WO2020020274A1 - 电子设备、扩展卡组件、服务器设备及其管理方法 - Google Patents

电子设备、扩展卡组件、服务器设备及其管理方法 Download PDF

Info

Publication number
WO2020020274A1
WO2020020274A1 PCT/CN2019/097633 CN2019097633W WO2020020274A1 WO 2020020274 A1 WO2020020274 A1 WO 2020020274A1 CN 2019097633 W CN2019097633 W CN 2019097633W WO 2020020274 A1 WO2020020274 A1 WO 2020020274A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
component
expansion card
hard disk
power supply
Prior art date
Application number
PCT/CN2019/097633
Other languages
English (en)
French (fr)
Inventor
张宏海
张燕飞
严杰
陈川
陈锐
Original Assignee
杭州海康威视数字技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康威视数字技术股份有限公司 filed Critical 杭州海康威视数字技术股份有限公司
Priority to US17/262,377 priority Critical patent/US11985780B2/en
Publication of WO2020020274A1 publication Critical patent/WO2020020274A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0256Details of interchangeable modules or receptacles therefor, e.g. cartridge mechanisms
    • H05K5/0286Receptacles therefor, e.g. card slots, module sockets, card groundings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/183Internal mounting support structures, e.g. for printed circuit boards, internal connecting means
    • G06F1/185Mounting of expansion boards
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/20Processor architectures; Processor configuration, e.g. pipelining
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/02Arrangements of circuit components or wiring on supporting structure
    • H05K7/10Plug-in assemblages of components, e.g. IC sockets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1417Mounting supporting structure in casing or on frame or rack having securing means for mounting boards, plates or wiring boards
    • H05K7/1418Card guides, e.g. grooves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1435Expandable constructions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20172Fan mounting or fan specifications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20209Thermal management, e.g. fan control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing

Definitions

  • the present application relates to the technical field of computer equipment, and in particular, to electronic equipment, expansion card components, server equipment, and management methods thereof.
  • PCIE PCI-Express: peripheral component interconnect
  • GPU Graphics Processing Unit, graphics
  • Processor CPU
  • CPU Central Processing Unit / Processor, central processing unit
  • This application provides an electronic device, an expansion card component, a server device, and a management method thereof to meet the expansion requirements of the expansion card component.
  • an embodiment of the present application provides an electronic device, including: a hard disk slot and an expansion card assembly;
  • the expansion card assembly is pluggably provided in the hard disk slot;
  • the hard disk slot includes a first type interface and a second type interface, and the first type interface is used to communicate with the hard disk, so The second type of interface is used to communicate with the expansion card component.
  • the expansion card component includes a processing circuit, a control circuit, and a communication interface; wherein the processing circuit and the communication interface are respectively connected to the control circuit, and the communication interface and the second type of interface ⁇ ⁇ Phase connection.
  • the device further includes a power supply component
  • the expansion card component further includes an expansion card power supply interface
  • the hard disk slot further includes a slot power supply interface; wherein the power supply component is in communication with the power supply interface of the slot.
  • the power supply interface of the slot is connected to the power supply interface of the expansion card, and the power supply interface of the expansion card supplies power to the processing circuit and the control circuit.
  • the device further includes a network expansion component, and the network expansion component communicates with a communication interface of the expansion card component through the second type interface.
  • the expansion card assembly further includes a heat sink component.
  • the device further includes an indicator light
  • the expansion card assembly further includes a light guide post, and the light guide post guides the light of the indicator light.
  • the expansion card assembly is detachably disposed in the hard disk slot through a tray of the hard disk slot; the expansion card assembly further includes a fixed convex hull, and the fixed convex hull is used to fix the expansion card assembly.
  • the tray support of the hard disk slot is described.
  • the second type of interface is a PCIE interface
  • the first type of interface is a SAS interface or a SATA interface.
  • the hard disk slot includes an SFF8639 interface.
  • the hard disk slot is disposed on the backplane, or the motherboard, or the outside of the chassis.
  • the expansion card component includes any one or more of the following: a GPU component, a CPU component, a processor component, a network card component, a wireless communication component, and an input / output component.
  • the GPU component includes a GPU chip, a control chip, a control interface, and a communication interface; wherein the GPU chip, the control interface, and the communication interface are respectively connected to the control chip, and the communication interface Connected to the second type of interface.
  • the device further includes a power supply component
  • the GPU component further includes a GPU power supply interface
  • the hard disk slot further includes a slot power supply interface; wherein the power supply component is connected to the slot power supply interface,
  • the slot power supply interface is connected to the GPU power supply interface, and the GPU power supply interface supplies power to the GPU chip and the control chip.
  • the device further includes a network extension component, and the network extension component communicates with a communication interface of the GPU component through the second type interface.
  • the GPU component further includes:
  • the device further includes an indicator light
  • the GPU component includes a light guide post, and the light guide post derives the light of the indicator light.
  • the GPU component is detachably provided in the hard disk slot through a disk tray of the hard disk slot; the GPU component includes a fixed convex hull, and the hard disk slot is fixed by the fixed convex hull. Bit tray.
  • an embodiment of the present application further provides an electronic device including a hard disk slot; the hard disk slot supports a pluggable expansion card assembly; the hard disk slot includes a first type And a second type of interface, the first type of interface is used to communicate with the hard disk, and the second type of interface is used to communicate with the expansion card component.
  • the device further includes a power supply component
  • the hard disk slot further includes a slot power supply interface; wherein the power supply component is connected to the slot power supply interface, and the slot power supply interface is used for all The power supply of the expansion card assembly is described.
  • the device further includes a network expansion component, and the network expansion component is configured to communicate with a communication interface of the expansion card component through the second type interface.
  • the second type of interface is a PCIE interface
  • the first type of interface is a SAS interface or a SATA interface.
  • the hard disk slot includes an SFF8639 interface.
  • the hard disk slot is disposed on the backplane, or the motherboard, or the outside of the chassis.
  • the expansion card component includes any one or more of the following: a GPU component, a CPU component, a processor component, a network card component, a wireless communication component, and an input / output component.
  • an embodiment of the present application provides an expansion card component, where the expansion card component includes: a service module and a first high-speed interface;
  • the service module is connected to the first high-speed interface
  • the first high-speed interface includes: a serial connection interface SAS interface or a serial advanced technology accessory SATA interface or a high-speed serial computer expansion bus PCIE interface;
  • the first high-speed interface is used to transmit a network signal, and the network signal includes a simplified Gigabit media independent interface RGMII signal and a Gigabit media independent interface GMII signal.
  • the service module includes at least one of an image processor, a CPU component, a processor component, a network card component, a wireless communication component, and an input-output component.
  • the service module includes an image processor, and the image processor includes: an image processing chip and a control chip;
  • the control chip is respectively connected with the image processing chip and the first high-speed interface;
  • the control chip converts the network signal into data information that can be recognized by the image processing chip.
  • the first high-speed interface is a U.2 interface.
  • an embodiment of the present application provides a server device.
  • the server device includes a motherboard.
  • the motherboard is provided with a second high-speed interface.
  • the second high-speed interface includes a SAS interface, a SATA interface, or a PCIE interface. ;
  • the motherboard is connected to the first high-speed interface of the expansion card assembly through the second high-speed interface, and the expansion card assembly is the expansion card assembly according to any one of the third aspect.
  • the second high-speed interface is a U.2 interface.
  • the server device further includes a backplane, and the backplane is provided with the second high-speed interface;
  • the backplane is connected to the expansion card assembly through the second high-speed interface
  • An expansion interface is provided on the motherboard, and the motherboard is connected to the backplane through the expansion interface.
  • the expansion interface includes a SAS interface or a SATA interface.
  • the server device further includes a network extension component, and the network extension component includes: a network switching module and a network routing module;
  • the network switching module is connected to the network routing module
  • the network switching module is respectively connected to the backplane and the mainboard.
  • the server device further includes a power supply component, and the power supply component is respectively connected to the network expansion component, the main board, and the backplane.
  • an embodiment of the present application provides a method for managing an expansion card component, which is characterized in that the method is applied to the server device according to any one of the fourth aspect, and the server device passes a second high-speed interface. Multiple expansion card components are connected, and the method includes:
  • the new processing task is assigned to the expansion card component with the smallest workload.
  • the working state includes: operating temperature;
  • the method further includes:
  • the method further includes:
  • the expansion card components are powered on one by one.
  • the method further includes:
  • the electronic device provided in the embodiment of the present application includes a hard disk slot and an expansion card component; wherein, the expansion card component is pluggably disposed in a hard disk slot; the hard disk slot includes a first type interface and a second type interface. One type of interface is used to communicate with the hard disk, and the second type of interface is used to communicate with the expansion card components. It can be seen that the expansion card assembly is expanded by using the hard disk slot in the electronic device, which meets the expansion requirements of the expansion card assembly.
  • the expansion card component, the server device, and the server device management method provided in the embodiments of the present application, wherein the expansion card component includes: a service module and a first high-speed interface; and the service module is connected to the first high-speed interface.
  • the first high-speed interface is a SAS interface or a SATA interface or a PCIE interface capable of transmitting network signals, so that the expansion card component provided by the embodiment of the present invention can be connected to a hard disk interface of a device such as a server through the first high-speed interface, for example, a server SAS interface, SATA interface or U.2 interface on the motherboard.
  • the data or information in the form of network signals can be obtained through the first high-speed interface, and then the data or information can be processed correspondingly through the service module. It not only relies on the PCIE interface to connect expansion card components.
  • the first high-speed interface more expansion card components can be connected to devices such as servers, which expands the number of expansion card components that can be connected to servers and other devices.
  • FIG. 1 is a first schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2a is a schematic structural diagram of an SFF8639 interface according to an embodiment of the present application.
  • FIG. 2b is a schematic diagram of a part of the interface structure in the improved SFF8639 according to the embodiment of the present application;
  • FIG. 2b is a schematic diagram of a part of the interface structure in the improved SFF8639 according to the embodiment of the present application;
  • FIG. 2c is a schematic diagram of another interface structure in the improved SFF8639 according to the embodiment of the present application.
  • FIG. 3 is a first schematic structural diagram of an expansion card assembly according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a second structure of an electronic device according to an embodiment of the present application.
  • FIG. 5 is a third schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 6 is a fourth schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a second structure of an expansion card assembly according to an embodiment of the present application.
  • FIG. 8 is a first schematic structural diagram of a GPU component according to an embodiment of the present application.
  • FIG. 9 is a fifth schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 10 is a sixth schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 11 is a seventh schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 12 is a second schematic structural diagram of a GPU component according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an eighth structure of an electronic device according to an embodiment of the present application.
  • 14a is a third structural diagram of an expansion card assembly according to an embodiment of the present application.
  • 14b is a fourth structural diagram of an expansion card assembly according to an embodiment of the present application.
  • FIG. 15 is a structural diagram of a server device according to an embodiment of the present application.
  • FIG. 16 is another structural diagram of a server device according to an embodiment of the present application.
  • FIG. 17 is a flowchart of a server device management method according to an embodiment of the present application.
  • the electronic devices may be servers, hosts, and the like, which are not specifically limited.
  • the first electronic device is described in detail below.
  • FIG. 1 is a first schematic structural diagram of an electronic device according to an embodiment of the present application, including: a hard disk slot 100 and an expansion card assembly 200;
  • the expansion card assembly 200 is inserted into the hard disk slot 100.
  • the hard disk slot 100 includes a first type interface 110 and a second type interface 120.
  • the first type interface 110 is used to communicate with the hard disk, and the second type The interface 120 is configured to communicate with the expansion card assembly 200.
  • the first type interface and the second type interface can be completely different interfaces, that is, some of the interfaces in the hard disk slot can only communicate with the hard disk, and some of the interfaces can only communicate with the expansion card component. .
  • the first-type interface and the second-type interface may be partially the same. For example, some interfaces in the hard disk slot can communicate with both the hard disk and the expansion card component.
  • the expansion card component 200 may include any one or more of the following: a GPU component, a CPU component, a processor component, a network card component, a wireless communication component, and an input / output component.
  • a GPU (Graphics Processing Unit) component may include a GPU chip, and the CPU component may include a single-chip microcomputer, an ARM processor, an X86 processor, and the like, which are not specifically limited.
  • the processor component may include an APU (Accelerated Processing Unit) or a TPU (Tensor Processing Unit), which is not specifically limited.
  • the network card component may include a 10M network card, a 100M network card, a 1000M network card, a 10G network card, a 25G network card, a 40G network card, a 100G network card, or a wifi (wireless fidelity, wireless fidelity) component, etc., which are not specifically limited.
  • the wireless communication component may include an IoT (Internet of Things) wireless component, such as an IoT-NODE433 component, a Bluetooth component, a zigbee component, a wifi component, and the like, which are not specifically limited.
  • the input and output components may include various IoT input and output interface boards, such as alarm IO (Input, Output, input and output), RS232 interface board, RS485 interface board, USB interface board, etc., which are not specifically limited.
  • the expansion card component 200 is a GPU component, the analysis capability of the electronic device can be expanded through the embodiments of the present application. If the expansion card component 200 is a CPU component or a processor component, the computing capability of the electronic device can be expanded through the embodiments of the present application. If the expansion card component 200 is a network card component or a wireless communication component, the communication capability of the electronic device can be extended through the embodiments of the present application. It can be seen that in this solution, the use of hard disk slots can meet the expansion requirements of expansion card components, and expand the analysis capabilities, computing capabilities, and communication capabilities of electronic equipment.
  • the hard disk slot 100 can be set on the backplane, or the motherboard, or the outside of the chassis.
  • the specific position of the hard disk slot is not limited.
  • the number of hard disk slots and the number of expansion card components are not limited, and can be flexibly configured based on actual conditions.
  • the hard disk slot may include an SFF8639 interface.
  • it may be a U.2 interface in SFF8639, or a U.3 interface in SFF8639, which is not specifically limited.
  • the hard disk slot includes a first type interface and a second type interface.
  • the second type of interface can be a PCIE interface
  • the first type of interface can be SAS (Serial, Attached, SCSI, Serial SCSI; SCSI: Small Computer System Interface), or SATA (Serial Advanced Technology Attachment) , Serial Advanced Technology Attachment) interface.
  • the PCIE interface can transmit Ethernet RGMII (Reduced Gigabit Media Independent Interface) signals, or GMII (Gigabit Medium Independent) signals.
  • Figure 2a is the U.2 interface in SFF8639.
  • the SAS SAS-1 and SAS-2
  • SATA Serial Advanced Technology Attachment
  • PCIE PCIE Channels 0-3
  • the SFF8639 interface in Figure 2a also includes a PCIE interface sideband, which is used to modulate the signal transmitted by the PCIE interface.
  • the expansion card assembly 200 may include a processing circuit 210, a control circuit 220, and a communication interface 230.
  • the processing circuit 210 and the communication interface 230 are respectively connected to the control circuit 220, and the communication interface 230 and the first The second type interface 120 is connected.
  • the processing circuit 210 can be understood as a core circuit of the expansion card component.
  • the processing circuit is a GPU chip; if the expansion card component is a processor component, the processing circuit is a processor chip, such as an APU chip, a TPU chip, etc., which will not be listed one by one.
  • the control circuit 220 may be an out-of-band control circuit that performs soft reset, hard reset, and the like management on the processing circuit 210.
  • the control circuit 220 can also monitor the temperature of the expansion card assembly 200. When the temperature is high, the control circuit 220 can control the heat sink to dissipate heat.
  • control circuit may include a communication circuit connected to the communication interface, or the communication circuit may be independently set, which is not specifically limited.
  • the control circuit and the processing circuit may be integrated in the same chip.
  • Each part of the electronic device may be independently set or integrated according to actual conditions, which is not limited in the embodiment of the present application.
  • the expansion card assembly 200 may further include other components, such as a control interface, a power supply interface, a power supply circuit, and the like, which are not limited in this embodiment.
  • FIG. 2b is a part of the interface in FIG. 2a.
  • S26 and S27 in the SFF8639 interface can be redefined as out-of-band control interfaces of the expansion card component.
  • these newly defined interfaces also belong to the second type interface 120.
  • the control circuit 220 of the expansion card assembly 200 can be controlled to perform soft reset, hard reset, and other operations on the expansion card assembly 200.
  • S26 and S27 are respectively connected to the low-speed buses I2C_SCL (I2C clock synchronization line) and I2C_SDA (I2C data line), and the signaling is transmitted to the control circuit 220 through these low-speed buses.
  • I2C_SCL I2C clock synchronization line
  • I2C_SDA I2C data line
  • S17, S18, S20, and S21 in the SFF8639 interface can be redefined as interfaces for communicating with the expansion card components.
  • S17, S18, S20, and S21 The newly defined interface also belongs to the second type of interface 120.
  • the communication interface 230 of the expansion card assembly 200 can communicate with the newly defined interfaces S17, S18, S20, and S21.
  • C represents a capacitor, and divides the MDI (Medium and Dependent Interface) signals into two differential signals of A and B.
  • MDI Medium and Dependent Interface
  • MDIAP represents the positive pole of the MDI signal of group A
  • MDIAN represents the MDI of group A.
  • the negative electrode of the signal and MDIBP indicate the positive electrode of the MDI signal of group B
  • the MDIBN indicates the negative electrode of the MDI signal of group B.
  • FIG. 2c is a part of the interface in FIG. 2a.
  • Configure GPIO General Purpose Input Input Output
  • R represents the resistance.
  • the expansion card component is a GPU component, assuming that the GPU component includes multiple GPU chips, and connecting the multiple GPU chips to these GPIOs respectively, the IP / MAC addresses of each GPU can be independently addressed, reducing address conflicts.
  • the device may further include a power supply component 300.
  • the expansion card component 200 further includes an expansion card power supply interface 240
  • the hard disk slot 100 further includes a slot power supply interface 130.
  • the power supply component 300 and the slot The bit power supply interface 130 is connected.
  • the slot power supply interface 130 is connected to the expansion card power supply interface 240.
  • the expansion card power supply interface 240 supplies power to the processing circuit 210 and the control circuit 220.
  • the power supply component 300 may be disposed on the back plate, or the main board, or the outside of the chassis, and the specific position of the power supply component 300 is not limited.
  • the power supply interface of the original hard disk slot can be reused, and there is no need to redefine the power supply interface of the slot, which saves manpower.
  • the device further includes a network expansion component 400, and the network expansion component 400 communicates with the communication interface 230 of the expansion card component 200 through the second type interface 120.
  • the expansion card component is a GPU component
  • the network expansion component is connected to the external network camera through the network port of the external network.
  • the GPU component can access the video data collected by the external network camera and Video data is processed.
  • the network expansion component 400 may be disposed on the backplane, or the motherboard, or the outside of the chassis.
  • the specific position of the network expansion component 400 is not limited.
  • the hard disk slot 100 is disposed on the backplane, the network port of the external network is disposed on the motherboard, and the network expansion component 400 communicates with the network port on the motherboard.
  • each interface in the hard disk slot 100 can also communicate with an expansion interface on the motherboard.
  • the expansion card assembly 200 further includes a heat sink 250.
  • FIG. 7 is a schematic structural diagram of an expansion card assembly.
  • the heat sink 250 includes a cooling fan and a heat sink, and the heat sink can be connected to the processing circuit 210 in the expansion card assembly 200.
  • the sheet is a heat sink of the processing circuit 210.
  • the cooling fan may be a turbo fan, or may be another type of fan.
  • the built-in cooling system of the electronic device can be reused to ventilate and cool the expansion card components, which can save costs.
  • the length of the expansion card assembly 200 is a, the width is b, and the thickness is c.
  • the specific values of a, b, and c are not limited. In one case, the specific values of a, b, and c can be the same as the original 3.5-inch hard disk, or 2.5-inch hard disk, or other hard disks of other sizes.
  • the expansion card assembly 200 further includes a light guide post 260, and the device further includes an indicator light, and the light guide post can export the light of the indicator light.
  • the multiplexed indicator light of the electronic device is used to indicate the operating status of the expansion card assembly, which saves costs compared to setting an indicator light again.
  • the expansion card assembly 200 is pluggably disposed in the hard disk slot 100 through the disk tray of the hard disk slot 100.
  • the expansion card assembly 200 further includes a fixing protrusion 270, and the disk tray of the hard disk slot 100 is fixed by the fixing protrusion 270.
  • the expansion card assembly 200 may be fixedly connected to the hard disk slot 100, such as welding or riveting.
  • the expansion card assembly 200 may be soft-connected to the hard disk slot 100 through a wire, and the specific connection manner is not limited.
  • the expansion card assembly 200 may further include a dustproof net 280. If there is no dustnet 280, dust will be sucked in along with the air inlet and attached to the expansion card assembly, which affects the stable operation of the expansion card assembly, and dust protection is provided.
  • the net 280 can improve the operational stability and service life of the expansion card components.
  • the expansion card assembly 200 may further include an EMC (Electro Magnetic Compatibility) electromagnetic dome 290, and the EMC metallic dome 290 may reduce external radiation.
  • EMC Electro Magnetic Compatibility
  • the expansion card assembly 200 may further include a buckle 291.
  • a handle of the bracket of the expansion card assembly 200 may be more conveniently installed and removed.
  • the expansion card assembly 200 may further include an air inlet hole 292, a fixing screw hole 293, and the like.
  • the fixing screw holes 293 can reuse the side and bottom fixing screw holes of the hard disk.
  • the shape of the expansion card assembly is the same as that of the original 3.5-inch hard disk, 2.5-inch hard disk, or other hard disks. The side and bottom fixing screws of these hard disks can be reused.
  • the electronic device may further include other devices, such as a housing, a main board, a back board, a power supply, and the like, which are not limited in the embodiments of the present application.
  • the expansion card assembly 200 may further include other devices, which are not limited in the embodiment of the present application.
  • the electronic device provided in the embodiment of the present application includes a hard disk slot and an expansion card component; wherein, the expansion card component is pluggably disposed in a hard disk slot; the hard disk slot includes a first type interface and a second type interface. One type of interface is used to communicate with the hard disk, and the second type of interface is used to communicate with the expansion card components. It can be seen that the expansion card assembly is expanded by using the hard disk slot in the electronic device, which meets the expansion requirements of the expansion card assembly.
  • the expansion card components are expanded by using PCIE slots.
  • concentration of PCIE slots in these electronic devices results in poor thermal performance of the electronic devices.
  • the distributed hard disk slot layout improves the thermal performance.
  • the heat sink provided further improves the heat dissipation performance.
  • the GPU component includes a GPU chip 201, a control chip 202, a control interface 203, and a communication interface 204.
  • the GPU chip 201, the control interface 203, and the communication interface 204 are respectively connected to the control chip 202.
  • the communication interface 204 is connected to the second type interface 120.
  • the first-type interface and the second-type interface can be completely different interfaces, that is, some of the interfaces in the hard disk slot can only communicate with the hard disk, and some of the interfaces can only communicate with the GPU component. Or, in another case, the first-type interface and the second-type interface may be partially the same. For example, some interfaces in the hard disk slot can communicate with both the hard disk and the GPU component.
  • the GPU component may include a plurality of GPU chips 201.
  • the control chip 202 may be an out-of-band control circuit that performs soft reset, hard reset, and other management on the GPU chip 201.
  • the control chip 202 can also monitor the temperature of the GPU chip. When the temperature is high, the control chip 202 can control the heat sink device to dissipate heat.
  • control chip may include a communication chip connected to the communication interface, or the communication chip may be independently set, which is not specifically limited.
  • the control chip and GPU chip can also be integrated in the same chip.
  • Each part of the electronic device may be independently set or integrated according to actual conditions, which is not limited in the embodiment of the present application.
  • the GPU component may further include other components, such as a power supply interface, a power supply circuit, and the like, which are not limited in this embodiment.
  • the external physical interface of the GPU component matches the SFF8639 interface.
  • S26 and S27 in the SFF8639 interface can be redefined as out-of-band control interfaces in the GPU component. These redefined interfaces of S26 and S27 also belong to the second-type interface 120.
  • the control chip 202 can be controlled to perform soft reset, hard reset and other operations on the GPU chip 201.
  • S26 and S27 are connected to the low-speed buses I2C_SCL and I2C_SDA, respectively, and the signaling is transmitted to the control circuit 220 through these low-speed buses.
  • S17, S18, S20, and S21 in the SFF8639 interface can be redefined as interfaces for communicating with GPU components.
  • S17, S18, S20, and S21 can be redefined.
  • the defined interface also belongs to the second type of interface 120.
  • the communication interface 204 of the GPU component can communicate with the newly defined interfaces S17, S18, S20, and S21.
  • C represents a capacitor, and divides the MDI (Medium and Dependent Interface) signals into two differential signals of A and B.
  • MDI Medium and Dependent Interface
  • MDIAP represents the positive pole of the MDI signal of group A
  • MDIAN represents the MDI of group A.
  • the negative electrode of the signal and MDIBP indicate the positive electrode of the MDI signal of group B
  • the MDIBN indicates the negative electrode of the MDI signal of group B.
  • the GPIO pins of the SFF8639 interface can be redefined as E7 to E16 as the IP / MAC address status of the GPU component.
  • R represents the resistance.
  • the device further includes a power supply component 300
  • the GPU component further includes a GPU power supply interface 205
  • the hard disk slot 100 further includes a slot power supply interface 130; wherein the power supply component 300 and the slot power supply interface 130 Are connected, the slot power supply interface 130 is connected to the GPU power supply interface 205, and the GPU power supply interface 205 supplies power to the GPU chip 201 and the control chip 202.
  • the power supply component 300 may be disposed on the back plate, or the main board, or the outside of the chassis, and the specific position of the power supply component 300 is not limited.
  • the power supply interface of the original hard disk slot can be reused.
  • the external physical interface of the GPU component matches the SFF8639 interface, so the GPU component can use the power supply pin in it, without re- Defining the slot power supply interface saves manpower.
  • the device further includes a network extension component 400, and the network extension component 400 communicates with the communication interface 204 of the GPU component through the second type interface 120.
  • the network extension component is connected to the camera of the external network through the network port of the external network.
  • the GPU component can access the video data collected by the external network camera and process the video data.
  • the network expansion component 400 may be disposed on the backplane, or the motherboard, or the outside of the chassis.
  • the specific position of the network expansion component 400 is not limited.
  • the hard disk slot 100 is disposed on the backplane, the network port of the external network is disposed on the motherboard, and the network expansion component 400 communicates with the network port on the motherboard.
  • each interface in the hard disk slot 100 can also communicate with an expansion interface on the motherboard.
  • the network expansion component 400 may include a network switching module, a network routing module, an interface conversion module, and other peripheral circuits.
  • the network switching module can implement intranet communication between multiple IP nodes, so that the motherboard can access the data in the GPU components.
  • the network routing module is used for the conversion between the internal network and the external network, so that the GPU component can access the data in the external network camera.
  • the intranet can be understood as a network formed between various components inside an electronic device.
  • the GPU component further includes a heat sink device 206.
  • FIG. 12 is a schematic structural diagram of a GPU component.
  • the heat sink 206 includes a cooling fan and a heat sink, and the heat sink can be connected to the GPU chip 201 in the GPU assembly, or the heat sink is A heat sink of the GPU chip 201.
  • the cooling fan may be a turbo fan, or may be another type of fan.
  • the GPU's own cooling system can be reused to ventilate and cool GPU components, which can save costs.
  • the length of the GPU component is x
  • the width is y
  • the thickness is z.
  • the specific values of x, y, and z are not limited. In one case, the specific values of x, y, and z may be the same as the original 3.5-inch hard disk, 2.5-inch hard disk, or other hard disks of other sizes.
  • the GPU component 200 further includes a light guide post 207, and the device further includes an indicator light, and the light guide post 207 can export the light of the indicator light.
  • the indicator light built into the multiplexed electronic device is used to indicate the running status of the GPU component, which saves costs compared to setting an indicator light again.
  • the GPU component is pluggably disposed in the hard disk slot 100 through the disk tray of the hard disk slot 100.
  • the GPU component further includes a fixed convex hull 208 through which the disk tray of the hard disk slot 100 is fixed.
