WO2019209033A1 - Battery diagnostic method - Google Patents

Battery diagnostic method Download PDF

Info

Publication number
WO2019209033A1
WO2019209033A1 PCT/KR2019/004971 KR2019004971W WO2019209033A1 WO 2019209033 A1 WO2019209033 A1 WO 2019209033A1 KR 2019004971 W KR2019004971 W KR 2019004971W WO 2019209033 A1 WO2019209033 A1 WO 2019209033A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage
impedance
measuring
resistance
Prior art date
Application number
PCT/KR2019/004971
Other languages
French (fr)
Korean (ko)
Inventor
홍영진
명희경
이영재
최경린
Original Assignee
주식회사 민테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 민테크 filed Critical 주식회사 민테크
Publication of WO2019209033A1 publication Critical patent/WO2019209033A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles

Definitions

  • the present invention relates to a battery diagnostic method, and more particularly, to a battery diagnostic method capable of diagnosing a state, a performance and a problem of an electric vehicle or an ESS (energy storage device) battery.
  • ESS energy storage device
  • An electric vehicle or an ESS uses a plurality of secondary batteries, in which a large capacity secondary battery is usually connected in series, as a battery.
  • An object of the present invention is to provide a battery diagnostic method capable of diagnosing a state, a performance and a problem of an electric vehicle or an ESS battery.
  • the battery diagnostic method according to the present invention can diagnose and grade the status, performance and problems of various batteries.
  • FIG. 1 is a perspective view of a battery diagnostic apparatus according to an embodiment.
  • FIG. 2 is a diagram illustrating a battery diagnosis apparatus connected to a battery according to an exemplary embodiment.
  • FIG. 3 illustrates a battery diagnostic system according to an embodiment.
  • FIG. 4 is a flowchart of a battery diagnostic method, according to an exemplary embodiment.
  • FIG. 5 is a flowchart illustrating a battery initial check operation according to an exemplary embodiment.
  • FIG. 6 is a flowchart of a battery test operation according to an exemplary embodiment.
  • FIG. 7 is a flowchart of a standard test operation during a battery test operation, according to an exemplary embodiment.
  • FIG. 8 is a flowchart illustrating a detailed inspection operation during a battery inspection operation according to an exemplary embodiment.
  • FIG. 9 is a flowchart of a capacity standard test operation during a battery test operation, according to an exemplary embodiment.
  • FIG. 10 is a flowchart of a capacity overhaul operation during a battery test operation, according to an exemplary embodiment.
  • FIG. 11 is a flowchart of a battery late check operation, according to an exemplary embodiment.
  • FIG. 12 is a flowchart illustrating a battery late check operation during a battery late check operation according to an exemplary embodiment.
  • FIG. 13 is a flowchart of a battery late separation check operation during a battery late check operation according to an exemplary embodiment.
  • FIG. 14 is a flowchart illustrating a battery detaching operation during a late battery checking step, according to an exemplary embodiment.
  • 15 is a flowchart of a battery late safety check operation during a battery late check step, according to an exemplary embodiment.
  • 16 is a flowchart illustrating an always-on check according to an embodiment.
  • 17 is a flowchart illustrating an abnormal stop operation according to an exemplary embodiment.
  • 18A to 18Q are flowcharts illustrating unit processes of basic tests configuring a test in a battery diagnosis process, according to an exemplary embodiment.
  • a battery diagnostic method based on a battery diagnostic apparatus includes: checking a state and information of a battery to be diagnosed, performing an initial check by measuring a voltage and a temperature of the battery, and as a result of the initial check, the state of the battery is normal. Performing a test by measuring an AC impedance and a DC resistance of the battery, determining and rating SOC, SOH, SOP, and SOB of the battery, based on the test result, and later checking of the battery. Performing the step of storing the diagnostic result of the battery.
  • the checking of the status and information may include reading a barcode attached to the battery with a barcode reader and reading information corresponding to the battery from a database, wherein the information may include the level of the battery and manufacturing information. It may include vehicle model, model year, type, and electrochemical characteristic information.
  • the performing of the initial check may include measuring AC voltage, temperature, and AC impedance at a specific frequency of the battery using an AC impedance analyzer, measuring voltage and temperature of the battery with a charger, a BMS or a battery interface. Measuring the voltage and temperature of the battery through, and determining the insulation state of the battery with an insulating resistor.
  • the performing of the inspection may include at least one of a quick inspection mode, a standard inspection mode, a precision inspection mode, a capacitance standard inspection mode, a capacitance inspection mode, and a resistance inspection mode based on the availability of the AC impedance analyzer and the charger / discharger. It may include the step of selecting.
  • the performing of the inspection may include measuring an AC impedance and then measuring a DC resistance.
  • the performing of the inspection may include performing high voltage alternating current impedance measurement, discharging direct current resistance measurement, and charging direct current resistance measurement when the SOC of the battery is 50% or more, and performing high voltage alternating current when the SOC of the battery is less than 50%. Impedance measurement, charge DC resistance measurement, discharge DC resistance measurement may be performed in this order.
  • the rating may include charging or discharging the battery according to a target SOC based on at least one of measured AC impedance, DC resistance, and OCV information of the battery.
  • the performing of the late check may include measuring voltage, temperature, insulation resistance, and alternating current impedance at a specific frequency of the battery, and storing a test result when the measured value is within a normal range, and removing the tested battery from the MSD. And disconnecting the high voltage connection, the low voltage connection, and the BMS or battery interface of the battery diagnostic apparatus from the battery.
  • the voltage and temperature of the battery are periodically measured, and when the measured value is out of the normal range, an abnormal stop operation is performed, and the abnormal stop operation performs all executions of the battery diagnosis method. Discontinuing, separating the battery and the MSD, measuring an end voltage of the battery, and if the end voltage is normal, separating the high voltage connection and the low voltage connection from the battery, And separating the BMS or the battery interface of the battery diagnosis apparatus.
  • a battery may refer to one battery cell, or a plurality of battery cells may be electrically connected and modularized.
  • the battery may include a plurality of battery modules.
  • Each of the plurality of battery modules may include a plurality of cells.
  • the plurality of battery modules may be mixed with each other in series and in parallel.
  • the plurality of battery modules may be a secondary battery such as a lithium ion battery.
  • the capacities of the plurality of battery modules may be the same as or different from each other.
  • the meaning that the measured value or state is “not normal” or “abnormal” may mean that the measured value or state is outside the normal range (or reference range) or is outside the reference value.
  • the measured value when the measured value is smaller than the first reference value or larger than the second reference value, it may be determined to be abnormal.
  • the insulation state may be determined to be abnormal when the value of the measured insulation resistance is larger or smaller than the reference value.
  • unit may mean a hardware component or a circuit such as an FPGA or an ASIC.
  • FIG. 1 illustrates a perspective view of a battery diagnostic apparatus 100 according to an embodiment
  • FIG. 2 illustrates a state in which the battery diagnostic apparatus 100 according to an embodiment is connected to a battery.
  • the battery diagnosis apparatus 100 may be connected to the battery 10 to diagnose a state of the battery 10.
  • the battery 10 may include a terminal 12 and a battery management system (BMS) 11.
  • BMS battery management system
  • the battery diagnosis apparatus 100 may be connected to at least one of the terminal 12 and the battery management system 11.
  • FIG. 3 is a block diagram of a battery diagnostic apparatus according to an exemplary embodiment.
  • the battery diagnosis apparatus 100 includes a control unit, a diagnosis unit, an AC impedance analyzer (ACIA), a battery interface, a charger, a barcode reader, a voltage meter, an insulation resistor, a power supply, and a first connection unit. (HVJB), and the second connector LVJB.
  • ACIA AC impedance analyzer
  • HVJB first connection unit.
  • the controller may control the operation of the AC impedance analyzer.
  • the controller may control the AC impedance analyzer to operate according to a user command or a command received from the outside.
  • the control unit may be arranged to be connected to the AC impedance analyzer and a circuit, a wire, or a communication line on the circuit board.
  • control unit may control the operation of the diagnostic unit and the charger.
  • the battery diagnosis apparatus 100 may physically distinguish a plurality of control circuits for controlling the control objects. That is, one controller may control the AC impedance analyzer, the diagnostic unit, and the charger / discharger, and the controller may include a first controller for controlling the AC impedance analyzer, a second controller for controlling the diagnostic unit, and a charger / discharger. It may also include a third control unit for controlling.
  • the controller may include a memory in which a program for controlling a control target is stored and a processor for executing the stored program.
  • the controller may include one processor or may include a plurality of processors as necessary. Also, a plurality of processors may be integrated on one chip or may be physically separated.
  • the AC impedance analyzer can detect the AC impedance of the battery.
  • the AC impedance analyzer may be connected to the cell terminal 12 of the battery 10 to measure information for detecting the AC impedance of the battery.
  • the AC impedance analyzer may detect the battery AC impedance by measuring at least one of the resistance R, the inductor L, and the capacitor C of the battery at the reference frequency or the reference frequency range.
  • the battery AC impedance may be detected by configuring an equivalent circuit for electrochemical analysis by measuring at least one of the resistor R, the inductor L, and the capacitor C.
  • FIG. The method of detecting AC impedance may selectively perform various methods such as a bridge method, a resonance method, an I-V method, an RF I-V method, and a network analysis method, if necessary, and is not particularly limited.
  • the AC impedance analyzer may include a configuration for measuring a resistor, an inductor, and a capacitor, and an operation processing circuit or device for calculating an impedance value using the same.
  • the AC impedance analyzer may further include a temperature meter (not shown) for measuring the temperature of the battery. By measuring the temperature of the battery in the temperature meter, the AC impedance can be detected in consideration of the battery temperature dependency.
  • the voltage range when measured in the AC impedance analyzer, may be 5 to 1,000V, the resistance range is 100 ⁇ to 1 ⁇ , the frequency range is 0.1Hz to 10kHz, and the temperature range is -40 to 80 ° C. .
  • the AC impedance analyzer may detect the AC impedance of the battery in various states according to a control command of the controller. Specifically, the AC impedance analyzer may detect an AC impedance for a battery in a fully charged state, an AC impedance for a battery in a full discharge state, and an AC impedance for a battery in a full partial charge / discharge state. According to an embodiment of the present disclosure, the controller may receive information on whether the AC impedance analyzer is measured, a measurement frequency range, etc. from the diagnostic unit, and control the AC impedance analyzer based on the information. Information about the resistance R, the inductor L, the capacitor C, and the AC impedance measured and detected by the AC impedance analyzer may be transmitted to the diagnosis unit.
  • the battery interface is connected to the battery terminal to measure the temperature and voltage of the battery.
  • the battery interface may perform a function of measuring the voltage and temperature of the battery when the battery management system BMS does not operate due to a failure.
  • the battery interface may be connected to a terminal of the battery, and may be connected to the controller and the AC impedance analyzer, and serve as a relay so that the controller and the AC impedance analyzer are connected to the battery.
  • the charger / discharger may charge or discharge the battery.
  • the charger / discharger may charge or discharge the battery according to a control command of the controller, thereby making the battery fully charged, fully discharged, or partially charged.
  • the charger / discharger may measure the capacity of the battery or the DC resistance under the control of the controller.
  • the charger and charger may further include a temperature meter (not shown) for measuring the temperature of the battery. By measuring the temperature of the battery in the temperature meter, the AC impedance analyzer can detect the AC impedance for the battery in various states in consideration of the battery temperature dependency.
  • the diagnosis unit may diagnose a state of the battery based on at least one of the capacity of the battery, the DC resistance, and the AC impedance.
  • the diagnostic unit analyzes the received resistance (R), the inductor (L), the capacitor (C), and the alternating current impedance by an equivalent circuit for electrochemical analysis, and the like, so that the state of charge (SoC), state of health (SoH), State information of a battery such as a state of power, a state of energy, and a state of balance can be determined.
  • the diagnostic unit may further determine the state information of the battery by further utilizing the capacity information of the battery and the DC resistance obtained through the charger / discharger.
  • the diagnosis unit may derive the battery state by analyzing the equivalent circuit.
  • the diagnostic unit may include a memory (not shown) for storing program codes and algorithms for analyzing the equivalent circuit, and thus may include at least one processor for executing a program or performing an algorithm.
  • the diagnosis unit may further include a diagnosis DB.
  • the diagnostic DB may be a database that stores identification information of the battery and various parameter information corresponding thereto (eg, battery manufacturing information, product specifications, electrical characteristic information, electrochemical characteristic information, usage conditions, and environmental information).
  • the power supply may supply power to the battery management system (BMS) of the battery.
  • the power supply may be electrically connected to a battery management system (BMS).
  • the power supply may drive the battery management system BMS by supplying power to the battery management system BMS, thereby controlling the battery and obtaining information related to the battery.
  • the power supply may be a device for supplying power to the battery management system BMS by receiving an external power and converting it to a voltage and a current required by the battery management system BMS.
  • the power supply unit may be connected to the control unit to perform power supply and shutdown under the control of the control unit. As described above, the operation control of the power supply may be performed by the controller, or may be controlled by a separate second controller that is physically distinct from the first controller in the controller for controlling the AC impedance analyzer.
  • the output voltage and current of the power supply can be selected according to the magnitude of the voltage and current required by the battery management system (BMS) and is not particularly limited.
  • BMS battery management system
  • the first connection part (High Voltage Junction Box, HVJB) is connected to the AC impedance analyzer, the AC impedance analyzer may provide a connection circuit for detecting the AC impedance of the battery.
  • the second connector LVJB may be connected to a power supply, and may provide a connection circuit for supplying power to the battery management system BMS.
  • the first connection unit and the second connection unit may be connected to the control unit, respectively, and the operation may be controlled by the control unit.
  • the first connection portion HVJB may be connected to a terminal of the battery so that the AC impedance analyzer may detect the AC impedance of the battery.
  • the battery diagnostic apparatus 100 may also measure voltages and resistances of the battery by connecting other components of the battery diagnostic apparatus 100 to the terminals or the body of the battery through the first connector.
  • the first connection unit may include a circuit corresponding to each of the components of the battery diagnosis apparatus 100 to connect each of the components of the battery diagnosis apparatus 100 to a terminal or a body of the battery.
  • the circuit may include a switch for connecting or shorting an electrical signal.
  • Each of the components of the battery diagnosis apparatus 100 may be individually connected to or disconnected from the terminal or the body of the battery as needed through the first connector.
  • the second connection unit (Low Voltage Junction Box, LVJB) may be connected to a battery management system (BMS).
  • BMS battery management system
  • the second connector may be configured to connect the battery management system BMS and the power supply so that power of the power supply is supplied to the battery management system BMS.
  • the second connection unit may be configured as a communication circuit for connecting the battery management system and the BMS communication unit (not shown) to move data with each other.
  • the voltage meter may check a connection relationship between the first connector and the battery, and measure a voltage of the connection circuit to determine whether the battery is disconnected from the MSD.
  • the MSD is designed to disconnect the electrical connections to the battery to prevent the user from electric shock during inspection or maintenance.
  • the voltage meter may be connected to the terminal of the battery and measure the voltage of the battery to determine whether the battery is stably separated from the MSD, thereby ensuring stability during battery diagnosis.
  • the voltage meter since other components of the battery diagnosis apparatus 100 may be connected to the battery through the first connector, the voltage meter may check whether the other components of the battery diagnosis apparatus 100 and the battery are normally connected.
  • An insulation resistor can measure the insulation resistance of the battery.
  • the insulation resistor may be connected to either the positive terminal or the negative terminal of the battery and the body of the battery to measure the insulation resistance of the battery. Through this, it is possible to check whether the body of the battery is insulated, so that the user may prevent an electric shock caused by the current flowing through the body of the battery.
  • the insulating resistor is not particularly limited as long as it is an element or device capable of measuring the resistance of the battery body.
  • the barcode reader may receive unique information (or identification information) of the battery from the battery.
  • the barcode reader may be included in the diagnosis unit and configured to recognize data such as a barcode displayed on the outside of the battery to recognize data such as a serial number of the battery.
  • the battery diagnosis apparatus 100 may check the information of the battery (battery ID, applied vehicle model name, capacity, number of battery cells, voltage, etc.) through a barcode reader, and may diagnose the battery based on the information of the battery.
  • the diagnosis unit may diagnose the state of the battery by comparing the reference data corresponding to the battery information received through the barcode reader with the data received from the AC impedance analyzer.
  • the battery diagnosis apparatus 100 may display information of a battery identified through a barcode reader on a display device (not shown) to allow a user to confirm. The user may check whether the battery information displayed on the battery diagnosis apparatus 100 corresponds to the battery to be diagnosed, thereby preventing a safety accident and a diagnosis error due to a diagnosis command and a battery mismatch.
  • FIG. 4 is a flowchart of a battery diagnostic method, according to an exemplary embodiment.
  • the battery diagnosis method of FIG. 4 may be performed by the battery diagnosis apparatus 100, but is not limited thereto.
  • the battery diagnosis apparatus may check the state and information of the battery. By checking the status and information of the battery, it is possible to apply a condition to test the battery and other types of battery to be actually inspected to prevent a test error or to prevent a fire, an explosion, or a user's safety accident that may occur.
  • the battery diagnosis apparatus may determine battery information through identification information such as a barcode or a QR code, and receive a detailed specification corresponding to the determined battery information from a database.
  • the database may include battery identification information and corresponding battery parameters.
  • the battery parameter may include any information about the identified battery.
  • the battery parameters may include manufacturing information of the battery, corresponding model, model year, geographical location information, temperature, product specification, electrical property information, electrochemical property information, use condition and environmental information, and are collected by inspecting the battery. It may include a parameter.
  • the battery diagnostic apparatus may be configured to recognize data such as a serial number of the battery by recognizing information such as a barcode displayed on the outside of the battery through a barcode reader.
  • the battery diagnostic apparatus may check the type and information of the specification according to the type and year of the battery.
