表面上形成有相互独立的第一冷却水槽(103)和第二冷却水槽(104),所述下箱体(200)包括下箱体顶壁(201)和形成在所述下箱体顶壁(201)四周的下箱体侧壁(202),所述下箱体顶壁(201)的上表面上形成有相互独立的第三冷却水槽(203)和第四冷却水槽(204),所述上箱体底壁(101)的下表面与所述下箱体顶壁(201)的上表面贴合,以使所述第一冷却水槽(103)和所述第四冷却水槽(204)共同限定出所述第一冷却水道(A1)、所述第二冷却水槽(104)和所述第三冷却水槽(203)共同限定出所述第二冷却水道(A2)。
  9. 根据权利要求2-8中任一项所述的集成控制器(A),其特征在于,所述上箱体(100)与所述下箱体(200)通过螺栓连接且通过摩擦焊连接。
  10. 根据权利要求8所述的集成控制器(A),其特征在于,所述空压电机控制器(500)、所述转向电机控制器(600)、所述DC-DC电压转换器(700)与所述下箱体顶壁(201)接触。
  11. 根据权利要求8或10所述的集成控制器(A),其特征在于,所述上箱体底壁(101)上形成有贯穿所述上箱体底壁(101)的两个开口(105),所述左驱动电机控制器(300)设置在一个开口(105)上,以使所述左驱动电机控制器(300)的散热柱与所述第二冷却水道(A2)中的冷却液接触;所述右驱动电机控制器(400)设置在另一个开口(105)上,以使所述右驱动电机控制器(400)的散热柱与所述第一冷却水道(A1)中的冷却液接触。
  12. 根据权利要求11所述的集成控制器(A),其特征在于,所述开口(105)内形成有加强筋(106),所述加强筋(106)的两端与所述开口(105)的一对侧边相连,所述加强筋(106)与冷却液的流向垂直。
  13. 根据权利要求12所述的集成控制器(A),其特征在于,所述下箱体顶壁(201)的上表面上与所述开口(105)对应的位置形成有凸台(205),所述凸台(205)与所述开口(105)的形状适配,所述凸台(205)上形成有避让所述加强筋(106)的避让槽(206)。
  14. 根据权利要求7-13中任一项所述的集成控制器(A),其特征在于,所述第一冷却水道(A1)中的冷却液先冷却所述转向电机控制器(600),再冷却所述空压机控制器(500)和所述右驱动电机控制器(400);所述第二冷却水道(A2)中的冷却液先冷却所述DC-DC电压转换器(700),再冷却所述左驱动电机控制器(300)。
  15. 根据权利要求7-14中任一项所述的集成控制器(A),其特征在于,所述第一冷却水道(A1)和所述第二冷却水道(A2)对称设置。
  16. 一种车辆(B),其特征在于,所述车辆(B)包括权利要求1-15中任一项所述的集成控制器(A)。
PCT/CN2019/097901 2018-07-27 2019-07-26 车辆的集成控制器和车辆 WO2020020345A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19840064.0A EP3819158B1 (en) 2018-07-27 2019-07-26 Integrated controller of vehicle and vehicle
US17/261,635 US11491933B2 (en) 2018-07-27 2019-07-26 Integrated controller of vehicle and vehicle
KR1020217002804A KR102512853B1 (ko) 2018-07-27 2019-07-26 차량용 통합 컨트롤러 및 차량
JP2021504414A JP7116245B2 (ja) 2018-07-27 2019-07-26 車両の統合コントローラ及び車両

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810847799.6 2018-07-27
CN201810847799.6A CN110758110A (zh) 2018-07-27 2018-07-27 车辆的集成控制器和车辆

Publications (1)

Publication Number Publication Date
WO2020020345A1 true WO2020020345A1 (zh) 2020-01-30

Family

ID=69182131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097901 WO2020020345A1 (zh) 2018-07-27 2019-07-26 车辆的集成控制器和车辆

Country Status (6)

Country Link
US (1) US11491933B2 (zh)
EP (1) EP3819158B1 (zh)
JP (1) JP7116245B2 (zh)
KR (1) KR102512853B1 (zh)
CN (1) CN110758110A (zh)
WO (1) WO2020020345A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112789192A (zh) * 2020-07-06 2021-05-11 深圳欣锐科技股份有限公司 一种集成控制装置和新能源汽车
IT202100013679A1 (it) * 2021-05-26 2022-11-26 Ferrari Spa Convertitore elettronico di potenza con raffreddamento a liquido per il controllo di almeno un motore elettrico di un veicolo

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033254A1 (en) * 2010-09-10 2012-03-15 Samsung Sdi Co., Ltd. Energy storage system and controlling method of the same
CN103661167A (zh) * 2013-11-18 2014-03-26 郑州宇通客车股份有限公司 纯电动汽车及其集成控制装置
CN204567344U (zh) * 2015-04-29 2015-08-19 中国重汽集团成都王牌商用车有限公司 电动物流车控制系统
CN204956151U (zh) * 2015-09-15 2016-01-13 北汽福田汽车股份有限公司 一种电动汽车电驱动系统集成控制器及电动汽车
CN106080443A (zh) * 2016-08-11 2016-11-09 北京理工华创电动车技术有限公司 一种电动汽车功率集成控制器
CN205871953U (zh) * 2016-08-11 2017-01-11 北京理工华创电动车技术有限公司 一种电动汽车功率集成控制器
CN207549983U (zh) * 2017-11-28 2018-06-29 北京索德电气工业有限公司 一种新型纯电动汽车集成控制器
CN108248447A (zh) * 2018-01-26 2018-07-06 北京理工华创电动车技术有限公司 一种电动汽车电力电子系统集成控制器
CN208855438U (zh) * 2018-07-27 2019-05-14 比亚迪股份有限公司 车辆的集成控制器和车辆

