WO2020020273A1 - 天线设备与基站的连接方法、天线设备和基站 - Google Patents

天线设备与基站的连接方法、天线设备和基站 Download PDF

Info

Publication number
WO2020020273A1
WO2020020273A1 PCT/CN2019/097632 CN2019097632W WO2020020273A1 WO 2020020273 A1 WO2020020273 A1 WO 2020020273A1 CN 2019097632 W CN2019097632 W CN 2019097632W WO 2020020273 A1 WO2020020273 A1 WO 2020020273A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
ald
base station
communication link
module
Prior art date
Application number
PCT/CN2019/097632
Other languages
English (en)
French (fr)
Inventor
邢宏伟
赵虎
向良洪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020020273A1 publication Critical patent/WO2020020273A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Definitions

  • the present application relates to the field of communications, and in particular, to a method for connecting an antenna device to a base station, an antenna device, and a base station.
  • the antenna equipment includes an ESC controller, a tower amplifier (TMA), a booster, a standing wave ratio measurement unit, and other tower equipment.
  • the tower is installed with the antenna.
  • the base station is connected to the ALD and controls the ALD.
  • the control signals between the base station and the ALD can be connected and transmitted through the RS485 cable or through the coaxial cable.
  • the ALD control signal can be transmitted by a separate cable; the control signal and the RF signal can also be combined to be transmitted in the RF cable.
  • the signal receiving end needs to separate the control signal, which is technically more complicated.
  • a base station is connected to an ALD through a remote radio unit (remote radio unit, RRU) through a cable, and one ALD is connected to at least one RRU. Can be cascaded by cable.
  • RRU remote radio unit
  • the RRU communicates with the ALD through an RS485 cable or a coaxial cable, and the construction worker needs to connect the cable to the RRU and the ALD respectively through an interface, which is time-consuming and labor-intensive, and the construction is difficult.
  • the embodiment of the present application provides a method for connecting an antenna device and a base station, which can avoid the use of a cable connection between the ALD and the base station, and reduces the construction difficulty.
  • a first aspect of the embodiments of the present application provides a method for connecting an ALD to a base station, including: a first ALD establishing a first wireless communication link with a base station configured with a wireless communication module, the first ALD including the wireless communication module; the first ALD transmits data to the base station through the first wireless communication link.
  • a wireless communication module is configured for both the ALD and the base station.
  • a first wireless communication link can be established between the ALD and the base station. Then, the ALD can perform data transmission with the base station through the first wireless communication link.
  • ALD can establish a wireless communication link with the base station through the newly added wireless communication module, and send data to the base station through the wireless communication link.
  • data transmission requires a wired cable, and this solution does not require the process of connecting the cable to the ALD and the base station. Therefore, it can avoid the time and laboriousness of the constructor to connect the cable and reduce the construction difficulty.
  • the first ALD establishing a first wireless communication link with a base station configured with a wireless communication module includes: the first ALD and the A first remote radio frequency unit RRU configured with a wireless communication module in the base station establishes the first wireless communication link.
  • the base station can connect to the ALD through the RRU, and provides a specific way to connect the ALD to the base station, thereby improving the realizability of the solution.
  • the method in the second implementation manner of the first aspect of the embodiments of the present application further includes: the first ALD and configuring wireless communication
  • the second ALD of the module establishes a second wireless communication link, and the second wireless communication link is used for data transmission between the first ALD and the second ALD.
  • wireless communication links can also be established between ALDs with wireless communication modules, that is, ALDs can be cascaded. This solution improves Diversity of solution implementation when there are multiple ALDs.
  • the method further includes: An ALD establishes a third wireless communication link with a second RRU configured with a wireless communication mode in the base station through a wireless communication module, and the third wireless communication link is used for data transmission between the first ALD and the second RRU. .
  • ALD can establish a wireless communication link with multiple RRUs through a wireless communication module.
  • the connection between ALD and the base station will not be Due to the limited number of wired interfaces, the number of interfaces can reduce the size of the ALD device.
  • the wireless communication module includes: a Bluetooth module, a wireless fidelity WIFI module, a ZigBee module or an Internet of Things IOT module.
  • the wireless communication modules may be of different types, that is, the ALD and the base station may establish different types of wireless communication links for data transmission through different types of wireless modules, which improves Diversity of ALD and base station connection methods.
  • a second aspect of the embodiments of the present application provides a method for connecting an ALD to a base station, including: establishing a first wireless communication link between the base station and a first ALD configured with a wireless communication module, where the base station includes the wireless communication module; A wireless communication link transmits data with the first ALD.
  • a wireless communication module is configured for both the ALD and the base station.
  • a first wireless communication link can be established between the ALD and the base station.
  • the base station can transmit data, such as control signals, to the ALD through the first wireless communication link. .
  • the method for connecting an ALD to a base station provided in the embodiment of the present application, because the base station can establish a wireless communication link with the ALD through the newly added wireless communication module, and send data to the ALD through the wireless communication link.
  • data transmission needs to use wired cables. This solution does not require the process of connecting the cables to the ALD and the base station. Therefore, it can avoid the time and effort of the constructors to connect the cables and reduce the construction difficulty.
  • the establishing a first wireless communication link with the first ALD configured with a wireless communication module includes: The first RRU of the communication module establishes a first wireless communication link with the first ALD.
  • the base station can connect to the ALD through the RRU, and provides a specific way to connect the ALD to the base station, thereby improving the realizability of the solution.
  • the method in the second implementation manner of the second aspect of the embodiment of the present application further includes that the base station communicates through the first wireless communication.
  • the link transmits a control signal of a second ALD, and the second ALD and the first ALD are connected through a wireless communication link.
  • a wireless communication link can also be established between ALDs with wireless communication modules, that is, ALDs can be cascaded, and RRUs can be connected with The wireless communication link established between the first ALD and the second ALD performs data transmission.
  • the method further includes: A second RRU configured with a wireless communication module in the base station establishes a second wireless communication link with the first ALD, and the second wireless communication link is used for data transmission between the second RRU and the first ALD.
  • each RRU when there are multiple RRUs in the base station, each RRU can establish a wireless communication link with the ALD through a wireless communication module.
  • a wireless communication module There will be no limit to the number of wired interfaces. The reduced number of interfaces can effectively reduce the size of RRU equipment.
  • the method further includes: The base station establishes a third wireless communication link with the third ALD configured with the wireless communication module through the first RRU, and the third wireless communication link is used for data transmission between the first RRU and the third ALD.
  • a first RRU can establish a third wireless communication link with a third ALD, that is, the first RRU can be directly connected to multiple ALDs.
  • This solution enriches the base station and multiple ALDs.
  • the form of connection improves the diversity of ALD and base station connection methods.
  • the wireless communication module includes a Bluetooth module, a WIFI module, a ZigBee module, or an IOT module.
  • the wireless communication modules may be of different types, that is, the ALD and the base station may establish different types of wireless communication links for data transmission through different types of wireless modules, which improves Diversity of ALD and base station connection methods.
  • a third aspect of the embodiments of the present application provides an ALD, and the ALD has a function of implementing the connection method between the ALD and the base station in the first aspect.
  • a third aspect of the embodiments of the present application provides an ALD, and the ALD has a function of implementing the connection method between the ALD and the base station in the first aspect.
  • a fourth aspect of the embodiments of the present application provides a base station, which has a function of implementing a method for connecting an ALD to a base station in the first aspect.
  • a fifth aspect of the embodiments of the present application provides a computer program product, where the computer program product includes computer program instructions, and the computer program instructions can be loaded by a processor to implement the foregoing first aspect or the second aspect and its implementations. Methods.
  • a sixth aspect of the embodiments of the present application provides a computer storage medium for storing computer program instructions, which includes a program for executing the steps of the implementation manners provided in the first aspect or the second aspect of the foregoing embodiments of the present application.
  • FIG. 1 is a schematic diagram of a connection manner between an ALD and a base station in the prior art
  • FIG. 2 is a schematic diagram of a connection manner between an ALD and a base station according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of an embodiment of a connection method between an ALD and a base station according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of another embodiment of a connection method between an ALD and a base station according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of a connection manner between an ALD and a base station according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of an interactive embodiment of a connection between an ALD and a base station in an embodiment of the present application
  • FIG. 7 is a schematic diagram of a connection manner between an ALD and a base station according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an interactive embodiment of a connection between an ALD and a base station in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an ALD embodiment according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an embodiment of a base station according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another embodiment of ALD in the embodiment of the present application.
  • FIG. 12 is a schematic diagram of another embodiment of a base station in an embodiment of the present application.
  • An embodiment of the present application provides a method for connecting an antenna device ALD to a remote radio unit RRU of a base station, which is used to transmit an ALD control signal, avoiding the time and laboriousness of a worker connecting a cable, and reducing construction difficulty.
  • FIG. 2 is a schematic diagram of a connection manner between ALD and a base station according to an embodiment of the present application.
  • ALD includes ESC controller, TMA, booster, standing wave ratio measurement unit and other tower top equipment. Generally, it is installed on the tower with the antenna.
  • the base station needs to manage the active ALD, such as adjusting the angle of the ESC antenna. Adjust the inclination of the query antenna, or query the antenna attitude.
