WO2022083268A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2022083268A1
WO2022083268A1 PCT/CN2021/114164 CN2021114164W WO2022083268A1 WO 2022083268 A1 WO2022083268 A1 WO 2022083268A1 CN 2021114164 W CN2021114164 W CN 2021114164W WO 2022083268 A1 WO2022083268 A1 WO 2022083268A1
Authority
WO
WIPO (PCT)
Prior art keywords
access point
station
access points
access
controller
Prior art date
Application number
PCT/CN2021/114164
Other languages
English (en)
French (fr)
Inventor
李苗
谌金豆
司小书
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023524440A priority Critical patent/JP2023546242A/ja
Priority to EP21881687.4A priority patent/EP4221349A4/en
Priority to MX2023004547A priority patent/MX2023004547A/es
Publication of WO2022083268A1 publication Critical patent/WO2022083268A1/zh
Priority to US18/303,203 priority patent/US20230262522A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • H04W40/16Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality based on interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a data transmission method and apparatus.
  • Wi-Fi Wireless-Fidelity
  • WLAN wireless local area network
  • VR virtual reality
  • FTTH fiber to the room
  • FTTR fiber to the room
  • the Wi-Fi access point and its network-side equipment are connected by optical fibers.
  • data backhaul can be carried out through a large-bandwidth, low-latency optical link without occupying Wi-Fi air interface resources, which greatly improves the effect of multi-access point collaboration and data transmission efficiency.
  • the FTTR architecture solves the problems of insufficient Wi-Fi coverage and limited backhaul bandwidth, there are still problems that Wi-Fi seamless roaming and high throughput cannot coexist.
  • the embodiments of the present application provide a data transmission method and apparatus, which can provide a terminal device with an optimal network access mode and data transmission mode.
  • an embodiment of the present application provides a data transmission method, which is applied to a controller, and the controller is used to control multiple access points; the method includes: the controller receives performance parameters sent by each access point; wherein, the performance The parameter is used to represent the communication performance between the access point sending the performance parameter and the first site; the controller determines the set of access points for providing data transmission services for the first site according to the received performance parameters, and then The access point set includes at least one access point in the multiple access points; when the access point set includes at least two access points, the controller according to the performance parameters sent by each access point in the access point set, A data transmission mode between each access point in the set of access points and the first station is determined.
  • the access point and data transmission mode that provide data transmission service for the site can be selected, so that the site can be provided with better network access mode and data transmission mode, Improve the user's communication experience.
  • the performance parameter includes at least one of a received signal strength indication RSSI at which the access point receives a signal sent by the first station and load information of the access point.
  • the access point that provides the data transmission service for the station can be determined according to the load of the access point and the signal strength between the access point and the station, so that the light load and strong signal can be selected.
  • the data transmission service provided by the access point for the site can be determined according to the load of the access point and the signal strength between the access point and the station, so that the light load and strong signal can be selected.
  • the performance parameter sent by any access point in the determined set of access points satisfies: the RSSI is greater than a preset strength threshold, and the load information is less than the preset load threshold.
  • the access point whose load and signal strength meet the preset requirements provides data transmission services for the site, thereby ensuring or improving the network service quality of the site and improving the user communication experience.
  • the controller is independent of each of the multiple access points, or the controller is integrated in one of the multiple access points.
  • the controller can be set flexibly, which can facilitate networking.
  • the controller when the controller is independent of each access point in the multiple access points, the controller receives the performance parameters sent by each access point through an optical link or a Wi-Fi channel; or, When the controller is integrated in one access point among multiple access points, the controller receives access points other than the access point where the controller is located among the multiple access points through an optical link or a Wi-Fi channel Sent performance parameters.
  • the backhaul channel of the access point can be flexibly selected or configured, which can facilitate networking.
  • the multiple access points include a first access point and a second access point, and the first station goes online through the first access point; the method further includes: the controller accesses from the first access point The point receives the online information of the first site; the controller sends the online information to the second access point.
  • each access point can share the online information of the site, so that each access point can use the online information of the site to establish a connection with the site.
  • the online information includes association request information and a key.
  • the online information shared between each access point includes association request information and a key, and each access point can use the association request information and key to establish a connection with a station.
  • multiple access points have the same basic service set identifier BSSID.
  • different access points have the same BSSID, so that a station can connect to multiple access points at the same time.
  • the controller determines, according to performance parameters sent by each access point in the access point set, a data transmission mode between each access point in the access point set and the first station, including : when the performance parameters corresponding to each access point in the access point set do not meet the preset performance requirements, determine that different access points in the access point set respectively send the same data to the first station at different times.
  • multiple access points can send the same data to it, thereby providing a probability that the station successfully receives the data.
  • the controller determines, according to performance parameters sent by each access point in the access point set, a data transmission mode between each access point in the access point set and the first station, including : When the performance parameters corresponding to each access point in the access point set all meet the preset performance requirements, determine that different access points in the access point set send different data to the first site at the same time.
  • the controller determines, according to performance parameters sent by each access point in the access point set, a data transmission mode between each access point in the access point set and the first station, including : When the performance parameters of the third access point in the access point set meet the preset performance requirements, and the access points other than the third access point in the access point set do not meet the performance requirements, configure the third access point The point is the main access point in the access point set; the main access point is used to send data to the first station independently.
  • an access point with better communication performance with the site can be selected to provide data transmission services for the site, so that both the communication service quality of the site and the network can be taken into account. the overall cost.
  • the master access point is further configured to, when receiving the first data sent by the first site, send a confirmation character corresponding to the first data to the first site.
  • one access point is configured to return confirmation characters to the station, thereby avoiding conflicts caused by multiple access points returning confirmation characters.
  • the access point set includes a fourth access point and a fifth access point; the controller determines, according to performance parameters sent by each access point in the access point set, the The data transmission mode between each access point and the first site includes: configuring the sending time of the fourth access point to send the uplink resource configuration information to the first site as the first time; configuring the fifth access point to send the first time
  • the sending moment when the station sends the uplink resource configuration information is the second moment; wherein, the second moment is later than the first moment; when at the second moment, the first station responds to the uplink resource configuration information sent by the fourth access point, When sending the uplink data, the fifth access point no longer sends the uplink resource configuration information to the first station.
  • an embodiment of the present application provides a data transmission method, which is applied to a first access point among multiple access points controlled by a controller; the method includes: the first access point determines a first performance parameter , the first performance parameter is used to represent the communication performance between the first access point and the first site; when the first performance parameter meets a preset performance requirement, a data transmission service is provided for the first site.
  • the data transmission service is provided for the station, thereby taking into account the network service quality of the station and the overall network overhead.
  • the method further includes: the first access point sends online information to the controller, where the online information is information obtained by the first access point when the first site goes online through the first access point .
  • the controller may send the online information to a second access point among the multiple access points, so as to share the online information among the multiple access points.
  • a station can go online through a single access point, and the access point can send the on-line information to the controller so that the controller can send the on-line information to other access points so that other access points can go online.
  • Ingress can connect sites without going through the go-live process.
  • the multiple access points further include a second access point; the first station goes online through the second access point; the method further includes: the first access point receives the first station from the controller The online information is received by the controller from the second access point.
  • the controller can share the online information obtained by an access point when the site goes online to other access points, so that other access points can connect to the site without going online. .
  • the online information includes association request information and a key.
  • the online information shared between each access point includes association request information and a key, and each access point can use the association request information and key to establish a connection with a station.
  • an embodiment of the present application provides a data transmission device for controlling multiple access points; the device includes: a communication unit, configured to receive performance parameters sent by each access point; wherein the performance parameters are used for Represents the communication performance between the access point that sends the performance parameter and the first site; the first determining unit is configured to determine, according to each received performance parameter, an access point set for providing data transmission services for the first site , the access point set includes at least one access point in the multiple access points; the second determination unit is used for, when the access point set includes at least two access points, according to each access point in the access point set The performance parameter sent by the access point determines the data transmission mode between each access point in the access point set and the first station.
  • the performance parameter includes at least one of a received signal strength indication RSSI at which the access point receives a signal sent by the first station and load information of the access point.
  • the performance parameter sent by any access point in the determined access point set satisfies: the RSSI is greater than a preset strength threshold, and the load information is less than the preset load threshold.
  • the apparatus is independent of each access point among the multiple access points, or the apparatus is integrated in one access point among the multiple access points.
  • the communication unit when the apparatus is independent of each access point in the multiple access points, the communication unit receives the performance parameters sent by each access point through an optical link or a Wi-Fi channel; or, When the device is integrated in one of the multiple access points, the communication unit receives access points other than the access point where the device is located among the multiple access points through an optical link or a Wi-Fi channel Sent performance parameters.
  • the multiple access points include a first access point and a second access point, and the first station goes online through the first access point; the communication unit is further configured to: connect from the first access point Receive the online information of the first site; send the online information to the second access point.
  • the online information includes association request information and a key.
  • multiple access points have the same basic service set identifier BSSID.
  • the second determining unit is further configured to: when the performance parameters corresponding to each access point in the access point set do not meet the preset performance requirements, determine the difference in the access point set.
  • the access point sends the same data to the first station at different times.
  • the second determining unit is further configured to: when the performance parameters corresponding to each access point in the access point set meet the preset performance requirements, determine different access points in the access point set The in-points respectively send different data to the first station at the same time.
  • the second determining unit is further configured to: when the performance parameter of the third access point in the access point set meets the preset performance requirement, the third access point in the access point set except the third access point When the external access points do not meet the performance requirements, configure the third access point as the primary access point in the access point set; the primary access point is used to send data to the first site independently.
  • the master access point is further configured to, when receiving the first data sent by the first site, send a confirmation character corresponding to the first data to the first site.
  • the access point set includes a fourth access point and a fifth access point; the second determining unit is further configured to: configure the fourth access point to send the uplink resource configuration information to the first station
  • the sending time is the first time; the sending time when the fifth access point is configured to send the uplink resource configuration information to the first site is the second time; wherein, the second time is later than the first time; when at the second time, the first site
  • the fifth access point no longer sends the uplink resource configuration information to the first station.
  • the data transmission device provided in the third aspect is used to execute the corresponding method provided in the first aspect, therefore, the beneficial effects that can be achieved may refer to the beneficial effects in the corresponding method provided in the first aspect, It will not be repeated here.
  • an embodiment of the present application provides a data transmission device, the device includes: a determination unit configured to determine a first performance parameter, where the first performance parameter is used to represent the communication performance between the device and the first site; A providing unit is configured to provide a data transmission service for the first site when the first performance parameter meets a preset performance requirement.
  • the device further includes: a communication unit, configured to send online information to the controller, where the online information is information obtained by the device when the device goes online through the device at the first site.
  • the controller may send the online information to the second access point controlled by the controller, so as to share the online information among the access points controlled by the controller.
  • the first site goes online through the second access point; the apparatus further includes: a communication unit, configured to receive online information of the first site from the controller, where the online information is the information obtained by the controller from the second access point. received by the entry point.
  • a communication unit configured to receive online information of the first site from the controller, where the online information is the information obtained by the controller from the second access point. received by the entry point.
  • the online information includes association request information and a key.
  • the data transmission device provided in the fourth aspect is used to execute the corresponding method provided in the second aspect. Therefore, for the beneficial effects that can be achieved, reference may be made to the beneficial effects in the corresponding method provided in the second aspect, It will not be repeated here.
  • an embodiment of the present application provides a controller, including a processor, a memory, and a transceiver; the memory is used to store computer instructions; when the controller runs, the processor executes the computer instructions, so that the controller executes the first aspect provided method.
  • an embodiment of the present application provides an access point, including a processor, a memory, and a transceiver; the memory is used to store computer instructions; when the access point is running, the processor executes the computer instructions, so that the access point executes The method provided by the second aspect.
  • an embodiment of the present application provides a computer storage medium, where the computer storage medium includes computer instructions, when the computer instructions are executed on an electronic device, the electronic device is made to execute the method provided in the first aspect.
  • an embodiment of the present application provides a computer storage medium, where the computer storage medium includes computer instructions, when the computer instructions are executed on an electronic device, the electronic device is made to execute the method provided in the second aspect.
  • an embodiment of the present application provides a computer program product.
  • the program code included in the computer program product is executed by a processor in an electronic device, the method provided in the first aspect is implemented.
  • an embodiment of the present application provides a computer program product.
  • the program code included in the computer program product is executed by a processor in an electronic device, the method provided in the second aspect is implemented.
  • an embodiment of the present application provides a chip system, where the chip system includes: a processor configured to execute an instruction, so that a controller installed with the chip system executes the method provided in the first aspect.
  • an embodiment of the present application provides a chip system, where the chip system includes: a processor configured to execute an instruction, so that an access point installed with the chip system executes the method provided in the second aspect .
  • an embodiment of the present application provides an integrated circuit, including: a memory for storing an instruction; and a processor coupled with the memory for executing the instruction, so as to implement the method provided in the first aspect.
  • an embodiment of the present application provides an integrated circuit, including: a memory for storing an instruction; and a processor coupled with the memory for executing the instruction, so as to implement the method provided in the second aspect.
  • the data transmission method and device provided by the embodiments of the present application can select one or more service access points for the site according to the channel environment where the site is located, and select a data transmission mode between multiple service access points and the site, It ensures the optimal or better network access and data transmission mode for the site, and improves the user's communication experience.
  • Figure 1 is a schematic diagram of a fiber-to-the-home network architecture
  • Figure 2 is a schematic diagram of a fiber-to-the-room network architecture
  • FIG. 3 is a schematic diagram of a Wi-Fi network architecture
  • FIG. 4 is a network logical architecture provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a virtual cell provided by an embodiment of the present application.
  • FIG. 6 is a flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 8 is a flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 9 is a flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 10 is a flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 11 is a flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a data transmission apparatus provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a data transmission apparatus provided by an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a controller provided by an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of an access point provided by an embodiment of the present application.
  • FIG. 16 is a schematic block diagram of a chip system provided by an embodiment of the present application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • Passive optical network is a technology that provides optical fiber communication services for home users.
  • a PON includes an optical line terminal (OLT) serving as an endpoint of a network service provider and multiple optical network terminals (ONTs) or optical network units (ONUs) located at the user end.
  • the OLT can be connected to the front-end (aggregation layer) switch through a network cable, and the OLT and the ONT (or ONU) can be connected through an optical fiber.
  • the OLT can be used to convert between electrical signals and optical signals, and to control and manage ONTs and ONUs.
  • the ONT or ONU can provide Wi-Fi network coverage.
  • FIG. 1 shows a fiber to the home (fiber to the home, FTTH) network architecture, which is a traditional application architecture of PON.
  • the OLT can use optical fibers to connect with a passive splitter (passive splitter) in the optical distribution network (ODN) at the user end. It is connected to different ONTs or ONUs through different optical fibers through passive optical splitters.
  • passive splitter passive splitter
  • FTTR fiber to the room
  • a single room in a home can be provided with one or more ONTs, so that the one or more ONTs can provide network services for the single room, so as to improve the bandwidth, delay, and coverage of the Wi-Fi network.
  • the ONT under the FTTR architecture can also be called an edge ONT (edge ONT).
  • FIG 2 shows an FTTH network architecture.
  • the OLT can be connected to multiple ONTs in the same family through optical fibers and optical splitters.
  • the multiple ONTs may be deployed in different rooms in the home.
  • ONT1 is set up in room 1
  • ONT2 is set up in room 2
  • ONT3 is set up in room 3, and so on.
  • a controller for controlling the plurality of ONTs may be provided.
  • the controller may also be called a mini OLT (mini OLT).
  • the controller may be independent of the plurality of ONTs. Specifically, it can be set independently or integrated into devices other than the multiple ONTs. For example, as shown in Figure 2, it can be integrated into a PON gateway. In this example, the controller may be optically connected to each of the plurality of controllers.
  • the controller may be integrated into one ONT of the plurality of ONTs, eg, into ONT1.
  • the ONT where the controller is located may be connected to other ONTs through optical fibers.
  • the above-mentioned ONT, ONU, and edge ONT may be a device carrying a Wi-Fi chip, and may provide Wi-Fi network coverage for a station (station, STA). That is to say, the above ONTs, ONUs, and edge ONTs can be used as access points (access points, APs) for terminal devices to access the network. Therefore, in the embodiments of the present application, the above-mentioned ONTs, ONUs, and edge ONTs may be collectively referred to as access points.
  • FIG. 3 shows a Wi-Fi network architecture, which may include a controller and multiple access points controlled by the controller, and the multiple access points may include access point 1 and access point 2 , access point 3, etc.
  • Each access point can provide Wi-Fi network coverage.
  • the controller may be integrated into one of the plurality of access points. For example, integrated into access point 1.
  • the access point where the controller is located can be connected with other access points through a Wi-Fi channel.
  • the controller may be independent of the multiple access points, and connect with the access points of the multiple access points through a Wi-Fi channel.
  • different access points have different basic service set identifiers (BSSIDs), and a station can only connect to one access point at a time. Therefore, if the network architecture shown in FIG. 2 or FIG. 3 adopts this solution, whenever access to an access point is required, the site and the access point need to perform a complete site online process (including association, key negotiation, etc. ). As a result, when a station roams between different access points, the roaming switching time is long, which leads to interruption of service flow and poor user experience. In addition, different terminal devices are quite different, and some terminal devices may not support the Wi-Fi roaming agreement, so there is also a problem of non-roaming.
  • BSSIDs basic service set identifiers
  • all access points within the network may be configured with the same basic service set identifier.
  • Each access point may broadcast a beacon frame, which carries a basic service set identifier. After receiving the beacon frame, the station can perceive that the basic service set identifier of the access point in the network is unique.
  • the access point that the site originally accessed will send the site's secret key and other information required for connection to the new access point in advance, so that the site can roam seamlessly (the roaming switching time is Millimeter level, basically will not cause packet loss) to the new access point.
  • the roaming switching time is Millimeter level, basically will not cause packet loss
  • the basic service set identifiers of all access points in the network are the same, so that the uplink data sent by the station may be received by multiple access points in the network, and the multiple access points receive uplink data.
  • Acknowledgment character (ACK) or block ACK (block ack, BA) is replied, resulting in ACK or BA conflict on the site side.
  • the wireless bandwidth of this solution is low, and it is difficult to meet the large bandwidth requirements of the home network.
  • an access point may be configured with multiple virtual access points (virtual access points, VAPs), and different access points have different basic service set identifiers. That is, an access point may have multiple basic service set identifiers, and assign one of the basic service set identifiers to a certain station. When the station moves to the coverage area of the new access point, the new access point can assign the same basic service set identifier to the station, so that the basic service set identifier perceived by the station is unique, so as to realize seamless roaming. In this solution, the access point needs to assign different basic service set identifiers to different stations, which easily leads to a conflict between the basic service set identifier and the basic service set identifier mask.
  • VAPs virtual access points
  • the access point needs to broadcast beacon frames carrying different basic service set identifiers, resulting in high overhead of beacon frames.
  • the number of virtual access points that can be configured is limited, so that the number of stations connected to the access point is also limited.