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506484A (en) 1994-06-10 1996-04-09 Westinghouse Electric Corp. Digital pulse width modulator with integrated test and control
JP2005057928A (ja) 2003-08-06 2005-03-03 Toyota Motor Corp 車載ユニット
JP5331450B2 (ja) * 2008-11-07 2013-10-30 株式会社日立製作所 蓄電モジュール、蓄電装置、電動機駆動システムおよび車両
CN204264059U (zh) 2014-08-04 2015-04-15 北京超同步伺服股份有限公司 五合一电动汽车驱动装置
CN204323097U (zh) 2014-10-29 2015-05-13 比亚迪股份有限公司 纯电动汽车的高压动力控制系统的集成总成和动力系统
CN104494535A (zh) * 2014-12-04 2015-04-08 安徽巨一自动化装备有限公司 一种电动汽车一体化水冷电机控制器的布置结构
JP6365362B2 (ja) 2015-03-12 2018-08-01 アイシン・エィ・ダブリュ株式会社 電力変換装置用の制御基板
CN206086590U (zh) * 2016-09-29 2017-04-12 厦门马恒达汽车零部件有限公司 一种集成式车用电源控制装置
JP6751511B2 (ja) * 2016-10-11 2020-09-09 株式会社ジェイテクト 操舵支援装置
CN206155349U (zh) 2016-10-18 2017-05-10 彬瑜汽车科技(上海)有限公司 一种纯电动汽车用的五合一体控制器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033254A1 (en) * 2010-09-10 2012-03-15 Samsung Sdi Co., Ltd. Energy storage system and controlling method of the same
CN103661167A (zh) * 2013-11-18 2014-03-26 郑州宇通客车股份有限公司 纯电动汽车及其集成控制装置
CN204567344U (zh) * 2015-04-29 2015-08-19 中国重汽集团成都王牌商用车有限公司 电动物流车控制系统
CN204956151U (zh) * 2015-09-15 2016-01-13 北汽福田汽车股份有限公司 一种电动汽车电驱动系统集成控制器及电动汽车
CN106080443A (zh) * 2016-08-11 2016-11-09 北京理工华创电动车技术有限公司 一种电动汽车功率集成控制器
CN205871953U (zh) * 2016-08-11 2017-01-11 北京理工华创电动车技术有限公司 一种电动汽车功率集成控制器
CN207549983U (zh) * 2017-11-28 2018-06-29 北京索德电气工业有限公司 一种新型纯电动汽车集成控制器
CN108248447A (zh) * 2018-01-26 2018-07-06 北京理工华创电动车技术有限公司 一种电动汽车电力电子系统集成控制器
CN208855438U (zh) * 2018-07-27 2019-05-14 比亚迪股份有限公司 车辆的集成控制器和车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3819158A4 *

Also Published As

Publication number Publication date
US11491933B2 (en) 2022-11-08
KR102512853B1 (ko) 2023-03-23
US20210261074A1 (en) 2021-08-26
EP3819158A1 (en) 2021-05-12
EP3819158A4 (en) 2021-08-11
CN110758110A (zh) 2020-02-07
KR20210024627A (ko) 2021-03-05
JP2021532720A (ja) 2021-11-25
EP3819158B1 (en) 2024-06-12
JP7116245B2 (ja) 2022-08-09

Similar Documents

Publication Publication Date Title
JP5193660B2 (ja) 電池モジュール及びそれを備えた蓄電装置並びに電機システム
US10512198B2 (en) Power converter
CN104364933B (zh) 用于蓄电池单元的冷却系统
KR101865967B1 (ko) 환경차의 통합패키지형 하이브리드 전력제어모듈
KR20150126837A (ko) 열전-기반 열 관리 시스템
WO2020020345A1 (zh) 车辆的集成控制器和车辆
US11658359B2 (en) Battery device with immersion cooling and motor vehicle
KR20120061366A (ko) 하이브리드 및 전기 자동차용 전기장치의 냉각장치
WO2018103124A1 (zh) 集成变流柜
CN208855438U (zh) 车辆的集成控制器和车辆
CN111799421A (zh) 一种集成式标准电池b箱下箱体
CN102570869A (zh) 电力转换装置和使用它的电驱动车辆
MX2015002242A (es) Unidad electrica de alimentacion integrada montada en vehiculo electrico.
CA2916753C (en) Medium voltage hybrid air/liquid cooled adjustable frequency drive
CN110758279B (zh) 用于车辆的集成控制器和车辆
US20220376309A1 (en) Device and method for an oil-cooled battery management system of a high voltage battery
KR20130030899A (ko) 수냉식 인버터
CN105938819A (zh) 半导体模块
US11854729B2 (en) Direct liquid cooled inductor
CN203883625U (zh) 一种电机及使用该电机的车辆
CN208209797U (zh) 一种基于多介质热交换散热的开关型微波高压电源
US20230309274A1 (en) Power electrical apparatus comprising two power electronic modules and an integrated cooling system
CN212992193U (zh) 一种中压变频装置用冷却系统及中压变频装置
KR102339029B1 (ko) 통합형 전력분배장치
CN216929857U (zh) 一种变压整流设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504414

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217002804

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE