WO2020017926A1 - 원심 밸브 제어 장치 - Google Patents

원심 밸브 제어 장치 Download PDF

Info

Publication number
WO2020017926A1
WO2020017926A1 PCT/KR2019/008954 KR2019008954W WO2020017926A1 WO 2020017926 A1 WO2020017926 A1 WO 2020017926A1 KR 2019008954 W KR2019008954 W KR 2019008954W WO 2020017926 A1 WO2020017926 A1 WO 2020017926A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
valve control
control unit
centrifugal valve
unit
Prior art date
Application number
PCT/KR2019/008954
Other languages
English (en)
French (fr)
Inventor
김민석
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Priority to EP19838086.7A priority Critical patent/EP3825808A4/en
Publication of WO2020017926A1 publication Critical patent/WO2020017926A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • F16K99/0042Electric operating means therefor
    • F16K99/0046Electric operating means therefor using magnets
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/041Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves
    • F16K31/042Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves with electric means, e.g. for controlling the motor or a clutch between the valve and the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K49/00Means in or on valves for heating or cooling
    • F16K49/002Electric heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0013Rotary valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0032Constructional types of microvalves; Details of the cutting-off member using phase transition or influencing viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • F16K99/0042Electric operating means therefor
    • F16K99/0044Electric operating means therefor using thermo-electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • F16K99/0063Operating means specially adapted for microvalves using centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • B01L2300/0806Standardised forms, e.g. compact disc [CD] format
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0874Three dimensional network
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1827Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0677Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0082Microvalves adapted for a particular use
    • F16K2099/0084Chemistry or biology, e.g. "lab-on-a-chip" technology

