WO2020020323A1 - 智能电池箱及检测方法 - Google Patents

智能电池箱及检测方法 Download PDF

Info

Publication number
WO2020020323A1
WO2020020323A1 PCT/CN2019/097819 CN2019097819W WO2020020323A1 WO 2020020323 A1 WO2020020323 A1 WO 2020020323A1 CN 2019097819 W CN2019097819 W CN 2019097819W WO 2020020323 A1 WO2020020323 A1 WO 2020020323A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery box
stress
state detection
vehicle
smart battery
Prior art date
Application number
PCT/CN2019/097819
Other languages
English (en)
French (fr)
Inventor
张建平
陆文成
Original Assignee
奥动新能源汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥动新能源汽车科技有限公司 filed Critical 奥动新能源汽车科技有限公司
Priority to JP2021504534A priority Critical patent/JP2021533531A/ja
Priority to KR1020217005819A priority patent/KR20210035279A/ko
Publication of WO2020020323A1 publication Critical patent/WO2020020323A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention relates to an intelligent battery box and a detection method.
  • monitoring whether the battery box is installed in place is usually implemented by the power exchange device itself or other equipment other than the battery box. After the power is changed, monitoring whether the battery box is falling is usually judged by whether the vehicle is powered on. If the vehicle is out of power, it means that the battery box is falling.
  • the above-mentioned monitoring methods need to be implemented by means of electric replacement equipment or by circuit detection in the vehicle, and the battery box itself does not have a detection function, which is very inconvenient.
  • the technical problem to be solved by the present invention is to overcome the defect that the battery box itself does not have the ability to monitor whether the battery box is installed or dropped in the prior art, and provides an intelligent battery box and a detection method.
  • the present invention provides a smart battery box, which includes a battery box assembly, a state detection module, and a BMS (battery management system).
  • the state detection module is disposed on the battery box assembly.
  • the status detection module is configured to obtain status information of the battery box assembly, and send the status information to the BMS.
  • the status information includes position information of the battery box assembly on the vehicle and / or temperature information of the battery box body.
  • the state detection module is specifically configured to obtain position information of the battery box assembly on the vehicle according to the direction and magnitude of the stress detected by itself.
  • the battery box assembly includes a battery box body and a connection mechanism provided on the battery box body, and the state detection module includes a first state detection unit and a sensor head of the first state detection unit. It is arranged on the connecting mechanism.
  • the first state detection unit is configured to:
  • the direction of the stress and the magnitude of the stress generated by the connecting mechanism are detected by the sensor head. If the magnitude of the stress is greater than a first threshold and the direction of the stress and the If the installation direction of the smart battery box is the same, the position information of the battery box assembly on the vehicle is the target position of the preset installation process.
  • the first state detection unit is configured to:
  • the direction of the stress and the magnitude of the stress generated by the connection mechanism are detected by the sensor head. If the magnitude of the stress is greater than a second threshold and the direction of the stress is opposite to the direction of gravity , Then the position information of the battery box assembly on the vehicle is that the installed target position has been reached.
  • the battery box assembly includes a battery box body and a connection mechanism provided on the battery box body, and the state detection module includes a second state detection unit and a sensor head of the second state detection unit. Provided on the abutting surface of the battery box assembly and the vehicle;
  • the second state detection unit is configured to:
  • the direction of the stress and the magnitude of the stress generated by the abutment surface are detected by the sensor head. If the magnitude of the stress is greater than a third threshold and the stress direction is along the In the outward direction of the battery case, the position information of the battery case assembly on the vehicle is maintained at the installation completion position and tightly connected to the vehicle.
  • the state detection module is implemented by using a fiber grating sensor.
  • the BMS is configured to store the status information and record a receiving time of the status information.
  • the smart battery box further includes a communication module
  • the communication module is communicatively connected with the BMS, and the BMS sends the status information to a remote monitoring device through the communication module.
  • the smart battery box further includes a data transmission interface
  • the data transmission interface is communicatively connected to the BMS, and the BMS sends the status information to a VCU or a device accessing the data transmission interface through the data transmission interface.
  • the present invention also provides a smart battery box detection method, which is implemented by using the smart battery box as described above.
  • the smart battery box detection method includes:
  • the status detection module obtains the status information of the battery box assembly and sends the status information to the BMS.
  • the status information includes position information of the battery box assembly on the vehicle and / or temperature information of the battery box body.
  • the status detection module obtains status information of the battery box assembly, including:
  • the position information of the battery box assembly on the vehicle is obtained according to the stress direction and the magnitude of the stress detected by itself.
  • the battery box assembly includes a battery box body and a connection mechanism provided on the battery box body, and the state detection module includes a first state detection unit and a sensor head of the first state detection unit. It is arranged on the connecting mechanism.
  • obtaining the position information of the battery box assembly on the vehicle according to the stress direction and the magnitude of the stress detected by the stress includes:
  • the first state detection unit detects the direction of the stress and the magnitude of the stress generated by the connection mechanism through the sensor head. If the magnitude of the stress is greater than a first threshold And the stress direction is the same as the installation direction of the smart battery box, then the position information of the battery box assembly on the vehicle is that it has reached the target position of the preset installation process.
  • obtaining the position information of the battery box assembly on the vehicle according to the stress direction and the magnitude of the stress detected by the stress includes:
  • the first state detection unit After the first state detection unit is installed to the vehicle, the first state detection unit detects the direction of the stress and the magnitude of the stress generated by the connection mechanism through the sensor head. If the magnitude of the stress is greater than a second threshold and the If the stress direction is opposite to the direction of gravity, the position information of the battery box assembly on the vehicle is that the installed target position has been reached.
  • the battery box assembly includes a battery box body and a connection mechanism provided on the battery box body, and the state detection module includes a second state detection unit and a sensor head of the second state detection unit. Provided on the abutting surface of the battery box assembly and the vehicle;
  • Obtaining the position information of the battery box assembly on the vehicle according to the direction and magnitude of the stress detected by the self includes:
  • the direction and magnitude of stress generated by the abutment surface are detected by the sensor head, and if the magnitude of the stress is greater than a third threshold and The stress direction is a direction outward along the battery box body, and then the position information of the battery box assembly on the vehicle is maintained at the installation completion position and tightly connected to the vehicle.
  • the state detection module is implemented by using a fiber grating sensor.
  • the method for detecting a smart battery box further includes:
  • the BMS stores the status information, and records a reception time of the status information.
  • the smart battery box further includes a communication module, and the communication module is in communication connection with the BMS;
  • the smart battery box detection method further includes: the BMS sends the status information to a remote monitoring device through the communication module.
  • the smart battery box further includes a data transmission interface, and the data transmission interface is communicatively connected with the BMS;
  • the smart battery box detection method further includes: the BMS sends the status information to a VCU or a device connected to the data transmission interface through the data transmission interface.
  • the positive progress effect of the present invention is that the intelligent battery box and the detection method of the present invention can rely on the battery box itself to detect its status information, such as whether the battery box is installed in place or dropped, without the need for other equipment or a special detection circuit on the vehicle.
  • FIG. 1 is a schematic block diagram of a smart battery box according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart of a method for detecting a smart battery box according to Embodiment 2 of the present invention.
  • An intelligent battery box as shown in FIG. 1, includes a battery box assembly 11, a state detection module 12, and a BMS 13.
  • the state detection module 12 is disposed on the battery box assembly 11, and the state detection module 12 is communicatively connected to the BMS 13.
  • the communication connection is preferably a wired communication connection.
  • the status detection module 12 is configured to obtain status information of the battery box assembly 11 and send the status information to the BMS 13.
  • the battery box assembly 11 includes a battery box body and a connection mechanism provided on the battery box body.
  • the present invention does not limit the specific structures of the battery case and the connection mechanism.
  • the status information may include position information of the battery box assembly 11 on the vehicle.
  • the state detection module 12 is specifically configured to: according to the direction and magnitude of the stress detected by itself, obtain the battery box assembly 11 in the vehicle. Location information on the vehicle.
  • the state detection module 12 may include a first state detection unit 121, and a sensor head of the first state detection unit 121 is disposed on the connection mechanism.
  • the first state detection unit 121 may be configured to:
  • the direction of the stress and the magnitude of the stress generated by the connecting mechanism are detected by the sensor head. If the magnitude of the stress is greater than a first threshold and the direction of the stress and the If the installation direction of the smart battery box is the same, the position information of the battery box assembly 11 on the vehicle is the target position of the preset installation process.
  • the first threshold is a preset experience value.
  • a battery outer box is provided at the bottom of the vehicle.
  • the preset installation process may be different according to the structure of the battery outer box.
  • the first installation preset process is to lift the smart battery box from the bottom of the vehicle by a power exchange device.
  • the installation direction of the smart battery box is upward, and the target position is set to the most in the battery outer box.
  • the smart battery box and the battery outer box are connected and fixed at the target position through connection mechanisms such as bolts and nuts.
  • the first state detection unit 121 detects the direction of the stress and the magnitude of the stress generated by the connection mechanism through the sensor head. If it is larger than the first threshold and the stress direction is upward, it means that the battery box assembly 11 has reached the topmost target position provided in the battery outer box.
  • the second installation presetting process is divided into two stages.
  • the first stage the power exchange equipment lifts up the smart battery box from below the vehicle;
  • the second stage the power exchange equipment moves the smart battery in front of the horizontal direction box. box.
  • the installation direction of the smart battery box is upward, and the target position is set to the top of the battery outer box.
  • the installation direction of the smart battery box is horizontally forward, and the target position is set to the battery outer box.
  • the smart battery box is connected to the battery outer box through a lock shaft or other connection mechanism and fixed at the target position.
  • the first state detection unit 121 detects the direction of stress and the magnitude of the stress generated by the connection mechanism through the sensor head. If the magnitude of the stress is greater than a certain threshold and the stress direction Up, the battery box assembly 11 has reached the topmost target position provided in the battery outer box.
  • the first state detection unit 121 detects the direction of stress and the magnitude of the stress generated by the connection mechanism through the sensor head. If the magnitude of the stress is greater than a certain threshold and the stress direction Moving forward horizontally, the battery box assembly 11 has reached the most forward target position set in the battery outer box.
  • the first state detection unit 121 may be further configured to:
  • the direction of the stress and the magnitude of the stress generated by the connection mechanism are detected by the sensor head. If the magnitude of the stress is greater than a second threshold and the direction of the stress is opposite to the direction of gravity , Then the position information of the battery box assembly 11 on the vehicle is that the target position of the installation has been reached.
  • the second threshold is a preset experience value.
  • the target position after installation is set to the top of the battery case.
  • the connection mechanism will be subject to the battery box assembly facing downward. The applied gravity, and in order to support the battery box assembly, the connection mechanism will generate upward stress.
  • the connection mechanism will not generate upward stress or even generate stress. , The magnitude of stress is not enough.
  • the sensor head of the first state detection unit 121 is provided on the connection mechanism, and the direction and magnitude of the stress generated by the connection mechanism can be detected by the sensor head to determine whether the battery box assembly 11 is The installed target position has been reached, that is, if the stress level is greater than the second threshold and the stress direction is upward, the battery box assembly 11 has reached the installed target position.
  • the target position after installation is set to be the topmost part in the vertical direction and the frontmost part in the horizontal direction in the battery case.
  • the sensor head of the first state detection unit 121 is provided on the connection mechanism, and the direction and magnitude of the stress generated by the connection mechanism can be detected by the sensor head to determine whether the battery box assembly 11 is The installed target position has been reached, that is, if the stress level is greater than the second threshold and the stress direction is upward, the battery box assembly 11 has reached the installed target position.
