WO2020019642A1 - 压缩机控制方法、控制装置及控制系统 - Google Patents

压缩机控制方法、控制装置及控制系统 Download PDF

Info

Publication number
WO2020019642A1
WO2020019642A1 PCT/CN2018/121896 CN2018121896W WO2020019642A1 WO 2020019642 A1 WO2020019642 A1 WO 2020019642A1 CN 2018121896 W CN2018121896 W CN 2018121896W WO 2020019642 A1 WO2020019642 A1 WO 2020019642A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
compressor
completed
switching operation
operating
Prior art date
Application number
PCT/CN2018/121896
Other languages
English (en)
French (fr)
Inventor
贺小林
李洋
刘文斌
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US17/261,277 priority Critical patent/US11486384B2/en
Priority to EP18927518.3A priority patent/EP3808980B1/en
Publication of WO2020019642A1 publication Critical patent/WO2020019642A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/007Installations or systems with two or more pumps or pump cylinders, wherein the flow-path through the stages can be changed, e.g. from series to parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/005Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders with two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/24Control not provided for in a single group of groups F04B27/02 - F04B27/22
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/08Cylinder or housing parameters
    • F04B2201/0807Number of working cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/074Details of compressors or related parts with multiple cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/024Compressor control by controlling the electric parameters, e.g. current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/23Time delays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of compressors, and in particular, to a compressor control method, a control device, and a control system.
  • a compressor with switchable cylinders can be used to switch to different cylinders according to different load requirements to improve energy efficiency.
  • the torque of the compressor is not the same before and after the cylinder is changed.
  • a torque compensation program needs to be added to the compressor control.
  • the existing cylinder cutting torque compensation control method is: the main control controller detects that a cylinder cutting operation is currently required, controls the corresponding solenoid valve operation, and sends the switched cylinder instruction to the drive controller, and the drive controller receives the instruction Then switch the corresponding torque compensation program.
  • the present application provides a compressor control method, a control device, and a control system to at least solve the problem that the compressor torque compensation in the prior art does not match the actual running cylinder.
  • a compressor control method which includes: receiving a cylinder block switching instruction, detecting an operating parameter of the compressor; and judging whether the cylinder is completed according to the operating parameter of the compressor. Body switching operation; after determining that the cylinder switching operation has been completed, perform torque compensation.
  • the method before receiving the cylinder switching instruction, the method further includes: detecting the current operating condition requirements, and determining whether the current operating condition requirements meet the cylinder switching conditions; when the current operating condition requirements meet the cylinder switching conditions, generating Cylinder block switching instruction; wherein the cylinder block switching instruction is used to control the solenoid valve to perform a cylinder block switching operation.
  • detecting the operating parameters of the compressor includes: detecting a current operating parameter of the compressor when receiving a cylinder switching instruction; and detecting a real-time operating parameter of the compressor every first preset time interval.
  • determining whether the cylinder switching operation has been completed according to the operating parameters of the compressor includes: calculating a ratio of the real-time operating parameters to the current operating parameters;
  • the ratio is compared with the threshold for cutting cylinders; wherein the threshold for cutting cylinders is a preset value used to signify that the cylinder switching has been completed; when the ratio is greater than or equal to the threshold for cutting cylinders, it is determined that the switching operation of the cylinder is completed.
  • the method further includes: starting a timer to start timing; and after determining that the cylinder switching operation is completed, further including: stopping the timing and resetting the timer to zero.
  • the method further includes: detecting the timing time to determine whether the timing time reaches the cylinder cutting waiting time; wherein the cylinder cutting waiting time is a preset maximum waiting time; when the timing reaches the cylinder cutting time When waiting, it will prompt the cylinder switching operation failure, and it will prompt the solenoid valve or compressor failure.
  • the operating parameters of the compressor include at least one of the following: the operating power of the compressor, the operating voltage of the compressor, and the operating current of the compressor.
  • a compressor control device including: a detection module for receiving a cylinder block switching instruction to detect an operation parameter of the compressor; and a determination module for use according to the operation parameter of the compressor Determine whether the block switching operation has been completed; the compensation module is used to perform torque compensation after determining that the block switching operation has been completed.
  • it further includes: a switching judgment module for detecting the current working condition requirements before receiving the cylinder switching instruction, and determining whether the current operating condition requirements meet the cylinder switching conditions; and an instruction generating module for When the requirements of the cylinder switching conditions are met, a cylinder switching instruction is generated; wherein the cylinder switching instruction is used to control the solenoid valve to perform a cylinder switching operation.
  • the detection module includes: a first detection unit for detecting a current operating parameter of the compressor when a cylinder switching instruction is received; and a second detection unit for detecting every first preset time interval Real-time operating parameters of the compressor;
  • the judging module includes: a calculation unit for calculating a ratio between the real-time operating parameter and the current operating parameter; a comparison unit for comparing the ratio with a threshold value for cutting the cylinder; wherein the threshold value for cutting the cylinder is preset A value used to indicate that the cylinder block switching has been completed; a determining unit configured to determine that the cylinder block switching operation has been completed when the ratio is greater than or equal to the threshold for cutting the cylinder.
  • the operating parameters of the compressor include at least one of the following: the operating power of the compressor, the operating voltage of the compressor, and the operating current of the compressor.
  • a compressor control system including: a main controller, a solenoid valve, and a drive controller; the main controller is configured to send a cylinder block switching instruction to the solenoid valve and the drive controller ; Solenoid valve is used to execute the cylinder switching operation after receiving the cylinder switching instruction; Drive controller is used to detect the operating parameters of the compressor after receiving the cylinder switching instruction and according to the operating parameters of the compressor Determine whether the cylinder switching operation has been completed, and after determining that the cylinder switching operation has been completed, perform torque compensation.
  • the main controller determines whether the current operating condition requirements meet the cylinder switching conditions by detecting the current operating condition requirements. When the current operating condition requirements meet the cylinder switching conditions, it sends a cylinder switching instruction to the solenoid valve and the driver. Controller.
  • the operating parameters of the compressor detected by the driving controller include at least one of the following: the operating power of the compressor, the operating voltage of the compressor, and the operating current of the compressor.