  • This embodiment of the present application provides a data transmission method, which can be applied to the network architecture shown in FIG. 2 or FIG. 3 .
  • the controller can select one or more access points to cooperatively provide data transmission services for the station; and when multiple access points cooperate to provide data transmission services for the station, it can select the Mode of data transfer between multiple access points and sites. Therefore, according to the channel environment between the access point and the station, the access point to which the station is connected can be flexibly selected, and the data transmission mode between the access point and the station can be selected, which ensures the optimal wireless network for the station. Access and data transmission modes improve user communication experience.
  • the access point may be a communication device that supports one or more of 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • the access point may be the ONT or ONU shown in FIG. 1 or FIG. 2 , or may be the access point shown in FIG. 3 .
  • Sites can be terminal devices such as mobile phones, laptop computers, tablet computers, smart wearable devices, and smart home appliances.
  • FIG. 4 shows a network logical architecture provided by an embodiment of the present application.
  • the logical architecture can be applied to the network architecture shown in FIG. 2 or FIG. 3 .
  • the control point A1 can control multiple access points such as the access point B1, the access point B2, and the access point B3.
  • the controller A1 can be integrated in the access point B1.
  • the controller A1 can respectively connect access points other than the access point B1, such as the access point B2, the access point B3, etc., through optical fibers.
  • Multiple access points such as access point B1, access point B2, and access point B3 may have the same basic service set identifier C1.
  • the same basic service set identifier can be manually configured or automatically configured by the controller A1.
  • the controller A1 can control the access point B1, the access point B2, and the access point B3 to select the same Wi-Fi channel (eg, channel 36) as a fronthaul channel, so as to provide data transmission services for the same site in a coordinated manner.
  • the same Wi-Fi channel eg, channel 36
  • a station within the coverage area of the access point can go online through the access point, for example, the station D1 can go online through the access point B1.
  • a site goes online means that a Wi-Fi link is established between a site and an access point, and data interaction is performed through the Wi-Fi link, so that the site can access networks such as the Internet through the access point.
  • the process of a site going online includes the following steps:
  • the station sends probe request (probe request) information to the access point;
  • the access point returns probe response information to the site
  • the station sends authentication request (authentication request) information to the access point;
  • the access point returns authentication response (authentication response) information to the site;
  • association request information to the access point
  • the association request information may also be called an association request frame, which is necessary information for the access point to establish a connection with the station, including the capability information of the station ( For example, the communication protocol supported by the station), so that the access point communicates with the station in a communication mode that conforms to the station's capability.
  • the access point returns association response information to the site
  • a key negotiation can be performed between the access point and the station to generate a key for communication between the two parties.
  • multiple access points such as access point B1, access point B2, and access point B3 have the same basic service set identifier, and the association request information sent during the online process of the site may be used by multiple access points. Received, therefore, it may happen that multiple access points send association response information to the site, resulting in a conflict that affects the site going online.
  • each access point that receives the association request information sends the received association request information to the controller A1 and the information used to indicate the communication performance between the access point and the station D1
  • the performance parameters occur to controller A1.
  • the controller A1 may determine the access point for responding to the association request information according to the performance parameter sent by the access point. details as follows.
  • the performance parameters sent by the access point to controller A1 may include load information for the access point itself.
  • the load information can represent the busyness of the Wi-Fi channel of the access point B1. The higher the load, the busier the Wi-Fi channel, and the lower the communication performance; the lower the load, the more idle the Wi-Fi channel, and the higher the communication performance.
  • the load information may be the number of stations connected to the access point.
  • the load information may include the number and type of sites to which the access point is connected. Among them, different site types correspond to different load weights. The correspondence between site types and load weights can be preset.
  • the load weight corresponding to the site type of mobile phone is 1; the load weight corresponding to the site type of VR equipment is 2; the load weight corresponding to the site type of smart refrigerator is 0.2.
  • the controller A1 can determine the load of the access point according to the load information of the access point. Exemplarily, when the load information is the number of stations, the greater the number of stations, the greater the load of the access point. Exemplarily, when the load information includes the number of sites and the site type, the weighted load can be obtained by multiplying the number of sites of the same type by the load weight corresponding to the type. The weighted loads for each site type are then added together, and the resulting sum can be used to represent the access point's load.
  • controller A1 may select an access point for responding to the association request information according to the load of the access point.
  • the controller A1 may receive the association request information and the load information of the access point B1 sent by the access point B1, and the association request information and the load information of the access point B2 sent by the access point B2. Then, determine whether the association request information sent by the access point B1 and the association request information sent by the access point B2 originate from the same site; and determine the load of the access point B1 according to the load information sent by the access point B1; The load information sent by the point B2 determines the load of the access point B2.
  • the controller A1 may determine that the access point B1 is the access point for responding to the association request information.
  • the performance parameter sent by the access point to the controller A1 may include a received signal strength indication (RSSI) of the Wi-Fi signal sent by the access point receiving the station D1.
  • RSSI received signal strength indication
  • the access point may measure the received Wi-Fi signal sent by the station D1 to obtain the RSSI. It can be understood that the RSSI can reflect the communication performance of a channel or link, and the higher the RSSI, the higher the communication performance.
  • the controller A1 may select the access point for responding to the association request information according to the RSSI of the Wi-Fi signal sent by the access point receiving the station D1.
  • the controller A1 can receive the association request information sent by the access point B1 and the RSSI of the Wi-Fi signal sent by the access point B1 to the station D1, as well as the association request information and the connection request sent by the access point B2.
  • the in-point B1 receives the RSSI of the Wi-Fi signal sent by the station D1.
  • the controller A1 can determine that the access point B1 is the access point for responding to the association request information.
  • the performance parameters sent by the access point to the controller A1 may include the load information of the access point itself and the RSSI of the access point receiving the Wi-Fi signal sent by the station D1.
  • the controller A1 can comprehensively consider the load information of the access point itself and the RSSI of the access point receiving the Wi-Fi signal sent by the station D1, and determine the access point for responding to the association request information.
  • at least one access point whose RSSI of the Wi-Fi signal sent by the receiving station D1 is greater than a preset strength threshold may be determined, and then the access point with the least load among the at least one access point is determined as the Access point for responding to association request information.
  • one or more access points whose load is less than a preset load threshold may be determined, and then, among the one or more access points, the access point with the highest RSSI receiving the Wi-Fi signal sent by the station D1 is determined.
  • the access point is the access point used to respond to the association request message. It can be set that through the foregoing scheme, the controller A1 can determine the access point B1 as the access point for responding to the association request information.
  • the access point (access point B1 ) for responding to the association request information can be determined.
  • the access point (access point B1) that is used to respond to the association request information sends the association response information to the site D1, while other access points do not send the association response information to the point D1, so that the site D1 can go online at a single point and avoid multiple connections.
  • the BSSID of the entry point is the same, resulting in an online conflict.
  • the access point B1 can send the online information of the site D1 to the controller A1.
  • the controller A1 can send the online information to each access point it controls, so that each access point can share the online information.
  • Online information refers to the information required to establish a Wi-Fi link, which is generated by the cooperation of the site and the access point during the online process of the site.
  • the access point can obtain online information.
  • the online information includes association request information and a secret key.
  • the association request information is specifically the association request information sent by the station to the access point during the online process;
  • the secret key is the secret key negotiated by the station and the access point during the online process.
  • each access point controlled by the controller A1 can obtain the online information of the site D1, so that a Wi-Fi link connecting the site D1 can be established under certain conditions.
  • each access point may acquire a performance parameter used to represent the communication performance between it and the station D1, and determine whether the performance parameter satisfies the preset performance requirement E1.
  • the access point may establish a Wi-Fi link connecting the station D1, so as to provide the station D1 with a data transmission service.
  • Each access point may send performance parameters to the controller A1 to represent the performance of the communication between it and the station D1.
  • the controller A1 determines that the performance parameter meets the preset performance requirement E1, it can determine that the access point that sends the performance parameter provides the station D1 with a data transmission service.
  • the controller A1 can determine one or more access points for providing the data transmission service for the station D1 from among the plurality of access points controlled by the controller A1.
  • the one or more access points may form an access point set, which is used for cooperatively providing a data transmission service for the station D1 according to the control of the controller A1.
  • the access points in the access point set jointly provide Wi-Fi network coverage for the site D1.
  • the Wi-Fi network coverage provided by the access points in the access point set jointly for the station D1 may be referred to as a virtual cell.
  • virtual cells of different sites can be determined by the above method.
  • the access point B1 and the access point B2 may jointly provide the virtual cell F1 for the site D1.
  • Access point B1 may provide virtual cell F2 for site D2.
  • Access point B2 and access point B3 may jointly provide virtual cell F3 for site D3.
  • the performance parameters sent by the access point B1 to the controller A1 can be used to represent the communication performance between the access point B1 and the station D1. That is, the performance parameters may include indicators for representing the communication performance of the Wi-Fi link.
  • the performance parameter may include the RSSI of the access point B1 receiving the Wi-Fi signal sent by the station D1.
  • the performance requirement E1 includes a preset intensity threshold value G1.
  • the performance parameters satisfying the performance requirement E1 include that the RSSI is greater than the strength threshold G1.
  • the performance parameters sent by the access point B1 to the controller may include load information of the access point B1.
  • the load information may be the number of sites connected to the access point B1, or may be the number and type of sites connected to the access point B1.
  • the performance requirement E1 includes a preset load threshold H1.
  • the performance parameter satisfying the performance requirement E1 includes that the load information (or the load determined by the load information) is smaller than the load threshold H1.
  • the performance parameters may include both RSSI and load information.
  • the performance requirement E1 includes both an intensity threshold G1 and a load threshold H1.
  • the performance parameters satisfy the performance requirement E1 and simultaneously include that the RSSI is greater than the strength threshold G1, and the load information (or the load determined by the load information) is less than the load threshold H1.
  • the performance parameter sent by the access point B1 to the controller may include the service type of the service performed by the station D1. It can be understood that different service types have different requirements on the communication performance of the channel. It can be understood that for high-demand services such as VR services and voice services that require low latency and large bandwidth, they have higher requirements on the communication performance of the channel.
  • the service type performed by the site D1 included in the performance parameter is a high-demand service
  • the controller A1 may continue to execute the data transmission method provided by the embodiment of the present application, that is, determine an access point for jointly providing a data transmission service for the site D1 gather. It can be understood that low-demand services such as background (background, BK) services and best effort (best effort, BE) services have lower communication requirements.
  • the controller A1 may stop executing the data transmission method provided by the embodiment of the present application, and directly instruct an access point (eg, access point B1) to be Site D1 provides data transmission services.
  • an access point eg, access point B1
  • each access point may periodically (eg, every 1 second or other preset duration) send its most recently acquired performance parameters to controller A1, or each access point may send its The currently acquired performance parameters are sent to the controller A1.
  • the controller A1 can update the set of access points used to provide data transmission services for the station according to the performance parameters sent by each access point recently received, so as to realize that the station can access in an optimal or optimal way at different times The internet.
  • the controller A1 can determine the set of access points for providing the data transmission service for the station D1.
  • the controller A1 may also determine the data transmission mode between each access point and the station D1 according to the performance parameter sent by each access point in the access point set. Next, an example is introduced.
  • the controller A1 may execute step 601 to determine the access point set P1 for providing data transmission for the station D1.
  • step 601 may determine the access point set P1 for providing data transmission for the station D1.
  • the controller A1 may execute step 602 to determine whether the number of access points in the access point set P1 is greater than 1.
  • the controller A1 may execute step 603 to instruct the access points in the access point set P1 to perform single access point transmission.
  • single access point transmission reference may be made to the introduction of the prior art, and details are not repeated here.
  • the controller A1 may execute step 604 to determine whether the performance parameters sent by each access point in the access point set P1 do not meet the preset requirements at the same time
  • the performance requirement is E2. That is to say, it is determined that the performance parameters sent by each access point do not meet the performance requirement E2.
  • the performance requirement E2 is higher than the performance requirement E1. In other words, the performance requirements E2 are more stringent than the performance requirements E1.
  • the performance parameters sent by each access point may include RSSI.
  • the performance requirement E2 may include a preset intensity threshold G2, wherein the intensity threshold G2 is higher than the intensity threshold G1.
  • the performance parameters sent by each access point in the access point set P1 do not meet the preset performance requirement E2 at the same time, which may specifically mean that the RSSI of each access point is smaller than the strength threshold G2.
  • the performance parameters sent by each access point may include load information.
  • the performance requirement E2 may include a preset load threshold value H2, wherein the load threshold value H2 is smaller than the load threshold value H1.
  • the performance parameters sent by each access point in the access point set P1 do not meet the preset performance requirement E2 at the same time, which may specifically mean that the load information (or the load determined by the load information) of each access point is greater than the load threshold H2 .
  • the performance parameters sent by each access point may include RSSI and load information.
  • the performance requirement E2 may include a preset intensity threshold G2 and a preset load threshold H2, wherein the intensity threshold G2 is higher than the intensity threshold G1, and the load threshold H2 is smaller than the load threshold H1.
  • the performance parameters sent by each access point in the access point set P1 do not meet the preset performance requirement E2 at the same time, which may specifically mean that the RSSI of each access point is less than the strength threshold G2, and/or the load of each access point
  • the information (or the load determined by the load information) is all greater than the load threshold H2.
  • the controller A1 may execute step 605 to determine that different access points in the access point set P1 respectively send the same data to the station D1 at different times.
  • the controller A1 or other network-side device may send the downlink data Q1 destined for the station D1 to each access point in the access point set P1.
  • the controller A1 configures the sending time of each access point to send the downlink data Q1 to the station D1, wherein the sending time of different access points is different.
  • the controller A1 may send the downlink data Q1 destined for the station D1 to different access points in the access point set P1 at different times.
  • each access point can send the downlink data Q1 to the station D1.
  • different access points send the same data to the site D1 at different times, thereby ensuring the accuracy of the downlink data received by the site D1 when the network environment of the site D1 is poor.
  • step 606 may be performed after step 604 .
  • the controller A1 may execute step 606 .
  • the performance parameters sent by each access point may include RSSI.
  • the performance requirement E2 may include a preset intensity threshold G2, wherein the intensity threshold G2 is higher than the intensity threshold G1.
  • the performance parameters sent by each access point in the access point set P1 simultaneously meet the preset performance requirement E2, which may specifically mean that the RSSI of each access point is not less than the strength threshold G2.
  • the performance parameters sent by each access point may include load information.
  • the performance requirement E2 may include a preset load threshold value H2, wherein the load threshold value H2 is smaller than the load threshold value H1.
  • the performance parameters sent by each access point in the access point set P1 do not meet the preset performance requirement E2 at the same time, which may specifically mean that the load information of each access point (or the load determined by the load information) is not greater than the load threshold. H2.
  • the performance parameters sent by each access point may include RSSI and load information.
  • the performance requirement E2 may include a preset intensity threshold G2 and a preset load threshold H2, wherein the intensity threshold G2 is higher than the intensity threshold G1, and the load threshold H2 is smaller than the load threshold H1.
  • the performance parameters sent by each access point in the access point set P1 do not meet the preset performance requirement E2 at the same time, which may specifically mean that the RSSI of each access point is not less than the strength threshold G2, and the load information of each access point ( In other words, the load determined by the load information) is not greater than the load threshold H2.
  • the controller A1 may execute step 607 to determine that different access points in the access point set P1 respectively report to the station at the same time D1 sends different data.
  • the access points in the access point set P1 may use a distributed multiple-in multiple-out (multiple-in multiple-out, MIMO) manner to send downlink data to the station D1.
  • the controller A1 may notify each access point in the access point set P1 to perform time slot synchronization.
  • Time slot synchronization can be understood as clock synchronization.
  • each access point in the access point set P1 can use the same clock.
  • the controller A1 may also notify each access point in the access point P1 to perform channel sounding respectively.
  • the access point B1 may send a channel sounding signal (eg, a null data packet (NDP)) to the station D1.
  • NDP null data packet
  • the station D1 may send a channel sounding result (eg, feedback a null data packet (feedback NDP)) to the access point B1.
  • the access point B1 can report the channel detection result to the controller A1.
  • Each access point in the access point set P1 can report its channel detection result to the controller A1.
  • the controller A1 may determine a precoding matrix for distributed MIMO according to the channel sounding results reported by each access point.
  • the precoding matrix may include precoding vectors corresponding to respective access points.
  • the controller A1 may deliver the precoding vectors to the corresponding access points respectively. Then, each access point can use its own precoding vector to send different downlink data to the station to achieve multi-channel concurrency.
  • step 604 and step 606 may execute step 608 to determine a master access point from the access point set P1, where the master access point is used to provide a data transmission service for the station D1 alone.
  • the controller A1 can use the access point whose sent performance parameters meet the performance requirement E2 as the master access point, and control the master access point to provide data transmission services for the site D1, while other access points are no longer the site D1 provides data transmission services.
  • the master access point for example, the access point with the smallest load or the largest RSSI may be determined as the master access point. point.
  • the data transmission service in step 608 may specifically refer to a downlink data transmission service. That is, the controller A1 controls the master access point to send the downlink data received from the network side to the station D1, while other access points do not send the downlink data to the station D1.
  • the data transmission service in step 608 may include an uplink data transmission service and a downlink data transmission service. That is, the controller A1 instructs the master access point to provide the station D1 with an uplink data transmission service and a downlink data transmission service. Other access points no longer receive or process the uplink data sent by the site D1, nor send downlink data to the site D1.
  • FIG. 7 shows a data transmission method provided by an embodiment of the present application, which can be applied to a scenario where a station is located in a poor channel environment.
  • the site D1 and the access point B1 can perform the online process or the online process of the site D1, so that the site D1 can go online through the access point B1.
  • the online process For details of the online process, reference may be made to the above description of steps S1-S6, which will not be repeated here.
  • the access point B1 may execute step 702 to send the online information obtained during the site online process to the controller A1.
  • the online information please refer to the above introduction, and will not be repeated here.
  • the controller A1 may send the introduced online information to the access point B2 through step 703a, and to the access point B3 through step 703b.
  • the access point B1 can obtain the performance parameter R1 used to represent the communication performance between it and the station D1, and perform step 704a, determine that the performance parameter R1 meets the performance requirement E1, and then include the station D1 in the access point Linked list for point B1.
  • the stations in the associated list are the stations connected to the access point B1, in other words, a Wi-Fi link is established between the stations in the associated list and the access point B1.
  • the access point B2 can obtain the performance parameter R2 used to represent the communication performance between it and the station D1, and execute step 704b, determine that the performance parameter R2 meets the performance requirement E1, and then include the station D1 in the access point Linked list for point B2. Wherein, in step 704b, when or after the access point B2 determines that the performance parameter E2 meets the performance requirement E1, the access point B2 can use the online information received from the controller A1 to establish a Wi-Fi connection between the access point B2 and the site D1. Fi link.
  • the access point B3 can obtain the performance parameter R3 used to represent the communication performance between it and the station D1, and execute step 704c, determine that the performance parameter R3 does not meet the performance requirement E1, and then list the station D1 in the access point Unassociated list of inpoint B2.
  • the stations in the unassociated list are the stations that the access point B1 has not yet connected to.
  • the access point B1 may execute step 705a to send the performance parameter R1 to the controller A1.
  • the access point B2 may execute step 705b to send the performance parameter R2 to the controller A1.
  • the access point B3 may execute step 705c to send the performance parameter R3 to the controller A1.
  • the controller A1 may determine, according to the performance parameter R1, the performance parameter R2, and the performance parameter R3, the access point set P1 for providing the data transmission service for the station D1.
  • the controller A1 may perform step 706 to determine that the performance parameter R1 and the performance parameter R2 meet the performance requirement E1, and determine that the performance parameter R3 does not meet the performance requirement E1; and then determine that the access point B1 and the access point B2 are cooperatively a site D1 provides data transmission services.
  • the access point B1 and the access point B2 form a data transmission server for the site D1.
  • Access point set P1, while access point B3 is not used to form access point set P1.