  • the state detection module 12 may further include a second state detection unit 122, and a sensor head of the second state detection unit 122 is disposed on a contact surface between the battery box assembly 11 and the vehicle.
  • the abutment surface is determined according to the abutment method of the battery box assembly 11 and the vehicle.
  • the specific abutment method may be side abutment, top abutment, etc., and the corresponding abutment surface is the battery. Side, top, etc. of the box assembly 11.
  • the second state detection unit 122 is configured to:
  • the direction of the stress and the magnitude of the stress generated by the abutment surface are detected by the sensor head. If the magnitude of the stress is greater than a third threshold and the stress direction is along the In the outward direction of the battery case, the position information of the battery case assembly 11 on the vehicle is maintained at the installation completion position and tightly connected to the vehicle.
  • the third threshold is a preset experience value.
  • the front side of the battery box assembly 11 is in contact with the corresponding front inner side of the battery outer box in the vehicle, and the top surface of the battery box assembly 11 is in contact with the battery in the vehicle. If the corresponding top and inside surfaces of the outer box abut, if the second state detection unit 122 provided on the front side of the battery box assembly 11 detects that the magnitude of the stress generated on the front side by the sensor head is greater than the corresponding threshold and the stress
  • the direction is the outward direction (that is, forward) of the battery case, and the second state detection unit 122 disposed on the top surface of the battery case assembly 11 detects that the stress generated on the top surface is greater than the corresponding stress by the sensor head. And the stress direction is along the outward direction of the battery box (that is, upward), the position information of the battery box assembly 11 on the vehicle is maintained at the installation completed position and is in line with the vehicle. Tight connection.
  • the status information may further include temperature information of the battery case. Prevent battery damage due to overheating.
  • the state detection module 12 may be implemented by using a fiber grating sensor.
  • the fiber grating sensor uses the principle that the spectrum absorbed by some substances changes with temperature, and analyzes the spectrum transmitted by the fiber to understand the real-time temperature.
  • the BMS 13 is used to store the status information and record the receiving time of the status information.
  • the smart battery box further includes a communication module 14;
  • the communication module is communicatively connected to the BMS 13 and the BMS 13 sends the status information to a remote monitoring device through the communication module.
  • the smart battery box further includes a data transmission interface
  • the data transmission interface 15 is communicatively connected to the BMS 13 and the BMS 13 sends the status information to a VCU or a device accessing the data transmission interface through the data transmission interface.
  • the smart electric box of this embodiment can detect its own state without relying on other equipment than the battery box, for example, whether the battery box assembly 11 has reached the target position during the installation preset process, whether it has reached the target position after installation, Whether it remains in the installed position and is tightly connected to the vehicle. On the one hand, even if the state of the battery box is detected, on the other hand, the detection circuit of the vehicle or other equipment can be simplified.
  • a smart battery box detection method is implemented by using the smart battery box of Embodiment 1.
  • the intelligent battery box includes a battery box assembly, a state detection module, and a BMS.
  • the state detection module is disposed on the battery box assembly, and the state detection module is communicatively connected with the BMS.
  • the method for detecting a smart battery box includes:
  • Step 21 The status detection module obtains status information of the battery box assembly.
  • Step 22 The status detection module sends the status information to a BMS.
  • the battery box assembly includes a battery box body and a connecting mechanism provided on the battery box body.
  • the present invention does not limit the specific structures of the battery case and the connection mechanism.
  • the status information may include position information of the battery box assembly on the vehicle.
  • step 21 includes:
  • the state detection module obtains the position information of the battery box assembly on the vehicle according to the stress direction and the magnitude of the stress detected by itself.
  • the state detection module may include a first state detection unit, and a sensor head of the first state detection unit is disposed on the connection mechanism.
  • Step 21 may specifically include:
  • the first state detection unit detects the direction of the stress and the magnitude of the stress generated by the connection mechanism through the sensor head during the process of installing the smart battery box to the vehicle. If the stress direction is the same as the installation direction of the smart battery box, the position information of the battery box assembly on the vehicle is that it has reached the target position of the preset installation process.
  • Step 21 may further specifically include:
  • the first state detection unit After the first state detection unit is installed to the vehicle, the first state detection unit detects a stress direction and a stress magnitude generated by the connection mechanism through a sensor head, and if the stress magnitude is greater than a second threshold value and the stress The direction is opposite to the direction of gravity, then the position information of the battery box assembly on the vehicle is that the target position of the installation has been reached.
  • the state detection module may further include a second state detection unit, and a sensor head of the second state detection unit is disposed on an abutting surface of the battery box assembly and the vehicle.
  • Step 21 may include:
  • the direction of the stress and the magnitude of the stress generated by the abutment surface are detected by a sensor head, and if the magnitude of the stress is greater than a third threshold and the The stress direction is along the outward direction of the battery box body, and then the position information of the battery box assembly on the vehicle is maintained at the installation complete position and tightly connected to the vehicle.
  • the status information may further include temperature information of the battery case. Prevent battery damage due to overheating.
  • the state detection module may be implemented by using a fiber grating sensor.
  • the smart battery box detection method further includes:
  • Step 23 The BMS stores the status information, and records a reception time of the status information.
  • the smart battery box further includes a communication module, and the communication module is communicatively connected to the BMS;
  • the smart battery box detection method further includes:
  • Step 24 The BMS sends the status information to a remote monitoring device through the communication module.
  • the smart battery box further includes a data transmission interface, and the data transmission interface is communicatively connected with the BMS;
  • the smart battery box detection method further includes:
  • Step 24 ' The BMS sends the status information to a VCU or a device accessing the data transmission interface through the data transmission interface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Secondary Cells (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种智能电池箱及检测方法。所述智能电池箱包括:电池箱总成、状态检测模块和BMS,所述状态检测模块设置于所述电池箱总成上,所述状态检测模块与所述BMS通信连接;所述状态检测模块用于获取所述电池箱总成的状态信息,并将所述状态信息发送至所述BMS。本发明的智能电池箱及检测方法可以依靠电池箱本身检测其状态信息,例如电池箱是否安装到位或掉落,无需其他设备或在车辆上设置专门的检测电路。

