WO2020054924A1 - Apparatus and method for diagnosing state of battery in cell unit - Google Patents

Apparatus and method for diagnosing state of battery in cell unit Download PDF

Info

Publication number
WO2020054924A1
WO2020054924A1 PCT/KR2019/001215 KR2019001215W WO2020054924A1 WO 2020054924 A1 WO2020054924 A1 WO 2020054924A1 KR 2019001215 W KR2019001215 W KR 2019001215W WO 2020054924 A1 WO2020054924 A1 WO 2020054924A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
value
internal resistance
cell
voltage value
Prior art date
Application number
PCT/KR2019/001215
Other languages
French (fr)
Korean (ko)
Inventor
최진혁
임지훈
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2020054924A1 publication Critical patent/WO2020054924A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16576Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing DC or AC voltage with one threshold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/386Arrangements for measuring battery or accumulator variables using test-loads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables

Definitions

  • the present invention relates to an apparatus and method for diagnosing the condition of a battery.
  • the use time for charging and discharging becomes longer for an electric vehicle battery or an energy storage battery, the use time is reduced due to deterioration due to an increase in internal resistance.
  • SOC state of charge
  • the present invention aims to solve the above and other problems. Another object is to calculate the internal resistance based on the difference between the maximum voltage value and the minimum voltage value generated when a predetermined pulse waveform is applied, and predict the battery in advance to facilitate the operation, maintenance, and maintenance of the battery. It is an object of the present invention to provide an apparatus and method for diagnosing the state of a battery to be cell-by-cell.
  • a power conversion unit for applying a predetermined pulse waveform to the battery;
  • a measuring unit measuring a maximum voltage value and a minimum voltage value in units of cells of the battery as the predetermined pulse waveform is applied; And based on the difference between the maximum voltage value and the minimum voltage value, a control unit for calculating the internal resistance value of each cell of the battery; provides a device for diagnosing the state of the battery in a cell unit.
  • the controller may repeatedly calculate the internal resistance value of each cell of the battery while adjusting the state of charge (SOC) of the battery.
  • SOC state of charge
  • the controller may calculate the internal resistance value of each cell of the battery based on a difference between a maximum voltage value and a minimum voltage value measured as the predetermined pulse waveform is applied at a predetermined SOC value. have.
  • the controller increases the predetermined SOC value by a predetermined value, and then, based on the difference between the maximum voltage value and the minimum voltage value measured as the predetermined pulse waveform is applied, the battery It is possible to calculate the internal resistance value per cell.
  • the controller may detect a cell that deviates from a standard deviation value for the internal resistance value by applying a predetermined statistical analysis to the internal resistance value of each cell of the battery.
  • applying a predetermined pulse waveform to the battery Measuring the maximum voltage value and the minimum voltage value in units of cells of the battery as the predetermined pulse waveform is applied; And based on the difference between the maximum voltage value and the minimum voltage value, calculating the internal resistance value of each cell of the battery; provides a method for diagnosing the state of the battery in units of cells.
  • applying a predetermined statistical analysis to the internal resistance value of each cell of the battery may include.
  • the output deterioration degree is directly measured at a system level without relying on the state of health (SOH) calculated in the BMS, the stability and performance of the entire system are diagnosed. Can judge.
  • SOH state of health
  • the reliability of the SOH value measured in the battery management system When the reliability of the SOH value measured in the battery management system is low, it can be used as comparative information, and when the reliability of the SOH value is high, it can be used as information for determining the state of contact resistance on the system. This can be very useful diagnostic information.
  • battery maintenance intervals and units can be optimized by measuring and analyzing not only the deterioration degree of the entire battery system, but also the deterioration degree of individual cells, and the replacement unit is minimized when replacement is required. can do.
  • the deterioration degree of each battery cell when the deterioration degree of each battery cell is indicated on the energy storage device operating system and the electric vehicle charger or operator screen, it can be effectively used for condition inspection, maintenance, and replacement.
  • the measured charging and discharging maximum outputs can be utilized and reflected in the operating algorithm, thereby being used for optimal operation of the energy storage system.
  • the energy storage system can be used by reflecting the available range in the operating algorithm depending on the battery SOC.
  • the available output described in the embodiment of the present invention can be applied in the available SOC range.
  • the available output value in the SOC range decreases (deteriorates) as the usage time elapses
  • the available output according to the SOC range can be calculated and reflected in the operating algorithm, and the SOC range in which the required output can be expressed normally Can be confirmed. This enables long life operation.
  • the battery exhibits output characteristics for each SOC range depending on the material or design. Therefore, the charge output characteristics and the discharge output characteristics are different depending on the manufacturer or design differences. Accordingly, by applying the apparatus and method of the present invention, the optimal operating SOC range can be set and mounted in the operating system.
  • the internal resistance value can be used to present a quantitative value for the battery deterioration to the user, and it can be checked as needed at every charge, so information on maintenance intervals and replacement units There is an advantage that the user can grasp.
  • FIG. 1 is a block diagram illustrating an embodiment of an apparatus for diagnosing a battery state in units of cells according to the present invention.
  • FIG. 2 is a graph for explaining an embodiment of a predetermined pulse waveform applied to the battery and the output accordingly.
  • 3 and 4 are graphs showing embodiments of internal resistance and available output change for each SOC.
  • FIG. 5 is a flowchart for explaining an embodiment of a method of diagnosing a battery state in units of cells according to the present invention.
  • FIG. 6 is a table for explaining an example of measuring the open circuit voltage of a cell before / after the output test for each SOC.
  • FIG. 1 is a block diagram illustrating an embodiment of an apparatus for diagnosing a battery state in units of cells according to the present invention.
  • an apparatus for diagnosing a state of a battery according to the present invention in units of cells may include a power conversion unit, a measurement unit, and a control unit.
  • the power conversion unit may apply a predetermined pulse waveform to the battery.
  • the measurement unit may measure a maximum voltage value and a minimum voltage value in units of cells of the battery.
  • the controller may calculate the internal resistance value of each cell of the battery based on the difference between the maximum voltage value and the minimum voltage value.
  • the control unit may include a battery management system (BMS).
  • the controller may repeatedly calculate the internal resistance value of each cell of the battery while adjusting the state of charge (SOC) of the battery.
  • SOC state of charge
  • the controller may calculate a cell unit internal resistance value of the battery based on a difference between a maximum voltage value and a minimum voltage value measured as the predetermined pulse waveform is applied at a predetermined SOC value.
  • the controller increases the predetermined SOC value by a predetermined value, and then, based on a difference between a maximum voltage value and a minimum voltage value measured as the predetermined pulse waveform is applied, the internal resistance value of each battery cell unit. Can be calculated.
  • the controller may detect a cell that deviates from a standard deviation value for the internal resistance value by applying a predetermined statistical analysis to the internal resistance value of each cell of the battery.
  • a predetermined pulse waveform may be applied to the battery.
  • FIG. 2 is a graph for explaining an embodiment of a predetermined pulse waveform applied to the battery and the output accordingly.
  • test methods and calculation formulas for measuring DC internal resistance and maximum charge output and maximum discharge output are expressed.
  • R dis is the discharge internal resistance value
  • OCV dis is the voltage of the battery at the start of discharge (means the open circuit voltage at the start of discharge)
  • V dis is the voltage of the battery at the end of discharge
  • I dis is the discharge current. It means size.
  • the controller may calculate the maximum discharge output according to Equation 2 below based on the calculated discharge internal resistance value.
  • Discharge Power is the maximum discharge power and V MIN is the minimum discharge voltage.
  • the controller converts the power for a predetermined idle time for the voltage of the battery to reach the Open Circuit Voltage (OCV). Stop controlling for wealth.
  • OCV Open Circuit Voltage
  • the idle time is the time required for the voltage of the battery to reach an open circuit voltage and enter a stable state.
  • the control unit waits until the voltage of the battery reaches the open circuit voltage. This dwell time is applied even before calculating the maximum discharge power.
  • the control unit controls the power conversion unit as shown in FIG. 2 to generate a charging current having a predetermined size (eg, 3.75 times the current (3.75C rate) of the battery capacity).
  • the battery can be charged by supplying it to the battery for a set time (eg, 10 seconds).
  • the control unit may calculate a charging internal resistance value based on the voltage of the battery at the start of charging, the voltage of the battery at the completion of charging, and the charging current.
  • the value of the charging internal resistance can be calculated according to Equation 3 below.
  • R chg is the charge internal resistance value
  • OCV chg is the voltage of the battery at the start of charging (meaning the open circuit voltage at the start of charging)
  • V chg is the voltage of the battery at the completion of charging
  • I chg is the charge current. It means size.
  • the controller may calculate the maximum charging output according to Equation 4 below based on the calculated charging internal resistance value.
  • Charge Power is the maximum charging output
  • V MAX is the maximum charging voltage
  • the pulse pattern for this test may be utilized by inputting a pattern to a power converter (PCS) of an energy storage system.
  • PCS power converter
  • the output deterioration and available power can be evaluated by using the amount of change in the DC internal resistance after initial and 2000 cycles for each state of charge (SOC). You can.
  • 3 and 4 are graphs showing embodiments of internal resistance and available output change for each SOC.
  • the available SOC range at each charge / discharge can be calculated and compared to the system request output and reflected in the energy storage system operation algorithm.
  • Figure 4 is an example comparing the available output of the Fresh cell and the Used cell at each temperature condition (15 °C, 25 °C, 30 °C). In the case of a used cell, it can be seen that the available output is greatly reduced.
  • FIG. 5 is a flowchart for explaining an embodiment of a method of diagnosing a battery state in units of cells according to the present invention.
  • a step (S510) of setting a range of SOC (SOC_Start, SOC_End) is performed. Accordingly, an initial SOC is set (S520), and a predetermined pulse is applied from the initial SOC to measure V, I, and T in units of cells (S530). As described above, the pulse of FIG. 2 may be applied.
  • a step (S540) of calculating the degree of deterioration (internal resistance, available output) of the cell is performed based on the measured value.
  • the deterioration degree of a cell may be calculated by the above-described equations.
  • step (S550) of determining whether the SOC value is a predetermined final value (SOC_End, n%) is performed.
  • step S530, S540, and S550 are repeated.
  • step S560 of determining whether there is an abnormality in a cell unit by applying a statistical analysis to the internal resistance is performed. For example, through statistical analysis of measured and calculated internal resistance values, it is possible to perform screening, maintenance, and replacement for cells with high internal resistance significantly out of the standard deviation value.
  • the resistance value for calculating the internal resistance of each cell may be measured by using a separate measurement sensor or by using BMS (Battery Management System) information previously applied to the battery system.
  • BMS Battery Management System
  • the present system can be applied by using a charger.
  • FIG. 6 is a table for explaining an example of measuring the open circuit voltage of a cell before / after the output test for each SOC.
  • an open circuit voltage (OCV) for each cell before and after an output test for each SOC is shown, and a variation in DC internal resistance for each cell can be evaluated using a periodic change in this value.
  • SOC was measured by changing SOC from 10 to 90 in increments of 10, and the maximum voltage, minimum voltage, and the difference between the maximum voltage and the minimum voltage of a predetermined number of cells constituting the battery system before and after the test. ( ⁇ V) can be confirmed.
  • the voltage drop value can be checked using the voltage values before and after the application of the pulse waveform in each cell, and the internal resistance can be calculated using the above-described equation.
  • the battery system applied by the present invention is a single cell
  • a single cell is a module connected in series and parallel
  • a rack in which modules are connected in series and parallel a system in which the racks are connected in series and parallel, evaluates the output characteristics and measures the degree of degradation.
  • the pulse current or pulse output applied to each can be calculated and applied from the total capacity (Ah) or energy (Wh).
  • Whether the output deterioration degree proposed in the present invention is determined is based on the output required by the rating of the applied cell, module, rack, and system, and performs replacement or maintenance through comparison with the maximum output calculated through the pulse charge / discharge test. It is possible to compare and verify the degree of deterioration by changing the maximum output and internal resistance values calculated through periodic pulse charge and discharge tests.
  • the output deterioration degree is directly measured at a system level without relying on the state of health (SOH) calculated in the BMS, the stability and performance of the entire system are diagnosed. Can judge.
  • SOH state of health
  • the SOH value measured in the battery management system When the SOH value measured in the battery management system is not reliable, it can be used as comparative alternative information. When the SOH value is high, it can be used as information to determine the state of contact resistance on the system. Can be
  • battery maintenance intervals and units can be optimized by measuring and analyzing not only the deterioration degree of the entire battery system, but also the deterioration degree of individual cells, and the replacement unit is minimized when replacement is required. can do.
  • the deterioration degree of each battery cell when the deterioration degree of each battery cell is indicated on the energy storage device operating system and the electric vehicle charger or operator screen, it can be effectively used for condition inspection, maintenance, and replacement.
  • the measured charging and discharging maximum outputs can be utilized and reflected in the operating algorithm, thereby being utilized for optimal operation of the energy storage system.
  • the energy storage system can be used by reflecting the available range in the operating algorithm depending on the battery SOC.
  • the available output described in the embodiment of the present invention can be applied in the available SOC range.
  • the available output value in the SOC range decreases (deteriorates) as the usage time elapses
  • the available output according to the SOC range can be calculated and reflected in the operating algorithm, and the SOC range in which the required output can be expressed normally Able to know. This enables long life operation.
  • the battery exhibits output characteristics for each SOC range depending on the material or design. Therefore, the charge output characteristics and the discharge output characteristics are different depending on the manufacturer or design differences. Accordingly, by applying the apparatus and method of the present invention, the optimal operating SOC range can be set and mounted in the operating system.
  • the internal resistance value can be used to present a quantitative value for the battery deterioration to the user, and it can be checked as needed at every charge, so information on maintenance intervals and replacement units There is an advantage that the user can grasp.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

