JP2012026771A - Secondary battery apparatus and vehicle - Google Patents

Secondary battery apparatus and vehicle Download PDF

Info

Publication number
JP2012026771A
JP2012026771A JP2010163346A JP2010163346A JP2012026771A JP 2012026771 A JP2012026771 A JP 2012026771A JP 2010163346 A JP2010163346 A JP 2010163346A JP 2010163346 A JP2010163346 A JP 2010163346A JP 2012026771 A JP2012026771 A JP 2012026771A
Authority
JP
Japan
Prior art keywords
secondary battery
current
resistance
voltage
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010163346A
Other languages
Japanese (ja)
Inventor
Masahiro Tohara
正博 戸原
Masayuki Kubota
雅之 久保田
Asami Mizutani
麻美 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010163346A priority Critical patent/JP2012026771A/en
Publication of JP2012026771A publication Critical patent/JP2012026771A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery apparatus for estimating a charging state highly accurately, and a vehicle.SOLUTION: The present invention relates to a secondary battery apparatus including: a battery set 1 including a plurality of secondary battery cells BTs; a current measuring means 3 for measuring a current flowing to the battery set 1; a voltage measuring means 2 for measuring a voltage of each of the plurality of secondary battery cells BTs; a storage section 6 recording therein a table 61 of values of a ratio P of a charge resistance Rc and a discharge resistance Rd to a charging state of the secondary battery cells BTs; and an SOC estimation section 51 for calculating the ratio P of the charging resistance Rc and the discharge resistance Rd from the current value measured by the current measuring means 3 and the voltage value measured by the voltage measuring means, and determining the charging state while using the table 61.

Description

本発明の実施形態は、二次電池装置および車両に関する。   Embodiments described herein relate generally to a secondary battery device and a vehicle.

複数の二次電池セルを備える組電池を搭載した二次電池装置および車両では、二次電池セルの任意の時点における放電可能な残量である充電状態(SOC:state of charge)を推定することが要求されている。   In a secondary battery device and a vehicle equipped with an assembled battery including a plurality of secondary battery cells, estimating a state of charge (SOC) that is a remaining chargeable amount of the secondary battery cells at an arbitrary time point Is required.

二次電池セルの充電状態を推定する方法として、例えば、放電テストを行なう方法、電流積算により推定する方法や、開回路電圧(OCV:Open Circuit Voltage)を利用して推定する方法が提案されている。   As a method for estimating the state of charge of a secondary battery cell, for example, a method of performing a discharge test, a method of estimating by current integration, and a method of estimating using an open circuit voltage (OCV) have been proposed. Yes.

放電テストを行なう方法は、実際に二次電池セルを放電させることによって、充電状態を推定する方法である。この方法は、二次電池セルを使用中に行なうことが困難である。また、電流積算により推定する方法は、二次電池セルが一般に満充電や完放電に至ることが少ない場合、基準点を定めることが困難となり、積算誤差が累積し、高精度の推定を行なうことが困難である。   The method of performing the discharge test is a method of estimating the state of charge by actually discharging the secondary battery cell. This method is difficult to perform while using the secondary battery cell. In addition, the estimation method based on current integration is difficult to determine a reference point when the secondary battery cell generally does not reach full charge or complete discharge. Accumulation errors accumulate and high-precision estimation is performed. Is difficult.

開回路電圧を利用する場合、電流がゼロである期間がある程度の長さ必要であるため、二次電池セルを使用中であるときには開回路電圧により充電状態を推定することが困難であった。   When the open circuit voltage is used, it is difficult to estimate the state of charge by the open circuit voltage when the secondary battery cell is in use because the period during which the current is zero is required to some extent.

その他、二次電池セルの充電状態を推定する方法として、EMF(Electro-Motive Force)を利用する方法、交流インピーダンスを測定する方法、直流内部抵抗により求める方法、人工知能(ニューラルネットワーク)を利用する方法、ファジーロジックを利用する方法、カルマンフィルタを利用する方法が提案されている。   In addition, as a method for estimating the state of charge of the secondary battery cell, a method using EMF (Electro-Motive Force), a method of measuring AC impedance, a method of obtaining by DC internal resistance, and artificial intelligence (neural network) are used. A method, a method using fuzzy logic, and a method using a Kalman filter have been proposed.

特開2002−189066号公報JP 2002-189066 A

例えば、ハイブリッド自動車等の車両用途の二次電池装置では、二次電池セルが満充電や完放電に至ることは稀であるので、充電状態推定の基準として開回路電圧を利用することが検討されている。   For example, in a secondary battery device for use in a vehicle such as a hybrid vehicle, it is rare for a secondary battery cell to reach full charge or complete discharge. Therefore, it is considered to use an open circuit voltage as a reference for charge state estimation. ing.

しかし、開回路電圧は電流ゼロが継続するある程度の長さの期間が無いと直接測定することができず、充電状態を推定することが困難な場合があった。また、二次電池セルのOCV/SOC特性が略フラットとなる部分を含む場合には、僅かな開回路電圧の差異に対する充電状態推定値の差異が大きくなるため、高精度の充電状態推定を実現することが困難であった。   However, the open circuit voltage cannot be directly measured unless there is a period of a certain length for which the current zero continues, and it may be difficult to estimate the state of charge. Also, when the OCV / SOC characteristic of the secondary battery cell includes a portion that is substantially flat, the difference in the charge state estimation value with respect to the slight difference in the open circuit voltage becomes large, thereby realizing highly accurate charge state estimation. It was difficult to do.

本発明は、上記事情を鑑みて成されたものであって、高精度に充電状態を推定する二次電池装置および車両を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a secondary battery device and a vehicle that estimate the state of charge with high accuracy.

本発明の第1態様による二次電池装置は、複数の二次電池セルを含む組電池と、前記組電池に流れる電流を測定する電流測定手段と、前記複数の二次電池セルそれぞれの電圧を測定する電圧測定手段と、前記二次電池セルの充電状態に対する充電抵抗と放電抵抗との比の値のテーブルが記録された記憶部と、前記電流測定手段により測定された電流値および前記電圧測定手段により測定された電圧値から、前記充電抵抗と前記放電抵抗との比を算出し、前記テーブルを用いて充電状態を求めるSOC推定部と、を備える。   The secondary battery device according to the first aspect of the present invention includes an assembled battery including a plurality of secondary battery cells, current measuring means for measuring a current flowing through the assembled battery, and voltages of the plurality of secondary battery cells. Voltage measuring means for measuring, a storage unit in which a table of ratio values of charge resistance and discharge resistance with respect to a charged state of the secondary battery cell is recorded, the current value measured by the current measuring means and the voltage measurement A SOC estimation unit that calculates a ratio between the charging resistance and the discharging resistance from the voltage value measured by the means and obtains a charging state using the table.