Description

智能电池箱及检测方法
本申请要求申请日为2018年7月27日的中国专利申请2018108472850的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种智能电池箱及检测方法。
背景技术
随着电动汽车越来越受到消费者的欢迎,作为电动汽车的动力来源,汽车电池保持稳定工作是电动汽车安全性能的关键。在将电池箱安装至车辆的过程中,由于换电设备的安装精度有限,可能会出现电池箱安装不到位、不可靠,换电失败,电池箱无法为车辆供电的情况。在车辆行进过程中,由于路面过于颠簸、或是电池箱与车体的连接机构连接不牢固,可以会出现电池箱掉落的情况。上述的情况一旦出现对于车辆,甚至是车上的人员而言都是十分糟糕、危险的。因此,监控电池箱是否安装到位、是否掉落均是十分必要的。
目前,在换电过程中,监控电池箱是否安装到位通常是由换电设备本身或其他电池箱以外其他设备实现的。而在换电后,监控电池箱是否掉落通常是通过车辆是否通电来判断的,若车辆无电,则说明电池箱掉落,若车辆有电,则说明电池箱未掉落。
上述的监控方式要么需要依靠换电设备实现,要么需要依靠车辆内的电路检测实现,而电池箱本身并不具备检测功能,十分不方便。
发明内容
本发明要解决的技术问题是为了克服现有技术中电池箱本身不具备监控电池箱是否安装到位或掉落的缺陷,提供一种智能电池箱及检测方法。
本发明是通过以下技术方案解决上述技术问题的:
本发明提供一种智能电池箱,包括:电池箱总成、状态检测模块和BMS(电池管理系统),所述状态检测模块设置于所述电池箱总成上,所述状态检测模块与所述BMS通信连接;
所述状态检测模块用于获取所述电池箱总成的状态信息,并将所述状态信息发送至所述BMS。
较佳地,所述状态信息包括所述电池箱总成在车辆上的位置信息和/或所述电池箱体的温度信息。
较佳地,所述状态检测模块具体用于:根据自身检测到的应力方向及应力大小,获取所述电池箱总成在所述车辆上的位置信息。
较佳地,所述电池箱总成包括电池箱体和设置在所述电池箱体上的连接机构,所述状态检测模块包括第一状态检测单元,所述第一状态检测单元的传感头设置于所述连接机构上。
较佳地,所述第一状态检测单元用于:
在所述智能电池箱安装至所述车辆的过程中,通过所述传感头检测所述连接机构产生的应力方向及应力大小,若所述应力大小大于第一阈值且所述应力方向与所述智能电池箱的安装方向相同,则所述电池箱总成在所述车辆上的位置信息为已到达安装预设过程的目标位置。
较佳地,所述第一状态检测单元用于:
在所述智能电池箱安装至所述车辆后,通过所述传感头检测所述连接机构产生的应力方向及应力大小,若所述应力大小大于第二阈值且所述应力方向与重力方向相反,则所述电池箱总成在所述车辆上的位置信息为已达到安装完成的目标位置。
较佳地,所述电池箱总成包括电池箱体和设置在所述电池箱体上的连接机构,所述状态检测模块包括第二状态检测单元,所述第二状态检测单元的传感头设置于所述电池箱总成与所述车辆的抵接面上;
所述第二状态检测单元用于:
在所述智能电池箱安装至所述车辆后,通过所述传感头检测所述抵接面产生的应力方向及应力大小,若所述应力大小大于第三阈值且所述应力方向为沿所述电池箱体向外的方向,则所述电池箱总成在所述车辆上的位置信息为保持在安装完成位置并与所述车辆的紧密连接。
较佳地,所述状态检测模块采用光纤光栅传感器实现。
较佳地,所述BMS用于存储所述状态信息,并记录所述状态信息的接收时间。
较佳地,所述智能电池箱还包括通讯模块;
所述通讯模块与所述BMS通信连接,所述BMS通过所述通讯模块将所述状态信息发送至远程监控设备。
较佳地,所述智能电池箱还包括数据传输接口;
所述数据传输接口与所述BMS通信连接,所述BMS通过所述数据传输接口将所述状态信息发送至VCU或接入所述数据传输接口的设备。
本发明还提供一种智能电池箱检测方法,利用如上所述的智能电池箱实现,所述智能电池箱检测方法包括:
状态检测模块获取电池箱总成的状态信息,并将状态信息发送至BMS。
较佳地,所述状态信息包括所述电池箱总成在车辆上的位置信息和/或所述电池箱体的温度信息。
较佳地,状态检测模块获取电池箱总成的状态信息,包括:
根据自身检测到的应力方向及应力大小,获取所述电池箱总成在所述车辆上的位置信息。
较佳地,所述电池箱总成包括电池箱体和设置在所述电池箱体上的连接机构,所述状态检测模块包括第一状态检测单元,所述第一状态检测单元的传感头设置于所述连接机构上。
较佳地,根据自身检测到的应力方向及应力大小,获取所述电池箱总成在所述车辆上的位置信息,包括:
所述第一状态检测单元在所述智能电池箱安装至所述车辆的过程中,通 过所述传感头检测所述连接机构产生的应力方向及应力大小,若所述应力大小大于第一阈值且所述应力方向与所述智能电池箱的安装方向相同,则所述电池箱总成在所述车辆上的位置信息为已到达安装预设过程的目标位置。
较佳地,根据自身检测到的应力方向及应力大小,获取所述电池箱总成在所述车辆上的位置信息,包括:
所述第一状态检测单元在所述智能电池箱安装至所述车辆后,通过所述传感头检测所述连接机构产生的应力方向及应力大小,若所述应力大小大于第二阈值且所述应力方向与重力方向相反,则所述电池箱总成在所述车辆上的位置信息为已达到安装完成的目标位置。
较佳地,所述电池箱总成包括电池箱体和设置在所述电池箱体上的连接机构,所述状态检测模块包括第二状态检测单元,所述第二状态检测单元的传感头设置于所述电池箱总成与所述车辆的抵接面上;
根据自身检测到的应力方向及应力大小,获取所述电池箱总成在所述车辆上的位置信息,包括:
所述第二状态检测单元在所述智能电池箱安装至所述车辆后,通过所述传感头检测所述抵接面产生的应力方向及应力大小,若所述应力大小大于第三阈值且所述应力方向为沿所述电池箱体向外的方向,则所述电池箱总成在所述车辆上的位置信息为保持在安装完成位置并与所述车辆的紧密连接。