  • the GPU component may be fixedly connected to the hard disk slot 100, such as welding or riveting.
  • the GPU component may be soft-connected to the hard disk slot 100 through a wire, and the specific connection method is not limited.
  • the GPU component may further include a dust net 209. If there is no dust net 209, dust will be sucked in with the air inlet and attached to the expansion card assembly, which affects the stable operation of the expansion card assembly, and a dust net 209 is provided. Can improve the operating stability and service life of expansion card components.
  • the GPU component may further include an EMC (Electro Magnetic Compatibility) electromagnetic dome 211, and the EMC metallic dome 211 may reduce external radiation.
  • EMC Electro Magnetic Compatibility
  • the GPU component may further include a clasp 212, and the handle of the GPU component bracket may be more conveniently installed and removed through the clasp 212.
  • the GPU component may further include an air inlet 213, a fixing screw hole 214, and the like.
  • the fixing screw holes 214 can reuse the side and bottom fixing screw holes of the hard disk.
  • the shape of the GPU component is the same as that of the original 3.5-inch hard disk, 2.5-inch hard disk, or other hard disks. The side and bottom fixing holes of these hard disks can be reused.
  • the GPU component may further include other devices, which are not limited in the embodiment of the present application.
  • the electronic device provided in the embodiment of the present application includes a hard disk slot and a GPU component.
  • the GPU component is pluggably provided in the hard disk slot.
  • the hard disk slot includes a first type interface and a second type interface. The first type The interface is used to communicate with the hard disk, and the second type of interface is used to communicate with the GPU component. It can be seen that the electronic device uses the hard disk slot to expand the GPU component, which meets the expansion demand of the GPU component.
  • the expansion card components are expanded by using PCIE slots.
  • concentration of PCIE slots in these electronic devices results in poor thermal performance of the electronic devices.
  • the distributed hard disk slot layout improves the thermal performance.
  • the heat sink provided further improves the heat dissipation performance.
  • An embodiment of the present application also provides a second type of electronic device.
  • a hard disk slot is included; the hard disk slot supports a pluggable expansion card assembly; the hard disk slot includes a first type interface and a second type The first-type interface is used to communicate with the hard disk, and the second-type interface is used to communicate with the expansion card component.
  • the dotted box in FIG. 13 indicates that an expansion card component may or may not exist in the electronic device.
  • the first type interface and the second type interface can be completely different interfaces, that is, some of the interfaces in the hard disk slot can only communicate with the hard disk, and some of the interfaces can only communicate with the expansion card component. .
  • the first-type interface and the second-type interface may be partially the same. For example, some interfaces in the hard disk slot can communicate with both the hard disk and the expansion card component.
  • the device further includes a power supply component 300
  • the hard disk slot 100 further includes a slot power supply interface 130.
  • the power supply component 300 is connected to the slot power supply interface 130, and the slot power supply interface 130 is used for an expansion card.
  • the component 200 is powered.
  • the power supply component 300 may be disposed on the back plate, or the main board, or the outside of the chassis, and the specific position of the power supply component 300 is not limited.
  • the power supply interface of the original hard disk slot can be reused, and there is no need to redefine the power supply interface of the slot, which saves manpower.
  • the device further includes a network expansion component 400, and the network expansion component 400 is configured to communicate with the communication interface 230 of the expansion card component 200 through the second type interface 120.
  • the expansion card component is a GPU component
  • the network expansion component is connected to the external network camera through the network port of the external network.
  • the GPU component can access the video data collected by the external network camera and Video data is processed.
  • the network expansion component 400 may be disposed on the backplane, or the motherboard, or the outside of the chassis.
  • the specific position of the network expansion component 400 is not limited.
  • the network expansion component 400 is disposed on the backplane, the network port of the external network is disposed on the motherboard, and the network expansion component 400 communicates with the network port on the motherboard.
  • the second type interface 120 in the hard disk slot 100 can also communicate with the expansion interface on the motherboard, that is, the expansion card assembly 200 can also obtain data on the motherboard through the second type interface 120, and the motherboard can also use the second type The class interface 120 acquires data in the expansion card assembly 200.
  • the second type of interface is a PCIE interface
  • the first type of interface is a SAS interface or a SATA interface.
  • the hard disk slot includes an SFF8639 interface.
  • the hard disk slot is disposed on the backplane, or the motherboard, or the outside of the chassis.
  • the expansion card component includes any one or more of the following: a GPU component, a CPU component, a processor component, a network card component, a wireless communication component, and an input / output component.
  • the electronic device may further include other devices, such as a housing, a main board, a back board, a power supply, and the like, which are not limited in the embodiments of the present application.
  • the second electronic device differs from the first electronic device in that the second electronic device does not necessarily include an expansion card assembly.
  • the second type of electronic device is similar to the other parts of the first type of electronic device and will not be described again.
  • FIG. 14a is a structural diagram of an expansion card assembly according to an embodiment of the present application, including:
  • the service module 101 and the first high-speed interface 102 are connected to the first high-speed interface 102.
  • the service module 101 is used to perform a specified task.
  • the service module 101 may be an image processor, a CPU component, a processor component, a network card component, a wireless communication component, or an input / output component, or a combination of at least two of the foregoing components. Wait.
  • the image processor may include a GPU (Graphics Processing Unit) chip, etc.
  • the CPU components may include a single-chip microcomputer, an ARM (Advanced RISC Machines) processor, an X86 processor, etc., which are not specifically limited;
  • the processor components may include APU (Accelerated Processing Unit), or TPU (Tensor Processing Unit), etc., are not specifically limited;
  • the network card components can include 10M (Megabytes, megabytes) network card, 100M network card, 1000M network card, 10G (GigaByte) network card, 25G network card, 40G network card, 100G network card, or wifi (wireless fidelity, wireless fidelity) components, etc., without specific restrictions;
  • wireless communication components can include IoT (Internet of things Wireless components, such as IoT-NODE433 components, Bluetooth components, zigbee components, wifi components, etc., are not specifically limited.
  • Input and output components can include related IoT input and output interface boards, such as alarm IO
  • the service module 101 may be connected to the first high-speed interface 102 through a cable, a data bus, and a printed circuit on an integrated circuit board. Thereby, corresponding data can be received or transmitted through the first high-speed interface 102, and connection with external devices, such as a server, a rack server, and the like can be achieved.
  • the first high-speed interface 102 can be used to transmit network signals.
  • the network signals include network signals in the form of RGMII (Reduced Gigabit Media Independent Interface), GMII (Gigabit Medium Independent Interface), and other forms of network signals. .
  • the service module 101 can obtain a network signal through the first high-speed interface 102 and convert it into information or data capable of data processing. Alternatively, the processed information or data may be converted into a network signal and transmitted to the outside through the first high-speed interface 102.
  • the first high-speed interface 102 may include a SAS (Serial Attached Small Computer Interface) interface, a SATA (Serial Advanced Technology Attachment) interface, or a PCIE interface.
  • the first high-speed interface 102 may be a first-generation SAS / SATA interface, a second-generation SAS / SATA interface, and a third-generation SAS / SATA interface.
  • the SAS / SATA interface is a hard disk interface, which can be connected to a SAS / SATA hard disk, which is a dedicated interface of the hard disk.
  • the first high-speed interface 102 can be connected to an expansion card component provided in the embodiment of the present application through a hard disk interface on a device such as a server, such as a SAS / SATA interface. This expands the number of expansion card components that can be connected to devices such as servers.
  • the first high-speed interface 102 may be a U.2 interface, and the U.2 interface is also referred to as an SFF8639 interface.
  • This interface is an upgraded version of the new SAS / SATA interface and can also meet PCIE The function of the interface, and supports the transmission of network signals such as RGMII, GMII.
  • the service module 101 provided in the embodiment of the present application can be more conveniently and quickly connected with an external device, thereby realizing high-speed transmission of network signals.
  • the foregoing service module 101 may be an image processor.
  • the image processor may be a component or a controller having image processing capabilities. It can realize the processing of image information or data.
  • it can be a component containing a GPU, which can include a GPU chip and corresponding control circuits and auxiliary circuits.
  • the image processor may be integrated on one integrated circuit board, or may be formed by connecting multiple integrated circuit boards.
  • the image processor may be in various forms.
  • the image processor may be an integrated chip or processor and corresponding supporting circuits.
  • the chip or processor can process the image information or data, and can realize the format conversion of the image information or data, for example, it can realize the conversion between the image information or data and network signals such as RGMII and GMII. Therefore, the integrated chip or processor can be directly connected to the first high-speed interface 102 and connected to an external device through the first high-speed interface 102.
  • the image processor may include an image processing chip 215 and a control chip 202.
  • the image processing chip 215 may be a chip having image information or data processing capability, such as a GPU chip.
  • the control chip 202 is a chip capable of converting data types and issuing control instructions to the image processing chip 215.
  • the image processing chip 215 and the control chip 202 may be disposed on a circuit board and connected through a printed circuit on the integrated circuit board. Corresponding auxiliary circuits and supporting circuits, and corresponding electronic components can also be integrated on the integrated circuit board.
  • the control chip 202 may be connected to the first high-speed interface 102 through a data bus or a cable, or in order to improve the integration, the first high-speed interface 102 may also be set on an integrated circuit board.
  • the first high-speed interface 102 is U
  • the plug structure of the .2 interface pin or gold finger, etc., the first high-speed interface 102 may be directly provided on the integrated circuit board, and connected to the control chip 202 through a line on the integrated circuit board.
  • the control chip 202 can convert the network signal into data information that the image processing chip 215 can recognize.
  • the data information may include image information or data to be processed by the image processing chip 215 and a control instruction capable of controlling the image processing chip 215.
  • the control instruction may be a modulation command, a reset command, and the like.
  • the control chip 202 can complete the conversion of data types, and can control the image processing chip 215, so that the image processing chip 215 can perform corresponding processing on the image information or data according to a preset processing program.
  • the first high-speed interface is a SAS interface or a SATA interface or a PCIE interface capable of transmitting network signals, so that the expansion card component provided in the embodiment of the present application can be connected to devices such as a server through the first high-speed interface.
  • the hard disk interface for example, the SAS interface, SATA interface, or U.2 interface on the server motherboard.
  • the data or information in the form of network signals can be obtained through the first high-speed interface, and then the data or information can be processed correspondingly through the service module. It not only relies on the PCIE interface to connect expansion card components.
  • the first high-speed interface more expansion card components can be connected to devices such as servers, which expands the number of expansion card components that can be connected to servers and other devices.
  • a server device is also provided.
  • the server device may be a server in the form of a computer host or a server in the form of a rack.
  • FIG. 15 is a structural diagram of a server device according to an embodiment of the present application, including:
  • the motherboard 401 is provided with a second high-speed interface 402.
  • the second high-speed interface 402 includes a SAS interface, a SATA interface, or a PCIE interface.
  • the motherboard 401 is connected to the first high-speed interface 102 of the expansion card assembly 200 through the second high-speed interface 402.
  • the expansion card assembly 200 is an expansion card assembly described in any of the above embodiments.
  • the main board 401 may be in the form of an integrated circuit board, and a processor such as a CPU (Central Processing Unit), an FPGA (Field-Programmable Gate Array), an MCU (Field Programmable Gate Array), and an MCU ( Microcontroller Unit). It can also be equipped with memory, north-south bridge chips, and external interfaces, such as network ports, USB interfaces, audio and video interfaces, and corresponding supporting circuits and auxiliary components.
  • a processor such as a CPU (Central Processing Unit), an FPGA (Field-Programmable Gate Array), an MCU (Field Programmable Gate Array), and an MCU ( Microcontroller Unit). It can also be equipped with memory, north-south bridge chips, and external interfaces, such as network ports, USB interfaces, audio and video interfaces, and corresponding supporting circuits and auxiliary components.
  • a processor such as a CPU (Central Processing Unit), an FPGA (Field-Programmable Gate Array), an MCU (Field Programmable Gate Array), and an
  • the motherboard 401 may be provided with a plurality of second high-speed interfaces 402.
  • the second high-speed interface 402 is the same type of interface as the first high-speed interface 102 on the expansion card assembly 200, and may also be a SAS interface or a SATA interface. Or PCIE interface.
  • the second high-speed interface 402 on the motherboard 401 matches the first high-speed interface 102 on the expansion card assembly 200.
  • the first high-speed interface 102 on the expansion card assembly 200 is a structure such as a corresponding plug or pin or a gold finger.
  • the second high-speed interface 402 of the main board 401 can be connected to the first high-speed interface 102 of the expansion card assembly 200.
  • the expansion card assembly 200 can be directly connected to the second high-speed interface 402 of the main board 401.
  • the second high-speed interface 402 can not only connect the expansion card assembly 200, but also After the expansion card assembly 200 is removed, a hard disk is connected through the second high-speed interface 402.
  • the high-speed interface may be a U.2 interface.
  • the U.2 interface integrates a PCIE channel and a SAS / SATA interface, so it can meet the data transmission between the expansion card assembly 200 and the motherboard 401, and it can also meet the data transmission between the hard disk and the motherboard 401.
  • Multiple U.2 interfaces may be provided on the motherboard 401. Therefore, multiple expansion card assemblies 200 and multiple hard disks can be connected at the same time.
  • the second high-speed interface 402 includes the first-type interface 110 and the second-type interface 120 described above.
  • the first-type interface 110 is used to connect a hard disk
  • the second-type interface 120 is used to connect the expansion card assembly 200. .
  • a second high-speed interface 402 is provided on the motherboard 401, and a plurality of expansion card components 200 are connected through the second high-speed interface 402, so that the server device provided in the embodiment of the present application can not only
  • An image processing unit such as a graphics card can be connected through a conventional PCIE interface, and a plurality of expansion card components 200 having image data or information processing capabilities can also be connected through a high-speed interface 403.
  • the image processing capability of the server device is effectively improved, and the problem of fewer PCIE interfaces in various existing server devices is avoided.
  • the expansion of the server device connection can be expanded. The number of card assemblies 200.
  • the server device provided in the embodiment of the present application may further include a backplane 404, and the backplane 404 is provided with a second high-speed interface 402.
  • the backplane 404 is connected to the expansion card assembly 200 through the second high-speed interface 402.
  • the backplane 404 may be in the form of an integrated circuit board, and may be connected to the mainboard through various methods such as a data bus and a cable.
  • the backplane 404 may be provided with a plurality of second high-speed interfaces 402, for example, a plurality of U.2 interfaces. As shown in FIG. 16, not only multiple expansion card assemblies 200 but also multiple hard disks can be connected through the second high-speed interface 402. Through the backplane 402, multiple expansion card assemblies 200 can be connected in a centralized manner, thereby achieving centralized management of the expansion card assemblies 200.
  • the server device provided in the embodiment of the present application is a rack server
  • the original rack server back plate 403 can be replaced without replacing the original hardware equipment on a large scale, and the implementation can be implemented.
  • the upgrade of the existing rack server expands the number of expansion card components 200 that can be connected. This reduces hardware costs and avoids large-scale replacement of hardware equipment.
  • the external structure of the expansion card assembly 200 can be the same as that of a 3.5-inch hard disk or a 2.5-inch hard disk, and can be inserted into a slot of a server equipment chassis; the expansion card assembly 200 can be installed by using a tray of the hard disk slot.
  • the status indicator of the hard disk and the tray light guide on the multiplexed backplane 404 serve as the status indicators of the expansion card assembly 200.
  • an expansion interface may be provided on the mainboard 401.
  • the mainboard 401 is connected to the backplane through the expansion interface.
  • the expansion interfaces include: SAS interface or SATA interface.
  • the expansion interface can be a SAS interface or a SATA interface.
  • a corresponding SAS interface or SATA interface is also provided on the backplane 404, so that the backplane 404 can be connected to the expansion interface on the motherboard 401 through the SAS interface or SATA interface.
  • the SAS interface or the SATA interface is a high-speed data transmission interface, so that the expansion card assembly 200 or the hard disk connected to the backplane 404 can achieve high-speed data transmission with the mainboard 401.
  • the server device provided in the embodiment of the present application may further include a network extension component 400, and the network extension component 400 includes: network exchange Modules and network routing modules.
  • the network switching module can implement communication on an intranet network between multiple network nodes.
  • the intranet network refers to a network formed between various hardware components inside the server device provided in the embodiments of the present application.
  • the motherboard 401 or the backplane 404 transmits network signals such as RGMII and GMII to the expansion card assembly 200 through the second high-speed interface 402, such as a U.2 interface, etc.
  • the backplane 404 may form an internal network with each connected expansion card assembly 200.
  • the network switching module is connected to the backplane 404 and the mainboard 401, respectively. Therefore, the network switching module can be used to enable the motherboard 401 to conveniently access each connected expansion card assembly 200. For example, a control instruction may be issued to the expansion card assembly 200 to control the expansion card assembly 200.
  • the network switching module may include a network switch chip and corresponding supporting circuits, so as to implement the transmission of network signals.
  • the network switching module is connected to the network routing module.
  • the network routing module may include a network chip or controller having a routing function, and corresponding supporting circuits.
  • the network routing module and the network routing module can be integrated on an integrated circuit board, and connected to each other through printed wiring on the integrated circuit board. Thereby, the integrated network expansion component 400 can be constructed.
  • the network switching module and the network routing module may also be independent hardware components, such as two integrated circuit boards, and may be connected to each other through a data bus, a cable, and the like.
  • the network routing module can be connected to switches, servers, network cameras, computers and other devices that can achieve network connection through network cables.
  • the network routing module may be connected to an external network through a network cable or a wireless network.
  • the external network may include a local area network or the Internet.
  • the network routing module can realize the connection between the internal network and the external network. Therefore, the motherboard 401 and the expansion card assembly 200 in the server device provided in the embodiment of the present application can access each network node in the external network and obtain required data or information from each network node.
  • the server device provided in this embodiment of the present application is a rack server in a monitoring system, and is configured to perform image processing on a video image obtained by an IPC (IP Camera).
  • IPC IP Camera
  • the expansion card assembly 200 connected to the rack server through the second high-speed interface 402 can directly access the IPC and obtain corresponding pending video data or information from the IPC.
  • the video data or information in the IPC may be transmitted through the network routing module, the network conversion module, and the backplane 404, and finally transmitted to the expansion card assembly 200.
  • the network expansion component 400 through the network expansion component 400, not only network communication between various hardware elements inside the server device provided in the embodiment of the present application, but also data interaction with external networks can be realized, which improves the present application.
  • the server device provided in the embodiment of the present application further includes a power supply component 300, and the power supply component 300 is respectively connected to the network expansion component 400, the main board 401, and the backplane 404.
  • the power supply module 300 may be a built-in power source, such as a battery, or a voltage conversion device capable of being connected to an external power source.
  • the power supply component 300 may be a host power supply, which can convert a conventional 220V voltage into an operating voltage required by each hardware device.
  • the power supply component 300 may further include a UPS (Uninterruptible Power System / Uninterruptible Power Supply). Thereby, the stable operation of the server device provided in the embodiments of the present application can be guaranteed.
  • UPS Uninterruptible Power System / Uninterruptible Power Supply
  • the power supply component 300 may be connected to hardware components such as the network expansion component 400, the main board 401, and the back plate 404 through lines such as a cable.
  • the power supply assembly 300 is connected to the backplane 404, so that the power supply pins on the second high-speed interfaces 402 on the backplane 404 can have an operating voltage.
  • each power supply pin of the U.2 interface can have a corresponding working voltage. Therefore, when the expansion card assembly 200 or the hard disk is connected to the second high-speed interface 402, the power supply pin in the second high-speed interface 402 can provide the working power to the expansion card assembly 200 or the hard disk.
  • the power supply component 300 can provide a stable working power to the server device provided in the embodiment of the present application.
  • each expansion card assembly 200 does not need to be connected to another power source, and can obtain a stable working power source through the second high-speed interface 402.
  • FIG. 17 is an expansion card component management method provided by an embodiment of the present application.
  • the method can be applied to the server device described in any of the above embodiments, and the server device is connected through a high-speed interface.
  • Expansion card assembly. The method includes:
  • Step S501 Obtain the working status of each expansion card component according to a preset period, and the working status includes a workload.
  • the processor on the motherboard of the server device provided in the embodiment of the present application can obtain the working status of each expansion card component according to a preset period, so as to manage and control each expansion card component according to the working status.
  • the expansion card component may specifically be an image processing apparatus.
  • the preset period can be set as required, for example, it can be 5 minutes, 10 minutes, and so on.
  • the working status refers to various operating parameter information that the expansion card component has during operation or working process.
  • the working status may include the current workload, working temperature, operating time, and so on.
  • the workload refers to the amount of tasks handled by the expansion card components, and can generally be characterized by parameters such as processor occupancy.
  • step S502 it is determined whether the workload of all the expansion card components is greater than the first preset alert value.
  • the first preset alert value can be set as required. For example, when the workload is represented by the processor occupancy rate, the first preset alert value can be 100%, that is, determine whether the workload of all expansion card components is all Reached 100%.
  • step S503 if the workload of all the expansion card components is greater than the first preset alert value, an early warning message is issued.
  • the workload of all expansion card components is greater than the first preset alert value, it means that all the expansion card components are already in a full load working state. At this time, if a new task is generated, it cannot be processed in a timely manner. Therefore, a warning message can be issued. Through this early warning information, the user can be informed in time that all current expansion card components are already in a fully loaded working state. Therefore, the user can decide whether to increase the number of expansion card components connected to the server device according to this situation.
  • the warning information can also indicate that the processing task failed to process and needs to be retried later or after adding an expansion card component.
  • the processor in the motherboard can obtain the working status of each expansion card component according to a preset program and compare it with a preset first preset alert value to determine whether the workload of all the expansion card components is Both are greater than the first preset alert value. Then, the warning information can be sent through the network through the network expansion component, or the warning information can be sent through, for example, an indicator light or a connected display. Enable relevant personnel to take corresponding measures in time to deal with.
  • step S504 if not, the new processing task is allocated to the expansion card component with the smallest workload.
  • the workload of the expansion card component does not reach the first preset alert value, it means that the expansion card component connected to the server device still has a certain processing capacity. Processing tasks can be processed. As a result, newly generated processing tasks and the like can be allocated to the expansion card component with the smallest workload. Makes the load of each expansion card component more balanced.
  • the server device may also set a plurality of first preset alert values of different levels for the workload of the expansion card component.
  • the first preset alert value may include multiple levels such as 100%, 70%, and 50%.
  • the server device may issue corresponding early-level warning information of different levels. For example, when the workload of all expansion card components exceeds 70%, the early-warning information issued may alert relevant personnel that the current workload of each expansion card component is high, and relevant personnel may be advised to increase the number of expansion card components.
  • the image processing task can be more reasonably distributed among multiple expansion card components, so that the load of each expansion card component is more balanced. And when the workload is high, early warning information can prompt relevant personnel to increase the number of expansion card components.
  • the obtained working state of each expansion card component may include: operating temperature.
  • the operating temperature is the actual temperature of each expansion card component during operation.
  • the method further includes:
  • the first step is to determine whether any of the operating temperatures of the expansion card components is greater than the second preset alert value.
  • the second preset alert value can be set as required, for example, it can be 80 ° C, 90 ° C, and so on.
  • the speed of the cooling fan is increased.
  • the operating temperature of one or more expansion card components is greater than the second preset warning value, it means that the current cooling of the individual expansion card components is insufficient, so that the speed of the cooling fan can be increased, and the heat dissipation of the expansion card components can be accelerated.
  • the cooling fan can be a cooling fan in the server equipment chassis, and its speed can have multiple speed gears, which can be increased or decreased according to different actual needs. Therefore, on the premise of satisfying heat dissipation, the power consumption can be reduced as much as possible.
  • a comparison table of the rotational speed and the operating temperature may be preset in the server device, and the corresponding rotational speed may be adjusted correspondingly according to the actual operating temperature.
  • the third step if the speed of the cooling fan is the highest speed and the operating temperature of the expansion card component is greater than the second preset warning value, a temperature warning message is issued.
  • the temperature early warning information can also be implemented through various methods such as a network, a display, and an indicator.
  • the temperature warning information may include an identification of the expansion card component whose temperature exceeds the second preset warning value, such as a serial number or a name.
  • the total power of multiple expansion card components will not exceed the total power of the power supply components in the server device.
  • the server device starts, power on the expansion card components one by one.
  • the power supply pins on the high-speed interface are connected one by one, so that the expansion card components are powered on and started one by one. In this process, the output power of the power supply components is gradually increased. If there are too many expansion card components, the total power exceeds the total power of the power supply components. You can find it in time and stop starting subsequent expansion card components. The stability of the server equipment is guaranteed, and the impact on the power supply components at the same time is avoided.
  • the server device when the server device obtains the working status of the expansion card component, it may occur that the working status of the expansion card component cannot be obtained normally, for example, a query instruction is issued to the expansion card component, and the The card component does not respond accordingly.
  • the working status of the expansion card component cannot be obtained, it indicates that the expansion card component may have an abnormality, such as a crash, or an endless loop in the program, and so on. Therefore, you can restart the expansion card assembly. As a result, the expansion card assembly returns to normal operation.
  • the working status of each expansion card component is acquired according to a preset period, and not only the operation status of each expansion card component can be understood in time. The expansion card components that are not working or running can be found in time and automatically restarted, thereby further ensuring the reliability and stability of server equipment operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Power Sources (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种电子设备、扩展卡组件及服务器设备,该电子设备包括硬盘槽位和扩展卡组件;其中,扩展卡组件可插拔地设置于硬盘槽位中;硬盘槽位包括第一类接口和第二类接口,第一类接口用于与硬盘进行通讯,第二类接口用于与扩展卡组件进行通讯。可见,该电子设备中利用硬盘槽位扩展了扩展卡组件,满足了扩展卡组件的扩展需求。