  • the base station can be a distributed base station, that is, a base station in which a radio frequency processing unit is separated from a traditional macro base station baseband processing unit (BBU), or a base station in which RRU and BBU are concentrated, such as a macro base station and a micro base station. No restrictions. In the embodiment of the present application, the connection between the base station and the ALD through the RRU is taken as an example for description.
  • the base station may include one RRU or multiple RRUs, and the number of RRUs in the base station is not specifically limited.
  • the RRU is a remote radio unit of the base station and can be used for signal processing.
  • the base station communicates with the ALD through the RRU. It can communicate with the ALD according to the AISG protocol specifications.
  • the base station manufacturer and antenna manufacturer can negotiate custom commands and ALD communication.
  • the ALD is configured with a wireless communication module.
  • the wireless communication module may be a Bluetooth module, a wireless fidelity (WIFI) module, a ZigBee module, or an Internet of Things (IOT) module.
  • the IOT module includes a low-power wide-area network module (LPWAN), for example, a narrowband Internet of Things (NBIOT) module working in an authorized frequency band, based on LTE evolution Internet of Things (LTE-machine-to-machine, LTE-M) modules; Sigfox modules and LoRa modules that work in unlicensed frequency bands, etc.
  • LPWAN low-power wide-area network module
  • NBIOT narrowband Internet of Things
  • LTE-machine-to-machine, LTE-M LTE evolution Internet of Things
  • LTE-machine-to-machine LTE-M
  • Sigfox modules and LoRa modules that work in unlicensed frequency bands, etc.
  • the specific types of wireless communication modules are not limited here.
  • the wireless communication module can be integrated in ALD, for example, it can be integrated in TMA or remote control unit (RCU); or it can be connected to ALD through a connector, for example, it can be connected to ALD through ALSG-RS485 or AISG-OOK connector. connection.
  • the specific form of the connection between the wireless communication module and the ALD is not limited herein.
  • the RRU is also configured with a wireless communication module, which can be a Bluetooth module, a WIFI module, a ZigBee module, or an IOT module.
  • the IOT module includes an LPWAN module.
  • the IOT module may be a NBIOT module, an LTE-M module, a Sigfox module, or a LoRa module.
  • the specific type of the wireless communication module is not limited here.
  • the RRU wireless communication module and the ALD wireless communication module should be the same type of wireless communication module, which can be matched and connected with each other.
  • the wireless communication module can be integrated inside the RRU; or connected to the RRU through an external connector, such as ALSG-RS485 and AISG-OOK connectors.
  • the specific form of the connection between the wireless communication module and the RRU is not limited herein.
  • the ALD and the base station establish a wireless communication link and transmit control signals through a wireless communication module.
  • the base station is connected to the ALD through the RRU.
  • the ALD wireless communication module can establish a wireless communication link with the RRU1 wireless communication module, and the ALD wireless communication module can also establish another wireless communication link with the RRU2 wireless communication module; when multiple In ALD, for example, there are ALD1, ALD2, and ALD3.
  • the wireless communication module of ALD1 can establish a wireless communication link with the wireless communication module of RRU.
  • the wireless communication module of ALD2 can also establish another wireless communication with the wireless communication module of RRU.
  • ALD3 can be cascaded with ALD2 through the wireless communication module, and control signal transmission between RRU and ALD3 can be realized through the wireless communication link between ALD3 and ALD2 and the wireless communication link between ALD2 and RRU.
  • This embodiment of the present application provides a wireless connection method for the interface between ALD and a base station.
  • the wireless connection method is extended to the physical layer 1 through a cable connection method, and for the layer The 2 data link layer and the layer 7 application layer are unchanged.
  • the base station is responsible for receiving, processing, and transmitting wireless signals, as well as the conversion between wireless signals and the easily-transmitted photoelectric limited transmission signals.
  • an important function of the base station is to perform corresponding control on ALD to meet working requirements, such as adjusting the angle of the electrically adjustable antenna, adjusting the tilt angle of the query antenna, or querying the attitude of the antenna.
  • FIG. 3 is a schematic diagram of an embodiment of a connection method between the ALD and the base station in the embodiment of the present application.
  • An ALD establishes a wireless communication link with a base station.
  • the ALD includes a wireless communication module
  • the base station also includes a wireless communication module.
  • the wireless communication module may be a Bluetooth module, a WIFI module, a ZigBee module, or an IOT module.
  • the IOT module includes an LPWAN module.
  • the M module, Sigfox module, or LoRa module, etc. do not limit the specific types of the ALD wireless communication module and the base station wireless communication module, but it should be noted that the ALD wireless communication module and the base station wireless communication module should be the same type of wireless. Communication module for wireless connection. First, a wireless communication link needs to be established between the ALD and the base station.
  • the wireless communication module of the ALD and the wireless communication module of the base station are both Bluetooth modules, and the ALD and the base station can establish a Bluetooth connection according to the Bluetooth protocol.
  • the process of establishing a wireless connection between the ALD and the base station may be performed according to a specific type of wireless communication protocol, which is not limited here.
  • the ALD transmits data to the base station through the wireless communication link.
  • the ALD After the ALD establishes a wireless communication link with the base station through the wireless communication module, it can transmit data through the wireless communication link, and can communicate with ALD according to the AISG protocol specifications. For example: After the RRU can send the ALD control signal to ALD, ALD can pass the The wireless communication link sends a confirmation message; it is also possible for the base station manufacturer and the antenna manufacturer to negotiate a custom command to communicate with the ALD as required, which is not limited here.
  • the data transmission rate range can be determined according to the specific type of the wireless communication link and the relevant protocol requirements. For example, if data is transmitted through WIFI, data transmission can be performed according to the IEEE 802.11 protocol. The transmission rate can reach hundreds of megabytes.
  • ALD can establish a wireless communication link with the base station through the newly added wireless communication module, and send data to the base station through the wireless communication link.
  • data transmission requires a wired cable. This solution does not require the process of connecting the cable to the ALD and the base station. Therefore, it can avoid time and labor for the construction worker to connect the cable and reduce the construction difficulty.
  • FIG. 4 is a schematic diagram of another embodiment of a method for connecting ALD to a base station in the embodiment of the present application.
  • the RRU establishes a wireless communication link with the ALD.
  • the base station is connected to the ALD through the RRU.
  • the RRU of the base station includes a wireless communication module, and the ALD also includes a wireless communication module.
  • the wireless communication module may be a Bluetooth module, a WIFI module, a ZigBee module, or an IOT module.
  • the IOT module includes an LPWAN module. For example, it can be a NBIOT module, an LTE-M module, a Sigfox module, or a LoRa module.
  • the specific type of the wireless communication module is not limited here, but it should be noted that the wireless communication module of the RRU and the wireless communication module of the ALD should be the same type of wireless communication module and can be wirelessly connected.
  • a wireless communication link is established between the RRU and the ALD.
  • the wireless communication module of the RRU and the wireless communication module of the ALD are both WIFI modules, then the RRU and the ALD can establish a WIFI connection according to the IEEE 802.11 protocol.
  • the process of establishing a wireless connection between the RRU and the ALD may be performed according to a specific type of wireless communication protocol, which is not limited here.
  • the RRU transmits data to the ALD through the wireless communication link.
  • data can be transmitted through the wireless communication link.
  • the RRU can send an ALD control signal to the ALD.
  • the data transmission rate range can be determined according to the specific type of the wireless communication link and the relevant protocol regulations. For example, if data is transmitted through WIFI, data transmission can be performed according to the IEEE 802.11 protocol, and the transmission rate can reach hundreds of megabytes.
  • FIG. 5 is a schematic diagram of a connection manner between an ALD and a base station according to an embodiment of the present application.
  • each ALD is configured with a ZigBee module.
  • the RRU is configured with an external ZigBee adapter module, which can be connected through the AISG-RS485 connector. There is no specific limitation on the type of connector.
  • RRU1 is connected to ALD2 and ALD3 through the ZigBee network
  • RRU2 is connected to ALD2 and ALD3 through the ZigBee network
  • ALD1 and ALD2 are cascaded through the ZigBee network
  • ALD2 and ALD3 are also connected through the ZigBee network.
  • ALD1 and RRU1 are not directly connected, but are cascaded with ALD2.
  • the reason can be artificial configuration or due to physical location restrictions.
  • RRU1 and ALD1 cannot receive each other's signals, and The location of ALD2 may happen to be connected to both ALD1 and RRU1.
  • three ALDs can communicate with two RRUs, such as transmitting ALD control information; the three ALDs can also transmit data through the ZigBee network, such as transmitting ALD location information, which can be used to determine the three ALDs. Relative position.
  • FIG. 6 is a schematic diagram of an interactive embodiment of the connection between the RRU and the ALD in the embodiment of the present application.
  • the ZigBee module has the function of ad hoc networking. In addition, it can also control the networking process through the central processor of the base station.
  • the ZigBee module of ALD2 is used as the network coordinator for self-organizing network as an example. First, the ZigBee module of ALD2 performs network initialization, including determining whether a ZigBee network exists near the node. If it does not exist, perform the channel Scan and select the channel number and set the network ID, wait for other nodes to join, and become the coordinator of the ZigBee network, responsible for the establishment of the network and the allocation of network addresses.
  • Step 1 Connect ALD1 and ALD2 and join the ZigBee network
  • ALD1 can obtain network information through active scanning or passive scanning of the coordinator, and then send a connection request to the coordinator.
  • the two nodes confirm each other to obtain the ALD device type and ALD serial number in the network.
  • the ALD device type can be TMA or RET. Etc., the ALD serial number is the identification (ID) of the ALD.
  • ALD1 can join the ZigBee network.
  • the coordinator will assign a short network address to ALD1 to send and receive data through this address.
  • the network topology and address will be stored in flash memory.
  • Step 2 ALD3 is connected to ALD2 and joins the ZigBee network;
  • Step 3 Connect RRU1 to ALD2 and join the ZigBee network.
  • Step 4 Connect RRU2 to ALD2 and join the ZigBee network
  • steps 1 to 4 are not limited.
  • Step 5 RRU1 is connected to ALD3.
  • RRU1 can send AISG scan frames to all nodes in the ZigBee network to obtain information such as the ALD device type and ALD serial number in the network. RRU1 can confirm and establish a connection with ALD3. Among them, ALD3 acts as a ZigBee network router node and can also transfer data. package.
  • Step 6 RRU2 is connected to ALD3. The connection process is similar to step 5, and is not repeated here.
  • steps 5 and 6 are not limited, and step 5 can be executed first and then step 6 or step 6 can be executed first and then step 5 can be executed.
  • the ZigBee network topology in the embodiment of the present application is formed to allow data transmission.
  • the data transmission rate in the ZigBee network can be 250 kilobits per second (kbit / s), 20kbit / s, or 40kbit / s, etc.
  • the specific transmission rate can be set according to the use requirements, which is not limited here.
  • the following uses data transmission between RRU1 and ALD1 and data transmission between RRU2 and ALD3 as examples. Please refer to steps 7 to 10, and steps 11 and 12.
  • the messages can be encrypted and verified as needed, which will not be described in detail below.
  • Step 7 RRU1 sends a message to ALD2.
  • RRU1 When RRU1 needs to transmit information to ALD1, such as control information for ALD1, although RRU1 is not directly connected to ALD1, RRU1 can send a message to ALD2 through the ZigBee network, and request ALD2 to forward the message to ALD1.
  • Step 8 ALD2 sends a message to ALD1.
  • ALD2 After receiving the message sent by RRU1 to ALD1, ALD2 can forward the message to ALD1 according to the network short address.
  • Step 9 ALD1 returns a message to ALD2.
  • ALD1 After receiving the message sent by RRU1 forwarded by ALD2, ALD1 will reply with a confirmation message and return the message to ALD2.
  • Step 10 ALD2 returns a message to RRU1.
  • ALD2 After receiving the message returned by ALD1, ALD2 can return the message to RRU1 according to the address identifier.
  • step 7 data transmission between ALD1 and RRU1 can be realized.
  • Step 11 RRU2 sends a message to ALD3.
  • RRU2 can send a message to ALD3 directly through the ZigBee network, and the message can be a control message for ALD3.
  • Step 12 ALD3 returns a message to RRU2.
  • ALD3 After receiving the message, ALD3 can return a confirmation message to RRU2.
  • steps 11 and 12 can implement data transmission between ALD3 and RRU2.
  • the method for connecting the RRU and the ALD provided in the embodiment of the present application, since the RRU and the ALD can establish a ZigBee network through a newly added ZigBee module, and transmit data through the ZigBee network. Compared with the prior art, data transmission requires wired cables. In this solution, in the scenario where there are multiple ALDs and multiple RRUs, not only the cost of multiple cables can be saved, but also the connection of multiple cables can be avoided. Work to reduce the difficulty of construction.
  • FIG. 7 is a schematic diagram of another connection manner between the RRU and the ALD in the embodiment of the present application.
  • ALDs there are three ALDs, namely ALD1, ALD2, and ALD3, each of which is equipped with a Bluetooth module; there are also two base stations, and the base stations are connected to the ALD through the RRU.
  • the figure shows RRU1 and RRU2, and RRU1.
  • An external Bluetooth adapter module is configured, which can be connected through the AISG-OOK interface.
  • RRU2 has a built-in Bluetooth module.
  • RRU1 and RRU2 are connected to ALD2 through a Bluetooth network, in addition, ALD1 and ALD2 are cascaded through a Bluetooth network, and ALD2 and ALD3 are also cascaded through a Bluetooth network.
  • ALD2 can communicate with two RRUs, and ALD1 and ALD3 communicate with two RRUs through ALD2.
  • FIG. 8 is a schematic diagram of an interactive embodiment of the connection between the RRU and the ALD in the embodiment of the present application.
  • a Bluetooth network needs to be established first.
  • a master device can establish connections with 7 slave devices at the same time.
  • an ALD2 master device is used as an example.
  • ALD2 will actively scan surrounding Bluetooth devices and initiate connections.
  • This operation can be controlled by a terminal, such as a mobile phone or PC with a Bluetooth module, or controlled by software by the central processor of ALD or the base station, which is not specifically limited here.
  • Step 1 RRU1 is connected to ALD2;
  • the Bluetooth adapter module of RRU1 can perform paging and connect with ALD2 through the Bluetooth network. In addition, it can also use custom protocol authentication to identify whether the connected node is used for RRU or ALD transmission data. Wireless communication module, if it is, then stay connected, if not, then disconnect. The authentication steps can be performed in the process of establishing a Bluetooth connection, which will not be described in detail in the embodiments of the present application.
  • Step 2 ALD3 and ALD2 are connected
  • Step 3 ALD1 and ALD2 are connected
  • Step 4. Connect RRU2 to ALD2.
  • steps 1 to 4 are not limited.
  • the three ALDs and two RRUs in this embodiment implement Bluetooth networking and can transmit data. Due to the large number of nodes, the following uses data transmission between RRU1 and ALD2, and RRU2. The data transmission between ALD1 and ALD1 is taken as an example. Please refer to step 5 and step 6, and step 7 to step 10.
  • Step 5 RRU1 sends a message to ALD2.
  • RRU1 When RRU1 needs to send a control signal to ALD2, it can send a message to ALD2 through an external Bluetooth adaptation module, and the message transmission rate can be determined according to the Bluetooth protocol, for example, it can be 1 million bits per second (Mbps).
  • Step 6 ALD2 returns a message to RRU1.
  • ALD2 After receiving the message sent by RRU1, ALD2 can return the message to RRU1 through the built-in Bluetooth module of ALD2.
  • steps 5 and 6 can implement data transmission between ALD2 and RRU1.
  • Step 7 RRU2 sends a message to ALD2.
  • RRU2 When RRU2 needs to send an ALD1 control signal to ALD1, although RRU1 and ALD1 do not directly establish a Bluetooth connection, they can be routed and forwarded through ALD2. RRU2 sends a message to ALD2, which carries the address information of ALD1.
  • Step 8 ALD2 sends a message to ALD1.
  • ALD2 After receiving the message sent by RRU2 to ALD1, ALD2 can forward the message, that is, send the received message to ALD1.
  • Step 9 ALD1 returns a message to ALD2.
  • ALD1 After receiving the information sent by RRU2 forwarded by ALD2, ALD1 can perform corresponding operations according to the control signal and return a confirmation message. Similarly, the message needs to be forwarded by ALD2. Therefore, ALD1 returns a message to ALD2, which carries the address of RRU2 information.
  • Step 10 ALD2 returns a message to RRU2.
  • ALD After receiving the return message sent by ALD1, ALD forwards the message to RRU2.
  • steps 7 to 10 can implement data transmission between ALD1 and RRU2.
  • the method for connecting the RRU and the ALD provided in the embodiment of the present application, since the RRU and the ALD can establish a Bluetooth network through a newly added Bluetooth module or a Bluetooth adaptation module, and transmit data through the Bluetooth network. Compared with the prior art, data transmission requires wired cables. In this solution, in the scenario where there are multiple ALDs and multiple RRUs, not only the cost of multiple cables can be saved, but also the connection of multiple cables can be avoided. Work to reduce the difficulty of construction.
  • connection method between ALD and the base station has been described above, and the ALD and the base station implementing the method will be described below.
  • FIG. 9 is a schematic diagram of an ALD embodiment according to an embodiment of the present application.
  • the processing module 901 is configured to establish a first wireless communication link with a base station configured with a wireless communication module.
  • the first ALD includes a wireless communication module.
  • the processing module 901 is specifically configured to establish the first wireless communication link with a first remote radio frequency unit RRU configured with a wireless communication module in the base station.
  • the transmission module 902 is configured to transmit data to the base station through the first wireless communication link.
  • the processing module 901 is further configured to establish a second wireless communication link with a second ALD configured with a wireless communication module, and the second wireless communication link is used for data transmission between the first ALD and the second ALD.
  • the processing module 901 is further configured to establish a third wireless communication link with a second RRU configured with a wireless communication module in the base station, and the third wireless communication link is used for data between the first ALD and the second RRU. transmission.
  • the antenna device provided in this embodiment of the present application may be used to execute the method for connecting the ALD to the base station in the embodiments corresponding to FIG. 3, FIG. 5 to FIG. 8, and the details are not described herein again.
  • FIG. 10 is a schematic diagram of a base station according to an embodiment of the present application.
  • a processing module 1001 configured to establish a first wireless communication link with a first ALD configured with a wireless communication module, where the base station includes a wireless communication module;
  • the processing module 1001 is specifically configured to establish a first wireless communication link with the first ALD by configuring a first RRU of the wireless communication module.
  • the transmission module 1002 is configured to transmit data to the first ALD through the first wireless communication link.
  • the processing module 1001 is further configured to transmit a control signal of a second ALD through the first wireless communication link, and the second ALD and the first ALD are connected through a wireless communication link.
  • the processing module 1001 is further configured to establish a second wireless communication link between the second RRU configured with the wireless communication module and the first ALD, and the second wireless communication link is used for the second RRU and the first ALD. Data transfer between.
  • the remote radio unit of the base station provided in this embodiment of the present application may be used to execute the method for connecting the ALD to the base station in the embodiments corresponding to FIG. 4 to FIG.
  • FIG. 11 is a schematic diagram of another embodiment of ALD in the embodiment of the present application:
  • the ALD 1100 may have a large difference due to different configurations or performance, and may include one or more central processing units (CPUs) 1101 (for example, one or more processors) and a memory 1104.
  • CPUs central processing units
  • the memory 1104 One or more applications or data are stored in it.
  • the memory 1104 may be volatile storage or persistent storage.
  • the program stored in the memory 1104 may include one or more modules, and each module may include a series of instruction operations on the server.
  • the central processing unit 1101 may be configured to communicate with the memory 1104, and execute a series of instruction operations in the memory 1104 on the central processing unit 1101.
  • the ALD 1100 may further include one or more power sources 1102, and one or more wireless communication modules 1103.
  • the flow executed by the central processing unit 1101 in the ALD 1100 in this embodiment is similar to the method flow described in the foregoing embodiments shown in FIG. 3, FIG. 5 to FIG. 8, and is not repeated here.
  • FIG. 12 is a schematic diagram of another embodiment of a base station according to an embodiment of the present application:
  • the base station 1200 may have a relatively large difference due to different configurations or performance, and may include one or more central processing units (CPUs) 1201 (for example, one or more processors) and a memory 1204.
  • CPUs central processing units
  • the memory 1204 One or more applications or data are stored in it.
  • the memory 1204 may be volatile storage or persistent storage.
  • the program stored in the memory 1204 may include one or more modules, and each module may include a series of instruction operations on the server.
  • the central processing unit 1201 may be configured to communicate with the memory 1204, and execute a series of instruction operations in the memory 1204 on the RRU 1201.
  • the base station 1200 may further include one or more power sources 1202 and one or more wireless communication modules 1203.
  • the process performed by the central processing unit 1201 in the base station 1200 in this embodiment is similar to the method process described in the foregoing embodiments shown in FIG. 4 to FIG. 8, and is not repeated here.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the integrated unit When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium. , Including a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种ALD与基站的连接方法,用于传输控制信号,可以降低施工难度。本申请实施例方法包括:第一ALD与配置无线通信模块的基站第一RRU建立第一无线通信链路,所述第一ALD包含无线通信模块;所述第一ALD通过所述第一无线通信链路与所述基站第一RRU传输数据。