  • the drive controller loads the torque compensation program and executes the torque compensation program to perform torque compensation.
  • the method further includes: a timer for starting the timer after the solenoid valve receives the cylinder switching instruction; after the drive controller determines that the cylinder switching operation has been completed, stopping the timer and clearing it.
  • the main controller is further configured to: after the timer starts counting, detect the timing time to determine whether the timing time reaches the cylinder cutting waiting time; wherein the cylinder cutting waiting time is a preset maximum waiting time.
  • an alarm device which is used for prompting the failure of the cylinder block switching operation when the timing time reaches the waiting time for cutting the cylinder, and prompting the malfunction of the solenoid valve or the compressor.
  • a compressor torque compensation method which includes: receiving a cylinder switching instruction and detecting the operating parameters of the compressor; The operating parameters determine whether the cylinder switching operation has been completed; after determining that the cylinder switching operation has been completed, torque compensation is performed.
  • the method detects the cylinder change in real time after receiving the cylinder cutting instruction, and the corresponding torque compensation program is added after the cylinder cutting is completed, thereby reducing the vibration caused by the mismatch between the compressor torque compensation and the actual running cylinder when the cylinder is switched. Improved overall machine reliability.
  • FIG. 1 is an optional flowchart of a compressor control method according to the prior art
  • FIG. 3 is another optional flowchart of a compressor control method according to Embodiment 1 of the present application.
  • FIG. 4 is an optional structural block diagram of a compressor control device according to Embodiment 2 of the present application.
  • FIG. 5 is an optional structural block diagram of a compressor control system according to Embodiment 3 of the present application.
  • FIG. 1 illustrates an optional method. As shown in Figure 1, the method includes the following steps S102-S116:
  • step S114 determine whether a fault is reported; when it is determined that the fault is reported, proceed to step S116; when it is determined that the fault is not reported, proceed to step S102;
  • FIG. 1 shows an optional flowchart of the method. As shown in FIG. 1, the method includes the following steps S202-S206:
  • a compressor torque compensation method which includes: receiving a cylinder switching instruction and detecting the operating parameters of the compressor; The operating parameters of the system determine whether the block switching operation has been completed; after determining that the block switching operation has been completed, perform torque compensation.
  • the method detects the cylinder change in real time after receiving the cylinder cutting instruction, and the corresponding torque compensation program is added after the cylinder cutting is completed, thereby reducing the vibration caused by the mismatch between the compressor torque compensation and the actual running cylinder when the cylinder is switched. Improved overall machine reliability.
  • the method before receiving the cylinder switching instruction, the method further includes: detecting a current operating condition requirement, and determining whether the current operating condition requirement meets the cylinder switching condition; when the current operating condition requirement meets the cylinder switching condition, then Generate a cylinder block switching instruction; wherein, the cylinder block switching instruction is used to control a solenoid valve to perform a cylinder block switching operation.
  • the load changes due to changes in the frequency of the fan, compressor, or various valve operations and operating conditions.
  • the unit When the unit is working normally, its load changes slowly, usually in seconds.
  • the compressor cuts the cylinder, the load changes dramatically before and after the cylinder block is switched, which is reflected in the compressor's control for instant changes in power, voltage and current. Therefore, you can determine whether the compressor has completed cutting the cylinder by detecting changes in power, voltage, and current.
  • the operating parameters of the compressor include at least one of the following: the operating power of the compressor, the operating voltage of the compressor, and the operating current of the compressor.
  • Detecting the operating power of the compressor includes detecting the current operating power P1 of the compressor when receiving a cylinder switching instruction, and detecting the real-time operating power P2 of the compressor every first preset time interval. After detecting the operating power of the compressor, determine whether the cylinder block switching operation has been completed based on the detected operating power of the compressor.
  • the cylinder thresholds are compared; among them, the cylinder cut threshold is a preset value used to indicate that the cylinder switching has been completed; when the ratio is greater than or equal to the cylinder cut threshold, it indicates that the operating power of the compressor has changed greatly, and the change is due to the cylinder cut As a result, it can be determined that the block switching operation has been completed.
  • Detecting the operating voltage of the compressor includes detecting the current operating voltage V1 of the compressor when receiving a cylinder switching instruction, and detecting the real-time operating voltage V2 of the compressor every first preset time interval. After detecting the operating voltage of the compressor, determine whether the cylinder switching operation has been completed based on the detected operating voltage of the compressor.
  • the steps include the following steps: Calculate the ratio of the real-time operating voltage V2 to the current operating voltage V1;
  • the cylinder thresholds are compared; among them, the cylinder cut threshold is a preset value used to indicate that the cylinder block switching has been completed; when the ratio is greater than or equal to the cylinder cut threshold, it indicates that the operating voltage of the compressor changes greatly, and the change is due to the cylinder cut As a result, it can be determined that the block switching operation has been completed.
  • Detecting the operating current of the compressor includes detecting the current operating current of the compressor when receiving a cylinder switching instruction, and detecting the real-time operating current of the compressor every first preset time interval. After detecting the operating current of the compressor, determine whether the cylinder switching operation has been completed based on the detected operating current of the compressor. Specifically, it includes the following steps: calculating the ratio of the real-time operating current to the current operating current; and setting the ratio to the threshold for cutting the cylinder.
  • the cylinder cutting threshold is a preset value used to characterize the completion of the cylinder block switching; when the ratio is greater than or equal to the cylinder cutting threshold, it means that the operating current of the compressor changes greatly, which is caused by the cylinder cutting , So you can confirm that the block switching operation has been completed.
  • the method further includes: starting a timer to start timing; and after determining that the cylinder switching operation is completed, further including: stopping the timing and clearing the timer zero.
  • the timer After starting the timer, it also includes: detecting the timing time to determine whether the timing time reaches the cutting cylinder waiting time; wherein the cutting cylinder waiting time is the preset maximum waiting time; when the timing time reaches the cutting cylinder waiting time, the cylinder is prompted
  • the body switching operation fails, and the solenoid valve or compressor is faulty.
  • a timer is used to detect the operation time of the switching cylinder. If the switching is not successful for a long time, the user is prompted that the cylinder switching failure is caused by a malfunction of the solenoid valve or the compressor. For next use.
  • FIG. 3 shows an optional flowchart of the method. As shown in FIG. 3, the method includes the following steps S302-S314:
  • step S304 determine whether the cylinder cutting instruction is received; when the cylinder cutting instruction is received, proceed to step S306, otherwise, proceed to step S302;
  • S312 Determine whether the cylinder cutting has been completed according to the calculated r; when it is determined that the cylinder cutting is completed, proceed to step S314; otherwise, return to step S308;
  • whether the cylinder cutting is completed can also be determined by using the operating voltage and operating current of the compressor.
  • the main control judges the current working condition requirements. When the cylinder cutting condition is reached, it controls the corresponding solenoid valve to act and sends a cylinder cutting instruction to the drive controller.
  • the ratio r varies with the variable-capacity compressor used, and the power changes after switching cylinders can be determined based on the actual experiment of the compressor.
  • a compressor torque compensation method which includes: receiving a cylinder switching instruction and detecting the operating parameters of the compressor; The operating parameters of the system determine whether the block switching operation has been completed; after determining that the block switching operation has been completed, perform torque compensation.
  • the method detects the cylinder change in real time after receiving the cylinder cutting instruction, and the corresponding torque compensation program is added after the cylinder cutting is completed, thereby reducing the vibration caused by the mismatch between the compressor torque compensation and the actual running cylinder when the cylinder is switched. Improved overall machine reliability.
  • FIG. 4 shows an optional structural block diagram of the device, such as As shown in Figure 4, the device includes:
  • a detection module 402 is configured to receive a cylinder switching instruction and detect an operating parameter of a compressor
  • a judging module 404 which is connected to the detecting module 402 and is used for judging whether the cylinder switching operation has been completed according to the operating parameters of the compressor;
  • the compensation module 406 is connected to the judgment module 404 and is configured to perform torque compensation after determining that the cylinder block switching operation has been completed.
  • a compressor torque compensation device which receives the cylinder switching instruction and detects the operating parameters of the compressor; according to the operation of the compressor The parameters determine whether the block switching operation has been completed; after determining that the block switching operation has been completed, torque compensation is performed.
  • the method detects the cylinder change in real time after receiving the cylinder cutting instruction, and the corresponding torque compensation program is added after the cylinder cutting is completed, thereby reducing the vibration caused by the mismatch between the compressor torque compensation and the actual running cylinder when the cylinder is switched. Improved overall machine reliability.
  • it further includes: a switching judgment module for detecting the current working condition requirements before receiving the cylinder switching instruction, and determining whether the current operating condition requirements meet the cylinder switching conditions; and an instruction generating module for When the current working condition requirements meet the cylinder switching condition, a cylinder switching instruction is generated; wherein the cylinder switching instruction is used to control the solenoid valve to perform a cylinder switching operation.
  • the detection module includes: a first detection unit configured to detect a current operating parameter of the compressor when a cylinder switching instruction is received; and a second detection unit configured to detect the first preset time interval.
  • Real-time operating parameters of the compressor includes: a calculation unit for calculating a ratio between the real-time operating parameter and the current operating parameter; a comparison unit for comparing the ratio with a threshold value for cutting the cylinder; wherein the threshold value for cutting the cylinder is preset A value used to indicate that the cylinder block switching has been completed; a determining unit configured to determine that the cylinder block switching operation has been completed when the ratio is greater than or equal to the threshold for cutting the cylinder.
  • the operating parameters of the compressor include at least one of the following: the operating power of the compressor, the operating voltage of the compressor, and the operating current of the compressor.
  • the detection module further includes: a starting unit for starting a timer to start timing after detecting the current operating parameters of the compressor; a stopping unit for stopping the timing after determining that the cylinder switching operation has been completed And clear the timer.
  • the detection module further includes: a timing judging unit, configured to detect the timing time to determine whether the timing time reaches the cylinder waiting time after starting the timer; wherein the cylinder waiting time is a preset maximum waiting time; prompt The unit is used to indicate that the cylinder block switching operation has failed when the timing time reaches the cutting cylinder waiting time, and to indicate that the solenoid valve or the compressor is faulty.
  • a timing judging unit configured to detect the timing time to determine whether the timing time reaches the cylinder waiting time after starting the timer; wherein the cylinder waiting time is a preset maximum waiting time; prompt The unit is used to indicate that the cylinder block switching operation has failed when the timing time reaches the cutting cylinder waiting time, and to indicate that the solenoid valve or the compressor is faulty.
  • FIG. 5 shows an optional structural block diagram of the system, as shown in FIG. As shown in Figure 5, the system includes:
  • a solenoid valve 504 configured to perform a cylinder switching operation after receiving a cylinder switching instruction
  • the driving controller 506 is configured to detect the operating parameters of the compressor after receiving the cylinder switching instruction, and determine whether the cylinder switching operation has been completed according to the operating parameters of the compressor. After determining that the cylinder switching operation is completed, execute Torque compensation.
  • a compressor torque compensation method which includes: receiving a cylinder switching instruction and detecting the operating parameters of the compressor; The operating parameters of the system determine whether the block switching operation has been completed; after determining that the block switching operation has been completed, perform torque compensation.
  • the method detects the cylinder change in real time after receiving the cylinder cutting instruction, and the corresponding torque compensation program is added after the cylinder cutting is completed, thereby reducing the vibration caused by the mismatch between the compressor torque compensation and the actual running cylinder when the cylinder is switched. Improved overall machine reliability.
  • the main controller determines whether the current operating condition requirements meet the cylinder switching conditions by detecting the current operating condition requirements, and sends a cylinder switching instruction to the solenoid valve and the drive controller when the current operating condition requirements meet the cylinder switching conditions.
  • the operating parameters of the compressor detected by the driving controller include at least one of the following: operating power of the compressor, operating voltage of the compressor, and operating current of the compressor.
  • the drive controller loads the torque compensation program and executes the torque compensation program to perform torque compensation.
  • the system further includes a timer for starting timing after receiving the cylinder switching instruction; after determining that the cylinder switching operation has been completed, stopping the timing and clearing it.
  • the main controller is further configured to: after the timer starts counting, detect the timing time to determine whether the timing time reaches the cylinder cutting waiting time; wherein the cylinder cutting waiting time is a preset maximum waiting time.
  • the system further includes: an alarm device, which is used for prompting that the cylinder block switching operation fails when the timing time reaches the cylinder cutting waiting time, and prompting the solenoid valve or the compressor to fail.