Description

电子设备、扩展卡组件、服务器设备及其管理方法
本申请要求于2018年07月27日提交中国专利局、申请号为201810844568.X发明名称为“一种图像处理装置、服务器设备及服务器设备管理方法”的中国专利申请的优先权,本申请要求于2018年11月22日提交中国专利局、申请号为201821932882.5发明名称为“一种电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机设备技术领域,特别是涉及电子设备、扩展卡组件、服务器设备及其管理方法。
背景技术
一些电子设备,如服务器、主机等,通过使用PCIE(PCI-Express:peripheral component interconnect express,是一种高速串行计算机扩展总线标准)插槽扩展一些扩展卡组件,比如GPU(Graphics Processing Unit,图形处理器)组件、CPU(Central Processing Unit/Processor,中央处理器)组件等等。这些电子设备中的PCIE插槽数量少,不能满足扩展卡组件的扩展需求。
发明内容
本申请提供了电子设备、扩展卡组件、服务器设备及其管理方法,以满足扩展卡组件的扩展需求。
为达上述目的,第一方面,本申请实施例提供了一种电子设备,包括:硬盘槽位和扩展卡组件;
其中,所述扩展卡组件可插拔地设置于所述硬盘槽位中;所述硬盘槽位包括第一类接口和第二类接口,所述第一类接口用于与硬盘进行通讯,所述第二类接口用于与所述扩展卡组件进行通讯。
可选的,所述扩展卡组件包括处理电路、控制电路和通讯接口;其中,所述处理电路及所述通讯接口分别与所述控制电路相连接,所述通讯接口与所述第二类接口相连接。
可选的,所述设备还包括供电组件,所述扩展卡组件还包括扩展卡供电接口,所述硬盘槽位还包括槽位供电接口;其中,所述供电组件与所述槽位供电接口相连接,所述槽位供电接口与所述扩展卡供电接口相连接,所述扩展卡供电接口为所述处理电路和所述控制电路供电。
可选的,所述设备还包括网络扩展组件,所述网络扩展组件通过所述第二类接口与所述扩展卡组件的通讯接口进行通讯。
可选的,所述扩展卡组件还包括散热器件。
可选的,所述设备还包括指示灯,所述扩展卡组件还包括导光柱,所述导光柱导出所述指示灯的灯光。
可选的,所述扩展卡组件通过所述硬盘槽位的盘托可插拔地设置于所述硬盘槽位中;所述扩展卡组件还包括固定凸包,通过所述固定凸包固定所述硬盘槽位的盘托。
可选的,所述第二类接口为PCIE接口,所述第一类接口为SAS接口或者SATA接口。
可选的,所述硬盘槽位包括SFF8639接口。
可选的,所述硬盘槽位设置于背板、或者主板、或者机箱外侧。
可选的,所述扩展卡组件包括以下任意一种或多种:GPU组件、CPU组件、处理器组件、网卡组件、无线通信组件、输入输出组件。
可选的,所述GPU组件包括GPU芯片、控制芯片、控制接口和通讯接口;其中,所述GPU芯片、所述控制接口及所述通讯接口分别与所述控制芯片相连接,所述通讯接口与所述第二类接口相连接。
可选的,所述设备还包括供电组件,所述GPU组件还包括GPU供电接口,所述硬盘槽位还包括槽位供电接口;其中,所述供电组件与所述槽位供电接口相连接,所述槽位供电接口与所述GPU供电接口相连接,所述GPU供电接口为所述GPU芯片及所述控制芯片供电。
可选的,所述设备还包括网络扩展组件,所述网络扩展组件通过所述第二类接口与所述GPU组件的通讯接口进行通讯。
可选的,所述GPU组件还包括:
散热风扇和/或与所述GPU芯片相连接的散热片。
可选的,所述设备还包括指示灯,所述GPU组件包括导光柱,所述导光柱导出所述指示灯的灯光。
可选的,所述GPU组件通过所述硬盘槽位的盘托可插拔地设置于所述硬盘槽位中;所述GPU组件包括固定凸包,通过所述固定凸包固定所述硬盘槽位的盘托。
为达到上述目的,第二方面,本申请实施例还提供了一种电子设备,包括硬盘槽位;所述硬盘槽位支持设置可插拔的扩展卡组件;所述硬盘槽位包 括第一类接口和第二类接口,所述第一类接口用于与硬盘进行通讯,所述第二类接口用于与所述扩展卡组件进行通讯。
可选的,所述设备还包括供电组件,所述硬盘槽位还包括槽位供电接口;其中,所述供电组件与所述槽位供电接口相连接,所述槽位供电接口用于为所述扩展卡组件供电。
可选的,所述设备还包括网络扩展组件,所述网络扩展组件用于通过所述第二类接口与所述扩展卡组件的通讯接口进行通讯。
可选的,所述第二类接口为PCIE接口,所述第一类接口为SAS接口或者SATA接口。
可选的,所述硬盘槽位包括SFF8639接口。
可选的,所述硬盘槽位设置于背板、或者主板、或者机箱外侧。
可选的,所述扩展卡组件包括以下任意一种或多种:GPU组件、CPU组件、处理器组件、网卡组件、无线通信组件、输入输出组件。
第三方面,本申请实施例提供了一种扩展卡组件,所述扩展卡组件包括:业务模块及第一高速接口;
所述业务模块和所述第一高速接口连接;
所述第一高速接口包括:串行连接接口SAS接口或串行高级技术附件SATA接口或高速串行计算机扩展总线PCIE接口;
所述第一高速接口用于传输网络信号,所述网络信号包括简化千兆媒体独立接口RGMII信号和千兆媒体独立接口GMII信号。
可选的,所述业务模块包括图像处理器、CPU组件、处理器组件、网卡组件、无线通信组件及输入输出组件中的至少一种。
可选的,所述业务模块包括图像处理器,所述图像处理器包括:图像处理芯片和控制芯片;
所述控制芯片,分别和所述图像处理芯片和所述第一高速接口连接;
所述控制芯片将所述网络信号转化为所述图像处理芯片能够识别的数据信息。
可选的,所述第一高速接口为U.2接口。
第四方面,本申请实施例提供了一种服务器设备,所述服务器设备包括:主板,所述主板上设置有第二高速接口,所述第二高速接口包括:SAS接口或SATA接口或PCIE接口;
所述主板通过所述第二高速接口与扩展卡组件的第一高速接口连接,所 述扩展卡组件为如上述第三方面任一项所述的扩展卡组件。
可选的,所述第二高速接口为U.2接口。
可选的,所述服务器设备还包括背板,所述背板上设置有所述第二高速接口;
所述背板通过所述第二高速接口与所述扩展卡组件连接;
所述主板上设置有扩展接口,所述主板通过所述扩展接口与所述背板连接,所述扩展接口包括:SAS接口或SATA接口。
可选的,所述服务器设备还包括网络扩展组件,所述网络扩展组件包括:网络交换模块和网络路由模块;
网络交换模块与网络路由模块连接;
所述网络交换模块分别与,所述背板和所述主板连接。
可选的,所述服务器设备还包括供电组件,所述供电组件分别与,所述网络扩展组件、所述主板和所述背板连接。
第五方面,本申请实施例提供了一种扩展卡组件管理方法,其特征在于,所述方法应用于如上述第四方面任一项所述的服务器设备,所述服务器设备通过第二高速接口连接有多个扩展卡组件,所述方法包括:
按预设周期获取各个所述扩展卡组件的工作状态,所述工作状态中包括工作负荷;
判断全部的所述扩展卡组件的工作负荷是否大于第一预设警戒值;
若全部的所述扩展卡组件的工作负荷均大于所述第一预设警戒值,则发出预警信息;
若否,则将新的处理任务分配至工作负荷最小的扩展卡组件。
可选的,所述工作状态包括:运行温度;
在所述按预设周期检测各个所述扩展卡组件的工作状态的步骤之后,所述方法还包括:
判断是否有所述扩展卡组件的运行温度大于第二预设警戒值;
若存在运行温度大于所述第二预设警戒值的所述扩展卡组件,则上调散热风扇的转速;
若所述散热风扇的转速为最高转速,且所述扩展卡组件的运行温度大于所述第二预设警戒值,则发出温度预警信息。
可选的,所述方法还包括:
当所述服务器设备启动时,对所述扩展卡组件逐个上电。
可选的,所述方法还包括:
若无法获取所述扩展卡组件的工作状态,则重新启动所述扩展卡组件。
本申请实施例提供的电子设备中,包括硬盘槽位和扩展卡组件;其中,扩展卡组件可插拔地设置于硬盘槽位中;硬盘槽位包括第一类接口和第二类接口,第一类接口用于与硬盘进行通讯,第二类接口用于与扩展卡组件进行通讯。可见,该电子设备中利用硬盘槽位扩展了扩展卡组件,满足了扩展卡组件的扩展需求。本申请实施例提供的扩展卡组件、服务器设备及服务器设备管理方法,其中,扩展卡组件包括:业务模块和第一高速接口;业务模块和第一高速接口连接。第一高速接口为能够传输网络信号的SAS接口或SATA接口或PCIE接口,从而使得本发明实施例提供的扩展卡组件能够通过该第一高速接口连接至服务器等设备的硬盘接口上,例如,服务器主板上的SAS接口、SATA接口或者U.2接口等。能够通过第一高速接口来获取网络信号形式的数据或信息,然后可以通过业务模块对该数据或信息进行相应的处理。不仅仅只依赖PCIE接口来连接扩展卡组件,通过第一高速接口,使得服务器等设备中能够连接更多的扩展卡组件,扩展了服务器等设备能够连接的扩展卡组件的数量。当然,实施本发明的任一产品或方法必不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的电子设备的第一种结构示意图;
图2a为本申请实施例的SFF8639接口结构示意图;
图2b为本申请实施例的改进后的SFF8639中一部分接口结构示意图;
图2c为本申请实施例的改进后的SFF8639中另一部分接口结构示意图;
图3为本申请实施例提供的扩展卡组件的第一种结构示意图;
图4为本申请实施例提供的电子设备的第二种结构示意图;
图5为本申请实施例提供的电子设备的第三种结构示意图;
图6为本申请实施例提供的电子设备的第四种结构示意图;
图7为本申请实施例提供的扩展卡组件的第二种结构示意图;
图8为本申请实施例提供的GPU组件的第一种结构示意图;
图9为本申请实施例提供的电子设备的第五种结构示意图;
图10为本申请实施例提供的电子设备的第六种结构示意图;
图11为本申请实施例提供的电子设备的第七种结构示意图;
图12为本申请实施例提供的GPU组件的第二种结构示意图;
图13为本申请实施例提供的电子设备的第八种结构示意图;
图14a为本申请实施例提供的扩展卡组件的第三种结构图;
图14b为本申请实施例提供的扩展卡组件的第四种结构图;
图15为本申请实施例提供的服务器设备的一种结构图;
图16为本申请实施例提供的服务器设备的另一种结构图;
图17为本申请实施例提供的服务器设备管理方法的流程图。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了解决上述技术问题,本申请实施例提供了两种电子设备,该电子设备可以为服务器、主机等等,具体不做限定。下面先对第一种电子设备进行详细说明。
图1为本申请实施例提供的电子设备的第一种结构示意图,包括:硬盘槽位100和扩展卡组件200;
其中,扩展卡组件200可插拔地设置于硬盘槽位100中;硬盘槽位100包括第一类接口110和第二类接口120,第一类接口110用于与硬盘进行通讯,第二类接口120用于与扩展卡组件200进行通讯。
一种情况下,第一类接口与第二类接口可以为完全不同的接口,也就是说,硬盘槽位中有一部分接口只能与硬盘进行通讯,有一部分接口只能与扩展卡组件进行通讯。或者,另一种情况下,第一类接口与第二类接口可以部分相同,比如,硬盘槽位中有一些接口既可以与硬盘进行通讯,又可以与扩展卡组件进行通讯。
作为一种实施方式,扩展卡组件200可以包括以下任意一种或多种:GPU 组件、CPU组件、处理器组件、网卡组件、无线通信组件、输入输出组件。
举例来说,GPU(Graphics Processing Unit,图像处理器)组件可以包括GPU芯片等,CPU组件可以包括单片机、ARM处理器、X86处理器等等,具体不做限定。该处理器组件可以包括APU(Accelerated Processing Unit,加速处理器)、或者TPU(Tensor Processing Unit,张量处理单元),具体不做限定。该网卡组件可以包括10M网卡、100M网卡、1000M网卡、10G网卡、25G网卡、40G网卡、100G网卡、或者wifi(wireless fidelity,无线保真)组件等等,具体不做限定。该无线通信组件可以包括IoT(Internet of things,物联网)无线组件,比如,IoT-NODE433组件,蓝牙组件,zigbee(紫蜂)组件,wifi组件等等,具体不做限定。输入输出组件可以包括各种IoT输入输出接口板,比如,报警IO(Input、Output,输入输出)、RS232接口板、RS485接口板、USB接口板等等,具体不做限定。
如果扩展卡组件200为GPU组件,则通过本申请实施例可以扩展电子设备的分析能力。如果扩展卡组件200为CPU组件或者处理器组件,则通过本申请实施例可以扩展电子设备的运算能力。如果扩展卡组件200为网卡组件或者无线通信组件,则通过本申请实施例可以扩展电子设备的通讯能力。可见,本方案中,利用硬盘槽位可以满足扩展卡组件的扩展需求,并扩展了电子设备的分析能力、运算能力、通讯能力等。
硬盘槽位100可以设置于背板、或者主板、或者机箱外侧,硬盘槽位的具体位置不做限定。硬盘槽位的数量及扩展卡组件的数量不做限定,可以实际情况,灵活配置。
举例来说,硬盘槽位可以包括SFF8639接口,比如,可以为SFF8639中的U.2接口,也可以是SFF8639中的U.3接口,具体不做限定。本申请实施例中,硬盘槽位包括第一类接口和第二类接口。一种情况下,第二类接口可以为PCIE接口,第一类接口可以为SAS(Serial Attached SCSI,序列式SCSI;SCSI:Small Computer System Interface,小型计算机系统接口)接口或者SATA(Serial Advanced Technology Attachment,串行高级技术附件)接口。PCIE接口可以传输以太网RGMII(Reduced Gigabit Media Independent Interface,吉比特介质独立接口)信号、或者GMII(Gigabit Medium Independent,千兆媒体独立接口)信号。
比如,可以参考图2a,图2a为SFF8639中的U.2接口,其中的SAS(SAS-1 和SAS-2)接口/SATA接口作为第一类接口与硬盘进行通讯,其中的PCIE接口(PCIE通道0-3)作为第二类接口与扩展卡组件进行通讯。可见,本方案中,可以复用原有硬盘槽位的SATA接口和SAS接口,不需要重新定义第一类接口,节省了人力。
图2a的SFF8639接口中还包括PCIE接口边带,用于对PCIE接口传输的信号进行调制。
作为一种实施方式,参考图3,扩展卡组件200可以包括处理电路210、控制电路220和通讯接口230;其中,处理电路210及通讯接口230分别与控制电路220相连接,通讯接口230与第二类接口120相连接。
处理电路210可以理解为扩展卡组件的核心电路。比如,如果扩展卡组件为GPU组件,则该处理电路为GPU芯片;如果扩展卡组件为处理器组件,则该处理电路为处理器芯片,如APU芯片、TPU芯片等,不再一一列举。控制电路220可以为对处理电路210进行软复位、硬复位等管理的带外控制电路。控制电路220还可以监测扩展卡组件200的温度,当温度较高时,控制电路220可以控制散热器件进行散热。
本实施方式中,控制电路中可以包含与通讯接口相连接的通讯电路,或者,该通讯电路也可以独立设置,具体不做限定。或者,控制电路、处理电路也可以集成于同一芯片中。该电子设备中的各部分器件均可以根据实际情况独立设置或集成设置,本申请实施例对此不进行限定。扩展卡组件200还可以包括其他组成部分,比如,控制接口、供电接口、供电电路等等,本实施例对此不进行限定。
仍以硬盘槽位包括SFF8639接口为例来说,参考图2b,图2b为图2a中的部分接口,可以将SFF8639接口中的S26、S27重新定义为扩展卡组件的带外控制接口,S26、S27这些重新定义的接口也属于第二类接口120。通过S26、S27这些重新定义的接口,可以控制扩展卡组件200的控制电路220,对扩展卡组件200中进行软复位、硬复位等操作。
具体来说,图2b中,S26、S27分别与I2C_SCL(I2C的时钟同步线)、I2C_SDA(I2C的数据线)这些低速总线相连接,通过这些低速总线传递信令至控制电路220。
仍以硬盘槽位包括SFF8639接口为例来说,参考图2b,可以将SFF8639接口中的S17、S18、S20、S21重新定义为与扩展卡组件进行通讯的接口,S17、 S18、S20、S21这些重新定义的接口也属于第二类接口120,扩展卡组件200的通讯接口230可以与S17、S18、S20、S21这些重新定义的接口进行通讯。
具体来说,图2b中,C表示电容器,将MDI(Medium Dependent Interface,介质相关接口)信号分为A、B两组差分信号,其中,MDIAP表示A组MDI信号的正极,MDIAN表示A组MDI信号的负极、MDIBP表示B组MDI信号的正极,MDIBN表示B组MDI信号的负极。
参考图2c,图2c为图2a中的部分接口,可以将SFF8639接口中的将E7~E16重新定义为扩展卡组件200的IP/MAC地址地位配置GPIO(General Purpose Input Output,通用输入/输出)引脚,也就是扩展卡组件配置使能GPIO口。图2c中,R表示电阻。通过将这E7~E16这10个GPIO上拉下拉为不同的状态,可以使得扩展卡组件中的各处理电路的IP/MAC地址独立编址,减少地址冲突。比如这10个GPIO的状态的取值范围可以为16进制的0x000~0x3ff。
如果扩展卡组件为GPU组件,假设GPU组件中包括多个GPU芯片,将该多个GPU芯片分别与这些GPIO相连接,可以使得各GPU的IP/MAC地址独立编址,减少地址冲突。
作为一种实施方式,该设备还可以包括供电组件300,参考图4,扩展卡组件200还包括扩展卡供电接口240,硬盘槽位100还包括槽位供电接口130;其中,供电组件300与槽位供电接口130相连接,槽位供电接口130与扩展卡供电接口240相连接,扩展卡供电接口240为处理电路210和控制电路220供电。
供电组件300可以设置于背板、或者主板、或者机箱外侧,供电组件300的具体位置不做限定。