本発明の一実施形態に係る車両の一構成例を概略的に示す図である。1 is a diagram schematically illustrating a configuration example of a vehicle according to an embodiment of the present invention. 本発明の一実施形態に係る二次電池装置の一構成例を概略的に示すブロック図である。It is a block diagram which shows roughly the example of 1 structure of the secondary battery apparatus which concerns on one Embodiment of this invention. 二次電池セルの内部抵抗とSOCとの関係の一例を示す図である。It is a figure which shows an example of the relationship between the internal resistance of a secondary battery cell, and SOC. 二次電池セルの充電抵抗と放電抵抗との比と、SOCとの関係の一例を示す図である。It is a figure which shows an example of the relationship between the ratio of the charging resistance and discharge resistance of a secondary battery cell, and SOC. 本発明の一実施形態に係る二次電池装置における、SOCを求める際の定周期について説明するための図である。It is a figure for demonstrating the fixed period at the time of calculating | requiring SOC in the secondary battery apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池装置における、サンプリング周期毎の処理の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the process for every sampling period in the secondary battery apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池装置における、定周期毎の処理の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the process for every fixed period in the secondary battery apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池装置における、定周期毎の処理の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the process for every fixed period in the secondary battery apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池装置において、電流の平均値と電圧の平均値との散布図例を示す図である。It is a figure which shows the example of a scatter diagram of the average value of an electric current, and the average value of a voltage in the secondary battery apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池装置において、電流の平均値差分と電圧の平均値差分との散布図例を示す図である。It is a figure which shows the example of a scatter diagram of the average value difference of an electric current, and the average value difference of a voltage in the secondary battery apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池装置において、電流の平均値差分と電圧の平均値差分との散布図例を示す図である。It is a figure which shows the example of a scatter diagram of the average value difference of an electric current, and the average value difference of a voltage in the secondary battery apparatus which concerns on one Embodiment of this invention. OCV/SOC特性の一例を示す図である。It is a figure which shows an example of an OCV / SOC characteristic.

以下、本発明の一実施形態に係る二次電池装置および車両について、図面を参照して説明する。   Hereinafter, a secondary battery device and a vehicle according to an embodiment of the present invention will be described with reference to the drawings.

図1に、本発明の一実施形態に係る車両の一構成例を概略的に示す。本実施形態に係る車両は、例えば電気自動車あるいはハイブリッド自動車であって、二次電池装置が搭載されている。   FIG. 1 schematically shows a configuration example of a vehicle according to an embodiment of the present invention. The vehicle according to the present embodiment is, for example, an electric vehicle or a hybrid vehicle, and has a secondary battery device mounted thereon.

車両は、組電池モジュール400と、組電池モジュール400の動作を制御する電池管理装置300と、運転制御部500と、組電池モジュール400から電力が供給されるモータ600と、上位制御回路700と、シャーシ1000と、駆動輪WR、WLを備えている。   The vehicle includes an assembled battery module 400, a battery management device 300 that controls the operation of the assembled battery module 400, an operation control unit 500, a motor 600 to which power is supplied from the assembled battery module 400, an upper control circuit 700, A chassis 1000 and drive wheels WR and WL are provided.

組電池モジュール400は、複数の二次電池セルBTを含む組電池1(図2に示す)を備えている。組電池モジュール400の正極端子と負極端子とは、運転制御部500に接続されている。   The assembled battery module 400 includes the assembled battery 1 (shown in FIG. 2) including a plurality of secondary battery cells BT. The positive terminal and the negative terminal of the assembled battery module 400 are connected to the operation control unit 500.

電池管理装置300は、組電池モジュール400から複数の二次電池セルBTの電圧値、組電池1に流れる電流値、および、組電池1近傍の温度値が供給され、組電池1の充電および放電等を管理している。   The battery management device 300 is supplied with the voltage values of the plurality of secondary battery cells BT, the current value flowing through the assembled battery 1, and the temperature value near the assembled battery 1 from the assembled battery module 400, and charging and discharging the assembled battery 1. Etc. are managed.

運転制御部500は、インバータを備え、組電池モジュール400から供給される電圧を変換するとともに、運転指令を受けて出力電流・電圧のレベル制御及び位相制御などを行う。運転制御部500の出力は、モータ600に駆動電力として供給される。モータ600の回転は、例えば差動ギアユニットを介して、駆動輪WR、WLに伝達される。   The operation control unit 500 includes an inverter, converts the voltage supplied from the assembled battery module 400, and receives an operation command to perform output current / voltage level control and phase control. The output of the operation control unit 500 is supplied to the motor 600 as drive power. The rotation of the motor 600 is transmitted to the drive wheels WR and WL via, for example, a differential gear unit.

上位制御回路700は、電池管理装置300から複数の二次電池セルBTのデータを受信して、電池管理装置300の動作を制御するように構成されている。   The upper control circuit 700 is configured to receive data of a plurality of secondary battery cells BT from the battery management device 300 and control the operation of the battery management device 300.

図2に、本発明の一実施形態に係る二次電池装置の一構成例を概略的に示す。   FIG. 2 schematically shows a configuration example of a secondary battery device according to an embodiment of the present invention.

本実施形態に係る二次電池装置は、組電池モジュール400と、電池管理装置300と、を備えている。     The secondary battery device according to the present embodiment includes an assembled battery module 400 and a battery management device 300.

組電池モジュール400は、複数の二次電池セルBTを含む組電池1と、複数の二次電池セルBTの電圧を検出する電圧測定回路2と、組電池の近傍に配置された温度検出手段4と、組電池1に流れる電流を測定する電流測定手段3と、を備えている。   The assembled battery module 400 includes an assembled battery 1 including a plurality of secondary battery cells BT, a voltage measuring circuit 2 that detects voltages of the plurality of secondary battery cells BT, and a temperature detection unit 4 disposed in the vicinity of the assembled battery. And current measuring means 3 for measuring the current flowing through the assembled battery 1.

電池管理装置300は、制御部5と、記憶部6と、上位制御回路700との間で通信を行なう通信インタフェース7と、を備えている。   The battery management device 300 includes a control unit 5, a storage unit 6, and a communication interface 7 that performs communication with the host control circuit 700.

記憶部6は、複数の二次電池セルBTの充電抵抗Rcと放電抵抗Rdとの比P(Rc/Rd)と充電状態との関係について、二次電池セルBTの温度範囲毎に設けれらた複数のテーブル61を備えている。記憶部6は、例えばEEPROM(Electronically Erasable and Programmable Read Only Memory)である。   The storage unit 6 is provided for each temperature range of the secondary battery cells BT with respect to the relationship between the charging state R and the ratio P (Rc / Rd) of the charging resistance Rc and discharging resistance Rd of the plurality of secondary battery cells BT. A plurality of tables 61 are provided. The storage unit 6 is, for example, an EEPROM (Electronically Erasable and Programmable Read Only Memory).