  • the controller A1 may perform step 707, determine 707, determine that neither the performance parameter R1 nor the performance parameter R2 meet the performance requirement E2, and further determine that the access point B1 and the access point B2 send the same data to the station D1 at different times. data.
  • the data transmission mode in which different access points respectively send the same data to the station at different times may be referred to as a data backup transmission mode.
  • Both the performance parameter R1 and the performance parameter R2 do not meet the performance requirement E2, indicating that the channel environment where the site D1 is located is poor. In order to avoid more packet loss or retransmission, the controller A1 selects the data backup transmission mode.
  • controller A1 may perform steps 708a and 708b upon or after it is determined that access point B1 and access point B2 transmit the same data to station D1 at different times.
  • the configuration information Y1 is sent to the access point B1.
  • the configuration information Y1 may include the transmission time T1 of the downlink data.
  • the configuration information Y1 may be used to instruct the access point B1 to send the downlink data Q1 to the station D1 at the sending time T1.
  • the access point B1 may respond to the configuration information Y1, and execute step 709 at time T1 to downlink the data Q1 to the station D1.
  • the downlink data Q1 is received by the access point B1 from a network-side device (for example, a gateway or a controller A1).
  • the configuration information Y2 is sent to the access point B2.
  • the configuration information Y2 includes the transmission time T2 of the downlink data.
  • the configuration information Y2 may be used to instruct the access point B2 to send the downlink data Q1 to the station D1 at the sending time T2.
  • the downlink data Q1 is received by the access point B2 from a network-side device (for example, a gateway or a controller A1). Therefore, in the case that at least one channel of the downlink data Q1 is successfully transmitted, the station D1 can be made to successfully receive the downlink data Q1.
  • Steps 707 to 710 describe a scheme for downlink data transmission, and the data transmission method provided by the embodiment of the present application may further include a scheme for uplink data transmission. details as follows.
  • the controller A1 may execute step 711a to send configuration information Y3 to the access point B1, where the configuration information Y3 includes the transmission time T3 of the uplink resource configuration information.
  • the controller A1 may also perform step 711b to send the configuration information Y4 to the access point B1, where the configuration information Y4 includes the sending time T4 of the uplink resource configuration information.
  • the time T4 is later than the time T3.
  • the configuration information Y3 may be used to instruct the access point B1 to send the uplink resource configuration information Z1 to the station D1 at the sending time T3.
  • the access point B1 may respond to the configuration information Y3, and perform step 712 to send the uplink resource configuration information Z1 to the station D1.
  • the uplink resource configuration information is used to indicate the frequency domain and time domain resources used by the station to send uplink data.
  • the configuration information Y3 may also be used to indicate that the uplink transmission delay resource allocated by the access point B1 for the station D1 is time T4. That is, the uplink resource configuration information Z1 may be used to instruct the station D1 to send uplink transmission resources at time T4. If the station D1 successfully receives the uplink resource configuration information Z1, it may perform step 713 to send uplink data to the access point B1 at time T4.
  • the configuration information Y4 may be used to instruct the access point B2 to send the uplink resource configuration information to the station D1 at the sending time T4.
  • the configuration information Y4 may be used to indicate that when the station sends uplink data at the sending time T4, the access point B2 no longer sends the uplink resource configuration information to the station D1.
  • access point B2 and access point B1 communicate with station D1 on the same channel (eg, channel 36).
  • the access point B2 sends the uplink resource configuration information to the station D1 at time T4
  • the access point B2 no longer sends the uplink resource configuration information to the site D1 specifically refers to not sending the uplink resource configuration information to the site D1 again before receiving the next instruction sent by the controller A1 for sending the uplink resource configuration information.
  • Uplink resource configuration information Uplink resource configuration information.
  • the uplink data sent in step 713 is transmitted using the uplink transmission resources configured by the access point B1.
  • the uplink data is received and processed by the access point B1, and an acknowledgment character (ACK or BA) is returned for the uplink data.
  • the access point B2 does not process the uplink data, nor does it reply an acknowledgement character (ACK or BA) for the uplink data, thereby avoiding the conflict caused by multiple access points sending acknowledgement characters.
  • the above-mentioned uplink resource configuration information may specifically be a trigger frame (trigger) under the 802.11ax protocol.
  • the uplink data sent in step 713 can be specifically carried in a trigger-based physical-layer protocol processing unit (trigger-based physical-layer protocol data unit, TB PPDU).
  • steps 701 to 713 may be performed in the order shown in FIG. 7 .
  • steps 701-713 may be performed in other orders.
  • steps 708a, 798b, steps 711a, 711b may be performed in parallel.
  • step 712 may be performed prior to step 709; etc., which are not listed one by one here.
  • FIG. 8 shows a data transmission method provided by an embodiment of the present application, which can be applied to a scenario where a station is located in a better channel environment.
  • steps 801 to 806 shown in FIG. 8 reference may be made to the above description of steps 701 to 706 in FIG. 7 , which will not be repeated here.
  • the controller A1 may execute step 807 to determine that both the performance parameter R1 and the performance parameter R2 meet the performance requirement E2, and then determine that the access point B1 and the access point B2 can send the data to the site D1 at the same time different data.
  • a data transmission mode in which different access points may send different data to a station at the same time may be referred to as a distributed MIMO mode.
  • Both the performance parameter R1 and the performance parameter R2 meet the performance requirement E2, indicating that the channel environment where the site D1 is located is good, and the distributed MIMO transmission mode can be or is suitable to use to achieve multi-channel concurrency and improve the data throughput of the network.
  • controller A1 when or after it is determined that access point B1 and access point B2 can send different data to station D1 at the same time, controller A1 can perform step 808a to send a time slot synchronization message to access point B1 and channel sounding notification; and performing step 808b, sending the time slot synchronization message and the channel sounding notification to the access point B2.
  • the time slot synchronization message is used to instruct the access point to perform time slot synchronization or clock synchronization.
  • the time slot synchronization message sent in step 808a and the time slot synchronization message sent in step 808b include the same calibration clock, so that the access point B1 and the access point B2 can perform time slot synchronization or clocks according to the calibration clock. Synchronize. Thereby, time slot synchronization between the access point B1 and the access point B2 is achieved.
  • the channel sounding notification is used to instruct the access point to send a channel sounding signal to the station.
  • the channel sounding signal may be an NDP.
  • the access point B1 may respond to the channel sounding notification, and perform step 809a to send the channel sounding signal U1 to the station D1.
  • the station D1 may detect relevant indicators (eg level, signal strength, etc.) of the channel sounding signal U1 when or after receiving the channel sounding signal U1, and determine the channel sounding result W1 according to the detection result.
  • the channel detection result W1 can be the feedback NDP.
  • the station D1 may execute step 810a to send the channel sounding result W1 to the access point B1.
  • the access point B1 can send the channel detection result W1 to the controller A1 through step 811a.
  • the access point B2 may respond to the channel sounding notification, perform step 809b, and send the channel sounding signal U2 to the station D1.
  • the station D2 may perform step 810b according to the detection signal U2, and send the channel detection result W2 to the access point B2.
  • the access point B2 can report the channel detection result W2 to the controller A1 through step 811b.
  • the controller A1 may determine the precoding matrix according to the channel sounding result W1 and the channel sounding result W2. For details, please refer to the introduction of the 802.11be protocol, which will not be repeated here.
  • the determined precoding matrix may include a precoding vector V1 corresponding to the access point B1 and a precoding vector V2 corresponding to the access point B2. Then, the controller A1 may perform step 812a, sending the precoding vector V1 to the access point B1; and performing step 812b, sending the precoding vector V2 to the access point B2.
  • the access point B1 may perform step 813a according to the precoding vector V1, and send the downlink data Q2 to the station B1.
  • the access point B2 may perform step 813b according to the precoding vector V2, and send the downlink data Q3 to the station B1. Wherein, step 813a and step 813b may be performed simultaneously.
  • the above describes the transmission scheme of downlink data when the channel environment where the station is located is good.
  • the transmission of the uplink data may adopt the solution introduced in the embodiment shown in FIG. 7 .
  • steps 711 a to 713 in FIG. 7 which will not be repeated here.
  • multiple access points connected to the station can send different data to the station at the same time, thereby improving the data throughput of the network.
  • FIG. 9 shows a data transmission method provided by an embodiment of the present application, which can be applied to a scenario where a station is located in a general channel environment.
  • steps 901 to 906 shown in FIG. 9 reference may be made to the above description of steps 701 to 706 in FIG. 7 , and details are not repeated here.
  • the controller A1 may execute step 907 to determine that the performance parameter R1 meets the performance requirement E2, and determine that the performance parameter R2 does not meet the performance requirement E2. Furthermore, it is determined that the access point E1 is the primary access point for providing the data transmission service for the station D1 alone.
  • a data transmission mode in which one access point among multiple access points connected to a site at the same time serves as the primary access point and provides data transmission services for the site alone may be referred to as access point master-standby switching. model.
  • the performance parameter R1 meets the performance requirement E2, but the performance parameter R2 does not meet the performance requirement E2, indicating that the channel environment where the site D1 is located is general, and the access point with better communication performance with the site is used to provide data transmission services for the site alone.
  • the quality of service and the overall overhead of the network can be communicated.
  • the controller A1 may act as a network-side device of the access point and execute step 908a to send downlink data destined for the site D1 to the primary access point, ie, the access point B1. Then, the access point B1 may execute step 909 to send the downlink data to the station D1. On the other hand, the controller A1 does not send downlink data whose destination is the station D1 to the access point B1.
  • the controller A1 may act as a management device of the access point, and execute step 908b to send the configuration information Y5 to the access point B2.
  • the configuration information Y5 is used to prohibit the access point B2 from responding to the data sent by the station D1.
  • the configuration information Y5 when the access point B2 receives the uplink data sent by the station D1 through step 910, it no longer returns an acknowledgement character (eg, ACK or BA) to the station D1.
  • the access point B1 receives the uplink data sent by the station D1 through step 910, it returns an acknowledgement character (eg, ACK or BA) to the station D1.
  • an acknowledgement character eg, ACK or BA
  • the controller A1 may not perform step 908b, but adopt the uplink transmission scheme in the embodiment shown in FIG. 7, so as to avoid collision caused by multiple access points returning confirmation characters.
  • the data transmission method provided by the embodiment of the present application can select an access point with better communication performance with the site to provide data transmission service for the site when the channel environment where the site is located is normal, so that the communication service quality of the site and the network can be taken into consideration. the overall cost.
  • the embodiments of the present application provide a data transmission method, and the method can be executed by a controller for controlling multiple access points, such as the controller A1 described above.
  • the method may include the following steps.
  • Step 1001 the controller receives the performance parameter sent by each of the access points; wherein the performance parameter is used to represent the communication performance between the access point sending the performance parameter and the first station.
  • step 1001 can be implemented by referring to the above description of steps 705a-705c in FIG. 7 , and details are not repeated here.
  • Step 1003 The controller determines, according to each of the received performance parameters, an access point set for providing data transmission services for the first site, where the access point set includes an access point set among the multiple access points. at least one access point.
  • step 1003 may be implemented with reference to the above description of step 706 in FIG. 7 .
  • Step 1005 When the access point set includes at least two access points, the controller determines the access point according to the performance parameter sent by each of the access points in the access point set. A data transmission mode between each of the access points in the set of access points and the first station.
  • step 1005 may be implemented with reference to the above description of step 707 in FIG. 7 , step 807 in FIG. 8 , or step 907 in FIG. 9 .
  • the performance parameter includes at least one of a received signal strength indication RSSI at which the access point receives a signal sent by the first station and load information of the access point.
  • RSSI received signal strength indication
  • load information the load information is less than a preset load threshold.
  • the controller is separate from each of the plurality of access points, or the controller is integrated within one of the plurality of access points.
  • the controller when the controller is independent of each of the plurality of access points, the controller receives each of the access points over an optical link or Wi-Fi channel transmitted performance parameters; or, when the controller is integrated within one of the plurality of access points, the controller receives the plurality of access points over an optical link or a Wi-Fi channel A performance parameter sent by an access point other than the access point where the controller is located.
  • the plurality of access points include a first access point and a second access point, the first station goes online through the first access point; the method further comprises: the controlling The controller receives the online information of the first site from the first access point; the controller sends the online information to the second access point.
  • the controlling The controller receives the online information of the first site from the first access point; the controller sends the online information to the second access point.
  • the online information includes association request information and a key.
  • the multiple access points have the same basic service set identifier BSSID.
  • the controller determines, according to the performance parameter sent by each of the access points in the set of access points, the relationship between each of the access points in the set of access points and the set of access points.
  • the data transmission mode between the first stations includes: when the performance parameters corresponding to each of the access points in the access point set do not meet the preset performance requirements, determining the Different access points respectively send the same data to the first station at different times. For details, reference may be made to the above description of steps 707-710 in FIG. 7 .
  • the controller determines, according to the performance parameter sent by each of the access points in the set of access points, the relationship between each of the access points in the set of access points and the set of access points.
  • the data transmission mode between the first stations includes: when the performance parameters corresponding to each of the access points in the access point set meet the preset performance requirements, determining the difference in the access point set.
  • the access point respectively sends different data to the first station at the same time. For details, refer to the above description of steps 807-813b in FIG. 8 .
  • the controller determines, according to the performance parameter sent by each of the access points in the set of access points, the relationship between each of the access points in the set of access points and the set of access points.
  • the data transmission mode between the first stations includes: when the performance parameters of the third access point in the access point set meet the preset performance requirements, the third access point is not included in the access point set except the third access point. When other access points do not meet the performance requirements, configure the third access point as the primary access point in the access point set; the primary access point is used to independently report to the first access point Site sends data. For details, reference may be made to the above description of steps 907-909 in FIG. 9 .
  • the primary access point is further configured to, when receiving the first data sent by the first site, send a confirmation character corresponding to the first data to the first site.
  • a confirmation character corresponding to the first data to the first site.
  • the set of access points includes a fourth access point and a fifth access point; the controller is based on the performance parameter sent by each of the access points in the set of access points , determining a data transmission mode between each of the access points in the access point set and the first site, including: configuring the fourth access point to send uplink resource configuration information to the first site
  • the sending time is the first time; the sending time when the fifth access point is configured to send the uplink resource configuration information to the first station is the second time; wherein, the second time is later than the first time;
  • the first station sends uplink data in response to the uplink resource configuration information sent by the fourth access point, the fifth access point no longer sends the uplink data to the first station Uplink resource configuration information.
  • the data transmission method provided by the embodiment of the present application can select one or more service access points for the site according to the channel environment in which the site is located, and select a data transmission mode between multiple service access points and the site, so as to provide the site It ensures the optimal network access and data transmission mode, and improves the user communication experience.
  • This embodiment of the present application provides a data transmission method, which can be applied to a first access point among multiple access points controlled by a controller, for example, the access point B1 described above.
  • the method includes the following steps.
  • Step 1101 the first access point determines a first performance parameter, where the first performance parameter is used to represent the communication performance between the first access point and a first station.
  • step 1101 may be implemented with reference to the description of steps 704a-704c in FIG. 7 above.
  • Step 1103 Provide a data transmission service for the first site when the first performance parameter meets a preset performance requirement.
  • step 1103 may be implemented with reference to the description of steps 704a-706 in FIG. 7 above.
  • the method further includes: sending, by the first access point, online information to the controller, where the online information is that the first access point passes the first access point through the first site at the first site. Information obtained when an access point goes online.
  • the plurality of access points further comprises a second access point; the first station goes online through the second access point; the method further comprises: the first access point from The controller receives on-line information of the first site, the on-line information received by the controller from the second access point.
  • the method further comprises: the first access point from The controller receives on-line information of the first site, the on-line information received by the controller from the second access point.
  • the on-line information includes association request information and a key.
  • the access point can choose whether to provide network services for the access point according to the channel environment between it and the site, thereby taking into account the network service quality of the site and the overall network overhead.
  • an embodiment of the present application provides a data transmission apparatus 1200, including:
  • the communication unit 1210 is configured to receive the performance parameter sent by each of the access points; wherein the performance parameter is used to represent the communication performance between the access point sending the performance parameter and the first station;
  • a first determining unit 1220 configured to determine, according to each of the received performance parameters, an access point set for providing data transmission services for the first station, where the access point set includes the multiple access points at least one access point among the points;
  • the second determining unit 1230 is configured to, when the access point set includes at least two access points, determine the A data transmission mode between each of the access points in the set of access points and the first station.
  • each functional unit of the apparatus 1200 may be implemented with reference to the above description of each method embodiment shown in FIG. 10 , and details are not described herein again.
  • the data transmission device provided by the embodiment of the present application can select one or more service access points for the site according to the channel environment in which the site is located, and select a data transmission mode between multiple service access points and the site, so as to provide the site It ensures the optimal network access and data transmission mode, and improves the user communication experience.
  • an embodiment of the present application provides a data transmission apparatus 1300, including:
  • a determining unit 1310 configured to determine a first performance parameter, where the first performance parameter is used to represent the communication performance between the device and the first site;
  • a providing unit 1320 is configured to provide a data transmission service for the first site when the first performance parameter meets a preset performance requirement.
  • each functional unit of the apparatus 1300 may be implemented with reference to the above description of each method embodiment shown in FIG. 11 , and details are not described herein again.
  • the data transmission device provided in the embodiments of the present application can select whether to provide network services for the access point according to the channel environment between the device and the site, thereby taking into account the network service quality of the site and the overall network overhead.
  • each electronic device includes corresponding hardware structures and/or software modules for performing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • an embodiment of the present application provides a controller 1400.
  • the controller 1400 may execute the execution of the controller A1 in each method embodiment shown in FIG. 4 or FIG. 6 or FIG. 7 or FIG. 8 or FIG. 9 or FIG. 10 operation.
  • the controller 1400 may include a processor 1410 , a memory 1420 and a transceiver 1430 .
  • the memory 1420 stores instructions that are executable by the processor 1410 .
  • the controller 1400 may perform the operations performed by the controller A1 in the method embodiments shown in FIG. 4 or FIG. 6 or FIG. 7 or FIG. 8 or FIG. 9 or FIG.
  • the processor 1410 may perform data processing operations
  • the transceiver 1430 may perform data transmission and/or reception operations.
  • an embodiment of the present application provides an access point 1500, and the access point 1500 may perform the access in each method embodiment shown in FIG. 4 or FIG. 6 or FIG. 7 or FIG. 8 or FIG. 9 or FIG. 11.
  • the operation performed by the point such as the operation performed by the access point B1.
  • the access point 1500 may include a processor 1510 , a memory 1520 and a transceiver 1530 .
  • the memory 1520 stores instructions that are executable by the processor 1510 .
  • the access point 1500 may perform the operations performed by the access point in the method embodiments shown in FIG. 4 or FIG. 6 or FIG. 7 or FIG. 8 or FIG. 9 or FIG. Operations performed by access point B1.
  • the processor 1510 may perform data processing operations
  • the transceiver 1530 may perform data transmission and/or reception operations.
  • an embodiment of the present application provides a chip system, which can be applied to the controller A1 described above.
  • the chip system includes: a processor 1610 and an interface circuit 1620 .
  • the processor 1610 is connected to the interface circuit 1620, and is configured to perform the operations performed by the controller A1 in each method embodiment shown in FIG. 4 or FIG. 6 or FIG. 7 or FIG. 8 or FIG. 9 or FIG.
  • the system-on-a-chip also includes memory 1630 .
  • the memory stores instructions that are executable by the processor 1610 .
  • the system-on-a-chip can execute the operations performed by the controller A1 in each method embodiment shown in FIG. 4 or FIG. 6 or FIG. 7 or FIG. 8 or FIG. 9 or FIG.
  • an embodiment of the present application provides a chip system, which can be applied to the access point described above, for example, the access point B1 or the access point B2.
  • the chip system includes: a processor 1610 and an interface circuit 1620 .
  • the processor 1610 is connected to the interface circuit 1620, and is configured to perform the operations performed by the access point in the method embodiments shown in FIG. 4 or FIG. 6 or FIG. 7 or FIG. 8 or FIG. 9 or FIG.
  • the system-on-a-chip also includes memory 1630 .
  • the memory stores instructions that are executable by the processor 1610 .
  • the system-on-a-chip may perform the operations performed by the access point in the method embodiments shown in FIG. 4 or FIG. 6 or FIG. 7 or FIG. 8 or FIG.
  • the processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits ( application specific integrated circuit, ASIC), field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory (programmable rom) , PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), registers, hard disks, removable hard disks, CD-ROMs or known in the art in any other form of storage medium.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted over a computer-readable storage medium.
  • the computer instructions can be sent from one website site, computer, server, or data center to another website site by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) , computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本申请涉及通信技术领域,具体涉及一种数据传输方法及装置。该方法包括:控制器接收各个接入点发送的性能参数;其中,性能参数用于表示发送该性能参数的接入点和第一站点之间的通信性能;控制器根据接收到的各个性能参数,确定用于为第一站点提供数据传输服务的接入点集合,接入点集合包括多个接入点中的至少一个接入点;当接入点集合中包括至少两个接入点时,控制器根据接入点集合中的各个接入点发送的性能参数,确定接入点集合中的各个接入点与第一站点之间的数据传输模式。该方法可以根据站点与接入点的通信性能,选择为该站点提供数据传输服务的接入点以及数据传输模式,可提高用户的通信体验。