比如,参考图2a,本方案中,可以复用原有硬盘槽位的供电接口,不需要重新定义槽位供电接口,节省了人力。
作为一种实施方式,参考图5,该设备还包括网络扩展组件400,网络扩展组件400通过第二类接口120与扩展卡组件200的通讯接口230进行通讯。
举例来说,扩展卡组件为GPU组件,网络扩展组件通过外网的网口与外网的摄像机相连接,这样,本实施方式中,GPU组件可以访问外网摄像机采集的视频数据,并对该视频数据进行处理。
网络扩展组件400可以设置于背板、或者主板、或者机箱外侧,网络扩展组件400的具体位置不做限定。一种情况下,参考图6,硬盘槽位100设置于背板上,外网的网口设置于主板上,网络扩展组件400与主板上的网口进行通讯。 图6中,硬盘槽位100中的各接口还可以与主板上的扩展接口进行通讯。
作为一种实施方式,扩展卡组件200还包括散热器件250。参考图7,图7为扩展卡组件的一种结构示意图,图7中,散热器件250包括散热风扇和散热片,散热片可以与扩展卡组件200中处理电路210相连接,或者说,该散热片为处理电路210的散热片。散热风扇可以为涡轮风扇,或者也可以为其他形式的风扇。
一种情况下,可以复用电子设备自带的散热系统对扩展卡组件进行通风散热,这样可以节省成本。
图7中,扩展卡组件200的长度为a、宽度为b、厚度为c,a、b、c的具体数值不做限定。一种情况下,a、b、c的具体数值可以与原3.5寸硬盘、或者2.5寸硬盘,或者其他尺寸的硬盘相同。
作为一种实施方式,参考图7,扩展卡组件200还包括导光柱260,设备中还包括指示灯,该导光柱可以导出所述指示灯的灯光。
本实施方式中,复用电子设备自带的指示灯,通过该指示灯指示扩展卡组件的运行状态,这样相比于再设置指示灯,节省了成本。
作为一种实施方式,扩展卡组件200通过硬盘槽位100的盘托可插拔地设置于硬盘槽位100中。参考图7,扩展卡组件200还包括固定凸包270,通过固定凸包270固定硬盘槽位100的盘托。
或者,扩展卡组件200可以与硬盘槽位100固定连接,比如焊接,或者铆接。或者,扩展卡组件200可以与硬盘槽位100通过导线进行软连接,具体连接方式不做限定。
参考图7,扩展卡组件200还可以包括防尘网280,如果没有防尘网280,粉尘会随进风孔吸入,附着在扩展卡组件上,影响扩展卡组件的稳定运行,设置了防尘网280可以提高扩展卡组件的运行稳定性及使用寿命。
参考图7,扩展卡组件200还可以包括EMC(Electro Magnetic Compatibility,电磁兼容性)金属弹片290,EMC金属弹片290可以降低对外辐射。
参考图7,扩展卡组件200还可以包括扣手291,可以通过扣手291,可以更方便地安装、拆卸扩展卡组件200托架的把手。
参考图7,扩展卡组件200还可以包括进风孔292、固定螺孔293等。固定螺孔293可以复用硬盘的侧面、底面固定螺孔。扩展卡组件的形状与原3.5寸硬盘、或者2.5寸硬盘,或者其他尺寸的硬盘相同,可以复用这些硬盘的侧面、 底面固定螺孔。
该电子设备中还可以包括其他器件,比如外壳、主板、背板、电源等等,本申请实施例并不对此进行限定。该扩展卡组件200中还可以包括其他器件,本申请实施例并不对此进行限定。
本申请实施例提供的电子设备中,包括硬盘槽位和扩展卡组件;其中,扩展卡组件可插拔地设置于硬盘槽位中;硬盘槽位包括第一类接口和第二类接口,第一类接口用于与硬盘进行通讯,第二类接口用于与扩展卡组件进行通讯。可见,该电子设备中利用硬盘槽位扩展了扩展卡组件,满足了扩展卡组件的扩展需求。
相关方案中,通过使用PCIE插槽扩展了扩展卡组件,这些电子设备中的PCIE插槽较集中,导致电子设备的散热性能较差,而本方案中,分散的硬盘槽位布局提高了散热性能,而且设置的散热器件进一步提高了散热性能。
下面以扩展卡组件为GPU组件为例进行详细说明:
作为一种实施方式,如图8所示,GPU组件包括GPU芯片201、控制芯片202、控制接口203和通讯接口204;其中,GPU芯片201、控制接口203及通讯接口204分别与控制芯片202相连接,通讯接口204与第二类接口120相连接。
一种情况下,第一类接口与第二类接口可以为完全不同的接口,也就是说,硬盘槽位中有一部分接口只能与硬盘进行通讯,有一部分接口只能与GPU组件进行通讯。或者,另一种情况下,第一类接口与第二类接口可以部分相同,比如,硬盘槽位中有一些接口既可以与硬盘进行通讯,又可以与GPU组件进行通讯。
GPU组件中可以包括多个GPU芯片201。控制芯片202可以为对GPU芯片201进行软复位、硬复位等管理的带外控制电路。控制芯片202还可以监测GPU芯片的温度,当温度较高时,控制芯片202可以控制散热器件进行散热。
本实施方式中,控制芯片中可以包含与通讯接口相连接的通讯芯片,或者,该通讯芯片也可以独立设置,具体不做限定。或者,控制芯片、GPU芯片也可以集成于同一芯片中。该电子设备中的各部分器件均可以根据实际情况独立设置或集成设置,本申请实施例对此不进行限定。GPU组件还可以包括其他组成部分,比如,供电接口、供电电路等等,本实施例对此不进行限定。
仍以硬盘槽位包括SFF8639接口为例来说,GPU组件的对外物理接口与该 SFF8639接口匹配。参考图2b,可以将SFF8639接口中的S26、S27重新定义为GPU组件中的带外控制接口,S26、S27这些重新定义的接口也属于第二类接口120。通过S26、S27这些重新定义的接口,可以控制该控制芯片202,对GPU芯片201进行软复位、硬复位等操作。
具体来说,图2b中,S26、S27分别与I2C_SCL、I2C_SDA这些低速总线相连接,通过这些低速总线传递信令至控制电路220。
仍以硬盘槽位包括SFF8639接口为例来说,参考图2b,可以将SFF8639接口中的S17、S18、S20、S21重新定义为与GPU组件进行通讯的接口,S17、S18、S20、S21这些重新定义的接口也属于第二类接口120,GPU组件的通讯接口204可以与S17、S18、S20、S21这些重新定义的接口进行通讯。
具体来说,图2b中,C表示电容器,将MDI(Medium Dependent Interface,介质相关接口)信号分为A、B两组差分信号,其中,MDIAP表示A组MDI信号的正极,MDIAN表示A组MDI信号的负极、MDIBP表示B组MDI信号的正极,MDIBN表示B组MDI信号的负极。
参考图2c,可以将SFF8639接口中的将E7~E16重新定义为GPU组件的IP/MAC地址地位配置GPIO引脚。图2c中,R表示电阻。通过将这E7~E16这10个GPIO上拉下拉为不同的状态,可以使得GPU组件中的各GPU芯片201的IP/MAC地址独立编址,减少地址冲突。比如这10个GPIO的状态的取值范围可以为16进制的0x000~0x3ff。
作为一种实施方式,参考图9,该设备还包括供电组件300,GPU组件还包括GPU供电接口205,硬盘槽位100还包括槽位供电接口130;其中,供电组件300与槽位供电接口130相连接,槽位供电接口130与GPU供电接口205相连接,GPU供电接口205为GPU芯片201及控制芯片202供电。
供电组件300可以设置于背板、或者主板、或者机箱外侧,供电组件300的具体位置不做限定。
比如,参考图2a,本方案中,可以复用原有硬盘槽位的供电接口,如上所述,GPU组件对外物理接口与SFF8639接口匹配,因此GPU组件可以使用其中的供电引脚,不需要重新定义槽位供电接口,节省了人力。
作为一种实施方式,参考图10,设备还包括网络扩展组件400,网络扩展组件400通过第二类接口120与GPU组件的通讯接口204进行通讯。
举例来说,网络扩展组件通过外网的网口与外网的摄像机相连接,这样, 本实施方式中,GPU组件可以访问外网摄像机采集的视频数据,并对该视频数据进行处理。
网络扩展组件400可以设置于背板、或者主板、或者机箱外侧,网络扩展组件400的具体位置不做限定。一种情况下,参考图11,硬盘槽位100设置于背板上,外网的网口设置于主板上,网络扩展组件400与主板上的网口进行通讯。图11中,硬盘槽位100中的各接口还可以与主板上的扩展接口进行通讯。
仍参考图11,网络扩展组件400可以包括网络交换模块、网络路由模块、接口转换模块及其它外围电路组成。网络交换模块可以实现多个IP节点间内网通讯,这样使得主板可以访问GPU组件中的数据。网络路由模块用于内网和外网的转换,这样使得GPU组件可以访问外网摄像机中的数据。内网可以理解为电子设备内部各个元器件之间构成的网络。
作为一种实施方式,GPU组件还包括散热器件206。参考图12,图12为GPU组件的一种结构示意图,图12中,散热器件206包括散热风扇和散热片,散热片可以与GPU组件中的GPU芯片201相连接,或者说,该散热片为GPU芯片201的散热片。散热风扇可以为涡轮风扇,或者也可以为其他形式的风扇。
一种情况下,可以复用电子设备自带的散热系统对GPU组件进行通风散热,这样可以节省成本。
图12中,GPU组件的长度为x、宽度为y、厚度为z,x、y、z的具体数值不做限定。一种情况下,x、y、z的具体数值可以与原3.5寸硬盘、或者2.5寸硬盘,或者其他尺寸的硬盘相同。
作为一种实施方式,参考图12,GPU组件200还包括导光柱207,设备中还包括指示灯,该导光柱207可以导出所述指示灯的灯光。
本实施方式中,复用电子设备自带的指示灯,通过该指示灯指示GPU组件的运行状态,这样相比于再设置指示灯,节省了成本。
作为一种实施方式,GPU组件通过硬盘槽位100的盘托可插拔地设置于硬盘槽位100中。参考图12,GPU组件还包括固定凸包208,通过固定凸包208固定硬盘槽位100的盘托。
或者,GPU组件可以与硬盘槽位100固定连接,比如焊接,或者铆接。或者,GPU组件可以与硬盘槽位100通过导线进行软连接,具体连接方式不做限定。
参考图12,GPU组件还可以包括防尘网209,如果没有防尘网209,粉尘 会随进风孔吸入,附着在扩展卡组件上,影响扩展卡组件的稳定运行,设置了防尘网209可以提高扩展卡组件的运行稳定性及使用寿命。
参考图12,GPU组件还可以包括EMC(Electro Magnetic Compatibility,电磁兼容性)金属弹片211,EMC金属弹片211可以降低对外辐射。
参考图12,GPU组件还可以包括扣手212,可以通过扣手212,可以更方便地安装、拆卸GPU组件托架的把手。
参考图12,GPU组件还可以包括进风孔213、固定螺孔214等。固定螺孔214可以复用硬盘的侧面、底面固定螺孔。GPU组件的形状与原3.5寸硬盘、或者2.5寸硬盘,或者其他尺寸的硬盘相同,可以复用这些硬盘的侧面、底面固定螺孔。
该GPU组件中还可以包括其他器件,本申请实施例并不对此进行限定。
本申请实施例提供的电子设备中,包括硬盘槽位和GPU组件;其中,GPU组件可插拔地设置于硬盘槽位中;硬盘槽位包括第一类接口和第二类接口,第一类接口用于与硬盘进行通讯,第二类接口用于与GPU组件进行通讯。可见,该电子设备中利用硬盘槽位扩展GPU组件,满足了GPU组件的扩展需求。
相关方案中,通过使用PCIE插槽扩展了扩展卡组件,这些电子设备中的PCIE插槽较集中,导致电子设备的散热性能较差,而本方案中,分散的硬盘槽位布局提高了散热性能,而且设置的散热器件进一步提高了散热性能。
本申请实施例还提供了第二种电子设备,参考图13,包括硬盘槽位;所述硬盘槽位支持设置可插拔的扩展卡组件;所述硬盘槽位包括第一类接口和第二类接口,所述第一类接口用于与硬盘进行通讯,所述第二类接口用于与所述扩展卡组件进行通讯。
图13中的虚线框表示电子设备中可以存在扩展卡组件,也可以不存在扩展卡组件。
一种情况下,第一类接口与第二类接口可以为完全不同的接口,也就是说,硬盘槽位中有一部分接口只能与硬盘进行通讯,有一部分接口只能与扩展卡组件进行通讯。或者,另一种情况下,第一类接口与第二类接口可以部分相同,比如,硬盘槽位中有一些接口既可以与硬盘进行通讯,又可以与扩展卡组件进行通讯。
作为一种实施方式,该设备还包括供电组件300,硬盘槽位100还包括槽位供电接口130;其中,供电组件300与槽位供电接口130相连接,槽位供电接 口130用于为扩展卡组件200供电。
供电组件300可以设置于背板、或者主板、或者机箱外侧,供电组件300的具体位置不做限定。比如,参考图2a,本方案中,可以复用原有硬盘槽位的供电接口,不需要重新定义槽位供电接口,节省了人力。
作为一种实施方式,该设备还包括网络扩展组件400,网络扩展组件400用于通过第二类接口120与扩展卡组件200的通讯接口230进行通讯。
举例来说,扩展卡组件为GPU组件,网络扩展组件通过外网的网口与外网的摄像机相连接,这样,本实施方式中,GPU组件可以访问外网摄像机采集的视频数据,并对该视频数据进行处理。
网络扩展组件400可以设置于背板、或者主板、或者机箱外侧,网络扩展组件400的具体位置不做限定。一种情况下,网络扩展组件400设置于背板上,外网的网口设置于主板上,网络扩展组件400与主板上的网口进行通讯。硬盘槽位100中的第二类接口120还可以与主板上的扩展接口进行通讯,也就是说,扩展卡组件200还可以通过第二类接口120获取主板上的数据,主板也可以通过第二类接口120获取扩展卡组件200中的数据。
作为一种实施方式,该第二类接口为PCIE接口,所述第一类接口为SAS接口或者SATA接口。
作为一种实施方式,该硬盘槽位包括SFF8639接口。
作为一种实施方式,该硬盘槽位设置于背板、或者主板、或者机箱外侧。
作为一种实施方式,该扩展卡组件包括以下任意一种或多种:GPU组件、CPU组件、处理器组件、网卡组件、无线通信组件、输入输出组件。
该电子设备中还可以包括其他器件,比如外壳、主板、背板、电源等等,本申请实施例并不对此进行限定。
第二种电子设备与第一种电子设备的区别在于,第二种电子设备并不一定包括扩展卡组件。第二种电子设备与第一种电子设备的其他部分类似,不再赘述。
参见图14a,图14a为本申请实施例提供的扩展卡组件的结构图,包括:
业务模块101和第一高速接口102。业务模块101和第一高速接口102连接。
业务模块101用于执行指定的任务,例如,业务模块101可以为图像处理器、CPU组件、处理器组件、网卡组件、无线通信组件或输入输出组件等,也可以为至少二种上述组件的组合等。其中,图像处理器可以包括GPU (Graphics Processing Unit,图像处理器)芯片等,CPU组件可以包括单片机、ARM(Advanced RISC Machines)处理器、X86处理器等,具体不做限定;处理器组件可以包括APU(Accelerated Processing Unit,加速处理器)、或者TPU(Tensor Processing Unit,张量处理单元)等,具体不做限定;网卡组件可以包括10M(Megabytes,兆字节)网卡、100M网卡、1000M网卡、10G(GigaByte,吉字节)网卡、25G网卡、40G网卡、100G网卡、或者wifi(wireless fidelity,无线保真)组件等,具体不做限定;无线通信组件可以包括IoT(Internet of things,物联网)无线组件,比如,IoT-NODE433组件,蓝牙组件,zigbee(紫蜂)组件,wifi组件等,具体不做限定。输入输出组件可以包括相关的IoT输入输出接口板,比如,报警IO(Input、Output,输入输出)、RS232接口板、RS485接口板、USB(Universal Serial Bus,通用串行总线)接口板等,具体不做限定。
业务模块101可以通过电缆、数据总线以及集成电路板上的印刷线路与第一高速接口102相连接。从而能够通过第一高速接口102接收或发送相应的数据,实现与外部的设备,如服务器、机架式服务器等的连接。
第一高速接口102可以用于传输网络信号,其中网络信号包括RGMII(Reduced Gigabit Media Independent Interface,简化千兆媒体独立接口)、GMII(Gigabit Medium Independent Interface,千兆媒体独立接口)等形式的网络信号。
业务模块101可以通过第一高速接口102获取网络信号,并转化为能够进行数据处理的信息或数据。或者,也可以将经过处理的信息或数据,转化为网络信号,并通过第一高速接口102向外部进行传输。
具体的,第一高速接口102可以包括:SAS(Serial Attached Small Computer System Interface,串行连接接口)接口,或SATA(Serial Advanced Technology Attachment,串行高级技术附件)接口,或PCIE接口。例如,第一高速接口102可以为第一代SAS/SATA接口、第二代SAS/SATA接口以及第三代SAS/SATA接口等等。其中,SAS/SATA接口为硬盘接口,可以连接SAS/SATA硬盘,属于硬盘的专用接口。在本申请实施例中,通过第一高速接口102,可以通过服务器等设备上的硬盘接口,如SAS/SATA接口等,连接本申请实施例提供的扩展卡组件。从而扩展了服务器等设备上能够连接的扩展卡组件的数量。
在本申请实施例中,可选的,第一高速接口102可以为U.2接口,U.2接口 也称为SFF8639接口,该接口为升级版的新型SAS/SATA接口,同时还可以满足PCIE接口的功能,并且支持RGMII、GMII等网络信号的传输。通过U.2接口可以更加方便快捷的将本申请实施例提供的业务模块101与外部设备相连接,实现网络信号的高速传输。
在一种可能的实施方式中,参见图14b,上述业务模块101可以为图像处理器。
图像处理器可以是具有图像处理能力的组件或控制器。能够实现对图像信息或数据的处理,例如,可以为含有GPU的组件,其中可以包括GPU芯片和相应的控制电路及辅助电路等。图像处理器可以集成在一块集成电路板上,也可以由多个集成电路板连接而成。