  • the battery diagnosis device selects the level of a diagnostic battery (a cell, a module, or a pack), selects a battery manufacturer, a vehicle type, a year, a pack, or a module level, selects a barcode, and inputs a barcode to check whether there is a match.
  • the battery diagnostic apparatus calls a list of manufacturers, models, models, and battery types, selects a manufacturer, models, models, and battery types, and inputs a barcode received through a barcode reader to input a battery type in which the barcode is called. You can check whether it matches the information stored on the list.
  • the battery diagnostic apparatus reads, displays and stores basic information of the diagnostic battery in a DB.
  • the battery diagnostic apparatus may complete and store acquisition information and basic information of the diagnostic battery in the server of FIG. 3.
  • the battery diagnosis apparatus may perform a battery initial check.
  • the initial battery check may include an operation for confirming the safety of the battery state before starting the battery test and / or an operation for confirming an abnormality of various equipment (eg, a battery diagnostic device).
  • the battery safety check, the connection of the battery and various test equipment, the connection check, and the initial value can be measured and the preparation check can be performed.
  • Safety can be ensured by checking whether the battery can be inspected and checking the equipment connection and malfunction so that only the battery that has passed the initial inspection can be inspected. For example, by performing an initial check, a fire or explosion due to overcharge or overdischarge, which may occur when the battery is not passed through the initial check, may be prevented from an electric shock accident of the user due to insulation breakdown. .
  • the battery diagnostic apparatus may perform an initial check with various inspection devices.
  • a battery diagnostic device can measure the battery's voltage, temperature, and alternating current impedance at specific frequencies through an AC analyzer.
  • Battery diagnostics can measure voltage and temperature with a DC analyzer.
  • the battery diagnostic device can measure the voltage and temperature of the cell through the BMS or the battery interface.
  • the battery diagnostic device can verify that the insulation of the battery has not been destroyed by an insulation resistor.
  • the battery diagnostic apparatus may perform an initial check by comparing the measured voltage value and temperature value with various parameter values of the battery received in step S4100, and may continue the test only for the battery that passes.
  • the battery diagnosis apparatus may perform a battery initial safety check, a battery connection, a battery initial connection check, a battery initial preparation check, and a storage completion operation.
  • Initial safety checks can be assigned a diagnostic number, issue additional barcodes for conducting a test diagnostic, disconnect the MSD from the diagnostic battery sample, and measure the battery termination voltage. If it is not confirmed whether the MSD is disconnected or the measured voltage is abnormal, the abnormal stop operation (described later with reference to FIG. 17) may be performed.
  • the abnormal stop operation is an operation that can be taken when an abnormal indication is found in the battery diagnosis process, and the detailed operation will be described later with reference to FIG.
  • the battery connection operation may include connecting a battery to a BMS or battery interface, a low voltage connection (eg LVJB in FIG. 3), a high voltage connection (eg HVJB in FIG. 3), a MSD connection and a battery for battery diagnosis. And measuring the voltage at the termination. If the MSD is connected abnormally or the measured voltage is abnormal, the abnormal stop operation may be performed.
  • a low voltage connection eg LVJB in FIG. 3
  • HVJB high voltage connection
  • the battery initial connection check operation is a process of checking a connection state of a battery sample and determining a normal state.
  • An abnormal stop operation may be performed by measuring the voltage of the battery with a voltage meter. If the voltage is normal, turn on the power supply and BMS, and measure the voltage with CAN signal, relay ON, and voltage meter to perform abnormal stop operation. If the voltage is normal, the insulation is measured with an insulation resistor, and if the insulation state is abnormal, the abnormal stop operation may be performed.
  • the battery initial check operation is a process of checking whether the AC impedance analyzer, charger / discharger, BMS or battery interface required for battery inspection is ready for inspection by measuring voltage, temperature, and resistance.
  • the battery diagnostic apparatus may perform voltage, temperature, and 1 kHz (or other specific frequency) resistance measurements of the battery via the ACIA.
  • the battery diagnostic apparatus may measure the voltage and temperature of the battery through the charger / discharger.
  • the battery diagnostic apparatus may measure the voltage and temperature of the battery through the BMS or the battery interface.
  • the battery diagnostic apparatus may store and complete a battery initial check result.
  • the battery diagnosis apparatus may test a battery.
  • the battery test operation may include a process of selecting and executing a battery test mode and simultaneously performing a regular check for constantly checking whether a battery is abnormal during the battery test operation.
  • the battery test mode may include a quick test and a standard / precision test.
  • step S4300 the battery diagnostic apparatus selects a battery test mode, performs a battery always-on check, and checks battery test modes (quick test, standard test, overhaul, capacity standard test, capacity overhaul, At least one of the resistance test) and the test result may be stored.
  • battery test modes quick test, standard test, overhaul, capacity standard test, capacity overhaul, At least one of the resistance test
  • the operation of selecting the battery test mode may include a process of presenting a possible test method using an initial check result and selecting a test method to perform a battery test and a regular check. For example, if both an AC impedance analyzer and a charger / discharger are available, a quick test, a standard test, a precision test, a capacity standard test, a capacity test, and a resistance test may all be performed. If only an AC impedance analyzer is available, only a resistance test may be performed. If only the charger and charger are available, only capacity standard inspection and capacity inspection can be performed.
  • the battery diagnostic apparatus may calculate a constant check condition, select a battery test method, execute a battery test, perform a regular check, and store the test method.
  • the quick test method may refer to a process of performing a quick test using an AC impedance analyzer, a charger / discharger, a BMS, or a battery interface during battery diagnosis.
  • the battery diagnostic apparatus may measure AC impedance first and then measure DC resistance. The reason for measuring the AC impedance first is that if the DC resistance is measured first, the surface state of the electrode in the battery changes greatly, so that accurate current state information is not known.
  • the battery diagnostic apparatus may measure impedance by scanning several frequencies, unlike measuring impedance at short frequencies in the initial check (S4200) and the late check (S4500).
  • the battery diagnostic apparatus may measure the discharge DC resistance or the charge DC resistance according to the estimated SOC state. For example, the battery diagnostic device estimates the current SOC state using the current voltage state of the battery and the value loaded from the DB. If the SOC is 50% or higher, there is a risk of overcharge. When the characteristic evaluation is performed and the SOC is less than 50%, there is a risk of overdischarge, and thus the discharge output characteristic evaluation may be performed after the charge output characteristic evaluation. This is to measure the DC resistance out of the dangerous state of the battery.
  • the reference value of the SOC used in the method disclosed herein is not limited to 50%, and any other value may be used as the reference value.
  • the standard test method may refer to a process of performing a standard test using an AC impedance analyzer, a charger, a BMS, or a battery interface during battery diagnosis.
  • the battery diagnostic apparatus may measure the AC impedance first and then measure the DC resistance. For example, the battery diagnostic apparatus estimates the current SOC state using the current voltage state of the battery and the value retrieved from the DB. If the SOC is 50% or higher, there is a risk of overcharge, so the high voltage AC impedance and the discharge DC resistance Can be measured, a partial standard discharge can be performed, and the high voltage AC impedance and the charge DC resistance can be measured again.
  • FIG. 7 is a flowchart of an inspection operation of a standard inspection mode, according to an exemplary embodiment.
  • the overhaul mode is a process of performing a deep test during the battery diagnosis by measuring the internal resistance at each stage while the battery is completely discharged and fully charged using an AC impedance analyzer, a charger, a BMS, or a battery interface. It may mean. 8 is a flowchart of an inspection operation of a detailed inspection mode, according to an exemplary embodiment.
  • the capacity standard test is a process of performing a standard capacity test through a partial charge / discharge test of a battery using a charger / discharger, a BMS, or a battery interface during battery diagnosis.
  • 9 is a flowchart of a test operation of a capacity standard test method, according to an exemplary embodiment.
  • the capacity overhaul is a process of performing a capacity overhaul by performing a full charge / discharge test of the battery using a charger / discharger, a BMS, or a battery interface during battery diagnosis.
  • 10 is a flowchart of an inspection operation of a capacity overhaul mode, according to an exemplary embodiment.
  • the resistance test is a process of performing an AC impedance test using an AC impedance meter, a BMS, or a battery interface.
  • a battery diagnostic device can measure and store high voltage alternating current impedance.
  • the battery diagnosis apparatus may perform battery diagnosis and grading.
  • Battery diagnosis and grading may include a process of calculating and rating SOC, SOH, SOP, SOB of the battery based on the battery test results.
  • the battery diagnostic apparatus may calculate, output, and / or store SOC, SOH, SOP, SOB based on at least one of a quick test, a standard test, a precision test, a capacity standard test, a capacity test, and the like. Can be.
  • an accurate SOC may be set based on the target SOC. At this time, an accurate SOC may be set using the measured resistance value.
  • charging or discharging may be performed according to a target SOC.
  • the target SOC can be set by loading the battery's Open Circuit Voltage (OCV) from the database.
  • V cut-off OCV target ⁇ IR
  • I current value
  • R internal resistance
  • V cut-off refers to the charge / discharge termination condition setting voltage which becomes the termination condition when charging or discharging to accurately match the battery to the target voltage.
  • the SOC can be completely discharged to 0%, making battery storage and transportation safe.
  • the battery diagnosis apparatus may perform a late battery check.
  • the battery late check may include an operation for checking the safety of the battery state due to the battery test and / or for checking whether there is an abnormality of various equipment (eg, a battery diagnosis device) after the battery test.
  • the battery late check may include a battery late check operation, a battery late separation check operation, a battery separation operation, and a battery late safety check operation.
  • the battery late check operation may include checking the battery voltage, temperature, and resistance through an AC impedance analyzer, a charger, a BMS, or a battery interface to check the test diagnosis after completing the battery test diagnosis.
  • the battery diagnostic apparatus performs voltage, temperature, and 1 kHz resistance measurements on the AC impedance analyzer, performs charge / discharge voltage and temperature measurements, measures BMS or battery interface voltage and temperature, and abnormal stop operation. You can then save and complete the cleanup check results as normal.
  • the summary check results may include test results such as battery voltage, temperature, internal resistance, insulation resistance, voltage of each cell, and temperature and abnormal state of the module.
  • the battery late separation check operation may include a process of checking a separation state and determining a normal state for separation of a battery sample. Referring to Figure 13, the battery late separation check operation, insulation resistance insulation resistance measurement, normality determination, voltage meter voltage measurement, normality determination, CAN signal-> Relay off, power supply OFF-> BMS OFF, voltage meter voltage Measurement, normality determination, further test selection, and separation operations.
  • the battery disconnecting operation may include a process of separating the MSD from the battery sample, which has been inspected and diagnosed, and separating, identifying, and storing the high voltage connector, the low voltage connector, the BMS, or the battery interface and the battery.
  • the abnormal stop operation may be performed. If normal, disconnect the battery high voltage connection (HVJB in FIG. 3) and the low voltage connection (LVJB in FIG. 3), disconnect the BMS interface, perform an abnormal stop if normal, disconnect and check in the disconnect check phase The result and the result of the determination of the abnormality can be stored.
  • the battery late safety check operation may include a process of confirming whether the MSD is separated from the sample to check and store the late safety check. Referring to FIG. 15, the MSD separation, the battery end voltage measurement, the MSD separation and the voltage are inputted, and if abnormal, the abnormal stop operation is performed, and if it is normal, the safety check result may be stored.
  • the battery diagnosis apparatus may store the battery diagnosis result.
  • the battery diagnostic unit can save diagnostic results, print a separate bar code for the test diagnostics that can track the diagnostic date, diagnostic center, diagnostic equipment and diagnostic results, and attach the barcode to the battery pack and module to terminate the diagnostic. have.
  • the regular check operation is a process of periodically measuring the voltage and temperature of the battery through an AC impedance measuring instrument, a charger / discharger, a BMS, or a battery interface to determine battery normal, warning, and abnormal conditions.
  • Figure 16 shows a flow chart of an ongoing check of special procedures that can be performed throughout the battery diagnostic process.
  • the abnormal stop operation is a process of stopping all executions and ensuring safety when an abnormal state of the battery is detected during the battery test diagnosis.
  • Fig. 17 shows a flowchart of the abnormal stop operation during the special procedure that can be performed throughout the battery diagnosis process.
  • the abnormal stop operation includes all execution stops, final state storage, abnormal stop phase sounds and beacon lights, MSD disconnection, battery terminal voltage measurement, disconnection and measurement voltage input, normality determination, and high voltage connection ( 3 may include an isolation confirmation of the HVJB of FIG. 3, an isolation confirmation of the low voltage connection unit (LVJB of FIG. 3), and an operation of confirming the BMS or battery interface separation.
  • an abnormal stop operation may include stopping all executions of the battery diagnostic method, disconnecting the battery and the MSD, measuring the battery terminal voltage, and if the terminal voltage is normal, the high voltage connection of the battery diagnostic apparatus. Disconnecting the low voltage connection from the battery, and disconnecting the BMS or battery interface of the battery shutdown device.
  • 18A to 18Q are flowcharts illustrating a unit process of a basic test configuring a test in a battery diagnosis process, according to an exemplary embodiment.
  • Low voltage AC impedance is a process of measuring the battery AC impedance of a voltage of 60V or less using an AC impedance analyzer.
  • 18A illustrates a flowchart of measuring a low voltage AC impedance according to an embodiment.
  • Low voltage single AC impedance is a process of measuring a 1000Hz short-frequency AC impedance of a battery of a voltage of 60V or less using an AC impedance analyzer. (E.g. voltage 60V, measuring range 1,000mohm, frequency 1000Hz)
  • Low-voltage scan AC impedance is a process of measuring the AC impedance in the 0.1 ⁇ 1,000Hz scan range of a battery of a voltage of 60V or less using an AC impedance analyzer. (Ex: voltage 60V, measuring range 1,000mohm, 6 points / 10 times)
  • High-voltage AC impedance is a process of measuring the battery AC impedance of a voltage of 500V or less using an AC impedance analyzer.
  • 18B is a flowchart of measuring a high voltage AC impedance, according to an exemplary embodiment.
  • the high-voltage single AC impedance is a process of measuring a 1000 Hz short frequency AC impedance of a battery having a voltage of 500V or less using an AC impedance analyzer. (E.g. voltage 800V, measuring range 1,000mohm, frequency 1000Hz)
  • the high-voltage scan AC impedance is a process of measuring an AC impedance of a battery having a voltage of 500V or less in a range of 1 to 1,000 Hz using an AC impedance analyzer. (E.g. voltage 800V, measuring range 1,000mohm, 6 points / 10 times)
  • the charging DC resistance according to an embodiment is a process of measuring a DC resistance starting from charging.
  • 18C is a flowchart of measuring charging DC resistance according to an embodiment.
  • the discharge DC resistance according to an embodiment is a process of measuring a DC resistance starting from discharge.
  • the measurement of the discharge DC resistance can be performed in a different order from that in Fig. 18C, that is, in the order of discharge, rest, and charging.
  • Full charging according to an embodiment is a process of fully charging the battery.
  • 18D is a flowchart of performing a full charge according to one embodiment.
  • Partial standard charging according to an embodiment is a process of charging the battery 10% of the standard capacity.
  • 18E is a flowchart for performing partial standard charging according to one embodiment.
  • Partial measurement charging according to an embodiment is a process of charging the battery 10% of the measurement capacity.
  • 18F is a flowchart for performing partial measurement charging according to one embodiment.
  • Recharging according to an embodiment is a process of recharging a battery having an SOC of less than 50%.
  • 18G is a flow chart of performing recharging according to one embodiment.
  • Full discharge according to an embodiment is a process for completely discharging the battery.
  • 18H is a flowchart for performing a full discharge according to one embodiment.
  • the partial standard discharge according to an embodiment is a process of discharging the battery 10% of the standard capacity.
  • 18I is a flowchart for performing a partial standard discharge according to one embodiment.
  • the partial measurement discharge according to an embodiment is a process of discharging the battery 10% of the measurement capacity.
  • 18J is a flowchart of performing a partial measurement discharge according to an embodiment.
  • Re-discharge according to an embodiment is a process of re-discharging the battery more than 50% SOC.
  • 18K is a flowchart of re-discharging according to an embodiment.
  • the low-pressure precision charging is a process of repeatedly performing partial measurement charging, low voltage AC impedance test, and discharge DC resistance test of a fully discharged battery having a voltage of 60 V or less, and performing a low voltage AC impedance test after full charge.
  • 18L is a flow chart of performing low pressure precision charging according to one embodiment.
  • the high-pressure precision charging is a process of repeatedly performing partial measurement charging, high voltage alternating current impedance test, and discharge DC resistance test of a fully charged battery having a voltage of 500 V or less, and performing high voltage alternating current impedance test after full charge.
  • 18M is a flow chart of performing high-pressure precision charging according to one embodiment.
  • the precision charging according to an embodiment is a process of repeating the partial measurement charging and discharging DC resistance tests of the fully discharged battery and performing a full charge.
  • 18N is a flow chart of performing precision charging in accordance with one embodiment.
  • the low-pressure precision discharge according to an embodiment is a process of repeatedly performing partial measurement discharge, low voltage AC impedance test, and charging DC resistance test of a fully charged battery having a voltage of 60 V or less, and performing a low voltage AC impedance test after full discharge.
  • 18O is a flow chart of performing a low pressure precision discharge according to one embodiment.
  • the high-pressure precision discharge is a process of repeatedly performing a partial measurement discharge, a high voltage alternating current impedance test and a charge direct current resistance test of a fully charged battery having a voltage of 500 V or less, and performing a high voltage alternating current impedance test after a full discharge.
  • 18P is a flowchart of a high-pressure precision discharge according to one embodiment.
  • the precision discharge according to an embodiment is a process of repeating the partial measurement discharge and the charging DC resistance test and performing a full discharge of the fully charged battery.
  • 18Q is a flowchart of performing a precision discharge according to one embodiment.
  • the descriptions are intended to provide exemplary configurations and operations for implementing the present invention.
  • the technical idea of the present invention will include not only the embodiments described above but also implementations that can be obtained by simply changing or modifying the above embodiments.
  • the technical idea of the present invention will include implementations that can be achieved by easily changing or modifying the above-described embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A battery diagnostic method based on a battery diagnostic device may comprise the steps of: checking the status and information of a battery; performing an initial check by measuring the temperature and the voltage of the battery; performing a test on the battery only when the initial check passes; determining and rating the SOC, SOH, SOP, and SOB of the battery on the basis of the test result; performing a late check of the battery; and storing a battery diagnostic result.