Abstract

一种压缩机控制方法、控制装置及控制系统,其中,该方法包括:接收缸体切换指令,检测压缩机的运行参数,根据压缩机的运行参数判断是否已完成缸体切换操作。在确定已完成缸体切换操作后,执行力矩补偿。该控制方法、控制装置及控制系统解决了现有技术中压缩机力矩补偿与实际运行缸体不匹配的问题,减小了缸体切换时压缩机力矩补偿与实际运行缸体不匹配引起的震动,提高了整机可靠性。

Description

压缩机控制方法、控制装置及控制系统
相关申请
本申请要求2018年07月23日申请的,申请号为201810814213.6,名称为“压缩机控制方法、控制装置及控制系统”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及压缩机技术领域,具体而言,涉及一种压缩机控制方法、控制装置及控制系统。
背景技术
为提高变频空调机组低负荷能效,同时降低最小制冷量,可以使用可切换缸体的压缩机,根据不同的负荷需求切换成不同的缸体以提高能效。但缸体改变前后压缩机本身力矩并不相同,为减小压缩机震动,需要在压缩机控制中加入力矩补偿程序。
现有切缸力矩补偿控制方法是:主控控制器检测到当前需进行切缸动作,控制相应的电磁阀动作,同时将切换后的缸体指令发送给驱动控制器,驱动控制器接收到指令后切换对应力矩补偿程序。
然而由于电磁阀动作时间相比命令接收慢得多,会出现驱动控制器已切换对应补偿程序,但电磁阀未完全动作,缸体此时未完成切换,相当于对压缩机加入了错误的力矩补偿程序,从而导致切换时整机震动加大,减少了管路使用寿命,一定程序上降低了整机可靠性,严重时直接出现各种保护停机,影响机组使用。
针对相关技术中压缩机力矩补偿与实际运行缸体不匹配的问题,目前尚未提出有效地解决方案。
发明内容
本申请提供了一种压缩机控制方法、控制装置及控制系统,以至少解决现有技术中压缩机力矩补偿与实际运行缸体不匹配的问题。
为解决上述技术问题,根据本申请实施例的一个方面,提供了一种压缩机控制方法,包括:接收缸体切换指令,检测压缩机的运行参数;根据压缩机的运行参数判断是否已完成缸体切换操作;在确定已完成缸体切换操作后,执行力矩补偿。
在一实施例中,在接收缸体切换指令之前,方法还包括:检测当前工况需求,判断当前工况需求是否满足缸体切换条件;在当前工况需求满足缸体切换条件时,则生成缸体切换指令;其中,缸体切换指令用于控制电磁阀动作以执行缸体切换操作。
在一实施例中,检测压缩机的运行参数,包括:在接收到缸体切换指令时,检测压缩机的当前运行参数;每间隔第一预设时间,检测压缩机的实时运行参数。
在一实施例中,根据压缩机的运行参数判断是否已完成缸体切换操作,包括:计算实时运行参数与当前运行参数的比值;
将比值与切缸阈值进行比较;其中,切缸阈值是预设的用于表征缸体切换已完成的值;在比值大于等于切缸阈值时,确定已完成缸体切换操作。
在一实施例中,在检测压缩机的当前运行参数之后,还包括:启动计时器,开始计时;在确定已完成缸体切换操作之后,还包括:停止计时,并将计时器清零。
在一实施例中,在启动计时器之后,还包括:检测计时时间,判断计时时间是否达到切缸等待时间;其中,切缸等待时间是预设的最长等待时间;在计时时间达到切缸等待时间时,提示缸体切换操作失败,并提示电磁阀或压缩机故障。
在一实施例中,压缩机的运行参数至少包括以下之一:压缩机的运行功率、压缩机的运行电压、压缩机的运行电流。
根据本申请实施例的另一方面,提供了一种压缩机控制装置,包括:检测模块,用于接收缸体切换指令,检测压缩机的运行参数;判断模块,用于根据压缩机的运行参数判断是否已完成缸体切换操作;补偿模块,用于在确定已完成缸体切换操作后,执行力矩补偿。
在一实施例中,还包括:切换判断模块,用于在接收缸体切换指令之前,检测当前工况需求,判断当前工况需求是否满足缸体切换条件;指令生成模块,用于在当前工况需求满足缸体切换条件时,则生成缸体切换指令;其中,缸体切换指令用于控制电磁阀动作以执行缸体切换操作。
在一实施例中,检测模块包括:第一检测单元,用于在接收到缸体切换指令时,检测压缩机的当前运行参数;第二检测单元,用于每间隔第一预设时间,检测压缩机的实时运行参数;判断模块包括:计算单元,用于计算实时运行参数与当前运行参数的比值;比较单元,用于将比值与切缸阈值进行比较;其中,切缸阈值是预设的用于表征缸体切换已完成的值;确定单元,用于在比值大于等于切缸阈值时,确定已完成缸体切换操作。
在一实施例中,压缩机的运行参数至少包括以下之一:压缩机的运行功率、压缩机的运行电压、压缩机的运行电流。
根据本申请实施例的又一方面,提供了一种压缩机控制系统,包括:主控制器、电磁 阀、驱动控制器;主控制器,用于发送缸体切换指令给电磁阀和驱动控制器;电磁阀,用于在接收到缸体切换指令之后,执行缸体切换操作;驱动控制器,用于在接收到缸体切换指令之后,检测压缩机的运行参数,并根据压缩机的运行参数判断是否已完成缸体切换操作,在确定已完成缸体切换操作之后,执行力矩补偿。
在一实施例中,主控制器通过检测当前工况需求,判断当前工况需求是否满足缸体切换条件,在当前工况需求满足缸体切换条件时,发送缸体切换指令给电磁阀和驱动控制器。
在一实施例中,驱动控制器检测的压缩机的运行参数至少包括以下之一:压缩机的运行功率、压缩机的运行电压、压缩机的运行电流。
在一实施例中,驱动控制器通过加载力矩补偿程序,并执行力矩补偿程序,以进行力矩补偿。
在一实施例中,还包括:计时器,用于在电磁阀接收到缸体切换指令之后,开始计时;在驱动控制器确定已完成缸体切换操作之后,停止计时,并清零。
在一实施例中,主控制器还用于:在计时器开始计时之后,检测计时时间,判断计时时间是否达到切缸等待时间;其中,切缸等待时间是预设的最长等待时间。
进一步地,还包括:报警器,用于在计时时间达到切缸等待时间时,提示缸体切换操作失败,并提示电磁阀或压缩机故障。
在本申请中,为了解决压缩机力矩补偿与实际运行缸体不匹配的问题,提供了一种压缩机力矩补偿方法,包括:接收缸体切换指令,检测压缩机的运行参数;根据压缩机的运行参数判断是否已完成缸体切换操作;在确定已完成缸体切换操作后,执行力矩补偿。本方法接收到切缸指令后实时检测缸体变化,压缩机切缸完成后才加入对应力矩补偿程序,从而减小了缸体切换时压缩机力矩补偿与实际运行缸体不匹配引起的震动,提高了整机可靠性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1是根据现有技术中压缩机控制方法的一种可选的流程图;
