WO2020017069A1 - Ship - Google Patents

Ship Download PDF

Info

Publication number
WO2020017069A1
WO2020017069A1 PCT/JP2018/039400 JP2018039400W WO2020017069A1 WO 2020017069 A1 WO2020017069 A1 WO 2020017069A1 JP 2018039400 W JP2018039400 W JP 2018039400W WO 2020017069 A1 WO2020017069 A1 WO 2020017069A1
Authority
WO
WIPO (PCT)
Prior art keywords
float
hull
main hull
main
ship
Prior art date
Application number
PCT/JP2018/039400
Other languages
French (fr)
Japanese (ja)
Inventor
信玄 武田
日向 泰彦
Original Assignee
三菱造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱造船株式会社 filed Critical 三菱造船株式会社
Priority to KR1020217001422A priority Critical patent/KR102484031B1/en
Priority to CN201880095645.4A priority patent/CN112424062B/en
Publication of WO2020017069A1 publication Critical patent/WO2020017069A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/12Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly
    • B63B1/125Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly comprising more than two hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/16Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
    • B63B1/24Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydrofoil type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B43/00Improving safety of vessels, e.g. damage control, not otherwise provided for
    • B63B43/02Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking
    • B63B43/10Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving buoyancy
    • B63B43/14Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving buoyancy using outboard floating members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a ship.
  • Priority is claimed on Japanese Patent Application No. 2018-137047 filed on July 20, 2018, the content of which is incorporated herein by reference.
  • Patent Document 1 discloses a ship including a hull and floats provided on both sides of the hull and capable of moving up and down with respect to the hull.
  • This ship has a support rod below the float and fins provided at the lower end of the support rod.
  • the support rod and the fin are provided below the float. Therefore, when the depth of the float submerging in the water is increased in order to reduce the draft of the hull when the water depth is shallow, the fins provided below the float may interfere with the water bottom.
  • the ship disclosed in Patent Document 1 includes a support rod and fins on a float that can move up and down with respect to the hull. Therefore, it is necessary to provide a hydraulic system or an electric system for adjusting the amount of tilt of the fins between the hull and the float.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a ship capable of suppressing a hindrance to navigation even when the water depth is shallow, and simplifying the structure. .
  • a ship includes a main hull, a propulsion mechanism that generates a propulsion force for propelling the main hull, a support portion fixed to the main hull and extending downward, and the support portion.
  • a hydrofoil mechanism having a wing body provided at a lower portion of the main hull, a float provided independently of the main hull and the hydrofoil mechanism, and connecting the float and the main hull to the main hull.
  • a moving mechanism for relatively moving the float in the vertical direction.
  • the draft of the main hull changes.
  • Lowering the float relative to the main hull and increasing the amount of submergence of the float below the surface of the water increases the buoyancy generated by the float and reduces the draft of the main hull.
  • a part of the bottom of the ship can be prevented from interfering with the water bottom.
  • the draft of the main hull can be adjusted with respect to the quay, so that getting on and off the boat can be easily performed.
  • the hydrofoil mechanism is provided on the main hull. Accordingly, when the float is relatively moved in the vertical direction with respect to the main hull, the hydrofoil mechanism moves up and down together with the main hull. Therefore, even if the float is lowered with respect to the main hull in a shallow water area, the hydrofoil mechanism can be prevented from interfering with the water bottom. Further, the hydrofoil mechanism need not be moved up and down with respect to the main hull together with the float. Therefore, even when the hydraulic system or the electric system is provided in the hydrofoil mechanism, the structure can be prevented from becoming complicated.
  • the wing body according to the first aspect is provided so as to be submerged below the water surface, and generates a lift force for lifting the main hull during navigation by the propulsion generated by the propulsion mechanism. It may be.
  • the main hull floats due to the lift generated by the wings, and water resistance by the main hull can be suppressed.
  • by lowering the float with respect to the main hull in a shallow water area it is possible to effectively prevent the main hull and the hydrofoil mechanism from interfering with the water bottom.
  • the moving mechanism moves the float above the water surface. May be located.
  • the ship becomes a so-called hydrofoil ship if the float is positioned above the water surface when the main hull is floating due to the lift generated by the wings during navigation.
  • the resistance of water caused by the main hull and the float during navigation is reduced, so that comfortable navigation with higher speed and less shaking can be performed.
  • the float in the boat according to any one of the first to third aspects, may have a drainage amount. Since the float has the drainage amount, the drainage amount of the main hull is suppressed, and the size of the main hull can be reduced.
  • FIG. 1 is a side view showing the overall configuration of a ship according to the first embodiment of the present invention.
  • FIG. 2 is a front view of the ship in the first embodiment of the ship as viewed from the bow side.
  • FIG. 3 is a side view showing a state in which the float is lowered and the draft of the main hull is made shallow in the marine vessel according to the first embodiment of the marine vessel.
  • FIG. 4 is a front view showing a state in which the float is lowered and the draft of the main hull is made shallow in the marine vessel according to the first embodiment of the marine vessel.
  • the boat 1A of this embodiment includes a hull 10A, a propulsion mechanism 20, a hydrofoil mechanism 30, and a moving mechanism 50A.
  • the hull 10A includes a main hull 11A and a float 15A.
  • the main hull 11A has a hull main body 12 and a main body 13.
  • the hull main body 12 has a pair of side sides 12s on both sides in the ship width direction.
  • the hull main body 12 includes an upper structure 12t at an upper portion thereof.
  • the main body 13 is provided at the center of the hull main body 12 in the boat width direction.
  • the main body 13 protrudes downward from the lower surface 12 b of the hull main body 12.
  • the main body 13 is continuous in the bow direction of the main hull 11A.
  • the floats 15A are provided on both sides of the hull body 12 in the width direction of the boat. Each of the floats 15A is provided on the main body 13 at intervals on both sides in the boat width direction. Each float 15A is disposed below the lower surface 12b of the hull main body 12. The float 15A is continuous in the bow direction of the main hull 11A. Each float 15A is provided independently of the main hull 11A and the hydrofoil mechanism 30.
  • the float 15A has a hollow structure and a drainage amount. That is, the float 15A is responsible for a part of the total displacement of the hull 10A.
  • a float 15A is formed of, for example, FRP (fiber reinforced plastic) or the like.
  • the float 15A is vertically movable relative to the main hull 11A by a moving mechanism 50A described later.
  • a hull 10A exemplified in this embodiment forms a trihull (multihull) by including a main body portion 13 at a center portion in the ship width direction and floats 15A on both sides in the ship width direction.
  • the propulsion mechanism 20 generates a propulsion force for propelling the main hull 11A.
  • the propulsion mechanism 20 includes, for example, a screw 21.
  • the screw 21 is provided below the bottom 13b of the stern 13A of the main body 13.
  • the screw 21 is provided integrally with one end of the screw shaft 22.
  • the screw shaft 22 is connected to a main machine (not shown) provided in the main body 13.
  • the main engine (not shown) rotationally drives the screw shaft 22 and the screw 21 around their central axes.
  • the propulsion mechanism 20 generates a propulsion force of the main hull 11A (the hull 10A) by rotating the screw 21.
  • the hydrofoil mechanism 30 is provided on the main hull 11A.
  • the hydrofoil mechanism 30 is provided, for example, below the bottom 13 d of the bow 13 C of the main body 13.
  • the hydrofoil mechanism 30 includes a strut (support portion) 31 and a wing body 32.
  • the strut 31 is fixed to the main hull 11A and extends downward.
  • the strut 31 may be rotatable around a central axis extending in the vertical direction.
  • the wing body 32 is provided below the strut 31.
  • the inclination angle of the wing body 32 can be changed around a pivot (not shown) provided on the strut 31.