较佳地,所述状态检测模块采用光纤光栅传感器实现。
较佳地,所述智能电池箱检测方法还包括:
所述BMS存储所述状态信息,并记录所述状态信息的接收时间。
较佳地,所述智能电池箱还包括通讯模块,所述通讯模块与所述BMS通信连接;
所述智能电池箱检测方法还包括:所述BMS通过所述通讯模块将所述状态信息发送至远程监控设备。
较佳地,所述智能电池箱还包括数据传输接口,所述数据传输接口与所述BMS通信连接;
所述智能电池箱检测方法还包括:所述BMS通过所述数据传输接口将所述状态信息发送至VCU或接入所述数据传输接口的设备。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明的积极进步效果在于:本发明的智能电池箱及检测方法可以依靠电池箱本身检测其状态信息,例如电池箱是否安装到位或掉落,无需其他设备或在车辆上设置专门的检测电路。
附图说明
图1为本发明实施例1的智能电池箱的示意框图;
图2为本发明实施例2的智能电池箱检测方法的流程图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
实施例1
一种智能电池箱,如图1所示,包括:电池箱总成11、状态检测模块12和BMS 13。所述状态检测模块12设置于所述电池箱总成11上,所述状态检测模块12与所述BMS 13通信连接。其中,所述通信连接优选为有线通信连接。
所述状态检测模块12用于获取所述电池箱总成11的状态信息,并将所述状态信息发送至所述BMS 13。
本实施例中,所述电池箱总成11包括电池箱体和设置在所述电池箱体上的连接机构。本发明对所述电池箱体和所述连接机构的具体结构不做限定。
所述状态信息可以包括所述电池箱总成11在车辆上的位置信息。
其中,为了获取所述电池箱总成11在车辆上的位置信息,所述状态检测模块12具体用于:根据自身检测到的应力方向及应力大小,获取所述电 池箱总成11在所述车辆上的位置信息。
具体地,所述状态检测模块12可以包括第一状态检测单元121,所述第一状态检测单元121的传感头设置于所述连接机构上。
所述第一状态检测单元121可以用于:
在所述智能电池箱安装至所述车辆的过程中,通过所述传感头检测所述连接机构产生的应力方向及应力大小,若所述应力大小大于第一阈值且所述应力方向与所述智能电池箱的安装方向相同,则所述电池箱总成11在所述车辆上的位置信息为已到达安装预设过程的目标位置。其中,第一阈值为预设的经验值。
例如,车辆的底部设置有电池外箱,在所述智能电池箱安装至所述车辆的过程中,根据电池外箱结构的不同,安装预设过程可能会有所不同。
第一种安装预设过程为换电设备从车辆的下方向上举升所述智能电池箱,在此安装预设过程中,智能电池箱的安装方向向上,目标位置设置为电池外箱内的最顶部,在电池箱总成11到达目标位置后通过螺栓、螺母等连接机构将智能电池箱与电池外箱连接并固定在所述目标位置。在所述换电设备向上举升所述智能电池箱的过程中,所述第一状态检测单元121通过所述传感头检测所述连接机构产生的应力方向及应力大小,若所述应力大小大于第一阈值且所述应力方向向上,则说明所述电池箱总成11已到达设置在电池外箱内的最顶部的目标位置。
第二种安装预设过程分为两个阶段,第一阶段:换电设备从车辆的下方向上举升所述智能电池箱;第二阶段:换电设备在水平方向箱前移动所述智能电池箱。在第一阶段中,智能电池箱的安装方向向上,目标位置设置为电池外箱内的最顶部;在第二阶段中,智能电池箱的安装方向为水平向前,目标位置设置为电池外箱内的最前端(以车头方向为前),在电池箱总成11到达第二阶段的目标位置后通过锁轴或其他连接机构将智能电池箱与电池外箱连接并固定在所述目标位置。在实施第一阶段的过程中,所述第一状态检测单元121通过所述传感头检测所述连接机构产生的应力方向及应力大小, 若所述应力大小大于某个阈值且所述应力方向向上,则所述电池箱总成11已到达设置在电池外箱内的最顶部的目标位置。在实施第二阶段的过程中,所述第一状态检测单元121通过所述传感头检测所述连接机构产生的应力方向及应力大小,若所述应力大小大于某个阈值且所述应力方向水平向前,则所述电池箱总成11已到达设置在电池外箱内的最前端的目标位置。
所述第一状态检测单元121还可以用于:
在所述智能电池箱安装至所述车辆后,通过所述传感头检测所述连接机构产生的应力方向及应力大小,若所述应力大小大于第二阈值且所述应力方向与重力方向相反,则所述电池箱总成11在所述车辆上的位置信息为已达到安装完成的目标位置。其中,第二阈值为预设的经验值。
还是以上述第一种安装预设过程为例,安装完成的目标位置设置为电池外箱内的最顶部。在所述智能电池箱安装至所述车辆后,若电池箱总成11已到达安装完成的目标位置,那么,由于电池箱总成具有一定的重量,所以连接机构会受到电池箱总成向下施加的重力,而为了支撑电池箱总成,连接机构会产生向上的应力,反之,若电池箱总成没有到达安装完成的目标位置,那么,连接机构就不会产生向上的应力或者即使产生应力,应力的大小也不足够。基于此,所述第一状态检测单元121的传感头设置于连接机构上,可以通过所述传感头检测所述连接机构产生的应力方向及应力大小,判断所述电池箱总成11是否已到达安装完成的目标位置,即若所述应力大小大于第二阈值且所述应力方向向上,则所述电池箱总成11已到达安装完成的目标位置。
以上述第二种安装预设过程为例,安装完成的目标位置设置为电池外箱内竖直方向上的最顶部,水平方向的最前端。在所述智能电池箱安装至所述车辆后,若电池箱总成11已到达安装完成的目标位置,那么,由于电池箱总成具有一定的重量,所以连接机构会受到电池箱总成向下施加的重力,而为了支撑电池箱总成,连接机构会产生向上的应力,反之,若电池箱总成没有到达安装完成的目标位置,那么,连接机构就不会产生向上的应力或者即 使产生应力,应力的大小也不足够。基于此,所述第一状态检测单元121的传感头设置于连接机构上,可以通过所述传感头检测所述连接机构产生的应力方向及应力大小,判断所述电池箱总成11是否已到达安装完成的目标位置,即若所述应力大小大于第二阈值且所述应力方向向上,则所述电池箱总成11已到达安装完成的目标位置。