The present invention relates to an apparatus and a method for diagnosing the state of a battery. The apparatus for diagnosing the state of a battery in a cell unit, according to the present invention, comprises: a power transform unit for applying a predetermined pulse waveform to the battery; a measurement unit for measuring the maximum voltage value and the minimum voltage value in a cell unit of the battery according to the applied predetermined pulse waveform; and a control unit for calculating the cell-unit internal resistance value of the battery on the basis of the difference between the maximum voltage value and the minimum voltage value.

Description

배터리의 상태를 셀 단위로 진단하는 장치 및 방법Apparatus and method for diagnosing the state of the battery in units of cells
본 발명은 배터리의 상태를 진단하는 장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for diagnosing the condition of a battery.
전기자동차용 배터리나 에너지 저장용 배터리 등은 충방전 사용시간이 길어짐에 따라, 내부저항의 증가로 인한 열화현상에 의해 사용 시간이 줄어들게 된다. As the use time for charging and discharging becomes longer for an electric vehicle battery or an energy storage battery, the use time is reduced due to deterioration due to an increase in internal resistance.
종래 기술에서는 에너지 저장 시스템의 수명 열화를 측정하기 위해, 주로 용량 열화를 측정하고 있다. 이 경우, 주기적 점검 시 시험 시간이 과다하게 소요되는 문제점이 존재한다. In the prior art, in order to measure the life deterioration of the energy storage system, the capacity deterioration is mainly measured. In this case, there is a problem that the test time is excessively taken during periodic inspection.
현재 전기자동차 및 에너지저장시스템에서는 배터리의 충전 및 방전 시 요구 출력이 정상적으로 동작하기 위한 충전상태(SOC, State of Charge) 범위(충전상태 사용범위)가 지정되어 있다. 그러나 정확한 열화도 측정 방법이 적용되지 않고 있기 때문에, SOC에 따른 요구 출력 정상 동작 여부를 확인할 수 있는 방법이 부재한 상태이다. 또한, 운영 알고리즘에 시스템 열화에 따른 가용 SOC 범위가 고려되지 않고 있다. Currently, in electric vehicles and energy storage systems, a state of charge (SOC) range (a state of use of a charged state) is specified for normal operation of a required output when charging and discharging a battery. However, since the method for measuring the exact degree of deterioration is not applied, there is no method to check whether the required output is normally operated according to the SOC. In addition, the available SOC range due to system degradation is not considered in the operating algorithm.
특히, 종래 기술에서는 배터리시스템을 구성하고 있는 개별 단위 셀의 열화도를 측정할 수 없기 때문에, 정비 시 시스템 전체 교체 등 정비 비용이 과다하게 소요되며, 교체 단위도 최소화할 수 없다는 문제점이 존재한다.In particular, in the prior art, since the degree of deterioration of individual unit cells constituting the battery system cannot be measured, maintenance costs such as replacement of the entire system are excessively required during maintenance, and there is a problem that the replacement unit cannot be minimized.
본 발명은 전술한 문제 및 다른 문제를 해결하는 것을 목적으로 한다. 또 다른 목적은, 소정 펄스 파형이 인가됨에 따라 발생하는 최대 전압 값과 최소 전압 값의 차이를 기초로 내부 저항을 산출하여, 배터리의 이상 여부를 사전에 예측함으로써 배터리의 운영, 유지 및 보수를 용이하게 하는 배터리의 상태를 셀 단위로 진단하는 장치 및 방법을 제공하는 것을 그 목적으로 한다.The present invention aims to solve the above and other problems. Another object is to calculate the internal resistance based on the difference between the maximum voltage value and the minimum voltage value generated when a predetermined pulse waveform is applied, and predict the battery in advance to facilitate the operation, maintenance, and maintenance of the battery. It is an object of the present invention to provide an apparatus and method for diagnosing the state of a battery to be cell-by-cell.
상기 또는 다른 목적을 달성하기 위해 본 발명의 일 측면에 따르면, 배터리에 소정 펄스 파형을 인가하는 전력변환부; 상기 소정 펄스 파형이 인가됨에 따라, 상기 배터리의 셀 단위로 최대 전압 값과 최소 전압 값을 측정하는 측정부; 및 상기 최대 전압 값 및 최소 전압 값의 차이에 근거하여, 상기 배터리의 셀 단위 내부 저항 값을 산출하는 제어부;를 포함하는 것을 특징으로 하는 배터리의 상태를 셀 단위로 진단하는 장치를 제공한다. According to an aspect of the present invention to achieve the above or another object, a power conversion unit for applying a predetermined pulse waveform to the battery; A measuring unit measuring a maximum voltage value and a minimum voltage value in units of cells of the battery as the predetermined pulse waveform is applied; And based on the difference between the maximum voltage value and the minimum voltage value, a control unit for calculating the internal resistance value of each cell of the battery; provides a device for diagnosing the state of the battery in a cell unit.
실시 예에 있어서, 상기 제어부는, 상기 배터리의 SOC(State Of Charge)를 조정하면서, 상기 배터리의 셀 단위 내부 저항 값을 반복적으로 산출할 수 있다. In an embodiment, the controller may repeatedly calculate the internal resistance value of each cell of the battery while adjusting the state of charge (SOC) of the battery.
또 다른 실시 예에 있어서, 상기 제어부는, 소정 SOC 값에서 상기 소정 펄스 파형이 인가됨에 따라 측정되는 최대 전압 값과 최소 전압 값의 차이에 근거하여, 상기 배터리의 셀 단위 내부 저항 값을 산출할 수 있다. In another embodiment, the controller may calculate the internal resistance value of each cell of the battery based on a difference between a maximum voltage value and a minimum voltage value measured as the predetermined pulse waveform is applied at a predetermined SOC value. have.
또 다른 실시 예에 있어서, 상기 제어부는, 상기 소정 SOC 값을 기 설정한 만큼 증가시킨 후, 상기 소정 펄스 파형이 인가됨에 따라 측정되는 최대 전압 값과 최소 전압 값의 차이에 근거하여, 상기 배터리의 셀 단위 내부 저항 값을 산출할 수 있다. In another embodiment, the controller increases the predetermined SOC value by a predetermined value, and then, based on the difference between the maximum voltage value and the minimum voltage value measured as the predetermined pulse waveform is applied, the battery It is possible to calculate the internal resistance value per cell.
또 다른 실시 예에 있어서, 상기 제어부는, 상기 배터리의 셀 단위 내부 저항 값에 소정 통계 분석을 적용하여, 내부 저항 값에 대한 표준편차 값을 벗어나는 셀을 검출할 수 있다.In another embodiment, the controller may detect a cell that deviates from a standard deviation value for the internal resistance value by applying a predetermined statistical analysis to the internal resistance value of each cell of the battery.
또한, 본 발명의 다른 측면에 따르면, 배터리에 소정 펄스 파형을 인가하는 단계; 상기 소정 펄스 파형이 인가됨에 따라, 상기 배터리의 셀 단위로 최대 전압 값과 최소 전압 값을 측정하는 단계; 및 상기 최대 전압 값 및 최소 전압 값의 차이에 근거하여, 상기 배터리의 셀 단위 내부 저항 값을 산출하는 단계;를 포함하는 것을 특징으로 하는 배터리의 상태를 셀 단위로 진단하는 방법을 제공한다. In addition, according to another aspect of the invention, applying a predetermined pulse waveform to the battery; Measuring the maximum voltage value and the minimum voltage value in units of cells of the battery as the predetermined pulse waveform is applied; And based on the difference between the maximum voltage value and the minimum voltage value, calculating the internal resistance value of each cell of the battery; provides a method for diagnosing the state of the battery in units of cells.
실시 예에 있어서, 상기 배터리의 SOC(State Of Charge)를 조정하면서, 상기 배터리의 셀 단위 내부 저항 값을 반복적으로 산출하는 단계;를 포함할 수 있다. In an embodiment, while adjusting the state of charge (SOC) of the battery, repeatedly calculating an internal resistance value of each cell of the battery.
또 다른 실시 예에 있어서, 상기 배터리의 셀 단위 내부 저항 값에 소정 통계 분석을 적용하여, 내부 저항 값에 대한 표준편차 값을 벗어나는 셀을 검출하는 단계;를 포함할 수 있다.In another embodiment, applying a predetermined statistical analysis to the internal resistance value of each cell of the battery, the step of detecting a cell outside the standard deviation value for the internal resistance value may include.
본 발명에 따른 배터리의 상태를 셀 단위로 진단하는 장치 및 방법의 효과에 대해 설명하면 다음과 같다.The effects of the apparatus and method for diagnosing the state of a battery according to the present invention in units of cells are as follows.
본 발명의 실시 예들 중 적어도 하나에 의하면, BMS에서 계산된 열화도 (SOH, State of Health)에 의존하지 않고, 시스템 레벨에서 출력 열화도를 직접 측정하기 때문에, 시스템 전체에 대한 안정성 및 성능을 진단하고 판단할 수 있다. According to at least one of the embodiments of the present invention, since the output deterioration degree is directly measured at a system level without relying on the state of health (SOH) calculated in the BMS, the stability and performance of the entire system are diagnosed. Can judge.