Description

天线设备与基站的连接方法、天线设备和基站
本申请要求于2018年07月25日提交中国国家知识产权局、申请号为201810828342.0、发明名称为“天线设备与基站的连接方法、天线设备和基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及天线设备与基站的连接方法、天线设备和基站。
背景技术
天线设备(antenna line device,ALD)包括电调控制器、塔顶放大器(tower amplifier,TMA)、升压器、驻波比测量单元和其他塔顶设备,一般随天线一起安装塔上。基站与ALD连接并对ALD进行控制。
根据天线接口标准组织(antenna interface standards group,AISG)协议规定,基站与ALD之间的控制信号可以通过RS485线缆或者通过同轴线缆连接并传输。在实际应用中,ALD控制信号可以由单独的线缆传输;也可以将控制信号与射频信号合路在射频线缆中传输,信号接收端需将控制信号分离出来,技术上较为复杂。如图1所示,现有技术中,基站通过远端射频单元(remote radio unit,RRU)与ALD通过线缆进行连接,一个ALD与至少一个RRU连接,当存在多个ALD时,ALD之间可以通过线缆级联。
由于现有技术中RRU通过RS485线缆或者同轴线缆与ALD通信,需要由施工人员将线缆通过接口与RRU和ALD分别连接,耗时费力,施工难度较高。
发明内容
本申请实施例提供了一种天线设备与基站的连接方法,可以避免ALD与基站之间使用线缆连接,降低施工难度。
本申请实施例第一方面提供了一种ALD与基站的连接方法,包括:第一ALD与配置无线通信模块的基站建立第一无线通信链路,该第一ALD包含无线通信模块;该第一ALD通过该第一无线通信链路与该基站传输数据。
基站要实现对ALD的控制,就需要与ALD进行通信。本申请实施例中ALD与基站均配置了无线通信模块,ALD与基站之间可以建立第一无线通信链路,然后,ALD可以通过该第一无线通信链路与该基站进行数据传输。
本申请实施例中,由于ALD可以通过新增的无线通信模块与基站建立无线通信链路,并通过该无线通信链路向基站发送数据。相较现有技术中,数据传输需要通过有线线缆,本方案不需要将线缆连接到ALD和基站的过程,因此,可以避免施工人员连接电缆耗时费力,降低施工难度。
根据本申请实施例第一方面,本申请实施例第一方面的第一种实施方式中,该第一ALD与配置无线通信模块的基站建立第一无线通信链路包括:该第一ALD与该基站中配置无线通信模块的第一远端射频单元RRU建立该第一无线通信链路。
本申请实施例提供的ALD与基站的连接方法,基站可以通过RRU与ALD进行连接,提供了ALD与基站进行连接的一种具体方式,提升了方案的可实现性。
根据本申请实施例第一方面或本申请实施例第一方面的第一种实施方式,本申请实施例第一方面的第二种实施方式中该方法还包括:该第一ALD与配置无线通信模块的第二ALD建立第二无线通信链路,该第二无线通信链路用于该第一ALD与该第二ALD之间的数据传输。
本申请实施例提供的ALD与基站的连接方法,当在存在多个ALD时,具有无线通信模块的ALD之间也可以建立无线通信链路,即ALD之间可以进行级联,该方案提升了存在多个ALD时方案实现的多样性。
根据本申请实施例第一方面的第一种实施方式或本申请实施例第一方面的第二种实施方式,本申请实施例第一方面的第三种实施方式中该方法还包括:该第一ALD通过无线通信模块与该基站中配置有无线通信模的第二RRU建立第三无线通信链路,该第三无线通信链路用于该第一ALD与该第二RRU之间的数据传输。
本申请实施例提供的ALD与基站的连接方法,当在存在多个RRU时,ALD可以通过无线通信模块与多个RRU建立无线通信链路,通过该方法,ALD与基站之间的连接将不受限与有线接口的数目,由于接口数量减少可以有效减少ALD设备的体积。
根据本申请实施例第一方面、本申请实施例第一方面的第一种实施方式至本申请实施例第一方面的第三种实施方式,本申请实施例第一方面的第四种实施方式中该无线通信模块包括:蓝牙模块、无线保真WIFI模块、紫蜂ZigBee模块或物联网IOT模块。
本申请实施例提供的ALD与基站的连接方法,无线通信模块可以是不同的类型,也就是说ALD与基站可以通过不同类型的无线模块,建立不同类型的无线通信链路进行数据传输,提高了ALD与基站的连接方法实现的多样性。
本申请实施例第二方面提供了一种ALD与基站的连接方法,包括:基站与配置无线通信模块的第一ALD建立第一无线通信链路,该基站包含无线通信模块;该基站通过该第一无线通信链路与该第一ALD传输数据。
基站要实现对ALD的控制,就需要与ALD进行通信。本申请实施例中ALD与基站均配置了无线通信模块,ALD与基站之间可以建立第一无线通信链路,然后,基站可以通过该第一无线通信链路向ALD传输数据,例如控制信号等。
本申请实施例提供的ALD与基站连接的方法,由于基站可以通过新增的无线通信模块与ALD建立无线通信链路,并通过该无线通信链路向ALD发送数据。相较现有技术中,数据传输需要通过有线线缆,本方案不需要将线缆连接到ALD和基站的过程,因此,可以避免施工人员连接电缆耗时费力,降低施工难度
根据本申请实施例第二方面,本申请实施例第二方面的第一种实施方式中,该基站与配置无线通信模块的第一ALD建立第一无线通信链路,包括:该基站通过配置无线通信模块的第一RRU与该第一ALD建立第一无线通信链路。本申请实施例提供的ALD与基站的连接方法,基站可以通过RRU与ALD进行连接,提供了ALD与基站进行连接的一种具体方式,提升了方案的可实现性。
根据本申请实施例第二方面或本申请实施例第二方面的第一种实施方式,本申请实施例第二方面的第二种实施方式中该方法还包括:该基站通过该第一无线通信链路传输第二ALD 的控制信号,该第二ALD与该第一ALD通过无线通信链路连接。
本申请实施例提供的ALD与基站的连接方法,当在存在多个ALD时,具有无线通信模块的ALD之间也可以建立无线通信链路,即ALD之间可以进行级联,RRU可以通过与第一ALD之间建立的无线通信链路与第二ALD进行数据传输,该方案提升了存在多个ALD时方案实现的多样性。
根据本申请实施例第二方面的第一种实施方式或本申请实施例第二方面的第二种实施方式,本申请实施例第二方面的第三种实施方式中,该方法还包括:该基站中配置无线通信模块的第二RRU与该第一ALD建立第二无线通信链路,该第二无线通信链路用于该第二RRU与该第一ALD之间的数据传输。
本申请实施例提供的ALD与基站的连接方法,当基站中在存在多个RRU时,每个RRU都可以通过无线通信模块与ALD建立无线通信链路,通过该方法,ALD与基站之间的连接将不受限与有线接口的数目,由于接口数量减少可以有效减少RRU设备的体积。
根据本申请实施例第二方面的第一种实施方式至本申请实施例第二方面的第三种实施方式,本申请实施例第二方面的第四种实施方式中,该方法还包括:该基站通过该第一RRU与配置无线通信模块的第三ALD建立第三无线通信链路,该第三无线通信链路用于该第一RRU与该第三ALD之间的数据传输。
本申请实施例提供的ALD与基站的连接方法,第一RRU可以与第三ALD建立第三无线通信链路,即第一RRU可以与多个ALD直接相连,本方案丰富了基站与多个ALD连接的形式,提高了ALD与基站连接方法实现的多样性。
根据本申请实施例第二方面、本申请实施例第二方面的第一种实施方式至本申请实施例第二方面的第四种实施方式,本申请实施例第二方面的第五种实施方式中,该无线通信模块包括:蓝牙模块、WIFI模块、ZigBee模块或IOT模块。
本申请实施例提供的ALD与基站的连接方法,无线通信模块可以是不同的类型,也就是说ALD与基站可以通过不同类型的无线模块,建立不同类型的无线通信链路进行数据传输,提高了ALD与基站的连接方法实现的多样性。本申请实施例第三方面提供了一种ALD,该ALD具有实现上述第一方面中ALD与基站的连接方法的功能。
本申请实施例第三方面提供了一种ALD,该ALD具有实现上述第一方面中ALD与基站的连接方法的功能。
本申请实施例第四方面提供了一种基站,该基站具有实现上述第一方面中ALD与基站的连接方法的功能。
本申请实施例第五方面提供了一种计算机程序产品,该计算机程序产品包括计算机程序指令,该计算机程序指令可通过处理器进行加载来实现上述第一方面或第二方面及其各实现方式中的方法。
本申请实施例第六方面提供了一种计算机储存介质,用于储存计算机程序指令,其包含用于执行前述本申请实施例第一方面或第二方面提供的各实施方式的步骤的程序。
附图说明
图1为现有技术中ALD与基站连接方式示意图;
图2为本申请实施例中ALD与基站的连接方式示意图;
图3为本申请实施例中ALD与基站的连接方法的一个实施例示意图;
图4为本申请实施例中ALD与基站的连接方法的另一个实施例示意图;
图5为本申请实施例中ALD与基站的连接方式示意图;
图6为本申请实施例中ALD与基站的连接的交互实施例示意图;
图7为本申请实施例中ALD与基站的连接方式示意图;
图8为本申请实施例中ALD与基站的连接的交互实施例示意图;
图9为本申请实施例中ALD的一个实施例示意图;
图10为本申请实施例中基站的一个实施例示意图;
图11为本申请实施例中ALD的另一个实施例示意图;
图12为本申请实施例中基站的另一个实施例示意图。
具体实施方式
本申请实施例提供了一种天线设备ALD与基站远端射频单元RRU连接的方法,用于传输ALD控制信号,避免施工人员连接电缆耗时费力,降低施工难度。
请参阅图2,为本申请实施例中ALD与基站连接方式示意图。
ALD包括电调控制器、TMA、升压器、驻波比测量单元和其他塔顶设备,一般随天线一起安装塔上,基站需要对有源的ALD进行管理,例如调节电调天线的角度,调节查询天线的倾角,或查询天线姿态等。基站可以是分布式基站,即射频处理单元和传统宏基站基带处理单元(base band unit,BBU)分离的基站,也可以是RRU与BBU集中的基站,例如宏基站、微基站等,具体此处不做限定。在本申请实施例中,以基站通过RRU与ALD进行连接为例进行说明,基站可以包括一个RRU或者多个RRU,基站中RRU的数量具体不做限定。RRU是基站的远端射频单元,可以用于对信号进行处理,基站通过RRU与ALD进行通信,可以根据遵循AISG协议规范与ALD通信,也可以根据需要由基站厂商和天线厂商协商自定义命令与ALD通信。