进一步地,所述状态检测模块12还可以包括第二状态检测单元122,所述第二状态检测单元122的传感头设置于所述电池箱总成11与所述车辆的抵接面上。其中,所述抵接面根据所述电池箱总成11与所述车辆的抵接方式确定,具体的抵接方式可以为侧面抵接、顶面抵接等,相应的抵接面则为电池箱总成11的侧面、顶面等。
所述第二状态检测单元122用于:
在所述智能电池箱安装至所述车辆后,通过所述传感头检测所述抵接面产生的应力方向及应力大小,若所述应力大小大于第三阈值且所述应力方向为沿所述电池箱体向外的方向,则所述电池箱总成11在所述车辆上的位置信息为保持在安装完成位置并与所述车辆的紧密连接。其中,第三阈值为预设的经验值。
例如,所述智能电池箱安装至所述车辆后,电池箱总成11的前侧面与车辆内的电池外箱相应的前内侧面抵接,电池箱总成11的顶面与车辆内的电池外箱相应的顶内侧面抵接,则若设置于电池箱总成11的前侧面的第二状态检测单元122若通过传感头检测到前侧面产生的应力大小大于相应的阈值且所述应力方向为沿所述电池箱体向外的方向(即向前),且设置于电池箱总成11的顶面的第二状态检测单元122若通过传感头检测到顶面产生的应力大小大于相应的阈值且所述应力方向为沿所述电池箱体向外的方向(即向上),则所述电池箱总成11在所述车辆上的位置信息为保持在安装完成位置并与所述车辆的紧密连接。
所述状态信息还可以包括所述电池箱体的温度信息。防止电池过热而造成损坏。
为了同时实现应力检测和温度测量,本实施例中,所述状态检测模块12可采用光纤光栅传感器实现。光纤光栅传感器利用部分物质吸收的光谱随温度变化而变化的原理,分析光纤传输的光谱了解实时温度。
另外,为了便于查看、分析状态信息,所述BMS 13用于存储所述状态信息,并记录所述状态信息的接收时间。
为了便于所述状态信息的传输和监控,所述智能电池箱还包括通讯模块14;
所述通讯模块与所述BMS 13通信连接,所述BMS 13通过所述通讯模块将所述状态信息发送至远程监控设备。
所述智能电池箱还包括数据传输接口;
所述数据传输接口15与所述BMS 13通信连接,所述BMS 13通过所述数据传输接口将所述状态信息发送至VCU或接入所述数据传输接口的设备。
本实施例的智能电箱不需要依靠电池箱以外的其他设备即能检测自身的状态,例如,电池箱总成11是否已到达安装预设过程的目标位置、是否已到达安装完成的目标位置、是否保持在安装完成位置并与车辆紧密连接。一方面能够即使检测到电池箱状态,另一方面,也能够简化车辆或其他设备的检测电路。
实施例2
一种智能电池箱检测方法,利用实施例1的智能电池箱实现。所述智能电池箱包括:电池箱总成、状态检测模块和BMS。所述状态检测模块设置于所述电池箱总成上,所述状态检测模块与所述BMS通信连接。如图2所示,所述智能电池箱检测方法包括:
步骤21:所述状态检测模块获取电池箱总成的状态信息。
步骤22:所述状态检测模块将所述状态信息发送至BMS。
本实施例中,所述电池箱总成包括电池箱体和设置在所述电池箱体上的连接机构。本发明对所述电池箱体和所述连接机构的具体结构不做限定。
所述状态信息可以包括所述电池箱总成在车辆上的位置信息。
具体地,步骤21包括:
所述状态检测模块根据自身检测到的应力方向及应力大小,获取所述电池箱总成在所述车辆上的位置信息。
所述状态检测模块可以包括第一状态检测单元,所述第一状态检测单元的传感头设置于所述连接机构上。
步骤21可以具体包括:
所述第一状态检测单元在所述智能电池箱安装至所述车辆的过程中,通过传感头检测所述连接机构产生的应力方向及应力大小,若所述应力大小大于第一阈值且所述应力方向与所述智能电池箱的安装方向相同,则所述电池箱总成在所述车辆上的位置信息为已到达安装预设过程的目标位置。
步骤21还可以具体包括:
所述第一状态检测单元在所述智能电池箱安装至所述车辆后,通过传感头检测所述连接机构产生的应力方向及应力大小,若所述应力大小大于第二阈值且所述应力方向与重力方向相反,则所述电池箱总成在所述车辆上的位置信息为已达到安装完成的目标位置。
所述状态检测模块还可以包括第二状态检测单元,所述第二状态检测单元的传感头设置于所述电池箱总成与所述车辆的抵接面上。
步骤21可以包括:
所述第二状态检测单元在所述智能电池箱安装至所述车辆后,通过传感头检测所述抵接面产生的应力方向及应力大小,若所述应力大小大于第三阈值且所述应力方向为沿所述电池箱体向外的方向,则所述电池箱总成在所述车辆上的位置信息为保持在安装完成位置并与所述车辆的紧密连接。
本实施例中,所述状态信息还可以包括所述电池箱体的温度信息。防止电池过热而造成损坏。
为了同时实现应力检测和温度测量,本实施例中,所述状态检测模块可采用光纤光栅传感器实现。
另外,为了便于查看、分析状态信息,所述智能电池箱检测方法还包括:
步骤23:所述BMS存储所述状态信息,并记录所述状态信息的接收时间。
为了便于所述状态信息的传输和监控,所述智能电池箱还包括通讯模块,所述通讯模块与所述BMS通信连接;
所述智能电池箱检测方法还包括:
步骤24:所述BMS通过所述通讯模块将所述状态信息发送至远程监控设备。
所述智能电池箱还包括数据传输接口,所述数据传输接口与所述BMS通信连接;
所述智能电池箱检测方法还包括:
步骤24’:所述BMS通过所述数据传输接口将所述状态信息发送至VCU或接入所述数据传输接口的设备。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (22)