  • Such a hydrofoil mechanism 30 adjusts the attitude of the hull 10A by adjusting the direction and the inclination angle of the wing body 32.
  • the moving mechanism 50A connects each float 15A to the main hull 11A. As shown in FIGS. 3 and 4, the moving mechanism 50A moves each float 15A vertically relative to the main hull 11A.
  • the moving mechanism 50A includes, for example, a guide member (not shown) and a hydraulic cylinder 51.
  • a guide member (not shown) guides the float 15A so as to be relatively movable up and down with respect to the main hull 11A.
  • the hydraulic cylinders 51 are provided, for example, at a plurality of positions spaced apart in the bow direction in each float 15A. The base end of each hydraulic cylinder 51 is fixed to the lower surface 12b on both sides of the hull body 12 in the boat width direction.
  • the lower end of the hydraulic cylinder 51 is connected to the upper surface of the float 15A.
  • the hydraulic cylinder 51 is driven to expand and contract downward by hydraulic pressure.
  • FIG. 1 when the hydraulic cylinder 51 is contracted, the hydraulic cylinder 51 is housed in the hull body 12 or the float 15A.
  • FIGS. 3 and 4 when each hydraulic cylinder 51 is extended from a contracted state, the float 15A is guided by a guide rail (not shown) and is separated from the main hull 11A (main body 13). Move relative to the direction you want.
  • FIGS. 1 and 2 when each hydraulic cylinder 51 is contracted from the extended state, the float 15A relatively moves in a direction approaching the main hull 11A (main body 13).
  • This embodiment exemplifies a case where the lower end of the bottom surface 15b of the float 15A is positioned at the same height as the lower end of the bottom surface 11b of the main hull 11A when the hydraulic cylinder 51 is in the most contracted state. Further, in this embodiment, the case where the float 15A projects below the lower end of the bottom surface 11b of the main hull 11A with the hydraulic cylinder 51 extended most is illustrated.
  • each float 15A is arranged at a position close to or in contact with the lower surface 12b of the hull main body 12 of the main hull 11A. Accordingly, the boat 1A during normal navigation can stably navigate with the main body 13 and the floats 15A on both sides in the boat width direction landing thereon.
  • the marine vessel 1A extends the hydraulic cylinder 51 of the moving mechanism 50A, and relatively moves each of the floats 15A so as to be separated downward from the main hull 11A. Then, the amount of settlement of the floats 15A on both sides in the ship width direction below the water surface Wf increases. Thereby, the buoyancy generated in the float 15A increases. As a result, the main hull 11A rises with respect to the water surface Wf, and the draft of the main hull 11A becomes shallower.
  • the float 15A relatively moves up and down with respect to the main hull 11A by the moving mechanism 50A.
  • the amount of settlement of the float 15A below the water surface can be changed by the moving mechanism 50A, and the draft of the main hull 11A can be changed.
  • the buoyancy generated by the float 15A increases, and the draft of the main hull 11A becomes shallower. This can prevent a part of the ship 1A from interfering with the water bottom Wb when navigating in a shallow water area, entering a port, entering a dog, or the like.
  • the bottom surface of the main body portion 13, the screw 21 and the like can be raised above the water surface Wf to facilitate maintenance work.
  • the freeboard (height above the water surface) of the main hull 11A can be adjusted with respect to the quay 100 by vertically moving the float 15A with respect to the main hull 11A. Getting on and off to 1A can also be easily performed.
  • the hydrofoil mechanism 30 is provided on the main hull 11A.
  • the hydrofoil mechanism 30 moves up and down together with the main hull 11A. Therefore, even if the float 15A is lowered with respect to the main hull 11A and the sink amount of the float 15A below the water surface Wf is increased, it is possible to suppress the hydrofoil mechanism 30 from interfering with the water bottom Wb. Further, there is no need to move the hydrofoil mechanism 30 up and down with respect to the main hull 11A together with the float 15A.
  • the hydrofoil mechanism 30 is provided with a hydraulic system or an electric system for adjusting the direction and the inclination angle of the wing body 32, it is possible to suppress the structure from becoming complicated. As described above, in the ship 1A, even when the water depth is shallow, it is possible to suppress a trouble in navigation and to simplify the structure.
  • the float 15A has a drainage amount, the drainage amount of the main hull 11A can be suppressed, and the main hull 11A can be downsized.
  • the float 15A or a guide member or the like for guiding the float 15A in the up-down direction is, for example, FRP or the like. Can be formed. This makes it possible to reduce the weight of the boat 1A.
  • FIG. 5 is a front view showing the overall configuration of the marine vessel in a modification of the first embodiment of the marine vessel.
  • FIG. 6 is a front view showing a state in which the float is lowered and the draft of the main hull is made shallow in a boat according to a modification of the first embodiment of the boat.
  • a hull 10B of a boat 1B according to a modification of the first embodiment includes a main hull 11B and a float 15B.
  • the main hull 11B is provided with a concave portion 14 in which a float 15B is accommodated at the bottom of the ship on both sides in the ship width direction.
  • the floats 15B are provided on both sides of the main hull 11B in the ship width direction. Each float 15B has a bottom surface 15f that is continuous with the bottom surface 11f of the main hull 11B when housed in the concave portion 14.
  • the float 15B is vertically moved relative to the main hull 11B by a moving mechanism 50B including a hydraulic cylinder 52 (see FIG. 6) and the like. As shown in FIG. 5, the float 15B is housed in the recess 14 with the hydraulic cylinder 52 contracted. In this state, the bottom surface 15f of the float 15B is continuous with the bottom surface 11f of the main hull 11B, and forms the bottom surface 10b of the hull 10B constituting the monohull. As shown in FIG. 6, the float 15B projects below the bottom surface 11f of the main hull 11B with the hydraulic cylinder 52 extended.
  • the float 15B can be lowered with respect to the main hull 11B, and the draft of the main hull 11B can be reduced.
  • the bottom surface 11f of the main hull 11B and the like can be raised upward to facilitate maintenance work.
  • the draft of the main hull 11B can be adjusted with respect to the quay 100, and the getting on and off the boat 1B can be easily performed.
  • the ship 1B even when the water depth is shallow, it is possible to suppress a trouble in navigation and to simplify the structure.
  • a ship 1C is a hydrofoil ship, and the same parts as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.
  • FIG. 7 is a side view showing the overall configuration of a ship according to the second embodiment of the present invention.
  • FIG. 8 is a front view of the ship in the second embodiment of the ship as viewed from the bow side.
  • FIG. 9 is a front view showing a state in which the float is raised and the draft of the main hull is deepened in the boat according to the second embodiment of the boat.
  • FIG. 10 is a front view showing a state in which the float is lowered and the draft of the main hull is made shallow in the boat according to the second embodiment of the boat.
  • the boat 1C in this embodiment includes a hull 10C, a propulsion mechanism 60, a hydrofoil mechanism 70, and a moving mechanism 50C (see FIG. 10).
  • the hull 10C includes a main hull 11C and a float 15C.
  • the main hull 11C has a hull main body 17 and a main body 18.
  • the hull main body 17 has a pair of side sides 17s on both sides in the ship width direction.
  • the main body 18 is provided at the center in the boat width direction of the hull main body 17.
  • the main body 18 protrudes downward from the lower surface 17 b of the hull main body 17.
  • the main body 18 is continuous in the bow direction of the main hull 11C.
  • the floats 15C are provided on both sides of the hull body 17 in the boat width direction. Each of the floats 15C is provided at intervals on both sides in the boat width direction with respect to the main body portion 18. Each float 15C is arranged below the lower surface 17b of the hull main body 17. The float 15C is continuous in the bow direction of the main hull 11C. Each float 15C is provided independently of the main hull 11C and the hydrofoil mechanism 70. Such a float 15C can be formed by, for example, FRP or the like.
