WO2020017693A1 - Apparatus for automatically determining failure type of transformer - Google Patents

Apparatus for automatically determining failure type of transformer Download PDF

Info

Publication number
WO2020017693A1
WO2020017693A1 PCT/KR2018/011580 KR2018011580W WO2020017693A1 WO 2020017693 A1 WO2020017693 A1 WO 2020017693A1 KR 2018011580 W KR2018011580 W KR 2018011580W WO 2020017693 A1 WO2020017693 A1 WO 2020017693A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
value
winding
insulation resistance
resistance
Prior art date
Application number
PCT/KR2018/011580
Other languages
French (fr)
Korean (ko)
Inventor
박철배
진승환
박상서
김재한
홍원상
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2020017693A1 publication Critical patent/WO2020017693A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06705Apparatus for holding or moving single probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Definitions

  • the present invention relates to a device for automatically determining a failure type of a transformer, and more particularly, in order to accurately analyze the cause of a failure of a transformer, by using a probe for removing an oxide film on the surface of a transformer terminal, a winding resistance,
  • the present invention relates to a device for automatically determining a failure type of a transformer, which measures a turn ratio and an insulation resistance, and makes it possible to accurately determine a state of a transformer using the measured values.
  • the reason why the normal product (i.e., normal transformer) is mistaken for failure is not caused by the transformer itself, but by external factors (e.g. temporary overcurrent due to short circuit on the load side, external contact, under rated protection device fuse, etc.). Occurs when the COS (Cut Out Switch), which is a protective device of the transformer, is simply opened (Off), which is caused by the failure of the measuring device to determine whether the transformer has failed, inadequate terminal connection of the measuring device, etc. The main reason is the error of the device or the lack of function of the existing measuring device.
  • COS Cut Out Switch
  • TLC Transformer Last Check, a measuring device used in the field of transformers
  • TLC and other equipment are used repeatedly.
  • TLC and other equipment or measuring devices and measuring equipments
  • Table 3 summarizes the functional limitations of conventional measuring equipment (eg TLC).
  • FIG. 1 is an exemplary view showing photographs taken of primary and secondary terminals in which an oxide film is formed in a general transformer.
  • TR Transformer
  • an object of the present invention is to provide a device for automatically determining a failure type of a transformer, which measures winding resistance, turn ratio, and insulation resistance, and accurately determines a state of a transformer using the measured values.
  • An apparatus for automatically identifying a failure type of a transformer includes a plurality of probes (first and second probes) contacting a plurality of terminals (primary and secondary terminals) of a transformer TR, A measuring unit which removes or penetrates the oxide film formed on each terminal and contacts and is connected to the lower layer of the oxide film; And measuring the primary and secondary winding resistance, the winding ratio, and the insulation resistance in the transformer through the measuring unit, and self-diagnosing faulty wiring, equipment error, internal circuit abnormality, and the like through the self-diagnosis. And a control unit for storing the result and the measured result and correcting the temperature, and comprehensively determining the state of the transformer based on the measured values and outputting the result through a report or a display screen.
  • the probe using a crocodile clip-type head portion bite the clamp terminal of the transformer, the user holding the handle rotates from side to side, each terminal using a portion formed to protrude sharply like teeth formed on the crocodile clip-type head It is characterized in that it is formed to remove the oxide film on the surface.
  • the film removal tip formed at the inlet side of the head removes the oxide film of the clamp terminal, and in this state, When placed, the probe is formed to be in contact with the portion from which the oxide film has been removed.
  • the control unit when the power of the automatic failure type determination device of the transformer is turned on, performs a self-diagnosis and calibration, and if the abnormality as a result of the self-diagnosis and calibration, and outputs an alarm to the user , If it is normal, it displays normal to the user, and if the user selects the automatic mode according to the usage environment among the automatic or manual check mode, it executes the automatic mode to automatically measure the status measurement value of the transformer to automatically determine whether there is a failure.
  • the user selects the manual mode, the user may receive an instruction of a measurement operation on the state measurement value and determine whether there is a failure based on the corresponding measurement value.
  • the controller selects the transformer capacity, measures the winding resistance according to the capacity of the transformer, then measures the winding ratio and the insulation resistance, and displays the measured values on the display screen. And analyzing the measured values at the same time to determine whether the winding resistance measurement value is in the set normal range, whether the number of turns ratio measurement value is in the set normal range, and whether the insulation resistance is in the set normal range or not. It is characterized by displaying on the display screen.
  • control unit since the resistance value varies depending on the winding length when measuring the winding resistance of the transformer, by using the following equation 1 to determine whether the winding resistance is normalized,
  • the controller initializes the operating power source and the set measurement variable, turns on the primary side measurement operating power source and the secondary side measurement operating power source for measuring the winding ratio, and then measures and outputs the AC output value and the AC input value. Calculate the winding ratio using the measured value, and apply the AC input power to the primary winding and measure the voltage output to the secondary side when the winding ratio is measured, using the following Equation 2 and Equation 3 below. It is characterized by calculating the.
  • N is the number of turns
  • V is the voltage
  • I is the current
  • control unit stores the calculated winding ratio in the storage unit when the calculated winding ratio is within a specified error range, and ends or restarts the measurement when the calculated winding ratio is out of the error range. .
  • the control unit to measure the insulation resistance, turn on the operating power of the measuring circuit unit, generates and applies a DC 1kV power supply (HV), measures the current temperature, and flows through the main insulation of the transformer Calculate the insulation resistance value by measuring the leakage current (leakage_current), but apply “Insulation Resistance * (1+ (1 / (234.5 + Temperature) * (Temperature-25.0))” to compensate for the insulation resistance. It characterized in that to perform.
  • HV DC 1kV power supply
  • the controller checks whether the insulation resistance value for performing the temperature compensation maintains a value within a preset error range for a predetermined time, and as a result of the check, the insulation resistance value for performing the temperature compensation is When the value within the preset error range is maintained for a predetermined time, the insulation resistance value for performing the temperature compensation is stored in a storage unit, and the insulation resistance value for performing the temperature compensation is a value within the preset error range for a predetermined time. If it is not maintained, the check process is repeated for a specified loop time, and if the insulation resistance value for which the temperature compensation is performed after the specified loop time does not maintain a value within a preset error range, it is treated as an error. do.
  • control unit in order to determine the final state of the transformer by using the measured value, and determines the state for the winding resistance measurement value, the winding ratio measurement value, and the insulation resistance measurement value, one of the measured values If it is bad, the transformer is finally determined to be in a bad state, and if all of the measured values are normal, the transformer is finally determined to be in a normal state.
  • the present invention measures the winding resistance, turn ratio, and insulation resistance by using a probe (Probe) to remove the oxide film on the surface of the transformer terminal for accurate failure analysis of the cause of the transformer failure Then, the measured values can be used to accurately determine the state of the transformer.
  • a probe Probe
  • FIG. 1 is an exemplary view showing a picture of the primary and secondary terminals in which the oxide film is formed in a typical transformer.
  • Figure 2 is an exemplary view showing a schematic configuration of a failure type automatic determination device of a transformer according to an embodiment of the present invention.
  • FIG. 3 is an exemplary view showing a photograph of the shapes of a plurality of probes in FIG. 2.
  • FIG. 4 is an exemplary view showing a probe having a rotatable tooth in FIG. 2.
  • FIG. 5 is an exemplary view shown to describe a schematic operation of a controller in FIG. 2.
  • FIG. 6 is a flowchart illustrating an operation for diagnosing a transformer of the control unit in FIG. 2.
  • FIG. 7 is a flowchart for explaining a method of executing an automatic mode in FIG. 6.
  • FIG. 8 is a flowchart illustrating a method of selecting winding resistance for each capacity of a transformer in FIG. 7.
  • FIG. 9 is a flowchart for explaining a method of executing a passive mode in FIG. 6.
  • FIG. 10 is a flowchart for schematically explaining a method of measuring winding resistance in FIG. 7.
  • FIG. 11 is a flowchart for explaining a more specific method of determining winding resistance in FIG. 10.
  • FIG. 12 is a flowchart for explaining a turn ratio measurement method in FIG. 7.
  • FIG. 12 is a flowchart for explaining a turn ratio measurement method in FIG. 7.
  • FIG. 13 is a flowchart for explaining a method for measuring insulation resistance in FIG.
  • FIG. 14 is a flowchart for describing a method of comprehensively determining a state of a transformer using measured values in FIG. 7.
  • FIG. 14 is a flowchart for describing a method of comprehensively determining a state of a transformer using measured values in FIG. 7.
  • 15 is an exemplary view showing a field measurement method and a measurement result screen using a failure type automatic determination device of a transformer according to the present embodiment.
  • Figure 2 is an exemplary view showing a schematic configuration of a failure type automatic determination device of a transformer according to an embodiment of the present invention.
  • the apparatus for automatically determining a failure type of a transformer includes a measuring unit 100, a control unit 200, an output unit 300, and a storage unit 400.
  • the measurement unit 100 includes a plurality of probes (first and second probes) 110 and 120 contacting a plurality of terminals (eg, primary terminals and secondary terminals) of the transformer TR,
  • the oxide film formed on the terminals (eg, primary and secondary terminals) is removed or drilled through and contacted and fixed (connected) to the bottom of the oxide layer.
  • terminals eg, primary terminals and secondary terminals to which the plurality of probes (first and second probes) 110 and 120 are in contact and fixed (connected), respectively, are not necessarily fixed and may be interchanged with each other. Pay attention to
  • FIG. 3 is an exemplary view showing photographs photographing shapes of a plurality of probes in FIG. 2.
  • 3 (a) is an exemplary view showing a first probe 110 connected to the primary terminal of the transformer TR
  • Figure 3 (b) is a second terminal connected to the secondary terminal of the transformer (TR) 2 is an exemplary view showing the probe 120.
  • the clamp terminal used for the transformer TR typically uses a bronze casting of KS D 6024 or a forging anti-static material of KS D 5101. Therefore, an oxide film is formed on the surface of the terminal when exposed to the external environment for a long time.
  • the oxide film is an insulating component, and forms a high resistance between the terminal and the measurement probe to display a value higher than the prescribed winding resistance, which causes a diagnostic error of the transformer as if the winding was disconnected.
  • the measurement unit 100 is made to penetrate or remove the oxide layer and to contact the lower portion of the oxide layer in order to prevent the error caused by the oxide layer.
  • the first probe 110 bites a clamp terminal of a transformer using an alligator clip type head, and a user who grabs a handle rotates left and right, so that teeth formed on the alligator clip type head (like teeth). Sharply protruded and interlocked portions) to remove (or pierce) the oxide film on the surface of the terminal.
  • the second probe 120 has a pointed probe 123 installed inside the head, and secures the clamp with a spring therein so that the user holding the handle rotates left and right.
  • the probe 123 removes (or drills) the oxide film on the surface of the terminal like a tooth. More specifically, when the user pushes the lever 122 of the second probe 120 and pushes it into the clamp terminal of the transformer, the film removing tip 121 formed at the inlet side of the head removes the oxide film of the clamp terminal. In this state, when the lever 122 is released, the contact terminal (that is, the probe) 123 may be in contact with the portion where the oxide film is removed.
  • the measurement unit 100 may include a probe in the form that can penetrate the oxide layer by rotating the handle to protrude teeth.
  • 4 is an exemplary view showing a probe having a rotatable tooth in FIG. 2.
  • the essential elements to be checked before and after the installation of the transformer are the primary and secondary winding resistance, the number of turns, and the insulation resistance measurement to check the main insulation performance of the transformer.
  • the most commonly used measuring element is winding resistance.
  • the resistance varies because the windings vary in length and thickness, depending on the capacity of the transformer.
  • the failure pattern is also changed. For example, the winding resistance corresponding to the partial insulation breakdown is measured, but the turn ratio is sometimes changed due to the short circuit between turns or between layers. Therefore, the condition of the transformer should not be determined using only one measurement of the winding resistance.
  • control unit 200 applies an algorithm for measuring and determining each of the essential inspection elements and finally combining the results to increase the reliability of the transformer inspection.
  • FIG. 5 is an exemplary view shown to describe a schematic operation of the controller in FIG. 2.
  • the probes 110 and 120 having an oxide film removing function formed on the clamp terminals of the transformer are connected to four clamp terminals of the transformer, respectively (S111), and the controller 200 is connected to the transformer.
  • Measure essential elements e.g. primary and secondary winding resistance, turns ratio, insulation resistance, etc.
  • the control unit 200 records and corrects the measured result (measured value) and makes a comprehensive determination based on the measured values, and stores the result of the determination in the storage unit 400 (S113). ).
  • the controller 200 may create, store, and output the stored information as described above in a form desired by the user (S114).
  • FIG. 6 is a flowchart illustrating an operation for diagnosing a transformer of the controller in FIG. 2.
  • the controller 200 starts an algorithm (S122) and self-diagnoses (Self). Check) and calibration (S123).
  • the control unit 200 sets the automatic mode (S129) and the corresponding automatic mode It executes (S130).
  • the controller 200 sets the manual mode (S127) and executes the corresponding manual mode (S128).
  • FIG. 7 is a flowchart for describing a method of executing an automatic mode in FIG. 6, and FIG. 8 is a flowchart for explaining a method for selecting winding resistance for each capacity of a transformer in FIG. 7.
  • 6 is a flowchart for describing a method of executing a manual mode in FIG. 6.
  • the controller 200 selects a transformer capacity (S141).
  • the capacity selection of the transformer is a function commonly applied to the automatic mode and the manual mode, and the transformer capacity selection is because the normal range of the resistance of the primary winding is determined as shown in Table 4 below.
  • control unit 200 measures the winding resistance (that is, the primary winding resistance) according to the capacity of the transformer (S142), measures the number of turns (S143), and also measures the insulation resistance (S144). Measurement values are displayed (S145), and the measurement data are analyzed (S146).
  • the controller 200 compares and analyzes whether the primary winding resistance measurement value is within a normal range (see Table 4). Similarly, the controller 200 analyzes the number of turns ratio and the insulation resistance measurement value to indicate whether it is defective or normal (S147 and S148), and stores the data in the storage unit 400 (S149).
  • the controller 200 or the user selects a corresponding capacity if the first capacity (for example, 20 KVA) is determined according to an automatic or manual mode. (S162), if the second dose (for example, 30 KVA) (YES in S162), select the corresponding dose (S164), if the third dose (for example 50KVA) (YES in S165), select the corresponding dose (S166), If the fourth dose (eg, 75 KVA) (YES in S167), select the corresponding dose (S168), and if the fifth dose (eg, 100 KVA) (YES in S169), select the corresponding dose (S170), and the sixth dose ( Example: 160KVA) (YES in S171) select the corresponding capacity (S172).
  • the user selects a transformer capacity through a user interface (not shown) (S151). After that, the user instructs to measure the winding resistance (S152), measures the number of turns (S153), and measures the insulation resistance (S154) to display the measured values (S155).
  • the manual mode may be referred to as a mode for instructing a measurement operation.
  • the winding resistance measurement method is described below.
  • the winding of the transformer is divided into primary and secondary, and the secondary winding has a small resistance (0.1 ⁇ ) and is very easy to measure because of the wide conductor cross-section and the short line leg.
  • the primary winding has a small cross-sectional area and a very long positive value, the resistance value fluctuates momentarily when the measurement is made, and the resistance value is stabilized only after a predetermined time elapses, so that the true value can be known.
  • FIG. 10 is a flowchart for schematically describing a winding resistance measuring method in FIG. 7, and FIG. 11 is a flowchart for explaining a more specific winding resistance determination algorithm (method) in FIG. 10.
  • the controller 200 measures the primary winding resistance and the secondary winding resistance of the transformer (S211 and S212) and calculates winding resistance values thereof (S213).
  • the calculation of the winding resistance value can be set by the user, and the average value is obtained by measuring the unit of measurement in ms.
  • the resistance value varies depending on the winding length when measuring the winding resistance, and converges when a predetermined time (for example, 20 seconds) has elapsed (S215).
  • the controller 200 waits for a predetermined time to elapse (NO in S214, and repeats S215), and then calculates a winding resistance determination algorithm (method) shown in Equation 1 below to calculate the measurement reference value of the resistance. By applying, it is determined whether the winding resistance is normalized (S214).
  • Equation 1 is a formula for obtaining a convergence value when measuring winding resistance, and calculating a rate of change of the measured value to recognize the final winding resistance measurement value.
  • the winding resistance measurement value determined as described above is stored in the storage unit 400 (S216).
  • FIG. 12 is a flowchart for explaining a turn ratio measurement method in FIG. 7.
  • the controller 200 initializes an operating power source and set measurement variables (S241 and S242). In addition, the controller 200 turns on the primary side measurement operation power and the secondary side operation power (S243, S244). In addition, the controller 200 measures and calculates an AC output value and an AC input value (S245 and S246). In addition, the control unit 200 calculates the winding ratio using the measured values of the S245 and S246 (S247).
  • the calculated winding ratio is stored in the storage unit 400 and then terminated (or restarted) (S249), and if the calculated winding ratio is outside the error range ( NO at S248) Exit (or restart) immediately. In this case, although not shown, an alarm may be output.
  • the distribution ratio (transformation ratio) of distribution class transformers used in Korean distribution lines is defined in KS C 4306 (2011) as shown in Table 5 below.
  • Tolerance means the allowable difference between the specified value and the test result.
  • step S247 For reference, the method of calculating the number of turns ratio (or winding ratio) in step S247 will be described in more detail.
  • an AC input power is applied to the primary winding and the voltage output to the secondary side is measured. Calculate the number of turns through and Equation 3.
  • Equation 2 is a general formula for calculating the transformer turn ratio
  • Equation 3 is a turn ratio measurement formula.
  • N is the number of turns
  • V is the voltage
  • I is the current
  • the calculated number of turns is compared with the value set in Table 5 (permissible difference), and the test is completed after the determination of the normal existence and the calculated value.
  • the insulation resistance is calculated by measuring the leakage current with DC 1kV applied in order to check the insulation performance of the main insulation inside the transformer, that is, insulation paper and oil.
  • the existing insulation resistance measuring instrument did not have a probe or a temperature correction circuit to remove the oxide film, the measurement value was inaccurate, making it difficult to determine the correct state of the transformer.
  • FIG. 13 is a flowchart illustrating a method of measuring insulation resistance in FIG. 7, and as shown in FIG. 13, in this embodiment, a temperature correction function may be added to accurately determine a state of a transformer.
  • control unit 200 turns on the operating power of the measurement circuit unit (not shown) to measure the insulation resistance (S261), and generates and applies a DC 1kV power source (HV) (S262 and S263). ).
  • HV DC 1kV power source
  • the temperature is measured to compensate for the insulation resistance (S264), and the insulation resistance value is calculated by measuring the leakage current (leakage_current) flowing through the main insulation of the transformer (S265).
  • controller 200 performs temperature compensation on the insulation resistance calculated in step S265 (S266).
  • insulation resistance * (1+ (1 / (234.5 + temperature) * (temperature-25.0)) may be applied.
  • the equation for temperature compensation can be calculated through repeated experiments and simulations.
  • the control unit ( 200 stores the insulation resistance value of the temperature compensation in the storage unit 400 (S268).
  • the insulation resistance value performing the temperature compensation does not maintain a value within a preset error range (eg 50 Kohm) for a predetermined time (eg 3 seconds) (No in S267), the designated loop time (eg 10 seconds). ) Repeats the steps S264 to S267 (S269), and the insulation resistance value for which the temperature compensation is performed does not maintain a value within a preset error range (for example, 50 Kohm) even after the specified loop time (for example, 10 seconds). If not (NO in S267), an error process is performed and it ends immediately (S270). In this case, although not shown in the drawing, an alarm may be output during error processing.
  • a preset error range eg 50 Kohm
  • the designated loop time eg 10 seconds.
  • FIG. 14 is a flowchart for describing a method of comprehensively determining a state of a transformer using measured values in FIG. 7.
  • control unit 200 measures winding resistance (S311), and loads the measured value stored in the storage unit 400 (S312).
  • the resistance that is, primary winding resistance
  • S313 the resultant value is output (S314).
  • controller 200 measures the number of turns (S315), loads the measured value stored in the storage unit 400 (S316), and compares the user set value or the KS standard (S317) with the result value. It outputs (S318).
  • control unit 200 measures the insulation resistance (S319), loads the measured value stored in the storage unit 400 (S320), and compares the user set value or the KS standard (S321) as a result.
  • the value is output (S322).
  • control unit 200 compares the state (eg, normal, abnormal) of the three result values (S323), and writes the final determination result as a report (S324) or outputs through the display screen (S325) ).
  • the final judgment is that if any one of the three measured values is bad, the final judgment is normal when all are normal (see FIG. 15C).
  • FIG. 15 is an exemplary view showing a field measurement method and a measurement result screen using a failure type automatic determination device of a transformer according to the present embodiment. As shown in FIG. Based on the measurement elements (winding resistance, winding ratio, and insulation resistance), the state of the transformer can be determined and self-diagnosis can be performed.
  • the measurement elements winding resistance, winding ratio, and insulation resistance
  • the probes 110 and 120 for removing the oxide film formed on the surface of the transformer and the measurement of the winding resistance, the winding ratio, and the insulation resistance, which are essential measurement elements, are performed at the same time.
  • the reason for this is that in the prior art, it is often judged that the normal is wrong due to the high resistance caused by the oxide film, or when it is measured only one value, the other value is overlooked and the error is normal.
  • existing equipment simply displays measured values, which can lead to human error that the user subjectively judges without the background knowledge of the transformer.
  • this embodiment has the effect of making the objective and accurate transformer state determination by eliminating the subjective judgment intervention of the user based on all measurement elements (winding resistance, winding ratio, and insulation resistance) when the transformer is diagnosed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