本申请实施例在实际应用时,图像处理器可以为多种形式,在本申请实施例的一种实现方式中,图像处理器可以是一个集成式的芯片或处理器以及相应的支持电路,该芯片或处理器能够对图像信息或数据进行处理,并且可以实现对图像信息或数据的格式转换,例如能够实现图像信息或数据与RGMII、GMII等网络信号之间的转换。从而该集成式的芯片或处理器,能够直接与第一高速接口102连接,并通过第一高速接口102与外部设备连接。
在本申请实施例的另一种实现方式中,如图14b所示,图像处理器可以包括:图像处理芯片215和控制芯片202。
图像处理芯片215可以为GPU芯片等具有图像信息或数据处理能力的芯片。控制芯片202为能够实现数据类型的转换,以及向图像处理芯片215发出控制指令的芯片。
图像处理芯片215和控制芯片202可以设置在电路板上,并且通过集成电路板上的印刷线路相连接。在集成电路板上还可以集成有相应的辅助电路和支持电路,以及相应的电子元件。
控制芯片202,可以通过数据总线或电缆与第一高速接口102相连接,或者为了提高集成度,也可以将第一高速接口102设置在集成电路板上,例如,该第一高速接口102为U.2接口的引脚或金手指等插接结构,该第一高速接口102可以直接设置在集成电路板上,并且通过集成电路板上的线路与控制芯片202相连接。
控制芯片202可以将网络信号转化为图像处理芯片215能够识别的数据信息。其中数据信息可以包括图像处理芯片215需要进行处理的图像信息或数 据,以及能够对图像处理芯片215进行控制的控制指令,例如,控制指令可以为调制命令、复位命令等等。通过控制芯片202能够完成数据类型的转换,并且能够对图像处理芯片215的进行控制,使得图像处理芯片215能够按预设的处理程序,对图像信息或数据的进行相应的处理。
在本申请实施例中,第一高速接口为能够传输网络信号的SAS接口或SATA接口或PCIE接口,从而使得本申请实施例提供的扩展卡组件能够通过该第一高速接口连接至服务器等设备的硬盘接口上,例如,服务器主板上的SAS接口、SATA接口或者U.2接口等。能够通过第一高速接口来获取网络信号形式的数据或信息,然后可以通过业务模块对该数据或信息进行相应的处理。不仅仅只依赖PCIE接口来连接扩展卡组件,通过第一高速接口,使得服务器等设备中能够连接更多的扩展卡组件,扩展了服务器等设备能够连接的扩展卡组件的数量。
在实际应用中,为了使得服务器等设备能够连接尽可能多的扩展卡组件。所以,在本申请实施例中,还提供了一种服务器设备。该服务器设备可以是计算机主机形式的服务器或者机架式的服务器等形式。
参见图15,图15为本申请实施例提供的服务器设备的一种结构图,包括:
主板401,主板401上设置有第二高速接口402,第二高速接口402包括:SAS接口或SATA接口或PCIE接口。
主板401通过第二高速接口402与扩展卡组件200的第一高速接口102连接,扩展卡组件200为上述实施例中任一所述的扩展卡组件。
主板401可以为集成电路板的形式,在主板401上可以设置有处理器,如CPU(Central Processing Unit,中央处理器)、FPGA(Field-Programmable Gate Array,即现场可编程门阵列)、MCU(微控制单元,Microcontroller Unit)等。还可以设置有内存、南北桥芯片、对外接口,如网口、USB接口、音视频接口以及相应的支持电路和辅助元件等等。
主板401上可以设置有多个第二高速接口402,第二高速接口402为与扩展卡组件200上所具有的第一高速接口102为相同类型的接口,同样可以为SAS接口,或SATA接口,或PCIE接口。并且,主板401上的第二高速接口402与扩展卡组件200上所具有的第一高速接口102相匹配。例如,第二高速接口402为接口的插槽,则扩展卡组件200上所具有的第一高速接口102则为相应的插头或引脚或金手指等结构。主板401的第二高速接口402能够与扩展卡组件200上 所具有的第一高速接口102相连接,例如,扩展卡组件200可以直接插接在主板401的第二高速接口402上。
为了使得主板401能够更好的与扩展卡组件200相连接,并且为了使得第二高速接口402能够实现硬盘的复用,即该第二高速接口402不仅可以连接扩展卡组件200,还可以在将该扩展卡组件200拆下后,通过该第二高速接口402连接硬盘。可选的,高速接口可以为U.2接口。
U.2接口中集成有PCIE通道和SAS/SATA接口,所以可以满足扩展卡组件200与主板401之间的数据传输,并且,可以同时满足硬盘与主板401之间的数据传输。在主板401上可以设置有多个U.2接口。所以,可以同时连接有多个扩展卡组件200和多个硬盘。
在一种可能的实施方式中,第二高速接口402包括上述第一类接口110及第二类接口120,第一类接口110用于连接硬盘,第二类接口120用于连接扩展卡组件200。
在本申请实施例提供的服务器设备中,在主板401上设置有第二高速接口402,并且通过第二高速接口402连接多个扩展卡组件200,使得本申请实施例提供的服务器设备能够不仅仅能够通过常规的PCIE接口连接显卡等图像处理单元,还可以通过高速接口403连接多个具有图像数据或信息处理能力的扩展卡组件200。从而有效提高了服务器设备的图像处理能力,并且避免了现有的各类服务器设备中PCIE接口较少的问题,通过复用能够连接硬盘的第二高速接口402,扩展了服务器设备能够连接的扩展卡组件200的数量。
在实际应用中,由于主板401的结构限制,在很多情况,例如,当本申请实施例提供的服务器设备为机架式服务器时,主板401上无法设置大量的第二高速接口402。所以,为了进一步扩展第二高速接口402的数量。参见图16,在本申请实施例提供的服务器设备中还可以包括:背板404,背板404上设置有第二高速接口402。
背板404通过第二高速接口402与扩展卡组件200连接。
背板404可以为集成电路板的形式,可以通过数据总线、电缆等多种方式与主板连接。
背板404上可以设置有多个第二高速接口402,例如,设置多个U.2接口。如图16所示,通过第二高速接口402不仅可以连接多个扩展卡组件200,还可以连接多个硬盘。通过背板402可以集中的连接多个扩展卡组件200,从而实 现了扩展卡组件200的集中管理。当本申请实施例提供的服务器设备为机架式服务器时,可以在不对原有的硬件设备进行大规模替换的情况下,可以仅仅更换原有机架式服务器式的背板403,就可以实现原有机架式服务器的升级,扩展能够连接的扩展卡组件200的数量。从而降低了硬件成本,避免了对硬件设备大规模的替换。
扩展卡组件200的外形结构可以与3.5寸硬盘,或2.5寸硬盘相同,可以插入到服务器设备机箱的槽位中;可以利用硬盘槽位的盘托安装扩展卡组件200。复用背板404上的硬盘状态指示灯及盘托导光柱作为扩展卡组件200的状态指示灯。
为了能够实现背板404与主板402之间的更加快捷方便的连接,在主板401上可以设置有扩展接口,主板401通过扩展接口与背板连接,扩展接口包括:SAS接口或SATA接口。
扩展接口可以是SAS接口或SATA接口,相应的,在背板404上也设置有相应的SAS接口或SATA接口,从而可以使得背板404能够通过SAS接口或SATA接口与主板401上的扩展接口连接。SAS接口或SATA接口为高速的数据传输接口,从而能够使得背板404上所连接的扩展卡组件200或硬盘能与主板401之间实现高速的数据传输。
继续参见图16,为了使得本申请实施例提供的服务器设备能够与外部实现数据的交互,在本申请实施例提供的服务器设备中,还可以包括网络扩展组件400,网络扩展组件400包括:网络交换模块和网络路由模块。
网络交换模块可以实现多个网络节点之间的内网网络的通信,内网网络是指本申请实施例提供的服务器设备内部各个硬件原件之间构成的网络。由于在本申请实施例提供的服务器设备中,主板401或背板404通过第二高速接口402,如U.2接口等与扩展卡组件200之间传输RGMII、GMII等网络信号,从而主板401或背板404可以与各个所连接的扩展卡组件200构成内部网络。
网络交换模块分别与,背板404和主板401连接。从而能够通过网络交换模块,使得主板401能够方便的访问各个所连接的扩展卡组件200。例如,可以向扩展卡组件200发出控制指令,以实现对扩展卡组件200的控制。具体的,网络交换模块可以包括网络switch芯片以及相应的支持电路,从而实现网络信号的传递。
网络交换模块与网络路由模块连接。网络路由模块可以包括具有路由功 能的网络芯片或者控制器、以及相应的支持电路。网络路由模块可以与网络路由模块集成在一块集成电路板上,并且相互之间通过集成电路板上的印刷线路连接。从而可以构成整体式网络扩展组件400。当然,网络交换模块和网络路由模块也可以为相互独立的硬件原件,如两个集成电路板,并且相互之间可以通过数据总线、电缆等进行连接。网络路由模块可以通过网线连接至交换器、服务器、网络摄像头、计算机等各种能够实现网络连接的设备。
网络路由模块可以通过网线或者无线网络连接至外部网络,外部网络可以包括局域网或互联网。通过网络路由模块能够实现内部网络与外部网络之间的连接。从而使得本申请实施例提供的服务器设备中的主板401,以及扩展卡组件200能够访问外部网络中的各个网络节点,并从各个网络节点获取所需的数据或信息。
例如,在一个实际的应用场景下,本申请实施例提供的服务器设备为监控系统中的机架式服务器,用于对IPC(IP Camera,网络摄像头)所获取的视频图像进行图像处理。则通过网络路由模块,可以使得该机架式服务器中通过第二高速接口402连接的扩展卡组件200能够直接访问IPC,并从IPC获取相应的待处理的视频数据或信息。具体的,IPC中的视频数据或信息,可以通过网络路由模块,网络转换模块,背板404的传输,最终传输至扩展卡组件200。在本申请实施例中,通过网络扩展组件400,不仅能够实现本申请实施例提供的服务器设备内部的各个硬件元件之间网络通信,还可以实现与外部网络之间的数据交互,提高了本申请实施例提供的服务器设备的应用范围。
结合上述的各个实施例,可选的,在本申请实施例提供的服务器设备中,还包括供电组件300,供电组件300分别与,网络扩展组件400、主板401和背板404连接。
供电组件300可以是内置电源,如蓄电池等设备,也可以是能够连接外部电源的电压转换装置等。例如,供电组件300可以为主机电源,该主机电源能够将220V常规电压转化为各个硬件设备所需的工作电压。并且,供电组件300还可以包括UPS(Uninterruptible Power System/Uninterruptible Power Supply,不间断电源)等。从而能够保证本申请实施例提供的服务器设备的稳定工作。
供电组件300可以通过电缆等线路与网络扩展组件400、主板401和背板404等硬件元件连接。从而能够对上述硬件元件提供工作电源。例如,供电组件300与背板404连接,从而使得背板404上的各个第二高速接口402上的供电 引脚能够具有工作电压。例如,U.2接口的各个供电引脚上都能够具有相应的工作电压。从而当扩展卡组件200或者硬盘连接在该第二高速接口402上时,就能够通过第二高速接口402中的供电引脚,向扩展卡组件200或者硬盘提供工作电源。在本申请实施中,通过供电组件300能够向本申请实施例提供的服务器设备提供稳定的工作电源。并且使得各个扩展卡组件200不需要再连接另外的电源,通过第二高速接口402就能够获取稳定的工作电源。
参见图17,图17为本申请实施例提供的一种扩展卡组件管理方法,所述方法能够应用于上述实施例中任一所述的服务器设备中,并且该服务器设备通过高速接口连接有多个扩展卡组件。所述方法包括:
步骤S501,按预设周期获取各个扩展卡组件的工作状态,工作状态中包括工作负荷。
本申请实施例提供的服务器设备主板上的处理器能够按预设周期获取各个扩展卡组件的工作状态,从而根据工作状态对各个扩展卡组件进行管理和控制。在一种可能的实施方式中,扩展卡组件具体可以为图像处理装置。
预设周期可以根据需要进行设置,例如,可以为5分钟、10分钟等等。
工作状态是指扩展卡组件在运行或工作过程中所具有的各种运行的参数信息。例如,工作状态可以包括当前的工作负荷、工作温度、运行时间等等。其中工作负荷是指扩展卡组件所处理的任务量的大小,一般可以通过处理器占用率等参数来表征。
步骤S502,判断全部的扩展卡组件的工作负荷是否大于第一预设警戒值。
当获取了各个扩展卡组件的工作状态之后,可以判断各个扩展卡组件的工作负荷是否均大于第一预设警戒值。
并且,为了能够更合理的分配新产生的处理任务,可以在出现新的处理任务时,判断各个扩展卡组件的工作负荷是否均大于第一预设警戒值。从而平衡各个扩展卡组件的负载。
第一预设警戒值可以根据需要进行设置,例如,当通过处理器占用率来表示工作负荷时,第一预设警戒值可以为100%,即判断是否全部的扩展卡组件的工作负荷是否都达到了100%。
步骤S503,若全部的扩展卡组件的工作负荷均大于第一预设警戒值,则发出预警信息。
如果全部的扩展卡组件的工作负荷均大于第一预设警戒值,则表示全部 的扩展卡组件都已经处于满负荷的工作状态。此时,如果有新的任务产生,则无法得到及时的处理。所以,可以发出预警信息。通过该预警信息可以使得用户及时得知当前全部的扩展卡组件都已经处于满负荷的工作状态。从而用户可以根据这一情况决定是否增加服务器设备中所连接的扩展卡组件的数量。
并且当存在新增的处理任务时,由于当前全部的扩展卡组件都已经处于满负荷的工作状态,所以,新产生的处理任务无法被分配。该预警信息同时可以表示该处理任务处理失败,需要稍后或者增加扩展卡组件后进行重试。
具体的,主板中的处理器可以按预设的程序,获取各个扩展卡组件的工作状态,并和预先设置的第一预设警戒值进行比较,从而判断出是否全部的扩展卡组件的工作负荷均大于第一预设警戒值。然后,可以通过网络扩展组件通过网络发出预警信息,或者也可以通过例如,指示灯或者通过所连接的显示器等,发出预警信息。使得有关人员能够及时采取相应的措施进行处理。
步骤S504,若否,则将新的处理任务分配至工作负荷最小的扩展卡组件。
如果有扩展卡组件的工作负荷没有达到第一预设警戒值,则表示服务器设备所连接的扩展卡组件还有一定的处理能力。可以对处理任务进行处理。从而可以将新产生的处理任务等分配至工作负荷最小的扩展卡组件。使得各个扩展卡组件的负载更加均衡。
进一步的,服务器设备还可以针对扩展卡组件的工作负荷设置有多个不同级别的第一预设警戒值,例如,第一预设警戒值可以包括100%、70%、50%等多个级别。当全部的扩展卡组件的工作负荷均超过上述多个级别的第一预设警戒值中的任意一个值时,则服务器设备可以发出相应的不同级别的预警信息。例如,当全部的扩展卡组件的工作负荷均超过70%,则所发出的预警信息可以为提示有关人员,当前各扩展卡组件的工作负荷较高,可以建议有关人员增加扩展卡组件的数量。
在本申请实施例中,通过对各个扩展卡组件的工作状态的监测,能够更合理的对图像处理任务在多个扩展卡组件中进行分配,使得各个扩展卡组件的负载更加平衡。并且在工作负荷较高时,通过预警信息,能够及时的提醒有关人员增加扩展卡组件的数量。
结合上述的实施例,为了进一步提高各个扩展卡组件工作的可靠性,在本申请实施例中,所获取的各个扩展卡组件的工作状态中可以包括:运行温 度。运行温度为各个扩展卡组件在运行过程中的实际温度。
相应的,在步骤S501,按预设周期检测各个扩展卡组件的工作状态之后,该方法还包括:
第一步,判断是否有扩展卡组件的运行温度大于第二预设警戒值。
当获取了各个扩展卡组件的运行温度之后,就可以判断是否存在一个或多个扩展卡组件的运行温度大于第二预设警戒值。其中,第二预设警戒值可以根据需要进行设置,例如,可以为80℃、90℃等等。
第二步,若存在运行温度大于第二预设警戒值的扩展卡组件,则上调散热风扇的转速。
如果有一个或多个扩展卡组件的运行温度大于第二预设警戒值,则表示当前个别扩展卡组件的散热不够充分,从而可以上调散热风扇的转速,进而加快扩展卡组件的散热。散热风扇可以是服务器设备机箱内的散热风扇,其转速可以有多个转速档位,可以根据不同的实际需要提高或降低转速的档位。从而在满足散热的前提下,尽可能的减少电能消耗。具体的,可以在服务器设备中预设有转速和运行温度的对照表,可以根据实际的运行温度,对应的调整相应的转速。
第三步,若散热风扇的转速为最高转速,且扩展卡组件的运行温度大于第二预设警戒值,则发出温度预警信息。
如果散热风扇的转速已经调至了最高档,即各个散热风扇均为最高转速。同时,依然有扩展卡组件的运行温度大于第二预设警戒值。则表示当前的服务器设备的散热能力已经不能满足扩展卡组件工作的需要。所以,可以向有关人员发出温度预警信息,以提示有关人员当前扩展卡组件的温度过高。具体的,温度预警信息也可以通过网络、显示器、指示灯等多种方式来实现。并且,在温度预警信息中可以包括温度超过第二预设警戒值的扩展卡组件的标识,如序号或名称等。
结合上述的各个实施例,可选的,在本申请实施例中,为了能够保证各个扩展卡组件的供电,使得多个扩展卡组件的总功率不会超过服务器设备中的供电组件的总功率。在实际应用时,当服务器设备启动时,对扩展卡组件逐个进行上电。
在服务器设备启动时,并不是直接接通每一个第二高速接口上连接的扩展卡组件,而是逐个接通高速接口上的供电引脚,使得扩展卡组件逐个的上 电并启动。在该过程中,供电组件的输出功率逐步的提高,如果扩展卡组件数量过多,其总功率超过了供电组件的总功率。则可以及时的发现,并且停止启动后续的扩展卡组件。保证了服务器设备的稳定性,避免了同时启动对供电组件的冲击。
结合上述的实施例,在实际应用时,服务器设备在获取扩展卡组件的工作状态时,可能会出现无法正常获取扩展卡组件的工作状态的情况,例如,向扩展卡组件发出查询指令,而扩展卡组件不进行相应的回复。
若无法获取扩展卡组件的工作状态,则表示该扩展卡组件可以出现了异常,如死机、陷入了程序死循环等等。所以,可以重新启动该扩展卡组件。从而使得该扩展卡组件回复正常工作。在本申请实施例中,按预设周期获取各个扩展卡组件的工作状态,不仅可以及时的了解各个扩展卡组件的运行情况。还可以及时的发现不能正常工作或运行的扩展卡组件,并自动对其进行重启,从而进一步保证了服务器设备运行的可靠性和稳定性。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (37)