또한, 전체 배터리 시스템의 이상 여부를 미리 예측하고 관리할 수 있으며, 배터리 시스템 전체의 열화도를 주기적으로 모니터링할 수 있고, 측정된 열화도를 이용해 배터리의 출력을 예측할 수 있다. In addition, it is possible to predict and manage the abnormality of the entire battery system in advance, periodically monitor the degree of deterioration of the entire battery system, and predict the output of the battery using the measured degree of deterioration.
배터리 관리 시스템에서 측정된 SOH 값의 신뢰성이 낮을 경우 비교 대체 정보로 활용 가능하며, SOH 값의 신뢰성이 높을 경우 시스템상 접촉 저항 상태를 판단하는 정보로 활용 가능하다. 이는 매우 유용한 진단 정보가 될 수 있다. When the reliability of the SOH value measured in the battery management system is low, it can be used as comparative information, and when the reliability of the SOH value is high, it can be used as information for determining the state of contact resistance on the system. This can be very useful diagnostic information.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 배터리시스템 전체의 열화도 뿐만 아니라, 개별 셀의 열화도를 측정하여 분석함으로써 배터리 정비 주기 및 단위를 최적화할 수 있으며, 교체 필요 시 교체 단위를 최소화할 수 있다. In addition, according to at least one of the embodiments of the present invention, battery maintenance intervals and units can be optimized by measuring and analyzing not only the deterioration degree of the entire battery system, but also the deterioration degree of individual cells, and the replacement unit is minimized when replacement is required. can do.
그리고, 에너지저장장치 운영시스템 및 전기자동차 충전기 또는 운영자 화면에 배터리 셀별 열화도를 지시할 경우, 상태점검, 정비 및 교체에 효율적으로 활용할 수 있다. In addition, when the deterioration degree of each battery cell is indicated on the energy storage device operating system and the electric vehicle charger or operator screen, it can be effectively used for condition inspection, maintenance, and replacement.
또 다른 예로, 측정된 충전 및 방전 최대출력을 활용하여 운영 알고리즘에 반영함으로써, 에너지저장시스템의 최적 운용에 활용할 수 있다. As another example, the measured charging and discharging maximum outputs can be utilized and reflected in the operating algorithm, thereby being used for optimal operation of the energy storage system.
에너지저장시스템은 배터리 SOC에 따라 가용범위를 운영알고리즘에 반영하여 사용할 수 있다. 피크저감 운전 및 주파수조정 운전 등 적용 목적에 따라 가용 SOC 범위에서 본 발명의 실시 예에서 설명한 가용 출력을 적용할 수 있다. The energy storage system can be used by reflecting the available range in the operating algorithm depending on the battery SOC. Depending on the application purpose, such as peak reduction operation and frequency adjustment operation, the available output described in the embodiment of the present invention can be applied in the available SOC range.
또한, 사용시간이 경과함에 따라 SOC 범위에서의 가용 출력 값이 감소(열화)하므로 SOC 범위에 따른 가용출력을 계산하여 운영알고리즘에 반영할 수 있으며, 요구되는 출력이 정상적으로 발현될 수 있는 SOC 범위를 확인할 수 있다. 이를 통해 장수명 운전이 가능해진다. In addition, since the available output value in the SOC range decreases (deteriorates) as the usage time elapses, the available output according to the SOC range can be calculated and reflected in the operating algorithm, and the SOC range in which the required output can be expressed normally Can be confirmed. This enables long life operation.
배터리는 소재 또는 설계에 따라 다른 SOC 범위 별 출력 특성을 나타낸다. 따라서 제작사에 따라 또는 설계상의 차이에 따라 충전 출력특성과 방전 출력 특성이 상이하다. 이에 따라, 본 발명의 장치 및 방법을 적용하여 최적 운영 SOC 범위를 설정하여 운영시스템에 탑재할 수 있다. The battery exhibits output characteristics for each SOC range depending on the material or design. Therefore, the charge output characteristics and the discharge output characteristics are different depending on the manufacturer or design differences. Accordingly, by applying the apparatus and method of the present invention, the optimal operating SOC range can be set and mounted in the operating system.
그리고, 전기자동차 충전기에 적용 시 내부저항 값을 이용하여, 사용자에게 배터리 열화도에 대한 정량적인 값을 제시할 수 있으며, 매 충전 시 필요에 따라 점검이 가능하므로, 정비 주기 및 교체 단위에 대한 정보를 사용자가 파악할 수 있다는 장점이 있다.And, when applied to an electric vehicle charger, the internal resistance value can be used to present a quantitative value for the battery deterioration to the user, and it can be checked as needed at every charge, so information on maintenance intervals and replacement units There is an advantage that the user can grasp.
본 발명의 적용 가능성의 추가적인 범위는 이하의 상세한 설명으로부터 명백해질 것이다. 그러나 본 발명의 사상 및 범위 내에서 다양한 변경 및 수정은 당업자에게 명확하게 이해될 수 있으므로, 상세한 설명 및 본 발명의 바람직한 실시 예와 같은 특정 실시 예는 단지 예시로 주어진 것으로 이해되어야 한다.Further scope of applicability of the present invention will become apparent from the following detailed description. However, various changes and modifications within the spirit and scope of the present invention may be clearly understood by those skilled in the art, and thus, it should be understood that specific embodiments such as detailed description and preferred embodiments of the present invention are given as examples only.
도 1은 본 발명에 따른 배터리의 상태를 셀 단위로 진단하는 장치의 실시 예를 설명하기 위한 블록도이다. 1 is a block diagram illustrating an embodiment of an apparatus for diagnosing a battery state in units of cells according to the present invention.
도 2는 배터리에 인가되는 소정 펄스 파형과 이에 따른 출력의 실시 예를 설명하기 위한 그래프이다. 2 is a graph for explaining an embodiment of a predetermined pulse waveform applied to the battery and the output accordingly.
도 3 및 도 4는 SOC 별 내부 저항과 가용 출력 변화의 실시 예를 보여주는 그래프이다. 3 and 4 are graphs showing embodiments of internal resistance and available output change for each SOC.
도 5는 본 발명에 따른 배터리의 상태를 셀 단위로 진단하는 방법의 실시 예를 설명하기 위한 흐름도이다. 5 is a flowchart for explaining an embodiment of a method of diagnosing a battery state in units of cells according to the present invention.
도 6은 각 SOC 별 출력 시험 전/후의 셀의 개회로전압 측정의 실시 예를 설명하기 위한 표이다. 6 is a table for explaining an example of measuring the open circuit voltage of a cell before / after the output test for each SOC.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소에는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Hereinafter, exemplary embodiments disclosed herein will be described in detail with reference to the accompanying drawings, but the same reference numerals will be assigned to the same or similar elements regardless of reference numerals, and redundant descriptions thereof will be omitted. The suffixes "modules" and "parts" for the components used in the following description are given or mixed only considering the ease of writing the specification, and do not have meanings or roles distinguished from each other in themselves. In addition, in describing the embodiments disclosed in the present specification, when it is determined that detailed descriptions of related known technologies may obscure the gist of the embodiments disclosed herein, detailed descriptions thereof will be omitted. In addition, the accompanying drawings are only for easy understanding of the embodiments disclosed in the present specification, and the technical spirit disclosed in the specification is not limited by the accompanying drawings, and all modifications included in the spirit and technical scope of the present invention , It should be understood to include equivalents or substitutes.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms including ordinal numbers such as first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from other components.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When an element is said to be "connected" or "connected" to another component, it is understood that other components may be directly connected to or connected to the other component, but other components may exist in the middle. It should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that no other component exists in the middle.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this application, the terms "comprises" or "have" are intended to indicate the presence of features, numbers, steps, actions, components, parts or combinations thereof described herein, one or more other features. It should be understood that the existence or addition possibilities of fields or numbers, steps, operations, components, parts or combinations thereof are not excluded in advance.