Description

一种数据传输方法及装置
本申请要求于2020年10月20日提交中国国家知识产权局、申请号为202011126518.1、申请名称为“一种数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种数据传输方法及装置。
背景技术
在无线保真(Wireless-Fidelity,Wi-Fi)网络为使用较为广泛的一种无线局域网(wireless local area networks,WLAN),通常应用家居环境等室内场所。智能家居、远程教育、在家办公、视频直播、虚拟现实(virtual reality,VR)等发展和普及,对家庭环境的Wi-Fi网络的带宽、时延、覆盖性等具有较高要求。为此,在光纤到户(fiber to the home,FTTH)的基础上,业界提出了光纤到房间(fiber to the room,FTTR)的网络方案。
在FTTR架构下,Wi-Fi接入点和其网络侧设备(例如网关(gateway))之间通过光纤连接。由此,数据回传可以通过大带宽、低时延的光链路进行,且不占用Wi-Fi空口资源,这极大提升了多接入点协同的效果以及数据传输效率。
虽然,FTTR架构解决了Wi-Fi覆盖范围不足、回传带宽受限等问题,但依然存在Wi-Fi无缝漫游和高吞吐量不能并存的问题。
发明内容
本申请实施例提供了一种数据传输方法及装置,可以为终端设备提供较优的网络接入方式和数据传输模式。
第一方面,本申请实施例提供了一种数据传输方法,应用于控制器,控制器用于控制多个接入点;该方法包括:控制器接收各个接入点发送的性能参数;其中,性能参数用于表示发送该性能参数的接入点和第一站点之间的通信性能;控制器根据接收到的各个性能参数,确定用于为第一站点提供数据传输服务的接入点集合,接入点集合包括多个接入点中的至少一个接入点;当接入点集合中包括至少两个接入点时,控制器根据接入点集合中的各个接入点发送的性能参数,确定接入点集合中的各个接入点与第一站点之间的数据传输模式。
也就是说,可以根据站点与接入点的通信性能,选择为该站点提供数据传输服务的接入点以及数据传输模式,由此可以为站点提供较优的网络接入方式和数据传输模式,提高用户的通信体验。
在一种可能的实现方式中,性能参数包括接入点接收第一站点发送的信号的接收信号强度指示RSSI和接入点的负载信息中的至少一个。
也就是说,在该实现方式中,可以根据接入点的负载以及接入点和站点之间的信号强度,确定为站点提供数据传输服务的接入点,从而可以选择出负载轻且信号强的接入点为站点提供的数据传输服务。
在一种可能的实现方式中,确定的接入点集合中的任一接入点发送的性能参数满足:RSSI 大于预设的强度阈值,且负载信息小于预设的负载阈值。
也就是说,在该实现方式中,确定负载和信号强度都满足预设要求的接入点为站点提供数据传输服务,由此,可以保证或提高站点的网络服务质量,改善用户通信体验。
在一种可能的实现方式中,控制器独立于多个接入点中的各个接入点,或者控制器集成在多个接入点中的一个接入点内。
也就是说,在该实现方式中,控制器可以灵活设置,可以方便组网。
在一种可能的实现方式中,当控制器独立于多个接入点中的各个接入点时,控制器通过光链路或Wi-Fi信道接收各个接入点发送的性能参数;或者,当控制器集成在多个接入点中的一个接入点内时,控制器通过光链路或Wi-Fi信道接收多个接入点中除控制器所在接入点之外的接入点发送的性能参数。
也就是说,在该实现方式中,接入点的回传(backhaul)信道可以灵活选择或配置,可以方便组网。
在一种可能的实现方式中,多个接入点包括第一接入点和第二接入点,第一站点通过第一接入点上线;该方法还包括:控制器从第一接入点接收第一站点的上线信息;控制器将上线信息发送给第二接入点。
也就是说,在该实现方式中,各个接入点之间可以共享站点的上线信息,由此,各个接入点可以利用该站点的上线信息,建立与站点之间的连接。
在一种可能的实现方式中,上线信息包括关联请求信息和密钥。
也就是说,在该实现方式中,各个接入点之间共享的上线信息包括关联请求信息和密钥,各个接入点可以利用关联请求信息和密钥,建立与站点之间的连接。
在一种可能的实现方式中,多个接入点具有相同的基本服务集标识符BSSID。
也就是说,在该实现方式中,不同接入点具有相同的BSSID,以便站点可以同时连接多个接入点。
在一种可能的实现方式中,控制器根据接入点集合中的各个接入点发送的性能参数,确定接入点集合中的各个接入点与第一站点之间的数据传输模式,包括:当接入点集合中的各个接入点对应的性能参数均不满足预设的性能要求时,确定接入点集合中的不同接入点在不同时刻分别向第一站点发送相同的数据。
也就是说,在该实现方式中,在站点所处的信道环境较差时,多个接入点可以向其发送相同的数据,由此,提供了站点成功接收数据的概率。
在一种可能的实现方式中,控制器根据接入点集合中的各个接入点发送的性能参数,确定接入点集合中的各个接入点与第一站点之间的数据传输模式,包括:当接入点集合中的各个接入点对应的性能参数均满足预设的性能要求时,确定接入点集合中的不同接入点在同一时刻分别向第一站点发送不同的数据。
也就是说,在该实现方式中,可以在站点所处信道环境较好时,站点所连接的多个接入点可以同时向该站点发送不同数据,提高了网络的数据吞吐量。
在一种可能的实现方式中,控制器根据接入点集合中的各个接入点发送的性能参数,确定接入点集合中的各个接入点与第一站点之间的数据传输模式,包括:当接入点集合中第三接入点的性能参数满足预设的性能要求,接入点集合中除第三接入点之外的接入点不满足性能要求时,配置第三接入点为接入点集合中的主接入点;主接入点用于单独向第一站点发送数据。
也就是说,在该实现方式中,可以在站点所处信道环境一般时,选择与站点之间通信性能较好的接入点为站点提供数据传输服务,从而可以兼顾站点的通信服务质量和网络的整体开销。
在一种可能的实现方式中,主接入点还用于当接收到第一站点发送的第一数据时,向第一站点发送第一数据对应的确认字符。
也就是说,在该实现方式中,配置一个接入点向站点返回确认字符,由此可以避免多接入点返回确认字符所导致的冲突。
在一种可能的实现方式中,接入点集合包括第四接入点和第五接入点;控制器根据接入点集合中的各个接入点发送的性能参数,确定接入点集合中的各个接入点与第一站点之间的数据传输模式,包括:配置第四接入点向第一站点发送上行资源配置信息的发送时刻为第一时刻;配置第五接入点向第一站点发送上行资源配置信息的发送时刻为第二时刻;其中,第二时刻晚于所述第一时刻;当在第二时刻,第一站点响应于第四接入点发送的上行资源配置信息,发送上行数据时,第五接入点不再向第一站点发送上行资源配置信息。
也就是说,在该实现方式中,通过配置接入点的上行资源配置信息的发送机制,避免了多接入点返回确认字符而造成的冲突。
第二方面,本申请实施例提供了一种数据传输方法,应用于由控制器控制的多个接入点中的第一接入点;该方法包括:第一接入点确定第一性能参数,所述第一性能参数用于表示所述第一接入点和第一站点之间的通信性能;当第一性能参数满足预设的性能要求时,为第一站点提供数据传输服务。
也就是说,在接入点与站点之间的通信性能满足要求时,才为站点提供数据传输服务,由此,可兼顾站点的网络服务质量和网络的整体开销。
在一种可能的实现方式中,该方法还包括:第一接入点向控制器发送上线信息,上线信息为第一接入点在第一站点通过第一接入点上线时所获得的信息。其中,控制器可以将该上线信息发送给多个接入点中的第二接入点,以在该多个接入点之间共享该上线信息。
也就是说,在该实现方式中,站点可以通过单个接入点上线,并且该接入点可将上线信息发送给控制器,以便控制器将该上线信息发送给其他接入点,以便其他接入点可以在无需进行上线流程的情况下连接站点。
在一种可能的实现方式中,多个接入点还包括第二接入点;第一站点通过第二接入点上线;该方法还包括:第一接入点从控制器接收第一站点的上线信息,上线信息是控制器从第二接入点接收的。
也就是说,在该实现方式中,控制器可以将一个接入点在站点上线时获得的上线信息,共享给其他接入点,以便其他接入点可以在无需进行上线流程的情况下连接站点。
在一种可能的实现方式中,上线信息包括关联请求信息和密钥。
也就是说,在该实现方式中,各个接入点之间共享的上线信息包括关联请求信息和密钥,各个接入点可以利用关联请求信息和密钥,建立与站点之间的连接。
第三方面,本申请实施例提供了一种数据传输装置,用于控制多个接入点;该装置包括:通信单元,用于接收各个接入点发送的性能参数;其中,性能参数用于表示发送该性能参数的接入点和第一站点之间的通信性能;第一确定单元,用于根据接收到的各个性能参数,确定用于为第一站点提供数据传输服务的接入点集合,接入点集合包括多个接入点中的至少一个接入点;第二确定单元,用于当接入点集合中包括至少两个接入点时,根据接入点集合中 的各个接入点发送的性能参数,确定接入点集合中的各个接入点与第一站点之间的数据传输模式。
在一种可能的实现方式中,性能参数包括接入点接收第一站点发送的信号的接收信号强度指示RSSI和接入点的负载信息中的至少一个。
在一种可能的实现方式中,确定的接入点集合中的任一接入点发送的性能参数满足:RSSI大于预设的强度阈值,且负载信息小于预设的负载阈值。
在一种可能的实现方式中,该装置独立于多个接入点中的各个接入点,或者该装置集成在所述多个接入点中的一个接入点内。
在一种可能的实现方式中,当该装置独立于多个接入点中的各个接入点时,通信单元通过光链路或Wi-Fi信道接收各个接入点发送的性能参数;或者,当该装置集成在多个接入点中的一个接入点内时,通信单元通过光链路或Wi-Fi信道接收多个接入点中除该装置所在接入点之外的接入点发送的性能参数。
在一种可能的实现方式中,多个接入点包括第一接入点和第二接入点,第一站点通过第一接入点上线;通信单元还用于:从第一接入点接收第一站点的上线信息;将上线信息发送给第二接入点。
在一种可能的实现方式中,上线信息包括关联请求信息和密钥。
在一种可能的实现方式中,多个接入点具有相同的基本服务集标识符BSSID。
在一种可能的实现方式中,第二确定单元还用于:当接入点集合中的各个接入点对应的性能参数均不满足预设的性能要求时,确定接入点集合中的不同接入点在不同时刻分别向第一站点发送相同的数据。
在一种可能的实现方式中,第二确定单元还用于:当接入点集合中的各个接入点对应的性能参数均满足预设的性能要求时,确定接入点集合中的不同接入点在同一时刻分别向第一站点发送不同的数据。
在一种可能的实现方式中,第二确定单元还用于:当接入点集合中第三接入点的性能参数满足预设的性能要求,接入点集合中除第三接入点之外的接入点不满足性能要求时,配置第三接入点为接入点集合中的主接入点;主接入点用于单独向第一站点发送数据。
在一种可能的实现方式中,主接入点还用于当接收到第一站点发送的第一数据时,向第一站点发送第一数据对应的确认字符。
在一种可能的实现方式中,接入点集合包括第四接入点和第五接入点;第二确定单元还用于:配置第四接入点向第一站点发送上行资源配置信息的发送时刻为第一时刻;配置第五接入点向第一站点发送上行资源配置信息的发送时刻为第二时刻;其中,第二时刻晚于第一时刻;当在第二时刻,第一站点响应于第四接入点发送的上行资源配置信息,发送上行数据时,第五接入点不再向第一站点发送上行资源配置信息。
可以理解地,第三方面提供的数据传输装置用于执行第一方面所提供的对应的方法,因此,其所能达到的有益效果可参考第一方面所提供的对应的方法中的有益效果,此处不再赘述。
第四方面,本申请实施例提供了一种数据传输装置,该装置包括:确定单元,用于确定第一性能参数,第一性能参数用于表示该装置和第一站点之间的通信性能;提供单元,用于当第一性能参数满足预设的性能要求时,为第一站点提供数据传输服务。
在一种可能的实现方式中,该装置还包括:通信单元,用于向控制器发送上线信息,上 线信息为该装置在第一站点通过该装置上线时所获得的信息。其中,控制器可以将该上线信息发送给由控制器控制的第二接入点,以在控制器控制的接入点之间共享该上线信息。
在一种可能的实现方式中,第一站点通过第二接入点上线;该装置还包括:通信单元,用于从控制器接收第一站点的上线信息,上线信息是控制器从第二接入点接收的。
在一种可能的实现方式中,上线信息包括关联请求信息和密钥。
可以理解地,第四方面提供的数据传输装置用于执行第二方面所提供的对应的方法,因此,其所能达到的有益效果可参考第二方面所提供的对应的方法中的有益效果,此处不再赘述。
第五方面,本申请实施例提供了一种控制器,包括处理器、存储器、收发器;存储器用于存储计算机指令;当控制器运行时,处理器执行计算机指令,使得控制器执行第一方面所提供的方法。
第六方面,本申请实施例提供了一种接入点,包括处理器、存储器、收发器;存储器用于存储计算机指令;当接入点运行时,处理器执行计算机指令,使得接入点执行第二方面所提供的方法。
第七方面,本申请实施例提供了一种计算机存储介质,计算机存储介质包括计算机指令,当计算机指令在电子设备上运行时,使得电子设备执行第一方面所提供的方法。
第八方面,本申请实施例提供了一种计算机存储介质,计算机存储介质包括计算机指令,当计算机指令在电子设备上运行时,使得电子设备执行第二方面所提供的方法。
第九方面,本申请实施例提供了一种计算机程序产品,计算机程序产品包含的程序代码被用于电子设备中的处理器执行时,实现第一方面所提供的方法。
第十方面,本申请实施例提供了一种计算机程序产品,计算机程序产品包含的程序代码被用于电子设备中的处理器执行时,实现第二方面所提供的方法。
第十一方面,本申请实施例提供了一种芯片系统,该芯片系统包括:处理器,该处理器用于执行指令,以使得安装有该芯片系统的控制器执行第一方面所提供的方法。
第十二方面,本申请实施例提供了一种芯片系统,该芯片系统包括:处理器,该处理器用于执行指令,以使得安装有该芯片系统的接入点执行第二方面所提供的方法。
第十三方面,本申请实施例提供了一种集成电路,包括:存储器,用于存储指令;以及与存储器耦合的处理器,用于执行该指令,以实现第一方面所提供的方法。
第十四方面,本申请实施例提供了一种集成电路,包括:存储器,用于存储指令;以及与存储器耦合的处理器,用于执行该指令,以实现第二方面所提供的方法。
本申请实施例提供的数据传输方法及装置,可以根据站点所处的信道环境,为站点选择一个或多个服务接入点,以及选择多个服务接入点与站点之间的数据传输模式,为站点保证了最优或较优的网络接入和数据传输模式,提高了用户通信体验。
附图说明
图1是一种光纤到户网络架构示意图;
图2是一种光纤到房间网络架构示意图;
图3是一种Wi-Fi网络架构示意图;
图4是本申请实施例提供的一种网络逻辑架构;
图5是本申请实施例提供的一种虚拟小区示意图;
图6是本申请实施例提供的一种数据传输方法流程图;
图7是本申请实施例提供的一种数据传输方法流程图;
图8是本申请实施例提供的一种数据传输方法流程图;
图9是本申请实施例提供的一种数据传输方法流程图;
图10是本申请实施例提供的一种数据传输方法流程图;
图11是本申请实施例提供的一种数据传输方法流程图;
图12是本申请实施例提供的一种数据传输装置结构示意图;
图13是本申请实施例提供的一种数据传输装置结构示意图;
图14是本申请实施例提供的一种控制器的示意性框图;
图15是本申请实施例提供的一种接入点的示意性框图;
图16是本申请实施例提供的一种芯片系统的示意性框图。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行描述。显然,所描述的实施例仅是本说明书一部分实施例,而不是全部的实施例。
在本说明书的描述中“一个实施例”或“一些实施例”等意味着在本说明书的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。
其中,在本说明书的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本说明书实施例的描述中,“多个”是指两个或多于两个。
在本说明书的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