  1. 一种电子设备,其特征在于,包括:硬盘槽位和扩展卡组件;
    其中,所述扩展卡组件可插拔地设置于所述硬盘槽位中;所述硬盘槽位包括第一类接口和第二类接口,所述第一类接口用于与硬盘进行通讯,所述第二类接口用于与所述扩展卡组件进行通讯。
  2. 根据权利要求1所述的电子设备,其特征在于,所述扩展卡组件包括处理电路、控制电路和通讯接口;其中,所述处理电路及所述通讯接口分别与所述控制电路相连接,所述通讯接口与所述第二类接口相连接。
  3. 根据权利要求2所述的电子设备,其特征在于,所述设备还包括供电组件,所述扩展卡组件还包括扩展卡供电接口,所述硬盘槽位还包括槽位供电接口;其中,所述供电组件与所述槽位供电接口相连接,所述槽位供电接口与所述扩展卡供电接口相连接,所述扩展卡供电接口为所述处理电路和所述控制电路供电。
  4. 根据权利要求2所述的电子设备,其特征在于,所述设备还包括网络扩展组件,所述网络扩展组件通过所述第二类接口与所述扩展卡组件的通讯接口进行通讯。
  5. 根据权利要求1所述的电子设备,其特征在于,所述扩展卡组件还包括散热器件。
  6. 根据权利要求1所述的电子设备,其特征在于,所述设备还包括指示灯,所述扩展卡组件还包括导光柱,所述导光柱导出所述指示灯的灯光。
  7. 根据权利要求1所述的电子设备,其特征在于,所述扩展卡组件通过所述硬盘槽位的盘托可插拔地设置于所述硬盘槽位中;所述扩展卡组件还包括固定凸包,通过所述固定凸包固定所述硬盘槽位的盘托。
  8. 根据权利要求1所述的电子设备,其特征在于,所述第二类接口为PCIE接口,所述第一类接口为SAS接口或者SATA接口。
  9. 根据权利要求1所述的电子设备,其特征在于,所述硬盘槽位包括SFF8639接口。
  10. 根据权利要求1所述的电子设备,其特征在于,所述硬盘槽位设置于背板、或者主板、或者机箱外侧。
  11. 根据权利要求1所述的电子设备,其特征在于,所述扩展卡组件包括以下任意一种或多种:GPU组件、CPU组件、处理器组件、网卡组件、无线通信组件、输入输出组件。
  12. 根据权利要求11所述的电子设备,其特征在于,所述GPU组件包括GPU芯片、控制芯片、控制接口和通讯接口;其中,所述GPU芯片、所述控制接口及所述通讯接口分别与所述控制芯片相连接,所述通讯接口与所述第二类接口相连接。
  13. 根据权利要求12所述的电子设备,其特征在于,所述设备还包括供电组件,所述GPU组件还包括GPU供电接口,所述硬盘槽位还包括槽位供电接口;其中,所述供电组件与所述槽位供电接口相连接,所述槽位供电接口与所述GPU供电接口相连接,所述GPU供电接口为所述GPU芯片及所述控制芯片供电。
  14. 根据权利要求12所述的电子设备,其特征在于,所述设备还包括网络扩展组件,所述网络扩展组件通过所述第二类接口与所述GPU组件的通讯接口进行通讯。
  15. 根据权利要求12所述的电子设备,其特征在于,所述GPU组件还包括:
    散热风扇和/或与所述GPU芯片相连接的散热片。
  16. 根据权利要求11所述的电子设备,其特征在于,所述设备还包括指示灯,所述GPU组件包括导光柱,所述导光柱导出所述指示灯的灯光。
  17. 根据权利要求11所述的电子设备,其特征在于,所述GPU组件通过所述硬盘槽位的盘托可插拔地设置于所述硬盘槽位中;所述GPU组件包括固定凸包,通过所述固定凸包固定所述硬盘槽位的盘托。
  18. 一种电子设备,其特征在于,包括硬盘槽位;所述硬盘槽位支持设置可插拔的扩展卡组件;所述硬盘槽位包括第一类接口和第二类接口,所述第一类接口用于与硬盘进行通讯,所述第二类接口用于与所述扩展卡组件进行 通讯。
  19. 根据权利要求18所述的电子设备,其特征在于,所述设备还包括供电组件,所述硬盘槽位还包括槽位供电接口;其中,所述供电组件与所述槽位供电接口相连接,所述槽位供电接口用于为所述扩展卡组件供电。
  20. 根据权利要求18所述的电子设备,其特征在于,所述设备还包括网络扩展组件,所述网络扩展组件用于通过所述第二类接口与所述扩展卡组件的通讯接口进行通讯。
  21. 根据权利要求18所述的电子设备,其特征在于,所述第二类接口为PCIE接口,所述第一类接口为SAS接口或者SATA接口。
  22. 根据权利要求18所述的电子设备,其特征在于,所述硬盘槽位包括SFF8639接口。
  23. 根据权利要求18所述的电子设备,其特征在于,所述硬盘槽位设置于背板、或者主板、或者机箱外侧。
  24. 根据权利要求18-23任一项所述的电子设备,其特征在于,所述扩展卡组件包括以下任意一种或多种:GPU组件、CPU组件、处理器组件、网卡组件、无线通信组件、输入输出组件。
  25. 一种扩展卡组件,其特征在于,所述扩展卡组件包括:业务模块及第一高速接口;
    所述业务模块和所述第一高速接口连接;
    所述第一高速接口包括:串行连接接口SAS接口或串行高级技术附件SATA接口或高速串行计算机扩展总线PCIE接口;
    所述第一高速接口用于传输网络信号,所述网络信号包括简化千兆媒体独立接口RGMII信号和千兆媒体独立接口GMII信号。
  26. 根据权利要求25所述的扩展卡组件,其特征在于,所述业务模块包括图像处理器、CPU组件、处理器组件、网卡组件、无线通信组件及输入输出组件中的至少一种。
  27. 根据权利要求26所述的扩展卡组件,其特征在于,所述业务模块包括图像处理器,所述图像处理器包括:图像处理芯片和控制芯片;
    所述控制芯片,分别和所述图像处理芯片和所述第一高速接口连接;
    所述控制芯片将所述网络信号转化为所述图像处理芯片能够识别的数据信息。
  28. 根据权利要求26所述的扩展卡组件,其特征在于,所述第一高速接口为U.2接口。
  29. 一种服务器设备,其特征在于,所述服务器设备包括:主板,所述主板上设置有第二高速接口,所述第二高速接口包括:SAS接口或SATA接口或PCIE接口;
    所述主板通过所述第二高速接口与扩展卡组件的第一高速接口连接,所述扩展卡组件为如权利要求25至28中任一项所述的扩展卡组件。
  30. 根据权利要求29所述的服务器设备,其特征在于,所述第二高速接口为U.2接口。
  31. 根据权利要求29所述的服务器设备,其特征在于,所述服务器设备还包括背板,所述背板上设置有所述第二高速接口;
    所述背板通过所述第二高速接口与所述扩展卡组件连接;
    所述主板上设置有扩展接口,所述主板通过所述扩展接口与所述背板连接,所述扩展接口包括:SAS接口或SATA接口。
  32. 根据权利要求31所述的服务器设备,其特征在于,所述服务器设备还包括网络扩展组件,所述网络扩展组件包括:网络交换模块和网络路由模块;
    网络交换模块与网络路由模块连接;
    所述网络交换模块分别与,所述背板和所述主板连接。
  33. 根据权利要求31所述的服务器设备,其特征在于,所述服务器设备还包括供电组件,所述供电组件分别与,所述网络扩展组件、所述主板和所述背板连接。
  34. 一种扩展卡组件管理方法,其特征在于,所述方法应用于如权利要求29至33中任一项所述的服务器设备,所述服务器设备通过第二高速接口连接有多个扩展卡组件,所述方法包括:
    按预设周期获取各个所述扩展卡组件的工作状态,所述工作状态中包括工作负荷;
    判断全部的所述扩展卡组件的工作负荷是否大于第一预设警戒值;
    若全部的所述扩展卡组件的工作负荷均大于所述第一预设警戒值,则发出预警信息;
    若否,则将新的处理任务分配至工作负荷最小的扩展卡组件。
  35. 根据权利要求34所述的方法,其特征在于,所述工作状态包括:运行温度;
    在所述按预设周期检测各个所述扩展卡组件的工作状态的步骤之后,所述方法还包括:
    判断是否有所述扩展卡组件的运行温度大于第二预设警戒值;
    若存在运行温度大于所述第二预设警戒值的所述扩展卡组件,则上调散热风扇的转速;
    若所述散热风扇的转速为最高转速,且所述扩展卡组件的运行温度大于所述第二预设警戒值,则发出温度预警信息。
  36. 根据权利要求34所述的方法,其特征在于,所述方法还包括:
    当所述服务器设备启动时,对所述扩展卡组件逐个上电。
  37. 根据权利要求34所述的方法,其特征在于,所述方法还包括:
    若无法获取所述扩展卡组件的工作状态,则重新启动所述扩展卡组件。
PCT/CN2019/097633 2018-07-27 2019-07-25 电子设备、扩展卡组件、服务器设备及其管理方法 WO2020020274A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/262,377 US11985780B2 (en) 2018-07-27 2019-07-25 Electronic device, expansion card assembly, server device and management method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810844568 2018-07-27
CN201810844568.X 2018-07-27
CN201821932882.5U CN209015216U (zh) 2018-07-27 2018-11-22 一种电子设备
CN201821932882.5 2018-11-22