  • the float 15C has a hollow structure and a drainage amount. That is, the float 15C forms a part of the displacement of the hull 10C.
  • the float 15C is vertically movable relative to the main hull 11C by a moving mechanism 50C described later.
  • the hull 10C includes a main body portion 18 at the center in the ship width direction and floats 15C on both sides in the ship width direction, and constitutes a trihull (multihull).
  • the propulsion mechanism 60 generates a propulsion force for propelling the main hull 11C (the hull 10C).
  • the propulsion mechanism 60 includes, for example, a water jet 61.
  • the water jet 61 is provided on the stern 18 ⁇ / b> C of the main body 18.
  • the water jet 61 has an injection nozzle driven by an engine (not shown).
  • the water jet 61 causes an engine driven by burning fuel to inject water sucked from a suction port provided in a rear hydrofoil 72 described later from an injection nozzle.
  • the propulsion mechanism 60 propells the hull 10C at high speed by injecting water backward from the injection nozzle.
  • the hydrofoil mechanism 70 is provided on the main hull 11C.
  • the hydrofoil mechanism 70 includes a front hydrofoil 71 and a rear hydrofoil 72.
  • the front hydrofoil 71 is provided below the bow 11a of the main hull 11C.
  • the front hydrofoil 71 includes struts (supporting portions) 73 and a wing 74.
  • the strut 73 extends downward.
  • the upper end of the strut 73 is fixed to the main hull 11C.
  • the wing 74 is provided below the strut 73.
  • the wing 74 is provided so as to be submerged below the water surface Wf, and generates a lift for floating the main hull 11 ⁇ / b> C during navigation by the propulsion generated by the propulsion mechanism 60.
  • the rear hydrofoil 72 is provided below the stern 11r of the main hull 11C.
  • the rear hydrofoil 72 includes a strut (support) 75 and a wing body 76.
  • the strut 75 has an upper end fixed to the main hull 11C and extends downward.
  • the wing body 76 is provided below the strut 75.
  • the wing body 76 has, for example, twice or more the length of the wing body 74 of the front hydrofoil 71 in the boat width direction.
  • the wing body 76 is provided so as to be submerged below the water surface Wf, and generates a lift force for floating the main hull 11C during navigation by the propulsion generated by the propulsion mechanism 60.
  • the moving mechanism 50C connects each float 15C to the main hull 11C.
  • the moving mechanism 50C vertically moves each float 15C relative to the main hull 11C.
  • the moving mechanism 50C includes, for example, a hydraulic cylinder 53.
  • the hydraulic cylinders 53 are provided, for example, at a plurality of locations spaced apart in the bow-stern direction in each float 15C.
  • the base end of each hydraulic cylinder 53 is fixed to lower surfaces 17 b on both sides in the width direction of the hull main body 17.
  • the lower end of the hydraulic cylinder 53 is connected to the upper surface of the float 15C.
  • the hydraulic cylinder 53 is driven to expand and contract downward by hydraulic pressure.
  • the hydraulic cylinder 53 is housed in the hull body 17 or the float 15C when the hydraulic cylinder 53 is in the most contracted state. As shown in FIG. 10, when each hydraulic cylinder 53 extends downward, the float 15C relatively moves downward so as to be separated from the main hull 11C (main body 18). When each hydraulic cylinder 53 is contracted, the float 15C relatively moves upward so as to approach the main hull 11C (main body 18).
  • the lower end of the bottom surface 15b of the float 15C is located at the same height as the lower end of the bottom surface 11b of the main hull 11C when the hydraulic cylinder 53 is in the most contracted state.
  • the float 15C projects below the bottom surface 11b of the main hull 11C.
  • These floats 15C are arranged above both ends of the wing body 76 in the ship width direction. Therefore, the float 15 ⁇ / b> C moves up and down between the wing body 76 of the rear hydrofoil 72 and both ends of the hull main body 12 in the boat width direction.
  • such a ship 1C contracts the hydraulic cylinders 53 (see FIG. 10) of the moving mechanism 50C when traveling at low speed, and separates each float 15C from the lower surface 17b of the hull body 17 of the main hull 11C. Place near or in contact with
  • the boat 1C during normal navigation can stably navigate with the main body portion 18 and the floats 15C on both sides in the boat width direction landing thereon.
  • the marine vessel 1C when the water depth is shallow, the marine vessel 1C extends the hydraulic cylinder 53 of the moving mechanism 50C, and relatively moves each float 15C downward with respect to the main hull 11C. Then, the amount of settlement of the floats 15C on both sides in the ship width direction below the water surface Wf increases. Thereby, the buoyancy generated in the float 15C increases. As a result, the main hull 11C rises with respect to the water surface Wf, and the draft of the main hull 11C becomes shallower. In this state, if the water jet 61 of the propulsion mechanism 60 cannot suck up water, the water jet 61 may be equipped with a retractable thruster.
  • the float 15C moves relatively up and down with respect to the main hull 11C by the moving mechanism 50C.
  • the draft of the main hull 11C changes.
  • the buoyancy generated at the float 15C increases, and the draft of the main hull 11C becomes shallower.
  • the bottom surface of the main body portion 18, the water jet 61, and the like can be raised above the water surface Wf to facilitate maintenance work.
  • the freeboard (height above the water surface) of the main hull 11C is adjusted with respect to the quay 100, and getting on and off the boat 1C. Can be easily performed.
  • the hydrofoil mechanism 70 of the second embodiment is provided on the main hull 11C.
  • the hydrofoil mechanism 70 moves up and down together with the main hull 11C. Therefore, even if the float 15C is lowered with respect to the main hull 11C and the amount of submersion of the float 15C below the water surface is increased, interference of the hydrofoil mechanism 70 with the water bottom Wb is suppressed. Further, it is not necessary to move the hydrofoil mechanism 70 up and down with respect to the main hull 11C together with the float 15C.
  • the hydrofoil mechanism 70 is provided with a hydraulic system or an electric system for adjusting the direction and the inclination angle of the wing body 32, the structure is prevented from becoming complicated. As described above, in the ship 1C, even when the water depth is shallow, it is possible to suppress a trouble in navigation and to simplify the structure.
  • the main hull 11C floats by the lift generated by the wings 74 and 76, and the resistance of water by the main hull 11C can be suppressed.
  • the main hull 11C in a shallow water area, by lowering the float 15C with respect to the main hull 11C, it is possible to effectively prevent the main hull 11C and the hydrofoil mechanism 70 from interfering with the water bottom Wb.
  • the moving mechanism 50C positions the float 15C above the water surface Wf. Thereby, the resistance of water caused by the main hull 11C and the float 15C during navigation is eliminated, and it is possible to perform comfortable navigation at high speed with little shaking.
  • the float 15C is configured to have a drainage amount, the drainage amount of the main hull 11C can be suppressed, and the main hull 11C can be downsized.
  • the float 15C and a guide member for guiding the float 15C in the vertical direction can be, for example, FRP or the like. Can be formed. Thereby, it is possible to reduce the weight of the ship 1C.
  • the present invention is not limited to the above-described embodiment, and includes various modifications of the above-described embodiment without departing from the spirit of the present invention. That is, the specific shape, configuration, and the like described in the embodiment are merely examples, and can be appropriately changed.
  • one float 15A to 15C is provided on each of both sides in the boat width direction, but the present invention is not limited to this.
  • a plurality of floats may be provided on both sides in the ship width direction. Further, a plurality of floats may be provided in the bow and stern direction.
  • a trihull is exemplified as a multihull, but a catamaran or a multihull having four or more hulls may be used.