制御部5は、二次電池セルBTの充電抵抗Rcと放電抵抗Rdとを算出し、充電抵抗Rcと放電抵抗Rdとの比Pを用いて、記憶部6に記憶されたテーブル61から対応する充電状態を求めるSOC推定部51を備えている。SOC推定部51は、求めた充電状態を通信インタフェース7へ出力する。   The control unit 5 calculates the charging resistance Rc and the discharging resistance Rd of the secondary battery cell BT, and uses the ratio P between the charging resistance Rc and the discharging resistance Rd to correspond from the table 61 stored in the storage unit 6. An SOC estimation unit 51 for obtaining the state of charge is provided. The SOC estimation unit 51 outputs the obtained charging state to the communication interface 7.

通信インタフェース7は、制御部5から出力された二次電池セルBTの充電状態を上位制御回路700へ出力するとともに、上位制御回路700からの制御信号を制御部5へ出力する。   The communication interface 7 outputs the charge state of the secondary battery cell BT output from the control unit 5 to the upper control circuit 700 and outputs a control signal from the upper control circuit 700 to the control unit 5.

図3に、二次電池セルBTの内部抵抗と充電状態との関係の一例を示す。図3では、横軸を充電状態とし、縦軸を内部抵抗として、組電池1に流れる電流が放電方向である時の内部抵抗(放電抵抗)Rdと充電状態との関係、および、組電池1に流れる電圧が充電方向である時の内部抵抗(充電抵抗)Rcと充電状態との関係を示している。   FIG. 3 shows an example of the relationship between the internal resistance of the secondary battery cell BT and the state of charge. In FIG. 3, the horizontal axis is the charged state, the vertical axis is the internal resistance, the relationship between the internal resistance (discharge resistance) Rd and the charged state when the current flowing through the assembled battery 1 is in the discharging direction, and the assembled battery 1 6 shows the relationship between the internal resistance (charging resistance) Rc and the state of charge when the voltage flowing through is in the charging direction.

放電時の内部抵抗Rdは、二次電池セルBTの充電状態が小さいときに大きくなり、充電状態が大きいときに小さくなる。充電時の内部抵抗Rcは、二次電池セルBTの充電状態が小さいときに小さくなり、充電状態が大きいときに大きくなる。   The internal resistance Rd at the time of discharging increases when the charging state of the secondary battery cell BT is small, and decreases when the charging state is large. The internal resistance Rc at the time of charging decreases when the charging state of the secondary battery cell BT is small, and increases when the charging state is large.

また、充電抵抗Rcの充電状態に対する特性の傾きは、充電状態が小さいときには小さくなり、充電状態が大きいときには大きくなる。放電抵抗Rdの充電状態に対する特性の傾きは、充電状態が小さいときには大きくなり、充電状態が大きいときには大きくなる。放電時の内部抵抗Rdと充電時の内部抵抗Rcとは、充電状態50%付近で均衡する。   In addition, the slope of the characteristics of the charging resistor Rc with respect to the charging state is small when the charging state is small, and is large when the charging state is large. The slope of the characteristic of the discharge resistor Rd with respect to the charged state increases when the charged state is small, and increases when the charged state is large. The internal resistance Rd during discharging and the internal resistance Rc during charging are balanced in the vicinity of 50% of the charged state.

図4に、二次電池セルBTの温度毎の、二次電池セルBTの充電状態に対する充電抵抗Rcと放電抵抗Rdとの比P(Rc/Rd)の関係(P/SOC特性)の一例を示す。充電抵抗Rcと放電抵抗Rdとの比Pは、二次電池セルBTの充電状態に対して単調増加特性となる。充電抵抗Rcと放電抵抗Rdとの比Pの充電状態に対する充電状態の傾きは、充電状態の大きさに関わらず常に一定値以上となり、充電状態50%付近で比Pの値が略1となる。   FIG. 4 shows an example of the relationship (P / SOC characteristic) of the ratio P (Rc / Rd) of the charging resistance Rc and the discharging resistance Rd to the charging state of the secondary battery cell BT for each temperature of the secondary battery cell BT. Show. The ratio P between the charging resistance Rc and the discharging resistance Rd becomes a monotonically increasing characteristic with respect to the charged state of the secondary battery cell BT. The slope of the charging state with respect to the charging state with the ratio P of the charging resistance Rc to the discharging resistance Rd is always a certain value or more regardless of the size of the charging state, and the value of the ratio P is approximately 1 near 50% of the charging state. .

次に上記二次電池装置および車両において、評価対象である二次電池セルの充電状態を推定する際の制御部5の動作について図面を参照して説明する。   Next, the operation of the control unit 5 when estimating the state of charge of the secondary battery cell to be evaluated in the secondary battery device and the vehicle will be described with reference to the drawings.

図5に、複数の二次電池セルBTの充電状態を算出する際のタイミングチャートの一例を示す。SOC推定の定周期処理は3つの異なる周期T1、T2、T3毎に実施される。周期T1、T2、T3は、周期T1<周期T2<周期T3であって、周期T2は複数の周期T1を含み、周期T3は複数の周期T2を含む。例えば、周期T1は0.1秒、周期T2は1秒、周期T3は1分である。制御部5のSOC推定部51は、周期T1、周期T2、および、周期T3のそれぞれにおいて、以下のように二次電池セルBTの充電状態の算出処理を行う。   In FIG. 5, an example of the timing chart at the time of calculating the charge condition of the some secondary battery cell BT is shown. The fixed period processing of SOC estimation is performed every three different periods T1, T2, and T3. The periods T1, T2, and T3 are the period T1 <the period T2 <the period T3, the period T2 includes a plurality of periods T1, and the period T3 includes a plurality of periods T2. For example, the period T1 is 0.1 second, the period T2 is 1 second, and the period T3 is 1 minute. The SOC estimation unit 51 of the control unit 5 performs the calculation process of the state of charge of the secondary battery cell BT as follows in each of the period T1, the period T2, and the period T3.

図6に、周期T1毎の処理の一例を説明するためのフローチャートを示す。SOC推定部51は、電圧測定回路2から二次電池セルBTの電圧値を取得し(ステップSTA1)、電流測定部3から電流値を取得し(ステップSTA2)、温度測定部4から二次電池セルBTの温度値を取得し(ステップSTA3)、これらの測定値にタイムスタンプを付して記憶部6に記憶する(ステップSTA4)。   FIG. 6 is a flowchart for explaining an example of processing for each cycle T1. The SOC estimation unit 51 obtains the voltage value of the secondary battery cell BT from the voltage measurement circuit 2 (step STA1), obtains the current value from the current measurement unit 3 (step STA2), and then obtains the secondary battery from the temperature measurement unit 4. The temperature values of the cell BT are acquired (step STA3), and time stamps are attached to these measured values and stored in the storage unit 6 (step STA4).