Description

배터리 진단 방법Battery diagnostic method
본 발명은 배터리 진단 방법에 관한 것으로, 구체적으로는 전기차 또는 ESS(에너지저장장치) 배터리의 상태, 성능 및 문제를 진단할 수 있도록 한 배터리 진단 방법에 관한 것이다.The present invention relates to a battery diagnostic method, and more particularly, to a battery diagnostic method capable of diagnosing a state, a performance and a problem of an electric vehicle or an ESS (energy storage device) battery.
자동차에 의한 대기 오염이 증가함에 따라 전기차 또는 ESS 개발을 위해 많은 노력을 기울이고 있다. 전기차 또는 ESS 는 대용량 이차전지가 통상 직렬로 연결되는 복수개의 이차전지를 배터리로 이용하게 된다.As air pollution by automobiles increases, much efforts are being made to develop electric vehicles or ESSs. An electric vehicle or an ESS uses a plurality of secondary batteries, in which a large capacity secondary battery is usually connected in series, as a battery.
특히, 전기차용 배터리와 ESS 의 경우 수십 개의 이차전지가 충·방전을 반복하여 수행되기 때문에 충방전을 제어하여 적정한 동작 상태로 유지하도록 주기적으로 관리할 필요가 있다.In particular, in the case of the battery for the electric vehicle and the ESS, since dozens of secondary batteries are repeatedly performed, it is necessary to periodically manage the charging and discharging to maintain the proper operating state.
본 발명은 전기차 또는 ESS 배터리의 상태, 성능 및 문제를 진단할 수 있는 배터리 진단 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a battery diagnostic method capable of diagnosing a state, a performance and a problem of an electric vehicle or an ESS battery.
본 발명 따른 배터리 진단 방법은 다양한 배터리의 상태, 성능 및 문제를 진단 및 등급화할 수 있다.The battery diagnostic method according to the present invention can diagnose and grade the status, performance and problems of various batteries.
도1은 일 실시 예에 따른 배터리 진단 장치의 사시도이다. 1 is a perspective view of a battery diagnostic apparatus according to an embodiment.
도2는 일 실시 예에 따른 배터리 진단 장치를 배터리에 연결한 것을 도시한 것이다. 2 is a diagram illustrating a battery diagnosis apparatus connected to a battery according to an exemplary embodiment.
도3은 일 실시 예에 따라, 배터리 진단 시스템을 나타낸다.3 illustrates a battery diagnostic system according to an embodiment.
도4는 일 실시 예에 따라, 배터리 진단 방법의 흐름도를 나타낸다.4 is a flowchart of a battery diagnostic method, according to an exemplary embodiment.
도5는 일 실시 예에 따라, 배터리 초기 점검 동작의 흐름도를 나타낸다.5 is a flowchart illustrating a battery initial check operation according to an exemplary embodiment.
도6은 일 실시 예에 따라, 배터리 검사 동작의 흐름도를 나타낸다.6 is a flowchart of a battery test operation according to an exemplary embodiment.
도7은 일 실시 예에 따라, 배터리 검사 동작 중 표준 검사 동작의 흐름도를 나타낸다.7 is a flowchart of a standard test operation during a battery test operation, according to an exemplary embodiment.
도8은 일 실시 예에 따라, 배터리 검사 동작 중 정밀 검사 동작의 흐름도를 나타낸다.8 is a flowchart illustrating a detailed inspection operation during a battery inspection operation according to an exemplary embodiment.
도9는 일 실시 예에 따라, 배터리 검사 동작 중 용량 표준 검사 동작의 흐름도를 나타낸다.9 is a flowchart of a capacity standard test operation during a battery test operation, according to an exemplary embodiment.
도10은 일 실시 예에 따라, 배터리 검사 동작 중 용량 정밀 검사 동작의 흐름도를 나타낸다.10 is a flowchart of a capacity overhaul operation during a battery test operation, according to an exemplary embodiment.
도11은 일 실시 예에 따라, 배터리 후기 점검 동작의 흐름도를 나타낸다.11 is a flowchart of a battery late check operation, according to an exemplary embodiment.
도12는 일 실시 예에 따라, 배터리 후기 점검 동작 중 배터리 후기 정리 점검 동작의 흐름도를 나타낸다.12 is a flowchart illustrating a battery late check operation during a battery late check operation according to an exemplary embodiment.
도13은 일 실시 예에 따라, 배터리 후기 점검 동작 중 배터리 후기 분리 점검 동작의 흐름도를 나타낸다.13 is a flowchart of a battery late separation check operation during a battery late check operation according to an exemplary embodiment.
도14는 일 실시 예에 따라, 배터리 후기 점검 단계 중 배터리 분리 동작의 흐름도를 나타낸다.14 is a flowchart illustrating a battery detaching operation during a late battery checking step, according to an exemplary embodiment.
도15는 일 실시 예에 따라, 배터리 후기 점검 단계 중 배터리 후기 안전 점검 동작의 흐름도를 나타낸다.15 is a flowchart of a battery late safety check operation during a battery late check step, according to an exemplary embodiment.
도16은 일 실시 예에 따라, 상시 점검에 대한 흐름도를 나타낸다.16 is a flowchart illustrating an always-on check according to an embodiment.
도17은 일 실시 예에 따라, 이상 정지 동작에 대한 흐름도를 나타낸다.17 is a flowchart illustrating an abnormal stop operation according to an exemplary embodiment.
도18a 내지 18q는 일 실시 예에 따라, 배터리 진단 과정에서 검사를 구성하는 기본 검사의 단위 공정의 흐름도를 나타낸다.18A to 18Q are flowcharts illustrating unit processes of basic tests configuring a test in a battery diagnosis process, according to an exemplary embodiment.
배터리 진단 장치에 기반한 배터리 진단 방법은, 진단하고자 하는 배터리의 상태 및 정보를 확인하는 단계, 상기 배터리에 대한 전압과 온도를 측정함으로써 초기 점검을 수행하는 단계, 상기 초기 점검 결과 상기 배터리의 상태가 정상적이면, 상기 배터리에 대한 교류 임피던스와 직류 저항을 측정함으로써 검사를 수행하는 단계, 상기 검사 결과에 기반하여, 상기 배터리의 SOC, SOH, SOP, SOB를 결정하고 등급화하는 단계, 상기 배터리의 후기 점검을 수행하는 단계, 및 상기 배터리에 대한 진단 결과를 저장하는 단계를 포함할 수 있다.A battery diagnostic method based on a battery diagnostic apparatus includes: checking a state and information of a battery to be diagnosed, performing an initial check by measuring a voltage and a temperature of the battery, and as a result of the initial check, the state of the battery is normal. Performing a test by measuring an AC impedance and a DC resistance of the battery, determining and rating SOC, SOH, SOP, and SOB of the battery, based on the test result, and later checking of the battery. Performing the step of storing the diagnostic result of the battery.
상기 상태 및 정보를 확인하는 단계는, 바코드 리더기로 상기 배터리에 부착된 바코드를 인식하고, 상기 배터리에 대응하는 정보를 데이터베이스로부터 읽어오는 단계를 포함하고, 상기 정보는, 상기 배터리의 수준, 제조 정보, 차종, 연식, 종류, 및 전기화학적 특성 정보를 포함할 수 있다.The checking of the status and information may include reading a barcode attached to the battery with a barcode reader and reading information corresponding to the battery from a database, wherein the information may include the level of the battery and manufacturing information. It may include vehicle model, model year, type, and electrochemical characteristic information.
상기 초기 점검을 수행하는 단계는, 교류 임피던스 분석기를 이용해 상기 배터리의 전압, 온도, 특정 주파수에서의 교류 임피던스를 측정하는 단계, 충방전기로 상기 배터리의 전압과 온도를 측정하는 단계, BMS 또는 배터리 인터페이스를 통해 상기 배터리의 전압과 온도를 측정하는 단계, 및 절연 저항기로 상기 배터리의 절연 상태를 판단하는 단계를 포함할 수 있다.The performing of the initial check may include measuring AC voltage, temperature, and AC impedance at a specific frequency of the battery using an AC impedance analyzer, measuring voltage and temperature of the battery with a charger, a BMS or a battery interface. Measuring the voltage and temperature of the battery through, and determining the insulation state of the battery with an insulating resistor.
상기 검사를 수행하는 단계는, 교류 임피던스 분석기와 충방전기의 사용 가능 여부에 기반하여, 빠른 검사 모드, 표준 검사 모드, 정밀 검사 모드, 용량 표준 검사 모드, 용량 정밀 검사 모드, 저항 검사 모드 중 적어도 하나를 선택하는 단계를 포함할 수 있다.The performing of the inspection may include at least one of a quick inspection mode, a standard inspection mode, a precision inspection mode, a capacitance standard inspection mode, a capacitance inspection mode, and a resistance inspection mode based on the availability of the AC impedance analyzer and the charger / discharger. It may include the step of selecting.
상기 검사를 수행하는 단계는, 교류 임피던스를 측정한 다음에 직류 저항을 측정하는 단계를 포함할 수 있다.The performing of the inspection may include measuring an AC impedance and then measuring a DC resistance.
상기 검사를 수행하는 단계는, 상기 배터리의 SOC가 50% 이상이면, 고압 교류 임피던스 측정, 방전 직류 저항 측정, 충전 직류 저항 측정의 순서대로 수행하고, 상기 배터리의 SOC가 50% 미만이면, 고압 교류 임피던스 측정, 충전 직류 저항 측정, 방전 직류 저항 측정의 순서대로 수행할 수 있다. The performing of the inspection may include performing high voltage alternating current impedance measurement, discharging direct current resistance measurement, and charging direct current resistance measurement when the SOC of the battery is 50% or more, and performing high voltage alternating current when the SOC of the battery is less than 50%. Impedance measurement, charge DC resistance measurement, discharge DC resistance measurement may be performed in this order.
상기 등급화하는 단계는, 상기 배터리의 측정된 교류 임피던스, 직류 저항, 및 OCV정보 중 적어도 하나에 기반하여, 목표 SOC 에 맞게 상기 배터리를 충전 또는 방전을 하는 단계를 포함할 수 있다.The rating may include charging or discharging the battery according to a target SOC based on at least one of measured AC impedance, DC resistance, and OCV information of the battery.
상기 후기 점검을 수행하는 단계는, 상기 배터리의 전압, 온도, 절연 저항, 특정 주파수에서의 교류 임피던스를 측정하고, 측정 값이 정상 범위 이내이면 검사 결과를 저장하는 단계, 상기 검사 완료된 배터리를 MSD 로부터 분리하는 단계, 및 상기 배터리 진단 장치의 고전압 연결부, 저전압 연결부, 및 BMS 또는 배터리 인터페이스를 배터리로부터 분리하는 단계를 포함할 수 있다.The performing of the late check may include measuring voltage, temperature, insulation resistance, and alternating current impedance at a specific frequency of the battery, and storing a test result when the measured value is within a normal range, and removing the tested battery from the MSD. And disconnecting the high voltage connection, the low voltage connection, and the BMS or battery interface of the battery diagnostic apparatus from the battery.
상기 배터리 진단 방법이 수행되는 동안, 상기 배터리의 전압, 온도를 주기적으로 측정하여, 측정 값이 정상 범위를 벗어나면 이상 정지 동작이 수행되고, 상기 이상 정지 동작은, 상기 배터리 진단 방법의 모든 실행을 중단하는 단계, 상기 배터리와 MSD 를 분리하는 단계, 상기 배터리의 종단부 전압을 측정하는 단계, 상기 종단부 전압이 정상적이면, 상기 배터리 진단 장치의 고전압 연결부와 저전압 연결부를 상기 배터리로부터 분리하는 단계, 및 상기 배터리 진단 장치의 BMS 또는 배터리 인터페이스를 분리하는 단계를 포함할 수 있다.While the battery diagnosis method is being performed, the voltage and temperature of the battery are periodically measured, and when the measured value is out of the normal range, an abnormal stop operation is performed, and the abnormal stop operation performs all executions of the battery diagnosis method. Discontinuing, separating the battery and the MSD, measuring an end voltage of the battery, and if the end voltage is normal, separating the high voltage connection and the low voltage connection from the battery, And separating the BMS or the battery interface of the battery diagnosis apparatus.
아래에서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자들(이하, 통상의 기술자들)이 본 발명을 용이하게 실시할 수 있도록, 첨부되는 도면들을 참조하여 몇몇 실시 예가 명확하고 상세하게 설명될 것이다.In the following, some embodiments will be described clearly and in detail with reference to the accompanying drawings so that those skilled in the art to which the present invention pertains (hereinafter, skilled in the art) may easily practice the present invention. will be.
이하, 배터리는 하나의 배터리 셀을 지칭하거나, 복수의 배터리 셀이 전기적으로 연결되어 모듈화된 것을 지칭할 수 있다. 또한, 배터리는 복수의 배터리 모듈들을 포함할 수 있다. 복수의 배터리 모듈들 각각은 복수의 셀을 포함할 수 있다. 복수의 배터리 모듈 상호 간은 직렬 및 병렬로 혼합 연결될 수 있다. 일 실시 예에 따라, 복수의 배터리 모듈은 리튬 이온 배터리와 같은 이차전지일 수 있다. 또한, 복수의 배터리 모듈의 용량은 서로 동일할 수도 있고 서로 상이할 수도 있다. Hereinafter, a battery may refer to one battery cell, or a plurality of battery cells may be electrically connected and modularized. In addition, the battery may include a plurality of battery modules. Each of the plurality of battery modules may include a plurality of cells. The plurality of battery modules may be mixed with each other in series and in parallel. According to an embodiment of the present disclosure, the plurality of battery modules may be a secondary battery such as a lithium ion battery. In addition, the capacities of the plurality of battery modules may be the same as or different from each other.
이하, 측정된 값 또는 상태가 "정상적이지 않다" 또는 "비정상적이다"라는 의미는, 측정된 값 또는 상태가 정상 범위(또는, 기준 범위)를 벗어나거나 기준 값을 벗어난 것을 의미할 수 있다. 예를 들어, 측정된 값이 제1기준 값보다 작거나 제2기준 값보다 클 경우 비정상적이라고 판단될 수 있다. 예를 들어, 절연 상태는 측정된 절연 저항의 값이 기준 값보다 크거나 작을 경우 비정상적인 것으로 판단될 수 있다.Hereinafter, the meaning that the measured value or state is “not normal” or “abnormal” may mean that the measured value or state is outside the normal range (or reference range) or is outside the reference value. For example, when the measured value is smaller than the first reference value or larger than the second reference value, it may be determined to be abnormal. For example, the insulation state may be determined to be abnormal when the value of the measured insulation resistance is larger or smaller than the reference value.
또한, 명세서에서 사용되는 "부" 라는 용어는 FPGA 또는 ASIC과 같은 하드웨어 구성요소 또는 회로를 의미할 수 있다.In addition, as used herein, the term “unit” may mean a hardware component or a circuit such as an FPGA or an ASIC.
도 1은 일 실시 예에 따른 배터리 진단 장치(100)의 사시도를 나타내고, 도 2는 일 실시 예를 따른 배터리 진단 장치(100)가 배터리에 연결된 상태를 나타낸다. 도2를 참조하면, 배터리 진단 장치(100)는 배터리(10)와 연결되어 배터리(10)의 상태를 진단할 수 있다. 배터리(10)는 단자(12)와 배터리 관리 시스템(Battery Management System, BMS)(11)을 포함할 수 있다. 배터리 진단 장치(100)는 단자(12)와 배터리 관리 시스템(11) 중 적어도 하나와 연결될 수 있다.1 illustrates a perspective view of a battery diagnostic apparatus 100 according to an embodiment, and FIG. 2 illustrates a state in which the battery diagnostic apparatus 100 according to an embodiment is connected to a battery. Referring to FIG. 2, the battery diagnosis apparatus 100 may be connected to the battery 10 to diagnose a state of the battery 10. The battery 10 may include a terminal 12 and a battery management system (BMS) 11. The battery diagnosis apparatus 100 may be connected to at least one of the terminal 12 and the battery management system 11.
도3은 일 실시 예에 따라, 배터리 진단 장치의 블록도를 나타낸다.3 is a block diagram of a battery diagnostic apparatus according to an exemplary embodiment.
도3을 참조하면 배터리 진단 장치(100)는, 제어부, 진단부, 교류 임피던스 분석기(AC Impedance Analyzer, ACIA), 배터리 인터페이스, 충방전기, 바코드 리더기, 전압 측정기, 절연 저항기, 전원 공급기, 제1연결부(HVJB), 및 제2연결부(LVJB)를 포함할 수 있다.Referring to FIG. 3, the battery diagnosis apparatus 100 includes a control unit, a diagnosis unit, an AC impedance analyzer (ACIA), a battery interface, a charger, a barcode reader, a voltage meter, an insulation resistor, a power supply, and a first connection unit. (HVJB), and the second connector LVJB.
제어부는 교류 임피던스 분석기의 동작을 제어할 수 있다. 제어부는 사용자의 명령 또는 외부로부터 수신된 명령에 따라 교류 임피던스 분석기가 동작할 수 있도록 제어할 수 있다. 이를 위해, 제어부는 교류 임피던스 분석기와 회로 기판 상의 회로, 전선, 또는 통신선으로 연결되어 배치될 수 있다. The controller may control the operation of the AC impedance analyzer. The controller may control the AC impedance analyzer to operate according to a user command or a command received from the outside. To this end, the control unit may be arranged to be connected to the AC impedance analyzer and a circuit, a wire, or a communication line on the circuit board.
또한, 제어부는 진단부와 충방전기의 동작을 제어할 수 있다. 이러한 경우, 배터리 진단 장치(100)는 제어 대상들을 각각 제어하는 복수의 제어 회로들을 물리적으로 구별하여 배치할 수 있다. 즉, 하나의 제어부가 교류 임피던스 분석기, 진단부, 및 충방전기를 제어할 수 있을 뿐만 아니라, 제어부는 교류 임피던스 분석기를 제어하기 위한 제1제어부, 진단부를 제어하기 위한 제2제어부, 및 충방전기를 제어하기 위한 제3제어부를 포함할 수도 있다.In addition, the control unit may control the operation of the diagnostic unit and the charger. In this case, the battery diagnosis apparatus 100 may physically distinguish a plurality of control circuits for controlling the control objects. That is, one controller may control the AC impedance analyzer, the diagnostic unit, and the charger / discharger, and the controller may include a first controller for controlling the AC impedance analyzer, a second controller for controlling the diagnostic unit, and a charger / discharger. It may also include a third control unit for controlling.
제어부는 제어 대상을 제어하기 위한 프로그램이 저장된 메모리 및 저장된 프로그램을 실행하는 프로세서를 포함할 수 있다. 제어부는 필요에 따라 하나의 프로세서를 포함할 수도 있고, 복수의 프로세서를 포함할 수도 있다. 또한, 복수의 프로세서가 하나의 칩 상에 집적될 수도 있고, 물리적으로 분리될 수도 있다.The controller may include a memory in which a program for controlling a control target is stored and a processor for executing the stored program. The controller may include one processor or may include a plurality of processors as necessary. Also, a plurality of processors may be integrated on one chip or may be physically separated.
교류 임피던스 분석기는 배터리의 교류 임피던스를 검출할 수 있다. 예를 들어, 도 2를 참조하면, 교류 임피던스 분석기는 배터리(10)의 셀 단자(12)에 연결되어 배터리의 교류 임피던스를 검출하기 위한 정보를 측정할 수 있다. The AC impedance analyzer can detect the AC impedance of the battery. For example, referring to FIG. 2, the AC impedance analyzer may be connected to the cell terminal 12 of the battery 10 to measure information for detecting the AC impedance of the battery.
교류 임피던스 분석기는 기준 주파수 또는 기준 주파수 범위에서의 배터리의 저항(R), 인덕터(L) 및 커패시터(C) 중 적어도 하나를 측정하여 배터리 교류 임피던스를 검출할 수 있다. 이 경우, 저항(R), 인덕터(L) 및 커패시터(C) 중 적어도 하나를 측정하여 전기화학적 분석을 위한 등가회로를 구성함으로써 배터리 교류 임피던스를 검출할 수 있다. 교류 임피던스를 검출하는 방법은 필요에 따라 브리지 방법, 공진 방법, I-V 방법, RF I-V 방법 및 네트워크 분석 방법 등 다양한 방법을 선택적으로 수행할 수 있으며 특별히 제한되지 않는다. The AC impedance analyzer may detect the battery AC impedance by measuring at least one of the resistance R, the inductor L, and the capacitor C of the battery at the reference frequency or the reference frequency range. In this case, the battery AC impedance may be detected by configuring an equivalent circuit for electrochemical analysis by measuring at least one of the resistor R, the inductor L, and the capacitor C. FIG. The method of detecting AC impedance may selectively perform various methods such as a bridge method, a resonance method, an I-V method, an RF I-V method, and a network analysis method, if necessary, and is not particularly limited.
교류 임피던스 분석기는 저항, 인덕터, 및 커패시터를 측정하는 구성 및, 이를 이용하여 임피던스 값을 산출하기 위한 연산 처리 회로 또는 장치를 포함할 수 있다. 또한, 일 실시 예에 따라, 교류 임피던스 분석기는 배터리의 온도를 측정하는 온도 측정기(미도시)를 더 포함할 수 있다. 온도 측정기에서 배터리의 온도를 측정함으로써 배터리 온도 의존성을 고려하여 교류 임피던스를 검출할 수 있다. The AC impedance analyzer may include a configuration for measuring a resistor, an inductor, and a capacitor, and an operation processing circuit or device for calculating an impedance value using the same. In addition, according to an embodiment, the AC impedance analyzer may further include a temperature meter (not shown) for measuring the temperature of the battery. By measuring the temperature of the battery in the temperature meter, the AC impedance can be detected in consideration of the battery temperature dependency.