无源光网络(passive optical network,PON)是一种可为家庭用户提供光纤通信服务的技术。通常,PON包括充当网络服务提供方端点的光线路终端(optical line terminal,OLT)和位于用户端的多个光网络设备(optical network terminal,ONT)或光网络单元(optical network unit,ONU)。OLT可以通过网线与前端(汇聚层)交换机通过网线相连,OLT与ONT(或ONU)之间可以通过光纤连接。OLT可用于电信号和光信号之间的转换,以及对ONT、ONU进行控制、管理等。ONT或ONU可以提供Wi-Fi网络覆盖。
图1示出了一种光纤到户(fiber to the home,FTTH)的网络架构,其为PON的一种传统应用架构。如图1所示,在FTTH网络架构中,OLT可以使用光纤与用户端的光分配网(optical distribution network,ODN)中的无源分光器(passive splitter)连接。经无源分光器通过不同的光纤分别连接到不同的ONT或ONU。
在FTTH架构下,不同的ONT或ONU可为不同的家庭提供Wi-Fi网络覆盖。在FTTH架构的基础上,提出了光纤到房间(fiber to the room,FTTR)的架构。在FTTR架构下,家庭 中的单个房间可以设置有一个或多个ONT,使得该一个或多个ONT可为该单个房间提供网络服务,以提高Wi-Fi网络的带宽、时延、覆盖性。其中,FTTR架构下的ONT也可以称为边缘ONT(edge ONT)。
图2示出了一种FTTH网络架构。其中,OLT可以通过光纤,并经过分光器连接到同一个家庭中的多个ONT。如图2所示,该多个ONT可以部署在该家庭中的不同房间。例如,ONT1设置在房间1,ONT2设置在房间2,ONT3设置在房间3,等等。可以设置有用于控制该多个ONT的控制器。该控制器也可以称为迷你OLT(mini OLT)。
示例性的,该控制器可以独立于该多个ONT。具体而言,可以独立设置,或者集成到该多个ONT之外的设备。例如,如图2所示,可以集成到PON网关内。在该示例中,该控制器可以和该多个控制器中的每个控制器通过光纤连接。
示例性的,该控制器可以集成到该多个ONT中的一个ONT内,例如,可以集成到ONT1中。在该示例中,该控制器所在的ONT可以和其他ONT通过光纤连接。
上述ONT、ONU、边缘ONT可以是携带Wi-Fi芯片的设备,可以为站点(station,STA)提供Wi-Fi网络覆盖。也就是说,上述ONT、ONU、边缘ONT可以作为终端设备接入网络的接入点(access point,AP)。因此,在本申请实施例中,上述ONT、ONU、边缘ONT可以统称为接入点。
图3示出了一种Wi-Fi网络架构,该网络架构可以包括控制器以及由该控制器控制的多个接入点,该多个接入点可以包括接入点1、接入点2、接入点3等。每个接入点可以提供Wi-Fi网络覆盖。示例性的,控制器可以集成到该多个接入点中的一个接入点内。例如,集成到接入点1内。在该示例中,控制器所在的接入点可以和其他接入点通过Wi-Fi信道连接。示例性的,控制器可以独立于该多个接入点,且与该多个接入点中的接入点通过Wi-Fi信道连接。
在一种方案中,不同接入点具有不同的基本服务集标识符(basic service set identifier,BSSID),一个站点在一个时刻只能与一个接入点连接。由此,若图2或图3所示的网络架构采用该方案,每当需要接入到接入点时,站点和该接入点需要进行完整的站点上线过程(包括关联、秘钥协商等)。由此,站点在不同接入点之间漫游时,漫游切换时间较长,导致业务流中断,使得用户体验差。并且,不同终端设备差异较大,有的终端设备可能不支持Wi-Fi漫游协议,由此,也会存在不漫游的问题。
在另一个方案中,可以为组网内的所有接入点配置相同的基本服务集标识符。各接入点可以广播信标(beacon)帧,其中携带有基本服务集标识符。站点接收到信标帧后,可以感知组网内接入点的基本服务集标识符唯一。当站点需要接入到新接入点时,站点原来接入的接入点会提前将站点的秘钥等连接所需信息发送给新接入点,使得站点可以无缝漫游(漫游切换时间为毫米级别,基本不会导致丢包)到新接入点上。该方案虽然可以实现无缝漫游,但数据传输效率低。其中,组网内所有接入点的基本服务集标识符相同,使得站点发送的上行数据可能被组网内多个接入点接收到,并且该多个接入点在接收到上行数据时会回复确认字符(acknowledge character,ACK)或块ACK(block ack,BA),从而造成站点侧的ACK或BA冲突。另外,该方案的无线带宽较低,难以满足家庭网络大带宽的需求。
在又一种方案中,接入点可以配置多个虚拟接入点(virtual access point,VAP),不同接入点具有不同的基本服务集标识符。也就是说,接入点可以具有多个基本服务集标识符,并将其中的一个基本服务集标识符分配给某个站点。当站点移动到新的接入点的覆盖区域时, 新的接入点可以为该站点分配相同的基本服务集标识符,使得站点感知到的基本服务集标识符唯一,以实现无缝漫游。在该方案中,接入点需要为不同的站点分配不同的基本服务集标识符,容易导致基本服务集标识符和基本服务集标识符掩码冲突。并且,接入点需要广播携带有不同基本服务集标识符的信标帧,造成信标帧开销大。另外,对于一个接入点而言,可配置的虚拟接入点有限,使得该接入点连接的站点数量也有限。
本申请实施例提供了一种数据传输方法,可以应用于图2或图3所示的网络架构。控制器可以根据接入点和站点之间的通信性能,选择一个或多个接入点协同为站点提供数据传输服务;并且在多个接入点协同为站点提供数据传输服务时,可以选择该多个接入点和站点之间的数据传输模式。由此,可以根据接入点与站点之间的信道环境,灵活选择站点所接入的接入点,以及选择接入点和站点之间的数据传输模式,为站点保证了最优的无线网络接入和数据传输模式,提升了用户通信体验。
其中,接入点可以为支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等中的一种或多种制式的通信设备。例如,接入点可以为图1或图2所示的ONT或ONU,也可以为图3所示的接入点。
站点可以为手机、笔记本电脑、平板电脑、智能穿戴设备、智能家电等终端设备。
接下来,在不同实施例中,对本申请实施例提供的数据传输方法进行示例介绍。
图4示出了本申请实施例提供的一种网络逻辑架构。该逻辑架构可应用在图2或图3所示的网络架构中。在该逻辑架构中,控制点A1可以控制接入点B1、接入点B2、接入点B3等多个接入点。其中,控制器A1可以集成在接入点B1内。控制器A1可以通过光纤分别连接接入点B2、接入点B3等除接入点B1之外的接入点。
接入点B1、接入点B2、接入点B3等多个接入点可以具有相同的基本服务集标识符C1。该相同的基本服务集标识符可以由人工配置,也可以由控制器A1自动配置。
控制器A1可以控制接入点B1、接入点B2、接入点B3选择同一Wi-Fi信道(例如信道36),作为前传信道(fronthaul),以便后续协同为同一站点提供数据传输服务。
处于接入点覆盖范围的站点可以通过接入点上线,例如站点D1可以通过接入点B1上线。站点上线是指站点和接入点之间建立Wi-Fi链路,并通过该Wi-Fi链路进行数据交互,使得站点可以通过该接入点接入到互联网等网络。通常,对于Wi-Fi网络中,站点上线的过程包括如下步骤,
S1,站点向接入点发送探测请求(probe request)信息;
S2,接入点向站点返回探测响应(probe response)信息;
S3,站点向接入点发送鉴权请求(authentication request)信息;
S4,接入点向站点返回鉴权响应(authentication response)信息;
S5,站点向接入点发送关联请求(association request)信息;关联请求信息也可以称为关联请求帧,其为接入点建立与站点之间连接的必要信息,其中包括了站点的能力信息(例如站点所支持的通信协议),以便接入点采用符合站点能力的通信方式和站点进行通信。
S6,接入点向站点返回关联响应(association response)信息;
然后,接入点和站点之间可以进行秘钥协商,生成用于双方通信的秘钥。
站点上线的具体过程,可以参考现有的Wi-Fi相关协议的介绍,在此不再赘述。
由上所述,接入点B1、接入点B2、接入点B3等多个接入点具有相同的基本服务集标识符,站点上线过程中发送的关联请求信息可能被多个接入点接收的,因此,可能会发生多个 接入点向该站点发送关联响应信息,从而发生冲突,影响站点上线。
在一些实施例中,为避免上述情况发生,每个接收到关联请求信息的接入点向控制器A1发送其接收到的关联请求信息和用于表示该接入点与站点D1之间通信性能的性能参数发生给控制器A1。控制器A1可以根据接入点发送的性能参数,确定用于响应关联请求信息的接入点。具体如下。
在一个说明性示例中,接入点向控制器A1发送的性能参数可以包括该接入点自身的负载信息。可以理解,负载信息可以表示接入点B1的Wi-Fi信道的繁忙程度。负载越高,Wi-Fi信道越繁忙,通信性能越低;负载越低,Wi-Fi信道越空闲,通信性能越高。示例性的,负载信息可以是接入点所连接的站点个数。示例性的,负载信息可以包括接入点所连接的站点个数和站点类型。其中,不同的站点类型对应不同的负载权重。站点类型和负载权重的对应关系可以预设。例如,手机这一站点类型对应的负载权重为1;VR设备这一站点类型对应的负载权重为2;智能冰箱这一站点类型对应的负载权重为0.2。由此,控制器A1可以根据接入点的负载信息,确定接入点的负载。示例性的,当负载信息是站点个数时,则站点个数越多,表示接入点的负载越大。示例性的,当负载信息包括站点个数和站点类型时,可以同一类型的站点个数乘以该类型对应的负载权重,得到权重负载。然后,将每一种站点类型的权重负载相加,得到的加和可用于表示接入点的负载。
在该说明性示例中,控制器A1可以根据接入点的负载,选择用于响应关联请求信息的接入点。举例而言,控制器A1可以接收到接入点B1发送的关联请求信息和接入点B1的负载信息,以及接收到接入点B2发送的关联请求信息和接入点B2的负载信息。然后,判断接入点B1发送的关联请求信息和接入点B2发送的关联请求信息是否源于同一站点;以及根据接入点B1发送的负载信息,确定接入点B1的负载;根据接入点B2发送的负载信息,确定接入点B2的负载。其中,若接入点B1发送的关联请求信息和接入点B2发送的关联请求信息来源同一站点(例如,两者发送给控制器A1的关联请求信息,都是这两者各自接收的站点D1发送的关联请求信息),且接入点B1的负载小于接入点B2的负载,则控制器A1可以确定接入点B1为用于响应关联请求信息的接入点。
在一个说明性示例中,接入点向控制器A1发送的性能参数可以包括该接入点接收站点D1发送的Wi-Fi信号的接收信号强度指示(received signal strength indication,RSSI)。具体而言,接入点可以对其接收的站点D1发送的Wi-Fi信号进行测量,得到RSSI。可以理解,RSSI可以反映信道或者说链路的通信性能,RSSI越高,通信性能越高。
在该说明性示例中,控制器A1可以根据接入点接收站点D1发送的Wi-Fi信号的RSSI,选择用于响应关联请求信息的接入点。举例而言,控制器A1可以接收到接入点B1发送的关联请求信息和接入点B1接收站点D1发送的Wi-Fi信号的RSSI,以及接收到接入点B2发送的关联请求信息和接入点B1接收站点D1发送的Wi-Fi信号的RSSI。然后,判断接入点B1发送的关联请求信息和接入点B2发送的关联请求信息是否源于同一站点;以及判断接入点B1接收站点D1发送的Wi-Fi信号的RSSI是否大于接入点B2接收站点D1发送的Wi-Fi信号的RSSI。其中,若接入点B1发送的关联请求信息和接入点B2发送的关联请求信息来源同一站点,且接入点B1接收站点D1发送的Wi-Fi信号的RSSI大于接入点B2接收站点D1发送的Wi-Fi信号的RSSI,则控制器A1可以确定接入点B1为用于响应关联请求信息的接入点。
在一个说明性示例中,接入点向控制器A1发送的性能参数可以包括接入点自身的负载信息和该接入点接收站点D1发送的Wi-Fi信号的RSSI。控制器A1可以综合考虑接入点自身的 负载信息和接入点接收站点D1发送的Wi-Fi信号的RSSI,确定用于响应关联请求信息的接入点。在一个例子中,可以确定出接收站点D1发送的Wi-Fi信号的RSSI大于预设的强度阈值的至少一个接入点,然后,确定该至少一个接入点中负载最小的接入点为用于响应关联请求信息的接入点。在一个例子中,可以确定出负载小于预设的负载阈值的一个或多个接入点,然后,确定该一个或多个接入点中接收站点D1发送的Wi-Fi信号的RSSI最大的接入点为用于响应关联请求信息的接入点。可以设定通过前述方案,控制器A1可以确定接入点B1为用于响应关联请求信息的接入点。
由此,通过上述方案,可以确定出用于响应关联请求信息的接入点(接入点B1)。用于响应关联请求信息的接入点(接入点B1)向站点D1发送关联响应信息,而其他接入点不向点D1发送关联响应信息,实现站点D1单点上线,避免由于多个接入点的BSSID相同而导致上线冲突。当站点D1通过接入点B1上线后,接入点B1可以站点D1的上线信息,发送给控制器A1。控制器A1可以将该上线信息发送给其所控制的各个接入点,以使各个接入点共享该上线信息。上线信息是指建立Wi-Fi链路所需的信息,是在站点上线过程中由站点和接入点协同所产生的。在站点上线过程中,接入点可以获取上线信息。示例性的,上线信息包括关联请求信息和秘钥。其中,该关联请求信息具体为站点在上线过程中发送给接入点的关联请求信息;该秘钥为站点在上线过程中和接入点协商的秘钥。
如此,由控制器A1控制的多个接入点可以获得站点D1的上线信息,从而可以在满足一定条件下,建立连接站点D1的Wi-Fi链路。示例性的,每个接入点可以获取用于表示其和站点D1之间通信性能的性能参数,并确定该性能参数是否满足预设的性能要求E1。当该性能参数满足预设的性能要求E1时,该接入点可以建立连接站点D1的Wi-Fi链路,以便为站点D1提供数据传输服务。
每个接入点可以将用于表示其和站点D1之间通信性能的性能参数,发送给控制器A1。当控制器A1确定性能参数满足预设的性能要求E1时,可以确定发送该性能参数的接入点给站点D1提供数据传输服务。如此,控制器A1可以从其控制的多个接入点中确定出用于为站点D1提供数据传输服务的一个或多个接入点。该一个或多个接入点可以组成接入点集合,用于根据控制器A1的控制,协同为站点D1提供数据传输服务。其中,该接入点集合中接入点联合为站点D1提供Wi-Fi网络覆盖。为方便描述,可以将接入点集合中接入点联合为站点D1提供的Wi-Fi网络覆盖称为虚拟小区。示例性的,如图5所示,通过上述方式,可以确定出不同站点的虚拟小区。其中,接入点B1和接入点B2可以联合为站点D1提供虚拟小区F1。接入点B1可以为站点D2提供虚拟小区F2。接入点B2和接入点B3可以联合为站点D3提供虚拟小区F3。
接下来,以接入点B1和站点D1为例,介绍本申请实施例中的性能参数。
如上所述,接入点B1向控制器A1发送的性能参数可以用于表示接入点B1和站点D1之间的通信性能。也就是说,性能参数可以包括用于表示Wi-Fi链路通信性能的指标。
在一些实施例中,性能参数可以包括接入点B1接收站点D1发送的Wi-Fi信号的RSSI。相应的,性能要求E1包括预设的强度阈值G1。性能参数满足性能要求E1包括RSSI大于强度阈值G1。
在一些实施例中,接入点B1向控制器发送的性能参数可以包括接入点B1的负载信息。其中,如上所述,负载信息可以是接入点B1所连接的站点个数,也可以是接入点B1所连接的站点个数和站点类型。具体可以参考上文介绍,在此不再赘述。相应的,性能要求E1包括 预设的负载阈值H1。性能参数满足性能要求E1包括负载信息(或者说由负载信息确定的负载)小于负载阈值H1。
在一些实施例中,性能参数可以同时包括RSSI和负载信息。性能要求E1同时包括强度阈值G1和负载阈值H1。性能参数满足性能要求E1同时包括RSSI大于强度阈值G1,负载信息(或者说由负载信息确定的负载)小于负载阈值H1。