图2是根据本申请实施例1的压缩机控制方法的一种可选的流程图;
图3是根据本申请实施例1的压缩机控制方法的另一种可选的流程图;
图4是根据本申请实施例2的压缩机控制装置的一种可选的结构框图;
图5是根据本申请实施例3的压缩机控制系统的一种可选的结构框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
实施例1
现有技术中,当压缩机接收到主控命令切换缸体时,控制电磁阀动作进行缸体切换,同时立即执行对应力矩补偿程序,具体来说,图1示出该方法的一种可选的流程图,如图1所示,该方法包括如下步骤S102-S116:
S102:压缩机运行;
S104:判断是否需要切缸;在不需要进行切缸时,返回步骤S102;在需要进行切缸时,同时执行步骤S106和S110;
S106:电磁阀动作;
S108:切换压缩机缸体,进入步骤S114;
S110:发送切缸指令给驱动控制器;
S112:切换力矩补偿程序;
S114:判断是否报故障;在确定报故障时,进入步骤S116,在确定不报故障时,进入步骤S102;
S116:停机。
在上述方法中,在需要进行切缸时,电磁阀和驱动控制器同时动作,由于电磁阀相对指令较慢,会出现补偿程序已切换,但缸体仍未切换的情况,导致切换过程中整机震动加大,严重时整机会出现停机,不仅影响了用户使用,而且极大降低了整机可靠性。
针对上述问题,在本申请实施例1中提供了一种压缩机控制方法,该控制方法可以直接应用至各种压缩机上,具体实现时,可以通过写入压缩机或其他装置控制器相应的程序的方式来实现。具体来说,图1示出该方法的一种可选的流程图,如图1所示,该方法包括如下步骤S202-S206:
S202:接收缸体切换指令,检测压缩机的运行参数;
S204:根据压缩机的运行参数判断是否已完成缸体切换操作;
S206:在确定已完成缸体切换操作后,执行力矩补偿。
在上述实施方式中,为了解决压缩机力矩补偿与实际运行缸体不匹配的问题,提供了一种压缩机力矩补偿方法,包括:接收缸体切换指令,检测压缩机的运行参数;根据压缩机的运行参数判断是否已完成缸体切换操作;在确定已完成缸体切换操作后,执行力矩补偿。本方法接收到切缸指令后实时检测缸体变化,压缩机切缸完成后才加入对应力矩补偿程序,从而减小了缸体切换时压缩机力矩补偿与实际运行缸体不匹配引起的震动,提高了整机可靠性。
在本申请一实施例中,在接收缸体切换指令之前,还包括:检测当前工况需求,判断当前工况需求是否满足缸体切换条件;在当前工况需求满足缸体切换条件时,则生成缸体切换指令;其中,缸体切换指令用于控制电磁阀动作以执行缸体切换操作。
空调机组运行时,因风机、压缩机频率或各种阀门动作及工况的改变,从而影响负载变化。当机组正常工作时,其负载变化缓慢,通常在秒级,而压缩机切缸时,因缸体切换前后瞬间负载剧烈变化,体现在压缩机控制为功率、电压和电流瞬间变化。所以可以通过检测功率、电压和电流的变化从而判断压缩机是否已完成切缸。
在一实施例中,压缩机的运行参数至少包括以下之一:压缩机的运行功率、压缩机的运行电压、压缩机的运行电流。
检测压缩机的运行功率,包括:在接收到缸体切换指令时,检测压缩机的当前运行功率P1;每间隔第一预设时间,检测压缩机的实时运行功率P2。检测压缩机的运行功率之后,根据检测到的压缩机的运行功率判断是否已完成缸体切换操作,具体的,包括如下步骤:计算实时运行功率P2与当前运行功率P1的比值;将比值与切缸阈值进行比较;其中,切缸阈值是预设的用于表征缸体切换已完成的值;在比值大于等于切缸阈值时,说明压缩机的运行功率变化较大,该变化是由于切缸导致的,因此可以确定已完成缸体切换操作。
检测压缩机的运行电压,包括:在接收到缸体切换指令时,检测压缩机的当前运行电压V1;每间隔第一预设时间,检测压缩机的实时运行电压V2。检测压缩机的运行电压之后,根据检测到的压缩机的运行电压判断是否已完成缸体切换操作,具体的,包括如下步骤:计算实时运行电压V2与当前运行电压V1的比值;将比值与切缸阈值进行比较;其中,切缸阈值是预设的用于表征缸体切换已完成的值;在比值大于等于切缸阈值时,说明压缩机的运行电压变化较大,该变化是由于切缸导致的,因此可以确定已完成缸体切换操作。
检测压缩机的运行电流,包括:在接收到缸体切换指令时,检测压缩机的当前运行电流;每间隔第一预设时间,检测压缩机的实时运行电流。检测压缩机的运行电流之后,根据检测到的压缩机的运行电流判断是否已完成缸体切换操作,具体的,包括如下步骤:计 算实时运行电流与当前运行电流的比值;将比值与切缸阈值进行比较;其中,切缸阈值是预设的用于表征缸体切换已完成的值;在比值大于等于切缸阈值时,说明压缩机的运行电流变化较大,该变化是由于切缸导致的,因此可以确定已完成缸体切换操作。
在本申请另一个实施例中,在检测压缩机的当前运行参数之后,还包括:启动计时器,开始计时;在确定已完成缸体切换操作之后,还包括:停止计时,并将计时器清零。在启动计时器之后,还包括:检测计时时间,判断计时时间是否达到切缸等待时间;其中,切缸等待时间是预设的最长等待时间;在计时时间达到切缸等待时间时,提示缸体切换操作失败,并提示电磁阀或压缩机故障。采用计时器来检测切换缸体操作的时间,若长时间未切换成功,提示用户缸体切换失败,是由于电磁阀或者压缩机故障导致的,若缸体切换完成,则将计时器清零,以便下次使用。
在本申请实施例1中还提供了另一种压缩机控制方法,图3示出该方法的一种可选的流程图,如图3所示,该方法包括如下步骤S302-S314:
S302:压缩机运行;
S304:判断是否收到切缸指令;在收到切缸指令时,进入步骤S306,否则,进入步骤S302;
S306:保存当前压缩机功率的有效值P1,并开始计时T1;
S308:计算当前压缩机周期功率有效值P2;
S310:计算功率的比值r=P2/P1;
S312:根据计算所得的r,判断是否已完成切缸;在确定完成切缸时,进入步骤S314;否则,返回步骤S308;