일 실시 예에서, 교류 임피던스 분석기에서 측정 시 전압의 범위는 5 내지 1,000V, 저항의 범위는 100 μΩ 내지 1Ω, 주파수의 범위는 0.1Hz 내지 10kHz, 온도의 범위는 -40 내지 80℃일 수 있다. In one embodiment, when measured in the AC impedance analyzer, the voltage range may be 5 to 1,000V, the resistance range is 100 μΩ to 1Ω, the frequency range is 0.1Hz to 10kHz, and the temperature range is -40 to 80 ° C. .
교류 임피던스 분석기는 제어부의 제어 명령에 따라 다양한 상태의 배터리의 교류 임피던스를 검출할 수 있다. 구체적으로, 교류 임피던스 분석기는 완전 충전 상태의 배터리에 대한 교류 임피던스, 완전 방전 상태의 배터리에 대한 교류 임피던스, 및 완전 부분 충·방전 상태의 배터리에 대한 교류 임피던스를 검출할 수 있다. 일 실시 예에 따라, 제어부는 진단부로부터 교류 임피던스 분석기의 측정 여부, 측정 주파수 범위 등에 대한 정보를 전달받고 이에 기반하여 교류 임피던스 분석기를 제어할 수 있다. 교류 임피던스 분석기에서 측정되어 검출된 저항(R), 인덕터(L), 커패시터(C), 및 교류 임피던스에 대한 정보는 진단부로 전달될 수 있다.The AC impedance analyzer may detect the AC impedance of the battery in various states according to a control command of the controller. Specifically, the AC impedance analyzer may detect an AC impedance for a battery in a fully charged state, an AC impedance for a battery in a full discharge state, and an AC impedance for a battery in a full partial charge / discharge state. According to an embodiment of the present disclosure, the controller may receive information on whether the AC impedance analyzer is measured, a measurement frequency range, etc. from the diagnostic unit, and control the AC impedance analyzer based on the information. Information about the resistance R, the inductor L, the capacitor C, and the AC impedance measured and detected by the AC impedance analyzer may be transmitted to the diagnosis unit.
배터리 인터페이스(Battery Interface)는 배터리 단자와 연결되어 배터리의 온도 및 전압을 측정할 수 있다. 배터리 인터페이스는 배터리 관리시스템(BMS)이 고장 등에 의해 작동하지 않는 경우 배터리의 전압 및 온도를 측정하는 기능을 수행할 수 있다. 배터리 인터페이스는 배터리의 단자에 연결될 수 있으며, 제어부 및 교류 임피던스 분석기에 연결되어, 제어부 및 교류 임피던스 분석기가 배터리와 연결되도록 중계자의 역할을 수행할 수 있다.The battery interface is connected to the battery terminal to measure the temperature and voltage of the battery. The battery interface may perform a function of measuring the voltage and temperature of the battery when the battery management system BMS does not operate due to a failure. The battery interface may be connected to a terminal of the battery, and may be connected to the controller and the AC impedance analyzer, and serve as a relay so that the controller and the AC impedance analyzer are connected to the battery.
충방전기는 배터리를 충전 또는 방전할 수 있다. 충방전기는 제어부의 제어 명령에 따라, 배터리를 충전 또는 방전시킴으로써, 배터리를 완전 충전 상태, 완전 방전 상태, 부분 충전 상태로 만들 수 있다. 충방전기는 제어부의 제어 하에, 배터리의 용량 또는 직류 저항을 측정할 수 있다. 일 실시 예에 따라, 충방전기는 배터리의 온도를 측정하는 온도 측정기(미도시)를 더 포함할 수 있다. 온도 측정기에서 배터리의 온도를 측정함으로써, 교류 임피던스 분석기는 배터리 온도 의존성을 고려하여 다양한 상태의 배터리에 대한 교류 임피던스를 검출할 수 있다.The charger / discharger may charge or discharge the battery. The charger / discharger may charge or discharge the battery according to a control command of the controller, thereby making the battery fully charged, fully discharged, or partially charged. The charger / discharger may measure the capacity of the battery or the DC resistance under the control of the controller. According to one embodiment, the charger and charger may further include a temperature meter (not shown) for measuring the temperature of the battery. By measuring the temperature of the battery in the temperature meter, the AC impedance analyzer can detect the AC impedance for the battery in various states in consideration of the battery temperature dependency.
진단부는 배터리의 용량, 직류 저항, 및 교류 임피던스 중 적어도 하나에 기초하여 배터리의 상태를 진단할 수 있다. 진단부는 수신된 저항(R), 인덕터(L), 커패시터(C), 및 교류 임피던스를 전기화학적 분석을 위한 등가회로 등으로 분석함으로써 SoC(State of Charge), SoH(State of Health), SoP(State of Power), SoE(State of Energy) 및 SoB(State of Balance)와 같은 배터리의 상태 정보를 결정할 수 있다. 또한, 진단부는 충방전기를 통해 획득한 배터리의 용량 정보, 직류 저항에 대한 정보를 더 활용하여 배터리의 상태 정보를 결정할 수 있다. 일 실시 예에 따라, 진단부는 등가회로를 분석함으로써 배터리 상태를 도출할 수 있다. 따라서, 진단부는 등가회로를 분석하기 위한 프로그램 코드 및 알고리즘을 저장하기 위한 메모리(미도시)를 포함할 수 있으며, 이에 따라 프로그램을 실행하거나 알고리즘을 수행하기 위한 적어도 하나의 프로세서를 포함할 수 있다.The diagnosis unit may diagnose a state of the battery based on at least one of the capacity of the battery, the DC resistance, and the AC impedance. The diagnostic unit analyzes the received resistance (R), the inductor (L), the capacitor (C), and the alternating current impedance by an equivalent circuit for electrochemical analysis, and the like, so that the state of charge (SoC), state of health (SoH), State information of a battery such as a state of power, a state of energy, and a state of balance can be determined. The diagnostic unit may further determine the state information of the battery by further utilizing the capacity information of the battery and the DC resistance obtained through the charger / discharger. According to an embodiment of the present disclosure, the diagnosis unit may derive the battery state by analyzing the equivalent circuit. Accordingly, the diagnostic unit may include a memory (not shown) for storing program codes and algorithms for analyzing the equivalent circuit, and thus may include at least one processor for executing a program or performing an algorithm.
진단부는 진단 DB를 더 포함할 수 있다. 진단 DB는 배터리의 식별 정보와 그와 대응되는 각종 파라미터 정보(배터리의 제조 정보, 제품 규격, 전기적 특성 정보, 전기화학적 특성 정보, 사용 조건 및 환경 정보 등)들을 저장한 데이터베이스일 수 있다.The diagnosis unit may further include a diagnosis DB. The diagnostic DB may be a database that stores identification information of the battery and various parameter information corresponding thereto (eg, battery manufacturing information, product specifications, electrical characteristic information, electrochemical characteristic information, usage conditions, and environmental information).
전원 공급기는 배터리의 배터리 관리시스템(BMS)에 전원을 공급할 수 있다. 이를 위해 전원 공급기는 배터리 관리시스템(BMS)에 전기적으로 연결될 수 있다. 전원 공급기는 배터리 관리시스템(BMS)에 전원을 공급함으로써 배터리 관리시스템(BMS)을 구동하도록 함으로써 배터리를 제어하고 배터리와 관련된 정보를 획득할 수 있도록 할 수 있다. 전원 공급기는 외부의 전원을 인가 받은 후 이를 배터리 관리시스템(BMS)에서 요구하는 전압 및 전류로 변환하여 배터리 관리시스템(BMS)에 전원을 제공하기 위한 장치일 수 있다. 전원 공급기는 제어부와 연결되어 제어부의 제어에 따라 전원 공급 및 차단을 수행할 수 있다. 앞서 설명한 바와 같이, 전원 공급기의 동작 제어는 제어부에 의해 수행될 수 있으며, 교류 임피던스 분석기를 제어하기 위한 제어부 내의 제1제어부와 물리적으로 구별되는 별도의 제2제어부에 의해 제어될 수도 있다.The power supply may supply power to the battery management system (BMS) of the battery. To this end, the power supply may be electrically connected to a battery management system (BMS). The power supply may drive the battery management system BMS by supplying power to the battery management system BMS, thereby controlling the battery and obtaining information related to the battery. The power supply may be a device for supplying power to the battery management system BMS by receiving an external power and converting it to a voltage and a current required by the battery management system BMS. The power supply unit may be connected to the control unit to perform power supply and shutdown under the control of the control unit. As described above, the operation control of the power supply may be performed by the controller, or may be controlled by a separate second controller that is physically distinct from the first controller in the controller for controlling the AC impedance analyzer.
전원 공급기의 출력 전압 및 전류는 배터리 관리시스템(BMS)에서 요구하는 전압 및 전류의 크기에 따라 선택될 수 있으며 특별히 제한되지 않는다.The output voltage and current of the power supply can be selected according to the magnitude of the voltage and current required by the battery management system (BMS) and is not particularly limited.
제1연결부(High Voltage Junction Box, HVJB)는 교류 임피던스 분석기에 연결되어, 교류 임피던스 분석기가 배터리의 교류 임피던스를 검출하는 연결 회로를 제공할 수 있다. 또한, 제2연결부(LVJB)는 전원 공급기에 연결되고, 전원 공급기가 배터리 관리시스템(BMS)에 전원을 공급하는 연결 회로를 제공할 수 있다. 일 실시 예에서, 제1연결부 및 제2연결부는 각각 제어부에 연결되어 제어부에 의해 동작이 제어될 수 있다. The first connection part (High Voltage Junction Box, HVJB) is connected to the AC impedance analyzer, the AC impedance analyzer may provide a connection circuit for detecting the AC impedance of the battery. In addition, the second connector LVJB may be connected to a power supply, and may provide a connection circuit for supplying power to the battery management system BMS. In one embodiment, the first connection unit and the second connection unit may be connected to the control unit, respectively, and the operation may be controlled by the control unit.
제1연결부(HVJB)는 배터리의 단자에 연결되어 교류 임피던스 분석기가 배터리의 교류 임피던스를 검출할 수 있도록 구성될 수 있다. 또한, 배터리 진단 장치(100)는, 배터리 진단 장치(100)의 다른 구성들 역시 제1연결부를 통해 배터리의 단자 또는 몸체에 연결함으로써, 배터리의 전압 및 저항 등을 측정할 수 있다. 제1연결부는 배터리 진단 장치(100)의 구성들 각각을 배터리의 단자 또는 몸체에 연결하기 위해, 배터리 진단 장치(100)의 구성들과 각각 대응하는 회로를 포함할 수 있다. 회로는, 전기적 신호를 연결 또는 단락하기 위한 스위치를 포함할 수 있다. 배터리 진단 장치(100)의 구성들 각각은, 제1연결부를 통해 배터리의 단자 또는 몸체에 필요에 따라 개별적으로 연결 또는 분리될 수 있다. The first connection portion HVJB may be connected to a terminal of the battery so that the AC impedance analyzer may detect the AC impedance of the battery. In addition, the battery diagnostic apparatus 100 may also measure voltages and resistances of the battery by connecting other components of the battery diagnostic apparatus 100 to the terminals or the body of the battery through the first connector. The first connection unit may include a circuit corresponding to each of the components of the battery diagnosis apparatus 100 to connect each of the components of the battery diagnosis apparatus 100 to a terminal or a body of the battery. The circuit may include a switch for connecting or shorting an electrical signal. Each of the components of the battery diagnosis apparatus 100 may be individually connected to or disconnected from the terminal or the body of the battery as needed through the first connector.
제2연결부(Low Voltage Junction Box, LVJB)는 배터리 관리시스템(BMS)에 연결될 수 있다. 제2연결부는 배터리 관리시스템(BMS)과 전원 공급기 사이를 연결함으로써, 전원 공급기의 전원이 배터리 관리시스템(BMS)으로 공급되도록 구성될 수 있다. 또한, 제2연결부는 배터리 관리시스템 및 BMS 통신부(미도시)를 연결하여 상호간의 데이터가 이동하기 위한 통신 회로로서 구성될 수 있다.The second connection unit (Low Voltage Junction Box, LVJB) may be connected to a battery management system (BMS). The second connector may be configured to connect the battery management system BMS and the power supply so that power of the power supply is supplied to the battery management system BMS. In addition, the second connection unit may be configured as a communication circuit for connecting the battery management system and the BMS communication unit (not shown) to move data with each other.
전압 측정기는 제1연결부 및 배터리와의 연결관계를 확인하고, 배터리가 MSD(Manual Service Disconnect)로부터 분리 여부를 확인하기 위해 연결회로의 전압을 측정할 수 있다. MSD는 점검 또는 관리 시 사용자의 감전 사고를 방지하기 위해 배터리를 전기적 연결을 차단하는 기능을 하는 것이다. 전압 측정기는 배터리의 단자에 연결되어 배터리의 전압을 측정함으로써 배터리가 MSD로부터 안정적으로 분리되었는지 여부를 판단할 수 있어 배터리 진단 시 안정성을 확보할 수 있다. 또한, 배터리 진단 장치(100)의 다른 구성들이 제1연결부를 통해 배터리와 연결될 수 있으므로, 전압 측정기는 배터리 진단 장치(100)의 다른 구성들 및 배터리가 정상적으로 연결되어 있는지 여부를 확인할 수 있다.The voltage meter may check a connection relationship between the first connector and the battery, and measure a voltage of the connection circuit to determine whether the battery is disconnected from the MSD. The MSD is designed to disconnect the electrical connections to the battery to prevent the user from electric shock during inspection or maintenance. The voltage meter may be connected to the terminal of the battery and measure the voltage of the battery to determine whether the battery is stably separated from the MSD, thereby ensuring stability during battery diagnosis. In addition, since other components of the battery diagnosis apparatus 100 may be connected to the battery through the first connector, the voltage meter may check whether the other components of the battery diagnosis apparatus 100 and the battery are normally connected.
절연 저항기는 배터리의 절연 저항을 측정할 수 있다. 절연 저항기는 배터리의 (+)단자 또는 (-)단자 중 어느 하나, 및 배터리의 몸체에 연결되어 배터리의 절연 저항을 측정할 수 있다. 이를 통해 배터리의 몸체가 절연되어 있는지 여부를 확인할 수 있기 때문에 사용자가 배터리의 몸체에 흐르는 전류에 의해 감전되는 사고가 발생하는 것을 방지할 수 있다. 절연 저항기는 배터리 몸체의 저항을 측정할 수 있는 소자 또는 장치이면 특별히 제한되지 않는다.An insulation resistor can measure the insulation resistance of the battery. The insulation resistor may be connected to either the positive terminal or the negative terminal of the battery and the body of the battery to measure the insulation resistance of the battery. Through this, it is possible to check whether the body of the battery is insulated, so that the user may prevent an electric shock caused by the current flowing through the body of the battery. The insulating resistor is not particularly limited as long as it is an element or device capable of measuring the resistance of the battery body.
바코드 리더기는 배터리로부터 배터리의 고유 정보(또는, 식별 정보)를 수신할 수 있다. 예를 들어, 바코드 리더기는 진단부에 포함되어, 배터리의 외부에 표시되어 있는 바코드 등의 정보를 인식하여 배터리의 일련번호 등의 데이터를 인식하도록 구성될 수 있다. 배터리 진단 장치(100)는 바코드 리더기를 통해 배터리의 정보(배터리 아이디, 적용 차량 모델명, 용량, 배터리 셀의 수, 전압 등)를 확인할 수 있으며, 배터리의 정보에 기반하여 배터리를 진단할 수 있다. 예를 들어, 진단부는 바코드 리더기를 통해 수신한 배터리 정보에 대응하는 기준 데이터와 교류 임피던스 분석기로부터 수신되는 데이터를 비교함으로써 배터리의 상태를 진단할 수 있다.The barcode reader may receive unique information (or identification information) of the battery from the battery. For example, the barcode reader may be included in the diagnosis unit and configured to recognize data such as a barcode displayed on the outside of the battery to recognize data such as a serial number of the battery. The battery diagnosis apparatus 100 may check the information of the battery (battery ID, applied vehicle model name, capacity, number of battery cells, voltage, etc.) through a barcode reader, and may diagnose the battery based on the information of the battery. For example, the diagnosis unit may diagnose the state of the battery by comparing the reference data corresponding to the battery information received through the barcode reader with the data received from the AC impedance analyzer.
일 실시 예에 따라, 배터리 진단 장치(100)는 바코드 리더기를 통해 확인된 배터리의 정보를 디스플레이 장치(미도시)에 표시하여 사용자가 확인하도록 할 수 있다. 사용자는 배터리 진단 장치(100)에 표시된 배터리 정보가 진단 대상 배터리에 대응하는 것인지를 확인함으로써, 진단 명령 및 배터리 불일치에 따른 안전 사고 및 진단 오류를 방지할 수 있다.According to an embodiment of the present disclosure, the battery diagnosis apparatus 100 may display information of a battery identified through a barcode reader on a display device (not shown) to allow a user to confirm. The user may check whether the battery information displayed on the battery diagnosis apparatus 100 corresponds to the battery to be diagnosed, thereby preventing a safety accident and a diagnosis error due to a diagnosis command and a battery mismatch.
도4는 일 실시 예에 따라, 배터리 진단 방법의 흐름도를 나타낸다.4 is a flowchart of a battery diagnostic method, according to an exemplary embodiment.
도4의 배터리 진단 방법은, 배터리 진단 장치(100)에 의해 수행될 수 있으나 이에 제한되지 않는다.The battery diagnosis method of FIG. 4 may be performed by the battery diagnosis apparatus 100, but is not limited thereto.
단계 S4100에서, 배터리 진단 장치는 배터리의 상태 및 정보를 확인할 수 있다. 배터리의 상태 및 정보를 확인함으로써 실제 검사할 배터리와 다른 종류의 배터리를 검사하는 조건을 인가하여 검사 오류를 범하거나, 발생할 수 있는 배터리의 화재, 폭발, 사용자의 안전 사고를 미리 차단할 수 있다.In operation S4100, the battery diagnosis apparatus may check the state and information of the battery. By checking the status and information of the battery, it is possible to apply a condition to test the battery and other types of battery to be actually inspected to prevent a test error or to prevent a fire, an explosion, or a user's safety accident that may occur.
일 실시 예에 따라, 배터리 진단 장치는 바코드 또는 QR 코드와 같은 식별 정보를 통해 배터리 정보를 결정하고, 결정된 배터리 정보에 대응하는 상세 규격을 데이터베이스로부터 수신할 수 있다. 일 실시 예에 따라, 데이터베이스는 배터리 식별 정보와 그에 대응하는 배터리 파라미터를 포함할 수 있다. 배터리 파라미터는 식별된 배터리에 관한 임의의 정보를 포함할 수 있다. 배터리 파라미터는 배터리의 제조 정보, 해당 차종, 연식, 지리학적 위치 정보, 온도, 제품 규격, 전기적 특성 정보, 전기화학적 특성 정보, 사용 조건 및 환경 정보 등을 포함할 수 있으며, 배터리를 검사함으로써 수집되는 파라미터를 포함할 수 있다.According to an embodiment of the present disclosure, the battery diagnosis apparatus may determine battery information through identification information such as a barcode or a QR code, and receive a detailed specification corresponding to the determined battery information from a database. According to an embodiment of the present disclosure, the database may include battery identification information and corresponding battery parameters. The battery parameter may include any information about the identified battery. The battery parameters may include manufacturing information of the battery, corresponding model, model year, geographical location information, temperature, product specification, electrical property information, electrochemical property information, use condition and environmental information, and are collected by inspecting the battery. It may include a parameter.
일 실시 예에 따른 배터리 진단 장치는 바코드 리더기를 통해 배터리의 외부에 표시되어 있는 바코드 등의 정보를 인식하여 배터리의 일련번호 등의 데이터를 인식하도록 구성될 수 있다. The battery diagnostic apparatus according to an embodiment may be configured to recognize data such as a serial number of the battery by recognizing information such as a barcode displayed on the outside of the battery through a barcode reader.
일 실시 예에 따라, 배터리 진단 장치는 배터리의 차종 및 연식에 따른 사양의 종류와 정보를 확인할 수 있다. 배터리 진단 장치는, 진단 배터리의 수준(단전지, 모듈, 또는 팩)을 선택하고, 배터리의 제조사, 차종, 연식, 팩 또는 모듈 수준을 선택하고 바코드 입력 여부를 선택, 입력하여 일치 여부를 확인할 수 있다. 예를 들어, 배터리 진단 장치는, 제조사, 차종, 연식, 배터리 종류 리스트를 호출하고, 제조사, 차종, 연식, 배터리 종류를 선택하고, 바코드 리더기를 통해 수신된 바코드를 입력하여 바코드가 호출된 배터리 종류 리스트 상에 저장된 정보와 일치하는지 여부를 확인할 수 있다.According to an embodiment of the present disclosure, the battery diagnostic apparatus may check the type and information of the specification according to the type and year of the battery. The battery diagnosis device selects the level of a diagnostic battery (a cell, a module, or a pack), selects a battery manufacturer, a vehicle type, a year, a pack, or a module level, selects a barcode, and inputs a barcode to check whether there is a match. have. For example, the battery diagnostic apparatus calls a list of manufacturers, models, models, and battery types, selects a manufacturer, models, models, and battery types, and inputs a barcode received through a barcode reader to input a battery type in which the barcode is called. You can check whether it matches the information stored on the list.