本申请实施例中,ALD配置了无线通信模块,该无线通信模块可以是蓝牙模块、无线保真(wireless fidelity,WIFI)模块、紫蜂(ZigBee)模块或物联网(internet of things,IOT)模块,其中,IOT模块包括低功耗广域网络模块(low-power wide-area network,LPWAN),例如可以是工作于授权频段的窄带物联网(narrow band internet of things,NBIOT)模块、基于LTE演进的物联网(LTE-machine-to-machine,LTE-M)模块;也可以是工作于非授权频段的Sigfox模块和LoRa模块等,此处对于无线通信模块的具体类型不做限定。该无线通信模块可以集成在ALD内部,例如可以集成在TMA中或者远程控制单元(remote control unit,RCU)中;或者与ALD通过接头连接,例如可以是通过ALSG-RS485或AISG-OOK接头与ALD连接。此处对于无线通信模块与ALD连接的具体形式不做限定。一个基站配备的ALD可以有一个或者多个,本申请实施例中,对于ALD的数量不做限定,一个ALD至少与一个RRU进行连接。
RRU也配置了无线通信模块,该无线通信模块可以是蓝牙模块、WIFI模块、ZigBee模块或IOT模块。其中,IOT模块包括LPWAN模块,例如可以是NBIOT模块、LTE-M模块、Sigfox 模块或LoRa模块等,此处对于无线通信模块的具体类型不做限定。需要说明的是,RRU无线通信模块与ALD无线通信模块应为同类型的无线通信模块,可以相互匹配进行连接。该无线通信模块可以集成在RRU内部;或者与RRU通过外部接头连接,例如可以是ALSG-RS485和AISG-OOK接头。此处对于无线通信模块与RRU连接的具体形式不做限定。
如图2所示,ALD与基站通过无线通信模块建立无线通信链路并传递控制信号,本申请实施例中,基站通过RRU与ALD连接,当存在多个RRU需要与ALD连接时,例如存在RRU1和RRU2,ALD的无线通信模块可以与RRU1的无线通信模块之间建立无线通信链路,ALD的无线通信模块还可以与RRU2的无线通信模块之间建立另一条无线通信链路;当存在多个ALD时,例如存在ALD1、ALD2和ALD3,ALD1的无线通信模块可以与RRU的无线通信模块之间建立无线通信链路,ALD2的无线通信模块也可以与RRU的无线通信模块之间建立另一条无线通信链路,此外,ALD3可以通过无线通信模块与ALD2级联,通过ALD3与ALD2之间的无线通信链路以及ALD2与RRU之间的无线通信链路实现RRU与ALD3之间的控制信号传输。
本申请实施例提供了ALD与基站接口的无线连接方式,在层1,2和层7三层协议模型中,对层1物理层中通过线缆连接的方式扩充了无线连接方式,而对于层2数据链路层和层7应用层则未进行改变。
在通信网络中,基站负责接收、处理与发送无线信号,以及无线信号与易于传输的光电有限传输信号之间的转换。其中,基站的一个重要功能是需要对ALD进行相应控制以满足工作需要,例如调节电调天线的角度,调节查询天线的倾角,或查询天线姿态等。
在图2所示的ALD与基站连接方式示意图的基础上,请参阅图3,本申请实施例中ALD与基站的连接方法的一个实施例示意图。
301、ALD与基站建立无线通信链路;
由于本申请实施例中ALD包含无线通信模块,基站也包含无线通信模块,无线通信模块可以是蓝牙模块、WIFI模块、ZigBee模块或IOT模块,IOT模块包括LPWAN模块,例如可以是NBIOT模块、LTE-M模块、Sigfox模块或LoRa模块等此处对于ALD无线通信模块和基站无线通信模块的具体类型不做限定,但需要说明的是ALD的无线通信模块与基站的无线通信模块应为相同类型的无线通信模块,可以进行无线连接。首先,ALD与基站之间需要建立无线通信链路。例如,ALD的无线通信模块与基站的无线通信模块与均为蓝牙模块,则ALD与基站可以根据蓝牙协议建立蓝牙连接。ALD与基站建立无线连接的过程可以按照具体类型的无线通信协议进行,此处不做限定。
302、ALD通过该无线通信链路与基站传输数据;
ALD通过无线通信模块与基站建立无线通信链路后,可以通过该无线通信链路传输数据,可以根据遵循AISG协议规范与ALD通信,例如:RRU可以向ALD发送ALD控制信号后,ALD可以通过该无线通信链路发送确认消息;也可以根据需要由基站厂商和天线厂商协商自定义命令与ALD通信,具体此处不做限定。传输数据的速率范围可以根据该无线通信链路的具体类型和相关协议规定确定,例如,若通过WIFI传输数据,可以根据IEEE 802.11协议的规定进行数据传输,传输速率可达数百兆。
本申请实施例中,由于ALD可以通过新增的无线通信模块与基站建立无线通信链路,并通过该无线通信链路向基站发送数据。相较现有技术中,数据传输需要通过有线线缆,本方 案不需要将线缆连接到ALD和基站的过程,因此,可以避免施工人员连接电缆耗时费力,降低施工难度。
在图2所示的ALD与基站连接方式示意图的基础上,请参阅图4,本申请实施例中ALD与基站连接的方法的另一个实施例示意图。
401、RRU与ALD建立无线通信链路;
本申请实施例中,基站通过RRU与ALD连接,基站的RRU包含无线通信模块,ALD也包含无线通信模块,无线通信模块可以是蓝牙模块、WIFI模块、ZigBee模块或IOT模块,IOT模块包括LPWAN模块,例如可以是NBIOT模块、LTE-M模块、Sigfox模块或LoRa模块等。此处对于无线通信模块的具体类型不做限定,但需要说明的是RRU的无线通信模块与ALD的无线通信模块应为相同类型的无线通信模块,可以进行无线连接。RRU与ALD之间建立无线通信链路。例如,RRU的无线通信模块与ALD的无线通信模块均为WIFI模块,则RRU与ALD可以根据IEEE 802.11协议建立WIFI连接。其他情况下,RRU与ALD建立无线连接的过程可以按照具体类型的无线通信协议进行,此处不做限定。
402、RRU通过该无线通信链路与ALD传输数据;
RRU与ALD通过无线通信模块建立无线通信链路后,可以通过该无线通信链路传输数据,例如RRU可以向ALD发送ALD控制信号。传输数据的速率范围可以根据该无线通信链路的具体类型和相关协议规定确定,例如,若通过WIFI传输数据,可以根据IEEE 802.11协议进行数据传输,传输速率可达数百兆。
本申请实施例提供的ALD与基站连接的方法,由于基站的RRU可以通过新增的无线通信模块与ALD建立无线通信链路,并通过该无线通信链路向ALD发送数据。相较现有技术中,数据传输需要通过有线线缆,本方案不需要将线缆连接到ALD和RRU的过程,因此,可以避免施工人员连接电缆耗时费力,降低施工难度。
下面,请参阅图5,本申请实施例中ALD与基站的连接方式示意图。
本实施例中,存在3个ALD,分别是ALD1、ALD2和ALD3,每个ALD内部均配置了一个ZigBee模块;基站中存在两个RRU需要与ALD进行连接,图中可见RRU1和RRU2,每个RRU均配置了一个外接的ZigBee适配模块,可以是通过AISG-RS485接头连接,此处对于接头类型不做具体限定。其中,RRU1分别与ALD2和ALD3通过ZigBee网络连接,RRU2分别与ALD2和ALD3通过ZigBee网络连接,此外,ALD1与ALD2通过ZigBee网络级联,ALD2与ALD3也通过ZigBee网络连接。
需要说明的是,本实施例中,ALD1与RRU1没有直接相连,而是与ALD2级联,原因可以是人为配置,也可以是由于物理位置的限制,RRU1和ALD1不能收到对方的信号,而ALD2的位置可能恰好与ALD1和RRU1都能连接。
在上述网络架构中,3个ALD与两个RRU可以进行通信,例如传输ALD控制信息;3个ALD之间也可以通过ZigBee网络传输数据,例如传输ALD的位置信息,可以用于确定3个ALD之间的相对位置。
在图5提供的RRU与ALD的ZigBee网络架构基础上,请参阅图6,本申请实施例中RRU与ALD的连接的交互实施例示意图。
由于RRU和ALD均配置了ZigBee无线通信模块,首先需要建立ZigBee网络。ZigBee模 块具有自组网功能,此外,还可以通过基站中央处理器等对组网过程进行控制。在本实施例中,以ALD2的ZigBee模块为网络协调器进行自组网为例进行说明,首先ALD2的ZigBee模块进行网络初始化,包括判断节点附近区域是否存在ZigBee网络,若不存在,则进行信道扫描选择信道号并设置网络ID,等待其他节点加入,成为该ZigBee网络的协调器,负责网络的建立及网络地址的分配。
步骤1、ALD1与ALD2连接,加入ZigBee网络;
ALD1可以通过主动扫描或者是协调器的被动扫描获取网络信息,然后向协调器发送连接请求,通过两个节点相互确认,获取网络内ALD设备类型以及ALD序列号,ALD设备类型可以是TMA或者RET等,ALD序列号为ALD的身份标识(ID)。ALD1可以加入该ZigBee网络,协调器将为ALD1分配网络短地址通过这个地址进行数据的收发,网络拓扑关系和地址会保存在闪存中。
步骤2、ALD3与ALD2连接,加入ZigBee网络;
步骤3、RRU1与ALD2连接,加入ZigBee网络;
步骤4、RRU2与ALD2连接,加入ZigBee网络;
步骤2至步骤4中各节点加入ZigBee网络的过程与步骤1类似,此处不再赘述。
需要说明的是,步骤1至步骤4的执行顺序不做限定。
步骤5、RRU1与ALD3连接;
RRU1可以向ZigBee网络内所有结点发送AISG扫描帧,获取网络内ALD设备类型以及ALD序列号等信息,RRU1可与ALD3相互确认并建立连接,其中ALD3作为ZigBee网络路由器节点,还可以负责转送资料包。
步骤6、RRU2与ALD3连接,连接过程与步骤5类似,此处不再赘述。
需要说明的是,步骤5和步骤6的执行顺序不做限定,可以先执行步骤5再执行步骤6,或者先执行步骤6,再执行步骤5。