The present invention relates to an apparatus for automatically determining a failure type of a transformer, the apparatus comprising: a measurement unit including a plurality of probes (first and second probes) which are in contact with a plurality of terminals (primary terminal and secondary terminal) of a transformer (TR), respectively, and removing or penetrating an oxide film formed in each of the terminals to come into contact with the lower layer of the oxide film and be connected to same; and a control unit which measures primary and secondary wire wound resistances, a turn ratio, and an insulation resistance of the transformer by means of the measurement unit, self-diagnoses, through a self-diagnosis, whether wrong wire connection, an error of a device itself, or internal circuit abnormality occurs, and stores and temperature-corrects a result of the self-diagnosis and a result of the measurement so as to synthetically determine the state of the transformer on the basis of the measured values and thus output a result of the determination through a report or a display screen.

Description

변압기의 고장유형 자동 판별 장치Automatic Type of Failure Identification of Transformer
본 발명은 변압기의 고장유형 자동 판별 장치에 관한 것으로, 보다 상세하게는 변압기의 고장 원인에 대한 정확한 고장 분석을 위하여, 변압기 단자 표면의 산화 피막을 제거하는 프로브(Probe)를 이용하여, 권선저항, 권수비, 및 절연저항을 측정하고, 상기 측정값들을 이용하여 변압기의 상태를 정확히 판단할 수 있도록 하는, 변압기의 고장유형 자동 판별 장치에 관한 것이다.The present invention relates to a device for automatically determining a failure type of a transformer, and more particularly, in order to accurately analyze the cause of a failure of a transformer, by using a probe for removing an oxide film on the surface of a transformer terminal, a winding resistance, The present invention relates to a device for automatically determining a failure type of a transformer, which measures a turn ratio and an insulation resistance, and makes it possible to accurately determine a state of a transformer using the measured values.
최근 통계에 따르면, 배전용 변압기는 2017년 12월 기준 약 98만대가 설치 운전되고 있으며, 최근 5년간의 통계에 의하면 매년 설치수량의 약 1%인 9천대가 증가하고 있는 추세이다. 그리고 고장발생 대수는 약 5.76%인 6천대가 매년 발생되고 있으며 매년 증가하는 변압기 대수의 약 67%를 점유하고 있다. According to the latest statistics, about 980,000 units of distribution transformers have been installed and operated as of December 2017, and according to the statistics of the last five years, 9,000 units, or about 1% of the installed quantity, are increasing every year. In addition, the number of faults is about 5.76%, about 6,000 units are generated every year, accounting for about 67% of the number of transformers increasing every year.
이러한 변압기 고장(소손) 원인에 대한 정확한 고장 분석 결과, 요청 변압기의 약 38%가 고장 판정착오로 인해 정상 제품이 철거되고 있는 실정이다.As a result of an accurate failure analysis on the cause of the transformer failure (corrosion), about 38% of the requested transformers have been removed from normal products due to failure determination and error.
이와 같이 정상 제품(즉, 정상변압기)을 고장으로 오인 판정하는 이유는, 변압기 자체의 원인이 아닌, 외부적 요인(예 : 부하측 단락에 의한 일시적 과전류, 외물접촉, 보호장치 휴즈 정격미달 등)에 의해 변압기의 보호장치인 COS(Cut Out Switch)가 단순 개방 동작(Off)될 경우 발생하는데, 이는 변압기의 고장여부를 판정하는 측정장치의 신뢰도 미흡, 측정장치의 단자접속 부적합 등, 측정자(사용자)의 오류, 또는 기존 측정장치의 기능 부족 등이 주원인으로 작용한다.The reason why the normal product (i.e., normal transformer) is mistaken for failure is not caused by the transformer itself, but by external factors (e.g. temporary overcurrent due to short circuit on the load side, external contact, under rated protection device fuse, etc.). Occurs when the COS (Cut Out Switch), which is a protective device of the transformer, is simply opened (Off), which is caused by the failure of the measuring device to determine whether the transformer has failed, inadequate terminal connection of the measuring device, etc. The main reason is the error of the device or the lack of function of the existing measuring device.
상기와 같이 정상 제품을 고장으로 오인 판정하는 원인을 정리하면 아래의 표 1과 같다.A summary of the cause of the misidentification of a normal product as described above is shown in Table 1 below.
구 분division 구체적 사유Specific reason
진단자Diagnostic (측정자)(rater) * 변압기에 대한 충분한 배경지식 부족* 다양한 진단장비에 대한 이해 부족* 진단장비의 측정값에 대한 정확한 상태판단 지식부족* 측정(권선저항)시 장시간 소요 및 측정값의 변화에 대한 주관적 판단* Insufficient background knowledge of transformer * Insufficient understanding of various diagnostic equipments * Insufficient knowledge of accurate status determination of measured values of diagnostic equipment * Subjective judgment about long-term requirements and changes in measured values during measurement (winding resistance)
기존existing 측정장비measuring equipment (측정장치)(Measuring device) * 변압기 재질 및 구조 변화 반영하지 못함* 정호가한 판단을 위한 고가의 다양한 장비 필요* 측정값에 대한 환경요소(온도, 습도)에 대한 보정기능 없음* 일부고장형태(턴간 단락 등) 진단 부정확성(TLC11 Transformer Last Check : 변압기 분야에서 유일하고 사용하고 있는 점검장치) * 변압기 종합판단 측정장비 부재* No change in transformer material and structure * Expensive variety of equipment required for proper judgment * No correction function for environmental factors (temperature, humidity) for measured values * Some types of failure (turn-off short circuit, etc.) TLC 1 1 Transformer Last Check: The only check device used in the transformer field)
측정환경measurement environment * 변압기 구조에 대한 배경지식 부족* 변압기 용량별 권선저항이 상이하여 정확한 판단 안됨* 변압기 단자 부식(산화피막)으로 저항 측정 부정확성* Insufficient background knowledge on transformer structure * Inaccurate measurement due to different winding resistance by transformer capacity * Inaccurate resistance measurement due to transformer terminal corrosion (oxide film)
측정방법How to measure * 변압기 상태진단(장치)별 다양한 측정방법 및 판단기준* 변압기 측정 요소별 측정 방법, 위치 등 상이* Various measurement methods and judgment criteria by transformer status diagnosis (device) * Different measurement methods and positions by transformer measurement elements
종래의 변압기 진단이나 점검을 위해 사용하고 있는 장비는 TLC(Transformer Last Check, 변압기 분야에서 사용하고 있는 측정장치)로써, 이는 단순히 변압기 권선의 단선유무 및 절연저항만을 측정하여 변압기 상태 판정을 내리고 있다. Conventional equipment used for the diagnosis or inspection of transformer is TLC (Transformer Last Check, a measuring device used in the field of transformers), which simply determines whether the transformer winding is disconnected and insulation resistance to determine the transformer status.
따라서 실제 현장에서는 TLC의 부정확성 때문에 TLC를 비롯한 여러 장비(또는 측정장치, 측정장비)를 중복 사용하고 있으며, 이러한 변압기의 진단이나 점검 측면에서, 종래 사용 장비(또는 측정장치, 측정장비)의 기술적 한계점을 정리하면 아래의 표 2와 같다.Therefore, due to the inaccuracy of TLC in the field, TLC and other equipment (or measuring devices and measuring equipments) are used repeatedly.In terms of diagnosis or inspection of such transformers, technical limitations of conventionally used equipment (or measuring equipment and measuring equipment) Table 2 is summarized below.
구분division 기술 한계점Technical limitations
TLCTLC 권선 단락 및 단선 여부 측정 미흡- 피 시험변압기 측정대상별 측정기 물림단자 변경 수반- 권선저항 측정 불가(Tr 용량별 권선저항 상이- Turn간 단락 측정 불가권수비 측정 기능 부재- 권선의 단선(open) 또는 단락(short) 만을 점검- 권선 부분 절연파괴에 의한 턴수 변경 알수 없음- 턴선 또는 층간 단락시 변압기는 불량이여도 정상으로 판정함절연저항 측정(1kV DC)미흡- 온도보정 기능 부재로 측정신뢰도 저하부싱클램프 산화피막 형성시 측정오차 극심- 옥외에 장시간 사용으로 변압기 단자 표면 산화피막 형성됨- 측정기 물림단자 산화피막 제거기능 부재 Winding short circuit and disconnection whether measured Poor-under-test transformer measurement target-measuring satiety terminal changes accompanying-winding resistance measurable (Tr capacity per winding resistance phase-to-Turn paragraph measurable winding ratio measurements member-disconnection (open) or short-circuit of the winding ( short) only check-changing number of turns by winding portion breakdown unknown - teonseon or interlayer short circuit when the transformer is determined as a normal road, O poor also insulation resistance (1kV DC) poor-temperature calibration measurement reliability oxide reduced bushing clamped to member Measurement error when forming film-Extremely long periods of use in outdoor
종래의 측정장비(예 : TLC)가 지닌 기능적 한계성을 정리하면 표 3과 같다.Table 3 summarizes the functional limitations of conventional measuring equipment (eg TLC).
구분division 종래 장치의 한계점(문제점)Limitations (Problems) of Conventional Devices
전용장비Dedicated Equipment 권선 단선여부 장비(기능 극히 제한적임)Winding disconnection equipment (function extremely limited)
측정요소Measurement element ① 권선 단선 및 단락여부 ② 절연저항(온도보정 없음) ① Winding break or short circuit ② Insulation resistance (No temperature compensation)
측정 ProbeMeasure Probe 일반 악어클립(산화피칵 제거기능 없음)General alligator clip (no oxidation pick removal)
상태 판정 방법State judgment method 사람이 주관적 판단(구도의 배경지식 필요)Subjective judgment by person (requires background knowledge of composition)
자기 진단Self-diagnosis 없음none
기타 주요기능Other key features 측정요소별 개별 프로브(Probe) 결선Individual probe connection for each measuring element
상기와 같이 정상 변압기를 불량 변압기로 오인 판단하여 철거하는 원인을 정리하면 크게 3가지로 구분할 수 있다.As described above, if a normal transformer is misidentified as a bad transformer, the cause of dismantling can be classified into three types.
먼저, 변압기가 사용되는 환경적 특성상 외부에 장시간 노출되어 1차 및 2차 단자 부식, 즉, 산화피막 형성(도 1 참조)에 따른 접촉저항 증가(산화피막에 의해 거의 부도체 수준으로 변함)로 인한 측정오류가 하나의 원인이다. 따라서 이러한 산화피막에 의한 측정오류를 방지하기 위해서 산화피막을 자동으로 제거하는 프로브가 필요한 상황이다. 도 1은 일반적인 변압기에서 산화피막이 형성되는 1차 및 2차 단자를 촬영한 사진을 보인 예시도이다.First, due to the environmental characteristics in which the transformer is used, it is exposed to the outside for a long time due to primary and secondary terminal corrosion, that is, an increase in contact resistance due to the formation of an oxide film (see FIG. 1) (which is almost changed to an insulator level by the oxide film). Measurement error is one cause. Therefore, in order to prevent measurement errors caused by the oxide film, there is a need for a probe for automatically removing the oxide film. FIG. 1 is an exemplary view showing photographs taken of primary and secondary terminals in which an oxide film is formed in a general transformer.
다음, 변압기 점검 시 여러 요소, 즉, 권선저항, 권수비, 및 절연저항 등을 측정하여, 이 측정값들을 이용해 종합적이 판단이 이루어져야 되는데, 측정자의 주관적인 판단을 수행하므로 측정자별 판단 편차로 인한 측정오류가 또 하나의 원인이다. 따라서 상기 측정값들을 종합적으로 이용해 객관적인 판단을 수행할 장치가 필요한 상황이다.Next, when inspecting the transformer, a number of factors, that is, winding resistance, number of turns, and insulation resistance, should be measured, and comprehensive judgments should be made using these measured values. Is another cause. Therefore, there is a need for an apparatus for performing objective judgment using the measured values collectively.
또한 여러 가지 다양한 장비(즉, 측정장치, 측정장비)가 사용되므로, 각 장비별 상이한 판단기준이 적용되거나, 어느 하나의 장비 자체의 불량으로 인한 측정오류가 또 하나의 원인이다. 따라서 하나의 장치에서 변압기(이하, TR, Transformer로 간단히 기재할 수도 있음)의 모든 측정값들을 한꺼번에 측정하여 종합할 수 있는 장치가 필요한 상황이다.In addition, because a variety of different equipment (ie, measuring device, measuring equipment) is used, different judgment criteria for each equipment is applied, or measurement error due to the failure of any one of the equipment itself is another cause. Therefore, there is a need for a device that can measure and synthesize all the measured values of a transformer (hereinafter, simply referred to as TR, Transformer) at one device at one time.
본 발명의 배경기술은 대한민국 공개특허 10-2015-0037267호(2015.04.08. 공개, 외부조작형 탭 절환 변압기 및 이를 이용한 고장 진단 방법)에 개시되어 있다. Background art of the present invention is disclosed in Republic of Korea Patent Publication No. 10-2015-0037267 (2015.04.08. Published, externally operated tap-changing transformer and a failure diagnosis method using the same).