図7に、周期T2毎の処理の一例を説明するためのフローチャートを示す。SOC推定部51は、まず直近の過去周期T2に記憶した複数の二次電池セル電圧の平均値Vave(N)を算出し(ステップSTB1)、直近の過去周期T2に記憶した複数の電流値の平均値Iave(N)を算出し(ステップSTB2)、直近の過去周期T2に記憶した複数の二次電池セルの温度値の平均値Tave(N)を算出する(ステップSTB3)。   FIG. 7 shows a flowchart for explaining an example of processing for each cycle T2. The SOC estimation unit 51 first calculates an average value Vave (N) of the plurality of secondary battery cell voltages stored in the latest past cycle T2 (step STB1), and calculates the plurality of current values stored in the latest past cycle T2. An average value Iave (N) is calculated (step STB2), and an average value Tave (N) of the temperature values of the plurality of secondary battery cells stored in the latest past cycle T2 is calculated (step STB3).

図9に、電流の平均値Iaveの値を横軸とし電圧の平均値Vaveを縦軸として、周期T2毎に算出された値をプロットしたグラフの一例を示す。図9の第1象限のプロットは、二次電池セルBTが充電されているときの電流平均値Iave(N)と電圧平均値Vave(N)とを表している。図9の第4象限のプロットは、二次電池セルBTが放電されているときの電流平均値Iave(N)と電圧平均値Vave(N)とを表している。   FIG. 9 shows an example of a graph in which the values calculated for each period T2 are plotted with the average value Iave of the current being the horizontal axis and the average value Vave of the voltage being the vertical axis. The plot in the first quadrant of FIG. 9 represents the current average value Iave (N) and the voltage average value Vave (N) when the secondary battery cell BT is charged. The plot in the fourth quadrant of FIG. 9 represents the current average value Iave (N) and the voltage average value Vave (N) when the secondary battery cell BT is discharged.

更に、その後、SOC推定部51は、平均値Vave(N)から、直近の過去周期T2に求めたVave(N−1)を減算した差分電圧値ΔVave(N)を算出する(ステップSTB4)。   Further, after that, the SOC estimation unit 51 calculates a differential voltage value ΔVave (N) obtained by subtracting Vave (N−1) obtained in the latest past cycle T2 from the average value Vave (N) (step STB4).

同様に、SOC推定部51は、平均値Iave(N)から、直近の過去周期T2に求めた平均値Iave(N−1)を減算した差分電流値ΔIave(N)を算出する(ステップSTB5)。   Similarly, the SOC estimation unit 51 calculates a differential current value ΔIave (N) obtained by subtracting the average value Iave (N−1) obtained in the latest past cycle T2 from the average value Iave (N) (step STB5). .

SOC推定部51は、差分電圧値ΔVave(N)と差分電流値ΔIave(N)との組データを温度値の平均値Tave(N)と関連づけるとともに、平均値Iave(N)が正の値であれば充電側データ領域に記憶する(ステップSTB6)。   The SOC estimation unit 51 associates the set data of the differential voltage value ΔVave (N) and the differential current value ΔIave (N) with the average value Tave (N) of the temperature values, and the average value Iave (N) is a positive value. If there is, it is stored in the charge side data area (step STB6).

SOC推定部51は、差分電圧値ΔVave(N)と差分電流値ΔIave(N)との組データを温度値の平均値Tave(N)と関連づけるとともに、平均値Iave(N)が負の値であれば放電側データ領域に記憶する(ステップSTB7)。   The SOC estimation unit 51 associates the set data of the differential voltage value ΔVave (N) and the differential current value ΔIave (N) with the average value Tave (N) of the temperature values, and the average value Iave (N) is a negative value. If there is, it is stored in the discharge side data area (step STB7).

ここで、周期T2を長くしていくと、抵抗値を求める際の回帰の相関が低下する。他方、周期T2を短い場合、例えば周期T2と周期T1とが等しい場合、電流変化のタイミングとサンプリングのタイミングとのずれの影響により抵抗値を求める際の回帰の相関が低下することがあった。   Here, when the period T2 is lengthened, the regression correlation when obtaining the resistance value decreases. On the other hand, when the period T2 is short, for example, when the period T2 and the period T1 are equal, the correlation of regression when obtaining the resistance value may be reduced due to the influence of the difference between the current change timing and the sampling timing.

以下に、周期T2の長さを変化させたときの決定係数R(相関係数の二乗)を、実際の試験データを用いて算出した一例を示す。決定係数Rは、相関が最大の場合に1となる。 Hereinafter, an example in which the determination coefficient R 2 (the square of the correlation coefficient) when the length of the period T2 is changed is calculated using actual test data is shown. The coefficient of determination R 2, the correlation is 1 in the case of maximum.

T1=0.1s、T2=0.1sのとき、R(決定係数)=0.7795
T1=0.1s、T2=0.2sのとき、R(決定係数)=0.8584
T1=0.1s、T2=0.3sのとき、R(決定係数)=0.9344
T1=0.1s、T2=0.4sのとき、R(決定係数)=0.9491
T1=0.1s、T2=0.5sのとき、R(決定係数)=0.9697
T1=0.1s、T2= 1sのとき、R(決定係数)=0.9768
T1=0.1s、T2= 2sのとき、R(決定係数)=0.9694
T1=0.1s、T2= 5sのとき、R(決定係数)=0.9549
T1=0.1s、T2= 10sのとき、R(決定係数)=0.9257
T1=0.1s、T2= 20sのとき、R(決定係数)=0.9135
上記実際の試験データを用いた結果の一例によれば、周期T2が周期T1の10倍のときに相関係数が最大となった。回帰の相関が大きく(例えば決定係数Rが0.95以上)なる周期T2の値は、周期T1の値の5倍以上50倍以下の範囲であった。よって、周期T2の値の範囲を周期T1の値に対して5倍以上50倍以下とすることに、より高精度に充電状態を推定することができる。
When T1 = 0.1 s and T2 = 0.1 s, R 2 (determination coefficient) = 0.7795
When T1 = 0.1 s and T2 = 0.2 s, R 2 (determination coefficient) = 0.5884
When T1 = 0.1 s and T2 = 0.3 s, R 2 (determination coefficient) = 0.9344
When T1 = 0.1 s and T2 = 0.4 s, R 2 (determination coefficient) = 0.9491
When T1 = 0.1 s and T2 = 0.5 s, R 2 (determination coefficient) = 0.9697
When T1 = 0.1 s and T2 = 1 s, R 2 (determination coefficient) = 0.9768
When T1 = 0.1 s and T2 = 2 s, R 2 (determination coefficient) = 0.9694
When T1 = 0.1 s and T2 = 5 s, R 2 (determination coefficient) = 0.9549
When T1 = 0.1 s and T2 = 10 s, R 2 (determination coefficient) = 0.9257
When T1 = 0.1 s and T2 = 20 s, R 2 (determination coefficient) = 0.9135
According to an example of the result using the actual test data, the correlation coefficient is maximized when the period T2 is 10 times the period T1. The value of the period T2 in which the correlation of the regression is greater (e.g., coefficient of determination R 2 is 0.95 or higher) was 50 times or less in the range 5 or more times the value of the period T1. Therefore, the charging state can be estimated with higher accuracy by setting the range of the value of the cycle T2 to be not less than 5 times and not more than 50 times the value of the cycle T1.