이하, 첨부된 도면을 참조하여 본 발명을 더욱 상세하게 기술할 것이다. 이하의 설명에서 본 발명의 모든 실시형태가 개시되는 것은 아니다. 본 발명은 매우 다양한 형태로 구현될 수 있으며, 여기에 개시되는 실시형태에 한정되는 것으로 해석되어서는 안 된다. 본 실시형태들은 출원을 위한 법적 요건들을 충족시키기 위해 제공되는 것이다. 동일한 구성요소에는 전체적으로 동일한 참조부호가 사용된다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. Not all embodiments of the present invention are disclosed in the following description. The invention can be implemented in a wide variety of forms, and should not be construed as limited to the embodiments disclosed herein. These embodiments are provided to meet legal requirements for filing. The same reference numerals are used throughout the same components.
도 1은 본 발명에 따른 배터리의 상태를 셀 단위로 진단하는 장치의 실시 예를 설명하기 위한 블록도이다. 1 is a block diagram illustrating an embodiment of an apparatus for diagnosing a battery state in units of cells according to the present invention.
도 1을 참조하면, 본 발명에 따른 배터리의 상태를 셀 단위로 진단하는 장치는, 전력변환부, 측정부 및 제어부를 포함할 수 있다. Referring to FIG. 1, an apparatus for diagnosing a state of a battery according to the present invention in units of cells may include a power conversion unit, a measurement unit, and a control unit.
전력변환부는, 배터리에 소정 펄스 파형을 인가할 수 있다. The power conversion unit may apply a predetermined pulse waveform to the battery.
측정부는, 상기 소정 펄스 파형이 인가됨에 따라, 상기 배터리의 셀 단위로 최대 전압 값과 최소 전압 값을 측정할 수 있다. As the predetermined pulse waveform is applied, the measurement unit may measure a maximum voltage value and a minimum voltage value in units of cells of the battery.
제어부는, 상기 최대 전압 값 및 최소 전압 값의 차이에 근거하여, 상기 배터리의 셀 단위 내부 저항 값을 산출할 수 있다. 상기 제어부는, 배터리 관리 시스템(BMS, Battery Management System)을 포함할 수 있다. The controller may calculate the internal resistance value of each cell of the battery based on the difference between the maximum voltage value and the minimum voltage value. The control unit may include a battery management system (BMS).
실시 예에 있어서, 상기 제어부는, 상기 배터리의 SOC(State Of Charge)를 조정하면서, 상기 배터리의 셀 단위 내부 저항 값을 반복적으로 산출할 수 있다. In an embodiment, the controller may repeatedly calculate the internal resistance value of each cell of the battery while adjusting the state of charge (SOC) of the battery.
구체적으로, 상기 제어부는, 소정 SOC 값에서 상기 소정 펄스 파형이 인가됨에 따라 측정되는 최대 전압 값과 최소 전압 값의 차이에 근거하여, 상기 배터리의 셀 단위 내부 저항 값을 산출할 수 있다. Specifically, the controller may calculate a cell unit internal resistance value of the battery based on a difference between a maximum voltage value and a minimum voltage value measured as the predetermined pulse waveform is applied at a predetermined SOC value.
이어서, 상기 제어부는, 상기 소정 SOC 값을 기 설정한 만큼 증가시킨 후, 상기 소정 펄스 파형이 인가됨에 따라 측정되는 최대 전압 값과 최소 전압 값의 차이에 근거하여, 상기 배터리의 셀 단위 내부 저항 값을 산출할 수 있다. Subsequently, the controller increases the predetermined SOC value by a predetermined value, and then, based on a difference between a maximum voltage value and a minimum voltage value measured as the predetermined pulse waveform is applied, the internal resistance value of each battery cell unit. Can be calculated.
또 다른 실시 예에 있어서, 상기 제어부는, 상기 배터리의 셀 단위 내부 저항 값에 소정 통계 분석을 적용하여, 내부 저항 값에 대한 표준편차 값을 벗어나는 셀을 검출할 수 있다. In another embodiment, the controller may detect a cell that deviates from a standard deviation value for the internal resistance value by applying a predetermined statistical analysis to the internal resistance value of each cell of the battery.
또한, 출력 제어 시스템에 AC-impedance 측정을 위한 장치를 추가하여, 기존 펄스 전류인가를 통하여 연산된 DC 저항과 더불어 AC-impedance를 측정함으로써, 시스템 내부 열화도 측정의 정확도를 향상시킬 수 있다. In addition, by adding a device for measuring AC-impedance to the output control system, by measuring AC-impedance in addition to the DC resistance calculated through the application of the existing pulse current, it is possible to improve the accuracy of the system internal degradation measurement.
앞서 설명한 것과 같이, 배터리에는 소정 펄스 파형이 인가될 수 있다. As described above, a predetermined pulse waveform may be applied to the battery.
도 2는 배터리에 인가되는 소정 펄스 파형과 이에 따른 출력의 실시 예를 설명하기 위한 그래프이다. 2 is a graph for explaining an embodiment of a predetermined pulse waveform applied to the battery and the output accordingly.
도 2를 참조하면, DC 내부저항 및 최대 충전 출력과 최대 방전 출력을 측정하기 위한 시험 방법 및 계산식이 표현되어 있다. Referring to FIG. 2, test methods and calculation formulas for measuring DC internal resistance and maximum charge output and maximum discharge output are expressed.
우선, 출력특성을 계산하고자 하는 SOC(충전 상태)에 맞춘 후, 배터리 용량(Ah 또는 Wh)의 4배 전류로 10초간 방전 및 3.75배 전류로 10초간 충전을 수행하여, DC 내부저항과 최대 방전 및 충전 출력을 다음의 수학식에 의해 산출할 수 있다. First, after adjusting the output characteristics to the SOC (charged state) to be calculated, discharge for 10 seconds with a current of 4 times the battery capacity (Ah or Wh) and charge for 10 seconds with a current of 3.75 times, DC internal resistance and maximum discharge And the charging output can be calculated by the following equation.
Figure PCTKR2019001215-appb-img-000001
Figure PCTKR2019001215-appb-img-000001
여기서 R dis는 방전 내부 저항값, OCV dis는 방전 개시 시의 배터리의 전압(방전 개시 시의 개방 회로 전압을 의미한다.), V dis는 방전 완료 시의 배터리의 전압, I dis는 방전 전류의 크기를 의미한다.Where R dis is the discharge internal resistance value, OCV dis is the voltage of the battery at the start of discharge (means the open circuit voltage at the start of discharge), V dis is the voltage of the battery at the end of discharge, and I dis is the discharge current. It means size.
방전 내부 저항 값이 산출된 경우, 제어부는 산출된 방전 내부 저항 값에 기초하여 하기 수학식 2에 따라 최대 방전 출력을 산출할 수 있다.When the discharge internal resistance value is calculated, the controller may calculate the maximum discharge output according to Equation 2 below based on the calculated discharge internal resistance value.
Figure PCTKR2019001215-appb-img-000002
Figure PCTKR2019001215-appb-img-000002
여기서 Discharge Power는 최대 방전 출력, V MIN은 최소 방전 전압을 의미한다.Here, Discharge Power is the maximum discharge power and V MIN is the minimum discharge voltage.
상기 수학식 2에 따라 최대 방전 출력이 산출된 경우, 제어부는 최대 충전 출력을 산출하기에 앞서, 배터리의 전압이 개방 회로 전압(OCV: Open Circuit Voltage)에 도달하기 위한 소정의 휴지 시간 동안 전력 변환부에 대한 제어를 중지한다. When the maximum discharge output is calculated according to Equation 2 above, before calculating the maximum charging output, the controller converts the power for a predetermined idle time for the voltage of the battery to reach the Open Circuit Voltage (OCV). Stop controlling for wealth.
휴지 시간은 배터리의 전압이 개방 회로 전압에 도달하여 안정 상태로 진입하기 위해 요구되는 시간으로서, 배터리가 안정 상태가 아닌 경우 배터리의 전압 및 전류를 토대로 산출되는 최대 방전 출력 및 최대 충전 출력에는 오차가 존재하게 되므로, 제어부는 배터리의 전압이 개방 회로 전압에 도달할 때까지 대기한다. 이러한 휴지 시간은 최대 방전 출력을 산출하기 전에도 적용된다.The idle time is the time required for the voltage of the battery to reach an open circuit voltage and enter a stable state. When the battery is not in a stable state, there is an error in the maximum discharge output and maximum charging output calculated based on the voltage and current of the battery. Since it is present, the control unit waits until the voltage of the battery reaches the open circuit voltage. This dwell time is applied even before calculating the maximum discharge power.
배터리의 전압이 개방 회로 전압에 도달한 경우, 제어부는 도 2에 도시된 것과 같이 전력 변환부를 제어하여, 소정 설정 크기(예: 배터리 용량의 3.75배 전류(3.75C Rate))를 갖는 충전 전류를 설정 시간(예: 10초) 동안 배터리로 공급하여 배터리를 충전시킬 수 있다. 이때, 제어부는 충전 개시 시의 배터리의 전압, 충전 완료 시의 배터리의 전압, 및 충전 전류에 근거하여 충전 내부 저항 값을 산출할 수 있다. When the voltage of the battery reaches the open circuit voltage, the control unit controls the power conversion unit as shown in FIG. 2 to generate a charging current having a predetermined size (eg, 3.75 times the current (3.75C rate) of the battery capacity). The battery can be charged by supplying it to the battery for a set time (eg, 10 seconds). At this time, the control unit may calculate a charging internal resistance value based on the voltage of the battery at the start of charging, the voltage of the battery at the completion of charging, and the charging current.