본 발명의 일 측면에 따르면, 본 발명은 상기와 같은 문제점을 해결하기 위해 창작된 것으로서, 변압기의 고장 원인에 대한 정확한 고장 분석을 위하여, 변압기 단자 표면의 산화 피막을 제거하는 프로브(Probe)를 이용하여, 권선저항, 권수비, 및 절연저항을 측정하고, 상기 측정값들을 이용하여 변압기의 상태를 정확히 판단할 수 있도록 하는, 변압기의 고장유형 자동 판별 장치를 제공하는 데 그 목적이 있다. According to an aspect of the present invention, the present invention was created to solve the above problems, using a probe (Probe) to remove the oxide film on the surface of the transformer terminal for accurate failure analysis of the cause of the transformer failure Accordingly, an object of the present invention is to provide a device for automatically determining a failure type of a transformer, which measures winding resistance, turn ratio, and insulation resistance, and accurately determines a state of a transformer using the measured values.
본 발명의 일 측면에 따른 변압기의 고장유형 자동 판별 장치는, 변압기(TR)의 복수의 각 단자(1차 단자, 2차 단자)에 접촉되는 복수의 프로브(제1, 2 프로브)를 포함하며, 상기 각 단자에 형성된 산화피막을 제거하거나 뚫고, 이 산화피막의 하부층에 접촉 및 연결되는 측정부; 및 상기 측정부를 통해 상기 변압기에서 1차 및 2차 권선저항, 권수비, 및 절연저항을 측정하고, 자기진단을 통해 오결선, 장비 자체 오차 발생, 내부 회로 이상 유무 등을 스스로 진단하며, 상기 자기진단 결과 및 상기 측정한 측정 결과를 저장, 및 온도 보정하여, 이 측정값들을 바탕으로 종합적으로 변압기의 상태를 판단하여 레포트나 디스플레이 화면을 통해 출력하는 제어부;를 포함하는 것을 특징으로 한다.An apparatus for automatically identifying a failure type of a transformer according to an aspect of the present invention includes a plurality of probes (first and second probes) contacting a plurality of terminals (primary and secondary terminals) of a transformer TR, A measuring unit which removes or penetrates the oxide film formed on each terminal and contacts and is connected to the lower layer of the oxide film; And measuring the primary and secondary winding resistance, the winding ratio, and the insulation resistance in the transformer through the measuring unit, and self-diagnosing faulty wiring, equipment error, internal circuit abnormality, and the like through the self-diagnosis. And a control unit for storing the result and the measured result and correcting the temperature, and comprehensively determining the state of the transformer based on the measured values and outputting the result through a report or a display screen.
본 발명에 있어서, 상기 프로브는, 악어 클립형 머리부를 이용해 변압기의 클램프 단자를 물고, 손잡이를 잡은 사용자가 좌우로 회전함으로써, 악어 클립형 머리부에 형성된 이빨처럼 뾰족하게 튀어나와 맞물리게 형성된 부분을 이용해 각 단자 표면의 산화피막을 제거하도록 형성된 것을 특징으로 한다.In the present invention, the probe, using a crocodile clip-type head portion bite the clamp terminal of the transformer, the user holding the handle rotates from side to side, each terminal using a portion formed to protrude sharply like teeth formed on the crocodile clip-type head It is characterized in that it is formed to remove the oxide film on the surface.
본 발명에 있어서, 상기 프로브는, 사용자가 프로브의 레버를 누른 상태에서, 변압기의 클램프 단자에 밀어 넣으면 머리부의 입구측에 형성된 피막제거 팁이 클램프 단자의 산화피막을 제거하고, 이 상태에서 레버를 놓으면 상기 탐침이 상기 산화피막이 제거된 부분과 접촉할 수 있도록 형성된 것을 특징으로 한다.In the present invention, when the user pushes the lever of the probe while the user pushes it into the clamp terminal of the transformer, the film removal tip formed at the inlet side of the head removes the oxide film of the clamp terminal, and in this state, When placed, the probe is formed to be in contact with the portion from which the oxide film has been removed.
본 발명에 있어서, 상기 제어부는, 변압기의 고장유형 자동 판별 장치의 전원을 켜면, 자가진단 및 캘리브레이션(Calibration)을 실시하고, 상기 자가진단 및 캘리브레이션 결과, 비정상이면 사용자에게 알람(Alarm)을 출력하고, 정상이면 사용자에게 정상표시를 하며, 자동 또는 수동 점검 모드 중, 사용자가 사용 환경에 맞게 자동 모드를 선택하면, 자동 모드를 실행하여 변압기의 상태 측정값을 자동으로 측정하여 고장 여부를 자동으로 판별하고, 사용자가 수동 모드를 선택하면, 사용자로부터 상태 측정값에 대한 측정 작업의 지시를 받아 해당하는 측정값을 바탕으로 고장 여부를 판별하는 것을 특징으로 한다.In the present invention, the control unit, when the power of the automatic failure type determination device of the transformer is turned on, performs a self-diagnosis and calibration, and if the abnormality as a result of the self-diagnosis and calibration, and outputs an alarm to the user , If it is normal, it displays normal to the user, and if the user selects the automatic mode according to the usage environment among the automatic or manual check mode, it executes the automatic mode to automatically measure the status measurement value of the transformer to automatically determine whether there is a failure. When the user selects the manual mode, the user may receive an instruction of a measurement operation on the state measurement value and determine whether there is a failure based on the corresponding measurement value.
본 발명에 있어서, 상기 제어부는, 자동모드가 실행되면, 변압기 용량을 선택하고, 변압기의 용량에 따라 권선저항을 측정하고, 이어서 권수비 및 절연저항을 측정하며, 상기 측정값들을 디스플레이 화면에 표시함과 동시에 상기 측정값들을 분석하여, 권선저항 측정값이 설정된 정상범위에 있는지 여부, 권수비 측정값이 설정된 정상범위에 있는지 여부, 및 절연저항이 설정된 정상범위에 있는지 여부에 따는 불량이나 정상 상태 여부를 디스플레이 화면에 표시하는 것을 특징으로 한다.In the present invention, when the automatic mode is executed, the controller selects the transformer capacity, measures the winding resistance according to the capacity of the transformer, then measures the winding ratio and the insulation resistance, and displays the measured values on the display screen. And analyzing the measured values at the same time to determine whether the winding resistance measurement value is in the set normal range, whether the number of turns ratio measurement value is in the set normal range, and whether the insulation resistance is in the set normal range or not. It is characterized by displaying on the display screen.
본 발명에 있어서, 상기 제어부는, 변압기의 권선저항 측정 시 권선 길이에 의해 저항값이 변동하므로, 아래의 수학식 1을 이용해 권선저항의 정상화여부를 판단하되, In the present invention, the control unit, since the resistance value varies depending on the winding length when measuring the winding resistance of the transformer, by using the following equation 1 to determine whether the winding resistance is normalized,
(수학식 1)(Equation 1)
Figure PCTKR2018011580-appb-I000001
Figure PCTKR2018011580-appb-I000001
ε : 변화율(%), Mn : n 번째 권선저항 측정값 ε: change rate (%), M n : measured value of nth winding resistance
상기 변화율(ε)이 설정한 설정값 또는 장비오차 보다 작거나 같으면 권선저항이 안정적으로 정상화되었다고 판단하고, 상기 변화율(ε)이 설정한 설정값 또는 장비오차보다 크면 에러인 것으로 판단하는 것을 특징으로 한다.If the change rate (ε) is less than or equal to the set value or equipment error, it is determined that the winding resistance has been normalized stably, and if the change rate (ε) is greater than the set value or equipment error, it is determined that an error. do.
본 발명에 있어서, 상기 제어부는, 권선비 측정을 위하여, 동작전원 소스 및 설정된 측정변수를 초기화하고, 1차측 측정 동작전원과 2차측 측정 동작전원을 온시킨 후, AC 출력값 및 AC 입력값을 측정 및 계산하고, 상기 측정값을 이용하여 권선비를 계산하되,상기 권선비 측정 시 1차 권선에 AC 입력전원을 인가하고 2차 측으로 출력되는 전압을 측정하여, 아래의 수학식 2와 수학식 3을 이용해 권선비를 계산하는 것을 특징으로 한다.In the present invention, the controller initializes the operating power source and the set measurement variable, turns on the primary side measurement operating power source and the secondary side measurement operating power source for measuring the winding ratio, and then measures and outputs the AC output value and the AC input value. Calculate the winding ratio using the measured value, and apply the AC input power to the primary winding and measure the voltage output to the secondary side when the winding ratio is measured, using the following Equation 2 and Equation 3 below. It is characterized by calculating the.
(수학식 2)(Equation 2)
Figure PCTKR2018011580-appb-I000002
Figure PCTKR2018011580-appb-I000002
(수학식 3)(Equation 3)
Figure PCTKR2018011580-appb-I000003
Figure PCTKR2018011580-appb-I000003
여기서, N은 권선수, V는 전압, I는 전류Where N is the number of turns, V is the voltage, and I is the current
본 발명에 있어서, 상기 제어부는, 상기 계산된 권선비가 지정된 오차범위 이내이면 상기 계산된 권선비를 저장부에 저장하고, 상기 계산된 권선비가 오차범위를 벗어나면 측정을 종료하거나 재시작하는 것을 특징으로 한다.In the present invention, the control unit stores the calculated winding ratio in the storage unit when the calculated winding ratio is within a specified error range, and ends or restarts the measurement when the calculated winding ratio is out of the error range. .
본 발명에 있어서, 상기 제어부는, 절연저항 측정을 위해, 측정회로부의 동작전원을 On시키고, DC 1kV 전원(HV)을 생성하여 인가하고, 현재의 온도를 측정하며, 변압기의 주 절연물을 통해 흐르는 누설전류(leakage_current)를 측정하여 절연저항 값을 계산하되, “절연저항*(1+(1/(234.5 + 온도)*(온도-25.0)))”을 적용하여, 상기 절연저항에 대해 온도보상을 수행하는 것을 특징으로 한다.In the present invention, the control unit, to measure the insulation resistance, turn on the operating power of the measuring circuit unit, generates and applies a DC 1kV power supply (HV), measures the current temperature, and flows through the main insulation of the transformer Calculate the insulation resistance value by measuring the leakage current (leakage_current), but apply “Insulation Resistance * (1+ (1 / (234.5 + Temperature) * (Temperature-25.0))” to compensate for the insulation resistance. It characterized in that to perform.
본 발명에 있어서, 상기 제어부는, 상기 온도보상을 수행한 절연저항 값이 기 지정된 시간 동안, 기 설정된 오차범위 내의 값을 유지하는지 체크하고, 상기 체크 결과, 상기 온도보상을 수행한 절연저항 값이 기 지정된 시간 동안 기 설정된 오차범위 내의 값을 유지하면, 상기 온도보상을 수행한 절연저항 값을 저장부에 저장하고, 상기 온도보상을 수행한 절연저항 값이 기 지정된 시간 동안 기 설정된 오차범위 내의 값을 유지하지 않으면, 지정된 루프시간 동안 상기 체크 과정을 반복 수행하고, 상기 지정된 루프시간 후에도 상기 온도보상을 수행한 절연저항 값이 기 설정된 오차범위 내의 값을 유지하지 않으면, 에러로 처리하는 것을 특징으로 한다.In the present invention, the controller checks whether the insulation resistance value for performing the temperature compensation maintains a value within a preset error range for a predetermined time, and as a result of the check, the insulation resistance value for performing the temperature compensation is When the value within the preset error range is maintained for a predetermined time, the insulation resistance value for performing the temperature compensation is stored in a storage unit, and the insulation resistance value for performing the temperature compensation is a value within the preset error range for a predetermined time. If it is not maintained, the check process is repeated for a specified loop time, and if the insulation resistance value for which the temperature compensation is performed after the specified loop time does not maintain a value within a preset error range, it is treated as an error. do.
본 발명에 있어서, 상기 제어부는, 측정값을 이용하여 변압기의 최종 상태를 판단하기 위하여, 권선저항 측정값, 권선비 측정값, 및 절연저항 측정값에 대한 상태를 판단하고, 상기 측정값들 중 하나라도 불량이면 변압기는 불량 상태로 최종 판단하며, 상기 측정값들 모두 다 정상이면 변압기는 정상 상태로 최종 판단하는 것을 특징으로 한다.In the present invention, the control unit, in order to determine the final state of the transformer by using the measured value, and determines the state for the winding resistance measurement value, the winding ratio measurement value, and the insulation resistance measurement value, one of the measured values If it is bad, the transformer is finally determined to be in a bad state, and if all of the measured values are normal, the transformer is finally determined to be in a normal state.
본 발명의 일 측면에 따르면, 본 발명은 변압기의 고장 원인에 대한 정확한 고장 분석을 위하여, 변압기 단자 표면의 산화 피막을 제거하는 프로브(Probe)를 이용하여, 권선저항, 권수비, 및 절연저항을 측정하고, 상기 측정값들을 이용하여 변압기의 상태를 정확히 판단할 수 있도록 한다.According to an aspect of the present invention, the present invention measures the winding resistance, turn ratio, and insulation resistance by using a probe (Probe) to remove the oxide film on the surface of the transformer terminal for accurate failure analysis of the cause of the transformer failure Then, the measured values can be used to accurately determine the state of the transformer.