  • the specific shapes and configurations of the hulls 10A to 10C can be changed as appropriate. Further, the types of the ships 1A to 1C are not limited at all.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Jib Cranes (AREA)
  • Cleaning Or Clearing Of The Surface Of Open Water (AREA)
  • Underground Or Underwater Handling Of Building Materials (AREA)

Abstract

A ship (1C) is provided with: a main ship body (11C); a propulsion mechanism for generating propulsive force for propelling the main ship body (11C); a hydrofoil mechanism (70) having struts (73, 75) which are affixed to the main ship body (11C) and which extend downward, and also having wing bodies (74, 76) provided to the lower portions of the struts (73, 75); floats (15C) provided independently of both the main ship body (11C) and the hydrofoil mechanism (70); and movement mechanisms (50C) for connecting the main ship body (11C) and the floats (15C) and vertically moving the floats (15C) relative to the main ship body (11C).

Description

船舶Ship
 この発明は、船舶に関する。
 本願は、2018年7月20日に日本に出願された特願2018-137047号について優先権を主張し、その内容をここに援用する。
The present invention relates to a ship.
Priority is claimed on Japanese Patent Application No. 2018-137047 filed on July 20, 2018, the content of which is incorporated herein by reference.
 特許文献1には、船体と、船体の両側に設けられ船体に対して昇降可能とされたフロートを備える船舶が開示されている。この船舶は、フロートの下方に、支持杆と、支持杆の下端に設けられたフィンとを備えている。このような構成の船舶は、フロートを昇降させることで、船体の水面に対する高さ位置を、船の停止時あるいは航行時を通じて常に一定に保持可能となっている。また、この船舶は、フィンの傾動量を調整することで、航行中の船体の浮力ならびに船体の動揺に対する微調整を行うことができる。 Patent Document 1 discloses a ship including a hull and floats provided on both sides of the hull and capable of moving up and down with respect to the hull. This ship has a support rod below the float and fins provided at the lower end of the support rod. By raising and lowering the float in such a configuration, the height position of the hull with respect to the water surface can be constantly maintained at all times when the ship is stopped or during navigation. Further, by adjusting the amount of tilting of the fins, this boat can make fine adjustments to the buoyancy of the hull and the sway of the hull during navigation.
特開平4-133893号公報JP-A-4-133893
 しかしながら、特許文献1に開示されたような構成では、フロートの下方に、支持杆及びフィンが設けられている。このため、水深が浅い場合に船体の喫水を浅くさせるため、フロートの水中への沈下量を増やすと、フロートの下方に設けられたフィンが水底に干渉してしまう場合がある。
 また、特許文献1の船舶は、船体に対して昇降可能なフロートに、支持杆及びフィンを備えている。そのため、フィンの傾動量等を調整するための油圧系統や電気系統を、船体とフロートとの間に設ける必要がある。フロートは、船体に対して昇降可能に設けられるため、油圧系統や電気系統は、フロートの昇降動作に対応できる構成とする必要がある。その結果、油圧系統や電気系統の構造が複雑となる。
 この発明は、上記事情に鑑みてなされたものであり、水深が浅い場合であっても航行に支障が生じるのを抑え、構造の簡易化を図ることができる船舶を提供することを目的とする。
However, in the configuration disclosed in Patent Literature 1, the support rod and the fin are provided below the float. Therefore, when the depth of the float submerging in the water is increased in order to reduce the draft of the hull when the water depth is shallow, the fins provided below the float may interfere with the water bottom.
In addition, the ship disclosed in Patent Document 1 includes a support rod and fins on a float that can move up and down with respect to the hull. Therefore, it is necessary to provide a hydraulic system or an electric system for adjusting the amount of tilt of the fins between the hull and the float. Since the float is provided so as to be able to move up and down with respect to the hull, it is necessary that the hydraulic system and the electric system have a configuration that can cope with the float moving operation. As a result, the structures of the hydraulic system and the electric system become complicated.
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a ship capable of suppressing a hindrance to navigation even when the water depth is shallow, and simplifying the structure. .
 この発明は、上記課題を解決するため、以下の手段を採用する。
 この発明の第一態様によれば、船舶は、主船体と、前記主船体を推進させる推進力を発生する推進機構と、前記主船体に固定されて下方に延びる支持部、及び、前記支持部の下部に設けられた翼体を有する水中翼機構と、前記主船体及び前記水中翼機構とは独立して設けられたフロートと、前記フロートと前記主船体とを接続するとともに、前記主船体に対して前記フロートを上下方向に相対移動させる移動機構と、を備える。
The present invention employs the following means in order to solve the above problems.
According to the first aspect of the present invention, a ship includes a main hull, a propulsion mechanism that generates a propulsion force for propelling the main hull, a support portion fixed to the main hull and extending downward, and the support portion. A hydrofoil mechanism having a wing body provided at a lower portion of the main hull, a float provided independently of the main hull and the hydrofoil mechanism, and connecting the float and the main hull to the main hull. A moving mechanism for relatively moving the float in the vertical direction.
 この第一態様では、移動機構により、主船体に対してフロートを上下方向に相対移動させて、フロートの水面下への沈下量を変化させると、主船体の喫水が変化する。主船体に対してフロートを下げ、フロートの水面下への沈下量を増大させると、フロートで発生する浮力が増し、主船体の喫水が浅くなる。これにより、水深が浅い水域でも、船舶の底部の一部が水底に干渉することを抑えることができる。また、フロートを主船体に対して上下動させることで、主船体の喫水を岸壁に対して調整し、船舶への乗降を容易に行うこともできる。
 また、水中翼機構は、主船体に設けられている。これにより、主船体に対してフロートを上下方向に相対移動させると、水中翼機構は主船体とともに上下動する。したがって、水深が浅い水域で主船体に対してフロートを下げても、水中翼機構が水底に干渉することが抑えられる。さらに、水中翼機構は、フロートとともに主船体に対して上下動させる必要が無い。そのため、水中翼機構に油圧系統や電気系統を備える場合であっても、構造が複雑化することを抑えられる。
In the first aspect, when the float is moved relative to the main hull in the vertical direction with respect to the main hull, and the float sinks below the water surface, the draft of the main hull changes. Lowering the float relative to the main hull and increasing the amount of submergence of the float below the surface of the water increases the buoyancy generated by the float and reduces the draft of the main hull. Thereby, even in a shallow water area, a part of the bottom of the ship can be prevented from interfering with the water bottom. In addition, by moving the float up and down with respect to the main hull, the draft of the main hull can be adjusted with respect to the quay, so that getting on and off the boat can be easily performed.
The hydrofoil mechanism is provided on the main hull. Accordingly, when the float is relatively moved in the vertical direction with respect to the main hull, the hydrofoil mechanism moves up and down together with the main hull. Therefore, even if the float is lowered with respect to the main hull in a shallow water area, the hydrofoil mechanism can be prevented from interfering with the water bottom. Further, the hydrofoil mechanism need not be moved up and down with respect to the main hull together with the float. Therefore, even when the hydraulic system or the electric system is provided in the hydrofoil mechanism, the structure can be prevented from becoming complicated.
 この発明の第二態様によれば、第一態様に係る翼体は、水面下に没して設けられ、前記推進機構で発生する推進力による航行時に前記主船体を浮上させる揚力を発生するようにしてもよい。
 このように構成することで、推進機構で発生する推進力によって航行を行うと、翼体で発生する揚力によって、主船体が浮上し、主船体による水の抵抗を抑えることができる。このような船舶において、水深が浅い水域で主船体に対してフロートを下降させることで、主船体及び水中翼機構が水底に干渉することを有効に抑える。
According to the second aspect of the present invention, the wing body according to the first aspect is provided so as to be submerged below the water surface, and generates a lift force for lifting the main hull during navigation by the propulsion generated by the propulsion mechanism. It may be.