在一些实施例中,接入点B1向控制器发送的性能参数可以包括站点D1所执行业务的业务类型。可以理解,不同的业务类型对信道的通信性能要求不同。可以理解,对于VR业务、语音业务等需要低时延、大带宽的高需求业务而言,其对信道的通信性能要求较高。当性能参数包括的站点D1所执行的业务类型为高需求业务时,控制器A1可以继续执行本申请实施例提供的数据传输方法,即确定用于联合为站点D1提供数据传输服务的接入点集合。可以理解,背景(background,BK)业务、尽力而为(best effort,BE)业务等低需求业务对通信要求较低。当性能参数包括的站点D1所执行的业务类型为低需求业务时,控制器A1可以中止执行本申请实施例提供的数据传输方法,而采用直接指示一个接入点(例如接入点B1)为站点D1提供数据传输服务。
在一些实施例中,每个接入点可以周期性(例如,每间隔1秒或其他预设时长)将其最近获取的性能参数发送给控制器A1,或者每个接入点可以实时将其当前获取的性能参数发送给控制器A1。控制器A1可以根据其最近接收的各个接入点发送的性能参数,更新用于为站点提供数据传输服务的接入点集合,以实现站点可以在不同时刻均以最优或较优方式接入网络。
通过上述方式,控制器A1可以确定出用于为站点D1提供数据传输服务的接入点集合。
控制器A1还可以根据接入点集合中各接入点发送的性能参数,确定各接入点与站点D1之间的数据传输模式。接下来,进行示例介绍。
参阅图6,控制器A1可以执行步骤601,确定用于为站点D1提供数据传输的接入点集合P1。具体可以参考上文介绍,此处不再赘述。
当确定出接入点集合P1时或之后,控制器A1可以执行步骤602,判断接入点集合P1中接入点个数是否大于1。
若接入点集合P1中接入点个数不大于1,控制器A1可以执行步骤603,指示接入点集合P1中的接入点进行单接入点传输。单接入点传输可以参考现有技术介绍,在此不再赘述。
在一些实施例中,若接入点集合P1中接入点个数大于1,控制器A1可以执行步骤604,判断接入点集合P1中各接入点发送的性能参数是否同时不满足预设的性能要求E2。也就是说,判断每个接入点发送的性能参数都不满足性能要求E2。其中,性能要求E2的要求高于性能要求E1。或者说,性能要求E2相对于性能要求E1,要求更严苛。
示例性的,如上所述,每个接入点发送的性能参数可以包括RSSI。相应地,性能要求E2可以包括预设的强度阈值G2,其中,强度阈值G2高于强度阈值G1。接入点集合P1中各接入点发送的性能参数同时不满足预设的性能要求E2,具体可以是指各接入点的RSSI均小于强度阈值G2。
示例性的,如上所述,每个接入点发送的性能参数可以包括负载信息。相应地,性能要求E2可以包括预设的负载阈值H2,其中,负载阈值H2小于负载阈值H1。接入点集合P1中各接入点发送的性能参数同时不满足预设的性能要求E2,具体可以是指各接入点的负载信息(或者说由负载信息确定的负载)均大于负载阈值H2。
示例性的,如上所述,每个接入点发送的性能参数可以包括RSSI和负载信息。相应地,性能要求E2可以包括预设的强度阈值G2和预设的负载阈值H2,其中,强度阈值G2高于强度阈值G1,负载阈值H2小于负载阈值H1。接入点集合P1中各接入点发送的性能参数同时不满足预设的性能要求E2,具体可以是指各接入点的RSSI均小于强度阈值G2,和/或,各接入点的负载信息(或者说由负载信息确定的负载)均大于负载阈值H2。
在接入点集合P1中各接入点发送的性能参数同时不满足性能要求E2的情况下,即接入点集合P1中每个接入点的性能参数都不满足性能要求E2时,控制器A1可以执行步骤605,确定接入点集合P1中的不同接入点在不同时刻分别向站点D1发送相同的数据。
示例性的,控制器A1或其他网络侧设备(例如,网关)可以将目的地为站点D1的下行数据Q1发送给接入点集合P1中的每个接入点。控制器A1配置每个接入点向站点D1发送下行数据Q1的发送时刻,其中,不同接入点的发送时刻不同。
示例性的,控制器A1可以在不同时刻将目的地为站点D1的下行数据Q1发送给接入点集合P1中的不同接入点。每个接入点在接收到下行数据Q1时,可以向站点D1发送下行数据Q1。由此,不同的接入点在不同时刻向站点D1发送相同数据,从而可以在站点D1的网络环境较差时,保障了站点D1接收下行数据的准确率。
在一些实施例中,在接入点集合P1中接入点个数大于1的情况下,控制器A1可以执行步骤606,接入点集合P1中各接入点发送的性能参数是否同时满足性能要求E2。示例性的,可以如图6所示,步骤606可以在步骤604之后执行。具体而言,在接入点集合P1中各接入点发送的性能参数不同时不满足性能要求E2的情况下,控制器A1可以执行步骤606。示例性的,如上所述,每个接入点发送的性能参数可以包括RSSI。相应地,性能要求E2可以包括预设的强度阈值G2,其中,强度阈值G2高于强度阈值G1。接入点集合P1中各接入点发送的性能参数同时满足预设的性能要求E2,具体可以是指各接入点的RSSI均不小于强度阈值G2。
示例性的,如上所述,每个接入点发送的性能参数可以包括负载信息。相应地,性能要求E2可以包括预设的负载阈值H2,其中,负载阈值H2小于负载阈值H1。接入点集合P1中各接入点发送的性能参数同时不满足预设的性能要求E2,具体可以是指各接入点的负载信息(或者说由负载信息确定的负载)均不大于负载阈值H2。
示例性的,如上所述,每个接入点发送的性能参数可以包括RSSI和负载信息。相应地,性能要求E2可以包括预设的强度阈值G2和预设的负载阈值H2,其中,强度阈值G2高于强度阈值G1,负载阈值H2小于负载阈值H1。接入点集合P1中各接入点发送的性能参数同时不满足预设的性能要求E2,具体可以是指各接入点的RSSI均不小于强度阈值G2,且各接入点的负载信息(或者说由负载信息确定的负载)均不大于负载阈值H2。
在接入点集合P1中各接入点发送的性能参数同时满足性能要求E2的情况下,控制器A1可以执行步骤607,确定接入点集合P1中的不同接入点在同一时刻分别向站点D1发送不同的数据。
示例性的,接入点集合P1中的接入点可以采用分布式多进多出(multiple-in multipleout,MIMO)方式,向站点D1发送下行数据。具体而言,控制器A1可以通知接入点集合P1中各接入点进行时隙同步。时隙同步可以理解为时钟同步。经过时隙同步,接入点集合P1中各接入点可以采用相同的时钟。控制器A1还可以通知接入点P1中各接入点各自进行信道探测。以接入点B1为例,接入点B1可以向站点D1发送信道探测信号(例如,空数据包 (null data paket,NDP))。站点D1可以响应该信道探测信号,向接入点B1发送信道探测结果(例如,反馈空数据包(feedback NDP))。接入点B1可以将信道探测结果上报给控制器A1。接入点集合P1中各接入点可以将各自的信道探测结果上报给控制器A1。控制器A1可以根据各接入点上报的信道探测结果确定用于进行分布式MIMO的预编码矩阵。预编码矩阵可以包括对应于各个接入点的预编码向量(vector)。控制器A1可以将预编码向量分别下发给对应的接入点。然后,各个接入点可以利用各自的预编码向量,向站点发送不同的下行数据,实现多信道并发。
上文仅示例性介绍了分布式MIMO的方案,详细方案可以参考802.11be协议介绍,在此不再赘述。
在一些实施例中,在步骤604和步骤606的判断结果均为否的情况下,即在接入点集合P1中部分接入点发送的性能参数性能要求E2,另一个部分不满足性能要求E2的情况下,控制器A1可以执行步骤608,从接入点集合P1中确定主接入点,该主接入点用于单独为站点D1提供数据传输服务。具体而言,控制器A1可以将发送的性能参数满足性能要求E2的接入点作为主接入点,并控制主接入点为站点D1提供数据传输服务,而其他接入点不再为站点D1提供数据传输服务。示例性的,当发送的性能参数满足性能要求E2的接入点为多个时,可以确定其中的一个为主接入点,例如可以确定负载最小或RSSI最大的接入点的为主接入点。
在这些实施例的一个说明性示例中,步骤608中的数据传输服务可以专指下行数据传输服务。也就是说,控制器A1控制主接入点将从网络侧接收的下行数据发送给站点D1,而其他接入点不再向站点D1发送下行数据。
在这些实施例的另一个说明性示例中,步骤608中的数据传输服务可以包括上行数据传输服务和下行数据传输服务。也就是说,控制器A1指示主接入点为站点D1提供上行数据传输服务和下行数据传输服务。而其他接入点不再接收或处理站点D1发送的上行数据,也不再向站点D1发送下行数据。
通过上述方案,可以在站点D1的网络环境较差(接入点集合P1中各接入点发送的性能参数同时不满足性能要求E2)时,不同接入点分别向站点D1发送相同数据,可以提高站点D1接收下行数据的概率;还可以在站点D1网络环境良好(接入点集合P1中各接入点发送的性能参数同时满足性能要求E2)时,不同接入点可同时向站点D1发送不同数据,提高了数据吞吐量;还可以在站点D1网络环境一般(接入点集合P1中部分接入点发送的性能参数性能要求E2,另一个部分不满足性能要求E2)时,可以指示与站点D1之间通信性能较好的接入点为站点提供数据传输服务;从而可以为站点D1提供最优的网络接入和数据传输模式,提升了用户通信体验。
接下来,在具体实例中,对本申请实施例提供的数据传输方法进行介绍。
图7示出了本申请实施例提供的一种数据传输方法,可以应用于站点所处信道环境较差的场景。
如图7所示,站点D1和接入点B1可以执行站点D1的上线过程或者说上线流程,使得站点D1可以通过接入点B1上线。上线过程可以具体可以参考上文对步骤S1-S6的介绍,在此不再赘述。
在站点D1通过接入点B1上线后,接入点B1可以执行步骤702,将其在站点上线过程中获得的上线信息发送给控制器A1。上线信息具体可以参考上文介绍,在此不再赘述。
控制器A1可以将介绍的上线信息通过步骤703a发送给接入点B2,以及通过步骤703b发送给接入点B3。
在一些实施例中,接入点B1可以获取用于表示其和站点D1之间通信性能的性能参数R1,并执行步骤704a,确定性能参数R1满足性能要求E1,然后将站点D1列入接入点B1的已关联列表。性能参数、性能要求E1具体可以参考上文介绍。已关联列表中的站点为接入点B1连接的站点,换言之,已关联列表中的站点和接入点B1之间建立了Wi-Fi链路。
在一些实施例中,接入点B2可以获取用于表示其和站点D1之间通信性能的性能参数R2,并执行步骤704b,确定性能参数R2满足性能要求E1,然后将站点D1列入接入点B2的已关联列表。其中,在步骤704b中,接入点B2在确定了性能参数E2满足性能要求E1时或之后,可以利用从控制器A1接收的上线信息,建立其接入点B2和站点D1之间的Wi-Fi链路。
在一些实施例中,接入点B3可以获取用于表示其和站点D1之间通信性能的性能参数R3,并执行步骤704c,确定性能参数R3不满足性能要求E1,然后将站点D1列入接入点B2的未关联列表。未关联列表中的站点为接入点B1还未连接的站点。
接入点B1可以执行步骤705a,向控制器A1发送性能参数R1。接入点B2可以执行步骤705b,向控制器A1发送性能参数R2。接入点B3可以执行步骤705c,向控制器A1发送性能参数R3。然后,控制器A1可以根据性能参数R1、性能参数R2、性能参数R3,确定用于为站点D1提供数据传输服务的接入点集合P1。具体而言,控制器A1可以执行步骤706,确定性能参数R1和性能参数R2满足性能要求E1,以及确定性能参数R3不满足性能要求E1;进而确定接入点B1和接入点B2协同为站点D1提供数据传输服务。也就是说,在性能参数R1和性能参数R2满足性能要求E1,而性能参数R3不满足性能要求E1的情况下,接入点B1和接入点B2组成用于为站点D1提供数据传输服务器的接入点集合P1,而接入点B3不用于组成接入点集合P1。
继续参阅图7,控制器A1可以执行步骤707,确定707,确定性能参数R1和性能参数R2均不满足性能要求E2,进而确定接入点B1和接入点B2在不同时刻向站点D1发送相同数据。其中,不同接入点在不同时刻分别向站点发送相同数据这一数据传输模式,可以称为数据备份传输模式。性能参数R1和性能参数R2均不满足性能要求E2,说明站点D1所处的信道环境较差,为了避免较多的数据包丢失或重发,控制器A1选择数据备份传输模式。
在一些实施例中,在确定接入点B1和接入点B2在不同时刻向站点D1发送相同数据时或之后,控制器A1可以执行步骤708a和步骤708b。具体而言,在步骤708a中,向接入点B1发送配置信息Y1。配置信息Y1可以包括下行数据的发送时刻T1。配置信息Y1可以用于指示接入点B1在发送时刻T1向站点D1发送下行数据Q1。接入点B1可以响应配置信息Y1,在时刻T1执行步骤709,向站点D1下行数据Q1。其中,下行数据Q1是接入点B1从网络侧设备(例如网关或控制器A1)接收到的。在步骤708b中,向接入点B2发送配置信息Y2。配置信息Y2包括下行数据的发送时刻T2。配置信息Y2可以用于指示接入点B2在发送时刻T2向站点D1发送下行数据Q1。其中,下行数据Q1是接入点B2从网络侧设备(例如网关或控制器A1)接收到的。由此,在至少一路成功传输下行数据Q1的情况下,就可使得站点D1成功接收到下行数据Q1。
步骤707-步骤710描述了一种下行数据传输的方案,本申请实施例提供的数据传输方法还可以包括上行数据传输的方案。具体如下。
在一些实施例中,继续参阅图7,在步骤706之后,控制器A1可以执行步骤711a,向接 入点B1发送配置信息Y3,配置信息Y3包括上行资源配置信息的发送时刻T3。控制器A1还可以执行步骤711b,向接入点B1发送配置信息Y4,配置信息Y4包括上行资源配置信息的发送时刻T4。其中,时刻T4晚于时刻T3。
配置信息Y3可以用于指示接入点B1在发送时刻T3向站点D1发送上行资源配置信息Z1。接入点B1可以响应配置信息Y3,执行步骤712,向站点D1发送上行资源配置信息Z1。可以理解,上行资源配置信息用于指示站点发送上行数据所使用的频域和时域资源。示例性的,配置信息Y3还可以用于指示接入点B1为站点D1分配的上行传输的时延资源为时刻T4。也就是说,上行资源配置信息Z1可以用于指示站点D1在时刻T4发送上行传输资源。若站点D1成功接收到上行资源配置信息Z1,可以执行步骤713,在时刻T4向接入点B1发送上行数据。
配置信息Y4可以用于指示接入点B2在发送时刻T4向站点D1发送上行资源配置信息。配置信息Y4可以用于指示当站点在发送时刻T4发送上行数据时,接入点B2不再向站点D1发送上行资源配置信息。回到图4,接入点B2和接入点B1在同一信道(例如,信道36)上和站点D1进行通信。当接入点B2在时刻T4向站点D1发送上行资源配置信息时,检测到站点D1的空口或者说Wi-Fi信道被占用,说明站点D1正在发送上行数据,由此,接入点B2不再向站点D1发送上行资源配置信息。示例性的,接入点B2不再向站点D1发送上行资源配置信息具体是指,在接收到控制器A1下发的下一次的用于指示发送上行资源配置信息之前,不再向站点D1发送上行资源配置信息。
另外,可以理解,步骤713发送的上行数据,是使用接入点B1配置的上行传输资源进行传输的。该上行数据由接入点B1进行接收和处理,以及针对该上行数据回复确认字符(ACK或BA)。而接入点B2不再处理该上行数据,也不针对该上行数据回复确认字符(ACK或BA),由此,避免了多接入点发送确认字符而造成的冲突。
在一些实施例中,上文所述的上行资源配置信息具体可以为802.11ax协议下的触发帧(trigger)。步骤713中发送的上行数据具体可以承载在基于触发的物理层协议处理单元(trigger-based physical-layer protocol data unit,TB PPDU)中。
需要说明的是,图7虽然按照序列顺序示出步骤701-步骤713,并不限定这些步骤执行顺序。在一些实施例中,可以按照图7所示顺序执行步骤701-步骤713。在一些实施例中,可以按照其他顺序执行步骤701-步骤713。例如,步骤708a、798b、步骤711a、711b可以并行执行。再例如,步骤712可以先于步骤709执行;等等,此处不再一一列举。