図8に、周期T3毎の処理の一例を説明するためのフローチャートを示す。SOC推定部51は、直近の過去期間T3に記憶した差分電圧値ΔVave(N)と差分電流値ΔIave(N)との充電側データ領域における差分組データ群から、充電抵抗Rc(t)を求める(ステップSTC1)。   FIG. 8 shows a flowchart for explaining an example of processing for each cycle T3. The SOC estimation unit 51 obtains the charging resistance Rc (t) from the differential set data group in the charging side data region of the differential voltage value ΔVave (N) and the differential current value ΔIave (N) stored in the latest past period T3. (Step STC1).

図10に、充電側の差分電圧値ΔVave(N)と差分電流値ΔIave(N)との組データ群をプロットしたグラフの一例を示す。例えば、図10に示すように、差分電圧値ΔVave(N)と差分電流値ΔIave(N)との組データ群が記憶されている場合、SOC推定部51はこれら組データ群の回帰直線(ΔVave=Rc×ΔIave)の傾きから充電抵抗Rc(t)を求める。   FIG. 10 shows an example of a graph in which a set data group of the differential voltage value ΔVave (N) and the differential current value ΔIave (N) on the charging side is plotted. For example, as shown in FIG. 10, when a set data group of the differential voltage value ΔVave (N) and the differential current value ΔIave (N) is stored, the SOC estimation unit 51 uses a regression line (ΔVave of these set data groups). = Rc × ΔIave) to obtain the charging resistance Rc (t).

続いて、SOC推定部51は、過去期間T3に記憶した差分電圧値ΔVave(N)と差分電流値ΔIave(N)との放電側データ領域における差分組データ群から、放電抵抗Rd(t)を求める(ステップSTC2)。   Subsequently, the SOC estimation unit 51 obtains the discharge resistance Rd (t) from the difference set data group in the discharge side data region of the difference voltage value ΔVave (N) and the difference current value ΔIave (N) stored in the past period T3. Obtained (step STC2).

図11に、放電側のデータ領域における差分電圧値ΔVave(N)と差分電流値ΔIave(N)との組データ群をプロットしたグラフの一例を示す。例えば、図11に示すように差分電圧値ΔVave(N)と差分電流値ΔIave(N)との組データ群が記憶されている場合、SOC推定部51はこれら組データ群の回帰直線(ΔVave=Rd×ΔIave)の傾きから放電抵抗Rd(t)を求める。   FIG. 11 shows an example of a graph plotting a set data group of the differential voltage value ΔVave (N) and the differential current value ΔIave (N) in the data area on the discharge side. For example, as shown in FIG. 11, when a set data group of the differential voltage value ΔVave (N) and the differential current value ΔIave (N) is stored, the SOC estimation unit 51 uses a regression line (ΔVave = The discharge resistance Rd (t) is obtained from the slope of Rd × ΔIave).

SOC推定部51は、求めた充電抵抗Rc(t)と放電抵抗Rd(t)とを対応する温度平均値Tave(t)と共に記憶部6に記憶する(ステップSTC3)。そして、SOC推定部51は、温度平均値Tave(t)毎の、充電状態に対する充電抵抗Rcと放電抵抗Rdとの比(Rc/Rd)のテーブル61を参照して、現時点の二次電池セルBTの充電状態を求める(ステップSTC4)。   The SOC estimating unit 51 stores the obtained charging resistance Rc (t) and discharging resistance Rd (t) in the storage unit 6 together with the corresponding temperature average value Tave (t) (step STC3). Then, the SOC estimation unit 51 refers to the table 61 of the ratio (Rc / Rd) of the charging resistance Rc to the discharging resistance Rd with respect to the charging state for each temperature average value Tave (t), and the current secondary battery cell The state of charge of BT is obtained (step STC4).

SOC推定部51は、複数の二次電池セルBTについて求めた充電状態を記憶部6に記憶する。制御回路5は、通信インタフェース7を介して、上位制御回路700から要求された場合に、記憶部6に記憶された複数の二次電池セルBTの充電状態の値を上位制御回路700に送信する。上位制御回路700は、制御回路5から受信した複数の二次電池セルBTの充電状態の値により、電池管理装置300を制御する。   The SOC estimation unit 51 stores in the storage unit 6 the state of charge obtained for the plurality of secondary battery cells BT. When requested by the upper control circuit 700 via the communication interface 7, the control circuit 5 transmits the charge state values of the plurality of secondary battery cells BT stored in the storage unit 6 to the upper control circuit 700. . The host control circuit 700 controls the battery management device 300 based on the charge state values of the plurality of secondary battery cells BT received from the control circuit 5.

なお、周期T3は周期T2の10倍以上200倍以下の範囲内とすることが望ましい。周期T3内の差分組データの数について、充電側及び放電側の両者とも少ないと推定値のばらつきが大きくなる。逆に、周期T3を大きくし過ぎると、推定対象のデータの期間の例えば中間タイミングに対して推定値が得られるタイミングが遅くなってしまう。その結果、周期T3内で充電状態が変化してしまい、精度の高い推定が困難となる。よって、周期T3期間を周期T2の期間に対する比として適切な範囲に規定することにより高精度で時間遅れの少ない充電状態の推定を実現することができる。   Note that the period T3 is preferably in the range of 10 to 200 times the period T2. When the number of difference set data in the period T3 is small on both the charging side and the discharging side, the variation in estimated values increases. On the other hand, if the period T3 is too large, the timing at which the estimated value is obtained becomes late with respect to, for example, the intermediate timing of the estimation target data period. As a result, the state of charge changes within the period T3, making it difficult to estimate with high accuracy. Therefore, it is possible to realize a highly accurate estimation of the state of charge with little time delay by defining the period T3 period as an appropriate range as a ratio to the period T2.

また、本実施形態に係る二次電池装置では、SOC推定部51は、一周期T3における充電側の平均値差分組データ数と、放電側の平均値差分組データ数とがともに一定数以上である場合にのみ残量推定を実施するように構成されていてもよい。   Moreover, in the secondary battery device according to the present embodiment, the SOC estimation unit 51 has both the average value difference group data on the charging side and the average value difference group data on the discharge side both in a certain number or more in one cycle T3. The remaining amount estimation may be performed only in some cases.