S314:加入对应力矩补偿程序;之后,返回步骤S302。
在本发明中,采用压缩机的运行电压和运行电流同样可以确定是否已完成切缸。
主控判断当前工况需求,当达到切缸条件后,控制相应的电磁阀动作,并发送切缸指令给驱动控制器。
当驱动控制器接收到切缸指令后,立即保存当前的压缩机运行功率的有效值P1,同时启动计时器T1。之后实时检测周期压缩机功率有效值P2,并计算二者比值r=P2/P1,若比值r达到设定值,则可判断为已切缸成功,立即加入对应的力矩补偿程序。
比值r因使用的变容压缩机不同,切换缸体后功率变化不同,可根据实际使用的压缩机实验测定。
收到切缸指令后计时器T1一直计数,直到判断切缸成功清零,否则,当计时器T1=T pro时,可以判定电磁阀实际一直未动作或电磁阀动作但缸体由于某种原因未切换,此时需报 切缸失败故障,并检查电磁阀和压缩机是否有损坏。T pro:允许切缸等待最大时间。
在上述实施方式中,为了解决压缩机力矩补偿与实际运行缸体不匹配的问题,提供了一种压缩机力矩补偿方法,包括:接收缸体切换指令,检测压缩机的运行参数;根据压缩机的运行参数判断是否已完成缸体切换操作;在确定已完成缸体切换操作后,执行力矩补偿。本方法接收到切缸指令后实时检测缸体变化,压缩机切缸完成后才加入对应力矩补偿程序,从而减小了缸体切换时压缩机力矩补偿与实际运行缸体不匹配引起的震动,提高了整机可靠性。
实施例2
基于上述实施例1中提供的压缩机控制方法,在本申请的实施例2中还提供了一种压缩机控制装置,具体地,图4示出该装置的一种可选的结构框图,如图4所示,该装置包括:
检测模块402,用于接收缸体切换指令,检测压缩机的运行参数;
判断模块404,与检测模块402连接,用于根据压缩机的运行参数判断是否已完成缸体切换操作;
补偿模块406,与判断模块404连接,用于在确定已完成缸体切换操作后,执行力矩补偿。
在上述实施方式中,为了解决压缩机力矩补偿与实际运行缸体不匹配的问题,提供了一种压缩机力矩补偿装置,接收缸体切换指令,检测压缩机的运行参数;根据压缩机的运行参数判断是否已完成缸体切换操作;在确定已完成缸体切换操作后,执行力矩补偿。本方法接收到切缸指令后实时检测缸体变化,压缩机切缸完成后才加入对应力矩补偿程序,从而减小了缸体切换时压缩机力矩补偿与实际运行缸体不匹配引起的震动,提高了整机可靠性。
在本申请一实施例中,还包括:切换判断模块,用于在接收缸体切换指令之前,检测当前工况需求,判断当前工况需求是否满足缸体切换条件;指令生成模块,用于在当前工况需求满足缸体切换条件时,则生成缸体切换指令;其中,缸体切换指令用于控制电磁阀动作以执行缸体切换操作。
在上述实施方式中,检测模块包括:第一检测单元,用于在接收到缸体切换指令时,检测压缩机的当前运行参数;第二检测单元,用于每间隔第一预设时间,检测压缩机的实时运行参数;判断模块包括:计算单元,用于计算实时运行参数与当前运行参数的比值;比较单元,用于将比值与切缸阈值进行比较;其中,切缸阈值是预设的用于表征缸体切换已完成的值;确定单元,用于在比值大于等于切缸阈值时,确定已完成缸体切换操作。其 中,压缩机的运行参数至少包括以下之一:压缩机的运行功率、压缩机的运行电压、压缩机的运行电流。
在一实施例中,检测模块还包括:启动单元,用于在检测压缩机的当前运行参数之后,启动计时器,开始计时;停止单元,用于在确定已完成缸体切换操作之后,停止计时,并将计时器清零。
进一步地,检测模块还包括:计时判断单元,用于在启动计时器之后,检测计时时间,判断计时时间是否达到切缸等待时间;其中,切缸等待时间是预设的最长等待时间;提示单元,用于在计时时间达到切缸等待时间时,提示缸体切换操作失败,并提示电磁阀或压缩机故障。
关于上述实施例中的装置,其中各个单元、模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
实施例3
基于上述实施例2中提供的压缩机控制装置,在本申请实施例3中还提供了一种压缩机控制系统,具体地,图5示出该系统的一种可选的结构框图,如图5所示,该系统包括:
主控制器502、电磁阀504、驱动控制器506;
主控制器502,用于发送缸体切换指令给电磁阀504和驱动控制器506;
电磁阀504,用于在接收到缸体切换指令之后,执行缸体切换操作;
驱动控制器506,用于在接收到缸体切换指令之后,检测压缩机的运行参数,并根据压缩机的运行参数判断是否已完成缸体切换操作,在确定已完成缸体切换操作之后,执行力矩补偿。
在上述实施方式中,为了解决压缩机力矩补偿与实际运行缸体不匹配的问题,提供了一种压缩机力矩补偿方法,包括:接收缸体切换指令,检测压缩机的运行参数;根据压缩机的运行参数判断是否已完成缸体切换操作;在确定已完成缸体切换操作后,执行力矩补偿。本方法接收到切缸指令后实时检测缸体变化,压缩机切缸完成后才加入对应力矩补偿程序,从而减小了缸体切换时压缩机力矩补偿与实际运行缸体不匹配引起的震动,提高了整机可靠性。
进一步地,主控制器通过检测当前工况需求,判断当前工况需求是否满足缸体切换条件,在当前工况需求满足缸体切换条件时,发送缸体切换指令给电磁阀和驱动控制器。
进一步地,驱动控制器检测的压缩机的运行参数至少包括以下之一:压缩机的运行功率、压缩机的运行电压、压缩机的运行电流。
在一实施例中,驱动控制器通过加载力矩补偿程序,并执行力矩补偿程序,以进行力 矩补偿。
在本申请一个实施例中,系统还包括:计时器,用于在接收到缸体切换指令之后,开始计时;在确定已完成缸体切换操作之后,停止计时,并清零。
进一步地,主控制器还用于:在计时器开始计时之后,检测计时时间,判断计时时间是否达到切缸等待时间;其中,切缸等待时间是预设的最长等待时间。
在本申请另一个实施例中,系统还包括:报警器,用于在计时时间达到切缸等待时间时,提示缸体切换操作失败,并提示电磁阀或压缩机故障。
本领域技术人员在考虑说明书及实践这里公开的申请后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未申请的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (18)