Definitions

  • the present invention relates to a centrifugal valve control device, and more particularly, to a centrifugal valve control device capable of precisely controlling a valve.
  • centrifugal valve control device In general, a device used to manipulate a small amount of fluid to perform a biological or chemical reaction is called a centrifugal valve control device.
  • centrifugal valve control devices include microfluidic structures disposed in platforms of various shapes, such as chips and disks.
  • the microfluidic structure includes a chamber capable of accommodating the fluid, a channel through which the fluid can flow, and a valve capable of regulating the flow of the fluid, and the chamber, the channel, and the valve.
  • a chamber capable of accommodating the fluid
  • a channel through which the fluid can flow
  • a valve capable of regulating the flow of the fluid
  • the chamber, the channel, and the valve are deployed in various combinations within the platform.
  • biochip The placement of these microfluidic structures on a chip-like platform so that tests involving biochemical reactions can be carried out on a small chip is called a biochip, and in particular, several steps of processing and manipulation on one chip.
  • a device fabricated to perform this is called a lab-on-a chip.
  • the driving pressure is required to transfer the fluid in the microfluidic structure, and the capillary pressure may be used as the driving pressure, or a pressure by a separate pump may be used.
  • centrifugal force-based centrifugal valve control devices have been proposed to arrange a microfluidic structure on a disk-shaped platform and perform a series of operations while moving a fluid using centrifugal force. This is also known as a Lab CD or a Lab-on a CD.
  • the valve provided in the centrifugal valve control device adopts a method of opening and closing a channel using a magnetic force, and a method of opening and closing a channel using a phase change material.
  • phase change material in order to operate a normal close valve, a hardened phase change material is formed in the middle of the channel, and when the phase change material in the channel is heated, the phase change material is melted to open the channel. Done.
  • the channel may not be completely opened because the phase change material is not completely melted due to the difficulty of accurate energy transfer to the phase change material.
  • the heating element for heating the phase change material.
  • FIG. 1 is a perspective view showing a conventional centrifugal valve control device.
  • the conventional centrifugal valve control apparatus 10 includes a plurality of chambers 50 for receiving fluid therein, and a channel connected to the chamber 50 and providing a flow passage of the fluid ( 60, and a valve 70 for controlling the flow of the fluid through opening and closing of the channel 60.
  • the centrifugal valve control apparatus 10 may be mounted on a motor (not shown) to rotate at a high speed, and a mounting hole 21 may be formed at the central portion of the centrifugal valve control apparatus 10 to be mounted on the motor.
  • the fluid contained in the chamber 50 or the channel 60 of the microfluidic device 10 is pressurized in the direction toward the outer circumference of the platform 20 by the centrifugal force generated by the rotation of the motor.
  • the valve 70 normally closes the channel 60 and radiates electromagnetic energy to the valve material contained in the channel 60 to melt the valve material to open the channel 60.
  • the laser light source 11 is an example of an energy source for radiating electromagnetic waves onto the valve material.
  • the laser light source 11 supplies energy to the valve material by irradiating the laser material L, which is a kind of electromagnetic waves, toward the valve material.
  • the centrifugal valve control apparatus 10 irradiates a laser L to the valve material while the centrifugal valve control apparatus 10 rotates through the laser light source 11 provided separately from the centrifugal valve control apparatus 10.
  • the laser light source 11 In order to open the valve, it is difficult for the laser light source 11 to irradiate the laser L precisely at the valve 70 position, thereby degrading the precision of the control of the valve 70.
  • an object of the present invention is to provide a centrifugal valve control device.
  • the present invention by controlling the switch and the heating member in consideration of the type of the valve material and the rotational speed of the centrifugal valve control device, the heating member can completely melt the valve material, it is possible to precisely control the valve It is an object to provide a centrifugal valve control device.
  • the present invention by symmetrically disposing the battery and other parts that can be disposed on the heating portion, it is possible to balance the centrifugal force acting on the front of the body portion while the centrifugal valve control device rotates, It is an object of the present invention to provide a centrifugal valve control device that can prevent noise generated by shifting to one side and damage to the centrifugal valve control device.
  • the present invention provides a centrifugal valve control device capable of easily melting the valve material by effectively transferring heat generated by the heating member to a valve under the heating member by disposing a heat transfer member between the valve and the heating member. It aims to do it.
  • a chamber having a chamber and a body having a channel connected to the chamber and a body portion having a valve for opening and closing the channel, and a heating member coupled to the body and disposed at a position corresponding to the valve.
  • a rotation drive unit for rotating the body portion and the heating portion together, wherein the valve provides a centrifugal valve control device configured to open and close a channel by the heating member while the body portion and the heating portion rotate together.
  • the body may be formed of a tube having a predetermined height
  • the heating part may be formed of a substrate.
  • the chamber and the channel may be provided inside the body.
  • valve may be provided inside the body, and the heating member may be provided under the heating part.
  • it may further include a battery for supplying power to the heating member.
  • the body may be provided with a plurality of channels and valves formed in the channel
  • the heating unit may be provided with a heating member corresponding to the valve
  • the battery may be formed to supply power to at least one heating member provided in the heating unit.
  • the battery may be arranged in the center on the heating portion.
  • a plurality of batteries may be provided on the heating unit, and the plurality of batteries may be symmetrically disposed.
  • the rotary drive unit may include a rotary shaft coupled to the rotation center of the body and the heating unit, a drive motor for rotating the rotary shaft and a controller for controlling the driving of the drive motor.
  • the heating member is made of a heating element, the heating element may be provided in the hole formed in the lower portion of the heating unit. Further, the heating member may further include a heat transfer member provided between the valve and the heating member.
  • the heat transfer member may include diamond, silver, aluminum oxide, boron nitride, and zinc oxide in a matrix including at least one of epoxy, silicon, urethane, and acrylate. oxide and aluminum nitride.
  • valve may be made of a phase change material that can be melted by heating of the heating member.
  • the heating element may be made of a resistor, and may further include a controller for controlling a current or voltage applied to the resistor.
  • control unit may control the current or voltage applied to the resistance according to the type of the material constituting the valve or the rotational speed of the body portion and the heating portion.
  • it may further include a switch for turning on and off the electrical connection of the heating member and the battery.
  • it may further include a fixing means for fixing the heating portion on the body portion.
  • the fixing means may include a fixing member provided on at least one of the outside or the center of the body portion and the heating portion.
  • the fixing means may include a groove formed in the body portion and a protrusion formed in the heating portion to be fitted into the groove.
  • the apparatus may further include a communication unit provided on the heating unit and communicating with the outside to apply a control signal to the control unit.
  • the heating member by providing the heating member at a position corresponding to the valve and fixing the position even during the rotation of the centrifugal valve control device, the heating member can melt the valve material at the correct position, thereby precisely controlling the valve. It can be effective.
  • the heating member by controlling the switch and the heating member in consideration of the type of the valve material and the rotational speed of the centrifugal valve control device, the heating member can completely melt the valve material, so that the valve can be precisely controlled. It has an effect.
  • the present invention by symmetrically disposing the battery and other parts that can be disposed on the heating portion, it is possible to balance the centrifugal force acting on the front of the body portion while the centrifugal valve control device rotates, There is an effect that can prevent the noise caused by biasing to one side and damage of the centrifugal valve control device.
  • FIG. 1 is a perspective view showing a conventional centrifugal valve control device.
  • FIGS. 2 and 3 are a perspective view showing a centrifugal valve control apparatus according to an embodiment of the present invention.
  • Figure 4 is a perspective view showing the body portion of the centrifugal valve control apparatus according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along the cutting line V-V of FIG. 2, showing a first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view taken along the cutting line VV of FIG. 2 and illustrates a second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view taken along the line VI-VI of FIG. 3, showing a first embodiment of the present invention.
  • FIG. 8 is a cross-sectional view taken along the line VI-VI of FIG. 3 and illustrates a second embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a centrifugal valve control apparatus according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a printed circuit board in which each component illustrated in FIG. 9 is implemented on a heating unit.
  • FIG. 11 is a view illustrating the heating member of FIG. 9 in detail.
  • FIGS. 2 and 3 are a perspective view showing a centrifugal valve control apparatus according to an embodiment of the present invention
  • Figure 4 is a perspective view showing a body portion of the centrifugal valve control apparatus according to an embodiment of the present invention.
  • the centrifugal valve control apparatus may be configured to include a body portion 100, the heating unit 200 and the rotation drive unit 400.
  • the body portion 100 and the heating portion 200 may be formed in a rotatable disk shape.
  • the body portion 100 may be formed of a cylinder having a predetermined height
  • the heating portion 200 may be formed of a substrate, in which case the body portion 100 is formed of a cylinder, and the heating portion 200 is a circular substrate. It can be formed as.
  • the body part 100 includes a plurality of chambers 150 for receiving the fluid and a channel 160 connecting the at least two chambers 150 of the plurality of chambers 150 and providing a flow passage of the fluid. It may be provided with a body and a valve 170 for controlling the flow of the fluid by opening and closing the channel 160.
  • the body part 100 may be made of an elastomer that is easy to mold and its surface is biologically inert, and may be made of plastic such as polycarbonate (PC) and polystyrene (PS). It can be made of various materials such as materials. However, the present invention is not limited thereto, and a material having chemical and biological stability and good optical transmittance and mechanical processability is sufficient.
  • PC polycarbonate
  • PS polystyrene
  • the body portion 100 may be formed of a plate of several layers, by forming an intaglio structure corresponding to the chamber 150, the channel 160, etc. on the surface of the plate and the plate in contact with each other and by joining them inside the body portion 100
  • the chamber 150 and the channel 160 may be formed in the chamber 150.
  • the body portion 100 may be formed of two plates, and the two plates may be bonded by various methods such as adhesion using an adhesive or double-sided adhesive tape, ultrasonic welding, and laser welding.
  • the valve 170 may include a phase transition material that melts at high temperatures.
  • valve 170 may be provided at the point where the chamber 150 and the channel 160 meet or in the middle of the channel 160.
  • the valve 170 may include a dispenser (not shown) inside the channel 160. It can be formed by injecting a molten phase change material and curing it using the same tool.
  • the phase change material may be a wax that melts and turns into a liquid state and expands in volume when heated by the heating member 210.
  • the wax may include, for example, paraffin wax and microcrystalline wax. wax, synthetic wax, natural wax, or the like may be employed.
  • the phase change material may be a gel, and as such a gel, polyacrylamide, polyacrylates, polymethacrylates, or polyvinylamides may be employed. Can be.
  • the phase change material may be a thermoplastic resin
  • thermoplastic resins include cyclic olefin copolymer (COC), polymethylmethacrylate (PMMA), polycarbonate (PC), polystyrene (PS), polyoxymethylene (POM), perfluoralkoxy (PFA), Polyvinylchloride (PVC), polypropylene (PP), polyethylene terephthalate (PET), polyetheretherketone (PEEK), polyamide (PA), polysulfone (PSU), and polyvinylidene fluoride (PVDF) may be employed.
  • COC cyclic olefin copolymer
  • PMMA polymethylmethacrylate
  • PC polycarbonate
  • PS polystyrene
  • POM polyoxymethylene
  • PFA perfluoralkoxy
  • PVC Polyvinylchloride
  • PP polypropylene
  • PET polyethylene terephthalate
  • PEEK polyetheretherketone
  • PA polyamide
  • PSU
  • the heating unit 200 is coupled to the body of the body portion 100, the heating member 210 and the heating member 210 disposed in a position corresponding to the valve 170 provided in the body portion 100
  • the battery 220 may be provided to supply power. Detailed description of the heating unit 200 will be described later.
  • the rotation driver 400 rotates the body part 100 and the heating part 200 together with the center of the body part 100 and the heating part 200 as the rotation axis.
  • the rotation driver 400 includes a rotation shaft 410 coupled to the rotation center of the body 100 and the heating unit 200, a drive motor 420 for rotating the rotation shaft 410, and a driving motor ( It may be configured to include a controller (not shown) for controlling the driving of the 420.
  • the rotation drive unit 400 is mounted to the center portion of the body portion 100 to rotate the centrifugal valve control device at high speed, the body portion 100 so that the rotation drive unit 400 can be mounted to the body portion 100
  • the mounting hole 121 may be formed in the center portion.
  • the centrifugal valve control device may pressurize the fluid contained in the chamber 150 or the channel 160 in the direction toward the outer circumferential portion of the body portion 100 by the centrifugal force generated by the rotation of the rotation driving unit 400. have.