배터리 진단 장치는 진단 배터리의 기본 정보를 DB에서 읽고 표시하고 이를 저장할 수 있다. 예를 들어, 배터리 진단 장치는 진단 배터리의 취득 정보와 기본 정보를 도3의 서버에 저장하고 완료할 수 있다.The battery diagnostic apparatus reads, displays and stores basic information of the diagnostic battery in a DB. For example, the battery diagnostic apparatus may complete and store acquisition information and basic information of the diagnostic battery in the server of FIG. 3.
단계 S4200에서, 배터리 진단 장치는 배터리 초기 점검을 수행할 수 있다. 배터리 초기 점검은, 배터리 검사 시작 전에 배터리 상태의 안전을 확인하기 위한 동작 및/또는 각종 장비(예를 들어, 배터리 진단 장치)의 이상 유무를 확인하기 위한 동작을 포함할 수 있다. In operation S4200, the battery diagnosis apparatus may perform a battery initial check. The initial battery check may include an operation for confirming the safety of the battery state before starting the battery test and / or an operation for confirming an abnormality of various equipment (eg, a battery diagnostic device).
배터리 검사 전, 배터리 안전 여부 점검, 배터리와 각종 시험기기와의 연결, 연결 점검, 초기 값을 측정하여 준비 점검을 실시할 수 있다. 배터리의 검사 가능 여부를 확인하고, 장비 연결 및 오작동을 확인하여 초기 점검에 통과된 배터리만 검사 가능하도록 함으로써 안전성을 확보할 수 있다. 예를 들어, 초기 점검을 수행함으로써, 초기 점검을 통과되지 않은 배터리를 검사할 경우 발생할 수 있는 과충전 또는 과방전으로 인한 화재나 폭발, 절연 파괴로 인한 사용자의 감전 사고 등이 사전에 방지될 수 있다.Before the battery inspection, the battery safety check, the connection of the battery and various test equipment, the connection check, and the initial value can be measured and the preparation check can be performed. Safety can be ensured by checking whether the battery can be inspected and checking the equipment connection and malfunction so that only the battery that has passed the initial inspection can be inspected. For example, by performing an initial check, a fire or explosion due to overcharge or overdischarge, which may occur when the battery is not passed through the initial check, may be prevented from an electric shock accident of the user due to insulation breakdown. .
배터리 진단 장치는 각종 검사 기기로 초기 점검을 수행할 수 있다. 예를 들어, 배터리 진단 장치는 AC 분석기를 통해 배터리의 전압, 온도, 특정 주파수에서의 교류 임피던스를 측정할 수 있다. 배터리 진단 장치는 DC 분석기로 전압과 온도를 측정할 수 있다. 배터리 진단 장치는 BMS 또는 배터리 인터페이스를 통해 셀의 전압과 온도를 측정할 수 있다. 배터리 진단 장치는 절연 저항기로 배터리의 절연 상태가 파괴되지 않았는지 확인할 수 있다. The battery diagnostic apparatus may perform an initial check with various inspection devices. For example, a battery diagnostic device can measure the battery's voltage, temperature, and alternating current impedance at specific frequencies through an AC analyzer. Battery diagnostics can measure voltage and temperature with a DC analyzer. The battery diagnostic device can measure the voltage and temperature of the cell through the BMS or the battery interface. The battery diagnostic device can verify that the insulation of the battery has not been destroyed by an insulation resistor.
일 실시 예에 따라, 배터리 진단 장치는 측정된 전압 값 및 온도 값이 단계 S4100에서 수신된 배터리의 각종 파라미터 값들과 비교함으로써 초기 점검을 수행하고, 이를 통과한 배터리에 한해 검사를 계속할 수 있다. According to an embodiment of the present disclosure, the battery diagnostic apparatus may perform an initial check by comparing the measured voltage value and temperature value with various parameter values of the battery received in step S4100, and may continue the test only for the battery that passes.
도5를 참조하면, 단계 S4200에서, 배터리 진단 장치는 배터리 초기 안전 점검, 배터리 연결, 배터리 초기 연결 점검, 배터리 초기 준비 점검, 및 저장 완료 동작을 수행할 수 있다.Referring to FIG. 5, in operation S4200, the battery diagnosis apparatus may perform a battery initial safety check, a battery connection, a battery initial connection check, a battery initial preparation check, and a storage completion operation.
초기 안전 점검은, 진단 번호를 부여하고, 검사 진단 실시에 대한 추가 바코드를 발행하고, 진단 배터리 시료에서 MSD 를 분리하고, 배터리 종단부 전압이 측정될 수 있다. MSD 분리 여부가 확인되지 않거나 측정 전압이 비정상적이면, 이상 정지 동작(도17을 참조하여 후술)이 수행될 수 있다. 이하, 이상 정지 동작은, 배터리 진단 과정에서 이상 징후가 발견되었을 때 취해질 수 있는 동작으로서, 상세한 동작은 도17을 참조하여 후술한다.Initial safety checks can be assigned a diagnostic number, issue additional barcodes for conducting a test diagnostic, disconnect the MSD from the diagnostic battery sample, and measure the battery termination voltage. If it is not confirmed whether the MSD is disconnected or the measured voltage is abnormal, the abnormal stop operation (described later with reference to FIG. 17) may be performed. Hereinafter, the abnormal stop operation is an operation that can be taken when an abnormal indication is found in the battery diagnosis process, and the detailed operation will be described later with reference to FIG.
배터리 연결 동작은, 배터리 진단을 위해 BMS 또는 배터리 인터페이스, 저전압 연결부(예를 들어, 도3의 LVJB), 고전압 연결부(예를 들어, 도3의 HVJB)에 배터리를 연결하고, MSD 를 연결하고 배터리 종단부의 전압을 측정하는 공정을 포함할 수 있다. MSD 연결 여부가 비정상적이거나 또는 측정 전압이 비정상적이면 이상 정지 동작을 수행할 수 있다.The battery connection operation may include connecting a battery to a BMS or battery interface, a low voltage connection (eg LVJB in FIG. 3), a high voltage connection (eg HVJB in FIG. 3), a MSD connection and a battery for battery diagnosis. And measuring the voltage at the termination. If the MSD is connected abnormally or the measured voltage is abnormal, the abnormal stop operation may be performed.
배터리 초기 연결 점검 동작은, 배터리 시료의 연결 상태를 점검하고 정상 상태를 판정하는 공정이다. 전압 측정기로 배터리의 전압을 측정하여 비정상적이면 이상 정지 동작을 수행할 수 있다. 전압이 정상적이면, 전원공급기와 BMS 의 전원을 ON 시키고, CAN 신호, RELAY ON, 전압 측정기로 전압을 측정하여 비정상적이면 이상 정지 동작을 수행할 수 있다. 전압이 정상적이면, 절연저항기로 절연을 측정하고, 절연 상태가 비정상적이면 이상 정지 동작이 수행될 수 있다. The battery initial connection check operation is a process of checking a connection state of a battery sample and determining a normal state. An abnormal stop operation may be performed by measuring the voltage of the battery with a voltage meter. If the voltage is normal, turn on the power supply and BMS, and measure the voltage with CAN signal, relay ON, and voltage meter to perform abnormal stop operation. If the voltage is normal, the insulation is measured with an insulation resistor, and if the insulation state is abnormal, the abnormal stop operation may be performed.
배터리 초기 점검 동작은, 배터리 검사에 필요한 교류 임피던스 분석기, 충방전기, BMS 또는 Battery Interface의 전압과 온도, 저항 등을 측정하여 검사할 준비가 되었는지 점검하는 공정이다. 배터리 진단 장치는, ACIA를 통해 배터리의 전압, 온도, 1kHz (또는, 다른 특정 주파수) 저항 측정을 수행할 수 있다. 배터리 진단 장치는 충방전기를 통해 배터리의 전압, 온도 측정을 수행할 수 있다. 배터리 진단 장치는, BMS 또는 배터리 인터페이스를 통해 배터리의 전압, 온도 측정을 수행할 수 있다. 각 장치에서 측정한 값들을 상호 비교 분석하여 비정상적인 것으로 판단되면, 이상 정지 동작이 수행될 수 있다. The battery initial check operation is a process of checking whether the AC impedance analyzer, charger / discharger, BMS or battery interface required for battery inspection is ready for inspection by measuring voltage, temperature, and resistance. The battery diagnostic apparatus may perform voltage, temperature, and 1 kHz (or other specific frequency) resistance measurements of the battery via the ACIA. The battery diagnostic apparatus may measure the voltage and temperature of the battery through the charger / discharger. The battery diagnostic apparatus may measure the voltage and temperature of the battery through the BMS or the battery interface. When it is determined that the abnormality is determined by comparing and analyzing the values measured by each device, the abnormal stop operation may be performed.
배터리 진단 장치는, 배터리 초기 점검 결과를 저장하고 완료할 수 있다.The battery diagnostic apparatus may store and complete a battery initial check result.
다시 도4를 참조하면, 단계 S4300에서, 배터리 진단 장치는 배터리를 검사할 수 있다. 배터리 검사 동작은, 배터리 검사 모드를 선택하고 실행하며, 배터리 검사 동작 동안 상시적으로 배터리의 이상 유무를 점검하는 상시 점검을 동시에 실시하는 공정을 포함할 수 있다. 배터리 검사 모드는 빠른 검사와 표준/정밀 검사를 포함할 수 있다. Referring back to FIG. 4, in operation S4300, the battery diagnosis apparatus may test a battery. The battery test operation may include a process of selecting and executing a battery test mode and simultaneously performing a regular check for constantly checking whether a battery is abnormal during the battery test operation. The battery test mode may include a quick test and a standard / precision test.
도6을 참조하면, 단계 S4300에서, 배터리 진단 장치는 배터리 검사 모드를 선택하고, 배터리 상시 점검을 실행하고, 배터리 검사 모드들(빠른 검사, 표준 검사, 정밀 검사, 용량 표준 검사, 용량 정밀 검사, 저항 검사) 중 적어도 하나를 선택하고 검사 결과를 저장할 수 있다. 상시 점검 동작의 상세한 동작은 도16을 참조하여 후술한다.Referring to Fig. 6, in step S4300, the battery diagnostic apparatus selects a battery test mode, performs a battery always-on check, and checks battery test modes (quick test, standard test, overhaul, capacity standard test, capacity overhaul, At least one of the resistance test) and the test result may be stored. The detailed operation of the always checking operation will be described later with reference to FIG.
배터리 검사 모드를 선택하는 동작은, 초기 점검 결과를 이용하여 가능한 검사 방법을 제시하고 검사 방법을 선택하여 배터리 검사와 상시 점검을 실시하는 공정을 포함할 수 있다. 예를 들어, 교류 임피던스 분석기와 충방전기가 모두 사용 가능하면 빠른 검사, 표준 검사, 정밀 검사, 용량 표준 검사, 용량 정밀 검사, 저항 검사 모두 수행 가능할 수 있다. 교류 임피던스 분석기만 사용가능하면, 저항 검사만 수행 가능할 수 있다. 충방전기만 사용가능하면, 용량 표준 검사와 용량 정밀 검사만 수행 가능할 수 있다. 배터리 진단 장치는 상시 점검 조건을 산출하고, 배터리 검사 방법을 선택하고, 배터리 검사를 실행하고, 상시 점검을 실행하고, 검사 방법을 저장할 수 있다. The operation of selecting the battery test mode may include a process of presenting a possible test method using an initial check result and selecting a test method to perform a battery test and a regular check. For example, if both an AC impedance analyzer and a charger / discharger are available, a quick test, a standard test, a precision test, a capacity standard test, a capacity test, and a resistance test may all be performed. If only an AC impedance analyzer is available, only a resistance test may be performed. If only the charger and charger are available, only capacity standard inspection and capacity inspection can be performed. The battery diagnostic apparatus may calculate a constant check condition, select a battery test method, execute a battery test, perform a regular check, and store the test method.
배터리 검사 모드 중, 빠른 검사 방법은 배터리 진단 중 교류 임피던스 분석기, 충방전기, BMS 또는 배터리 인터페이스를 이용하여 빠른 검사를 실시하는 공정을 의미할 수 있다. 빠른 검사 방법에서, 배터리 진단 장치는 교류 임피던스를 먼저 측정하고 직류 저항을 측정할 수 있다. 교류 임피던스를 먼저 측정하는 이유는, 직류저항을 먼저 측정하면 배터리 내의 전극의 표면 상태가 크게 변화하여 정확한 현재 상태 정보를 알 수 없기 때문이다.In the battery test mode, the quick test method may refer to a process of performing a quick test using an AC impedance analyzer, a charger / discharger, a BMS, or a battery interface during battery diagnosis. In the quick test method, the battery diagnostic apparatus may measure AC impedance first and then measure DC resistance. The reason for measuring the AC impedance first is that if the DC resistance is measured first, the surface state of the electrode in the battery changes greatly, so that accurate current state information is not known.
교류 임피던스 측정에 있어서, 배터리 진단 장치는 초기 점검(S4200) 및후기 점검(S4500)에서 단 주파수에서의 임피던스를 측정하는 것과는 달리, 여러 주파수를 스캔하며 임피던스를 측정할 수 있다.In the AC impedance measurement, the battery diagnostic apparatus may measure impedance by scanning several frequencies, unlike measuring impedance at short frequencies in the initial check (S4200) and the late check (S4500).
직류 저항의 측정에 있어서, 배터리 진단 장치는 추정된 SOC 상태에 따라, 방전 직류 저항을 측정하거나 충전 직류 저항을 측정할 수 있다. 예를 들어, 배터리 진단 장치는 배터리의 현재 전압 상태와 DB에서 불러온 값을 이용하여 현재 SOC 상태를 추정하고, SOC가 50% 이상이면 과충전(overcharge)의 위험성이 있으므로 방전 출력 특성 평가 후 충전 출력 특성 평가를 수행하고, SOC가 50% 미만이면 과방전(overdischarge)의 위험성이 있으므로 충전 출력 특성 평가 후 방전 출력 특성 평가를 수행할 수 있다. 배터리의 위험 상태를 벗어나 직류 저항을 측정하기 위함이다. In the measurement of the DC resistance, the battery diagnostic apparatus may measure the discharge DC resistance or the charge DC resistance according to the estimated SOC state. For example, the battery diagnostic device estimates the current SOC state using the current voltage state of the battery and the value loaded from the DB. If the SOC is 50% or higher, there is a risk of overcharge. When the characteristic evaluation is performed and the SOC is less than 50%, there is a risk of overdischarge, and thus the discharge output characteristic evaluation may be performed after the charge output characteristic evaluation. This is to measure the DC resistance out of the dangerous state of the battery.
다만, 본 명세서에 개시된 방법에서 사용되는 SOC 의 기준 값은 50%에 제한되지 않으며, 다른 어떠한 값도 기준 값으로 사용될 수 있다.However, the reference value of the SOC used in the method disclosed herein is not limited to 50%, and any other value may be used as the reference value.
배터리 검사 모드 중, 표준 검사 방법은, 배터리 진단 중 교류 임피던스 분석기, 충방전기, BMS 또는 배터리 인터페이스를 이용하여 표준 검사를 실시하는 공정을 의미할 수 있다. 표준 검사 방법에서도, 빠른 검사 방법과 마찬가지로, 배터리 진단 장치는 교류 임피던스를 먼저 측정하고 직류 저항을 측정할 수 있다. 예를 들어, 배터리 진단 장치는 배터리의 현재 전압 상태와 DB에서 불러온 값을 이용하여 현재 SOC 상태를 추정하고, SOC가 50% 이상이면 과충전(overcharge)의 위험성이 있으므로 고압 교류 임피던스와 방전 직류 저항을 측정하고, 부분 표준 방전을 수행하고, 고압 교류 임피던스와 충전 직류 저항을 다시 측정할 수 있다. SOC가 50% 미만이면, 과방전(overdischarge)의 위험성이 있으므로 고압 교류 임피던스와 충전 직류 저항을 측정하고, 부분 표준 충전을 수행하고, 고압 교류 임피던스와 방전 직류 저항을 다시 측정할 수 있다. 도7은 일 실시 예에 따른, 표준 검사 모드의 검사 동작의 흐름도를 나타낸다.In the battery test mode, the standard test method may refer to a process of performing a standard test using an AC impedance analyzer, a charger, a BMS, or a battery interface during battery diagnosis. In the standard test method, like the quick test method, the battery diagnostic apparatus may measure the AC impedance first and then measure the DC resistance. For example, the battery diagnostic apparatus estimates the current SOC state using the current voltage state of the battery and the value retrieved from the DB. If the SOC is 50% or higher, there is a risk of overcharge, so the high voltage AC impedance and the discharge DC resistance Can be measured, a partial standard discharge can be performed, and the high voltage AC impedance and the charge DC resistance can be measured again. If the SOC is less than 50%, there is a risk of overdischarge, so the high-voltage AC impedance and the charging DC resistance can be measured, partial standard charging can be performed, and the high-voltage AC impedance and the discharge DC resistance can be measured again. 7 is a flowchart of an inspection operation of a standard inspection mode, according to an exemplary embodiment.
배터리 검사 모드 중, 정밀 검사 모드는, 배터리 진단 중, 교류 임피던스 분석기, 충방전기, BMS 또는 배터리 인터페이스를 이용하여 배터리를 완전 방전하고 완전 충전하면서 각 단계별로 내부저항을 측정하는 정밀 검사를 실시하는 공정을 의미할 수 있다. 도8은 일 실시 예에 따른, 정밀 검사 모드의 검사 동작의 흐름도를 나타낸다.During the battery test mode, the overhaul mode is a process of performing a deep test during the battery diagnosis by measuring the internal resistance at each stage while the battery is completely discharged and fully charged using an AC impedance analyzer, a charger, a BMS, or a battery interface. It may mean. 8 is a flowchart of an inspection operation of a detailed inspection mode, according to an exemplary embodiment.
배터리 검사 모드 중, 용량 표준 검사는, 배터리 진단 중 충방전기, BMS 또는 배터리 인터페이스를 이용하여 배터리의 부분 충·방전 시험을 통하여 표준 용량 검사를 실시하는 공정이다. 도9는 일 실시 예에 따른, 용량 표준 검사 방법의 검사 동작의 흐름도를 나타낸다.In the battery test mode, the capacity standard test is a process of performing a standard capacity test through a partial charge / discharge test of a battery using a charger / discharger, a BMS, or a battery interface during battery diagnosis. 9 is a flowchart of a test operation of a capacity standard test method, according to an exemplary embodiment.
배터리 검사 모드 중, 용량 정밀 검사는, 배터리 진단 중 충방전기, BMS 또는 배터리 인터페이스를 이용하여 배터리의 완전 충·방전 시험을 통하여 용량 정밀 검사를 실시하는 공정이다. 도10은 일 실시 예에 따른, 용량 정밀 검사 모드의 검사 동작의 흐름도를 나타낸다.During the battery test mode, the capacity overhaul is a process of performing a capacity overhaul by performing a full charge / discharge test of the battery using a charger / discharger, a BMS, or a battery interface during battery diagnosis. 10 is a flowchart of an inspection operation of a capacity overhaul mode, according to an exemplary embodiment.
배터리 검사 모드 중, 저항 검사는 교류 임피던스 측정기, BMS 또는 배터리 인터페이스를 이용하여 교류 임피던스 검사를 실시하는 공정이다. 예를 들어, 배터리 진단 장치는 고압 교류 임피던스를 측정하고 이를 저장할 수 있다.In the battery test mode, the resistance test is a process of performing an AC impedance test using an AC impedance meter, a BMS, or a battery interface. For example, a battery diagnostic device can measure and store high voltage alternating current impedance.
다시 도4를 참조하면, 단계 S4400에서, 배터리 진단 장치는 배터리 진단 및 등급화를 수행할 수 있다.Referring back to FIG. 4, in operation S4400, the battery diagnosis apparatus may perform battery diagnosis and grading.
배터리 진단 및 등급화는 배터리 검사 결과를 바탕으로, 배터리의 SOC, SOH, SOP, SOB를 산출하고 등급을 결정하는 공정을 포함할 수 있다.Battery diagnosis and grading may include a process of calculating and rating SOC, SOH, SOP, SOB of the battery based on the battery test results.
일 실시 예에 따라, 배터리 진단 장치는, 빠른 검사, 표준 검사, 정밀 검사, 용량 표준 검사, 용량 정밀 검사, 중 적어도 하나에 기초하여 SOC, SOH, SOP, SOB 를 산출하고 이를 출력 및/또는 저장할 수 있다. According to an embodiment, the battery diagnostic apparatus may calculate, output, and / or store SOC, SOH, SOP, SOB based on at least one of a quick test, a standard test, a precision test, a capacity standard test, a capacity test, and the like. Can be.
일 실시 예에 따라, 배터리 검사 결과에 기반하여, 목표 SOC 에 기반하여, 정확한 SOC 가 설정될 수 있다. 이 때, 측정된 저항 값을 이용하여 정확한 SOC 가 설정될 수 있다. 일 실시 예에 따라, 배터리의 측정된 교류 임피던스, 직류 저항, 및 OCV 정보 중 적어도 하나(예를 들어, 교류 임피던스 또는 직류 저항 및 OCV 정보)에 기반하여, 목표 SOC 에 맞게 충전 또는 방전이 수행될 수 있다. 목표 SOC 는 데이터베이스로부터 배터리의 OCV(Open Circuit Voltage)를 불러옴으로써 설정될 수 있다.According to an embodiment, based on the battery test result, an accurate SOC may be set based on the target SOC. At this time, an accurate SOC may be set using the measured resistance value. According to one embodiment, based on at least one of measured AC impedance, DC resistance, and OCV information of the battery (eg, AC impedance or DC resistance and OCV information), charging or discharging may be performed according to a target SOC. Can be. The target SOC can be set by loading the battery's Open Circuit Voltage (OCV) from the database.
[수학식 1][Equation 1]
V cut-off= OCV target ± IR , I는 전류값, R은 내부저항 V cut-off = OCV target ± IR, I is current value, R is internal resistance