도 1은 일반적인 변압기에서 산화피막이 형성되는 1차 및 2차 단자를 촬영한 사진을 보인 예시도.1 is an exemplary view showing a picture of the primary and secondary terminals in which the oxide film is formed in a typical transformer.
도 2는 본 발명의 일 실시예에 따른 변압기의 고장유형 자동 판별 장치의 개략적인 구성을 보인 예시도.Figure 2 is an exemplary view showing a schematic configuration of a failure type automatic determination device of a transformer according to an embodiment of the present invention.
도 3은 상기 도 2에 있어서, 복수의 프로브의 형상을 촬영한 사진을 보인 예시도. FIG. 3 is an exemplary view showing a photograph of the shapes of a plurality of probes in FIG. 2. FIG.
도 4는 상기 도 2에 있어서, 회전식 이빨을 갖는 형태의 프로브를 보인 예시도.4 is an exemplary view showing a probe having a rotatable tooth in FIG. 2.
도 5는 상기 도 2에 있어서, 제어부의 개략적인 동작을 설명하기 위하여 보인 예시도.FIG. 5 is an exemplary view shown to describe a schematic operation of a controller in FIG. 2.
도 6은 상기 도 2에 있어서, 제어부의 변압기 진단을 위한 동작을 설명하기 위한 흐름도.FIG. 6 is a flowchart illustrating an operation for diagnosing a transformer of the control unit in FIG. 2. FIG.
도 7은 상기 도 6에 있어서, 자동 모드를 실행하는 방법을 설명하기 위한 흐름도.7 is a flowchart for explaining a method of executing an automatic mode in FIG. 6.
도 8은 상기 도 7에 있어서, 변압기의 용량별 권선저항을 선택하는 방법을 설명하기 위한 흐름도.FIG. 8 is a flowchart illustrating a method of selecting winding resistance for each capacity of a transformer in FIG. 7.
도 9는 상기 도 6에 있어서, 수동 모드를 실행하는 방법을 설명하기 위한 흐름도.FIG. 9 is a flowchart for explaining a method of executing a passive mode in FIG. 6.
도 10은 상기 도 7에 있어서, 권선저항 측정 방법을 개략적으로 설명하기 위한 흐름도. FIG. 10 is a flowchart for schematically explaining a method of measuring winding resistance in FIG. 7.
도 11은 상기 도 10에 있어서, 보다 구체적인 권선저항 판단 방법을 설명하기 위한 흐름도.FIG. 11 is a flowchart for explaining a more specific method of determining winding resistance in FIG. 10.
도 12는 상기 도 7에 있어서, 권수비 측정 방법을 설명하기 위한 흐름도.FIG. 12 is a flowchart for explaining a turn ratio measurement method in FIG. 7. FIG.
도 13은 상기 도 7에 있어서, 절연저항 측정 방법을 설명하기 위한 흐름도.FIG. 13 is a flowchart for explaining a method for measuring insulation resistance in FIG.
도 14는 상기 도 7에 있어서, 측정값을 이용하여 변압기의 상태를 종합적으로 판단하는 방법을 설명하기 위한 흐름도.FIG. 14 is a flowchart for describing a method of comprehensively determining a state of a transformer using measured values in FIG. 7. FIG.
도 15는 본 실시예에 따른 변압기의 고장유형 자동 판별 장치를 이용한 현장 측정 방법과 측정 결과 화면을 보인 예시도.15 is an exemplary view showing a field measurement method and a measurement result screen using a failure type automatic determination device of a transformer according to the present embodiment.
이하, 첨부된 도면을 참조하여 본 발명에 따른 변압기의 고장유형 자동 판별 장치의 일 실시예를 설명한다. Hereinafter, with reference to the accompanying drawings will be described an embodiment of a failure type automatic determination device of a transformer according to the present invention.
이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In this process, the thickness of the lines or the size of the components shown in the drawings may be exaggerated for clarity and convenience of description. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary depending on the intention or convention of a user or an operator. Therefore, the definitions of these terms should be made based on the contents throughout the specification.
도 2는 본 발명의 일 실시예에 따른 변압기의 고장유형 자동 판별 장치의 개략적인 구성을 보인 예시도이다.Figure 2 is an exemplary view showing a schematic configuration of a failure type automatic determination device of a transformer according to an embodiment of the present invention.
도 2에 도시된 바와 같이, 본 실시예에 따른 변압기의 고장유형 자동 판별 장치는, 측정부(100), 제어부(200), 출력부(300), 및 저장부(400)를 포함한다.As shown in FIG. 2, the apparatus for automatically determining a failure type of a transformer according to the present embodiment includes a measuring unit 100, a control unit 200, an output unit 300, and a storage unit 400.
상기 측정부(100)는 변압기(TR)의 복수의 각 단자(예 : 1차 단자, 2차 단자)에 접촉되는 복수의 프로브(제1, 2 프로브)(110, 120)를 포함하되, 각 단자(예 : 1차 단자, 2차 단자)에 형성된 산화피막을 제거하거나 뚫고, 이 산화피막 층의 하부에 접촉 및 고정(연결)된다. The measurement unit 100 includes a plurality of probes (first and second probes) 110 and 120 contacting a plurality of terminals (eg, primary terminals and secondary terminals) of the transformer TR, The oxide film formed on the terminals (eg, primary and secondary terminals) is removed or drilled through and contacted and fixed (connected) to the bottom of the oxide layer.
이때 상기 복수의 프로브(제1, 2 프로브)(110, 120)가 각기 접촉 및 고정(연결)되는 단자(예 : 1차 단자, 2차 단자)가 반드시 고정되어야 하는 것은 아니며 서로 바꿔 연결될 수도 있음에 유의한다.In this case, terminals (eg, primary terminals and secondary terminals) to which the plurality of probes (first and second probes) 110 and 120 are in contact and fixed (connected), respectively, are not necessarily fixed and may be interchanged with each other. Pay attention to
도 3은 상기 도 2에 있어서, 복수의 프로브의 형상을 촬영한 사진을 보인 예시도이다. 여기서 도 3의 (a)는 변압기(TR)의 1차 단자에 연결되는 제1 프로브(110)를 보인 예시도이고, 도 3의 (b)는 변압기(TR)의 2차 단자에 연결되는 제2 프로브(120)를 보인 예시도이다.FIG. 3 is an exemplary view showing photographs photographing shapes of a plurality of probes in FIG. 2. 3 (a) is an exemplary view showing a first probe 110 connected to the primary terminal of the transformer TR, Figure 3 (b) is a second terminal connected to the secondary terminal of the transformer (TR) 2 is an exemplary view showing the probe 120.
이미 상술한 바와 같이 변압기(TR)에 사용되는 클램프 단자는, 통상적으로 KS D 6024의 청동주물, 또는 KS D 5101의 단조용 항동 재질을 사용한다. 따라서 외부 환경에 장시간 노출될 경우 단자 표면에 산화피막이 형성된다. 상기 산화피막은 절연성분으로써, 단자와 측정 프로브 사이에 고저항을 형성시켜 규정된 권선저항 보다 높은 값을 표시하여 마치 권선이 단선된 것처럼, 변압기의 진단 오류를 발생시키는 원인이 된다.As described above, the clamp terminal used for the transformer TR typically uses a bronze casting of KS D 6024 or a forging anti-static material of KS D 5101. Therefore, an oxide film is formed on the surface of the terminal when exposed to the external environment for a long time. The oxide film is an insulating component, and forms a high resistance between the terminal and the measurement probe to display a value higher than the prescribed winding resistance, which causes a diagnostic error of the transformer as if the winding was disconnected.
따라서 상기 측정부(100)는, 상기 산화피막에 의한 오류를 방지해서 위해서, 산화피막 층을 뚫거나 제거하고, 이 산화피막 층의 하부에 접촉할 수 있도록 한다.Therefore, the measurement unit 100 is made to penetrate or remove the oxide layer and to contact the lower portion of the oxide layer in order to prevent the error caused by the oxide layer.
도 3의 (a)를 참조하면, 상기 제1 프로브(110)는 악어 클립형 머리부를 이용해 변압기의 클램프 단자를 물고, 손잡이를 잡은 사용자가 좌우로 회전함으로써, 악어 클립형 머리부에 형성된 이빨(이빨처럼 뾰족하게 튀어나와 맞물리게 형성된 부분)을 이용해 단자 표면의 산화피막을 제거하게(또는 뚫게) 된다.Referring to FIG. 3A, the first probe 110 bites a clamp terminal of a transformer using an alligator clip type head, and a user who grabs a handle rotates left and right, so that teeth formed on the alligator clip type head (like teeth). Sharply protruded and interlocked portions) to remove (or pierce) the oxide film on the surface of the terminal.
도 3의 (b)를 참조하면, 상기 제2 프로브(120)는 머리부 내부에 뾰족한 탐침(123)을 설치하고, 내부의 스프링으로 클램프를 장악한 뒤, 손잡이를 잡은 사용자가 좌우로 회전함으로써, 상기 탐침(123)이 이빨처럼 단자 표면의 산화피막을 제거하게(또는 뚫게) 된다. 보다 상세하게는, 사용자가 제2 프로브(120)의 레버(122)를 누른 상태에서, 변압기의 클램프 단자에 밀어 넣으면 머리부의 입구측에 형성된 피막제거 팁(121)이 클램프 단자의 산화피막을 제거하고, 이 상태에서 레버(122)를 놓으면 접촉 단자(즉 탐침)(123)가 상기 산화피막이 제거된 부분과 접촉할 수 있는 구조이다.Referring to FIG. 3 (b), the second probe 120 has a pointed probe 123 installed inside the head, and secures the clamp with a spring therein so that the user holding the handle rotates left and right. The probe 123 removes (or drills) the oxide film on the surface of the terminal like a tooth. More specifically, when the user pushes the lever 122 of the second probe 120 and pushes it into the clamp terminal of the transformer, the film removing tip 121 formed at the inlet side of the head removes the oxide film of the clamp terminal. In this state, when the lever 122 is released, the contact terminal (that is, the probe) 123 may be in contact with the portion where the oxide film is removed.
이때 상기 측정부(100)는, 도 4에 도시된 바와 같이, 손잡이를 회전시켜 이빨이 튀어나오게 하여 산화피막 층을 뚫을 수 있는 형태의 프로브를 포함할 수도 있다. 도 4는 상기 도 2에 있어서, 회전식 이빨을 갖는 형태의 프로브를 보인 예시도이다.At this time, the measurement unit 100, as shown in Figure 4, may include a probe in the form that can penetrate the oxide layer by rotating the handle to protrude teeth. 4 is an exemplary view showing a probe having a rotatable tooth in FIG. 2.
한편 변압기를 설치하기 전후에 필수적으로 점검해야 할 요소로는, 1차 및 2차 권선저항, 권수비, 및 변압기의 주절연 성능을 확인하기 위한 절연저항 측정이다. 그중 가장 보편적으로 사용하고 있는 측정 요소는 권선저항이다. 하지만 변압기의 용량에 따라 권선이 길이, 및 굵기가 다르기 때문에 저항도 달라진다. 뿐만 아니라 권선의 재질이 구리에서 알루미늄으로 변경되면서 고장 양상도 달라졌는데, 가령 부분적 절연파괴에 대응하는 권선저항이 측정되지만, 실제로는 턴간 또는 층간 단락되면서 권수비가 달라진 경우도 발생하고 있다. 따라서 권선저항 하나의 측정값만을 이용하여 변압기의 상태를 판정해서는 안된다. On the other hand, the essential elements to be checked before and after the installation of the transformer are the primary and secondary winding resistance, the number of turns, and the insulation resistance measurement to check the main insulation performance of the transformer. The most commonly used measuring element is winding resistance. However, the resistance varies because the windings vary in length and thickness, depending on the capacity of the transformer. In addition, as the material of the winding is changed from copper to aluminum, the failure pattern is also changed. For example, the winding resistance corresponding to the partial insulation breakdown is measured, but the turn ratio is sometimes changed due to the short circuit between turns or between layers. Therefore, the condition of the transformer should not be determined using only one measurement of the winding resistance.
이에 따라 상기 제어부(200)는 변압기 점검의 신뢰도를 높이기 위해 필수 점검 요소를 각각 측정 및 판단하고, 그 결과들을 조합하여 최종적으로 판단하는 알고리즘을 적용한다.Accordingly, the control unit 200 applies an algorithm for measuring and determining each of the essential inspection elements and finally combining the results to increase the reliability of the transformer inspection.
도 5는 상기 도 2에 있어서, 제어부의 개략적인 동작을 설명하기 위하여 보인 예시도이다.FIG. 5 is an exemplary view shown to describe a schematic operation of the controller in FIG. 2.
도 5에 도시된 바와 같이, 변압기의 클램프 단자에 형성된 산화피막 제거 기능이 있는 프로브(110, 120)를, 변압기의 총 4개의 클램프 단자에 각기 연결하고(S111), 상기 제어부(200)는 변압기의 상태진단을 위해 필요한 필수요소들(예 : 1차 및 2차 권선저항, 권수비, 절연저항 등)을 측정하고, 또한 자기진단(또는 자가진단) 기능을 통해 오결선, 장비 자체 오차 발생, 내부 회로 이상 유무 등을 스스로 진단한다(S112). 또한 상기 제어부(200)는 상기 측정한 측정 결과(측정값)를 기록, 및 보정(온도보정)하여 이 측정값들을 바탕으로 종합적으로 판단하고 그 판단 결과를 저장부(400)에 저장한다(S113). 또한 상기 제어부(200)는 상기와 같이 저장된 정보를 사용자가 원하는 형태로 레포트(report)를 작성하여 저장하고 출력할 수 있다(S114).As shown in FIG. 5, the probes 110 and 120 having an oxide film removing function formed on the clamp terminals of the transformer are connected to four clamp terminals of the transformer, respectively (S111), and the controller 200 is connected to the transformer. Measure essential elements (e.g. primary and secondary winding resistance, turns ratio, insulation resistance, etc.) necessary for diagnosing the condition of the sensor, and also make the self-diagnosis (or self-diagnosis) function to generate incorrect wiring, equipment self error, internal Diagnosing the presence or absence of a circuit error by itself (S112). In addition, the control unit 200 records and corrects the measured result (measured value) and makes a comprehensive determination based on the measured values, and stores the result of the determination in the storage unit 400 (S113). ). In addition, the controller 200 may create, store, and output the stored information as described above in a form desired by the user (S114).