  1. 一种智能电池箱,其特征在于,包括:电池箱总成、状态检测模块和BMS,所述状态检测模块设置于所述电池箱总成上,所述状态检测模块与所述BMS通信连接;
    所述状态检测模块用于获取所述电池箱总成的状态信息,并将所述状态信息发送至所述BMS。
  2. 如权利要求1所述的智能电池箱,其特征在于,所述状态信息包括所述电池箱总成在车辆上的位置信息和/或所述电池箱体的温度信息。
  3. 如权利要求2所述的智能电池箱,其特征在于,所述状态检测模块具体用于:根据自身检测到的应力方向及应力大小,获取所述电池箱总成在所述车辆上的位置信息。
  4. 如权利要求3所述的智能电池箱,其特征在于,所述电池箱总成包括电池箱体和设置在所述电池箱体上的连接机构,所述状态检测模块包括第一状态检测单元,所述第一状态检测单元的传感头设置于所述连接机构上。
  5. 如权利要求4所述的智能电池箱,其特征在于,所述第一状态检测单元用于:
    在所述智能电池箱安装至所述车辆的过程中,通过所述传感头检测所述连接机构产生的应力方向及应力大小,若所述应力大小大于第一阈值且所述应力方向与所述智能电池箱的安装方向相同,则所述电池箱总成在所述车辆上的位置信息为已到达安装预设过程的目标位置。
  6. 如权利要求4或5所述的智能电池箱,其特征在于,所述第一状态检测单元用于:
    在所述智能电池箱安装至所述车辆后,通过所述传感头检测所述连接机构产生的应力方向及应力大小,若所述应力大小大于第二阈值且所述应力方向与重力方向相反,则所述电池箱总成在所述车辆上的位置信息为已达到安装完成的目标位置。
  7. 如权利要求3所述的智能电池箱,其特征在于,所述电池箱总成包 括电池箱体和设置在所述电池箱体上的连接机构,所述状态检测模块包括第二状态检测单元,所述第二状态检测单元的传感头设置于所述电池箱总成与所述车辆的抵接面上;
    所述第二状态检测单元用于:
    在所述智能电池箱安装至所述车辆后,通过所述传感头检测所述抵接面产生的应力方向及应力大小,若所述应力大小大于第三阈值且所述应力方向为沿所述电池箱体向外的方向,则所述电池箱总成在所述车辆上的位置信息为保持在安装完成位置并与所述车辆的紧密连接。
  8. 如权利要求1所述的智能电池箱,其特征在于,所述状态检测模块采用光纤光栅传感器实现。
  9. 如权利要求1所述的智能电池箱,其特征在于,所述BMS用于存储所述状态信息,并记录所述状态信息的接收时间。
  10. 如权利要求1所述的智能电池箱,其特征在于,所述智能电池箱还包括通讯模块;
    所述通讯模块与所述BMS通信连接,所述BMS通过所述通讯模块将所述状态信息发送至远程监控设备。
  11. 如权利要求1所述的智能电池箱,其特征在于,所述智能电池箱还包括数据传输接口;
    所述数据传输接口与所述BMS通信连接,所述BMS通过所述数据传输接口将所述状态信息发送至VCU或接入所述数据传输接口的设备。
  12. 一种智能电池箱检测方法,其特征在于,利用权利要求1-11中任意一项所述的智能电池箱实现,所述智能电池箱检测方法包括:
    状态检测模块获取电池箱总成的状态信息,并将状态信息发送至BMS。
  13. 如权利要求12所述的智能电池箱检测方法,其特征在于,所述状态信息包括所述电池箱总成在车辆上的位置信息和/或所述电池箱体的温度信息。
  14. 如权利要求13所述的智能电池箱检测方法,其特征在于,状态检 测模块获取电池箱总成的状态信息,包括:
    根据自身检测到的应力方向及应力大小,获取所述电池箱总成在所述车辆上的位置信息。
  15. 如权利要求14所述的智能电池箱检测方法,其特征在于,所述电池箱总成包括电池箱体和设置在所述电池箱体上的连接机构,所述状态检测模块包括第一状态检测单元,所述第一状态检测单元的传感头设置于所述连接机构上。
  16. 如权利要求15所述的智能电池箱检测方法,其特征在于,根据自身检测到的应力方向及应力大小,获取所述电池箱总成在所述车辆上的位置信息,包括:
    所述第一状态检测单元在所述智能电池箱安装至所述车辆的过程中,通过所述传感头检测所述连接机构产生的应力方向及应力大小,若所述应力大小大于第一阈值且所述应力方向与所述智能电池箱的安装方向相同,则所述电池箱总成在所述车辆上的位置信息为已到达安装预设过程的目标位置。
  17. 如权利要求15或16所述的智能电池箱检测方法,其特征在于,根据自身检测到的应力方向及应力大小,获取所述电池箱总成在所述车辆上的位置信息,包括:
    所述第一状态检测单元在所述智能电池箱安装至所述车辆后,通过所述传感头检测所述连接机构产生的应力方向及应力大小,若所述应力大小大于第二阈值且所述应力方向与重力方向相反,则所述电池箱总成在所述车辆上的位置信息为已达到安装完成的目标位置。
  18. 如权利要求14所述的智能电池箱检测方法,其特征在于,所述电池箱总成包括电池箱体和设置在所述电池箱体上的连接机构,所述状态检测模块包括第二状态检测单元,所述第二状态检测单元的传感头设置于所述电池箱总成与所述车辆的抵接面上;
    根据自身检测到的应力方向及应力大小,获取所述电池箱总成在所述车辆上的位置信息,包括:
    所述第二状态检测单元在所述智能电池箱安装至所述车辆后,通过所述传感头检测所述抵接面产生的应力方向及应力大小,若所述应力大小大于第三阈值且所述应力方向为沿所述电池箱体向外的方向,则所述电池箱总成在所述车辆上的位置信息为保持在安装完成位置并与所述车辆的紧密连接。
  19. 如权利要求12所述的智能电池箱检测方法,其特征在于,所述状态检测模块采用光纤光栅传感器实现。
  20. 如权利要求12所述的智能电池箱检测方法,其特征在于,所述智能电池箱检测方法还包括:
    所述BMS存储所述状态信息,并记录所述状态信息的接收时间。
  21. 如权利要求12所述的智能电池箱检测方法,其特征在于,所述智能电池箱还包括通讯模块,所述通讯模块与所述BMS通信连接;
    所述智能电池箱检测方法还包括:所述BMS通过所述通讯模块将所述状态信息发送至远程监控设备。
  22. 如权利要求12所述的智能电池箱检测方法,其特征在于,所述智能电池箱还包括数据传输接口,所述数据传输接口与所述BMS通信连接;
    所述智能电池箱检测方法还包括:所述BMS通过所述数据传输接口将所述状态信息发送至VCU或接入所述数据传输接口的设备。
PCT/CN2019/097819 2018-07-27 2019-07-26 智能电池箱及检测方法 WO2020020323A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021504534A JP2021533531A (ja) 2018-07-27 2019-07-26 スマートバッテリーパック及び検測方法
KR1020217005819A KR20210035279A (ko) 2018-07-27 2019-07-26 지능형 배터리 박스 및 측정 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810847285.0A CN110767851B (zh) 2018-07-27 2018-07-27 智能电池箱及检测方法
CN201810847285.0 2018-07-27