  1. 一种压缩机控制方法,其特征在于,包括:
    接收缸体切换指令,检测压缩机的运行参数;
    根据所述压缩机的运行参数判断是否已完成缸体切换操作;
    在确定已完成所述缸体切换操作后,执行力矩补偿。
  2. 根据权利要求1所述的方法,其特征在于,在所述接收缸体切换指令之前,所述方法还包括:
    检测当前工况需求,判断所述当前工况需求是否满足缸体切换条件;
    在所述当前工况需求满足所述缸体切换条件时,则生成缸体切换指令;其中,所述缸体切换指令用于控制电磁阀动作以执行缸体切换操作。
  3. 根据权利要求1所述的方法,其特征在于,所述检测压缩机的运行参数,包括:
    在接收到所述缸体切换指令时,检测所述压缩机的当前运行参数;
    每间隔第一预设时间,检测所述压缩机的实时运行参数。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述压缩机的运行参数判断是否已完成缸体切换操作,包括:
    计算所述实时运行参数与所述当前运行参数的比值;
    将所述比值与切缸阈值进行比较;其中,所述切缸阈值是预设的用于表征所述缸体切换已完成的值;
    在所述比值大于等于所述切缸阈值时,确定已完成所述缸体切换操作。
  5. 根据权利要求4所述的方法,其特征在于,
    在所述检测所述压缩机的当前运行参数之后,还包括:启动计时器,开始计时;
    在所述确定已完成所述缸体切换操作之后,还包括:停止计时,并将计时器清零。
  6. 根据权利要求5所述的方法,其特征在于,在所述启动计时器之后,还包括:
    检测计时时间,判断所述计时时间是否达到切缸等待时间;其中,所述切缸等待时间是预设的最长等待时间;
    在所述计时时间达到所述切缸等待时间时,提示所述缸体切换操作失败,并提示所述电磁阀或所述压缩机故障。
  7. 根据权利要求6所述的方法,其特征在于,所述压缩机的运行参数至少包括以下之一:压缩机的运行功率、压缩机的运行电压、压缩机的运行电流。
  8. 一种压缩机控制装置,其特征在于,包括:
    检测模块,用于接收缸体切换指令,检测压缩机的运行参数;
    判断模块,用于根据所述压缩机的运行参数判断是否已完成缸体切换操作;
    补偿模块,用于在确定已完成所述缸体切换操作后,执行力矩补偿。
  9. 根据权利要求8所述的装置,其特征在于,还包括:
    切换判断模块,用于在所述接收缸体切换指令之前,检测当前工况需求,判断所述当前工况需求是否满足缸体切换条件;
    指令生成模块,用于在所述当前工况需求满足所述缸体切换条件时,则生成缸体切换指令;其中,所述缸体切换指令用于控制电磁阀动作以执行缸体切换操作。
  10. 根据权利要求8所述的装置,其特征在于,
    所述检测模块包括:
    第一检测单元,用于在接收到所述缸体切换指令时,检测所述压缩机的当前运行参数;
    第二检测单元,用于每间隔第一预设时间,检测所述压缩机的实时运行参数;
    所述判断模块包括:
    计算单元,用于计算所述实时运行参数与所述当前运行参数的比值;
    比较单元,用于将所述比值与切缸阈值进行比较;其中,所述切缸阈值是预设的用于表征所述缸体切换已完成的值;
    确定单元,用于在所述比值大于等于所述切缸阈值时,确定已完成所述缸体切换操作。
  11. 根据权利要求10所述的装置,其特征在于,所述压缩机的运行参数至少包括以下之一:压缩机的运行功率、压缩机的运行电压、压缩机的运行电流。
  12. 一种压缩机控制系统,其特征在于,包括:主控制器、电磁阀以及驱动控制器;
    所述主控制器,用于发送缸体切换指令给所述电磁阀和所述驱动控制器;
    所述电磁阀,用于在接收到所述缸体切换指令之后,执行缸体切换操作;
    所述驱动控制器,用于在接收到所述缸体切换指令之后,检测压缩机的运行参数,并根据所述压缩机的运行参数判断是否已完成所述缸体切换操作,在确定已完成所述缸体切换操作之后,执行力矩补偿。
  13. 根据权利要求12所述的系统,其特征在于,所述主控制器通过检测当前工况需求,判断所述当前工况需求是否满足缸体切换条件,在所述当前工况需求满足缸体切换条件时,发送所述缸体切换指令给所述电磁阀和所述驱动控制器。
  14. 根据权利要求13所述的系统,其特征在于,所述驱动控制器检测的压缩机的运行参数至少包括以下之一:压缩机的运行功率、压缩机的运行电压、压缩机的运行电流。
  15. 根据权利要求14所述的系统,其特征在于,所述驱动控制器通过加载力矩补偿 程序,并执行所述力矩补偿程序,以进行力矩补偿。
  16. 根据权利要求13所述的系统,其特征在于,还包括:
    计时器,用于在所述电磁阀接收到所述缸体切换指令之后,开始计时;在所述驱动控制器确定已完成所述缸体切换操作之后,停止计时,并清零。
  17. 根据权利要求16所述的系统,其特征在于,所述主控制器还用于:
    在所述计时器开始计时之后,检测计时时间,判断所述计时时间是否达到切缸等待时间;其中,所述切缸等待时间是预设的最长等待时间。
  18. 根据权利要求17所述的系统,其特征在于,还包括:
    报警器,用于在所述计时时间达到所述切缸等待时间时,提示所述缸体切换操作失败,并提示所述电磁阀或所述压缩机故障。
PCT/CN2018/121896 2018-07-23 2018-12-19 压缩机控制方法、控制装置及控制系统 WO2020019642A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/261,277 US11486384B2 (en) 2018-07-23 2018-12-19 Compressor control method, control apparatus and control system
EP18927518.3A EP3808980B1 (en) 2018-07-23 2018-12-19 Compressor control method, control apparatus and control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810814213.6A CN109113979B (zh) 2018-07-23 2018-07-23 压缩机控制方法、控制装置及控制系统
CN201810814213.6 2018-07-23