また、組電池1に流れる電流方向が充電する方向と放電する方向とで激しく切換わる場合、差分の組みデータが求まらないことがある。例えば、サンプリング周期毎に電流方向が反転している場合には、差分の組みデータが求まらないことがある。このような場合、差分の組データの数が十分でなく、高精度に充電状態を推定することが困難である。充電側と放電側とのそれぞれの平均値差分組みデータの最低数を規定することによって、推定値のばらつきが大きくなることを防止し高精度なSOC推定を実現できる。   In addition, when the direction of the current flowing through the assembled battery 1 is violently switched between the charging direction and the discharging direction, difference assembled data may not be obtained. For example, when the current direction is reversed every sampling cycle, the difference combination data may not be obtained. In such a case, the number of difference pair data is not sufficient, and it is difficult to estimate the state of charge with high accuracy. By defining the minimum number of average value difference combination data on each of the charge side and the discharge side, it is possible to prevent variation in estimated values from increasing and to realize highly accurate SOC estimation.

なお、差分の組データの数が十分ではない場合には、SOC推定部51は、他の方式で充電状態を求めるように構成されていてもよい。例えば、SOC推定部51は、電流積算値によって充電状態を求めたり、開回路電圧により充電状態を求めたりするように構成されていてもよい。   In addition, when the number of difference set data is not sufficient, the SOC estimation part 51 may be comprised so that a charge condition may be calculated | required with another system. For example, the SOC estimation unit 51 may be configured to obtain the state of charge from the integrated current value or to obtain the state of charge from the open circuit voltage.

また、SOC推定部51は、差分の組データの数が十分に算出されるまで待機し、十分なデータ数が算出された場合に充電状態を求めるように構成されていてもよい。   In addition, the SOC estimation unit 51 may be configured to stand by until the number of difference pair data is sufficiently calculated, and to obtain the state of charge when a sufficient number of data is calculated.

さらに、本実施形態に係る二次電池装置において、SOC推定部51は、求めた充電抵抗値Rcと放電抵抗値Rdとの比P(Rc/Rd)の値の範囲に応じて、残量推定方法を使い分けるように構成されていてもよい。   Further, in the secondary battery device according to the present embodiment, the SOC estimation unit 51 estimates the remaining amount according to the range of the value P (Rc / Rd) of the obtained charging resistance value Rc and discharging resistance value Rd. You may be comprised so that a method may be used properly.

SOC推定部51は、比Pの値が、0.5以上0.9以下の範囲内の特定値を下限と設定し、1.1以上2.0以下の範囲内の特定値を上限と設定した範囲(最小0.9以上1.1以下の範囲であって最大0.5以上2.0以下の範囲)にある場合に、上記比Pを用いた残量推定を行い、比Pが設定した範囲外の場合に他の方式による残量推定を行うように構成されてもよい。この場合上限値と下限値とは、二次電池セルBTのOCV/SOC特性の傾きに応じて設定される。   The SOC estimation unit 51 sets a specific value in the range of the ratio P in the range of 0.5 to 0.9 as the lower limit, and sets a specific value in the range of 1.1 to 2.0 as the upper limit. The remaining amount is estimated using the ratio P, and the ratio P is set when the range P is within the range (minimum range 0.9 to 1.1 and maximum 0.5 to 2.0). The remaining amount may be estimated by another method when it is out of the range. In this case, the upper limit value and the lower limit value are set according to the slope of the OCV / SOC characteristic of the secondary battery cell BT.

OCV/SOC特性の傾きが略フラットな領域は、一般に、SOC軸の中央部付近であって、充電状態が小さいときや大きいときにはOCV/SOC特性は傾きが大きくなる。そこでOCV/SOC特性をその傾きにより区分し、開回路電圧を利用したSOC推定方式と比Pを利用したSOC推定方式とを組み合わせることでSOC全領域にわたる良好な充電状態推定を実現することができる。   The region where the slope of the OCV / SOC characteristic is substantially flat is generally near the center of the SOC axis, and the slope of the OCV / SOC characteristic becomes large when the state of charge is small or large. Thus, the OCV / SOC characteristics are classified according to their slopes, and a good state of charge estimation over the entire SOC region can be realized by combining the SOC estimation method using the open circuit voltage and the SOC estimation method using the ratio P. .

この場合、SOC推定部51は、OCV/SOC特性の傾きが所定値以上である場合には開回路電圧により充電状態を求め、OCV/SOC特性の傾きが所定値未満である場合には比Pにより充電状態を求めるように構成される。   In this case, when the slope of the OCV / SOC characteristic is greater than or equal to a predetermined value, the SOC estimation unit 51 obtains the state of charge from the open circuit voltage, and when the slope of the OCV / SOC characteristic is less than the predetermined value, the ratio P To determine the state of charge.

上記のように、充電抵抗Rcと放電抵抗Rdとの比P(Rc/Rd)の対SOC特性を利用して充電状態の推定をすることによって、比Pの誤差が充電状態の誤差として極端に拡大されることがなく、高精度な充電状態推定が可能となる。   As described above, by estimating the charge state using the SOC characteristic of the ratio P (Rc / Rd) of the charge resistance Rc and the discharge resistance Rd, the error of the ratio P is extremely reduced as the charge state error. It is possible to estimate the state of charge with high accuracy without being enlarged.

図12に、OCV/SOC特性の一例を示す。例えば、SOCが10%であるときに開回路電圧が2.345V、SOCが40%であるときに開回路電圧が2.353Vである。この場合、SOC40%における開回路電圧は、SOC10%における開回路電圧の1.0034倍(100.34%)(2.353V/2.345V)である。   FIG. 12 shows an example of OCV / SOC characteristics. For example, the open circuit voltage is 2.345 V when the SOC is 10%, and the open circuit voltage is 2.353 V when the SOC is 40%. In this case, the open circuit voltage at 40% SOC is 1.0034 times (100.34%) (2.353V / 2.345V) the open circuit voltage at 10% SOC.

一方、例えば、SOCが10%であるときに比Pが0.46、SOCが40%であるときに比Pが0.92である。この場合、SOC40%における比P値は、SOC10%における比P値の2倍(200%)(0.92/0.46)である。   On the other hand, for example, the ratio P is 0.46 when the SOC is 10%, and the ratio P is 0.92 when the SOC is 40%. In this case, the ratio P value at 40% SOC is twice (200%) (0.92 / 0.46) the ratio P value at 10% SOC.