즉, 배터리가 충전될 때의 전압 상승량은 배터리로 공급되는 충전 전류의 크기 및 충전 내부 저항 값 간의 곱에 의존하므로, 충전 내부 저항 값은 하기 수학식 3에 따라 산출될 수 있다.That is, since the amount of voltage rise when the battery is charged depends on the product of the magnitude of the charging current supplied to the battery and the value of the charging internal resistance, the value of the charging internal resistance can be calculated according to Equation 3 below.
Figure PCTKR2019001215-appb-img-000003
Figure PCTKR2019001215-appb-img-000003
여기서 R chg는 충전 내부 저항값, OCV chg는 충전 개시 시의 배터리의 전압(충전 개시 시의 개방 회로 전압을 의미한다.), V chg는 충전 완료 시의 배터리의 전압, I chg는 충전 전류의 크기를 의미한다.Where R chg is the charge internal resistance value, OCV chg is the voltage of the battery at the start of charging (meaning the open circuit voltage at the start of charging), V chg is the voltage of the battery at the completion of charging, and I chg is the charge current. It means size.
충전 내부 저항 값이 산출된 경우, 제어부는 산출된 충전 내부 저항 값에 기초하여 하기 수학식 4에 따라 최대 충전 출력을 산출할 수 있다.When the charging internal resistance value is calculated, the controller may calculate the maximum charging output according to Equation 4 below based on the calculated charging internal resistance value.
Figure PCTKR2019001215-appb-img-000004
Figure PCTKR2019001215-appb-img-000004
여기서 Charge Power는 최대 충전 출력, V MAX은 최대 충전 전압을 의미한다.Here, Charge Power is the maximum charging output, and V MAX is the maximum charging voltage.
도 2에서와 같이, 내부 DC 저항 측정을 위한 펄스를 이용할 경우 배터리시스템의 전체적인 내부 DC 저항뿐 아니라, 배터리관리시스템(BMS, Battery Monitoring System)의 전압 데이터를 활용하거나, 별도의 측정시스템을 이용하여 개별 셀의 DC 저항을 측정함으로써, 각각의 열화도를 진단할 수 있다. 이를 이용하여 교체 단위와 주기를 설정할 수 있고, 재활용 시 선별 기준으로 활용할 수 있다. As shown in FIG. 2, when using a pulse for measuring the internal DC resistance, not only the overall internal DC resistance of the battery system, but also the voltage data of the battery management system (BMS, Battery Monitoring System) is used, or a separate measurement system is used. By measuring the DC resistance of individual cells, each degree of degradation can be diagnosed. It can be used to set the replacement unit and cycle, and can be used as a selection criterion when recycling.
위 데이터를 이용하여, 배터리 시스템의 SOC에서의 충전 및 방전 내부저항 그리고 충전 및 방전 최대출력을 계산할 수 있으며, 측정기준 SOC는 90%~10% 사이에서 순차적으로 펄스 방전 및 충전 시험을 수행하며, 각 시험 시작 전에는 OCV에 도달할 수 있도록 충분한 휴지시간을 두어야 한다. Using the above data, it is possible to calculate the charge and discharge internal resistance and the maximum charge and discharge power in the SOC of the battery system, and the measurement standard SOC sequentially performs pulse discharge and charge tests between 90% and 10%, Sufficient downtime should be provided to reach OCV prior to the start of each test.
실시 예로, 본 시험을 위한 펄스 패턴은 에너지저장 시스템의 전력변환기 (PCS, Power Conditioning System)에 패턴을 입력함으로 활용할 수 있다. As an embodiment, the pulse pattern for this test may be utilized by inputting a pattern to a power converter (PCS) of an energy storage system.
본 시험을 주기적으로 수행한 결과를 통해, 도 3 및 도 4와 같이 충전상태 (SOC, State of Charge)별 초기 및 2000 싸이클 이상 사용 후 DC 내부저항의 변화량을 이용하여 출력 열화도와 가용출력을 평가할 수 있다. As a result of periodically performing this test, as shown in FIGS. 3 and 4, the output deterioration and available power can be evaluated by using the amount of change in the DC internal resistance after initial and 2000 cycles for each state of charge (SOC). You can.
도 3 및 도 4는 SOC 별 내부 저항과 가용 출력 변화의 실시 예를 보여주는 그래프이다. 3 and 4 are graphs showing embodiments of internal resistance and available output change for each SOC.
시스템 요구 출력과 비교를 통해 충방전 시 각각에서의 가용 SOC 범위를 계산하여 에너지저장 시스템 운영알고리즘에 반영할 수 있다. The available SOC range at each charge / discharge can be calculated and compared to the system request output and reflected in the energy storage system operation algorithm.
도 3의 경우, 15℃, 25℃, 30℃ 환경에서 펄스 패턴 시험을 수행한 후 방전 내부저항을 각각 계산한 값으로 Fresh한 셀과 2000 싸이클 이상 사용한 셀 (Used)의 결과를 예시로 나타내었다. In the case of FIG. 3, after performing a pulse pattern test in an environment of 15 ° C., 25 ° C., and 30 ° C., the results of the discharged internal resistance are respectively calculated, and the results of a cell used for more than 2000 cycles (Used) are shown as an example. .
도 3에서 확인할 수 있는 바와 같이, 세 온도 환경(15℃, 25℃, 30℃)에서 Used 셀의 경우 내부저항이 크게 증가함을 확인할 수 있다. As can be seen in Figure 3, it can be seen that the internal resistance is significantly increased in the case of a used cell in three temperature environments (15 ° C, 25 ° C, 30 ° C).
도 4는 각각의 온도 조건(15℃, 25℃, 30℃)에서 Fresh 셀과 Used 셀의 가용 출력을 비교한 예시이다. Used 셀의 경우 가용 출력이 크게 감소함을 확인할 수 있다. Figure 4 is an example comparing the available output of the Fresh cell and the Used cell at each temperature condition (15 ℃, 25 ℃, 30 ℃). In the case of a used cell, it can be seen that the available output is greatly reduced.
도 5는 본 발명에 따른 배터리의 상태를 셀 단위로 진단하는 방법의 실시 예를 설명하기 위한 흐름도이다. 5 is a flowchart for explaining an embodiment of a method of diagnosing a battery state in units of cells according to the present invention.
도 5를 참조하면, SOC의 범위를 설정(SOC_Start, SOC_End)하는 단계(S510)가 진행된다. 이에 따라, 초기 SOC를 설정하고(S520), 초기 SOC에서 소정 펄스를 인가하여 셀 단위로 V, I, T를 측정하는 단계(S530)가 진행된다. 앞서 설명한 것과 같이, 도 2의 펄스가 인가될 수 있다. Referring to FIG. 5, a step (S510) of setting a range of SOC (SOC_Start, SOC_End) is performed. Accordingly, an initial SOC is set (S520), and a predetermined pulse is applied from the initial SOC to measure V, I, and T in units of cells (S530). As described above, the pulse of FIG. 2 may be applied.
이어서, 측정된 값에 근거하여, 셀의 열화도(내부저항, 가용출력)를 산출하는 단계(S540)가 진행된다. 실시 예로서, 앞서 설명한 수학식들에 의해, 셀의 열화도를 산출할 수 있다. Subsequently, a step (S540) of calculating the degree of deterioration (internal resistance, available output) of the cell is performed based on the measured value. As an embodiment, the deterioration degree of a cell may be calculated by the above-described equations.
이후, SOC 값이 기 설정된 최종 값(SOC_End, n%)인지 판단하는 단계(S550)가 진행된다. Thereafter, a step (S550) of determining whether the SOC value is a predetermined final value (SOC_End, n%) is performed.
SOC 값이 최종 값이 아닌 경우, SOC 값에 10%를 더한 후, S530, S540, S550 단계를 반복하게 된다. If the SOC value is not the final value, after adding 10% to the SOC value, steps S530, S540, and S550 are repeated.
만약, SOC 값이 최종 값인 경우, 내부 저항에 통계 분석을 적용하여 셀 단위로 이상 유무를 판단하는 단계(S560)가 진행된다. 예를 들어, 측정 및 연산된 내부 저항값 에 대한 통계 분석을 통해, 표준 편차값을 크게 벗어나는 높은 내부저항을 갖는 셀에 대한 선별, 정비, 교체를 수행할 수 있다. If the SOC value is the final value, step S560 of determining whether there is an abnormality in a cell unit by applying a statistical analysis to the internal resistance is performed. For example, through statistical analysis of measured and calculated internal resistance values, it is possible to perform screening, maintenance, and replacement for cells with high internal resistance significantly out of the standard deviation value.
또 다른 실시 예로서, 각 셀별 내부저항 연산을 위한 저항 값은 별도의 측성 센서를 이용하거나, 배터리시스템에 기 적용된 BMS(Battery Management System) 정보를 이용하여 측정할 수 있다. As another embodiment, the resistance value for calculating the internal resistance of each cell may be measured by using a separate measurement sensor or by using BMS (Battery Management System) information previously applied to the battery system.
그 결과, 내부 저항값이 기준 값을 초과하는 경우, 에너지저장장치의 운영시스템(BMS 또는 PMS(Power Management System))에서 셀의 위치를 지시해주는 방법을 추가함으로써 적용의 편의성을 향상시킬 수 있다. 예를 들면, 전기차에 적용된 배터리시스템의 경우 충전기를 활용하여 본 시스템을 적용할 수 있다. As a result, when the internal resistance value exceeds the reference value, it is possible to improve the convenience of application by adding a method indicating the location of the cell in the operating system (BMS or PMS (Power Management System)) of the energy storage device. For example, in the case of a battery system applied to an electric vehicle, the present system can be applied by using a charger.