  • the centrifugal valve control apparatus according to an embodiment of the present invention, the chamber 150, the channel 160 is suitable for a specific use in the biochemical field, such as centrifugation of the fluid sample, immune serum reaction, gene analysis, gene extraction and gene amplification And the placement of the valve 170 can be determined. That is, the centrifugal valve control apparatus according to the embodiment of the present invention is not limited to the arrangement form of the chamber 150, the channel 160, and the valve 170 illustrated in FIG. 4, and may be designed in various forms according to its use. Can be.
  • FIG. 5 is a cross-sectional view taken along the cutting line V-V of FIG. 2 and illustrates a first embodiment of the present invention
  • FIG. 6 is a cross-sectional view taken along the cutting line V-V of FIG. 2.
  • 2 is a diagram showing a second embodiment.
  • FIG. 7 is a cross-sectional view taken along the cutting line VI-VI of FIG. 3 and illustrates a first embodiment of the present invention
  • FIG. 8 is a cross-sectional view taken along the cutting line VI-VI of FIG. 3.
  • Figure 2 shows a second embodiment of the invention.
  • the heating unit 200 of the centrifugal valve control apparatus uses the heating member 210 and the battery 220 on the heating unit 200. It can be provided.
  • the heating unit 200 of the centrifugal valve control apparatus includes a heating member 210 under the heating unit 200.
  • the battery 220 may be provided on the heating unit.
  • the heating member 210 may be disposed at a position corresponding to the valve 170 provided in the body portion 100, and may be provided in a number corresponding to the number of the valves 170.
  • the battery 220 is configured to increase the heating temperature of the heating member 210 by supplying power to the heating member 210, and at least one battery 220 may be provided on the heating unit 200, and one battery 220 may be provided. ) May supply power to one or more heating elements 210.
  • the battery 220 may be fixed to or detachable from the heating unit 200, and when fully discharged, the battery 220 may be replaced with the charged battery 220 or attached to the heating unit 200 in the heating unit 200. It may be charged by receiving external power through the provided charging terminal (225 of FIG. 8).
  • the heating member 210 is supplied with power from the battery 220 during the rotation of the body portion 100 and the heating portion 200 to increase the heat generation temperature, the valve 170 provided in the body portion 100 generates heat The temperature is melted by the heated member 210 to open and close the channel 160.
  • valve 170 may be configured as a normal open (NO) valve or a normal close (NC) valve according to its operation and configuration.
  • NO normal open
  • NC normal close
  • valve material when the valve 170 is configured as a normal open valve, the valve material is normally received in a cured state in the receiving space connected with the channel 160 to open the channel 160, and the valve material is heated. Melting by 210 flows out of the receiving space into the channel 160 to close the channel 160.
  • the valve material in the case where the valve 170 is configured as a normal closed valve, the valve material is normally formed in the cured state in the middle of the channel 160 to close the channel 160. When melted, the channel 160 is opened.
  • the centrifugal valve control apparatus may further include a heat transfer member 175 disposed between the valve 170 and the heating member 210.
  • the heat transfer member 175 may be made of a thermal grease, which is a fluid material that transfers heat, and may be formed on the body portion 100 before attaching the heating portion 200 to the body portion 100.
  • the valve 170 may be formed at the position of the heating member 210 below the heating unit 200.
  • the heat transfer member 175 may include diamond, silver, aluminum oxide, boron nitride, and zinc in a matrix including at least one of epoxy, silicon, urethane, and acrylate. It may be made of a material containing at least one of oxide (Zinc oxide) and aluminum nitride (Aluminum nitride).
  • the battery 220 may be provided as one on the heating unit 200. In this case, the battery 220 may be disposed at the center of the heating unit 200.
  • the battery 220 may be provided in plurality on the heating unit 200, and in this case, the batteries 220 may be symmetrically disposed.
  • the batteries 220 may be symmetrically disposed.
  • two batteries 220 may be disposed on the heating unit 200.
  • two batteries 220 may be symmetrically disposed on the left and right sides of the heating unit 200, respectively. Can be arranged.
  • the centrifugal valve control device can maintain the balance of the centrifugal force acting on the front of the body portion 100 during rotation, and can prevent the noise and damage of the centrifugal valve control device caused by the centrifugal force biased to either side.
  • the centrifugal valve control apparatus may further include a fixing means 300 for fixing the heating unit 200 on the body portion 100. have.
  • the fixing means 300 is configured to fix the positions of the valve 170 and the heating member 210 even when the body portion 100 and the heating portion 200 rotate at high speed, and the heating member 210 even during rotation. Ensure that the valve material is melted accurately. That is, the fixing means 300 enables the heating member 210 to precisely control the valve 170.
  • the fixing means 300 is a configuration in which there is no gap between the body portion 100 and the heating portion 200, and the heat generated by the heating member 210 is a valve (the lower portion of the heating member 210). 170 to effectively melt the valve material.
  • the fixing means 300 may be configured to include a fixing member for coupling the heating unit 200 and the body portion 100.
  • the fixing member may be formed on at least one of the outside or the center of the heating unit 200 and the body portion 100 so that the heating unit 200 is detachable on the body portion 100.
  • a plurality of bodies are formed on the outside of the body part 100 and the heating part 200, and the body part 100 and the heating part ( 200) can be fixed.
  • the fixing member may be further formed in the center of the body part 100 and the heating part 200 to more firmly fix the body part 100 and the heating part 200.
  • the fixing member may include a groove formed in the body portion 100 and a protrusion formed in the heating part 200 to be fitted into the groove.
  • the present invention is not limited thereto, and a structure capable of fixing the body part 100 and the heating part 200 is sufficient.
  • the centrifugal valve control apparatus may be formed of a flexible element of the heating unit 200 of the film form or a thin film of about several mm.
  • an adhesive layer may be formed on the lower surface of the flexible element, and the heating part 200 may be fixed on the body part 100 through the adhesive layer.
  • the heating unit 200 can be easily fixed on the body unit 100 without having the fixing means 300 described above, and the heating unit 200 is heated regardless of the upper shape of the body unit 100 due to the characteristics of the flexible device.
  • the part 200 may be in close contact with the body part 100 to fix the heating part 200 more firmly.
  • the flexible element is formed in a film form or a thin film of about several mm, the separation distance between the heating member 210 and the valve 170 when the heating unit 200 and the body unit 100 is combined can be minimized.
  • the heat generated in the heating member 210 can be effectively transmitted to the valve 170 without providing the above-described heat transfer member 175 between the heating member 210 and the valve 170.
  • FIG. 9 is a schematic block diagram of a centrifugal valve control apparatus according to an exemplary embodiment of the present invention.
  • FIG. 10 is a view illustrating a printed circuit board in which each of the components shown in FIG. 9 is implemented on a heating unit. It is a figure which shows the heating member of FIG. 10 in detail.
  • the heating unit 200 of the centrifugal valve control apparatus includes a heating member 210, a battery 220, a switch SW, and a controller 230. And it may be configured to include a communication unit 240.
  • the heating member 210 may be made of a chip-shaped heat generating element and attached to the printed circuit board 200.
  • the resistor 210 which is a heating element, may be connected to the circuit pattern on the printed circuit board 200 by soldering (Pb). That is, the resistor 210 may be formed so that both ends are coupled in the hole H formed in the heating unit 200.
  • the heating member 210 may control the heating temperature according to the current or voltage applied to the heating element. For example, when the current or voltage value applied to the resistance increases, the heat generation temperature of the heating member 210 increases, and when the current or voltage value decreases, the heat generation temperature of the heating member 210 decreases.
  • the switch SW is provided on the printed circuit board 200 and is configured to turn on and off electrical connections between the heating member 210 and the battery 220. When the switch SW is turned on, the switch SW is charged. The supplied electric power is supplied to the heating member 210.
  • the switch SW may be attached to the printed circuit board 200 by forming a chip-shaped transistor as a semiconductor device.
  • the transistor may be connected to the circuit pattern on the printed circuit board 200 through soldering.
  • the exothermic temperature of the heating member 210 required to completely melt the valve material depends on the type of the valve material. In addition, even if the heating member 210 is set to generate heat at a heating temperature necessary for melting the valve material completely, as the heating part 200 rotates, the heating temperature of the heating member 210 is lowered to completely melt the valve material. You may not be able to. In addition, since the heating temperature fluctuation amount varies according to the rotational speed of the heating unit 200, it is necessary to consider the above variables for precise control of the valve 170.
  • the controller 230 controls the current or voltage value applied to the heating element in accordance with the type of the material constituting the valve 170 or the rotational speed of the body portion 100 and the heating unit 200.
  • the controller 230 may control a larger current or voltage value applied to the heating element as the melting point of the valve material is higher, and smaller to control the current or voltage value applied to the heating element as the melting point of the valve material is lower. Can be.
  • the controller 230 presets and stores an amount of fluctuation of the heating temperature depending on the rotational speed of the heating part 200 and then applies a current to the heating element depending on the amount of rotation of the heating part 200 and the amount of fluctuation of the heating temperature.
  • the voltage value can be controlled. For example, the faster the rotational speed of the heating unit 200, the larger the current or voltage value applied to the heating element, and the lower the rotational speed of the heating unit 200, the smaller the current or voltage value applied to the heating element. can do.
  • the centrifugal valve control apparatus may enable the heating member 210 to completely melt the valve material, thereby enabling precise control of the valve 170.
  • the controller 230 may control on / off of the switch SW. That is, the controller 230 turns on the switch SW at a preset timing to supply the electric power charged in the battery 220 to the heating member 210, and the heating member 210 can completely melt the valve material. It is possible to cut off the power supplied to the heating member 210 by setting a melting time in advance to turn off the switch (SW) after the melting time.
  • the melting time required to completely melt the valve material depends on the type of valve material.
  • the heating member 210 is set to generate heat at the melting time required to completely melt the valve material, as the heating unit 200 rotates, the heat generation temperature of the heating member 210 is lowered to allow the valve material to be melted during the melting time. May not melt completely.
  • the heating temperature fluctuation amount varies according to the rotational speed of the heating unit 200, it is necessary to consider the above variables for precise control of the valve 170.
  • the controller 230 controls the on / off of the switch SW according to the type of material constituting the valve 170 or the rotational speed of the body portion 100 and the heating portion 200.
  • control unit 230 the higher the melting point of the valve material to control the melting time from the switch SW is turned on and then turned off larger, the lower the melting point of the valve material is smaller the melting time Can be controlled.
  • the controller 230 presets and stores the heating temperature variation depending on the rotational speed of the heating unit 200, and then the switch SW is turned on in accordance with the rotational speed and the heating temperature variation of the heating unit 200. Melting time from on to turn off can be controlled. For example, the faster the rotational speed of the heating unit 200, the larger the melting time, and the lower the rotational speed of the heating unit 200, the smaller the melting time.
  • the centrifugal valve control apparatus may enable the heating member 210 to completely melt the valve material, thereby enabling precise control of the valve 170.
  • the control unit 230 may be provided in the heating unit 200 or may be provided outside. That is, the controller 230 is formed in a chip shape and attached to the printed circuit board 200 to directly control the heating member 210 or the switch SW, or provided in an external system to communicate with the heating member 210 or the like.
  • the switch SW can be remotely controlled.
  • the communication unit 240 is provided in the heating unit 200 and communicates with the outside to apply a control signal to the control unit 230.
  • the communication unit 240 may receive a control signal CS through communication with an external system and apply the control signal CS to the controller 230 again to control the heating member 210 or the switch SW. Make sure
  • the heating member 210 is provided by providing the heating member 210 at a position corresponding to the valve 170 and fixing the position even during the rotation of the centrifugal valve control apparatus. Allows the valve material to melt in the correct position, allowing precise control of the valve 170.
  • the heating member 210 by controlling the switch (SW) and the heating member 210 in consideration of the type of valve material and the rotational speed of the centrifugal valve control apparatus. Allows the valve material to melt completely, so that the valve 170 can be precisely controlled.
  • the centrifugal valve control apparatus by symmetrically disposing the battery 220 and other components that can be disposed on the heating unit 200, the centrifugal valve control apparatus is the body portion during rotation
  • the centrifugal force acting on the front surface can be balanced and the noise generated by the centrifugal force biased to one side and damage to the centrifugal valve control device can be prevented.
  • the centrifugal valve control apparatus by placing the heat transfer member 175 between the valve 170 and the heating member 210, the heat generated by the heating member 210 to the heating member Effectively delivered to the valve 170 at the bottom 210 can easily melt the valve material.
  • the centrifugal valve device according to the present invention can be used in various fields such as a device used to operate a small amount of fluid to perform a biological or chemical reaction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Details Of Valves (AREA)