V cut-off 는 배터리를 목표 전압에 정확하게 맞추기 위하여 충전 또는 방전을 실시할 때 종료 조건이 되는 충·방전 종료 조건 설정 전압을 의미한다.V cut-off refers to the charge / discharge termination condition setting voltage which becomes the termination condition when charging or discharging to accurately match the battery to the target voltage.
만약, 배터리 검사 결과에 기반하여, 배터리의 폐기가 필요할 경우, SOC 를 0%인 완전 방전 상태로 만들어, 배터리 보관 및 운송을 안전하게 할 수도 있다.If the battery needs to be discarded, based on the battery test results, the SOC can be completely discharged to 0%, making battery storage and transportation safe.
단계 S4500에서, 배터리 진단 장치는 배터리 후기 점검을 수행할 수 있다. 배터리 후기 점검은, 배터리 검사 후에, 배터리 검사로 인한 배터리 상태의 안전을 확인하기 위한 동작 및/또는 각종 장비(예를 들어, 배터리 진단 장치)의 이상 유무를 확인하기 위한 동작을 포함할 수 있다. 도11을 참조하면, 배터리 후기 점검은, 배터리 후기 정리 점검 동작, 배터리 후기 분리 점검 동작, 배터리 분리 동작, 배터리 후기 안전 점검 동작을 포함할 수 있다. In operation S4500, the battery diagnosis apparatus may perform a late battery check. The battery late check may include an operation for checking the safety of the battery state due to the battery test and / or for checking whether there is an abnormality of various equipment (eg, a battery diagnosis device) after the battery test. Referring to FIG. 11, the battery late check may include a battery late check operation, a battery late separation check operation, a battery separation operation, and a battery late safety check operation.
배터리 후기 정리 점검 동작은, 배터리 검사 진단을 완료한 후, 교류 임피던스 분석기, 충방전기, BMS 또는 배터리 인터페이스를 통해 배터리의 전압과 온도, 저항 등을 측정하여 검사 진단 정리를 위해 점검하는 공정을 포함할 수 있다. 도12를 참조하면, 배터리 진단 장치는 교류 임피던스 분석기에서 전압, 온도, 1kHz 저항 측정을 수행하고, 충방전기 전압, 온도 측정을 수행하고, BMS 또는 Battery Interface 전압, 온도를 측정하고 비정상적이면 이상 정지 동작을 수행하고, 정상적이면 정리 점검 결과를 저장하고 완료할 수 있다. 정리 점검 결과는 배터리의 전압, 온도, 내부 저항, 절연 저항, 각 단전지의 전압 및 모듈의 온도 및 이상 상태 등과 같은 검사 결과를 포함할 수 있다.The battery late check operation may include checking the battery voltage, temperature, and resistance through an AC impedance analyzer, a charger, a BMS, or a battery interface to check the test diagnosis after completing the battery test diagnosis. Can be. Referring to FIG. 12, the battery diagnostic apparatus performs voltage, temperature, and 1 kHz resistance measurements on the AC impedance analyzer, performs charge / discharge voltage and temperature measurements, measures BMS or battery interface voltage and temperature, and abnormal stop operation. You can then save and complete the cleanup check results as normal. The summary check results may include test results such as battery voltage, temperature, internal resistance, insulation resistance, voltage of each cell, and temperature and abnormal state of the module.
배터리 후기 분리 점검 동작은, 배터리 시료의 분리를 위하여 분리 상태를 점검하고 정상 상태를 판정하는 공정을 포함할 수 있다. 도13을 참조하면, 배터리 후기 분리 점검 동작은, 절연저항기 절연저항 측정, 정상 여부 판정, 전압측정기 전압 측정, 정상 여부 판정, CAN 신호 -> Relay off, 전원공급기 OFF -> BMS OFF, 전압측정기 전압 측정, 정상 여부 판정, 추가검사 선택, 및 분리 동작을 포함할 수 있다.The battery late separation check operation may include a process of checking a separation state and determining a normal state for separation of a battery sample. Referring to Figure 13, the battery late separation check operation, insulation resistance insulation resistance measurement, normality determination, voltage meter voltage measurement, normality determination, CAN signal-> Relay off, power supply OFF-> BMS OFF, voltage meter voltage Measurement, normality determination, further test selection, and separation operations.
배터리 분리 동작은, 검사와 진단이 완료된 배터리 시료를 MSD 를 분리하고, 고전압 연결부, 저전압 연결부, BMS 또는 배터리 인터페이스와 배터리를 분리, 확인하고 저장하는 공정을 포함할 수 있다. 도14를 참조하면, MSD 분리, 배터리 종단부 전압 측정, MSD 분리 여부 및 배터리 종단부 전압을 입력하고 정상적이지 않으면 이상 정지 동작이 수행될 수 있다. 정상적이라면, 배터리 고전압 연결부(도3의 HVJB)와 저전압 연결부(도3의 LVJB)를 분리하고, BMS 인터페이스를 분리하고, 정상적이지 않으면 이상 정지 동작이 수행되고, 정상적이면 분리하고 분리 점검 단계에서 측정된 결과와 이상 유무에 대한 판정 결과가 저장될 수 있다.The battery disconnecting operation may include a process of separating the MSD from the battery sample, which has been inspected and diagnosed, and separating, identifying, and storing the high voltage connector, the low voltage connector, the BMS, or the battery interface and the battery. Referring to FIG. 14, if the MSD disconnection, the battery end voltage measurement, the MSD disconnection, and the battery end voltage are input and are not normal, the abnormal stop operation may be performed. If normal, disconnect the battery high voltage connection (HVJB in FIG. 3) and the low voltage connection (LVJB in FIG. 3), disconnect the BMS interface, perform an abnormal stop if normal, disconnect and check in the disconnect check phase The result and the result of the determination of the abnormality can be stored.
배터리 후기 안전 점검 동작은, 시료에서 MSD 분리 여부를 확인하여 후기 안전점검을 확인하고 저장하는 공정을 포함할 수 있다. 도15를 참조하면, MSD 분리, 배터리 종단부 전압 측정, MSD 분리 여부와 전압을 입력하고, 정상적이지 않으면 이상 정지 동작이 수행되고 정상적이면 안전 점검 결과가 저장될 수 있다.The battery late safety check operation may include a process of confirming whether the MSD is separated from the sample to check and store the late safety check. Referring to FIG. 15, the MSD separation, the battery end voltage measurement, the MSD separation and the voltage are inputted, and if abnormal, the abnormal stop operation is performed, and if it is normal, the safety check result may be stored.
단계 S4600에서, 배터리 진단 장치는 배터리 진단 결과를 저장할 수 있다. In operation S4600, the battery diagnosis apparatus may store the battery diagnosis result.
배터리 진단 장치는, 진단 결과를 저장하고 진단 일자, 진단 센터, 진단 장비와 진단 결과를 추적할 수 있는 검사 진단에 대한 별도의 바코드를 출력하고 배터리 팩과 모듈에 바코드를 부착하여 진단을 종료할 수 있다. The battery diagnostic unit can save diagnostic results, print a separate bar code for the test diagnostics that can track the diagnostic date, diagnostic center, diagnostic equipment and diagnostic results, and attach the barcode to the battery pack and module to terminate the diagnostic. have.
상시 점검 동작은, 교류 임피던스 측정기, 충방전기, BMS 또는 배터리 인터페이스를 통해 배터리의 전압, 온도를 주기적으로 측정하여 배터리 정상, 경고, 이상 상태를 판정하는 공정이다. 도16은 배터리 진단 과정 전반에 걸쳐서 수행될 수 있는 특별 절차 중 상시 점검의 흐름도를 나타낸다.The regular check operation is a process of periodically measuring the voltage and temperature of the battery through an AC impedance measuring instrument, a charger / discharger, a BMS, or a battery interface to determine battery normal, warning, and abnormal conditions. Figure 16 shows a flow chart of an ongoing check of special procedures that can be performed throughout the battery diagnostic process.
이상 정지 동작은, 배터리 검사 진단 중 배터리의 이상 상태가 감지되었을 경우 모든 실행을 중단하고 안전을 확보하는 공정이다. 도17은 배터리 진단 과정 전반에 걸쳐서 수행될 수 있는 특별 절차 중 이상 정지 동작의 흐름도를 나타낸다. 도17을 참조하면, 이상 정지 동작은, 모든 실행 중단, 최종 상태 저장, 이상정지단계 소리 및 경광등 ON, MSD 분리, 배터리 종단부 전압 측정, 분리 여부 및 측정 전압 입력, 정상 여부 판정, 고전압 연결부(도3의 HVJB)의 분리 확인, 저전압 연결부(도3의 LVJB)의 분리 확인, BMS 또는 Battery Interface 분리 확인 동작을 포함할 수 있다. 예를 들어, 이상 정지 동작은, 배터리 진단 방법의 모든 실행을 중단하는 단계, 배터리와 MSD를 분리하는 단계, 배터리 종단부 전압을 측정하는 단계, 종단부 전압이 정상적이면 배터리 진단 장치의 고전압 연결부와 저전압 연결부를 배터리로부터 분리하는 단계, 및 배터리 진다 장치의 BMS 또는 배터리 인터페이스를 분리하는 단계를 포함할 수 있다. The abnormal stop operation is a process of stopping all executions and ensuring safety when an abnormal state of the battery is detected during the battery test diagnosis. Fig. 17 shows a flowchart of the abnormal stop operation during the special procedure that can be performed throughout the battery diagnosis process. Referring to Fig. 17, the abnormal stop operation includes all execution stops, final state storage, abnormal stop phase sounds and beacon lights, MSD disconnection, battery terminal voltage measurement, disconnection and measurement voltage input, normality determination, and high voltage connection ( 3 may include an isolation confirmation of the HVJB of FIG. 3, an isolation confirmation of the low voltage connection unit (LVJB of FIG. 3), and an operation of confirming the BMS or battery interface separation. For example, an abnormal stop operation may include stopping all executions of the battery diagnostic method, disconnecting the battery and the MSD, measuring the battery terminal voltage, and if the terminal voltage is normal, the high voltage connection of the battery diagnostic apparatus. Disconnecting the low voltage connection from the battery, and disconnecting the BMS or battery interface of the battery shutdown device.
이하, 도18a 내지 18q는 일 실시 예에 따라, 배터리 진단 과정에서 검사를 구성하는 기본 검사의 단위 공정의 흐름도이다.18A to 18Q are flowcharts illustrating a unit process of a basic test configuring a test in a battery diagnosis process, according to an exemplary embodiment.
일 실시 예에 따른 저압 교류 임피던스는, 교류 임피던스 분석기를 이용하여 60V 이하 전압의 배터리 교류 임피던스를 측정하는 공정이다. 도18a는 일 실시 예에 따라, 저압 교류 임피던스를 측정하는 흐름도를 나타낸다.Low voltage AC impedance according to an embodiment is a process of measuring the battery AC impedance of a voltage of 60V or less using an AC impedance analyzer. 18A illustrates a flowchart of measuring a low voltage AC impedance according to an embodiment.
일 실시 예에 따른 저압 단일 교류 임피던스는, 교류 임피던스 분석기를 이용하여 60V 이하 전압의 배터리를 1,000Hz 단주파수 교류 임피던스를 측정하는 공정이다. (예 : 전압 60V, 측정범위 1,000mohm, 주파수 1,000Hz)Low voltage single AC impedance according to an embodiment is a process of measuring a 1000Hz short-frequency AC impedance of a battery of a voltage of 60V or less using an AC impedance analyzer. (E.g. voltage 60V, measuring range 1,000mohm, frequency 1000Hz)
일 실시 예에 따른 저압 주사 교류 임피던스는, 교류 임피던스 분석기를 이용하여 60V 이하 전압의 배터리를 0.1~1,000Hz 주사 범위에서 교류 임피던스를 측정하는 공정이다. (예 : 전압 60V, 측정범위 1,000mohm, 6지점/10배수)Low-voltage scan AC impedance according to an embodiment is a process of measuring the AC impedance in the 0.1 ~ 1,000Hz scan range of a battery of a voltage of 60V or less using an AC impedance analyzer. (Ex: voltage 60V, measuring range 1,000mohm, 6 points / 10 times)
일 실시 예에 따른 고압 교류 임피던스는, 교류 임피던스 분석기를 이용하여 500V 이하 전압의 배터리 교류 임피던스를 측정하는 공정이다. 도18b는 일 실시 예에 따라, 고압 교류 임피던스를 측정하는 흐름도를 나타낸다.High-voltage AC impedance according to an embodiment is a process of measuring the battery AC impedance of a voltage of 500V or less using an AC impedance analyzer. 18B is a flowchart of measuring a high voltage AC impedance, according to an exemplary embodiment.
일 실시 예에 따른 고압 단일 교류 임피던스는, 교류 임피던스 분석기를 이용하여 500V 이하 전압의 배터리를 1,000Hz 단 주파수 교류 임피던스를 측정하는 공정이다. (예 : 전압 800V, 측정범위 1,000mohm, 주파수 1,000Hz)The high-voltage single AC impedance according to an embodiment is a process of measuring a 1000 Hz short frequency AC impedance of a battery having a voltage of 500V or less using an AC impedance analyzer. (E.g. voltage 800V, measuring range 1,000mohm, frequency 1000Hz)
일 실시 예에 따른 고압 주사 교류 임피던스는, 교류 임피던스 분석기를 이용하여 500V 이하 전압의 배터리를 1~1,000Hz 주사 범위에서 교류 임피던스를 측정하는 공정이다. (예 : 전압 800V, 측정범위 1,000mohm, 6지점/10배수)According to an embodiment, the high-voltage scan AC impedance is a process of measuring an AC impedance of a battery having a voltage of 500V or less in a range of 1 to 1,000 Hz using an AC impedance analyzer. (E.g. voltage 800V, measuring range 1,000mohm, 6 points / 10 times)
일 실시 예에 따른 충전 직류 저항은, 충전부터 시작하는 직류 저항을 측정하는 공정이다. 도18c는 일 실시 예에 따라 충전 직류 저항을 측정하는 흐름도이다.The charging DC resistance according to an embodiment is a process of measuring a DC resistance starting from charging. 18C is a flowchart of measuring charging DC resistance according to an embodiment.
일 실시 예에 따른 방전 직류 저항은, 방전부터 시작하는 직류 저항을 측정하는 공정이다. 방전 직류 저항의 측정은, 도18c와는 다른 순서, 즉, 방전, 휴지, 충전의 순서대로 수행될 수 있다.The discharge DC resistance according to an embodiment is a process of measuring a DC resistance starting from discharge. The measurement of the discharge DC resistance can be performed in a different order from that in Fig. 18C, that is, in the order of discharge, rest, and charging.
일 실시 예에 따른 완전 충전은 배터리를 완전 충전하는 공정이다. 도18d는 일 실시 예에 따라 완전 충전을 수행하는 흐름도이다. Full charging according to an embodiment is a process of fully charging the battery. 18D is a flowchart of performing a full charge according to one embodiment.
일 실시 예에 따른 부분 표준 충전은 배터리를 표준용량의 10% 충전하는 공정이다. 도18e는 일 실시 예에 따라 부분 표준 충전을 수행하는 흐름도이다.Partial standard charging according to an embodiment is a process of charging the battery 10% of the standard capacity. 18E is a flowchart for performing partial standard charging according to one embodiment.
일 실시 예에 따른 부분 측정 충전은 배터리를 측정 용량의 10% 충전하는 공정이다. 도18f는 일 실시 예에 따라 부분 측정 충전을 수행하는 흐름도이다.Partial measurement charging according to an embodiment is a process of charging the battery 10% of the measurement capacity. 18F is a flowchart for performing partial measurement charging according to one embodiment.
일 실시 예에 따른 재충전은 SOC 가 50% 미만인 배터리를 재충전하는 공정이다. 도18g 는 일 실시 예에 따라 재충전을 수행하는 흐름도이다.Recharging according to an embodiment is a process of recharging a battery having an SOC of less than 50%. 18G is a flow chart of performing recharging according to one embodiment.
일 실시 예에 따른 완전 방전은 배터리를 완전 방전하는 공정이다. 도18h는 일 실시 예에 따라 완전 방전을 수행하는 흐름도이다.Full discharge according to an embodiment is a process for completely discharging the battery. 18H is a flowchart for performing a full discharge according to one embodiment.
일 실시 예에 따른 부분 표준 방전은 배터리를 표준용량의 10% 방전하는 공정이다. 도18i는 일 실시 예에 따라 부분 표준 방전을 수행하는 흐름도이다.The partial standard discharge according to an embodiment is a process of discharging the battery 10% of the standard capacity. 18I is a flowchart for performing a partial standard discharge according to one embodiment.
일 실시 예에 따른 부분 측정 방전은 배터리를 측정용량의 10% 방전하는 공정이다. 도18j는 일 실시 예에 따라 부분 측정 방전을 수행하는 흐름도이다.The partial measurement discharge according to an embodiment is a process of discharging the battery 10% of the measurement capacity. 18J is a flowchart of performing a partial measurement discharge according to an embodiment.
일 실시 예에 따른 재방전은 SOC 50% 이상의 배터리를 재방전하는 공정이다. 도18k는 일 실시 예에 따라 재방전을 수행하는 흐름도이다.Re-discharge according to an embodiment is a process of re-discharging the battery more than 50% SOC. 18K is a flowchart of re-discharging according to an embodiment.
일 실시 예에 따른 저압 정밀 충전은 60V 이하 전압의 완전 방전 배터리를 부분 측정 충전과 저압 교류 임피던스 검사와 방전 직류 저항 검사를 반복하여 실시하고 완전 충전 후 저압 교류 임피던스 검사를 실시하는 공정이다. 도18l은 일 실시 예에 따라 저압 정밀 충전을 수행하는 흐름도이다.The low-pressure precision charging according to an embodiment is a process of repeatedly performing partial measurement charging, low voltage AC impedance test, and discharge DC resistance test of a fully discharged battery having a voltage of 60 V or less, and performing a low voltage AC impedance test after full charge. 18L is a flow chart of performing low pressure precision charging according to one embodiment.
일 실시 예에 따른 고압 정밀 충전은 500V 이하 전압의 완전 충전 배터리를 부분 측정 충전과 고압 교류 임피던스 검사와 방전 직류 저항 검사를 반복하여 실시하고 완전 충전 후 고압 교류 임피던스 검사를 실시하는 공정이다. 도18m는 일 실시 예에 따라 고압 정밀 충전을 수행하는 흐름도이다.The high-pressure precision charging according to an embodiment is a process of repeatedly performing partial measurement charging, high voltage alternating current impedance test, and discharge DC resistance test of a fully charged battery having a voltage of 500 V or less, and performing high voltage alternating current impedance test after full charge. 18M is a flow chart of performing high-pressure precision charging according to one embodiment.
일 실시 예에 따른 정밀 충전은 완전 방전 배터리를 부분 측정 충전과 방전 직류 저항 검사를 반복하고 완전 충전을 실시하는 공정이다. 도18n은 일 실시 예에 따라 정밀 충전을 수행하는 흐름도이다.The precision charging according to an embodiment is a process of repeating the partial measurement charging and discharging DC resistance tests of the fully discharged battery and performing a full charge. 18N is a flow chart of performing precision charging in accordance with one embodiment.
일 실시 예에 따른 저압 정밀 방전은 60V 이하 전압의 완전 충전 배터리를 부분 측정 방전과 저압 교류 임피던스 검사와 충전 직류 저항 검사를 반복하여 실시하고 완전 방전 후 저압 교류 임피던스 검사를 실시하는 공정이다. 도18o는 일 실시 예에 따라 저압 정밀 방전을 수행하는 흐름도이다.The low-pressure precision discharge according to an embodiment is a process of repeatedly performing partial measurement discharge, low voltage AC impedance test, and charging DC resistance test of a fully charged battery having a voltage of 60 V or less, and performing a low voltage AC impedance test after full discharge. 18O is a flow chart of performing a low pressure precision discharge according to one embodiment.
일 실시 예에 따른 고압 정밀 방전은 500V 이하 전압의 완전 충전 배터리를 부분 측정 방전과 고압 교류 임피던스 검사와 충전 직류 저항 검사를 반복하여 실시하고 완전 방전 후 고압 교류 임피던스 검사를 실시하는 공정이다. 도18p는 일 실시 예에 따라 고압 정밀 방전을 수행하는 흐름도이다.The high-pressure precision discharge according to an embodiment is a process of repeatedly performing a partial measurement discharge, a high voltage alternating current impedance test and a charge direct current resistance test of a fully charged battery having a voltage of 500 V or less, and performing a high voltage alternating current impedance test after a full discharge. 18P is a flowchart of a high-pressure precision discharge according to one embodiment.
일 실시 예에 따른 정밀 방전은 완전 충전 배터리를 부분 측정 방전과 충전 직류 저항 검사를 반복하고 완전 방전 실시하는 공정이다. 도18q는 일 실시 예에 따라 정밀 방전을 수행하는 흐름도이다.The precision discharge according to an embodiment is a process of repeating the partial measurement discharge and the charging DC resistance test and performing a full discharge of the fully charged battery. 18Q is a flowchart of performing a precision discharge according to one embodiment.
설명들은 본 발명을 구현하기 위한 예시적인 구성들 및 동작들을 제공하도록 의도된다. 본 발명의 기술 사상은 위에서 설명된 실시 예들뿐만 아니라, 위 실시 예들을 단순하게 변경하거나 수정하여 얻어질 수 있는 구현들도 포함할 것이다. 또한, 본 발명의 기술 사상은 위에서 설명된 실시 예들을 앞으로 용이하게 변경하거나 수정하여 달성될 수 있는 구현들도 포함할 것이다.The descriptions are intended to provide exemplary configurations and operations for implementing the present invention. The technical idea of the present invention will include not only the embodiments described above but also implementations that can be obtained by simply changing or modifying the above embodiments. In addition, the technical idea of the present invention will include implementations that can be achieved by easily changing or modifying the above-described embodiments.