이하 상기 제어부(200)의 보다 구체적인 동작에 대해서 설명한다.Hereinafter, more specific operations of the controller 200 will be described.
도 6은 상기 도 2에 있어서, 제어부의 변압기 진단을 위한 동작을 설명하기 위한 흐름도이다.FIG. 6 is a flowchart illustrating an operation for diagnosing a transformer of the controller in FIG. 2.
도 6에 도시된 바와 같이, 본 실시예에 따른 장비(즉, 변압기의 고장유형 자동 판별 장치)의 전원을 켜면(S121), 상기 제어부(200)는 알고리즘이 시작되면서(S122) 자가진단(Self 점검) 및 캘리브레이션(Calibration)을 실시한다(S123).As shown in FIG. 6, when the power of the equipment (that is, the automatic device for determining the failure type of the transformer) according to the present embodiment is turned on (S121), the controller 200 starts an algorithm (S122) and self-diagnoses (Self). Check) and calibration (S123).
상기 자가진단 및 캘리브레이션 결과, 비정상이면(S123의 비정상) 사용자에게 알람(Alarm)을 출력하고(S125), 정상이면(S123의 정상) 사용자에게 정상표시를 한다(S124). As a result of the self-diagnosis and calibration, if it is abnormal (abnormal of S123), an alarm is output to the user (S125), and if it is normal (normal of S123), a normal indication is displayed to the user (S124).
그 후 자동 또는 수동 점검 모드를 선택할 수 있도록 구성하여, 사용자가 사용 환경에 맞게 자동 모드를 선택하면(S126의 자동), 상기 제어부(200)는 자동 모드를 설정하고(S129) 해당하는 자동 모드를 실행한다(S130). 한편 사용자가 수동 모드를 선택하면(S126의 수동), 상기 제어부(200)는 수동 모드를 설정하고(S127) 해당하는 수동 모드를 실행한다(S128). After that, it is configured to select the automatic or manual check mode, when the user selects the automatic mode according to the use environment (S126 automatic), the control unit 200 sets the automatic mode (S129) and the corresponding automatic mode It executes (S130). On the other hand, if the user selects the manual mode (S126 manual), the controller 200 sets the manual mode (S127) and executes the corresponding manual mode (S128).
도 7은 상기 도 6에 있어서, 자동 모드를 실행하는 방법을 설명하기 위한 흐름도이고, 도 8은 상기 도 7에 있어서, 변압기의 용량별 권선저항을 선택하는 방법을 설명하기 위한 흐름도이며, 도 9는 상기 도 6에 있어서, 수동 모드를 실행하는 방법을 설명하기 위한 흐름도이다.FIG. 7 is a flowchart for describing a method of executing an automatic mode in FIG. 6, and FIG. 8 is a flowchart for explaining a method for selecting winding resistance for each capacity of a transformer in FIG. 7. 6 is a flowchart for describing a method of executing a manual mode in FIG. 6.
도 7을 참조하면, 자동모드가 실행되면, 상기 제어부(200)는 변압기 용량을 선택한다(S141).Referring to FIG. 7, when the automatic mode is executed, the controller 200 selects a transformer capacity (S141).
여기서 상기 변압기의 용량 선택은, 자동 모드 및 수동 모드에 공통으로 적용되는 기능으로서, 변압기 용량 선택은 1차 권선의 저항 정상범위가 아래의 표 4와 같이 정해져 있기 때문이다. Here, the capacity selection of the transformer is a function commonly applied to the automatic mode and the manual mode, and the transformer capacity selection is because the normal range of the resistance of the primary winding is determined as shown in Table 4 below.
이에 따라 상기 제어부(200)는 상기 변압기의 용량에 따라 권선저항(즉, 1차 권선저항)을 측정하고(S142), 권수비를 측정하며(S143), 또한 절연저항을 측정하여(S144), 상기 측정값들을 표시하고(S145), 아울러 상기 측정 데이터를 분석한다(S146).Accordingly, the control unit 200 measures the winding resistance (that is, the primary winding resistance) according to the capacity of the transformer (S142), measures the number of turns (S143), and also measures the insulation resistance (S144). Measurement values are displayed (S145), and the measurement data are analyzed (S146).
즉, 상기 제어부(200)는 상기 1차 권선저항 측정값이 정상범위(표 4 참조)에 있는지 비교분석 한다. 마찬가지로, 상기 제어부(200)는 권수비 및 절연저항 측정값을 분석하여 불량이나 정상 상태 여부를 표시하고(S147, S148), 상기 데이터를 저장부(400)에 저장한다(S149). That is, the controller 200 compares and analyzes whether the primary winding resistance measurement value is within a normal range (see Table 4). Similarly, the controller 200 analyzes the number of turns ratio and the insulation resistance measurement value to indicate whether it is defective or normal (S147 and S148), and stores the data in the storage unit 400 (S149).
용량(kVA)Capacity (kVA) 1010 2020 3030 5050 7575 100100 160160
1차 권선 저항(Ω)Primary winding resistance (Ω) 130~160130-160 60~8060-80 35~4535-45 15~2515-25 10~1510-15 5~105-10 미 정Undefined
도 8을 참조하면, 변압기 용량별 권선저항을 선택하기 위하여, 상기 제어부(200)나 사용자는 자동 또는 수동 모드에 따라, 제1 용량(예 : 20KVA)이면(S161의 예) 해당 용량을 선택하고(S162), 제2 용량(예 : 30KVA)이면(S162의 예) 해당 용량을 선택하고(S164), 제3 용량(예 : 50KVA)이면(S165의 예) 해당 용량을 선택하고(S166), 제4 용량(예 : 75KVA)이면(S167의 예) 해당 용량을 선택하고(S168), 제5 용량(예 : 100KVA)이면(S169의 예) 해당 용량을 선택하고(S170), 제6 용량(예 : 160KVA)이면(S171의 예) 해당 용량을 선택한다(S172).Referring to FIG. 8, in order to select a winding resistance for each transformer capacity, the controller 200 or the user selects a corresponding capacity if the first capacity (for example, 20 KVA) is determined according to an automatic or manual mode. (S162), if the second dose (for example, 30 KVA) (YES in S162), select the corresponding dose (S164), if the third dose (for example 50KVA) (YES in S165), select the corresponding dose (S166), If the fourth dose (eg, 75 KVA) (YES in S167), select the corresponding dose (S168), and if the fifth dose (eg, 100 KVA) (YES in S169), select the corresponding dose (S170), and the sixth dose ( Example: 160KVA) (YES in S171) select the corresponding capacity (S172).
도 9를 참조하면, 수동모드가 실행되면, 사용자는 사용자 인터페이스(미도시)를 통해 변압기 용량을 선택한다(S151). 이후 사용자는 권선저항을 측정하도록 지시하고(S152), 권수비를 측정하도록 하며(S153), 절연저항을 측정하도록 하여(S154) 상기 측정값들을 표시하도록 한다(S155). 사실상 상기 수동모드는 측정 작업을 지시하는 모드라고 할 수 있다.Referring to FIG. 9, when the manual mode is executed, the user selects a transformer capacity through a user interface (not shown) (S151). After that, the user instructs to measure the winding resistance (S152), measures the number of turns (S153), and measures the insulation resistance (S154) to display the measured values (S155). In fact, the manual mode may be referred to as a mode for instructing a measurement operation.
이하 권선저항 측정 방법에 대해서 설명한다.The winding resistance measurement method is described below.
참고로 변압기의 권선은 1차(Primary)와 2차(Secondary)로 나누어 있으며, 2차 권선은 도체 단면적이 넓고 긍장(Line Legnth)이 짧기 때문에 저항이 작고(0.1Ω) 측정이 매우 쉽다. 하지만 1차 권선은 단면적이 작고 긍장이 매우 길기 때문에 측정하는 순간 저항값의 변동이 심하고 지정된 일정 시간이 경과해야만 저항값이 안정화 되어 참값을 알 수 있게 된다. For reference, the winding of the transformer is divided into primary and secondary, and the secondary winding has a small resistance (0.1Ω) and is very easy to measure because of the wide conductor cross-section and the short line leg. However, since the primary winding has a small cross-sectional area and a very long positive value, the resistance value fluctuates momentarily when the measurement is made, and the resistance value is stabilized only after a predetermined time elapses, so that the true value can be known.
도 10은 상기 도 7에 있어서, 권선저항 측정 방법을 개략적으로 설명하기 위한 흐름도이고, 도 11은 상기 도 10에 있어서, 보다 구체적인 권선저항 판단 알고리즘(방법)을 설명하기 위한 흐름도이다.FIG. 10 is a flowchart for schematically describing a winding resistance measuring method in FIG. 7, and FIG. 11 is a flowchart for explaining a more specific winding resistance determination algorithm (method) in FIG. 10.
도 10에 도시된 바와 같이, 제어부(200)는 변압기의 1차측 권선저항 및 2차측 권선저항을 측정한 후(S211, S212), 이들의 권선저항값을 계산한다(S213).As shown in FIG. 10, the controller 200 measures the primary winding resistance and the secondary winding resistance of the transformer (S211 and S212) and calculates winding resistance values thereof (S213).
여기서 권선저항값의 계산은, 사용자가 설정할 수 있으며, 통상 ms 단위로 측정하여 평균값을 구하여 그 값을 대표값으로 한다. The calculation of the winding resistance value can be set by the user, and the average value is obtained by measuring the unit of measurement in ms.
이때 권선저항 측정 시 권선 길이에 의해 저항값이 변동하고, 지정된 일정 시간(예 : 20초)이 경과되면 수렴할 수 있게 된다(S215). At this time, the resistance value varies depending on the winding length when measuring the winding resistance, and converges when a predetermined time (for example, 20 seconds) has elapsed (S215).
따라서 상기 제어부(200)는 지정된 일정 시간이 경과되기를 기다린 후(S214의 아니오, 및 S215 반복), 상기 저항의 측정 기준값을 산정하기 위해, 아래의 수학식 1과 같은 권선저항판단 알고리즘(방법)을 적용하여, 권선저항의 정상화여부를 판단한다(S214).Therefore, the controller 200 waits for a predetermined time to elapse (NO in S214, and repeats S215), and then calculates a winding resistance determination algorithm (method) shown in Equation 1 below to calculate the measurement reference value of the resistance. By applying, it is determined whether the winding resistance is normalized (S214).
Figure PCTKR2018011580-appb-M000001
Figure PCTKR2018011580-appb-M000001
ε : 변화율(%), Mn : n 번째 권선저항 측정값 ε: change rate (%), M n : measured value of nth winding resistance
상기 수학식 1은 권선저항 측정 시 수렴값을 구하기 위한 식으로 측정값의 변화율을 계산하여 최종 권선저항 측정값으로 인식하도록 한다.Equation 1 is a formula for obtaining a convergence value when measuring winding resistance, and calculating a rate of change of the measured value to recognize the final winding resistance measurement value.
상기와 같이 판단된 권선저항 측정값은 저장부(400)에 저장된다(S216). The winding resistance measurement value determined as described above is stored in the storage unit 400 (S216).
이때 만약 상기 권선저항 측정 도중 사용자에 의해 취소 버튼이 입력될 경우(S217), 측정 동작은 종료(또는 재시작)된다. At this time, if the cancel button is input by the user during the measurement of the winding resistance (S217), the measurement operation is terminated (or restarted).
도 11을 참조하면, 권선저항의 정상화 여부를 판단하는 과정(S214)은, 상기 수학식 1을 통해 산출한 변화율(ε)이 사용자가 설정한 설정값 또는 장비오차 보다 작거나 같으면(S214a의 예) 권선저항이 안정적으로 정상화화되었다고 판단하여 상기 권선저항 측정값을 저장부(400)에 저장(S216)한 후 종료하고, 상기 변화율(ε)이 설정값 또는 장비오차(즉, 오차범위)보다 크면(S214a의 아니오) 에러처리 하고 종료한다(S214b). Referring to FIG. 11, in the process of determining whether the winding resistance is normalized (S214), if the change rate ε calculated through Equation 1 is less than or equal to a user-set value or equipment error (Example of S214a) After determining that the winding resistance is stably normalized, the winding resistance measurement value is stored in the storage unit 400 (S216) and then terminated. The change rate ε is greater than the set value or the equipment error (that is, the error range). If large (NO in S214a), error processing is terminated (S214b).
도 12는 상기 도 7에 있어서, 권수비 측정 방법을 설명하기 위한 흐름도이다.FIG. 12 is a flowchart for explaining a turn ratio measurement method in FIG. 7.
도 12를 참조하면, 상기 제어부(200)는 동작전원 소스 및 설정된 측정변수를 초기화한다(S241, S242). 또한 상기 제어부(200)는 1차측 측정 동작전원과 2차측 측정 동작전원을 온시킨다(S243, S244). 또한 상기 제어부(200)는 AC 출력값 및 AC 입력값을 측정 및 계산한다(S245, S246). 또한 상기 제어부(200)는 상기 S245 및 S246의 측정값을 이용하여 권선비를 계산한다(S247).Referring to FIG. 12, the controller 200 initializes an operating power source and set measurement variables (S241 and S242). In addition, the controller 200 turns on the primary side measurement operation power and the secondary side operation power (S243, S244). In addition, the controller 200 measures and calculates an AC output value and an AC input value (S245 and S246). In addition, the control unit 200 calculates the winding ratio using the measured values of the S245 and S246 (S247).