Publications (1)

Publication Number Publication Date
WO2020020323A1 true WO2020020323A1 (zh) 2020-01-30

Family

ID=69181320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097819 WO2020020323A1 (zh) 2018-07-27 2019-07-26 智能电池箱及检测方法

Country Status (4)

Country Link
JP (1) JP2021533531A (zh)
KR (1) KR20210035279A (zh)
CN (2) CN110767851B (zh)
WO (1) WO2020020323A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113386618A (zh) * 2020-03-14 2021-09-14 帝亚一维新能源汽车有限公司 便携式换电电池包跌落后使用的策略方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206551882U (zh) * 2017-01-18 2017-10-13 深圳市沃特玛电池有限公司 一种电动汽车电池箱安全防护系统
CN108039435A (zh) * 2017-12-08 2018-05-15 中山市天隆燃具电器有限公司 一种新能源汽车车载蓄电池抗震安装箱
US20180186227A1 (en) * 2017-01-04 2018-07-05 Shape Corp. Vehicle battery tray structure with nodal modularity
CN108281581A (zh) * 2018-01-15 2018-07-13 雷翠香 一种电动汽车用蓄电池装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5489797B2 (ja) * 2010-03-17 2014-05-14 三菱重工業株式会社 電池システム
TW201349627A (zh) * 2012-05-31 2013-12-01 Emerald Battery Technologies Co Ltd 電池監控及保護裝置及其系統與方法
KR102391117B1 (ko) * 2015-07-03 2022-04-27 삼성에스디아이 주식회사 배터리 팩 및 이를 포함하는 전기 자전거
WO2017173221A1 (en) * 2016-03-31 2017-10-05 Elitise Llc Battery module with orientation detection for alternate operative states

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180186227A1 (en) * 2017-01-04 2018-07-05 Shape Corp. Vehicle battery tray structure with nodal modularity
CN206551882U (zh) * 2017-01-18 2017-10-13 深圳市沃特玛电池有限公司 一种电动汽车电池箱安全防护系统
CN108039435A (zh) * 2017-12-08 2018-05-15 中山市天隆燃具电器有限公司 一种新能源汽车车载蓄电池抗震安装箱
CN108281581A (zh) * 2018-01-15 2018-07-13 雷翠香 一种电动汽车用蓄电池装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113386618A (zh) * 2020-03-14 2021-09-14 帝亚一维新能源汽车有限公司 便携式换电电池包跌落后使用的策略方法

Also Published As

Publication number Publication date
CN110767851B (zh) 2024-01-23
CN110767851A (zh) 2020-02-07
CN117996236A (zh) 2024-05-07
KR20210035279A (ko) 2021-03-31
JP2021533531A (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
US11938766B2 (en) Communication device, system, and method for active control of external vehicle components
BR112020012196A2 (pt) aparelho e método para monitorar sistemas transportadores
CN110062917B (zh) 智能拖车系统
CN204641278U (zh) 一种轮胎管理系统
EP3700763B1 (fr) Procede de determination d'une pression preconisee de gonflage pour pneu aeronef, et procedes de maintenance associes
KR101339282B1 (ko) 자전거의 주행 상황을 필터링한 자전거 도로 평탄성 측정 시스템 및 방법
US20160363182A1 (en) Systems and methods for detecting wear of brake pads
CN107592504A (zh) 一种实现智能监测车辆异常并进行录像的系统及方法
WO2020020323A1 (zh) 智能电池箱及检测方法
WO2022068287A1 (zh) 一种数据处理的方法和装置
JP2010148246A (ja) 電気自動車の充電システム
KR101488420B1 (ko) 무선 및 자가발전 센서를 이용한 철도 차량 모니터링 시스템 및 방법
CN115284966B (zh) 一种基于区块链车辆动力电池状态监控及回收系统
CN110294380A (zh) 一种基于数据驱动的电梯制动器抱闸响应性能监测方法及监测装置
CN112848957A (zh) 基于物联网和无线传感器的电动汽车充电站安全监测平台
CN107081997A (zh) 胎压监测系统以及方法
WO2022226901A1 (zh) 底盘护板、车载撞击检测系统及撞击检测方法
KR20170031981A (ko) 자전거 도로 모니터링 시스템
EP1903658A2 (en) Battery indicator
CN109050741B (zh) 一种共享单车车辆状况分类方法及系统
CN205292317U (zh) 电动汽车电池管理控制系统
CN105741435A (zh) 自行车租借站的自动防盗监控装置
CN219436038U (zh) 一种电池盒安装机构
CN210390946U (zh) 机车车载控制设备
CN219668089U (zh) 一种车载定位监控装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19842201

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504534

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217005819

Country of ref document: KR

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 23.03.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19842201

Country of ref document: EP

Kind code of ref document: A1