Abstract

본 발명은, 챔버 및 챔버와 연결되는 채널을 구비하는 몸체 및 채널을 개폐하는 밸브를 구비하는 몸체부와, 몸체 상에 결합되고, 밸브에 대응되는 위치에 배치되는 가열 부재를 구비하는 가열부와, 몸체부 및 가열부를 함께 회전시키는 회전 구동부를 포함하고, 밸브는 몸체부 및 가열부가 함께 회전하는 동안 가열 부재에 의해 채널을 개폐하도록 형성되는 원심 밸브 제어 장치를 제공한다. 이를 통해, 원심 밸브 제어 장치의 밸브를 정밀하게 제어할 수 있다.

Description

원심 밸브 제어 장치
본 발명은 원심 밸브 제어 장치에 관한 것으로 특히, 밸브를 정밀하게 제어할 수 있는 원심 밸브 제어 장치에 관한 것이다.
일반적으로 소량의 유체를 조작하여 생물학적 또는 화학적인 반응을 수행하는데 사용되는 장치를 원심 밸브 제어 장치라 한다.
이러한 원심 밸브 제어 장치는, 칩(chip) 및 디스크 등 다양한 형상의 플랫폼(platform) 내에 배치된 미세 유동 구조물을 포함한다.
여기서, 미세 유동 구조물은, 유체를 수용할 수 있는 챔버(chamber)와, 유체가 흐를 수 있는 채널(channel)과, 유체의 흐름을 조절할 수 있는 밸브(valve)를 포함하며, 챔버, 채널 및 밸브는 플랫폼 내에서 다양한 조합으로 배치된다.
소형의 칩(chip) 상에서 생화학적 반응을 포함한 시험을 수행할 수 있도록 칩 형태의 플랫폼에 이러한 미세 유동 구조물을 배치한 것을 일컬어 바이오 칩이라고 하고, 특히, 여러 단계의 처리 및 조작을 하나의 칩에서 수행할 수 있도록 제작된 장치를 랩온어칩(lab-on-a chip)이라 한다.
미세 유동 구조물 내에서 유체를 이송하기 위해서는 구동 압력이 필요한데, 이러한 구동 압력으로 모세관압이 이용되기도 하고, 별도의 펌프에 의한 압력이 이용되기도 한다.
최근에는 디스크 형상의 플랫폼에 미세 유동 구조물을 배치하고 원심력을 이용하여 유체를 이동시키면서 일련의 작업을 수행하는 원심력 기반의 원심 밸브 제어 장치들이 제안되고 있다. 이를 일컬어 랩씨디(Lab CD) 또는 랩온어씨디(Lab-on a CD)라 하기도 한다.
원심 밸브 제어 장치에 구비된 밸브는 자기력을 이용하여 채널을 개폐하는 방식과 상전이 물질을 이용하여 채널을 개폐하는 방식 등이 채용된다.
여기서, 상전이 물질을 이용하여 채널을 개폐하는 방식을 채용한 경우 노멀 클로즈 밸브를 작동시키기 위해서는 채널 중도에 경화된 상전이 물질을 형성하고, 채널 내의 상전이 물질을 가열하게 되면 상전이 물질이 용융되어 채널을 개방하게 된다.
그러나, 원심력을 이용하여 유체를 이동시키는 종래의 원심력 기반의 원심 밸브 제어 장치는, 상전이 물질에 정확한 에너지 전달 어려움으로 인해 상전이 물질이 완전 용융되지 못하여 채널이 완벽하게 개방되지 못하는 경우가 있다. 이에, 상전이 물질을 가열하기 위한 가열부재의 정확한 위치 제어 기술이 필요하다.
도 1은 종래의 원심 밸브 제어 장치를 도시한 사시도이다.
도 1에 도시한 바와 같이, 종래의 원심 밸브 제어 장치(10)는 그 내부에 유체를 수용하기 위한 복수의 챔버(50)와, 챔버(50)와 연결되며 유체의 흐름 통로를 제공하는 채널(60)과, 채널(60)의 개폐를 통해 유체의 흐름을 제어하기 위한 밸브(70)를 구비한다.
이러한 원심 밸브 제어 장치(10)는 모터(미도시)에 장착되어 고속 회전할 수 있고, 원심 밸브 제어 장치(10)의 중앙부에는 모터에 장착될 수 있도록 장착 통공(21)이 형성되어 있다.
모터의 회전에 의해 발생하는 원심력에 의해 미세유동장치(10)의 챔버(50) 또는 채널(60)에 수용된 유체는 플랫폼(20)의 외주부를 향한 방향으로 가압된다.
밸브(70)는, 평상시 채널(60)을 폐쇄하였다가 채널(60) 내부에 수용된 밸브 물질에 전자기파 에너지가 조사됨으로써 밸브 물질이 용융되어 채널(60)을 개방하게 된다.
레이저 광원(11)은 밸브 물질에 전자기파를 조사하기 위한 에너지원의 일 예로서, 전자기파의 일종인 레이저(L)를 밸브 물질을 향해 조사함으로써 밸브 물질에 에너지를 공급한다.
이와 같은 종래의 원심 밸브 제어 장치(10)는, 원심 밸브 제어 장치(10)와 별도로 구비된 레이저 광원(11)을 통해 원심 밸브 제어 장치(10)가 회전 중 밸브 물질에 레이저(L)를 조사하여 밸브를 개방하기 때문에, 레이저 광원(11)이 밸브(70) 위치에 정확히 레이저(L)를 조사하기 어려워 밸브(70) 제어의 정밀성이 떨어지는 문제점이 있었다.
본 발명은, 가열 부재를 밸브에 대응하는 위치에 구비하고 원심 밸브 제어 장치의 회전 중에도 그 위치를 고정시킴으로써, 가열 부재가 정확한 위치에서 밸브 물질을 용융시킬 수 있도록 하여, 밸브를 정밀하게 제어할 수 있는 원심 밸브 제어 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은, 밸브 물질의 종류 및 원심 밸브 제어 장치의 회전 속도를 고려하여 스위치 및 가열 부재를 제어함으로써, 가열 부재가 밸브 물질을 완전히 용융시킬 수 있도록 하여, 밸브를 정밀하게 제어할 수 있는 원심 밸브 제어 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은, 가열부 상에 배치될 수 있는 배터리 및 다른 부품들을 대칭적으로 배치함으로써, 원심 밸브 제어 장치가 회전하는 동안 몸체부 전면에 작용하는 원심력의 균형을 유지할 수 있고, 원심력이 어느 한쪽으로 치우쳐 발생하는 소음 및 원심 밸브 제어 장치의 손상을 방지할 수 있는 원심 밸브 제어 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은, 밸브 및 가열 부재 사이에 열전달 부재를 배치함으로써, 가열 부재에 의해 발생된 열을 가열 부재 하부의 밸브로 효과적으로 전달하여 밸브 물질을 용이하게 용융시킬 수 있는 원심 밸브 제어 장치를 제공하는 것을 목적으로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
전술한 목적을 달성하기 위하여, 챔버 및 챔버와 연결되는 채널을 구비하는 몸체 및 채널을 개폐하는 밸브를 구비하는 몸체부와, 몸체 상에 결합되고, 밸브에 대응되는 위치에 배치되는 가열 부재를 구비하는 가열부와, 몸체부 및 가열부를 함께 회전시키는 회전 구동부를 포함하고, 밸브는 몸체부 및 가열부가 함께 회전하는 동안 가열 부재에 의해 채널을 개폐하도록 형성되는 원심 밸브 제어 장치를 제공한다.
여기서, 몸체는 소정의 높이를 갖는 통으로 형성되고, 가열부는 기판으로 형성될 수 있다.
또한, 챔버 및 채널은 상기 몸체 내부에 구비될 수 있다.
또한, 밸브는 몸체 내부에 구비되고, 가열 부재는 가열부의 하부에 구비될 수 있다.
또한, 가열 부재에 전력을 공급하는 배터리를 더 포함할 수 있다.
또한, 몸체에는 채널 및 채널에 형성된 밸브가 복수 개 구비되며, 가열부에는 밸브에 대응되는 가열 부재가 구비될 수 있다.
또한, 배터리는 가열부에 구비된 하나 이상의 가열 부재에 전력을 공급할 수 있도록 형성될 수 있다.
또한, 배터리는 가열부 상의 중심에 배치될 수 있다.
또한, 배터리는 가열부 상에 복수 개로 구비되며, 복수 개의 배터리는 대칭적으로 배치될 수 있다.
또한, 회전 구동부는 몸체 및 가열부의 회전 중심에 결합되는 회전축, 회전축을 회전시키기 위한 구동 모터 및 구동 모터의 구동을 제어하기 위한 제어기를 포함할 수 있다.
또한, 가열 부재는 발열 소자로 이루어지며, 발열 소자는 가열부의 하부에 형성된 홀 내부에 구비될 수 있다.또한, 밸브 및 가열 부재 사이에 구비되는 열전달 부재를 더 포함할 수 있다.
또한, 열전달 부재는 에폭시, 실리콘, 우레탄 및 아크릴레이트 중 적어도 하나를 포함하는 매트릭스에 다이아몬드(Diamond), 실버(Silver), 알루미늄 옥사이드(Aluminum oxide), 보론 나이트라이드(Boron nitride), 징크 옥사이드(Zinc oxide) 및 알루미늄 나이트라이드(Aluminum nitride) 중 적어도 하나가 포함된 재료로 이루어질 수 있다.
또한, 밸브는, 가열 부재의 가열에 의하여 용융될 수 있는 상전이 물질로 이루어질 수 있다.
또한, 발열 소자는 저항으로 이루어지고, 저항에 인가되는 전류 또는 전압을 제어하는 제어부를 더 포함할 수 있다.
또한, 제어부는 밸브를 이루는 물질의 종류 또는 몸체부 및 가열부의 회전 속도에 따라 저항에 인가되는 전류 또는 전압을 제어할 수 있다.
또한, 가열 부재 및 배터리의 전기적 연결을 온오프하는 스위치를 더 포함할 수 있다.
또한, 가열부를 몸체부 상에 고정시키는 고정 수단을 더 포함할 수 있다.
또한, 고정 수단은 몸체부 및 가열부의 외측 또는 중앙 중 적어도 하나에 구비되는 고정 부재를 포함할 수 있다.
또한, 고정 수단은 몸체부에 형성된 홈 및 홈에 끼움 결합 가능하도록 가열부에 형성된 돌기를 포함할 수 있다.
또한, 가열부 상에 구비되며 외부와 통신하여 제어부에 제어 신호를 인가하는 통신부를 더 포함할 수 있다.
본 발명에 따르면, 가열 부재를 밸브에 대응하는 위치에 구비하고 원심 밸브 제어 장치의 회전 중에도 그 위치를 고정시킴으로써, 가열 부재가 정확한 위치에서 밸브 물질을 용융시킬 수 있도록 하여, 밸브를 정밀하게 제어할 수 있는 효과가 있다.
또한, 본 발명에 따르면, 밸브 물질의 종류 및 원심 밸브 제어 장치의 회전 속도를 고려하여 스위치 및 가열 부재를 제어함으로써, 가열 부재가 밸브 물질을 완전히 용융시킬 수 있도록 하여, 밸브를 정밀하게 제어할 수 있는 효과가 있다.
또한, 본 발명에 따르면, 가열부 상에 배치될 수 있는 배터리 및 다른 부품들을 대칭적으로 배치함으로써, 원심 밸브 제어 장치가 회전하는 동안 몸체부 전면에 작용하는 원심력의 균형을 유지할 수 있고, 원심력이 어느 한쪽으로 치우쳐 발생하는 소음 및 원심 밸브 제어 장치의 손상을 방지할 수 있는 효과가 있다.
또한, 본 발명에 따르면, 밸브 및 가열 부재 사이에 열전달 부재를 배치함으로써, 가열 부재에 의해 발생된 열을 가열 부재 하부의 밸브로 효과적으로 전달하여 밸브 물질을 용이하게 용융시킬 수 있는 효과가 있다.
본 발명의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 당해 기술분야에 있어서의 통상의 지식을 가진 자가 명확하게 이해할 수 있을 것이다.
도 1은 종래의 원심 밸브 제어 장치를 도시한 사시도이다.
도 2 및 도 3은 본 발명의 실시예에 따른 원심 밸브 제어 장치를 도시한 사시도이다.
도 4는 본 발명의 실시예에 따른 원심 밸브 제어 장치의 몸체부를 도시한 사시도이다.
도 5는 도 2의 절단선 Ⅴ-Ⅴ를 따라 절단한 단면도로서 본 발명의 제1 실시예를 도시한 도면이다.
도 6은 도 2의 절단선 Ⅴ-Ⅴ를 따라 절단한 단면도로서 본 발명의 제2 실시예를 도시한 도면이다.
도 7은 도 3의 절단선 Ⅵ-Ⅵ을 따라 절단한 단면도로서 본 발명의 제1 실시예를 도시한 도면이다.
도 8은 도 3의 절단선 Ⅵ-Ⅵ을 따라 절단한 단면도로서 본 발명의 제2 실시예를 도시한 도면이다.
도 9는 본 발명의 실시예에 따른 원심 밸브 제어 장치의 개략적인 블록도이다.
도 10은 도 9에 도시된 각 구성이 가열부 상에 구현된 인쇄회로기판을 도시한 도면이다.