在本申请实施例提供的数据传输方法中,在站点所处的信道环境较差时,多个接入点可以向其发送相同的数据,由此,提供了站点成功接收数据的概率。
图8示出了本申请实施例提供的一种数据传输方法,可以应用于站点所处信道环境较好的场景。
图8所示的步骤801-步骤806,可以参考上文对图7中步骤701-步骤706的介绍,在此不再赘述。
参阅图8,在步骤806之后,控制器A1可以执行步骤807,确定性能参数R1和性能参数R2均满足性能要求E2,进而确定接入点B1和接入点B2可以在相同时刻向站点D1发送不同数据。示例性的,不同接入点可以在相同时刻分别向站点发送不同数据这一数据传输模式,可以称为分布式MIMO模式。性能参数R1和性能参数R2均满足性能要求E2,说明站点D1所处的信道环境较好,可以或者说适合采用分布式MIMO传输方式,实现多路并发,提高网络的 数据吞吐量。
在一些实施例中,在确定接入点B1和接入点B2可以在相同时刻向站点D1发送不同数据时或之后,控制器A1可以执行步骤808a,向接入点B1发送时隙同步消息和信道探测通知;以及执行步骤808b,向接入点B2发送时隙同步消息和信道探测通知。
时隙同步消息用于指示接入点进行时隙同步或者说时钟同步。示例性的,步骤808a发送的时隙同步消息和步骤808b发送的时隙同步消息包括相同的校准时钟,使得接入点B1和接入点B2可以根据该校准时钟,进行时隙同步或者说时钟同步。由此,实现接入点B1和接入点B2之间的时隙同步。
信道探测通知用于指示接入点向站点发送信道探测信号。示例性的,信道探测信号可以为NDP。由此,接入点B1可以响应信道探测通知,执行步骤809a,向站点D1发送信道探测信号U1。站点D1可以在接收到信道探测信号U1时或之后,检测信道探测信号U1的相关指标(例如电平、信号强度等),并根据检测结果,确定信道探测结果W1。信道探测结果W1可以为feedback NDP。站点D1可以执行步骤810a,将信道探测结果W1发送给接入点B1。然后,接入点B1可以通过步骤811a,将信道探测结果W1发送给控制器A1。同理,接入点B2可以响应信道探测通知,执行步骤809b,向站点D1发送信道探测信号U2。站点D2可以根据探测信号U2,执行步骤810b,向接入点B2发送信道探测结果W2。接入点B2可以通过步骤811b,将信道探测结果W2上报给控制器A1。
控制器A1在获得信道探测结果W1和信道探测结果W2时或之后,可以根据信道探测结果W1和信道探测结果W2,确定预编码矩阵。具体可以参考802.11be协议介绍,在此不再赘述。确定出得预编码矩阵可以包括对应于接入点B1得预编码向量V1和对应于接入点B2得预编码向量V2。然后,控制器A1可以执行步骤812a,将预编码向量V1发送给接入点B1;以及执行步骤812b,将预编码向量V2发送给接入点B2。
接入点B1可以根据预编码向量V1执行步骤813a,向站点B1发送下行数据Q2。接入点B2可以根据预编码向量V2执行步骤813b,向站点B1发送下行数据Q3。其中,步骤813a和步骤813b可以同时执行。
另外,上文介绍了在站点所处信道环境较好的情况下,下行数据的发送方案。而上行数据的发送可以采用图7所示实施例所介绍的方案,具体可以参考上文对图7中步骤711a-步骤713的介绍,在此不再赘述。
由此,可以在站点所处信道环境较好时,站点所连接的多个接入点可以同时向该站点发送不同数据,提高了网络的数据吞吐量。
图9示出了本申请实施例提供的一种数据传输方法,可以应用于站点所处信道环境一般的场景。
图9所示的步骤901-步骤906,可以参考上文对图7中步骤701-步骤706的介绍,在此不再赘述。
参阅图9,在步骤906之后,控制器A1可以执行步骤907,确定性能参数R1满足性能要求E2,以及确定性能参数R2不满足性能要求E2。进而,确定接入点E1为用于单独为站点D1提供数据传输服务的主接入点。示例性的,一个站点所同时连接的多个接入点中的一个接入点作为主接入点而单独为该站点提供数据传输服务这一数据传输模式,可以称为接入点主备切换模式。性能参数R1满足性能要求E2,而性能参数R2不满足性能要求E2,说明站点D1所处的信道环境一般,采用与该站点之间通信性能较好的接入点单独为站点提供数据传输 服务,可以通信服务质量和网络的整体开销。
在一些实施例中,参阅图9,控制器A1可以作为接入点的网络侧设备,执行步骤908a,将目的地为站点D1的下行数据发送给主接入点,即接入点B1。然后,接入点B1可以执行步骤909,将下行数据发送给站点D1。而控制器A1不向接入点B1的发送目的地为站点D1的下行数据。
在一些实施例中,控制器A1可以作为接入点的管理设备,执行步骤908b,向接入点B2发送配置信息Y5。配置信息Y5用于禁止接入点B2响应站点D1发送的数据。换言之,接入点B2根据配置信息Y5,在接收到站点D1通过步骤910发送的上行数据时,不再向站点D1返回确认字符(例如ACK或BA)。而接入点B1在接收到站点D1通过步骤910发送的上行数据时,向站点D1返回确认字符(例如ACK或BA)。由此,可以避免多接入点返回确认字符所导致的冲突。
在一些实施例中,控制器A1可以不执行步骤908b,而是采用图7所示实施例中的上行传输方案,以避免多接入点返回确认字符所导致的冲突。
本申请实施例提供的数据传输方法,可以在站点所处信道环境一般时,选择与站点之间通信性能较好的接入点为站点提供数据传输服务,从而可以兼顾站点的通信服务质量和网络的整体开销。
综合以上,本申请实施例提供了一种数据传输方法,该方法可以由用于控制多个接入点的控制器执行,例如上文所述的控制器A1。参阅图10,该方法可以包括如下步骤。
步骤1001,控制器接收各个所述接入点发送的性能参数;其中,所述性能参数用于表示发送该性能参数的接入点和第一站点之间的通信性能。在一个例子中,步骤1001可以参考上文对图7中步骤705a-步骤705c的介绍实现,在此不再赘述。
步骤1003,控制器根据接收到的各个所述性能参数,确定用于为所述第一站点提供数据传输服务的接入点集合,所述接入点集合包括所述多个接入点中的至少一个接入点。在一个例子中,步骤1003可以参考上述对图7中步骤706的介绍实现。
步骤1005,当所述接入点集合中包括至少两个接入点时,所述控制器根据所述接入点集合中的各个所述接入点发送的所述性能参数,确定所述接入点集合中的各个所述接入点与所述第一站点之间的数据传输模式。在一个例子中,步骤1005可以参考上述对图7中步骤707、图8中步骤807或图9中步骤907的介绍实现。
在一些实施例中,所述性能参数包括所述接入点接收所述第一站点发送的信号的接收信号强度指示RSSI和所述接入点的负载信息中的至少一个。示例性的,确定的所述接入点集合中的任一接入点发送的性能参数满足:RSSI大于预设的强度阈值,且负载信息小于预设的负载阈值。
在一些实施例中,所述控制器独立于所述多个接入点中的各个所述接入点,或者所述控制器集成在所述多个接入点中的一个接入点内。
在一些实施例中,当所述控制器独立于所述多个接入点中的各个所述接入点时,所述控制器通过光链路或Wi-Fi信道接收各个所述接入点发送的性能参数;或者,当所述控制器集成在所述多个接入点中的一个接入点内时,所述控制器通过光链路或Wi-Fi信道接收所述多个接入点中除所述控制器所在接入点之外的接入点发送的性能参数。
在一些实施例中,所述多个接入点包括第一接入点和第二接入点,所述第一站点通过所述第一接入点上线;所述方法还包括:所述控制器从所述第一接入点接收所述第一站点的上 线信息;所述控制器将所述上线信息发送给所述第二接入点。具体可以参考上文对图7中步骤701-步骤703b的介绍。
示例性的,所述上线信息包括关联请求信息和密钥。
示例性的,所述多个接入点具有相同的基本服务集标识符BSSID。
在一些实施例中,所述控制器根据所述接入点集合中的各个所述接入点发送的所述性能参数,确定所述接入点集合中的各个所述接入点与所述第一站点之间的数据传输模式,包括:当所述接入点集合中的各个所述接入点对应的性能参数均不满足预设的性能要求时,确定所述接入点集合中的不同接入点在不同时刻分别向所述第一站点发送相同的数据。具体可以参考上文对图7中步骤707-710的介绍。
在一些实施例中,所述控制器根据所述接入点集合中的各个所述接入点发送的所述性能参数,确定所述接入点集合中的各个所述接入点与所述第一站点之间的数据传输模式,包括:当所述接入点集合中的各个所述接入点对应的性能参数均满足预设的性能要求时,确定所述接入点集合中的不同接入点在同一时刻分别向所述第一站点发送不同的数据。具体可以参考上文对图8中步骤807-813b的介绍。
在一些实施例中,所述控制器根据所述接入点集合中的各个所述接入点发送的所述性能参数,确定所述接入点集合中的各个所述接入点与所述第一站点之间的数据传输模式,包括:当所述接入点集合中第三接入点的性能参数满足预设的性能要求,所述接入点集合中除所述第三接入点之外的接入点不满足所述性能要求时,配置所述第三接入点为所述接入点集合中的主接入点;所述主接入点用于单独向所述第一站点发送数据。具体可以参考上文对图9中步骤907-909的介绍。
示例性的,所述主接入点还用于当接收到所述第一站点发送的第一数据时,向所述第一站点发送所述第一数据对应的确认字符。具体可以参考上文对图9中步骤908b-911的介绍。
在一些实施例中,所述接入点集合包括第四接入点和第五接入点;所述控制器根据所述接入点集合中的各个所述接入点发送的所述性能参数,确定所述接入点集合中的各个所述接入点与所述第一站点之间的数据传输模式,包括:配置所述第四接入点向所述第一站点发送上行资源配置信息的发送时刻为第一时刻;配置所述第五接入点向所述第一站点发送上行资源配置信息的发送时刻为第二时刻;其中,所述第二时刻晚于所述第一时刻;当在所述第二时刻,所述第一站点响应于所述第四接入点发送的上行资源配置信息,发送上行数据时,所述第五接入点不再向所述第一站点发送上行资源配置信息。具体可以参考上文对图7中步骤711a-713的介绍。
本申请实施例提供的数据传输方法,可以根据站点所处的信道环境,为站点选择一个或多个服务接入点,以及选择多个服务接入点与站点之间的数据传输模式,为站点保证了最优的网络接入和数据传输模式,提高了用户通信体验。
本申请实施例提供了一种数据传输方法,可以应用于由控制器控制的多个接入点中的第一接入点,例如上文所述的接入点B1。参考图11,该方法包括如下步骤。
步骤1101,所述第一接入点确定第一性能参数,所述第一性能参数用于表示所述第一接入点和第一站点之间的通信性能。在一个例子中,步骤1101可以参考上文对图7中步骤704a-704c的介绍实现。
步骤1103,当所述第一性能参数满足预设的性能要求时,为所述第一站点提供数据传输服务。在一个例子中,步骤1103可以参考上文对图7中步骤704a-706的介绍实现。
在一些实施例中,所述方法还包括:所述第一接入点向所述控制器发送上线信息,所述上线信息为所述第一接入点在所述第一站点通过所述第一接入点上线时所获得的信息。具体可以参考上文对图7中步骤702-703b的介绍,在此不再赘述。
在一些实施例中,所述多个接入点还包括第二接入点;所述第一站点通过所述第二接入点上线;所述方法还包括:所述第一接入点从所述控制器接收所述第一站点的上线信息,所述上线信息是所述控制器从所述第二接入点接收的。具体可以参考上文对图7中步骤703a的介绍。
在一些实施例中,所述上线信息包括关联请求信息和密钥。
在本申请实施例提供的数据传输方法,接入点可以根据其和站点之间的信道环境,选择是否为该接入点提供网络服务,从而兼顾了站点的网络服务质量和网络的整体开销。
参阅图12,本申请实施例提供了一种数据传输装置1200,包括:
通信单元1210,用于接收各个所述接入点发送的性能参数;其中,所述性能参数用于表示发送该性能参数的接入点和第一站点之间的通信性能;
第一确定单元1220,用于根据接收到的各个所述性能参数,确定用于为所述第一站点提供数据传输服务的接入点集合,所述接入点集合包括所述多个接入点中的至少一个接入点;
第二确定单元1230,用于当所述接入点集合中包括至少两个接入点时,根据所述接入点集合中的各个所述接入点发送的所述性能参数,确定所述接入点集合中的各个所述接入点与所述第一站点之间的数据传输模式。
装置1200的各功能单元的功能可以参考上文对图10所示各方法实施例的介绍实现,在此不再赘述。
本申请实施例提供的数据传输装置,可以根据站点所处的信道环境,为站点选择一个或多个服务接入点,以及选择多个服务接入点与站点之间的数据传输模式,为站点保证了最优的网络接入和数据传输模式,提高了用户通信体验。
参阅图13,本申请实施例提供了一种数据传输装置1300,包括:
确定单元1310,用于确定第一性能参数,所述第一性能参数用于表示所述装置和第一站点之间的通信性能;
提供单元1320,用于当所述第一性能参数满足预设的性能要求时,为所述第一站点提供数据传输服务。
装置1300的各功能单元的功能可以参考上文对图11所示各方法实施例的介绍实现,在此不再赘述。
本申请实施例提供的数据传输装置可以根据其和站点之间的信道环境,选择是否为该接入点提供网络服务,从而兼顾了站点的网络服务质量和网络的整体开销。
上文主要从方法流程的角度对本申请实施例提供的装置进行了介绍。可以理解的是,各个电子设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
参阅图14,本申请实施例提供了一种控制器1400,控制器1400可以执行上述图4或图 6或图7或图8或图9或图10所示各方法实施例中控制器A1执行的操作。其中,控制器1400可以包括处理器1410、存储器1420和收发器1430。存储器1420中存储有指令,该指令可被处理器1410执行。当该指令在被处理器1410执行时,控制器1400可以执行上述图4或图6或图7或图8或图9或图10所示各方法实施例中控制器A1执行的操作。具体而言,处理器1410可以进行数据处理操作,收发器1430可以进行数据发送和/或接收的操作。
参阅图15,本申请实施例提供了一种接入点1500,接入点1500可以执行上述图4或图6或图7或图8或图9或图11所示各方法实施例中接入点执行的操作,例如接入点B1执行的操作。其中,接入点1500可以包括处理器1510、存储器1520和收发器1530。存储器1520中存储有指令,该指令可被处理器1510执行。当该指令在被处理器1510执行时,接入点1500可以执行上述图4或图6或图7或图8或图9或图11所示各方法实施例中接入点执行的操作,例如接入点B1执行的操作。具体而言,处理器1510可以进行数据处理操作,收发器1530可以进行数据发送和/或接收的操作。
参阅图16,本申请实施例提供了一种芯片系统,可应用于上文所述的控制器A1。如图16所示,该芯片系统包括:处理器1610和接口电路1620。处理器1610和接口电路1620连接,用于执行上述图4或图6或图7或图8或图9或图10所示各方法实施例中控制器A1执行的操作。
在一些实施例中,芯片系统还包括存储器1630。存储器中存储有指令,该指令可被处理器1610执行。该指令在被处理器1610执行时,芯片系统可以执行上述图4或图6或图7或图8或图9或图10所示各方法实施例中控制器A1执行的操作。
继续参阅图16,本申请实施例提供了一种芯片系统,可应用于上文所述的接入点,例如接入点B1或接入点B2。如图16所示,该芯片系统包括:处理器1610和接口电路1620。处理器1610和接口电路1620连接,用于执行上述图4或图6或图7或图8或图9或图11所示各方法实施例中接入点执行的操作。
在一些实施例中,芯片系统还包括存储器1630。存储器中存储有指令,该指令可被处理器1610执行。该指令在被处理器1610执行时,芯片系统可以执行上述图4或图6或图7或图8或图9或图11所示各方法实施例中接入点执行的操作。
可以理解的是,本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable rom,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当 使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。