그리고 상기 계산된 권선비가 오차범위 이내이면(S248의 예) 상기 계산된 권선비를 저장부(400)에 저장한 후 종료(또는 재시작)하고(S249), 상기 계산된 권선비가 오차범위를 벗어나면(S248의 아니오) 곧바로 종료(또는 재시작)한다. 이때 도면에는 도시되어 있지 않지만 알람을 출력할 수도 있다.If the calculated winding ratio is within the error range (Yes of S248), the calculated winding ratio is stored in the storage unit 400 and then terminated (or restarted) (S249), and if the calculated winding ratio is outside the error range ( NO at S248) Exit (or restart) immediately. In this case, although not shown, an alarm may be output.
참고로 한국 배전선로에서 사용하고 있는 배전급 변압기 권수비(변압비)는, 아래의 표 5와 같이, KS C 4306(2011)에서 허용차를 정의하고 있다. For reference, the distribution ratio (transformation ratio) of distribution class transformers used in Korean distribution lines is defined in KS C 4306 (2011) as shown in Table 5 below.
항 목Item 허용차Tolerance
변압비Transformer ratio 지정 변압기의 +1/200+1/200 of the specified transformer
여기서 허용차란, 규정값과 시험 결과의 차이가 허용할 수 있는 범위를 의미한다.Tolerance here means the allowable difference between the specified value and the test result.
참고로 상기 S247 단계에서 권수비(또는 권선비)를 계산하는 방법에 대해서 보다 구체적으로 설명하면, 권수비 측정 시 1차 권선에 AC 입력전원을 인가하고 2차 측으로 출력되는 전압을 측정하여 아래의 수학식 2와 수학식 3을 통해 권수비를 계산한다. For reference, the method of calculating the number of turns ratio (or winding ratio) in step S247 will be described in more detail. When measuring the number of turns ratio, an AC input power is applied to the primary winding and the voltage output to the secondary side is measured. Calculate the number of turns through and Equation 3.
아래의 수학식 2는 변압기 권수비 계산 일반식이고, 수학식 3은 권수비 측정식이다.Equation 2 below is a general formula for calculating the transformer turn ratio, and Equation 3 is a turn ratio measurement formula.
Figure PCTKR2018011580-appb-M000002
Figure PCTKR2018011580-appb-M000002
Figure PCTKR2018011580-appb-M000003
Figure PCTKR2018011580-appb-M000003
여기서, N은 권선수, V는 전압, I는 전류Where N is the number of turns, V is the voltage, and I is the current
이에 따라 계산된 권수비를 상기 표 5에서 설정한 값(허용차)과 비교하여 정상 유무 판정 및 계산값을 저장한 후 종료한다. Accordingly, the calculated number of turns is compared with the value set in Table 5 (permissible difference), and the test is completed after the determination of the normal existence and the calculated value.
이하 절연저항 측정 방법에 대해서 설명한다.Hereinafter, a method of measuring insulation resistance will be described.
참고로 절연저항을 변압기 내부의 주절연, 즉, 절연지와 절연유의 절연성능을 확인하기 위해 일반적으로 DC 1kV를 인가한 상태에서 누설전류를 측정하여 절연저항을 계산한다. 그런데 기존의 절연저항 측정기에는 산화피막을 제거할 수 있는 프로브나 온도 보정 회로가 없었기 때문에 측정값이 부정확하여 변압기의 정확한 상태판단이 어려웠다.For reference, the insulation resistance is calculated by measuring the leakage current with DC 1kV applied in order to check the insulation performance of the main insulation inside the transformer, that is, insulation paper and oil. However, since the existing insulation resistance measuring instrument did not have a probe or a temperature correction circuit to remove the oxide film, the measurement value was inaccurate, making it difficult to determine the correct state of the transformer.
도 13은 상기 도 7에 있어서, 절연저항 측정 방법을 설명하기 위한 흐름도로서, 도 13에 도시된 바와 같이, 본 실시예에서는 온도 보정기능을 추가하여 변압기의 정확한 상태판단을 실시할 수 있다.FIG. 13 is a flowchart illustrating a method of measuring insulation resistance in FIG. 7, and as shown in FIG. 13, in this embodiment, a temperature correction function may be added to accurately determine a state of a transformer.
도 13에 도시된 바와 같이, 상기 제어부(200)는 절연저항 측정을 위해 측정회로부(미도시)의 동작전원을 On시키고(S261), DC 1kV 전원(HV)을 생성하여 인가 한다(S262, S263). As shown in FIG. 13, the control unit 200 turns on the operating power of the measurement circuit unit (not shown) to measure the insulation resistance (S261), and generates and applies a DC 1kV power source (HV) (S262 and S263). ).
이때 절연저항에 대한 온도보상을 하기 위해 온도를 측정하고(S264), 변압기의 주 절연물을 통해 흐르는 누설전류(leakage_current)를 측정하여 절연저항 값을 계산한다(S265). At this time, the temperature is measured to compensate for the insulation resistance (S264), and the insulation resistance value is calculated by measuring the leakage current (leakage_current) flowing through the main insulation of the transformer (S265).
또한 상기 제어부(200)는 상기 S265 단계에서 계산된 절연저항에 대해 온도보상을 수행한다(S266). In addition, the controller 200 performs temperature compensation on the insulation resistance calculated in step S265 (S266).
여기서 상기 절연저항의 온도보상(온도보정)은, “절연저항*(1+(1/(234.5 + 온도)*(온도-25.0)))”을 적용할 수 있다. 상기 온도보상을 위한 연산식은 반복적인 실험과 시뮬레이션을 통해 산출될 수 있다.Here, as the temperature compensation (temperature correction) of the insulation resistance, “insulation resistance * (1+ (1 / (234.5 + temperature) * (temperature-25.0))”) may be applied. The equation for temperature compensation can be calculated through repeated experiments and simulations.
상기와 같이 온도보상을 수행한 절연저항 값이 기 지정된 시간(예 : 3초) 동안, 기 설정된 오차범위(예 : 50Kohm) 내의 값을 유지하는지 체크한다(S267).As described above, it is checked whether the insulation resistance value, which has been subjected to temperature compensation, maintains a value within a preset error range (eg, 50 Kohm) for a predetermined time (eg, 3 seconds) (S267).
상기 체크(S267) 결과, 상기 온도보상을 수행한 절연저항 값이 기 지정된 시간(예 : 3초) 동안 기 설정된 오차범위(예 : 50Kohm) 내의 값을 유지하면(S267의 예), 상기 제어부(200)는 상기 온도보상을 수행한 절연저항 값을 저장부(400)에 저장한다(S268).As a result of the check (S267), if the insulation resistance value performing the temperature compensation maintains a value within a preset error range (for example, 50Kohm) for a predetermined time (for example, 3 seconds) (YES in S267), the control unit ( 200 stores the insulation resistance value of the temperature compensation in the storage unit 400 (S268).
그러나 상기 온도보상을 수행한 절연저항 값이 기 지정된 시간(예 : 3초) 동안 기 설정된 오차범위(예 : 50Kohm) 내의 값을 유지하지 않으면(S267의 아니오), 지정된 루프시간(예 : 10초) 동안 상기 S264 내지 S267 단계를 반복 수행하고(S269), 상기 지정된 루프시간(예 : 10초) 후에도 상기 온도보상을 수행한 절연저항 값이 기 설정된 오차범위(예 : 50Kohm) 내의 값을 유지하지 않으면(S267의 아니오), 에러 처리를 하고 곧바로 종료한다(S270). 이때 도면에는 도시되어 있지 않지만 에러 처리 시 알람을 출력할 수도 있다.However, if the insulation resistance value performing the temperature compensation does not maintain a value within a preset error range (eg 50 Kohm) for a predetermined time (eg 3 seconds) (No in S267), the designated loop time (eg 10 seconds). ) Repeats the steps S264 to S267 (S269), and the insulation resistance value for which the temperature compensation is performed does not maintain a value within a preset error range (for example, 50 Kohm) even after the specified loop time (for example, 10 seconds). If not (NO in S267), an error process is performed and it ends immediately (S270). In this case, although not shown in the drawing, an alarm may be output during error processing.
이하 상기 측정값을 이용하여 변압기의 상태를 종합적으로 판단하는 방법에 대해서 설명한다.Hereinafter, a method of comprehensively determining a state of a transformer using the measured value will be described.
도 14는 상기 도 7에 있어서, 측정값을 이용하여 변압기의 상태를 종합적으로 판단하는 방법을 설명하기 위한 흐름도이다.FIG. 14 is a flowchart for describing a method of comprehensively determining a state of a transformer using measured values in FIG. 7.
도 14에 도시된 바와 같이, 상기 제어부(200)는 권선저항을 측정하여(S311), 상기 저장부(400)에 저장시켜 둔 측정값을 불러온 후(S312), 변압기(TR) 용량별 권선저항(즉, 1차 권선저항)을 비교하여(S313) 그 결과값을 출력한다(S314).As shown in FIG. 14, the control unit 200 measures winding resistance (S311), and loads the measured value stored in the storage unit 400 (S312). The resistance (that is, primary winding resistance) is compared (S313) and the resultant value is output (S314).
또한 상기 제어부(200)는 권수비를 측정하여(S315), 상기 저장부(400)에 저장시켜 둔 측정값을 불러온 후(S316), 사용자 설정값 또는 KS 규격과 비교하여(S317) 그 결과값을 출력한다(S318).In addition, the controller 200 measures the number of turns (S315), loads the measured value stored in the storage unit 400 (S316), and compares the user set value or the KS standard (S317) with the result value. It outputs (S318).
또한 상기 제어부(200)는 절연저항을 측정하여(S319), 상기 저장부(400)에 저장시켜 둔 측정값을 불러온 후(S320), 사용자 설정값 또는 KS 규격과 비교하여(S321) 그 결과값을 출력한다(S322).In addition, the control unit 200 measures the insulation resistance (S319), loads the measured value stored in the storage unit 400 (S320), and compares the user set value or the KS standard (S321) as a result. The value is output (S322).
또한 상기 제어부(200)는 상기 3가지 결과값의 상태(예 : 정상, 비정상)를 비교하여(S323), 최종 판단 결과를 리포트로 작성하여 출력하거나(S324), 디스플레이 화면을 통해 출력한다(S325). In addition, the control unit 200 compares the state (eg, normal, abnormal) of the three result values (S323), and writes the final determination result as a report (S324) or outputs through the display screen (S325) ).
예컨대 상기 최종 판단은, 3가지 측정값 중 하나라도 불량이면 불량, 모두 다 정상일 때 정상으로 최종 판단한다(도 15의 (c) 참조). For example, the final judgment is that if any one of the three measured values is bad, the final judgment is normal when all are normal (see FIG. 15C).
도 15는 본 실시예에 따른 변압기의 고장유형 자동 판별 장치를 이용한 현장 측정 방법과 측정 결과 화면을 보인 예시도로서, 이에 도시된 바와 같이, 본 실시예에 따른 변압기의 고장유형 자동 판별 장치는 모든 측정요소(권선저항, 권수비, 및 절연저항)를 바탕으로 변압기의 상태를 판정하고, 자기진단을 수행할 수 있다.15 is an exemplary view showing a field measurement method and a measurement result screen using a failure type automatic determination device of a transformer according to the present embodiment. As shown in FIG. Based on the measurement elements (winding resistance, winding ratio, and insulation resistance), the state of the transformer can be determined and self-diagnosis can be performed.
상기와 같이 본 실시예에서는 변압기의 정확한 상태판단을 위해, 변압기의 단자 표면에 형성된 산화피막을 제거하는 프로브(110, 120)와 필수 측정요소인 권선저항, 권수비, 및 절연저항 측정을 한꺼번에 실시한다. 그 이유는 종래의 기술은 산화피막에 의한 고저항으로 정상을 불량으로 오인 판정하거나, 한 가지 값만 측정할 경우 다른 값의 결함을 간과하여 정상으로 오인 판정하는 경우가 많기 때문이다. 또한 기존의 장비는 단순히 측정값만을 표시하기 때문에 변압기에 대한 배경지식이 없는 상태에서 사용자가 주관적으로 판단하는 인적 실수가 발생할 수 있기 때문이다.As described above, in order to accurately determine the state of the transformer, the probes 110 and 120 for removing the oxide film formed on the surface of the transformer and the measurement of the winding resistance, the winding ratio, and the insulation resistance, which are essential measurement elements, are performed at the same time. . The reason for this is that in the prior art, it is often judged that the normal is wrong due to the high resistance caused by the oxide film, or when it is measured only one value, the other value is overlooked and the error is normal. In addition, existing equipment simply displays measured values, which can lead to human error that the user subjectively judges without the background knowledge of the transformer.
하지만, 본 실시예는 변압기 진단 시 모든 측정요소(권선저항, 권수비, 및 절연저항)를 바탕으로, 사용자의 주관적 판단 개입을 배제시킴으로써 객관적이고 정확한 변압기 상태 판정을 할 수 있도록 하는 효과가 있다.However, this embodiment has the effect of making the objective and accurate transformer state determination by eliminating the subjective judgment intervention of the user based on all measurement elements (winding resistance, winding ratio, and insulation resistance) when the transformer is diagnosed.
이상으로 본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.The present invention has been described above with reference to the embodiments illustrated in the drawings, but this is merely exemplary, and various modifications and equivalent other embodiments are possible from those skilled in the art. I will understand the point. Therefore, the technical protection scope of the present invention will be defined by the claims below.