Publications (1)

Publication Number Publication Date
WO2020020274A1 true WO2020020274A1 (zh) 2020-01-30

Family

ID=66842996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097633 WO2020020274A1 (zh) 2018-07-27 2019-07-25 电子设备、扩展卡组件、服务器设备及其管理方法

Country Status (3)

Country Link
US (1) US11985780B2 (zh)
CN (1) CN209015216U (zh)
WO (1) WO2020020274A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859650A (zh) * 2021-01-08 2021-05-28 南京南瑞信息通信科技有限公司 一种机房动环监控装置
CN114791890A (zh) * 2022-04-26 2022-07-26 苏州浪潮智能科技有限公司 一种ai加速装置及服务器
CN115033513A (zh) * 2022-05-24 2022-09-09 苏州浪潮智能科技有限公司 一种用于供电的转接卡、转接单元、装置及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209015216U (zh) * 2018-07-27 2019-06-21 杭州海康威视数字技术股份有限公司 一种电子设备
TWI790130B (zh) * 2022-02-25 2023-01-11 神雲科技股份有限公司 伺服器
CN114661099B (zh) * 2022-03-31 2023-08-04 苏州浪潮智能科技有限公司 一种主板、处理器板卡及计算系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105045744A (zh) * 2015-08-12 2015-11-11 上海斐讯数据通信技术有限公司 一种高速接口
WO2016085016A1 (ko) * 2014-11-28 2016-06-02 윤동구 디바이스 확장 기능을 갖는 확장형 멀티 디바이스 베이 시스템
CN105893307A (zh) * 2016-03-30 2016-08-24 北京航天自动控制研究所 一种高速大数据量信息处理系统
CN106503369A (zh) * 2016-11-04 2017-03-15 郑州云海信息技术有限公司 一种实现多种高速总线pcb链路共用的装置及其设计方法
CN108509361A (zh) * 2018-03-29 2018-09-07 联想(北京)有限公司 一种电子设备
CN209015216U (zh) * 2018-07-27 2019-06-21 杭州海康威视数字技术股份有限公司 一种电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6840801B1 (en) * 1998-10-29 2005-01-11 Steinbeck Cannery, Llc Docking apparatus for PC card devices
US6819567B2 (en) * 2002-11-27 2004-11-16 International Business Machines Corporation Apparatus and system for functional expansion of a blade
US20080168204A1 (en) * 2007-01-04 2008-07-10 Dell Products L.P. Information Handling System Card
US10467166B2 (en) * 2014-04-25 2019-11-05 Liqid Inc. Stacked-device peripheral storage card
US10034407B2 (en) * 2016-07-22 2018-07-24 Intel Corporation Storage sled for a data center
WO2018080466A1 (en) * 2016-10-26 2018-05-03 Intel Corporation Integrated electronic card front emi cage and latch for data storage system
US10729030B1 (en) * 2018-08-28 2020-07-28 Facebook, Inc. Apparatuses, systems, and methods for integrating hardware accelerators into computing systems
US10477707B1 (en) * 2018-08-30 2019-11-12 Facebook, Inc. Apparatuses, systems, and methods for performing hardware acceleration via dual-compact-form-factor expansion cards

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016085016A1 (ko) * 2014-11-28 2016-06-02 윤동구 디바이스 확장 기능을 갖는 확장형 멀티 디바이스 베이 시스템
CN105045744A (zh) * 2015-08-12 2015-11-11 上海斐讯数据通信技术有限公司 一种高速接口
CN105893307A (zh) * 2016-03-30 2016-08-24 北京航天自动控制研究所 一种高速大数据量信息处理系统
CN106503369A (zh) * 2016-11-04 2017-03-15 郑州云海信息技术有限公司 一种实现多种高速总线pcb链路共用的装置及其设计方法
CN108509361A (zh) * 2018-03-29 2018-09-07 联想(北京)有限公司 一种电子设备
CN209015216U (zh) * 2018-07-27 2019-06-21 杭州海康威视数字技术股份有限公司 一种电子设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859650A (zh) * 2021-01-08 2021-05-28 南京南瑞信息通信科技有限公司 一种机房动环监控装置
CN114791890A (zh) * 2022-04-26 2022-07-26 苏州浪潮智能科技有限公司 一种ai加速装置及服务器
CN114791890B (zh) * 2022-04-26 2023-06-20 苏州浪潮智能科技有限公司 一种ai加速装置及服务器
CN115033513A (zh) * 2022-05-24 2022-09-09 苏州浪潮智能科技有限公司 一种用于供电的转接卡、转接单元、装置及方法
CN115033513B (zh) * 2022-05-24 2023-07-11 苏州浪潮智能科技有限公司 一种用于供电的转接卡、转接单元、装置及方法

Also Published As

Publication number Publication date
US20210315115A1 (en) 2021-10-07
US11985780B2 (en) 2024-05-14
CN209015216U (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
WO2020020274A1 (zh) 电子设备、扩展卡组件、服务器设备及其管理方法
EP3242185B1 (en) Server rack power management
US10402207B2 (en) Virtual chassis management controller
US8522064B2 (en) Server system having mainboards
EP3242218B1 (en) Dynamic pcie switch reconfiguration mechanism
US7761622B2 (en) Centralized server rack management using USB
US8656003B2 (en) Method for controlling rack system using RMC to determine type of node based on FRU's message when status of chassis is changed
US9214809B2 (en) Dynamically configuring current sharing and fault monitoring in redundant power supply modules
JP2019153287A (ja) ラック装着型データストレージシステム、及びプログラマブルロジックデバイス
US20150356034A1 (en) Embedded microcontroller and buses
KR20040062395A (ko) 서버를 위한 중단없는 전력 관리 표시 방법, 시스템 및 장치
CN107179804B (zh) 机柜装置
US20120134085A1 (en) Server integrating system
CN111209241A (zh) 整机柜服务器的管理系统
WO2023020451A1 (zh) 一种主板及计算设备
TW201222274A (en) Computer chassis system
TW201729097A (zh) 機櫃裝置
CN111273742B (zh) 一种基于正交构架的高密度服务模块化系统
US10489328B2 (en) Universal sleds server architecture
CN210776379U (zh) 一种GPU Box系统
WO2020140705A1 (zh) 一种扩展卡组件
CN111752809A (zh) 电路板和机柜
TWI830573B (zh) 基板管理控制裝置及其控制方法
WO2023160699A1 (zh) 一种单板管理系统、方法、装置及设备
WO2023050848A1 (zh) 端口共享方法以及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19841058

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19841058

Country of ref document: EP

Kind code of ref document: A1