도 11은 도 9의 가열 부재를 구체적으로 도시한 도면이다.
첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다.
도 2 및 도 3은 본 발명의 실시예에 따른 원심 밸브 제어 장치를 도시한 사시도이고, 도 4는 본 발명의 실시예에 따른 원심 밸브 제어 장치의 몸체부를 도시한 사시도이다.
도 2 내지 도 4에 도시한 바와 같이, 본 발명의 실시예에 따른 원심 밸브 제어 장치는 몸체부(100), 가열부(200) 및 회전 구동부(400)를 포함하여 구성될 수 있다.
여기서, 몸체부(100) 및 가열부(200)는, 회전 가능한 디스크 형상으로 형성될 수 있다. 예컨대, 몸체부(100)는 소정의 높이를 갖는 통으로 형성되고, 가열부(200)는 기판으로 형성될 수 있고, 이 경우 몸체부(100)는 원통으로 형성되고 가열부(200)는 원형 기판으로 형성될 수 있다.
몸체부(100)는, 유체를 수용하기 위한 복수의 챔버(150)와 이들 복수의 챔버(150) 중 적어도 두 개의 챔버(150)를 연결하며 유체의 흐름 통로를 제공하는 채널(160)을 내부에 구비하는 몸체와, 채널(160)을 개폐하여 유체의 흐름을 제어하기 위한 밸브(170)를 구비할 수 있다.
구체적으로, 몸체부(100)는, 성형이 용이하고, 그 표면이 생물학적으로 비활성인 탄성중합체(Elastomer)로 만들어질 수 있으며, 폴리카보네이트(Polycarbonate, PC) 및 폴리스티렌(Polystyrene, PS) 등의 플라스틱 소재 등 다양한 소재로 만들어질 수 있다. 다만, 이에 한정되는 것은 아니고 화학적 및 생물학적으로 안정성을 가지며, 광학적 투과성 및 기계적 가공성이 좋은 소재이면 족하다.
또한, 몸체부(100)는 여러 층의 판으로 이루어질 수 있으며, 판과 판이 서로 맞닿는 면에 챔버(150)나 채널(160) 등에 해당하는 음각 구조물을 형성하고 이들을 접합함으로써 몸체부(100) 내부에 챔버(150) 및 채널(160)을 형성할 수 있다.
예를 들어, 몸체부(100)는 두 개의 판으로 이루어질 수 있으며, 여기서, 두 개의 판은 접착제 또는 양면 접착테이프를 이용한 접착, 초음파 융착 및 레이저 융착 등 다양한 방법으로 접합될 수 있다.
밸브(170)는, 고온에서 용융되는 상전이 물질(phase transition material)을 포함할 수 있다.
또한, 밸브(170)는 챔버(150)와 채널(160)이 만나는 지점 또는 채널(160) 중도에 마련될 수 있으며, 예컨대, 밸브(170)는 채널(160) 내부에 디스펜서(미도시)와 같은 도구를 이용하여 용융된 상전이 물질을 주입하고, 이를 경화시켜 형성될 수 있다.
여기서, 상전이 물질은 가열 부재(210)에 의해 가열되면 용융하여 액체 상태로 변하며 부피 팽창하는 왁스(wax)일 수 있으며, 이러한 왁스로는, 예컨대 파라핀 왁스(paraffin wax), 마이크로크리스탈린 왁스(microcrystalline wax), 합성 왁스(synthetic wax), 또는 천연 왁스(natural wax) 등이 채용될 수 있다.
이와 달리, 상전이 물질은 겔(gel)일 수도 있으며, 이러한 겔로는, 폴리아크릴아미드(polyacrylamide), 폴리아크릴레이트(polyacrylates), 폴리메타크릴레이트(polymethacrylates), 또는 폴리비닐아미드(polyvinylamides) 등이 채용될 수 있다.
이와 달리, 상전이 물질은 열가소성 수지일 수도 있으며, 이러한 열가소성 수지로는, COC(cyclic olefin copolymer), PMMA(polymethylmethacrylate), PC(polycarbonate), PS(polystyrene), POM(polyoxymethylene), PFA(perfluoralkoxy), PVC(polyvinylchloride), PP(polypropylene), PET(polyethylene terephthalate), PEEK(polyetheretherketone), PA(polyamide), PSU(polysulfone), 및 PVDF(polyvinylidene fluoride) 등이 채용될 수 있다.
가열부(200)는, 몸체부(100)의 몸체 상에 결합되고, 몸체부(100)에 구비된 밸브(170)에 대응되는 위치에 배치되는 가열 부재(210)와 가열 부재(210)에 전력을 공급하는 배터리(220)를 구비할 수 있다. 이러한 가열부(200)에 대한 자세한 설명은 후술하겠다.
회전 구동부(400)는 몸체부(100) 및 가열부(200)의 중심을 회전축으로 하여 몸체부(100) 및 가열부(200)를 함께 회전시킨다.
구체적으로, 회전 구동부(400)는 몸체부(100) 및 가열부(200)의 회전 중심에 결합되는 회전축(410)과, 회전축(410)을 회전시키기 위한 구동 모터(420)와, 구동 모터(420)의 구동을 제어하기 위한 제어기(미도시)를 포함하여 구성될 수 있다.
여기서, 회전 구동부(400)는 몸체부(100) 중앙부에 장착되어 원심 밸브 제어 장치를 고속으로 회전시킬 수 있으며, 회전 구동부(400)가 몸체부(100)에 장착될 수 있도록 몸체부(100) 중앙부에 장착 통공(121)이 형성될 수 있다.
이에 따라, 원심 밸브 제어 장치는, 회전 구동부(400)의 회전에 의해 발생되는 원심력에 의해 챔버(150) 또는 채널(160)에 수용된 유체를 몸체부(100)의 외주부를 향한 방향으로 가압시킬 수 있다.
한편, 본 발명의 실시예에 따른 원심 밸브 제어 장치는 유체 시료의 원심 분리, 면역 혈청 반응, 유전자 분석, 유전자 추출 및 유전자 증폭 등 생화학 분야의 특정 용도에 적합하게 챔버(150), 채널(160) 및, 밸브(170)의 배치가 결정될 수 있다. 즉, 본 발명의 실시예에 따른 원심 밸브 제어 장치는 도 4에 도시된 챔버(150), 채널(160) 및 밸브(170)의 배치 형태에 한정되지 않으며, 그 용도에 따라 다양한 형태로 설계될 수 있다.
도 5는 도 2의 절단선 Ⅴ-Ⅴ를 따라 절단한 단면도로서 본 발명의 제1 실시예를 도시한 도면이고, 도 6은 도 2의 절단선 Ⅴ-Ⅴ를 따라 절단한 단면도로서 본 발명의 제2 실시예를 도시한 도면이다. 그리고, 도 7은 도 3의 절단선 Ⅵ-Ⅵ을 따라 절단한 단면도로서 본 발명의 제1 실시예를 도시한 도면이고, 도 8은 도 3의 절단선 Ⅵ-Ⅵ을 따라 절단한 단면도로서 본 발명의 제2 실시예를 도시한 도면이다.
도 5 및 도 7에 도시한 바와 같이, 본 발명의 제1 실시예에 따른 원심 밸브 제어 장치의 가열부(200)는, 가열부(200) 상에 가열 부재(210)와 배터리(220)를 구비할 수 있다.
이와 달리, 도 6 및 도 8에 도시한 바와 같이, 본 발명의 제2 실시예에 따른 원심 밸브 제어 장치의 가열부(200)는, 가열부(200) 하부에 가열 부재(210)를 구비하고, 가열부 상에 배터리(220)를 구비할 수도 있다.
여기서, 가열 부재(210)는, 몸체부(100)에 구비된 밸브(170)에 대응되는 위치에 배치될 수 있으며, 밸브(170)의 개수에 대응되는 개수로 구비될 수 있다.
배터리(220)는, 가열 부재(210)에 전력을 공급하여 가열 부재(210)의 발열 온도를 상승시키는 구성으로서, 적어도 하나가 가열부(200) 상에 구비될 수 있으며, 하나의 배터리(220)가 하나 이상의 가열 부재(210)에 전력을 공급할 수 있다.
또한, 배터리(220)는, 가열부(200)에 고정되거나 탈부착 가능하며, 완전 방전시, 충전된 배터리(220)로 교체되거나, 가열부(200)에 부착된 상태에서 가열부(200)에 구비된 충전 단자(도 8의 225)를 통해 외부 전력을 공급 받아 충전될 수 있다.
가열 부재(210)는 몸체부(100) 및 가열부(200)의 회전 중 배터리(220)로부터 전력을 공급받아 발열 온도가 상승하게 되고, 몸체부(100)에 구비된 밸브(170)는 발열 온도가 상승된 가열 부재(210)에 의해 용융되어 채널(160)을 개폐하게 된다.
여기서, 밸브(170)는 그 동작 및 구성 방식에 따라 노멀 오픈(Nomal Open: NO) 밸브 또는 노멀 클로즈(Nomal Close: NC) 밸브로 구성될 수 있다.
구체적으로, 밸브(170)가 노멀 오픈 밸브로 구성될 경우 평상시에는 밸브 물질이 채널(160)과 연결된 수용 공간 내에 경화된 상태로 수용되어 채널(160)을 개방하고 있다가, 밸브 물질이 가열 부재(210)에 의해 용융되면 상기 수용 공간에서 채널(160)로 흘러나와 채널(160)을 폐쇄하게 된다. 그리고, 밸브(170)가 노멀 클로즈 밸브로 구성될 경우 평상시에는 밸브 물질이 채널(160) 중도에 경화된 상태로 형성되어 채널(160)을 폐쇄하고 있다가, 밸브 물질이 가열 부재(210)에 의해 용융되면 채널(160)을 개방하게 된다.
한편, 본 발명의 실시예에 따른 원심 밸브 제어 장치는, 밸브(170) 및 가열 부재(210) 사이에 배치되는 열전달 부재(175)를 더 포함할 수 있다.
여기서, 열전달 부재(175)는, 열을 전달하는 유체 물질인 서멀 그리스(thermal grease)로 이루어 질 수 있으며, 몸체부(100) 상에 가열부(200)을 부착하기 전 몸체부(100) 상의 밸브(170) 위치 또는 가열부(200) 하부의 가열 부재(210) 위치에 형성할 수 있다. 또한, 열전달 부재(175)는 에폭시, 실리콘, 우레탄 및 아크릴레이트 중 적어도 하나를 포함하는 매트릭스에 다이아몬드(Diamond), 실버(Silver), 알루미늄 옥사이드(Aluminum oxide), 보론 나이트라이드(Boron nitride), 징크 옥사이드(Zinc oxide) 및 알루미늄 나이트라이드(Aluminum nitride) 중 적어도 하나가 포함된 재료로 이루어질 수 있다.
이와 같이 열전달 부재(175)를 가열 부재(210) 및 밸브(170) 사이에 배치함으로써, 가열 부재(210)에 의해 발생된 열을 가열 부재(210) 하부의 밸브(170)로 효과적으로 전달하여 밸브 물질을 용이하게 용융시킬 수 있게 된다.
도 2에 도시한 바와 같이, 배터리(220)는 가열부(200) 상에 하나로 구비될 수 있으며, 이 경우 배터리(220)는 가열부(200) 중앙에 배치되는 것이 바람직하다.
이와 달리, 배터리(220)는 가열부(200) 상에 복수 개로 구비될 수 있으며, 이 경우 대칭적으로 배치되는 것이 바람직하다. 예컨대, 도 3에 도시한 바와 같이, 배터리(220)는 가열부(200) 상에 두 개가 배치될 수 있으며, 이 경우 두 개의 배터리(220)는 가열부(200) 상의 좌우측에 대칭적으로 각각 배치될 수 있다.
이를 통해, 원심 밸브 제어 장치가 회전 중 몸체부(100) 전면에 작용하는 원심력의 균형을 유지할 수 있고, 원심력이 어느 한쪽으로 치우쳐 발생하는 소음 및 원심 밸브 제어 장치의 손상을 방지할 수 있다.
한편, 도 2 및 도 3에 도시한 바와 같이, 본 발명의 실시예에 따른 원심 밸브 제어 장치는 가열부(200)를 몸체부(100) 상에 고정시키는 고정 수단(300)을 더 포함할 수 있다.
여기서, 고정 수단(300)은, 몸체부(100) 및 가열부(200)가 고속으로 회전하더라도 밸브(170) 및 가열 부재(210)의 위치를 고정시키는 구성으로서, 회전 중에도 가열 부재(210)가 밸브 물질을 정확하게 용융시킬 수 있도록 한다. 즉, 고정 수단(300)은 가열 부재(210)가 밸브(170)를 정밀하게 제어할 수 있도록 한다.