通过步骤1至步骤6,本申请实施例中的ZigBee网络拓扑形成,可以进行数据的传输,ZigBee网络中数据传输的速率可以是250千比特每秒(kbit/s)、20kbit/s或40kbit/s等,具体传输速率可以根据使用需求设定,此处不做限定。
由于节点数量较多,下面,以RRU1与ALD1之间的数据传输,和RRU2与ALD3之间的数据传输为例进行说明,请参考步骤7至步骤10,以及步骤11和步骤12。收发消息的各个步骤中,都可以根据需要对消息进行加密和验证,下面不再一一赘述。
步骤7,RRU1向ALD2发送消息;
当RRU1需要向ALD1传递信息,例如对ALD1的控制信息时,虽然RRU1未与ALD1直接相连,但是RRU1可以通过ZigBee网络向ALD2发送消息,并请求ALD2将消息转发给ALD1。
步骤8,ALD2向ALD1发送消息;
ALD2接收到RRU1发送给ALD1的消息后,可以根据网络短地址,将消息转发给ALD1。
步骤9,ALD1向ALD2返回消息;
ALD1接收到ALD2转发的RRU1发送的消息后,将回复确认消息,并将该消息返回给ALD2。
步骤10,ALD2向RRU1返回消息;
ALD2接收到ALD1返回的消息后,可以根据地址标识,将该消息返回给RRU1。
这样,由步骤7至步骤10可以实现ALD1与RRU1之间的数据传输。
步骤11、RRU2向ALD3发送消息;
RRU2可以通过ZigBee网络直接向ALD3发送消息,该消息可以是对ALD3的控制消息。
步骤12、ALD3向RRU2返回消息;
ALD3收到消息后,可以向RRU2返回确认消息。
这样,步骤11和步骤12可以实现ALD3与RRU2之间的数据传输。
本申请实施例提供的RRU与ALD连接的方法,由于RRU与ALD可以通过新增的ZigBee模块建立ZigBee网络,并通过该ZigBee网络传输数据。相较现有技术,数据传输需要通过有线线缆,在本方案中,存在多个ALD和多个RRU的场景下,不仅可以节省多条线缆的成本,还可以避免多条线缆的连接工作,降低施工难度。
下面,请参阅图7,本申请实施例中RRU与ALD的另一个连接方式示意图。
本实施例中,存在3个ALD,分别是ALD1、ALD2和ALD3,每个ALD内部均配置了一个蓝牙模块;还存在两个基站,基站通过RRU与ALD连接,图中可见RRU1和RRU2,RRU1配置了一个外接的蓝牙适配模块,可以是通过AISG-OOK接口连接,此处对于接头类型不做具体限定,RRU2内置了一个蓝牙模块。
其中,RRU1和RRU2分别与ALD2通过蓝牙网络连接,此外,ALD1与ALD2通过蓝牙网络级联,ALD2与ALD3也通过蓝牙网络级联。
在上述网络架构中,ALD2可以与两个RRU进行通信,ALD1和ALD3则通过ALD2与两个RRU通信。
在图7提供的RRU与ALD的蓝牙网络架构基础上,请参阅图8,本申请实施例中RRU与ALD的连接的交互实施例示意图。
由于RRU和ALD均配置了蓝牙无线通信模块,首先需要建立蓝牙网络。根据蓝牙协议,一个主设备可以同时与7个从设备建立连接,在本实施例中,以ALD2为主设备为例进行说明,ALD2作为主设备将主动扫描周围的蓝牙设备,并发起连接,此外,还可以通过自定义协议鉴权,识别其连接的节点是不是用于RRU、ALD传输数据的无线通信模块,如果是则保持连接,如果不是则断开连接。然后,可以对各个蓝牙节点进行节点配置,这一步骤通过配置状态设置各节点的类型,还可以对个节点订阅地址进行保存。这一操作可以由终端,例如具有蓝牙模块的手机或PC进行控制,或者由ALD或基站的中央处理器通过软件进行控制,此处具体不做限定。
步骤1、RRU1与ALD2连接;
RRU1的蓝牙适配模块通过查询ALD2的地址,可以进行寻呼,与ALD2通过蓝牙网络进行连接,此外,还可以通过自定义协议鉴权,识别其连接的节点是不是用于RRU、ALD传输数据的无线通信模块,如果是则保持连接,如果不是则断开连接。在建立蓝牙连接的过程中都可以进行鉴权步骤,本申请实施例中将不再赘述。
步骤2、ALD3与ALD2连接;
步骤3、ALD1与ALD2连接;
步骤4、RRU2与ALD2连接;
步骤2至步骤4进行蓝牙连接的过程与步骤1类似,此处不再赘述。
需要说明的是,步骤1至步骤4的执行顺序不做限定。
通过步骤1至步骤4,本实施例中的3个ALD和2个RRU实现了蓝牙组网,可以进行数据传输,由于节点数量较多,下面,以RRU1与ALD2之间的数据传输,和RRU2与ALD1之间的数据传输为例进行说明,请参考步骤5和步骤6,以及步骤7至步骤10。
步骤5、RRU1向ALD2发送消息;
当RRU1需要向ALD2发送控制信号时,可以通过外接的蓝牙适配模块向ALD2发送消息,消息传输的速率可以根据蓝牙协议确定,例如可以是1兆位每秒(million bits per second,Mbps)。
步骤6、ALD2向RRU1返回消息;
ALD2接收到RRU1发送的消息后,可以通过ALD2内置的蓝牙模块向RRU1返回消息。
这样,步骤5和步骤6可以实现ALD2与RRU1之间的数据传输。
步骤7、RRU2向ALD2发送消息;
当RRU2需要向ALD1发送ALD1的控制信号时,虽然RRU1与ALD1并未直接建立蓝牙连接,但可以通过ALD2进行路由转发。RRU2向ALD2发送消息,消息中携带了ALD1的地址信息。
步骤8、ALD2向ALD1发送消息;
ALD2接收到RRU2向ALD1发送的消息后,可以对消息进行转发,即将接收的消息发送给ALD1。
步骤9、ALD1向ALD2返回消息;
ALD1接收到ALD2转发的RRU2发送的信息后,可以根据控制信号进行相应操作,并返回确认消息,同样地,该消息需要经ALD2转发,因此,ALD1向ALD2返回消息,该消息中携带RRU2的地址信息。
步骤10、ALD2向RRU2返回消息;
ALD接收ALD1发送的返回消息后,将该消息转发给RRU2。
这样,步骤7至步骤10可以实现ALD1与RRU2之间的数据传输。
本申请实施例提供的RRU与ALD连接的方法,由于RRU与ALD可以通过新增的蓝牙模块或蓝牙适配模块建立蓝牙网络,并通过该蓝牙网络传输数据。相较现有技术,数据传输需要通过有线线缆,在本方案中,存在多个ALD和多个RRU的场景下,不仅可以节省多条线缆的成本,还可以避免多条线缆的连接工作,降低施工难度。
上面对ALD与基站的连接方法进行了介绍,下面将介绍实现该方法的ALD和基站。
请参阅图9,本申请实施例中一种ALD的实施例示意图。
本申请实施例提供的ALD包括:
处理模块901,用于与配置无线通信模块的基站建立第一无线通信链路,该第一ALD包含无线通信模块。
该处理模块901具体用于:与该基站中配置无线通信模块的第一远端射频单元RRU建立该第一无线通信链路。
传输模块902,用于通过该第一无线通信链路与该基站传输数据。
该处理模块901还用于:与配置无线通信模块的第二ALD建立第二无线通信链路,该第二无线通信链路用于该第一ALD与该第二ALD之间的数据传输。
该处理模块901还用于:与该基站中配置无线通信模块的第二RRU建立第三无线通信链路,该第三无线通信链路用于该第一ALD与该第二RRU之间的数据传输。
本申请实施例提供的天线设备可以用于执行图3、图5至图8对应的实施例中ALD与基站的连接方法,具体内容此处不再赘述。
请参阅图10,本申请实施例中一种基站的实施例示意图。
本申请实施例提供的基站包括:
处理模块1001,用于与配置无线通信模块的第一ALD建立第一无线通信链路,该基站包含无线通信模块;
该处理模块1001具体用于:通过配置无线通信模块的第一RRU与该第一ALD建立第一无线通信链路。
传输模块1002,用于通过该第一无线通信链路与该第一ALD传输数据。
该处理模块1001还用于:通过该第一无线通信链路传输第二ALD的控制信号,该第二ALD与该第一ALD通过无线通信链路连接。
该处理模块1001还用于:在配置无线通信模块的第二RRU与该第一ALD之间建立第二无线通信链路,该第二无线通信链路用于该第二RRU与该第一ALD之间的数据传输。
本申请实施例提供的基站远端射频单元可以用于执行图4至图8对应的实施例中ALD与基站的连接方法,具体内容此处不再赘述。
请参阅图11,为本申请实施例中ALD的另一个实施例示意图:
该ALD 1100可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上中央处理器(central processing units,CPU)1101(例如,一个或一个以上处理器)和存储器1104,该存储器1104中存储有一个或一个以上的应用程序或数据。
其中,存储器1104可以是易失性存储或持久存储。存储在存储器1104的程序可以包括一个或一个以上模块,每个模块可以包括对服务器中的一系列指令操作。更进一步地,中央处理器1101可以设置为与存储器1104通信,在中央处理器1101上执行存储器1104中的一系列指令操作。
ALD 1100还可以包括一个或一个以上电源1102,一个或一个以上无线通信模块1103。
本实施例中ALD 1100中的中央处理器1101所执行的流程与前述图3、图5至图8所示的实施例中描述的方法流程类似,此处不再赘述。
请参阅图12,为本申请实施例中基站的另一个实施例示意图:
该基站1200可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上中央处理器(central processing units,CPU)1201(例如,一个或一个以上处理器)和存储器1204,该存储器1204中存储有一个或一个以上的应用程序或数据。
其中,存储器1204可以是易失性存储或持久存储。存储在存储器1204的程序可以包括一个或一个以上模块,每个模块可以包括对服务器中的一系列指令操作。更进一步地,中央处理器1201可以设置为与存储器1204通信,在RRU1201上执行存储器1204中的一系列指令操作。
基站1200还可以包括一个或一个以上电源1202,一个或一个以上无线通信模块1203。
本实施例中基站1200中的中央处理器1201所执行的流程与前述图4至图8所示的实施 例中描述的方法流程类似,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (22)