Claims (9)

  1. 배터리 진단 장치에 기반한 배터리 진단 방법에 있어서,In the battery diagnostic method based on the battery diagnostic device,
    진단하고자 하는 배터리의 상태 및 정보를 확인하는 단계;Checking the status and information of the battery to be diagnosed;
    상기 배터리에 대한 전압과 온도를 측정함으로써 초기 점검을 수행하는 단계;Performing an initial check by measuring voltage and temperature for the battery;
    상기 초기 점검 결과 상기 배터리의 상태가 정상적이면, 상기 배터리에 대한 교류 임피던스와 직류 저항을 측정함으로써 검사를 수행하는 단계;Performing a test by measuring an AC impedance and a DC resistance of the battery when the state of the battery is normal as a result of the initial check;
    상기 검사 결과에 기반하여, 상기 배터리의 SOC, SOH, SOP, SOB를 결정하고 등급화하는 단계;Determining and rating the SOC, SOH, SOP, SOB of the battery based on the test result;
    상기 배터리의 후기 점검을 수행하는 단계; 및Performing a late check of the battery; And
    상기 배터리에 대한 진단 결과를 저장하는 단계를 포함하는 배터리 진단 방법.And storing a diagnosis result for the battery.
  2. 제1항에 있어서,The method of claim 1,
    상기 상태 및 정보를 확인하는 단계는,Checking the status and information,
    바코드 리더기로 상기 배터리에 부착된 바코드를 인식하고, 상기 배터리에 대응하는 정보를 데이터베이스로부터 읽어오는 단계를 포함하고, Recognizing a barcode attached to the battery with a barcode reader, and reading information corresponding to the battery from a database;
    상기 정보는, 상기 배터리의 수준, 제조 정보, 차종, 연식, 및 전기화학적 특성 정보를 포함하는 배터리 진단 방법.The information includes a battery level, manufacturing information, vehicle type, model, and electrochemical characteristics information.
  3. 제1항에 있어서,The method of claim 1,
    상기 초기 점검을 수행하는 단계는,Performing the initial check,
    교류 임피던스 분석기를 이용해 상기 배터리의 전압, 온도, 특정 주파수에서의 교류 임피던스를 측정하는 단계;Measuring an AC impedance at a specific frequency of the battery using an AC impedance analyzer;
    충방전기로 상기 배터리의 전압과 온도를 측정하는 단계;Measuring the voltage and temperature of the battery with a charger;
    BMS 또는 배터리 인터페이스를 통해 상기 배터리의 전압과 온도를 측정하는 단계; 및Measuring the voltage and temperature of the battery via a BMS or battery interface; And
    절연 저항기로 상기 배터리의 절연 상태를 판단하는 단계를 포함하는 배터리 진단 방법.Determining an insulation state of the battery with an insulation resistor.
  4. 제1항에 있어서,The method of claim 1,
    상기 검사를 수행하는 단계는,Performing the inspection,
    교류 임피던스 분석기와 충방전기의 사용 가능 여부에 기반하여, 빠른 검사 모드, 표준 검사 모드, 정밀 검사 모드, 용량 표준 검사 모드, 용량 정밀 검사 모드, 저항 검사 모드 중 적어도 하나를 선택하는 단계를 포함하는 배터리 진단 방법.A battery comprising selecting at least one of a quick test mode, a standard test mode, a precision test mode, a capacity standard test mode, a capacity test mode, and a resistance test mode based on the availability of the AC impedance analyzer and the charger / discharger; Diagnostic method.
  5. 제1항에 있어서,The method of claim 1,
    상기 검사를 수행하는 단계는,Performing the inspection,
    상기 교류 임피던스를 측정한 다음에 상기 직류 저항을 측정하는 단계를 포함하는 배터리 진단 방법.Measuring the DC resistance after measuring the AC impedance.
  6. 제1항에 있어서,The method of claim 1,
    상기 검사를 수행하는 단계는,Performing the inspection,
    상기 배터리의 SOC가 50% 이상이면, 고압 교류 임피던스 측정, 방전 직류 저항 측정, 충전 직류 저항 측정의 순서대로 수행하고,When the SOC of the battery is 50% or more, high voltage AC impedance measurement, discharge DC resistance measurement, charging DC resistance measurement are performed in the order of
    상기 배터리의 SOC가 50% 미만이면, 고압 교류 임피던스 측정, 충전 직류 저항 측정, 방전 직류 저항 측정의 순서대로 수행하는 배터리 진단 방법.When the SOC of the battery is less than 50%, the battery diagnostic method performed in the order of high voltage AC impedance measurement, charging DC resistance measurement, discharge DC resistance measurement.
  7. 제1항에 있어서,The method of claim 1,
    상기 등급화하는 단계는,The grading step,
    상기 배터리의 측정된 교류 임피던스, 직류 저항, 및 OCV정보 중 적어도 하나에 기반하여, 목표 SOC 에 맞게 상기 배터리를 충전 또는 방전하는 단계를 포함하는 배터리 진단 방법.Charging or discharging the battery according to a target SOC based on at least one of measured AC impedance, DC resistance, and OCV information of the battery.
  8. 제1항에 있어서,The method of claim 1,
    상기 후기 점검을 수행하는 단계는,The step of performing the late check,
    상기 배터리의 전압, 온도, 절연 저항, 특정 주파수에서의 교류 임피던스를 측정하고, 측정 값이 정상 범위 이내이면 검사 결과를 저장하는 단계; Measuring a voltage, a temperature, an insulation resistance, and an AC impedance at a specific frequency of the battery, and storing a test result when the measured value is within a normal range;
    상기 검사가 완료된 배터리를 MSD 로부터 분리하는 단계; 및Separating the battery from which the inspection was completed from the MSD; And
    상기 배터리 진단 장치의 고전압 연결부, 저전압 연결부, 및 BMS 를 상기 배터리로부터 분리하는 단계를 포함하는 배터리 진단 방법.Disconnecting a high voltage connection, a low voltage connection, and a BMS from the battery.
  9. 제1항에 있어서,The method of claim 1,
    상기 배터리 진단 방법이 수행되는 동안, 상기 배터리의 전압, 온도를 주기적으로 측정하여, 측정 값이 정상 범위를 벗어나면 이상 정지 동작이 수행되고,While the battery diagnosis method is being performed, the voltage and temperature of the battery are periodically measured, and when the measured value is out of the normal range, an abnormal stop operation is performed.
    상기 이상 정지 동작은, The abnormal stop operation is,
    상기 배터리 진단 방법의 모든 실행을 중단하는 단계;Stopping all executions of the battery diagnostic method;
    상기 배터리와 MSD 를 분리하는 단계;Separating the battery and the MSD;
    상기 배터리의 종단부 전압을 측정하는 단계;Measuring an end voltage of the battery;
    상기 종단부 전압이 정상적이면, 상기 배터리 진단 장치의 고전압 연결부와 저전압 연결부를 상기 배터리로부터 분리하는 단계; 및If the terminal voltage is normal, separating the high voltage connection part and the low voltage connection part of the battery diagnostic apparatus from the battery; And
    상기 배터리 진단 장치의 BMS또는 배터리 인터페이스를 분리하는 단계를 포함하는 배터리 진단 방법.Disconnecting the BMS or the battery interface of the battery diagnostic apparatus.
PCT/KR2019/004971 2018-04-27 2019-04-24 Battery diagnostic method WO2019209033A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0049158 2018-04-27
KR20180049158 2018-04-27
KR10-2019-0039903 2019-04-05
KR1020190039903A KR102029776B1 (en) 2018-04-27 2019-04-05 Battery diagnosis method