또한, 고정 수단(300)은, 몸체부(100) 및 가열부(200) 사이에 유격이 없도록 밀착시키는 구성으로서, 가열 부재(210)에 의해 발생된 열을 가열 부재(210) 하부의 밸브(170)로 효과적으로 전달하여 밸브 물질을 효과적으로 용융시킬 수 있도록 한다.
또한, 고정 수단(300)은 가열부(200) 및 몸체부(100)를 결합시키는 고정 부재를 포함하여 구성될 수 있다.
여기서, 고정 부재는, 가열부(200)가 몸체부(100) 상에서 탈부착되도록 가열부(200) 및 몸체부(100)의 외측 또는 중앙 중 적어도 하나에 형성될 수 있다. 구체적으로, 몸체부(100) 및 가열부(200)의 외측에 복수 개가 형성되어, 볼트 및 너트 체결 및 스크류 체결 등의 방식 또는 걸쇠 등의 압력 기반 체결 방식으로 몸체부(100) 및 가열부(200)를 고정할 수 있다. 아울러, 고정 부재는 몸체부(100) 및 가열부(200)의 중앙에 더 형성되어 몸체부(100) 및 가열부(200)를 더욱더 견고히 고정시킬 수 있다. 이와 같은, 고정 부재는 몸체부(100)에 형성된 홈 및 상기 홈에 끼움 결합 가능하도록 가열부(200)에 형성된 돌기를 포함하여 구성될 수 있다.
다만, 이에 한정되는 것은 아니고 몸체부(100) 및 가열부(200)을 고정시킬 수 있는 구성이면 족하다.
한편, 본 발명의 실시예에 따른 원심 밸브 제어 장치는 가열부(200)가 수 mm 정도의 필름 형태 또는 박막형으로 이루어진 유연 소자로 형성될 수 있다. 이 경우, 유연 소자의 하부면에 점착층을 형성하고 이 점착층을 통해 가열부(200)를 몸체부(100) 상에 고정시킬 수 있다.
이에 따라, 전술한 고정 수단(300)을 구비하지 않고도, 가열부(200)를 몸체부(100) 상에 용이하게 고정시킬 수 있고, 유연 소자 특성 상 몸체부(100) 상부 형상에 관계 없이 가열부(200)를 몸체부(100) 상에 밀착시켜 가열부(200)를 보다 견고히 고정시킬 수 있다.
또한, 유연 소자는 수 mm 정도의 필름 형태 또는 박막형으로 이루어지기 때문에, 가열부(200) 및 몸체부(100) 결합 시 가열 부재(210)와 밸브(170) 사이의 이격 거리는 최소화 될 수 있다
이에 따라, 가열 부재(210) 및 밸브(170) 사이에 전술한 열 전달 부재(175)를 구비하지 않고도, 가열 부재(210)에 발생된 열을 밸브(170)에 효과적으로 전달할 수 있게 된다.
도 9는 본 발명의 실시예에 따른 원심 밸브 제어 장치의 개략적인 블록도이고, 도 10은 도 9에 도시된 각 구성이 가열부 상에 구현된 인쇄회로기판을 도시한 도면이고, 도 11은 도 10의 가열 부재를 구체적으로 도시한 도면이다.
도 9 내지 도 11에 도시한 바와 같이, 본 발명의 실시예에 따른 원심 밸브 제어 장치의 가열부(200)는, 가열 부재(210), 배터리(220), 스위치(SW), 제어부(230) 및 통신부(240)를 포함하여 구성될 수 있다.
여기서, 가열 부재(210)는 칩 형태의 발열 소자로 이루어져 인쇄회로기판(200) 상에 부착될 수 있다. 예컨대, 발열 소자인 저항(210)을 인쇄회로기판(200) 상의 회로 패턴과 납땜(Pb)을 통해 연결될 수 있다. 즉, 저항(210)은 가열부(200)에 형성된 홀(H) 내에서 양 단부가 결합되도록 형성될 수 있다.
이와 같은 가열 부재(210)는 발열 소자에 인가되는 전류 또는 전압에 따라 발열 온도가 조절될 수 있다. 예컨대, 저항에 인가되는 전류 또는 전압 값이 커지면 가열 부재(210)의 발열 온도가 커지고 전류 또는 전압 값이 작아지면 가열 부재(210)의 발열 온도는 낮아지게 된다.
스위치(SW)는 인쇄회로기판(200) 상에 구비되며 가열 부재(210) 및 배터리(220)의 전기적 연결을 온오프하는 구성으로서, 스위치(SW)가 턴-온되면 배터리(220)에 충전된 전력을 가열 부재(210)로 공급하게 된다.
여기서, 스위치(SW)는 반도체 소자로서 칩 형태의 트랜지스터로 이루어져 인쇄회로기판(200) 상에 부착될 수 있다. 예컨대, 트랜지스터는 인쇄회로기판(200) 상의 회로 패턴과 납땜을 통해 연결될 수 있다.
한편, 밸브 물질을 완전히 용융하는데 필요한 가열 부재(210)의 발열 온도는 밸브 물질의 종류에 따라 달라진다. 그리고, 가열 부재(210)가 밸브 물질을 완전히 용융하는데 필요한 발열 온도로 발열되도록 설정되어 있다 하더라도, 가열부(200)가 회전함에 따라 가열 부재(210)의 발열 온도가 낮아져 밸브 물질을 완전히 용융시키지 못할 수도 있다. 더욱이, 가열부(200)의 회전 속도에 따라 발열 온도 변동량은 달라지기 때문에, 밸브(170)의 정밀한 제어를 위해서는 위와 같은 변수들을 고려할 필요가 있다.
이를 위해, 제어부(230)는, 밸브(170)를 이루는 물질의 종류 또는 몸체부(100) 및 가열부(200)의 회전 속도에 따라 발열 소자에 인가되는 전류 또는 전압 값을 제어한다.
구체적으로, 제어부(230)는, 밸브 물질의 용융점이 높을수록 발열 소자에 인가되는 전류 또는 전압 값을 크게 제어하고, 밸브 물질의 용융점이 낮을수록 발열 소자에 인가되는 전류 또는 전압 값을 작게 제어할 수 있다.
또한, 제어부(230)는 가열부(200)의 회전 속도에 따라 달라지는 발열 온도 변동량을 미리 설정 및 저장하고 있다가 가열부(200)의 회전 속도 및 발열 온도 변동량에 따라 발열 소자에 인가되는 전류 또는 전압 값을 제어할 수 있다. 예컨대, 가열부(200)의 회전 속도가 빠를수록 발열 소자에 인가되는 전류 또는 전압 값을 크게 제어하고, 가열부(200)의 회전 속도가 느릴수록 발열 소자에 인가되는 전류 또는 전압 값을 작게 제어할 수 있다.
이를 통해, 본 발명의 실시예에 따른 원심 밸브 제어 장치는 가열 부재(210)가 밸브 물질을 완전히 용융시킬 수 있도록 함으로써, 밸브(170)를 정밀하게 제어할 수 있도록 할 수 있다.
제어부(230)는 스위치(SW)의 온오프를 제어할 수 있다. 즉, 제어부(230)는 미리 설정된 타이밍에 스위치(SW)를 턴-온하여 배터리(220)에 충전된 전력을 가열 부재(210)에 공급시키고, 가열 부재(210)가 밸브 물질을 완전히 용융시킬 수 있는 용융 시간을 미리 설정하여 상기 용융 시간 경과 후 스위치(SW)를 턴-오프하여 가열 부재(210)에 공급되는 전력을 차단할 수 있다
한편, 밸브 물질을 완전히 용융하는데 필요한 용융 시간은 밸브 물질의 종류에 따라 달라진다. 그리고, 가열 부재(210)가 밸브 물질을 완전히 용융하는데 필요한 용융 시간으로 발열되도록 설정되어 있다 하더라도, 가열부(200)가 회전함에 따라 가열 부재(210)의 발열 온도가 낮아져 용융 시간 동안 밸브 물질을 완전히 용융시키지 못할 수도 있다. 더욱이, 가열부(200)의 회전 속도에 따라 발열 온도 변동량은 달라지기 때문에, 밸브(170)의 정밀한 제어를 위해서는 위와 같은 변수들을 고려할 필요가 있다.
이를 위해, 제어부(230)는, 밸브(170)를 이루는 물질의 종류 또는 몸체부(100) 및 가열부(200)의 회전 속도에 따라 스위치(SW)의 온오프를 제어한다.
구체적으로, 제어부(230)는, 밸브 물질의 용융점이 높을수록 스위치(SW)가 턴-온된 후 턴-오프되기 까지의 용융 시간을 크게 제어하고, 밸브 물질의 용융점이 낮을수록 상기 용융 시간을 작게 제어할 수 있다.
또한, 제어부(230)는 가열부(200)의 회전 속도에 따라 달라지는 발열 온도 변동량을 미리 설정 및 저장하고 있다가 가열부(200)의 회전 속도 및 발열 온도 변동량에 따라 스위치(SW)가 턴-온된 후 턴-오프되기 까지의 용융 시간을 제어할 수 있다. 예컨대, 가열부(200)의 회전 속도가 빠를수록 상기 용융 시간을 크게 제어하고, 가열부(200)의 회전 속도가 느릴수록 상기 용융 시간을 작게 제어할 수 있다.
이를 통해, 본 발명의 실시예에 따른 원심 밸브 제어 장치는 가열 부재(210)가 밸브 물질을 완전히 용융시킬 수 있도록 함으로써, 밸브(170)를 정밀하게 제어할 수 있도록 할 수 있다.
제어부(230)는 가열부(200)에 구비되거나 외부에 구비될 수 있다. 즉, 제어부(230)는, 칩 형태로 이루어져 인쇄회로기판(200)에 부착됨으로써 가열 부재(210) 또는 스위치(SW)를 직접 제어하거나, 외부 시스템에 구비되어 통신을 통해 가열 부재(210) 또는 스위치(SW)를 원격 제어할 수 있다.
통신부(240)는, 가열부(200)에 구비되며 외부와 통신하여 제어부(230)에 제어 신호를 인가한다.
여기서, 통신부(240)는 외부 시스템과 통신을 통해 제어 신호(CS)를 인가 받고 이 제어 신호(CS)를 다시 제어부(230)로 인가하여 가열 부재(210) 또는 스위치(SW)를 제어할 수 있도록 한다.
전술한 본 발명의 실시예에 따른 원심 밸브 제어 장치에 따르면, 가열 부재(210)를 밸브(170)에 대응하는 위치에 구비하고 원심 밸브 제어 장치의 회전 중에도 그 위치를 고정시킴으로써, 가열 부재(210)가 정확한 위치에서 밸브 물질을 용융시킬 수 있도록 하여, 밸브(170)를 정밀하게 제어할 수 있다.
또한, 본 발명의 실시예에 따른 원심 밸브 제어 장치에 따르면, 밸브 물질의 종류 및 원심 밸브 제어 장치의 회전 속도를 고려하여 스위치(SW) 및 가열 부재(210)를 제어함으로써, 가열 부재(210)가 밸브 물질을 완전히 용융시킬 수 있도록 하여, 밸브(170)를 정밀하게 제어할 수 있다.
또한, 본 발명의 실시예에 따른 원심 밸브 제어 장치에 따르면, 가열부(200) 상에 배치될 수 있는 배터리(220) 및 다른 부품들을 대칭적으로 배치함으로써, 원심 밸브 제어 장치가 회전 중 몸체부(100) 전면에 작용하는 원심력의 균형을 유지할 수 있고, 원심력이 어느 한쪽으로 치우쳐 발생하는 소음 및 원심 밸브 제어 장치의 손상을 방지할 수 있다.
또한, 본 발명의 실시예에 따른 원심 밸브 제어 장치에 따르면, 밸브(170) 및 가열 부재(210) 사이에 열전달 부재(175)를 배치함으로써, 가열 부재(210)에 의해 발생된 열을 가열 부재(210) 하부의 밸브(170)로 효과적으로 전달하여 밸브 물질을 용이하게 용융시킬 수 있다.
본 명세서에서 설명되는 실시예와 첨부된 도면은 본 발명에 포함되는 기술적 사상의 일부를 예시적으로 설명하는 것에 불과하다. 따라서 본 명세서에 개시된 실시예들은 본 발명의 기술적 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이므로, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것이 아님은 자명하다. 본 발명의 명세서 및 도면에 포함된 기술적 사상의 범위 내에서 당해 기술분야에 있어서의 통상의 지식을 가진 자가 용이하게 유추할 수 있는 변형 예와 구체적인 실시예는 모두 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명에 따른 원심 밸브 장치는 소량의 유체를 조작하여 생물학적 또는 화학적인 반응을 수행하는데 사용되는 장치 등 다양한 분야에 이용될 수 있다.