도 6은 각 SOC 별 출력 시험 전/후의 셀의 개회로전압 측정의 실시 예를 설명하기 위한 표이다. 6 is a table for explaining an example of measuring the open circuit voltage of a cell before / after the output test for each SOC.
도 6을 참조하면, 각 SOC 별 출력 시험 전/후의 각 셀별 개회로전압 (OCV, Open Circuit Voltage)을 나타내었으며, 이 값의 주기적 변화량을 이용해 셀 별 DC 내부저항의 편차를 평가할 수 있다. Referring to FIG. 6, an open circuit voltage (OCV) for each cell before and after an output test for each SOC is shown, and a variation in DC internal resistance for each cell can be evaluated using a periodic change in this value.
시험 결과를 참조하면, 10~90의 SOC에서 SOC를 10씩 변화시켜며 측정하였으며, 시험 전후의 배터리시스템을 구성하는 소정 개수의 셀의 최대전압, 최소전압, 그리고 최대전압과 최소전압의 차이 값(△V)을 확인할 수 있다. Referring to the test results, SOC was measured by changing SOC from 10 to 90 in increments of 10, and the maximum voltage, minimum voltage, and the difference between the maximum voltage and the minimum voltage of a predetermined number of cells constituting the battery system before and after the test. (△ V) can be confirmed.
배터리시스템이 열화됨에 따라 각 셀에서의 펄스파형 인가 전, 후 전압값을 이용하여 전압 강하 값 확인할 수 있으며, 앞서 설명한 수학식을 이용하여 내부저항을 연산할 수 있다. As the battery system deteriorates, the voltage drop value can be checked using the voltage values before and after the application of the pulse waveform in each cell, and the internal resistance can be calculated using the above-described equation.
한편, 본 발명에 의해 적용되는 배터리 시스템은 단전지, 단전지가 직·병렬로 연결된 모듈, 모듈이 직·병렬로 연결된 랙, 랙이 직·병렬로 연결된 시스템에 대하여 출력특성 평가 및 열화도 측정을 위해 적용할 수 있으며, 각각에 적용되는 펄스 전류 또는 펄스 출력은 전체 용량(Ah) 또는 에너지(Wh)로부터 계산하여 적용할 수 있다. On the other hand, the battery system applied by the present invention is a single cell, a single cell is a module connected in series and parallel, a rack in which modules are connected in series and parallel, a system in which the racks are connected in series and parallel, evaluates the output characteristics and measures the degree of degradation. The pulse current or pulse output applied to each can be calculated and applied from the total capacity (Ah) or energy (Wh).
본 발명에서 제안하는 출력열화도 판정여부는 적용되는 단전지, 모듈, 랙 그리고 시스템에서 정격으로 요구되는 출력을 기준으로, 펄스 충방전 시험을 통해 계산되는 최대출력과 비교를 통해 교체 또는 정비를 수행할 수 있으며, 주기적인 펄스 충방전 시험을 통해 계산되는 최대출력 및 내부 저항값의 변화를 통해 열화의 정도를 비교 및 검증할 수 있다. Whether the output deterioration degree proposed in the present invention is determined is based on the output required by the rating of the applied cell, module, rack, and system, and performs replacement or maintenance through comparison with the maximum output calculated through the pulse charge / discharge test. It is possible to compare and verify the degree of deterioration by changing the maximum output and internal resistance values calculated through periodic pulse charge and discharge tests.
본 발명에 따른 배터리의 상태를 셀 단위로 진단하는 장치 및 방법의 효과에 대해 설명하면 다음과 같다.The effects of the apparatus and method for diagnosing the state of a battery according to the present invention in units of cells are as follows.
본 발명의 실시 예들 중 적어도 하나에 의하면, BMS에서 계산된 열화도 (SOH, State of Health)에 의존하지 않고, 시스템 레벨에서 출력 열화도를 직접 측정하기 때문에, 시스템 전체에 대한 안정성 및 성능을 진단하고 판단할 수 있다. According to at least one of the embodiments of the present invention, since the output deterioration degree is directly measured at a system level without relying on the state of health (SOH) calculated in the BMS, the stability and performance of the entire system are diagnosed. Can judge.
또한, 전체 배터리 시스템의 이상 여부를 미리 예측하고 관리할 수 있으며, 배터리 시스템 전체의 열화도를 주기적으로 모니터링할 수 있고, 측정된 열화도를 이용해 배터리 출력을 예측할 수 있다. In addition, it is possible to predict and manage the abnormality of the entire battery system in advance, periodically monitor the degree of deterioration of the entire battery system, and predict the battery output using the measured degree of deterioration.
배터리 관리 시스템에서 측정된 SOH 값이 신뢰성이 낮을 경우는 비교 대체 정보로 활용 가능하며, SOH 값의 신뢰성이 높을 경우 시스템상 접촉 저항 상태를 판단하는 정보로 활용 가능하며, 이는 진단 정보로 매우 유용한 정보가 될 수 있다. When the SOH value measured in the battery management system is not reliable, it can be used as comparative alternative information. When the SOH value is high, it can be used as information to determine the state of contact resistance on the system. Can be
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 배터리시스템 전체의 열화도 뿐만 아니라, 개별 셀의 열화도를 측정하여 분석함으로써 배터리 정비 주기 및 단위를 최적화할 수 있으며, 교체 필요 시 교체 단위를 최소화할 수 있다. In addition, according to at least one of the embodiments of the present invention, battery maintenance intervals and units can be optimized by measuring and analyzing not only the deterioration degree of the entire battery system, but also the deterioration degree of individual cells, and the replacement unit is minimized when replacement is required. can do.
그리고, 에너지저장장치 운영시스템 및 전기자동차 충전기 또는 운영자 화면에 배터리 셀별 열화도를 지시할 경우, 상태점검, 정비 및 교체에 효율적으로 활용할 수 있다. In addition, when the deterioration degree of each battery cell is indicated on the energy storage device operating system and the electric vehicle charger or operator screen, it can be effectively used for condition inspection, maintenance, and replacement.
또 다른 예로, 측정된 충전 및 방전 최대출력을 활용하여 운영 알고리즘에 반영함으로써, 에너지저장 시스템 최적 운용에 활용할 수 있다. As another example, the measured charging and discharging maximum outputs can be utilized and reflected in the operating algorithm, thereby being utilized for optimal operation of the energy storage system.
에너지저장시스템은 배터리 SOC에 따라 가용범위를 운영알고리즘에 반영하여 사용할 수 있다. 피크저감 운전 및 주파수조정 운전 등 적용 목적에 따라 가용 SOC 범위에서 본 발명의 실시 예에서 설명한 가용 출력을 적용할 수 있다. The energy storage system can be used by reflecting the available range in the operating algorithm depending on the battery SOC. Depending on the application purpose, such as peak reduction operation and frequency adjustment operation, the available output described in the embodiment of the present invention can be applied in the available SOC range.
또한, 사용시간이 경과함에 따라 SOC 범위에서의 가용 출력 값이 감소(열화)하므로 SOC 범위에 따른 가용출력을 계산하여 운영알고리즘에 반영할 수 있으며, 요구되는 출력이 정상적으로 발현될 수 있는 SOC 범위를 알 수 있다. 이를 통해 장수명 운전이 가능해진다. In addition, since the available output value in the SOC range decreases (deteriorates) as the usage time elapses, the available output according to the SOC range can be calculated and reflected in the operating algorithm, and the SOC range in which the required output can be expressed normally Able to know. This enables long life operation.
배터리는 소재 또는 설계에 따라 다른 SOC 범위 별 출력 특성을 나타낸다. 따라서 제작사에 따라 또는 설계상의 차이에 따라 충전 출력특성과 방전 출력 특성이 상이하다. 이에 따라, 본 발명의 장치 및 방법을 적용하여 최적 운영 SOC 범위를 설정하여 운영시스템에 탑재할 수 있다. The battery exhibits output characteristics for each SOC range depending on the material or design. Therefore, the charge output characteristics and the discharge output characteristics are different depending on the manufacturer or design differences. Accordingly, by applying the apparatus and method of the present invention, the optimal operating SOC range can be set and mounted in the operating system.
그리고, 전기자동차 충전기에 적용 시 내부저항 값을 이용하여, 사용자에게 배터리 열화도에 대한 정량적인 값을 제시할 수 있으며, 매 충전 시 필요에 따라 점검이 가능하므로, 정비 주기 및 교체 단위에 대한 정보를 사용자가 파악할 수 있다는 장점이 있다.And, when applied to an electric vehicle charger, the internal resistance value can be used to present a quantitative value for the battery deterioration to the user, and it can be checked as needed at every charge, so information on maintenance intervals and replacement units There is an advantage that the user can grasp.
상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.The above detailed description should not be construed as limiting in all respects, but should be considered illustrative. The scope of the present invention should be determined by rational interpretation of the appended claims, and all changes within the equivalent scope of the present invention are included in the scope of the present invention.