Claims (11)

  1. 변압기(TR)의 복수의 각 단자(1차 단자, 2차 단자)에 접촉되는 복수의 프로브(제1, 2 프로브)를 포함하며, 상기 각 단자에 형성된 산화피막을 제거하거나 뚫고, 이 산화피막의 하부층에 접촉 및 연결되는 측정부; 및And a plurality of probes (first and second probes) in contact with a plurality of terminals (primary terminal and secondary terminal) of the transformer TR, and remove or drill through the oxide film formed on each terminal. A measuring unit in contact with and connected to the lower layer of the; And
    상기 측정부를 통해 상기 변압기에서 1차 및 2차 권선저항, 권수비, 및 절연저항을 측정하고, 자기진단을 통해 오결선, 장비 자체 오차 발생, 내부 회로 이상 유무 등을 스스로 진단하며, 상기 자기진단 결과 및 상기 측정한 측정 결과를 저장, 및 온도 보정하여, 이 측정값들을 바탕으로 종합적으로 변압기의 상태를 판단하여 레포트나 디스플레이 화면을 통해 출력하는 제어부;를 포함하는 것을 특징으로 하는 변압기의 고장유형 자동 판별 장치.Measure the primary and secondary winding resistance, winding ratio, and insulation resistance in the transformer through the measuring unit, and self-diagnose faults, equipment errors, internal circuits, etc. through self-diagnosis. And a control unit for storing the measured result and correcting the temperature, and determining the state of the transformer based on the measured values and outputting the result through a report or a display screen. Discrimination device.
  2. 제 1항에 있어서, 상기 프로브는,The method of claim 1, wherein the probe,
    악어 클립형 머리부를 이용해 변압기의 클램프 단자를 물고, 손잡이를 잡은 사용자가 좌우로 회전함으로써, 악어 클립형 머리부에 형성된 이빨처럼 뾰족하게 튀어나와 맞물리게 형성된 부분을 이용해 각 단자 표면의 산화피막을 제거하도록 형성된 것을 특징으로 하는 변압기의 고장유형 자동 판별 장치.The clamp terminal of the transformer is used to bite the clamp terminal of the transformer using a crocodile clip-type head, and the user holding the handle rotates from side to side to remove the oxide film on the surface of each terminal by using a portion formed to protrude and engage like a tooth formed in the clip of the crocodile-type head. Automatic type failure detection device characterized in that the transformer.
  3. 제 1항에 있어서, 상기 프로브는,The method of claim 1, wherein the probe,
    사용자가 프로브의 레버를 누른 상태에서, 변압기의 클램프 단자에 밀어 넣으면 머리부의 입구측에 형성된 피막제거 팁이 클램프 단자의 산화피막을 제거하고, 이 상태에서 레버를 놓으면 상기 탐침이 상기 산화피막이 제거된 부분과 접촉할 수 있도록 형성된 것을 특징으로 하는 변압기의 고장유형 자동 판별 장치.When the user pushes the lever of the probe and pushes it into the clamp terminal of the transformer, the descaling tip formed at the inlet of the head removes the oxide film of the clamp terminal. Failure type automatic identification device of a transformer, characterized in that formed in contact with the part.
  4. 제 1항에 있어서, 상기 제어부는,The method of claim 1, wherein the control unit,
    변압기의 고장유형 자동 판별 장치의 전원을 켜면, 자가진단 및 캘리브레이션(Calibration)을 실시하고, When the power supply of the transformer failure automatic discrimination device is turned on, self-diagnosis and calibration are performed.
    상기 자가진단 및 캘리브레이션 결과, 비정상이면 사용자에게 알람(Alarm)을 출력하고, 정상이면 사용자에게 정상표시를 하며,As a result of the self-diagnosis and calibration, if abnormal, outputs an alarm to the user, and if normal, displays the normal to the user.
    자동 또는 수동 점검 모드 중, During auto or manual check mode,
    사용자가 사용 환경에 맞게 자동 모드를 선택하면, 자동 모드를 실행하여 변압기의 상태 측정값을 자동으로 측정하여 고장 여부를 자동으로 판별하고, When the user selects the automatic mode according to the usage environment, the automatic mode is executed to automatically measure the state measurement of the transformer to automatically determine whether there is a failure,
    사용자가 수동 모드를 선택하면, 사용자로부터 상태 측정값에 대한 측정 작업의 지시를 받아 해당하는 측정값을 바탕으로 고장 여부를 판별하는 것을 특징으로 하는 변압기의 고장유형 자동 판별 장치.When the user selects the manual mode, the failure type automatic determination device of the transformer, characterized in that it receives the instruction of the measurement operation for the state measurement value from the user to determine whether the failure based on the corresponding measurement value.
  5. 제 4항에 있어서, 상기 제어부는,The method of claim 4, wherein the control unit,
    자동모드가 실행되면, When auto mode is activated,
    변압기 용량을 선택하고,Select the transformer capacity,
    변압기의 용량에 따라 권선저항을 측정하고, 이어서 권수비 및 절연저항을 측정하며, 상기 측정값들을 디스플레이 화면에 표시함과 동시에 상기 측정값들을 분석하여,The winding resistance is measured according to the capacity of the transformer, and then the number of turns and the insulation resistance are measured, and the measured values are displayed on the display screen and analyzed at the same time.
    권선저항 측정값이 설정된 정상범위에 있는지 여부, 권수비 측정값이 설정된 정상범위에 있는지 여부, 및 절연저항이 설정된 정상범위에 있는지 여부에 따는 불량이나 정상 상태 여부를 디스플레이 화면에 표시하는 것을 특징으로 하는 변압기의 고장유형 자동 판별 장치.Displaying on the display screen whether the winding resistance measurement value is in the set normal range, whether the number of turns ratio measurement value is in the set normal range, and whether the insulation resistance is in the set normal range or not. Automatic failure type identification device of transformer.
  6. 제 1항에 있어서, 상기 제어부는,The method of claim 1, wherein the control unit,
    변압기의 권선저항 측정 시 권선 길이에 의해 저항값이 변동하므로, 아래의 수학식 1을 이용해 권선저항의 정상화여부를 판단하되,When measuring the resistance of the transformer, the resistance value varies depending on the length of the winding, so it is determined whether the winding resistance is normalized using Equation 1 below.
    (수학식 1)(Equation 1)
    Figure PCTKR2018011580-appb-I000004
    Figure PCTKR2018011580-appb-I000004
    ε : 변화율(%), Mn : n 번째 권선저항 측정값 ε: change rate (%), M n : measured value of nth winding resistance
    상기 변화율(ε)이 설정한 설정값 또는 장비오차 보다 작거나 같으면 권선저항이 안정적으로 정상화되었다고 판단하고,If the change rate ε is less than or equal to the set value or the equipment error, it is determined that the winding resistance is stably normalized.
    상기 변화율(ε)이 설정한 설정값 또는 장비오차보다 크면 에러인 것으로 판단하는 것을 특징으로 하는 변압기의 고장유형 자동 판별 장치.When the change rate (ε) is greater than the set value or the equipment error, it is determined that the error is an error type automatic determination device of the transformer.
  7. 제 1항에 있어서, 상기 제어부는,The method of claim 1, wherein the control unit,
    권선비 측정을 위하여, For measuring turns ratio,
    동작전원 소스 및 설정된 측정변수를 초기화하고, 1차측 측정 동작전원과 2차측 측정 동작전원을 온시킨 후, AC 출력값 및 AC 입력값을 측정 및 계산하고, 상기 측정값을 이용하여 권선비를 계산하되,After initializing the operating power source and the set measurement variable, turning on the primary measuring operation power and the secondary measuring operating power, measuring and calculating the AC output value and the AC input value, and calculating the turns ratio using the measured values,
    상기 권선비 측정 시 1차 권선에 AC 입력전원을 인가하고 2차 측으로 출력되는 전압을 측정하여, 아래의 수학식 2와 수학식 3을 이용해 권선비를 계산하는 것을 특징으로 하는 변압기의 고장유형 자동 판별 장치.When the winding ratio is measured by applying an AC input power to the primary winding and measuring the voltage output to the secondary side, the automatic failure type determination device of the transformer, characterized in that the winding ratio is calculated using the following equations (2) and (3) .
    (수학식 2)(Equation 2)
    Figure PCTKR2018011580-appb-I000005
    Figure PCTKR2018011580-appb-I000005
    (수학식 3)(Equation 3)
    Figure PCTKR2018011580-appb-I000006
    Figure PCTKR2018011580-appb-I000006
    여기서, N은 권선수, V는 전압, I는 전류Where N is the number of turns, V is the voltage, and I is the current
  8. 제 7항에 있어서, 상기 제어부는,The method of claim 7, wherein the control unit,
    상기 계산된 권선비가 지정된 오차범위 이내이면 상기 계산된 권선비를 저장부에 저장하고, If the calculated winding ratio is within a specified error range, the calculated winding ratio is stored in a storage unit,
    상기 계산된 권선비가 오차범위를 벗어나면 측정을 종료하거나 재시작하는 것을 특징으로 하는 변압기의 고장유형 자동 판별 장치.When the calculated turns ratio is out of the error range, the failure type automatic determination device of the transformer, characterized in that for terminating or restarting the measurement.
  9. 제 1항에 있어서, 상기 제어부는,The method of claim 1, wherein the control unit,
    절연저항 측정을 위해,For measuring insulation resistance,
    측정회로부의 동작전원을 On시키고, DC 1kV 전원(HV)을 생성하여 인가하고,Turn on the operating power of the measuring circuit, generate and apply DC 1kV power (HV),
    현재의 온도를 측정하며, Measure the current temperature,
    변압기의 주 절연물을 통해 흐르는 누설전류(leakage_current)를 측정하여 절연저항 값을 계산하되,The insulation resistance value is calculated by measuring the leakage current (leakage_current) flowing through the main insulation of the transformer.
    “절연저항*(1+(1/(234.5 + 온도)*(온도-25.0)))”을 적용하여, 상기 절연저항에 대해 온도보상을 수행하는 것을 특징으로 하는 변압기의 고장유형 자동 판별 장치.A device for automatically identifying a failure type of a transformer, characterized by performing temperature compensation for the insulation resistance by applying “insulation resistance * (1+ (1 / (234.5 + temperature) * (temperature-25.0))”.
  10. 제 9항에 있어서, 상기 제어부는,The method of claim 9, wherein the control unit,
    상기 온도보상을 수행한 절연저항 값이 기 지정된 시간 동안, 기 설정된 오차범위 내의 값을 유지하는지 체크하고, It is checked whether the insulation resistance value that has performed the temperature compensation maintains a value within a preset error range for a predetermined time period,
    상기 체크 결과, 상기 온도보상을 수행한 절연저항 값이 기 지정된 시간 동안 기 설정된 오차범위 내의 값을 유지하면, 상기 온도보상을 수행한 절연저항 값을 저장부에 저장하고,As a result of the check, if the insulation resistance value for which the temperature compensation is performed maintains a value within a preset error range for a predetermined time, the insulation resistance value for performing the temperature compensation is stored in a storage unit.
    상기 온도보상을 수행한 절연저항 값이 기 지정된 시간 동안 기 설정된 오차범위 내의 값을 유지하지 않으면, 지정된 루프시간 동안 상기 체크 과정을 반복 수행하고, 상기 지정된 루프시간 후에도 상기 온도보상을 수행한 절연저항 값이 기 설정된 오차범위 내의 값을 유지하지 않으면, 에러로 처리하는 것을 특징으로 하는 변압기의 고장유형 자동 판별 장치.If the insulation resistance value for which the temperature compensation is performed does not maintain a value within a preset error range for a predetermined time, the checking process is repeated for a specified loop time, and the insulation resistance for which the temperature compensation is performed even after the designated loop time If the value does not maintain a value within a predetermined error range, the failure type automatic determination device of a transformer, characterized in that the processing as an error.
  11. 제 1항에 있어서, 상기 제어부는,The method of claim 1, wherein the control unit,
    측정값을 이용하여 변압기의 최종 상태를 판단하기 위하여,To determine the final state of the transformer using the measured values,
    권선저항 측정값, 권선비 측정값, 및 절연저항 측정값에 대한 상태를 판단하고,Determine the state of the winding resistance measurement value, winding ratio measurement value, and insulation resistance measurement value,
    상기 측정값들 중 하나라도 불량이면 변압기는 불량 상태로 최종 판단하며,If any one of the measured values is bad, the transformer finally determines that it is bad.
    상기 측정값들 모두 다 정상이면 변압기는 정상 상태로 최종 판단하는 것을 특징으로 하는 변압기의 고장유형 자동 판별 장치.If all of the measured values are normal, the transformer automatically determines the failure type of the transformer, characterized in that the final determination to the normal state.
PCT/KR2018/011580 2018-07-18 2018-09-28 Apparatus for automatically determining failure type of transformer WO2020017693A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0083507 2018-07-18
KR1020180083507A KR102025533B1 (en) 2018-07-18 2018-07-18 Apparatus for automatically determining fault type of transformer