Claims (40)

  1. 一种数据传输方法,其特征在于,应用于控制器,所述控制器用于控制多个接入点;所述方法包括:
    所述控制器接收各个所述接入点发送的性能参数;其中,所述性能参数用于表示发送该性能参数的接入点和第一站点之间的通信性能;
    所述控制器根据接收到的各个所述性能参数,确定用于为所述第一站点提供数据传输服务的接入点集合,所述接入点集合包括所述多个接入点中的至少一个接入点;
    当所述接入点集合中包括至少两个接入点时,所述控制器根据所述接入点集合中的各个所述接入点发送的所述性能参数,确定所述接入点集合中的各个所述接入点与所述第一站点之间的数据传输模式。
  2. 根据权利要求1所述的方法,其特征在于,所述性能参数包括所述接入点接收所述第一站点发送的信号的接收信号强度指示RSSI和所述接入点的负载信息中的至少一个。
  3. 根据权利要求2所述的方法,其特征在于,确定的所述接入点集合中的任一接入点发送的性能参数满足:RSSI大于预设的强度阈值,且负载信息小于预设的负载阈值。
  4. 根据权利要求1所述的方法,其特征在于,所述控制器独立于所述多个接入点中的各个所述接入点,或者所述控制器集成在所述多个接入点中的一个接入点内。
  5. 根据权利要求1所述的方法,其特征在于,
    当所述控制器独立于所述多个接入点中的各个所述接入点时,所述控制器通过光链路或Wi-Fi信道接收各个所述接入点发送的性能参数;或者,
    当所述控制器集成在所述多个接入点中的一个接入点内时,所述控制器通过光链路或Wi-Fi信道接收所述多个接入点中除所述控制器所在接入点之外的接入点发送的性能参数。
  6. 根据权利要求1所述的方法,其特征在于,所述多个接入点包括第一接入点和第二接入点,所述第一站点通过所述第一接入点上线;
    所述方法还包括:
    所述控制器从所述第一接入点接收所述第一站点的上线信息;
    所述控制器将所述上线信息发送给所述第二接入点。
  7. 根据权利要求6所述的方法,其特征在于,所述上线信息包括关联请求信息和密钥。
  8. 根据权利要求6所述的方法,其特征在于,所述多个接入点具有相同的基本服务集标识符BSSID。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述控制器根据所述接入点集合中的各个所述接入点发送的所述性能参数,确定所述接入点集合中的各个所述接入点与所述第一站点之间的数据传输模式,包括:
    当所述接入点集合中的各个所述接入点对应的性能参数均不满足预设的性能要求时,确定所述接入点集合中的不同接入点在不同时刻分别向所述第一站点发送相同的数据。
  10. 根据权利要求1-8任一项所述的方法,其特征在于,所述控制器根据所述接入点集合中的各个所述接入点发送的所述性能参数,确定所述接入点集合中的各个所述接入点与所述第一站点之间的数据传输模式,包括:
    当所述接入点集合中的各个所述接入点对应的性能参数均满足预设的性能要求时,确定所述接入点集合中的不同接入点在同一时刻分别向所述第一站点发送不同的数据。
  11. 根据权利要求1-8任一项所述的方法,其特征在于,所述控制器根据所述接入点集合中的各个所述接入点发送的所述性能参数,确定所述接入点集合中的各个所述接入点与所述第一站点之间的数据传输模式,包括:
    当所述接入点集合中第三接入点的性能参数满足预设的性能要求,所述接入点集合中除所述第三接入点之外的接入点不满足所述性能要求时,配置所述第三接入点为所述接入点集合中的主接入点;所述主接入点用于单独向所述第一站点发送数据。
  12. 根据权利要求11所述的方法,其特征在于,所述主接入点还用于当接收到所述第一站点发送的第一数据时,向所述第一站点发送所述第一数据对应的确认字符。
  13. 根据权利要求1-8任一项所述的方法,其特征在于,所述接入点集合包括第四接入点和第五接入点;
    所述控制器根据所述接入点集合中的各个所述接入点发送的所述性能参数,确定所述接入点集合中的各个所述接入点与所述第一站点之间的数据传输模式,包括:
    配置所述第四接入点向所述第一站点发送上行资源配置信息的发送时刻为第一时刻;
    配置所述第五接入点向所述第一站点发送上行资源配置信息的发送时刻为第二时刻;
    其中,所述第二时刻晚于所述第一时刻;当在所述第二时刻,所述第一站点响应于所述第四接入点发送的上行资源配置信息,发送上行数据时,所述第五接入点不再向所述第一站点发送上行资源配置信息。
  14. 一种数据传输方法,其特征在于,应用于由控制器控制的多个接入点中的第一接入点;所述方法包括:
    所述第一接入点确定第一性能参数,所述第一性能参数用于表示所述第一接入点和第一站点之间的通信性能;
    当所述第一性能参数满足预设的性能要求时,为所述第一站点提供数据传输服务。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述第一接入点向所述控制器发送上线信息,所述上线信息为所述第一接入点在所述第一站点通过所述第一接入点上线时所获得的信息。
  16. 根据权利要求14所述的方法,其特征在于,所述多个接入点还包括第二接入点;所述第一站点通过所述第二接入点上线;所述方法还包括:
    所述第一接入点从所述控制器接收所述第一站点的上线信息,所述上线信息是所述控制 器从所述第二接入点接收的。
  17. 根据权利要求15或16所述的方法,其特征在于,所述上线信息包括关联请求信息和密钥。
  18. 一种数据传输装置,其特征在于,用于控制多个接入点;所述装置包括:
    通信单元,用于接收各个所述接入点发送的性能参数;其中,所述性能参数用于表示发送该性能参数的接入点和第一站点之间的通信性能;
    第一确定单元,用于根据接收到的各个所述性能参数,确定用于为所述第一站点提供数据传输服务的接入点集合,所述接入点集合包括所述多个接入点中的至少一个接入点;
    第二确定单元,用于当所述接入点集合中包括至少两个接入点时,根据所述接入点集合中的各个所述接入点发送的所述性能参数,确定所述接入点集合中的各个所述接入点与所述第一站点之间的数据传输模式。
  19. 根据权利要求18所述的装置,其特征在于,所述性能参数包括所述接入点接收所述第一站点发送的信号的接收信号强度指示RSSI和所述接入点的负载信息中的至少一个。
  20. 根据权利要求19所述的装置,其特征在于,确定的所述接入点集合中的任一接入点发送的性能参数满足:RSSI大于预设的强度阈值,且负载信息小于预设的负载阈值。
  21. 根据权利要求18所述的装置,其特征在于,所述装置独立于所述多个接入点中的各个所述接入点,或者所述装置集成在所述多个接入点中的一个接入点内。
  22. 根据权利要求18所述的装置,其特征在于,
    当所述装置独立于所述多个接入点中的各个所述接入点时,所述通信单元通过光链路或Wi-Fi信道接收各个所述接入点发送的性能参数;或者,
    当所述装置集成在所述多个接入点中的一个接入点内时,所述通信单元通过光链路或Wi-Fi信道接收所述多个接入点中除所述装置所在接入点之外的接入点发送的性能参数。
  23. 根据权利要求18所述的装置,其特征在于,所述多个接入点包括第一接入点和第二接入点,所述第一站点通过所述第一接入点上线;
    所述通信单元还用于:
    从所述第一接入点接收所述第一站点的上线信息;
    将所述上线信息发送给所述第二接入点。
  24. 根据权利要求23所述的装置,其特征在于,所述上线信息包括关联请求信息和密钥。
  25. 根据权利要求23所述的装置,其特征在于,所述多个接入点具有相同的基本服务集标识符BSSID。
  26. 根据权利要求18-25任一项所述的装置,其特征在于,所述第二确定单元还用于:当所述接入点集合中的各个所述接入点对应的性能参数均不满足预设的性能要求时,确定所述接入点集合中的不同接入点在不同时刻分别向所述第一站点发送相同的数据。
  27. 根据权利要求18-25任一项所述的装置,其特征在于,所述第二确定单元还用于:当 所述接入点集合中的各个所述接入点对应的性能参数均满足预设的性能要求时,确定所述接入点集合中的不同接入点在同一时刻分别向所述第一站点发送不同的数据。
  28. 根据权利要求18-25任一项所述的装置,其特征在于,所述第二确定单元还用于:当所述接入点集合中第三接入点的性能参数满足预设的性能要求,所述接入点集合中除所述第三接入点之外的接入点不满足所述性能要求时,配置所述第三接入点为所述接入点集合中的主接入点;所述主接入点用于单独向所述第一站点发送数据。
  29. 根据权利要求28所述的装置,其特征在于,所述主接入点还用于当接收到所述第一站点发送的第一数据时,向所述第一站点发送所述第一数据对应的确认字符。
  30. 根据权利要求18-25任一项所述的装置,其特征在于,所述接入点集合包括第四接入点和第五接入点;
    所述第二确定单元还用于:
    配置所述第四接入点向所述第一站点发送上行资源配置信息的发送时刻为第一时刻;
    配置所述第五接入点向所述第一站点发送上行资源配置信息的发送时刻为第二时刻;
    其中,所述第二时刻晚于所述第一时刻;当在所述第二时刻,所述第一站点响应于所述第四接入点发送的上行资源配置信息,发送上行数据时,所述第五接入点不再向所述第一站点发送上行资源配置信息。
  31. 一种数据传输装置,其特征在于,所述装置包括:
    确定单元,用于确定第一性能参数,所述第一性能参数用于表示所述装置和第一站点之间的通信性能;
    提供单元,用于当所述第一性能参数满足预设的性能要求时,为所述第一站点提供数据传输服务。
  32. 根据权利要求31所述的装置,其特征在于,所述装置还包括:通信单元,用于向控制器发送上线信息,所述上线信息为所述装置在所述第一站点通过所述装置上线时所获得的信息。
  33. 根据权利要求31所述的装置,其特征在于,所述第一站点通过第二接入点上线;所述装置还包括:通信单元,用于从控制器接收所述第一站点的上线信息,所述上线信息是所述控制器从所述第二接入点接收的。
  34. 根据权利要求32或33所述的装置,其特征在于,所述上线信息包括关联请求信息和密钥。
  35. 一种控制器,其特征在于,包括处理器、存储器、收发器;
    所述存储器用于存储计算机指令;
    当所述控制器运行时,所述处理器执行所述计算机指令,使得所述控制器执行权利要求1-13任一项所述的方法。
  36. 一种接入点,其特征在于,包括处理器、存储器、收发器;
    所述存储器用于存储计算机指令;
    当所述接入点运行时,所述处理器执行所述计算机指令,使得所述接入点执行权利要求14-17任一项所述的方法。
  37. 一种计算机存储介质,其特征在于,所述计算机存储介质包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行权利要求1-13任一项所述的方法。
  38. 一种计算机存储介质,其特征在于,所述计算机存储介质包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行权利要求14-17任一项所述的方法。
  39. 一种计算机程序产品,计算机程序产品包含的程序代码被用于电子设备中的处理器执行时,使得所述电子设备执行权利要求1-13任一项所述的方法。
  40. 一种计算机程序产品,计算机程序产品包含的程序代码被用于电子设备中的处理器执行时,使得所述电子设备执行权利要求14-17任一项所述的方法。
PCT/CN2021/114164 2020-10-20 2021-08-24 一种数据传输方法及装置 WO2022083268A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023524440A JP2023546242A (ja) 2020-10-20 2021-08-24 データ伝送方法および装置
EP21881687.4A EP4221349A4 (en) 2020-10-20 2021-08-24 DATA TRANSMISSION METHOD AND DEVICE
MX2023004547A MX2023004547A (es) 2020-10-20 2021-08-24 Metodo y aparato de transmision de datos.
US18/303,203 US20230262522A1 (en) 2020-10-20 2023-04-19 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011126518.1A CN114390555A (zh) 2020-10-20 2020-10-20 一种数据传输方法及装置
CN202011126518.1 2020-10-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/303,203 Continuation US20230262522A1 (en) 2020-10-20 2023-04-19 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2022083268A1 true WO2022083268A1 (zh) 2022-04-28

Family

ID=81192606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114164 WO2022083268A1 (zh) 2020-10-20 2021-08-24 一种数据传输方法及装置

Country Status (6)

Country Link
US (1) US20230262522A1 (zh)
EP (1) EP4221349A4 (zh)
JP (1) JP2023546242A (zh)
CN (1) CN114390555A (zh)
MX (1) MX2023004547A (zh)
WO (1) WO2022083268A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024007210A1 (en) * 2022-07-06 2024-01-11 Huawei Technologies Co., Ltd. Smart antenna for optical network terminals and indoor optical network

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115148013B (zh) * 2022-06-27 2024-03-19 中国电信股份有限公司 光纤传感监测方法及装置、系统、电子设备及存储介质
CN115361605B (zh) * 2022-10-20 2023-03-24 武汉长光科技有限公司 虚拟域域内漫游方法、装置、设备和计算机可读存储介质
CN117544876B (zh) * 2024-01-05 2024-03-26 广东朝歌智慧互联科技有限公司 基于可搭载mini-olt服务端的光纤接入网络系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080146240A1 (en) * 2006-12-13 2008-06-19 Colubris Networks, Inc. Call admission control for Wi-Fi
CN103067948A (zh) * 2013-01-23 2013-04-24 西安电子科技大学 密集无线局域网站点传输模式的选择方法
CN107113641A (zh) * 2014-12-17 2017-08-29 汤姆逊许可公司 多接入点环境中wlan用户体验质量控制
CN107623931A (zh) * 2016-07-14 2018-01-23 中兴通讯股份有限公司 多点协作的分组管理方法、装置及系统
CN110536469A (zh) * 2018-05-23 2019-12-03 华为技术有限公司 基于多接入点ap协作的空间复用的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102195782B1 (ko) * 2012-11-08 2020-12-29 인터디지탈 패튼 홀딩스, 인크 무선 근거리 네트워크들에서 균일한 다수의 액세스 포인트들의 커버리지에 대한 매체 액세스 제어를 위한 방법 및 장치
CN104144450B (zh) * 2013-05-07 2017-12-22 华为技术有限公司 用于协作传输的方法、接入点、服务器和站点
WO2014194492A1 (zh) * 2013-06-05 2014-12-11 华为技术有限公司 接入点的选择方法及装置
EP3668187B1 (en) * 2013-12-06 2023-10-04 Huawei Technologies Co., Ltd. Accessing an access point by a station device
CN104968018A (zh) * 2015-06-25 2015-10-07 西安电子科技大学 一种基于sdn的wlan接入式负载均衡的优化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080146240A1 (en) * 2006-12-13 2008-06-19 Colubris Networks, Inc. Call admission control for Wi-Fi
CN103067948A (zh) * 2013-01-23 2013-04-24 西安电子科技大学 密集无线局域网站点传输模式的选择方法
CN107113641A (zh) * 2014-12-17 2017-08-29 汤姆逊许可公司 多接入点环境中wlan用户体验质量控制
CN107623931A (zh) * 2016-07-14 2018-01-23 中兴通讯股份有限公司 多点协作的分组管理方法、装置及系统
CN110536469A (zh) * 2018-05-23 2019-12-03 华为技术有限公司 基于多接入点ap协作的空间复用的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4221349A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024007210A1 (en) * 2022-07-06 2024-01-11 Huawei Technologies Co., Ltd. Smart antenna for optical network terminals and indoor optical network

Also Published As

Publication number Publication date
US20230262522A1 (en) 2023-08-17
EP4221349A4 (en) 2024-03-27
JP2023546242A (ja) 2023-11-01
MX2023004547A (es) 2023-05-08
EP4221349A1 (en) 2023-08-02
CN114390555A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2022083268A1 (zh) 一种数据传输方法及装置
US10727925B2 (en) Method and apparatus for supporting movement of user equipment in wireless communications
US10178051B2 (en) Data transmission method and apparatus for terminal
US9918236B2 (en) Access point having multichannel and multi transmission power, cell formation method
RU2602338C1 (ru) Способ ретрансляции беспроводного ретрансляционного устройства и беспроводное ретрансляционное устройство
EP3668187B1 (en) Accessing an access point by a station device
TWI754074B (zh) 測量間隔配置方法、裝置、設備、終端及系統
WO2016041448A1 (zh) 数据转发设备工作模式的配置方法及装置
JP6900624B2 (ja) データ通信システム、光回線終端装置およびベースバンドユニット
KR102402481B1 (ko) 액세스 방법 및 기기
EP3264828B1 (en) Access point automatic switching method and wireless routing device
WO2021135413A1 (zh) 一种节能控制方法及相关设备
US20160050614A1 (en) Method and device for configuring multi-band based link in wireless lan system
US20140162631A1 (en) Load sharing method, base station, user equipment, load sharing node, and system
US11974363B2 (en) Communication method, communication apparatus, and terminal device
WO2022194146A1 (zh) 移动接入和回传一体化网络的建立方法、装置及设备
US20210359719A1 (en) Information Transmission Method and Communication Apparatus
JP2024515402A (ja) ポジショニング設定方法及び電子装置
CN103618973A (zh) 一种业务数据传输的方法和onu设备
EP2445268A1 (en) Method for managing an hybrid wired/wireless network
WO2021219025A1 (zh) 无线传输方法和装置、网络设备及存储介质
US11546819B2 (en) Cellular telecommunications network
CN114449486B (zh) 一种边缘计算服务漫游的方法及装置
WO2023134459A1 (zh) 通信链路的接入方法、装置及电子设备
EP4387183A1 (en) Software defined network controller, network device, method and apparatus of determining resources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881687

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023524440

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023007415

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021881687

Country of ref document: EP

Effective date: 20230426

ENP Entry into the national phase

Ref document number: 112023007415

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230419

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 523440460

Country of ref document: SA