Claims (8)

  1. 배터리에 소정 펄스 파형을 인가하는 전력변환부; A power conversion unit that applies a predetermined pulse waveform to the battery;
    상기 소정 펄스 파형이 인가됨에 따라, 상기 배터리의 셀 단위로 최대 전압 값과 최소 전압 값을 측정하는 측정부; 및 A measuring unit measuring a maximum voltage value and a minimum voltage value in units of cells of the battery as the predetermined pulse waveform is applied; And
    상기 최대 전압 값 및 최소 전압 값의 차이에 근거하여, 상기 배터리의 셀 단위 내부 저항 값을 산출하는 제어부;를 포함하는 것을 특징으로 하는 배터리의 상태를 셀 단위로 진단하는 장치.And a controller configured to calculate an internal resistance value of each cell of the battery based on the difference between the maximum voltage value and the minimum voltage value.
  2. 제1항에 있어서, According to claim 1,
    상기 제어부는, The control unit,
    상기 배터리의 SOC(State Of Charge)를 조정하면서, 상기 배터리의 셀 단위 내부 저항 값을 반복적으로 산출하는 것을 특징으로 하는 배터리의 상태를 셀 단위로 진단하는 장치.The apparatus for diagnosing the state of a battery in units of cells, by repeatedly calculating an internal resistance value of each unit of cells of the battery while adjusting a state of charge (SOC) of the battery.
  3. 제2항에 있어서, According to claim 2,
    상기 제어부는, The control unit,
    소정 SOC 값에서 상기 소정 펄스 파형이 인가됨에 따라 측정되는 최대 전압 값과 최소 전압 값의 차이에 근거하여, 상기 배터리의 셀 단위 내부 저항 값을 산출하는 것을 특징으로 하는 배터리의 상태를 셀 단위로 진단하는 장치.Diagnosing the state of the battery in units of cells, characterized in that an internal resistance value of each cell of the battery is calculated based on a difference between a maximum voltage value and a minimum voltage value measured as the predetermined pulse waveform is applied at a predetermined SOC value. Device.
  4. 제3항에 있어서, According to claim 3,
    상기 제어부는, The control unit,
    상기 소정 SOC 값을 기 설정한 만큼 증가시킨 후, 상기 소정 펄스 파형이 인가됨에 따라 측정되는 최대 전압 값과 최소 전압 값의 차이에 근거하여, 상기 배터리의 셀 단위 내부 저항 값을 산출하는 것을 특징으로 하는 배터리의 상태를 셀 단위로 진단하는 장치.After increasing the predetermined SOC value by a predetermined value, the internal resistance value of each battery cell is calculated based on a difference between a maximum voltage value and a minimum voltage value measured as the predetermined pulse waveform is applied. Device that diagnoses the state of the battery to be cell-by-cell.
  5. 제1항에 있어서, According to claim 1,
    상기 제어부는, The control unit,
    상기 배터리의 셀 단위 내부 저항 값에 소정 통계 분석을 적용하여, 내부 저항 값에 대한 표준편차 값을 벗어나는 셀을 검출하는 것을 특징으로 하는 배터리의 상태를 셀 단위로 진단하는 장치.Apparatus for diagnosing the state of the battery in units of cells, characterized by detecting a cell outside the standard deviation value for the internal resistance value by applying a predetermined statistical analysis to the internal resistance value of each unit of the battery.
  6. 배터리에 소정 펄스 파형을 인가하는 단계; Applying a predetermined pulse waveform to the battery;
    상기 소정 펄스 파형이 인가됨에 따라, 상기 배터리의 셀 단위로 최대 전압 값과 최소 전압 값을 측정하는 단계; 및 Measuring the maximum voltage value and the minimum voltage value in units of cells of the battery as the predetermined pulse waveform is applied; And
    상기 최대 전압 값 및 최소 전압 값의 차이에 근거하여, 상기 배터리의 셀 단위 내부 저항 값을 산출하는 단계;를 포함하는 것을 특징으로 하는 배터리의 상태를 셀 단위로 진단하는 방법.And calculating a cell unit internal resistance value of the battery based on the difference between the maximum voltage value and the minimum voltage value.
  7. 제6항에 있어서, The method of claim 6,
    상기 배터리의 SOC(State Of Charge)를 조정하면서, 상기 배터리의 셀 단위 내부 저항 값을 반복적으로 산출하는 단계;를 포함하는 것을 특징으로 하는 배터리의 상태를 셀 단위로 진단하는 방법.And repeatedly calculating an internal resistance value of each cell of the battery while adjusting a state of charge (SOC) of the battery.
  8. 제6항에 있어서, The method of claim 6,
    상기 배터리의 셀 단위 내부 저항 값에 소정 통계 분석을 적용하여, 내부 저항 값에 대한 표준편차 값을 벗어나는 셀을 검출하는 단계;를 포함하는 것을 특징으로 하는 배터리의 상태를 셀 단위로 진단하는 방법.And applying a predetermined statistical analysis to the internal resistance value of each cell of the battery to detect a cell outside the standard deviation value for the internal resistance value.
PCT/KR2019/001215 2018-09-12 2019-01-29 Apparatus and method for diagnosing state of battery in cell unit WO2020054924A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180109200A KR101990042B1 (en) 2018-09-12 2018-09-12 Apparatus for diagnosing battery by cell and method thereof
KR10-2018-0109200 2018-09-12