With this configuration, when navigation is performed by the propulsion generated by the propulsion mechanism, the main hull floats due to the lift generated by the wings, and water resistance by the main hull can be suppressed. In such a ship, by lowering the float with respect to the main hull in a shallow water area, it is possible to effectively prevent the main hull and the hydrofoil mechanism from interfering with the water bottom.
 この発明の第三態様によれば、第二態様に係る船舶において、前記翼体が前記主船体を浮上させる前記揚力を発生しているときに、前記移動機構は、前記フロートを水面よりも上方に位置させるようにしてもよい。
 このように構成することで、航行時に翼体で発生する揚力によって主船体が浮上しているときに、フロートを水面よりも上方に位置させれば、船舶は、いわゆる水中翼船となる。これにより、航行時における主船体及びフロートによる水の抵抗が小さくなり、より高速度で揺れの少ない快適な航行が行える。
According to the third aspect of the present invention, in the ship according to the second aspect, when the wing body is generating the lift force for floating the main hull, the moving mechanism moves the float above the water surface. May be located.
With this configuration, the ship becomes a so-called hydrofoil ship if the float is positioned above the water surface when the main hull is floating due to the lift generated by the wings during navigation. As a result, the resistance of water caused by the main hull and the float during navigation is reduced, so that comfortable navigation with higher speed and less shaking can be performed.
 この発明の第四態様によれば、第一から第三態様の何れか一つの態様に係る船舶において、前記フロートは排水量を有するようにしてもよい。
 このようにフロートが排水量を有することで、主船体の排水量を抑え、主船体の小型化を図ることが可能となる。
According to a fourth aspect of the present invention, in the boat according to any one of the first to third aspects, the float may have a drainage amount.
Since the float has the drainage amount, the drainage amount of the main hull is suppressed, and the size of the main hull can be reduced.
 上記船舶によれば、水深が浅い場合であっても航行に支障が生じるのを抑え、構造の簡易化を図ることが可能となる。 船舶 According to the above-mentioned ship, even when the water depth is shallow, it is possible to suppress a trouble in navigation and to simplify the structure.
この発明の第一実施形態における船舶の全体構成を示す側面図である。It is a side view showing the whole ship composition in a first embodiment of the present invention. 上記船舶の第一実施形態における船舶を船首側から見た前面図である。It is the front view which looked at the ship in the first embodiment of the above-mentioned ship from the bow side. 上記船舶の第一実施形態における船舶において、フロートを下げ、主船体部の喫水を浅くした状態を示す側面図である。It is a side view showing the state where the float was lowered and the draft of the main hull part was made shallow in the ship in a first embodiment of the above-mentioned ship. 上記船舶の第一実施形態における船舶において、フロートを下げ、主船体部の喫水を浅くした状態を示す前面図である。It is a front view showing a state where a float was lowered and a draft of a main hull part was made shallow in a ship in a first embodiment of the above-mentioned ship. 上記船舶の第一実施形態の変形例における船舶の全体構成を示す前面図である。It is a front view which shows the whole structure of the ship in the modification of 1st embodiment of the said ship. 上記船舶の第一実施形態の変形例における船舶において、フロートを下げ、主船体部の喫水を浅くした状態を示す前面図である。It is a front view showing the state where the float was lowered and the draft of the main hull part was made shallow in the vessel in a modification of a first embodiment of the above-mentioned vessel. この発明の第二実施形態における船舶の全体構成を示す側面図である。It is a side view showing the whole ship composition in a second embodiment of this invention. 上記船舶の第二実施形態における船舶を船首側から見た前面図である。It is the front view which looked at the ship in the second embodiment of the above-mentioned ship from the bow side. 上記船舶の第二実施形態における船舶において、フロートを上げ、主船体部の喫水を深くした状態を示す前面図である。It is a front view showing the state where the float was raised and the draft of the main hull part was made deep in the vessel in a second embodiment of the above-mentioned vessel. 上記船舶の第二実施形態における船舶において、フロートを下げ、主船体部の喫水を浅くした状態を示す前面図である。It is a front view showing the state where the float was lowered and the draft of the main hull part was made shallow in the ship in a second embodiment of the above-mentioned ship.
 以下、この発明の一実施形態における船舶を図面に基づき説明する。
(第一実施形態)
 図1は、この発明の第一実施形態における船舶の全体構成を示す側面図である。図2は、上記船舶の第一実施形態における船舶を船首側から見た前面図である。図3は、上記船舶の第一実施形態における船舶において、フロートを下げ、主船体部の喫水を浅くした状態を示す側面図である。図4は、上記船舶の第一実施形態における船舶において、フロートを下げ、主船体部の喫水を浅くした状態を示す前面図である。
Hereinafter, a ship according to an embodiment of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a side view showing the overall configuration of a ship according to the first embodiment of the present invention. FIG. 2 is a front view of the ship in the first embodiment of the ship as viewed from the bow side. FIG. 3 is a side view showing a state in which the float is lowered and the draft of the main hull is made shallow in the marine vessel according to the first embodiment of the marine vessel. FIG. 4 is a front view showing a state in which the float is lowered and the draft of the main hull is made shallow in the marine vessel according to the first embodiment of the marine vessel.
 図1、図2に示すように、この実施形態の船舶1Aは、船体10Aと、推進機構20と、水中翼機構30と、移動機構50Aと、を備えている。
 船体10Aは、主船体11Aと、フロート15Aと、を備えている。
 主船体11Aは、船体本体12と、主胴部13と、を有する。船体本体12は、船幅方向両側に一対の舷側12sを有する。船体本体12は、その上部に上部構造12tを備える。主胴部13は、船体本体12の船幅方向中央部に設けられている。主胴部13は、船体本体12の下面12bから下方に突出している。主胴部13は、主船体11Aの船首尾方向に連続している。
As shown in FIGS. 1 and 2, the boat 1A of this embodiment includes a hull 10A, a propulsion mechanism 20, a hydrofoil mechanism 30, and a moving mechanism 50A.
The hull 10A includes a main hull 11A and a float 15A.
The main hull 11A has a hull main body 12 and a main body 13. The hull main body 12 has a pair of side sides 12s on both sides in the ship width direction. The hull main body 12 includes an upper structure 12t at an upper portion thereof. The main body 13 is provided at the center of the hull main body 12 in the boat width direction. The main body 13 protrudes downward from the lower surface 12 b of the hull main body 12. The main body 13 is continuous in the bow direction of the main hull 11A.
 フロート15Aは、船体本体12の船幅方向両側にそれぞれ設けられている。各フロート15Aは、主胴部13に対し、船幅方向両側に間隔をあけて設けられている。各フロート15Aは、船体本体12の下面12bの下方に配置されている。フロート15Aは、主船体11Aの船首尾方向に連続している。各フロート15Aは、主船体11A及び水中翼機構30とは独立して設けられている。 The floats 15A are provided on both sides of the hull body 12 in the width direction of the boat. Each of the floats 15A is provided on the main body 13 at intervals on both sides in the boat width direction. Each float 15A is disposed below the lower surface 12b of the hull main body 12. The float 15A is continuous in the bow direction of the main hull 11A. Each float 15A is provided independently of the main hull 11A and the hydrofoil mechanism 30.
 フロート15Aは、中空構造で、排水量を有している。すなわち、フロート15Aは、船体10Aの総排水量の一部を担っている。このようなフロート15Aは、例えば、FRP(繊維強化プラスチック)等から形成される。フロート15Aは、後述する移動機構50Aにより、主船体11Aに対して上下方向に相対移動可能である。
 この実施形態で例示する船体10Aは、船幅方向中央部の主胴部13と、船幅方向両側のフロート15Aとを備えることで三胴船(多胴船)を構成している。
The float 15A has a hollow structure and a drainage amount. That is, the float 15A is responsible for a part of the total displacement of the hull 10A. Such a float 15A is formed of, for example, FRP (fiber reinforced plastic) or the like. The float 15A is vertically movable relative to the main hull 11A by a moving mechanism 50A described later.