これをSOC推定精度の観点からみると、OCV/SOC特性を利用すると、開回路電圧を使用した場合には0.008V(ΔOCV=2.353−2.345)、即ち0.34%の誤差でSOC30%の推定誤差(ΔSOC)に繋がるのに対し、比P値を利用した場合には比P値として2倍異なった場合(即ち100%の誤差があって)にSOC30%の誤差(ΔSOC)が生じることとなる。   From the viewpoint of SOC estimation accuracy, using the OCV / SOC characteristic, when an open circuit voltage is used, 0.008V (ΔOCV = 2.353-2.345), that is, an error of 0.34% Leads to an estimated error of 30% SOC (ΔSOC), but when the ratio P value is used, if the ratio P value is twice different (that is, there is a 100% error), the SOC 30% error (ΔSOC) ) Will occur.

即ち、同じSOC30%の誤差を生じるための開回路電圧誤差(ΔOCV)は0.34%であり、同じ誤差を生じるための比P値の誤差(ΔP)は100%の略1/300の値である。このように、開回路電圧ではなく比P値を採用して充電状態を求めることによって、充電状態推定誤差が約1/300と大幅に改善される。   That is, the open circuit voltage error (ΔOCV) for generating the same SOC 30% error is 0.34%, and the ratio P value error (ΔP) for generating the same error is a value of about 1/300 of 100%. It is. As described above, the charging state estimation error is greatly improved to about 1/300 by using the ratio P value instead of the open circuit voltage to obtain the charging state.

上記のように、本実施形態に係る二次電池装置および車両によれば、充電抵抗Rcと放電抵抗Rdとを算出し、さらにそれらの比P(Rc/Rd)によって充電状態を求めることによって、高精度に充電状態を推定する二次電池装置および車両を提供することができる。   As described above, according to the secondary battery device and the vehicle according to the present embodiment, by calculating the charging resistance Rc and the discharging resistance Rd and further obtaining the charging state by the ratio P (Rc / Rd), A secondary battery device and a vehicle that estimate the state of charge with high accuracy can be provided.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

BT…二次電池セル、Rc…充電抵抗、Rd…放電抵抗、P(Rc/Rd)…比、T1…第1周期、T2…第2周期、T3…第3周期、Vave…電圧平均値、Iave…電流平均値、ΔVave…差分電圧値、ΔIave…差分電流値、Tave…温度平均値、1…組電池、2…電圧測定回路(電圧測定手段)、3…電流測定部(電流測定手段)、4…温度測定部(温度検出手段)5…制御部、6…記憶部、7…通信インタフェース、51…SOC推定部、61…テーブル、300…電池管理装置、400…組電池モジュール、500…運転制御部、600…モータ、700…上位制御回路、1000…シャーシ。   BT ... secondary battery cell, Rc ... charging resistance, Rd ... discharge resistance, P (Rc / Rd) ... ratio, T1 ... first cycle, T2 ... second cycle, T3 ... third cycle, Vave ... voltage average value, Iave ... current average value, ΔVave ... differential voltage value, ΔIave ... differential current value, Tave ... temperature average value, 1 ... assembled battery, 2 ... voltage measurement circuit (voltage measurement means), 3 ... current measurement section (current measurement means) DESCRIPTION OF SYMBOLS 4 ... Temperature measurement part (temperature detection means) 5 ... Control part, 6 ... Memory | storage part, 7 ... Communication interface, 51 ... SOC estimation part, 61 ... Table, 300 ... Battery management apparatus, 400 ... Assembly battery module, 500 ... Operation control unit, 600: motor, 700: host control circuit, 1000: chassis.

Claims (4)

複数の二次電池セルを含む組電池と、
前記組電池に流れる電流を測定する電流測定手段と、
前記複数の二次電池セルそれぞれの電圧を測定する電圧測定手段と、
前記二次電池セルの充電状態に対する充電抵抗と放電抵抗との比の値のテーブルが記録された記憶部と、
前記電流測定手段により測定された電流値および前記電圧測定手段により測定された電圧値から、前記充電抵抗と前記放電抵抗との比を算出し、前記テーブルを用いて充電状態を求めるSOC推定部と、を備えることを特徴とする二次電池装置。
An assembled battery including a plurality of secondary battery cells;
Current measuring means for measuring a current flowing through the assembled battery;
Voltage measuring means for measuring the voltage of each of the plurality of secondary battery cells;
A storage unit in which a table of values of a ratio of charging resistance and discharging resistance with respect to a charging state of the secondary battery cell is recorded;
An SOC estimation unit for calculating a ratio between the charging resistance and the discharging resistance from the current value measured by the current measuring unit and the voltage value measured by the voltage measuring unit, and obtaining a charging state using the table; A secondary battery device comprising:
前記組電池近傍の温度を測定する温度測定手段をさらに備え、
前記記憶部には、温度範囲ごとに設けられた複数の前記テーブルが記録され、
前記SOC推定部は、前記温度測定手段により測定された温度が含まれる温度範囲に対応する前記テーブルを用いて充電状態を求めるように構成されたことを特徴とする請求項1記載の二次電池装置。
Temperature measuring means for measuring the temperature in the vicinity of the assembled battery,
In the storage unit, a plurality of the tables provided for each temperature range is recorded,
The secondary battery according to claim 1, wherein the SOC estimation unit is configured to obtain a state of charge using the table corresponding to a temperature range including the temperature measured by the temperature measurement unit. apparatus.
前記SOC推定部は、第1周期において、前記電流測定手段により測定された電流値と前記電圧測定手段により測定された電圧値との組データを前記記憶部に記憶させ、
複数の前記第1周期を含む第2周期において、複数の前記第1周期で記憶された電流値を平均した平均電流値および電圧値を平均した平均電圧値を算出し、前記平均電流値と前記平均電圧値との組データを前記記憶部に記憶させ、平均電圧値から直近の第2周期に求めた平均電圧値を減算した差分電圧値と平均電流値から直近の第2周期に求めた平均電流値を減算した差分電流値との組データを算出し、
複数の前記第2周期を含む第3周期において、前記差分電圧値と前記差分電流値との組データの充電時のデータの回帰直線の傾きから充電抵抗を求め、前記差分電圧値と前記差分電流値との組データの放電時のデータの回帰直線の傾きから放電抵抗を求め、前記充電抵抗と前記放電抵抗との比を用いて前記テーブルより前記二次電池セルの充電状態を求めるように構成されたことを特徴とする請求項1記載の二次電池装置。
The SOC estimation unit causes the storage unit to store set data of the current value measured by the current measurement unit and the voltage value measured by the voltage measurement unit in the first period,
In a second cycle including a plurality of the first cycles, an average current value obtained by averaging the current values stored in the plurality of first cycles and an average voltage value obtained by averaging the voltage values are calculated, and the average current value and the Average data obtained in the second cycle nearest to the difference voltage value and average current value obtained by subtracting the average voltage value obtained from the average voltage value in the latest second cycle from the average voltage value stored in the storage unit. Calculate the pair data with the difference current value obtained by subtracting the current value,
In a third cycle including a plurality of the second cycles, a charging resistance is obtained from an inclination of a regression line of data when charging the set data of the differential voltage value and the differential current value, and the differential voltage value and the differential current are obtained. The discharge resistance is obtained from the slope of the regression line of the data at the time of discharging the set data with the value, and the charge state of the secondary battery cell is obtained from the table using the ratio of the charge resistance and the discharge resistance. The secondary battery device according to claim 1, wherein
請求項1乃至請求項3のいずれか1項記載の二次電池装置を備えた車両。   A vehicle comprising the secondary battery device according to any one of claims 1 to 3.
JP2010163346A 2010-07-20 2010-07-20 Secondary battery apparatus and vehicle Withdrawn JP2012026771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010163346A JP2012026771A (en) 2010-07-20 2010-07-20 Secondary battery apparatus and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010163346A JP2012026771A (en) 2010-07-20 2010-07-20 Secondary battery apparatus and vehicle