Publications (1)

Publication Number Publication Date
WO2020019642A1 true WO2020019642A1 (zh) 2020-01-30

Family

ID=64862414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121896 WO2020019642A1 (zh) 2018-07-23 2018-12-19 压缩机控制方法、控制装置及控制系统

Country Status (4)

Country Link
US (1) US11486384B2 (zh)
EP (1) EP3808980B1 (zh)
CN (1) CN109113979B (zh)
WO (1) WO2020019642A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107492B (zh) * 2019-05-31 2020-07-07 珠海格力电器股份有限公司 压缩机切缸检测方法和装置、空调和存储介质
CN114109775B (zh) * 2021-11-09 2023-11-24 珠海格力智能装备有限公司 压缩机自动上线调试方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314564A (ja) * 1999-04-28 2000-11-14 Oyo Keisoku Kenkyusho:Kk 冷凍機及び冷凍機の圧縮機の運転方法
JP2005337081A (ja) * 2004-05-26 2005-12-08 Nabtesco Corp 空気圧縮機の試験装置及びその圧縮空気回生ユニット
CN104654516A (zh) * 2013-11-21 2015-05-27 珠海格力电器股份有限公司 变频变容压缩机的控制方法及系统
CN106500257A (zh) * 2016-10-27 2017-03-15 广东美的制冷设备有限公司 空调器及其双缸压缩机的控制方法和装置
CN106500266A (zh) * 2016-10-27 2017-03-15 广东美的制冷设备有限公司 空调器及其双缸压缩机的控制方法和装置
CN107289577A (zh) * 2017-05-22 2017-10-24 青岛海尔空调器有限总公司 发电机供电空调器控制方法、控制系统和空调器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139316A (en) * 1980-01-07 1981-10-30 Komatsu Ltd Power loss reduction controller for oil-pressure type construction machine
US4637781A (en) * 1984-03-30 1987-01-20 Kabushiki Kaisha Komatsu Seisakusho Torque regulating system for fluid operated pump displacement control systems
DE3516768A1 (de) * 1985-05-09 1986-11-13 Mannesmann Rexroth GmbH, 8770 Lohr Schaltungsanordnung zur drehzahlregelung einer hydrostatischen maschine
DE3541998A1 (de) * 1985-11-28 1987-06-04 Rexroth Mannesmann Gmbh Steuereinrichtung fuer mehrere mechanisch gekuppelte hydrostatische maschinen mit veraenderlichem volumen in einem antriebssystem mit eingepraegtem druck
CN101404446B (zh) * 2008-11-11 2011-02-16 珠海格力电器股份有限公司 单周期功率因数校正方法
CN203286821U (zh) * 2013-05-03 2013-11-13 珠海格力电器股份有限公司 双级增焓空调系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314564A (ja) * 1999-04-28 2000-11-14 Oyo Keisoku Kenkyusho:Kk 冷凍機及び冷凍機の圧縮機の運転方法
JP2005337081A (ja) * 2004-05-26 2005-12-08 Nabtesco Corp 空気圧縮機の試験装置及びその圧縮空気回生ユニット
CN104654516A (zh) * 2013-11-21 2015-05-27 珠海格力电器股份有限公司 变频变容压缩机的控制方法及系统
CN106500257A (zh) * 2016-10-27 2017-03-15 广东美的制冷设备有限公司 空调器及其双缸压缩机的控制方法和装置
CN106500266A (zh) * 2016-10-27 2017-03-15 广东美的制冷设备有限公司 空调器及其双缸压缩机的控制方法和装置
CN107289577A (zh) * 2017-05-22 2017-10-24 青岛海尔空调器有限总公司 发电机供电空调器控制方法、控制系统和空调器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3808980A4 *

Also Published As

Publication number Publication date
EP3808980B1 (en) 2024-05-01
CN109113979A (zh) 2019-01-01
US20210277885A1 (en) 2021-09-09
EP3808980A4 (en) 2021-08-04
US11486384B2 (en) 2022-11-01
EP3808980A1 (en) 2021-04-21
CN109113979B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
US11168913B2 (en) Control method and control device of air conditioner and air conditioner
WO2020019642A1 (zh) 压缩机控制方法、控制装置及控制系统
CN106246523A (zh) 变频压缩机控制方法、控制器及冰箱
CN105674479A (zh) 多联机空调运行控制方法及装置
CN106352489A (zh) 一种空调故障的检测方法及系统
CN111140515B (zh) 一种柔性直流输电换流阀冷却系统主循环泵故障切换方法
CN107084514B (zh) 一种用于空调系统压力保护的装置和空调系统
CN111707924A (zh) 一种柔直换流阀就地测试故障诊断系统及方法
CN112212464A (zh) 数据中心空调机组的控制系统、方法、装置和存储介质
WO2022134871A1 (zh) 空调运行控制方法和装置、空调及计算机可读存储介质
CN105674646A (zh) 制冷设备的除霜控制方法、装置及空调器
CN107785887B (zh) 电源快切的控制方法及装置
US11841011B2 (en) Control method of compressor and refrigerant circulation system
CN110912172B (zh) 一种多端直流输电系统换流站在线投入方法及系统
CN111649498A (zh) 冰箱制冷系统
CN108844267A (zh) 一种多压机故障监控方法、装置及多压机系统
CN117404766B (zh) 空调设备的控制方法、装置、空调设备及存储介质
CN110159521B (zh) 一种压缩机过电流报错的判断方法及控制装置
CN213841426U (zh) 一种双高压开关保护装置及除湿机
WO2024012187A1 (zh) Pfc电路、pfc电路的控制方法、介质以及家电设备
JP5265039B2 (ja) 冷凍空調装置
JP2000193286A (ja) 故障診断装置
CN117345897A (zh) 一种两联供四通阀换向异常控制方法
JPH06314132A (ja) システムの自動運転制御装置および起動異常判定方法
JPH02193532A (ja) 充電器の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018927518

Country of ref document: EP

Effective date: 20210113