Publications (1)

Publication Number Publication Date
WO2020017693A1 true WO2020017693A1 (en) 2020-01-23

Family

ID=68067984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011580 WO2020017693A1 (en) 2018-07-18 2018-09-28 Apparatus for automatically determining failure type of transformer

Country Status (2)

Country Link
KR (1) KR102025533B1 (en)
WO (1) WO2020017693A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116027111A (en) * 2023-03-28 2023-04-28 华北电力大学(保定) Transformer electric variable measuring device and measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113504493B (en) * 2021-05-26 2022-03-04 广州市一变电气设备有限公司 Dry-type transformer abnormity detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030032987A (en) * 2003-03-17 2003-04-26 삼일변압기 주식회사 System for fault diagnosing of transformer and method thereof
JP2003254994A (en) * 2002-03-01 2003-09-10 Sumitomo Electric Ind Ltd Contact probe and its manufacturing method
KR20100029338A (en) * 2008-09-08 2010-03-17 하주영 System for diagnostication of transformer using ultrasonic wave
KR20160099121A (en) * 2014-12-30 2016-08-22 한전케이피에스 주식회사 Test device for wiring electric generator
KR101654882B1 (en) * 2015-06-23 2016-09-06 한전케이디엔 주식회사 System and method for failure analysis and fault indication by distribution lines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254994A (en) * 2002-03-01 2003-09-10 Sumitomo Electric Ind Ltd Contact probe and its manufacturing method
KR20030032987A (en) * 2003-03-17 2003-04-26 삼일변압기 주식회사 System for fault diagnosing of transformer and method thereof
KR20100029338A (en) * 2008-09-08 2010-03-17 하주영 System for diagnostication of transformer using ultrasonic wave
KR20160099121A (en) * 2014-12-30 2016-08-22 한전케이피에스 주식회사 Test device for wiring electric generator
KR101654882B1 (en) * 2015-06-23 2016-09-06 한전케이디엔 주식회사 System and method for failure analysis and fault indication by distribution lines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116027111A (en) * 2023-03-28 2023-04-28 华北电力大学(保定) Transformer electric variable measuring device and measuring method

Also Published As

Publication number Publication date
KR102025533B1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
WO2019209033A1 (en) Battery diagnostic method
WO2020017693A1 (en) Apparatus for automatically determining failure type of transformer
WO2013133551A1 (en) Resistance welding monitoring apparatus and method and system therefor
TWI676807B (en) Self-diagnosis module and self-diagnosis method for plasma power supply device
CN111157841A (en) Fault quick positioning device for secondary circuit of electric operation type isolating switch
JPH10507320A (en) Method and apparatus for automated wafer level testing and reliability data analysis
CN109444651B (en) Monitoring method and system for secondary circuit
JP3179394B2 (en) Electrical inspection device and electrical inspection method for printed wiring board
JP4930106B2 (en) Electrical signal measuring device
TWI731448B (en) Self-testing system for test device and test method using the same
CN109060220A (en) Cable accessory interface pressure detection method and device
RU2657724C2 (en) Switching system of executive bodies and method of nondestructive testing of operability and disconnection of switching points and executive bodies
KR102624689B1 (en) Method and Device for Thermal Imaging Diagnosis of Overhead Gas Insulated Switchgears
Zajadatz et al. Experimental Validation of Thermal Monitoring Systems for Medium-Voltage Switchgears
CN118040902B (en) Intelligent electric control cabinet
KR100396846B1 (en) Method for finding connection troubles by measuring relative voltage between two points using multichannel scanner in examining defect of vehicle
KR101483952B1 (en) Wire harness inspection method
CN118010104B (en) Electrical circuit aging degree detection method and system
JP2004354378A (en) Insulation inspection device and inspection method of electrical insulation section
CN115902611B (en) Relay calibration method, device and calibrator
EP4215745A1 (en) Wind turbine cable connector monitoring method and device
CN118376907A (en) High-temperature reverse bias test system for PCB design
KR20030092211A (en) Ir in circuit test system
KR20240085923A (en) Current sensor employing pre error detection for diagnosis of relay contact error detection and breakdown of electric load
CN115712071A (en) Low-voltage apparatus control loop detection circuit and method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926455

Country of ref document: EP

Kind code of ref document: A1