Claims (23)

  1. 챔버 및 상기 챔버와 연결되는 채널을 구비하는 몸체 및 상기 채널을 개폐하는 밸브를 구비하는 몸체부;
    상기 몸체 상에 결합되고, 상기 밸브에 대응되는 위치에 배치되는 가열 부재를 구비하는 가열부; 및
    상기 몸체부 및 상기 가열부를 함께 회전시키는 회전 구동부를 포함하고,
    상기 밸브는
    상기 몸체부 및 상기 가열부가 함께 회전하는 동안 상기 가열 부재에 의해 상기 채널을 개폐하도록 형성되는
    원심 밸브 제어 장치.
  2. 제 1 항에 있어서,
    상기 몸체는 소정의 높이를 갖는 통으로 형성되고,
    상기 가열부는 기판으로 형성되는
    원심 밸브 제어 장치.
  3. 제 1 항에 있어서,
    상기 챔버 및 상기 채널은 상기 몸체 내부에 구비되는
    원심 밸브 제어 장치.
  4. 제 1 항에 있어서,
    상기 밸브는 상기 몸체 내부에 구비되고,
    상기 가열 부재는 상기 가열부의 하부에 구비되는
    원심 밸브 제어 장치.
  5. 제 1 항에 있어서,
    상기 가열 부재에 전력을 공급하는 배터리를 더 포함하는
    원심 밸브 제어 장치.
  6. 제 1 항에 있어서,
    상기 몸체에는 상기 채널 및 상기 채널에 형성된 밸브가 복수 개 구비되며, 상기 가열부에는 상기 밸브에 대응되는 상기 가열 부재가 구비되는
    원심 밸브 제어 장치.
  7. 제 5 항에 있어서,
    상기 배터리는 상기 가열부에 구비된 하나 이상의 상기 가열 부재에 전력을 공급할 수 있도록 형성되는
    원심 밸브 제어 장치.
  8. 제 5 항에 있어서,
    상기 배터리는 상기 가열부 상의 중심에 배치되는
    원심 밸브 제어 장치.
  9. 제 5 항에 있어서,
    상기 배터리는 상기 가열부 상에 복수 개로 구비되며, 상기 복수 개의 배터리는 대칭적으로 배치되는
    원심 밸브 제어 장치.
  10. 제 1 항에 있어서,
    상기 회전 구동부는
    상기 몸체 및 상기 가열부의 회전 중심에 결합되는 회전축;
    상기 회전축을 회전시키기 위한 구동 모터 및
    상기 구동 모터의 구동을 제어하기 위한 제어기를 포함하는
    원심 밸브 제어 장치.
  11. 제 1 항에 있어서,
    상기 가열 부재는 발열 소자로 이루어지며,
    상기 발열 소자는 상기 가열부의 하부에 형성된 홀 내부에 구비되는
    원심 밸브 제어 장치.
  12. 제 1 항에 있어서,
    상기 밸브 및 상기 가열 부재 사이에 구비되는 열전달 부재를 더 포함하는
    원심 밸브 제어 장치.
  13. 제 12 항에 있어서,
    상기 열전달 부재는
    에폭시, 실리콘, 우레탄 및 아크릴레이트 중 적어도 하나를 포함하는 매트릭스에 다이아몬드, 실버, 알루미늄 옥사이드, 보론 나이트라이드, 징크 옥사이드 및 알루미늄 나이트라이드 중 적어도 하나가 포함된 재료로 이루어지는
    원심 밸브 제어 장치.
  14. 제 1 항에 있어서,
    상기 밸브는
    상기 가열 부재의 가열에 의하여 용융될 수 있는 상전이 물질로 이루어지는
    원심 밸브 제어 장치.
  15. 제 11 항에 있어서,
    상기 발열 소자는 저항으로 이루어지고
    상기 저항에 인가되는 전류 또는 전압을 제어하는 제어부를 더 포함하는
    원심 밸브 제어 장치.
  16. 제 15 항에 있어서,
    상기 제어부는
    상기 밸브를 이루는 물질의 종류 또는 상기 몸체부 및 가열부의 회전 속도에 따라 상기 저항에 인가되는 전류 또는 전압을 제어하는
    원심 밸브 제어 장치.
  17. 제 5 항에 있어서,
    상기 가열 부재 및 상기 배터리의 전기적 연결을 온오프하는 스위치를 더 포함하는
    원심 밸브 제어 장치.
  18. 제 1 항에 있어서,
    상기 가열부를 상기 몸체부 상에 고정시키는 고정 수단을 더 포함하는
    원심 밸브 제어 장치.
  19. 제 18 항에 있어서,
    상기 고정 수단은
    상기 몸체부 및 상기 가열부의 외측 또는 중앙 중 적어도 하나에 구비되는 고정 부재를 포함하는
    원심 밸브 제어 장치.
  20. 제 18 항에 있어서,
    상기 고정 수단은 상기 몸체부에 형성된 홈 및 상기 홈에 끼움 결합 가능하도록 상기 가열부에 형성된 돌기를 포함하는
    원심 밸브 제어 장치.
  21. 제 1 항에 있어서,
    상기 가열부는
    필름 형태 또는 박막형의 유연 소자로 형성되는
    원심 밸브 제어 장치.
  22. 제 21 항에 있어서,
    상기 유연 소자 하부면에는 점착층이 형성되고
    상기 가열부는 상기 점착층을 통해 상기 몸체부 상에 고정되는
    원심 밸브 제어 장치.
  23. 제 15 항에 있어서,
    상기 가열부 상에 구비되며 외부와 통신하여 상기 제어부에 제어 신호를 인가하는 통신부를 더 포함하는
    원심 밸브 제어 장치.
PCT/KR2019/008954 2018-07-20 2019-07-19 원심 밸브 제어 장치 WO2020017926A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19838086.7A EP3825808A4 (en) 2018-07-20 2019-07-19 CENTRIFUGAL VALVE CONTROL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0084839 2018-07-20
KR1020180084839A KR20200009859A (ko) 2018-07-20 2018-07-20 원심 밸브 제어 장치