A hull 10A exemplified in this embodiment forms a trihull (multihull) by including a main body portion 13 at a center portion in the ship width direction and floats 15A on both sides in the ship width direction.
 推進機構20は、主船体11Aを推進させる推進力を発生する。推進機構20は、例えば、スクリュー21を備える。スクリュー21は、主胴部13の船尾部13Aの船底13bの下方に設けられている。スクリュー21は、スクリュー軸22の一端に一体に設けられている。スクリュー軸22は、主胴部13内に設けられた主機(図示無し)に接続されている。主機(図示無し)は、スクリュー軸22及びスクリュー21を、その中心軸回りに回転駆動する。推進機構20は、スクリュー21を回転させることで、主船体11A(船体10A)の推進力を発生する。 The propulsion mechanism 20 generates a propulsion force for propelling the main hull 11A. The propulsion mechanism 20 includes, for example, a screw 21. The screw 21 is provided below the bottom 13b of the stern 13A of the main body 13. The screw 21 is provided integrally with one end of the screw shaft 22. The screw shaft 22 is connected to a main machine (not shown) provided in the main body 13. The main engine (not shown) rotationally drives the screw shaft 22 and the screw 21 around their central axes. The propulsion mechanism 20 generates a propulsion force of the main hull 11A (the hull 10A) by rotating the screw 21.
 水中翼機構30は、主船体11Aに設けられている。水中翼機構30は、例えば、主胴部13の船首部13Cの船底13dの下方に設けられている。水中翼機構30は、ストラット(支持部)31と、翼体32と、を備えている。ストラット31は、主船体11Aに固定されて下方に延びている。ストラット31は、上下方向に延びる中心軸回りに回動可能とされていてもよい。翼体32は、ストラット31の下部に設けられている。翼体32は、ストラット31に設けられたピボット(図示無し)回りに、傾斜角度が変更可能となっている。このような水中翼機構30は、翼体32の向きや傾斜角度を調整することで、船体10Aの姿勢を調整する。 The hydrofoil mechanism 30 is provided on the main hull 11A. The hydrofoil mechanism 30 is provided, for example, below the bottom 13 d of the bow 13 C of the main body 13. The hydrofoil mechanism 30 includes a strut (support portion) 31 and a wing body 32. The strut 31 is fixed to the main hull 11A and extends downward. The strut 31 may be rotatable around a central axis extending in the vertical direction. The wing body 32 is provided below the strut 31. The inclination angle of the wing body 32 can be changed around a pivot (not shown) provided on the strut 31. Such a hydrofoil mechanism 30 adjusts the attitude of the hull 10A by adjusting the direction and the inclination angle of the wing body 32.
 移動機構50Aは、各フロート15Aと主船体11Aとを接続している。図3、図4に示すように、移動機構50Aは、各フロート15Aを、主船体11Aに対して上下方向に相対移動させる。移動機構50Aは、例えば、ガイド部材(図示無し)と、油圧シリンダ51と、を備えている。ガイド部材(図示無し)は、フロート15Aを、主船体11Aに対して上下方向に相対移動可能に案内する。油圧シリンダ51は、例えば、各フロート15Aにおいて、船首尾方向に間隔をあけた複数個所に設けられる。各油圧シリンダ51の基端部は、船体本体12の船幅方向両側の下面12bにそれぞれ固定されている。油圧シリンダ51の下端は、フロート15Aの上面に連結されている。油圧シリンダ51は、油圧により、下方に向かって伸縮駆動される。図1に示すように、油圧シリンダ51を縮めた状態では、油圧シリンダ51は、船体本体12又はフロート15A内に収容されている。図3、図4に示すように、各油圧シリンダ51を縮んだ状態から伸ばすと、フロート15Aが、ガイドレール(図示無し)に案内されて、主船体11A(主胴部13)に対して離間する方向に相対移動する。図1、図2に示すように、各油圧シリンダ51を伸びた状態から縮めると、フロート15Aが主船体11A(主胴部13)に対して近づく方向に相対移動する。
 この実施形態では、油圧シリンダ51が最も縮んだ状態で、フロート15Aの底面15bの下端は、主船体11Aの底面11bの下端と、同等の高さに位置する場合を例示している。また、この実施形態では、油圧シリンダ51が最も伸びた状態で、フロート15Aは、主船体11Aの底面11bの下端よりも下方に突出する場合を例示している。
The moving mechanism 50A connects each float 15A to the main hull 11A. As shown in FIGS. 3 and 4, the moving mechanism 50A moves each float 15A vertically relative to the main hull 11A. The moving mechanism 50A includes, for example, a guide member (not shown) and a hydraulic cylinder 51. A guide member (not shown) guides the float 15A so as to be relatively movable up and down with respect to the main hull 11A. The hydraulic cylinders 51 are provided, for example, at a plurality of positions spaced apart in the bow direction in each float 15A. The base end of each hydraulic cylinder 51 is fixed to the lower surface 12b on both sides of the hull body 12 in the boat width direction. The lower end of the hydraulic cylinder 51 is connected to the upper surface of the float 15A. The hydraulic cylinder 51 is driven to expand and contract downward by hydraulic pressure. As shown in FIG. 1, when the hydraulic cylinder 51 is contracted, the hydraulic cylinder 51 is housed in the hull body 12 or the float 15A. As shown in FIGS. 3 and 4, when each hydraulic cylinder 51 is extended from a contracted state, the float 15A is guided by a guide rail (not shown) and is separated from the main hull 11A (main body 13). Move relative to the direction you want. As shown in FIGS. 1 and 2, when each hydraulic cylinder 51 is contracted from the extended state, the float 15A relatively moves in a direction approaching the main hull 11A (main body 13).
This embodiment exemplifies a case where the lower end of the bottom surface 15b of the float 15A is positioned at the same height as the lower end of the bottom surface 11b of the main hull 11A when the hydraulic cylinder 51 is in the most contracted state. Further, in this embodiment, the case where the float 15A projects below the lower end of the bottom surface 11b of the main hull 11A with the hydraulic cylinder 51 extended most is illustrated.
 このような船舶1Aは、通常航行時、移動機構50Aの油圧シリンダ51を縮め、各フロート15Aを、主船体11Aの船体本体12の下面12bに接近又は接触する位置に配置する。これにより、通常航行時の船舶1Aは、主胴部13と、その船幅方向両側のフロート15Aとが着水して、安定的に航行することができる。 船舶 In such a ship 1A, during normal navigation, the hydraulic cylinder 51 of the moving mechanism 50A is contracted, and each float 15A is arranged at a position close to or in contact with the lower surface 12b of the hull main body 12 of the main hull 11A. Accordingly, the boat 1A during normal navigation can stably navigate with the main body 13 and the floats 15A on both sides in the boat width direction landing thereon.
 また、船舶1Aは、水深が浅い場合等に、移動機構50Aの油圧シリンダ51を伸ばし、各フロート15Aを、主船体11Aに対して下方に離間するように相対移動させる。すると、船幅方向両側のフロート15Aは、水面Wf下への沈下量が増大する。これにより、フロート15Aで発生する浮力が大きくなる。その結果、主船体11Aが水面Wfに対して上昇し、主船体11Aの喫水が浅くなる。 船舶 In addition, when the water depth is shallow, the marine vessel 1A extends the hydraulic cylinder 51 of the moving mechanism 50A, and relatively moves each of the floats 15A so as to be separated downward from the main hull 11A. Then, the amount of settlement of the floats 15A on both sides in the ship width direction below the water surface Wf increases. Thereby, the buoyancy generated in the float 15A increases. As a result, the main hull 11A rises with respect to the water surface Wf, and the draft of the main hull 11A becomes shallower.