  1. 一种天线设备ALD与基站的连接方法,其特征在于,包括:
    第一ALD与配置无线通信模块的基站建立第一无线通信链路,所述第一ALD包含无线通信模块;
    所述第一ALD通过所述第一无线通信链路与所述基站传输数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一ALD与配置无线通信模块的基站建立第一无线通信链路包括:
    所述第一ALD与所述基站中配置无线通信模块的第一远端射频单元RRU建立所述第一无线通信链路。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一ALD与配置无线通信模块的第二ALD建立第二无线通信链路,所述第二无线通信链路用于所述第一ALD与所述第二ALD之间的数据传输。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    所述第一ALD与所述基站中配置无线通信模块的第二RRU建立第三无线通信链路,所述第三无线通信链路用于所述第一ALD与所述第二RRU之间的数据传输。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述无线通信模块包括:
    蓝牙模块、无线保真WIFI模块、紫蜂ZigBee模块或物联网IOT模块。
  6. 一种天线设备ALD与基站的连接方法,其特征在于,包括:
    基站与配置无线通信模块的第一ALD建立第一无线通信链路,所述基站包含无线通信模块;
    所述基站通过所述第一无线通信链路与所述第一ALD传输数据。
  7. 根据权利要求6所述的方法,其特征在于,所述基站与配置无线通信模块的第一ALD建立第一无线通信链路,包括:
    所述基站通过配置无线通信模块的第一RRU与所述第一ALD建立第一无线通信链路。
  8. 根据权利要求6或7所述的方法,其特征在于,所述基站通过所述第一无线通信链路与所述第一ALD传输数据还包括:
    所述基站通过所述第一无线通信链路传输第二ALD的控制信号,所述第二ALD与所述第一ALD通过无线通信链路连接。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述基站中配置无线通信模块的第二RRU与所述第一ALD建立第二无线通信链路,所述第二无线通信链路用于所述第二RRU与所述第一ALD之间的数据传输。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述基站通过所述第一RRU与配置无线通信模块的第三ALD建立第三无线通信链路,所述第三无线通信链路用于所述第一RRU与所述第三ALD之间的数据传输。
  11. 根据权利要求6至10中任一项所述的方法,其特征在于,所述无线通信模块包括:
    蓝牙模块、WIFI模块、ZigBee模块或IOT模块。
  12. 一种天线设备ALD,其特征在于,包括:
    处理模块,用于使第一ALD与配置无线通信模块的基站建立第一无线通信链路,所述第 一ALD包含无线通信模块;
    传输模块,用于使所述第一ALD通过所述第一无线通信链路与所述基站传输数据。
  13. 根据权利要求12所述的ALD,其特征在于,所述处理模块具体用于:
    与所述基站中配置无线通信模块的第一远端射频单元RRU建立所述第一无线通信链路。
  14. 根据权利要求12或13所述的ALD,其特征在于,所述处理模块还用于:
    与配置无线通信模块的第二ALD建立第二无线通信链路,所述第二无线通信链路用于所述第一ALD与所述第二ALD之间的数据传输。
  15. 根据权利要求13或14所述的ALD,其特征在于,所述处理模块还用于:
    与所述基站中配置无线通信模块的第二RRU建立第三无线通信链路,所述第三无线通信链路用于所述第一ALD与所述第二RRU之间的数据传输。
  16. 一种基站,其特征在于,包括:
    处理模块,用于与配置无线通信模块的第一ALD建立第一无线通信链路,所述基站包含无线通信模块;
    传输模块,用于通过所述第一无线通信链路与所述第一ALD传输数据。
  17. 根据权利要求16所述的基站,其特征在于,所述处理模块具体用于:
    通过配置无线通信模块的第一RRU与所述第一ALD建立第一无线通信链路。
  18. 根据权利要求16或17所述的基站,其特征在于,所述处理模块还用于:
    通过所述第一无线通信链路传输第二ALD的控制信号,所述第二ALD与所述第一ALD通过无线通信链路连接。
  19. 根据权利要求17或18所述的基站,其特征在于,所述处理模块还用于:
    在配置无线通信模块的第二RRU与所述第一ALD之间建立第二无线通信链路,所述第二无线通信链路用于所述第二RRU与所述第一ALD之间的数据传输。
  20. 根据权利要求17至19中任一项所述的基站,其特征在于,所述处理模块还用于:
    通过所述第一RRU与配置无线通信模块的第三ALD建立第三无线通信链路,所述第三无线通信链路用于所述第一RRU与所述第三ALD之间的数据传输。
  21. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得所述计算机执行如权利要求1至11中任一项所述的方法。
  22. 一种计算机可读存储介质,包括指令,其特征在于,当所述指令在计算机上运行时,使得计算机执行如权利要求1至11中任一项所述的方法。
PCT/CN2019/097632 2018-07-25 2019-07-25 天线设备与基站的连接方法、天线设备和基站 WO2020020273A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810828342.0A CN110769520A (zh) 2018-07-25 2018-07-25 天线设备与基站的连接方法、天线设备和基站
CN201810828342.0 2018-07-25