Publications (1)

Publication Number Publication Date
WO2020054924A1 true WO2020054924A1 (en) 2020-03-19

Family

ID=67103217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001215 WO2020054924A1 (en) 2018-09-12 2019-01-29 Apparatus and method for diagnosing state of battery in cell unit

Country Status (2)

Country Link
KR (1) KR101990042B1 (en)
WO (1) WO2020054924A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115871512A (en) * 2021-09-28 2023-03-31 北京车和家汽车科技有限公司 Battery detection and battery charging control method, device, equipment and medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102370105B1 (en) * 2020-04-24 2022-03-07 한국전력공사 Apparatus for diagnosing a deteriorated cell of bettery
KR102554505B1 (en) * 2021-03-22 2023-07-13 한국전력공사 Apparatus and method for diagnosing battery
KR102554383B1 (en) * 2021-10-26 2023-07-12 한국에너지기술연구원 Control method of energy storage system considering diagnosis of energy storage device, and energy storage system thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000003044A (en) * 1998-06-25 2000-01-15 박찬구 Measuring method and device of battery capacity using voltage response signal of pulse current
JP2001250590A (en) * 2000-03-06 2001-09-14 Idemitsu Eng Co Ltd Method for deciding deterioration of storage battery
JP2009244180A (en) * 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The Battery status detection method and system
KR20180066939A (en) * 2016-12-09 2018-06-20 현대오트론 주식회사 Apparatus and method for generating alternating current for diagnosing fuel cell stack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000003044A (en) * 1998-06-25 2000-01-15 박찬구 Measuring method and device of battery capacity using voltage response signal of pulse current
JP2001250590A (en) * 2000-03-06 2001-09-14 Idemitsu Eng Co Ltd Method for deciding deterioration of storage battery
JP2009244180A (en) * 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The Battery status detection method and system
KR20180066939A (en) * 2016-12-09 2018-06-20 현대오트론 주식회사 Apparatus and method for generating alternating current for diagnosing fuel cell stack

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK, JOONAM ET AL.: "Computational Simulation on Power Prediction of Lithium Secondary Batteries by using Pulse-based Measurement Methods", KEPCO JOURNAL ON ELECTRIC POWER AND ENERGY, vol. 1, no. 1, September 2015 (2015-09-01), pages 33 - 38 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115871512A (en) * 2021-09-28 2023-03-31 北京车和家汽车科技有限公司 Battery detection and battery charging control method, device, equipment and medium

Also Published As

Publication number Publication date
KR101990042B1 (en) 2019-06-18

Similar Documents

Publication Publication Date Title
WO2020054924A1 (en) Apparatus and method for diagnosing state of battery in cell unit
WO2017095066A1 (en) Apparatus and method for detecting battery cell failure due to unknown discharge current
WO2018074807A1 (en) Method and system for effective battery cell balancing through duty control
WO2021015501A1 (en) Battery resistance diagnosis device and method
WO2021230533A1 (en) Device for diagnosing battery, and method therefor
WO2021006566A1 (en) Battery cell diagnosis device and method
WO2017116088A1 (en) Method and device for estimating battery life
WO2014084628A1 (en) Apparatus for measuring current of battery and method therefor
WO2021107323A1 (en) Apparatus and method for diagnosing abnormal degradation of battery cell
WO2018012706A1 (en) Battery cell balancing method and system
WO2022149890A1 (en) Battery diagnosis device, battery system, and battery diagnosis method
WO2021049753A1 (en) Battery diagnosis apparatus and method
WO2022092621A1 (en) Apparatus and method for diagnosing battery
WO2021066394A1 (en) Method and system for detecting connection fault of parallel connection cells
WO2020022527A1 (en) Apparatus and method for diagnosing battery
WO2021230642A1 (en) Device and method for diagnosing battery
WO2023136455A1 (en) Battery state estimation method, and battery system for providing method
WO2023287180A1 (en) Battery diagnosis device, battery pack, electric vehicle, and battery diagnosis method
WO2023224211A1 (en) Battery diagnosis method, and battery diagnosis device and battery system providing same method
WO2023013961A1 (en) Battery testing device and battery testing system
WO2022019703A1 (en) Device and method for diagnosing battery
WO2022019600A1 (en) Fault cell diagnosis method and battery system using same
WO2022149822A1 (en) Battery management device and method
WO2021040306A1 (en) Method for predicting soh of battery and battery pack employing same
WO2024185981A1 (en) Battery diagnosis device and battery diagnosis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860121

Country of ref document: EP

Kind code of ref document: A1