 したがって、上述した第一実施形態の船舶1Aによれば、移動機構50Aにより、主船体11Aに対してフロート15Aが上下方向に相対移動する。これにより、移動機構50Aによってフロート15Aの水面下への沈下量を変化させ、主船体11Aの喫水を変化させることができる。主船体11Aに対してフロート15Aを下げると、フロート15Aで発生する浮力が増し、主船体11Aの喫水が浅くなる。これにより、水深が浅い水域での航行時や、港湾への入港時、ドッグへの入渠時等に、船舶1Aの一部が水底Wbに干渉することを抑えることができる。また、ドッグへの入渠時、主胴部13の底面やスクリュー21等を水面Wfよりも上方に上げて、メンテナンス作業を容易に行うこともできる。さらに、図4に示すように、フロート15Aを主船体11Aに対して上下動させることで、主船体11Aの乾舷(水面上高さ)を岸壁100に対して調整することができるため、船舶1Aへの乗降を容易に行うこともできる。 Accordingly, according to the boat 1A of the above-described first embodiment, the float 15A relatively moves up and down with respect to the main hull 11A by the moving mechanism 50A. Thereby, the amount of settlement of the float 15A below the water surface can be changed by the moving mechanism 50A, and the draft of the main hull 11A can be changed. When the float 15A is lowered with respect to the main hull 11A, the buoyancy generated by the float 15A increases, and the draft of the main hull 11A becomes shallower. This can prevent a part of the ship 1A from interfering with the water bottom Wb when navigating in a shallow water area, entering a port, entering a dog, or the like. Further, at the time of docking in the dog, the bottom surface of the main body portion 13, the screw 21 and the like can be raised above the water surface Wf to facilitate maintenance work. Further, as shown in FIG. 4, the freeboard (height above the water surface) of the main hull 11A can be adjusted with respect to the quay 100 by vertically moving the float 15A with respect to the main hull 11A. Getting on and off to 1A can also be easily performed.
 また、水中翼機構30は、主船体11Aに設けられている。これにより、主船体11Aに対してフロート15Aを上下方向に相対移動させると、水中翼機構30は主船体11Aとともに上下動する。したがって、主船体11Aに対してフロート15Aを下げ、フロート15Aの水面Wf下への沈下量を大きくしても、水中翼機構30が水底Wbに干渉することを抑えることができる。さらに、水中翼機構30をフロート15Aともに主船体11Aに対して上下動させる必要が無い。したがって、水中翼機構30に翼体32の向きや傾斜角度を調整するための油圧系統や電気系統を備える場合であっても、構造が複雑化することを抑えることができる。
 このように、船舶1Aでは、水深が浅い場合であっても航行に支障が生じるのを抑え、構造の簡易化を図ることが可能となる。
The hydrofoil mechanism 30 is provided on the main hull 11A. Thus, when the float 15A is moved vertically relative to the main hull 11A, the hydrofoil mechanism 30 moves up and down together with the main hull 11A. Therefore, even if the float 15A is lowered with respect to the main hull 11A and the sink amount of the float 15A below the water surface Wf is increased, it is possible to suppress the hydrofoil mechanism 30 from interfering with the water bottom Wb. Further, there is no need to move the hydrofoil mechanism 30 up and down with respect to the main hull 11A together with the float 15A. Therefore, even when the hydrofoil mechanism 30 is provided with a hydraulic system or an electric system for adjusting the direction and the inclination angle of the wing body 32, it is possible to suppress the structure from becoming complicated.
As described above, in the ship 1A, even when the water depth is shallow, it is possible to suppress a trouble in navigation and to simplify the structure.
 また、フロート15Aが排水量を有することで、主船体11Aの排水量を抑え、主船体11Aの小型化を図ることが可能となる。 In addition, since the float 15A has a drainage amount, the drainage amount of the main hull 11A can be suppressed, and the main hull 11A can be downsized.
 さらに、フロート15Aを主船体11Aに対して下げることを、予め定められた航行速度以下で行うようにすれば、フロート15Aや、フロート15Aを上下方向に案内するガイド部材等を、例えばFRP等で形成することができる。これにより、船舶1Aの軽量化を図ることが可能となる。 Further, if the float 15A is lowered with respect to the main hull 11A at a predetermined sailing speed or less, the float 15A or a guide member or the like for guiding the float 15A in the up-down direction is, for example, FRP or the like. Can be formed. This makes it possible to reduce the weight of the boat 1A.
(第一実施形態の変形例)
 上記第一実施形態では、船舶1Aを、主胴部13と、その幅方向両側のフロート15Aとによって、多胴船にする場合を説明した。しかし、この発明に係る船舶は、多胴船に限らない。
 図5は、上記船舶の第一実施形態の変形例における船舶の全体構成を示す前面図である。図6は、上記船舶の第一実施形態の変形例における船舶において、フロートを下げ、主船体部の喫水を浅くした状態を示す前面図である。
 図5、図6に示すように、この第一実施形態の変形例における船舶1Bの船体10Bは、主船体11Bと、フロート15Bと、を備えている。
(Modification of First Embodiment)
In the first embodiment described above, the case where the boat 1A is a multihull using the main body 13 and the floats 15A on both sides in the width direction has been described. However, the ship according to the present invention is not limited to a multihull.
FIG. 5 is a front view showing the overall configuration of the marine vessel in a modification of the first embodiment of the marine vessel. FIG. 6 is a front view showing a state in which the float is lowered and the draft of the main hull is made shallow in a boat according to a modification of the first embodiment of the boat.
As shown in FIGS. 5 and 6, a hull 10B of a boat 1B according to a modification of the first embodiment includes a main hull 11B and a float 15B.
 主船体11Bは、船幅方向両側の船底に、フロート15Bが収容される凹部14を備えている。 The main hull 11B is provided with a concave portion 14 in which a float 15B is accommodated at the bottom of the ship on both sides in the ship width direction.
 フロート15Bは、主船体11Bの船幅方向両側にそれぞれ設けられている。各フロート15Bは、凹部14に収容された状態で、主船体11Bの底面11fに連続する底面15fを有する。
 フロート15Bは、油圧シリンダ52(図6参照)等からなる移動機構50Bによって、主船体11Bに対して上下方向に相対移動される。図5に示すように、油圧シリンダ52が縮んだ状態で、フロート15Bは、凹部14に収容される。この状態で、フロート15Bの底面15fは、主船体11Bの底面11fと連続し、単胴船を構成する船体10Bの船底面10bを形成する。図6に示すように、フロート15Bは、油圧シリンダ52が伸びた状態で、主船体11Bの底面11fよりも下方に突出する。
The floats 15B are provided on both sides of the main hull 11B in the ship width direction. Each float 15B has a bottom surface 15f that is continuous with the bottom surface 11f of the main hull 11B when housed in the concave portion 14.
The float 15B is vertically moved relative to the main hull 11B by a moving mechanism 50B including a hydraulic cylinder 52 (see FIG. 6) and the like. As shown in FIG. 5, the float 15B is housed in the recess 14 with the hydraulic cylinder 52 contracted. In this state, the bottom surface 15f of the float 15B is continuous with the bottom surface 11f of the main hull 11B, and forms the bottom surface 10b of the hull 10B constituting the monohull. As shown in FIG. 6, the float 15B projects below the bottom surface 11f of the main hull 11B with the hydraulic cylinder 52 extended.