Publications (1)

Publication Number Publication Date
JP2012026771A true JP2012026771A (en) 2012-02-09

Family

ID=45779894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010163346A Withdrawn JP2012026771A (en) 2010-07-20 2010-07-20 Secondary battery apparatus and vehicle

Country Status (1)

Country Link
JP (1) JP2012026771A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104239A (en) * 2010-11-05 2012-05-31 Toyota Motor Corp Lithium ion battery electricity storage amount estimation method, lithium ion battery electricity storage amount estimation program, lithium ion battery electricity storage amount correction method, and lithium ion battery electricity storage amount correction program
CN102623764A (en) * 2012-02-10 2012-08-01 上海索锂科技有限公司 Power lithium battery with functions of built-in SOC monitoring and communicating
JP2013246088A (en) * 2012-05-28 2013-12-09 Toyota Industries Corp Method and device for estimating internal resistance of battery
CN104122504A (en) * 2014-08-11 2014-10-29 电子科技大学 Method for estimating SOC of battery
JP2014232507A (en) * 2013-05-30 2014-12-11 日産自動車株式会社 Arithmetic unit
JP2017516080A (en) * 2014-03-25 2017-06-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Method for determining internal resistance of battery and electrical battery sensor
KR102029776B1 (en) * 2018-04-27 2019-10-08 주식회사 민테크 Battery diagnosis method
JP2020101470A (en) * 2018-12-24 2020-07-02 株式会社デンソー Battery device
US10955485B2 (en) 2015-08-25 2021-03-23 Oxis Energy Limited Battery sensor
US10988047B2 (en) * 2018-09-13 2021-04-27 Bayerische Motoren Werke Aktiengesellschaft Method for determining a capacity of a battery cell, evaluation device, monitoring apparatus, high-voltage battery and motor vehicle
JP2021071321A (en) * 2019-10-29 2021-05-06 株式会社Gsユアサ Soc estimating device, power storage device, and soc estimating method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104239A (en) * 2010-11-05 2012-05-31 Toyota Motor Corp Lithium ion battery electricity storage amount estimation method, lithium ion battery electricity storage amount estimation program, lithium ion battery electricity storage amount correction method, and lithium ion battery electricity storage amount correction program
CN102623764A (en) * 2012-02-10 2012-08-01 上海索锂科技有限公司 Power lithium battery with functions of built-in SOC monitoring and communicating
JP2013246088A (en) * 2012-05-28 2013-12-09 Toyota Industries Corp Method and device for estimating internal resistance of battery
JP2014232507A (en) * 2013-05-30 2014-12-11 日産自動車株式会社 Arithmetic unit
US10386417B2 (en) 2014-03-25 2019-08-20 Robert Bosch Gmbh Electronic battery sensor and method for determining an internal resistance of a battery
JP2017516080A (en) * 2014-03-25 2017-06-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Method for determining internal resistance of battery and electrical battery sensor
CN104122504A (en) * 2014-08-11 2014-10-29 电子科技大学 Method for estimating SOC of battery
US10955485B2 (en) 2015-08-25 2021-03-23 Oxis Energy Limited Battery sensor
KR102029776B1 (en) * 2018-04-27 2019-10-08 주식회사 민테크 Battery diagnosis method
WO2019209033A1 (en) * 2018-04-27 2019-10-31 주식회사 민테크 Battery diagnostic method
US10988047B2 (en) * 2018-09-13 2021-04-27 Bayerische Motoren Werke Aktiengesellschaft Method for determining a capacity of a battery cell, evaluation device, monitoring apparatus, high-voltage battery and motor vehicle
JP2020101470A (en) * 2018-12-24 2020-07-02 株式会社デンソー Battery device
JP7115294B2 (en) 2018-12-24 2022-08-09 株式会社デンソー battery device
JP2021071321A (en) * 2019-10-29 2021-05-06 株式会社Gsユアサ Soc estimating device, power storage device, and soc estimating method

Similar Documents

Publication Publication Date Title
JP2012026771A (en) Secondary battery apparatus and vehicle
CN110914696B (en) Method and system for estimating battery open cell voltage, state of charge, and state of health during operation of a battery
JP6823162B2 (en) Battery management device and method for calibrating the charge status of the battery
JP6496810B2 (en) Battery control device and electric vehicle system
JP6111275B2 (en) Battery control device
JP6101714B2 (en) Battery control device, battery system
US10845417B2 (en) Battery state estimation device, battery control device, battery system, battery state estimation method
JP2020508442A (en) Battery state of charge estimation apparatus and method
JP7014374B2 (en) Battery management device, battery management method and battery pack
JP2006112786A (en) Remaining capacity of battery detection method and electric power supply
JP2014228534A (en) Battery management system and method of driving the same
JP6844090B2 (en) How to estimate the parameters of the equivalent circuit model for the battery and the battery management system
JP7226723B2 (en) Battery management system, battery pack, electric vehicle and battery management method
JP7172013B2 (en) BATTERY MANAGEMENT DEVICE, BATTERY MANAGEMENT METHOD AND BATTERY PACK
JP7155486B2 (en) Battery management system, battery management method, battery pack and electric vehicle
JP6896965B2 (en) Equivalent circuit model parameter estimation method and battery management system for batteries
JP5851514B2 (en) Battery control device, secondary battery system
JP2018148720A (en) Battery control device and program
JP7062870B2 (en) Battery management device, battery management method and battery pack
KR20200025495A (en) Apparatus and method for estimating charging time of secondary battery
JP2016024170A (en) Battery control device
KR20210149760A (en) How to reset the battery&#39;s state of charge
JP2015052461A (en) Power storage system and charging rate estimation method
JP7468420B2 (en) Battery device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131001