Publications (1)

Publication Number Publication Date
WO2020020273A1 true WO2020020273A1 (zh) 2020-01-30

Family

ID=69180856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097632 WO2020020273A1 (zh) 2018-07-25 2019-07-25 天线设备与基站的连接方法、天线设备和基站

Country Status (2)

Country Link
CN (1) CN110769520A (zh)
WO (1) WO2020020273A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114499568A (zh) * 2021-12-30 2022-05-13 华为技术有限公司 一种通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1883215A (zh) * 2003-11-17 2006-12-20 艾利森电话股份有限公司 在分布式无线电基站的内部接口上的独立传输的封装
CN101035328A (zh) * 2007-04-25 2007-09-12 中兴通讯股份有限公司 一种无线通信系统中电调天线控制的方法及系统
US20110143813A1 (en) * 2009-12-16 2011-06-16 Fujitsu Limited Wireless base station, wireless apparatus, wireless controlling apparatus, and communication method
CN102135772A (zh) * 2011-03-16 2011-07-27 上海陆译电子有限公司 远端物体姿态信息分级监控系统
CN104869156A (zh) * 2015-04-30 2015-08-26 上海新储集成电路有限公司 一种远距离传输信息的系统及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2414137A (en) * 2004-05-12 2005-11-16 Univ Sheffield Control of Antenna Line Device.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1883215A (zh) * 2003-11-17 2006-12-20 艾利森电话股份有限公司 在分布式无线电基站的内部接口上的独立传输的封装
CN101035328A (zh) * 2007-04-25 2007-09-12 中兴通讯股份有限公司 一种无线通信系统中电调天线控制的方法及系统
US20110143813A1 (en) * 2009-12-16 2011-06-16 Fujitsu Limited Wireless base station, wireless apparatus, wireless controlling apparatus, and communication method
CN102135772A (zh) * 2011-03-16 2011-07-27 上海陆译电子有限公司 远端物体姿态信息分级监控系统
CN104869156A (zh) * 2015-04-30 2015-08-26 上海新储集成电路有限公司 一种远距离传输信息的系统及方法

Also Published As

Publication number Publication date
CN110769520A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
JP7430268B2 (ja) ドナー間の移行の間、iab-ノード構成情報を更新するための方法およびデバイス
TWI471045B (zh) 動態頻寬管理之方法及設備
US10554795B2 (en) Uplink transmission method, related device, and system
KR102256450B1 (ko) 니어 필드 통신(nfc)에서 데이터 패킷 길이를 조정하는 방법, 장치 및 시스템
WO2022083268A1 (zh) 一种数据传输方法及装置
CN102612166A (zh) 一种数据处理方法、基站系统以及相关设备
US20230199580A1 (en) Methods and devices for enhancing mobility robustness to integrated access and backhaul for new radio
US9706477B2 (en) Method and device for configuring multi-band based link in wireless LAN system
WO2020020273A1 (zh) 天线设备与基站的连接方法、天线设备和基站
EP3139562B1 (en) Network protocol configuration method and device
US8989754B2 (en) Systems and method for BT AMP and WLAN concurrency
WO2021138764A1 (zh) 通信方法和装置
CN102835145B (zh) 电调方法、装置和系统
US11233540B2 (en) Apparatus and methods for G3-PLC bootstrap in a hybrid network
WO2024093524A1 (zh) 数据传输的方法、通信装置以及系统
WO2024119487A1 (zh) 电调设备的管理方法与通信装置
EP3556152B1 (en) Transmission power adjustments
US20230018858A1 (en) Multiple coexisting personal area networks having different handshaking
TWI670984B (zh) 網路通訊裝置、無線基地台以及無線中繼器
KR20230065323A (ko) 데이터 전송 방법, 통신 장치, 컴퓨터가 판독 가능한 저장 매체 및 칩
CN117615447A (zh) 通信方法及装置、电子设备、芯片及可读存储介质
KR20230033964A (ko) 메시 네트워크 시스템 및 설정 유지 방법
CN115150479A (zh) 蓝牙消息的传输方法、装置及蓝牙网络
CN114666824A (zh) 一种基于自组网通信的无线电台信息处理方法
CN115776735A (zh) 一种应用于通道直接链路建立的传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840687

Country of ref document: EP

Kind code of ref document: A1