Publications (1)

Publication Number Publication Date
WO2020017926A1 true WO2020017926A1 (ko) 2020-01-23

Family

ID=69162882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008954 WO2020017926A1 (ko) 2018-07-20 2019-07-19 원심 밸브 제어 장치

Country Status (4)

Country Link
US (1) US11035497B2 (ko)
EP (1) EP3825808A4 (ko)
KR (1) KR20200009859A (ko)
WO (1) WO2020017926A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050130177A1 (en) * 2003-12-12 2005-06-16 3M Innovative Properties Company Variable valve apparatus and methods
WO2006035800A1 (ja) * 2004-09-30 2006-04-06 Arkray, Inc. 薄膜ヒータおよび分析用具
KR20110048673A (ko) * 2009-11-03 2011-05-12 삼성전자주식회사 밸브 유닛과 이를 구비한 미세유동장치 및 밸브 유닛의 구동방법
KR20110108857A (ko) * 2010-03-30 2011-10-06 한국과학기술원 회전 pcr 칩, 회전 rna 전처리 칩 및 이를 이용한 rna전처리 방법, 이들을 포함하는 회전 rt-pcr 칩, 이를 이용한 회전 rt-pcr 방법
KR20140055528A (ko) * 2012-10-31 2014-05-09 삼성전자주식회사 미세유동장치, 미세유동시스템 및 미세유동 검사장치의 제어방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503331A (ja) * 1995-12-05 2002-01-29 ガメラ バイオサイエンス コーポレイション 機内に搭載された情報科学を備えた超微量液体素子工学システムにおいて液体移動を推進するために求心性加速を使用するための装置及び方法
JP3356784B2 (ja) * 1997-02-28 2002-12-16 バースタイン テクノロジーズ,インコーポレイティド 光ディスク、及び試料の光学分析を実施するための方法
WO1998053311A2 (en) * 1997-05-23 1998-11-26 Gamera Bioscience Corporation Devices and methods for using centripetal acceleration to drive fluid movement in a microfluidics system
US6632399B1 (en) * 1998-05-22 2003-10-14 Tecan Trading Ag Devices and methods for using centripetal acceleration to drive fluid movement in a microfluidics system for performing biological fluid assays
US6706519B1 (en) * 1999-06-22 2004-03-16 Tecan Trading Ag Devices and methods for the performance of miniaturized in vitro amplification assays
EP1654066B1 (en) * 2003-07-31 2014-11-12 Handylab, Inc. Processing particle-containing samples
JP2008542743A (ja) * 2005-06-03 2008-11-27 スピンエックス インコーポレイテッド 流体のプログラム可能な微小スケール操作のための計量計
US8951779B2 (en) * 2005-12-21 2015-02-10 Samsung Electronics Co., Ltd. Bio memory disc and bio memory disc drive apparatus, and assay method using the same
KR100763922B1 (ko) 2006-04-04 2007-10-05 삼성전자주식회사 밸브 유닛 및 이를 구비한 장치
WO2009066897A2 (en) * 2007-11-22 2009-05-28 Jae Chern Yoo Thin film valve device and its controlling apparatus
US9096823B1 (en) * 2010-08-31 2015-08-04 Sandia Corporation Microfluidic device for acoustic cell lysis
CN104657400B (zh) * 2013-11-19 2018-02-02 光宝科技股份有限公司 离心分析系统以及其分析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050130177A1 (en) * 2003-12-12 2005-06-16 3M Innovative Properties Company Variable valve apparatus and methods
WO2006035800A1 (ja) * 2004-09-30 2006-04-06 Arkray, Inc. 薄膜ヒータおよび分析用具
KR20110048673A (ko) * 2009-11-03 2011-05-12 삼성전자주식회사 밸브 유닛과 이를 구비한 미세유동장치 및 밸브 유닛의 구동방법
KR20110108857A (ko) * 2010-03-30 2011-10-06 한국과학기술원 회전 pcr 칩, 회전 rna 전처리 칩 및 이를 이용한 rna전처리 방법, 이들을 포함하는 회전 rt-pcr 칩, 이를 이용한 회전 rt-pcr 방법
KR20140055528A (ko) * 2012-10-31 2014-05-09 삼성전자주식회사 미세유동장치, 미세유동시스템 및 미세유동 검사장치의 제어방법

Also Published As

Publication number Publication date
US20200025312A1 (en) 2020-01-23
US11035497B2 (en) 2021-06-15
EP3825808A1 (en) 2021-05-26
KR20200009859A (ko) 2020-01-30
EP3825808A4 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
US10619191B2 (en) Systems and methods for thermal actuation of microfluidic devices
WO2014104830A1 (ko) 온도 민감 폴리머 합성체를 이용한 핵산 증폭 디스크 장치 및 이를 이용한 분석 방법
WO2010038952A2 (en) Centrifugal-based microfluid apparatus, method of fabricationg the same, and method of testing samples using the microfluidic apparatus
WO2011055942A2 (en) Valve unit, microfluidic device having the same, and method of driving the valve unit
CN111514948B (zh) 微流控芯片和检测系统
EP1192006A1 (en) DEVICES AND METHODS FOR THE PERFORMANCE OF MINIATURIZED i IN VITRO /i AMPLIFICATION ASSAYS
JP7169345B2 (ja) シリコンセンサと一体型の注入形成型のマイクロ流体/流体カートリッジ
RU2333622C1 (ru) Способы и система теплового подсоединения и отсоединения компонентов для поверхностного монтажа
JP2006527825A (ja) 電動開放式マイクロ流体用バルブ
WO2020017926A1 (ko) 원심 밸브 제어 장치
WO2020055043A1 (ko) 증기화기 및 이를 구비한 에어로졸 생성 장치
JP5039918B2 (ja) 電子部品の実装装置及び実装方法
US20150244932A1 (en) Test apparatus and control method thereof
KR102332987B1 (ko) 원심 밸브 제어 장치
WO2020106004A1 (ko) 박막을 이용하여 분리 가능한 구조를 갖는 마이크로 플루이딕 디바이스
US20040031558A1 (en) Method for the connection of plastic pieces
US6190492B1 (en) Direct nozzle plate to chip attachment
WO2016076551A1 (ko) 미세유체 칩의 실링 장치 및 그 동작 방법
CA2730272C (en) Weatherproof switch for indoor and outdoor information clusters and function switches
US20200312811A1 (en) Chip bonding apparatus, a system for replacing bonding tool assembly, and a method for fabricating a semiconductor device using the chip bonding apparatus
WO2019151574A1 (ko) 마이크로 소자를 타겟 오브젝트에 전사하는 방법 및 장치
WO2017204512A1 (ko) 피씨알모듈
WO2016153234A1 (ko) 미세유동 장치 및 이를 포함하는 시료 분석장치
CN112786461A (zh) 树脂保护部件形成装置
JP7295041B2 (ja) 可撓性接続部を有するフローセル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019838086

Country of ref document: EP

Effective date: 20210222