Publications (1)

Publication Number Publication Date
WO2019209033A1 true WO2019209033A1 (en) 2019-10-31

Family

ID=68208794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004971 WO2019209033A1 (en) 2018-04-27 2019-04-24 Battery diagnostic method

Country Status (2)

Country Link
KR (1) KR102029776B1 (en)
WO (1) WO2019209033A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111729856A (en) * 2020-07-02 2020-10-02 南京工程学院 Retired power lithium battery screening method based on thermal consistency
CN112285572A (en) * 2020-09-25 2021-01-29 浙江辉博电力设备制造有限公司 Echelon battery detection system
CN113866507A (en) * 2021-08-26 2021-12-31 福建星云电子股份有限公司 Charging pile direct current impedance testing method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110579716B (en) * 2019-10-22 2022-06-03 东软睿驰汽车技术(沈阳)有限公司 Battery detection method and device
KR102455707B1 (en) * 2020-03-26 2022-10-19 한국생산성본부인증원주식회사 The certification method of the battery performance for secondhand electric motor vehicles and system thereof
US20220326310A1 (en) * 2020-04-28 2022-10-13 Mintech Co.,Ltd Battery electric flow test system and method
KR102657996B1 (en) * 2020-04-28 2024-04-17 주식회사 민테크 Battery electric flow test system and metho
KR102420369B1 (en) * 2020-12-07 2022-07-14 (주)티에이치엔 Apparatus of testing dual power system for automobile
KR102431909B1 (en) * 2021-02-04 2022-08-12 주식회사 그린베이스 Recycled battery evaluation system and method thereof
KR102569876B1 (en) * 2021-02-24 2023-08-23 주식회사 피엠그로우 Apparatus and method for evaluating reusable batteries according to their use
KR102542956B1 (en) * 2021-04-27 2023-06-14 현대자동차주식회사 Method and system for diagnosing battery of wireless type seat belt reminder system
KR102464114B1 (en) * 2021-05-14 2022-11-07 주식회사 원익피앤이 Monitoring server for monitoring battery equipment and monitoring system including the same
CN114114025B (en) * 2021-09-30 2023-07-11 岚图汽车科技有限公司 Power battery health state detection method and related equipment
KR102570006B1 (en) * 2022-07-06 2023-08-23 주식회사 민테크 System for storing vehicle battery packs
KR102604549B1 (en) * 2022-08-03 2023-11-23 주식회사 민테크 Electric vehicle charging system with battery status diagnosis function
KR102537356B1 (en) * 2022-11-03 2023-05-30 한국산업기술시험원 Apparatus for testing battery pack using obd data
KR102537362B1 (en) * 2022-11-03 2023-05-30 한국산업기술시험원 method FOR TESTING BATTERY PACK USING OBD DATA

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239823A (en) * 2003-02-07 2004-08-26 Matsushita Electric Ind Co Ltd Quality determination system for automobile storage battery
JP2010223606A (en) * 2009-03-19 2010-10-07 Fujitsu Telecom Networks Ltd Device and method for charge/discharge test of secondary battery
JP2012026771A (en) * 2010-07-20 2012-02-09 Toshiba Corp Secondary battery apparatus and vehicle
KR20130030766A (en) * 2010-06-03 2013-03-27 미드트로닉스, 인크. Battery pack maintenance for electric vehicles
WO2017008846A1 (en) * 2015-07-14 2017-01-19 Volvo Truck Corporation A method and system for balancing a battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239823A (en) * 2003-02-07 2004-08-26 Matsushita Electric Ind Co Ltd Quality determination system for automobile storage battery
JP2010223606A (en) * 2009-03-19 2010-10-07 Fujitsu Telecom Networks Ltd Device and method for charge/discharge test of secondary battery
KR20130030766A (en) * 2010-06-03 2013-03-27 미드트로닉스, 인크. Battery pack maintenance for electric vehicles
JP2012026771A (en) * 2010-07-20 2012-02-09 Toshiba Corp Secondary battery apparatus and vehicle
WO2017008846A1 (en) * 2015-07-14 2017-01-19 Volvo Truck Corporation A method and system for balancing a battery pack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111729856A (en) * 2020-07-02 2020-10-02 南京工程学院 Retired power lithium battery screening method based on thermal consistency
CN112285572A (en) * 2020-09-25 2021-01-29 浙江辉博电力设备制造有限公司 Echelon battery detection system
CN113866507A (en) * 2021-08-26 2021-12-31 福建星云电子股份有限公司 Charging pile direct current impedance testing method
CN113866507B (en) * 2021-08-26 2023-07-28 福建星云电子股份有限公司 Direct-current impedance testing method for charging pile

Also Published As

Publication number Publication date
KR102029776B1 (en) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2019209033A1 (en) Battery diagnostic method
US11668779B2 (en) Hybrid and electric vehicle battery pack maintenance device
US10843574B2 (en) Calibration and programming of in-vehicle battery sensors
KR20200017367A (en) Apparatus for battery diagnosis
US11973202B2 (en) Intelligent module interface for battery maintenance device
US6316914B1 (en) Testing parallel strings of storage batteries
US10429449B2 (en) Battery pack tester
US20200174078A1 (en) Vehicle battery maintenance device
US11545839B2 (en) System for charging a series of connected batteries
US20050212521A1 (en) Electronic battery tester or charger with databus connection
JP3627922B2 (en) Method for monitoring DC voltage detector for battery pack
WO2017116088A1 (en) Method and device for estimating battery life
WO2020071848A1 (en) Method and apparatus for diagnosing low voltage of secondary battery cell
US9678118B2 (en) Method for checking the absence of voltage on a power electronic component of a motor vehicle
CN103430035A (en) Charging apparatus and method for determining conduction state
WO2022086097A1 (en) Battery test device
KR20190125906A (en) Apparatus for diagnosis of battery
WO2020054924A1 (en) Apparatus and method for diagnosing state of battery in cell unit
US6992487B1 (en) Arrangement for testing battery while under load and charging
CN110816363A (en) Device, charging pile and method for detecting the state of a battery pack of a motor vehicle
CN112793452B (en) Traction battery charging station
US11885852B2 (en) Battery management device, energy storage apparatus, battery management method, and computer program
US6154033A (en) Method and apparatus for analyzing nickel-cadmium batteries
CN113552495B (en) Online detection method and device for leakage of storage battery of power supply system
WO2023013961A1 (en) Battery testing device and battery testing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792410

Country of ref document: EP

Kind code of ref document: A1