 このような船舶1Bは、通常航行時、移動機構50Bの油圧シリンダ52を縮め、各フロート15Bを、主船体11Bの凹部14に収容する。
 また、船舶1Bは、水深が浅い場合等に、移動機構50Bの油圧シリンダ52を伸ばし、各フロート15Bを、主船体11Bに対して相対移動させ、下方に突出させる。すると、船幅方向両側のフロート15Bは、水面Wf下への沈下量が増大する。これにより、フロート15Bで発生する浮力が大きくなる。その結果、主船体11Bが水面Wfに対して上昇し、主船体11Bの喫水が浅くなる。
In such a ship 1B, during normal navigation, the hydraulic cylinder 52 of the moving mechanism 50B is contracted, and each float 15B is accommodated in the recess 14 of the main hull 11B.
In addition, when the water depth is shallow, the marine vessel 1B extends the hydraulic cylinder 52 of the moving mechanism 50B, moves each float 15B relative to the main hull 11B, and projects the float 15B downward. Then, the amount of settlement of the floats 15B on both sides in the boat width direction below the water surface Wf increases. Thereby, the buoyancy generated in the float 15B increases. As a result, the main hull 11B rises with respect to the water surface Wf, and the draft of the main hull 11B becomes shallower.
 このような構成においても、主船体11Bに対してフロート15Bを下げ、主船体11Bの喫水を浅くすることができる。これにより、水深が浅い水域での航行時や、港湾への入港時、ドッグへの入渠時等に、船舶1Bの一部が水底Wbに干渉することが抑えられる。また、ドッグへの入渠時、主船体11Bの底面11f等を上方に上げて、メンテナンス作業を容易に行うこともできる。さらに、フロート15Bを主船体11Bに対して上下動させることで、主船体11Bの喫水を岸壁100に対して調整し、船舶1Bへの乗降を容易に行うこともできる。このように、船舶1Bでは、水深が浅い場合であっても航行に支障が生じるのを抑え、構造の簡易化を図ることが可能となる。 も Also in such a configuration, the float 15B can be lowered with respect to the main hull 11B, and the draft of the main hull 11B can be reduced. Thereby, when navigating in a shallow water area, entering a port, entering a dog, etc., it is possible to suppress a part of the ship 1B from interfering with the water bottom Wb. Further, when docking in the dog, the bottom surface 11f of the main hull 11B and the like can be raised upward to facilitate maintenance work. Further, by moving the float 15B up and down with respect to the main hull 11B, the draft of the main hull 11B can be adjusted with respect to the quay 100, and the getting on and off the boat 1B can be easily performed. As described above, in the ship 1B, even when the water depth is shallow, it is possible to suppress a trouble in navigation and to simplify the structure.
(第二実施形態)
 次に、この発明に係る船舶の第二実施形態について説明する。以下に説明する第二実施形態においては、船舶1Cは、水中翼船であり、第一実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。
(Second embodiment)
Next, a second embodiment of the ship according to the present invention will be described. In the second embodiment described below, a ship 1C is a hydrofoil ship, and the same parts as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.
 図7は、この発明の第二実施形態における船舶の全体構成を示す側面図である。図8は、上記船舶の第二実施形態における船舶を船首側から見た前面図である。図9は、上記船舶の第二実施形態における船舶において、フロートを上げ、主船体部の喫水を深くした状態を示す前面図である。図10は、上記船舶の第二実施形態における船舶において、フロートを下げ、主船体部の喫水を浅くした状態を示す前面図である。
 図7、図8に示すように、この実施形態における船舶1Cは、船体10Cと、推進機構60と、水中翼機構70と、移動機構50C(図10参照)と、を備えている。
FIG. 7 is a side view showing the overall configuration of a ship according to the second embodiment of the present invention. FIG. 8 is a front view of the ship in the second embodiment of the ship as viewed from the bow side. FIG. 9 is a front view showing a state in which the float is raised and the draft of the main hull is deepened in the boat according to the second embodiment of the boat. FIG. 10 is a front view showing a state in which the float is lowered and the draft of the main hull is made shallow in the boat according to the second embodiment of the boat.
As shown in FIGS. 7 and 8, the boat 1C in this embodiment includes a hull 10C, a propulsion mechanism 60, a hydrofoil mechanism 70, and a moving mechanism 50C (see FIG. 10).
 船体10Cは、主船体11Cと、フロート15Cと、を備えている。
 主船体11Cは、船体本体17と、主胴部18と、を有する。船体本体17は、船幅方向両側に一対の舷側17sを有する。主胴部18は、船体本体17の船幅方向中央部に設けられている。主胴部18は、船体本体17の下面17bから下方に突出している。主胴部18は、主船体11Cの船首尾方向に連続している。
The hull 10C includes a main hull 11C and a float 15C.
The main hull 11C has a hull main body 17 and a main body 18. The hull main body 17 has a pair of side sides 17s on both sides in the ship width direction. The main body 18 is provided at the center in the boat width direction of the hull main body 17. The main body 18 protrudes downward from the lower surface 17 b of the hull main body 17. The main body 18 is continuous in the bow direction of the main hull 11C.
 フロート15Cは、船体本体17の船幅方向両側にそれぞれ設けられている。各フロート15Cは、主胴部18に対し、船幅方向両側に間隔をあけて設けられている。各フロート15Cは、船体本体17の下面17bの下方に配置されている。フロート15Cは、主船体11Cの船首尾方向に連続している。各フロート15Cは、主船体11C及び水中翼機構70とは独立して設けられている。このようなフロート15Cは、例えば、FRP等により形成することができる。 The floats 15C are provided on both sides of the hull body 17 in the boat width direction. Each of the floats 15C is provided at intervals on both sides in the boat width direction with respect to the main body portion 18. Each float 15C is arranged below the lower surface 17b of the hull main body 17. The float 15C is continuous in the bow direction of the main hull 11C. Each float 15C is provided independently of the main hull 11C and the hydrofoil mechanism 70. Such a float 15C can be formed by, for example, FRP or the like.
 フロート15Cは、中空構造で、排水量を有している。すなわち、フロート15Cは、船体10Cの排水量の一部を形成する。フロート15Cは、後述する移動機構50Cにより、主船体11Cに対して上下方向に相対移動可能である。
 船体10Cは、船幅方向中央部の主胴部18と、船幅方向両側のフロート15Cとを備え、三胴船(多胴船)を構成している。
The float 15C has a hollow structure and a drainage amount. That is, the float 15C forms a part of the displacement of the hull 10C. The float 15C is vertically movable relative to the main hull 11C by a moving mechanism 50C described later.
The hull 10C includes a main body portion 18 at the center in the ship width direction and floats 15C on both sides in the ship width direction, and constitutes a trihull (multihull).
 推進機構60は、主船体11C(船体10C)を推進させる推進力を発生する。この第二実施形態における推進機構60は、例えば、ウォータージェット61を備えている。ウォータージェット61は、主胴部18の船尾部18Cに設けられている。ウォータージェット61は、エンジン(図示無し)により駆動される噴射ノズルを有する。ウォータージェット61は、燃料を燃焼させることで駆動されるエンジンにより、後述する後部水中翼72に設けられた吸込口から吸い込んだ水を噴射ノズルから噴射させる。推進機構60は、水を噴射ノズルから後方に噴射することで、船体10Cを高速で推進させる。 The propulsion mechanism 60 generates a propulsion force for propelling the main hull 11C (the hull 10C). The propulsion mechanism 60 according to the second embodiment includes, for example, a water jet 61. The water jet 61 is provided on the stern 18 </ b> C of the main body 18. The water jet 61 has an injection nozzle driven by an engine (not shown). The water jet 61 causes an engine driven by burning fuel to inject water sucked from a suction port provided in a rear hydrofoil 72 described later from an injection nozzle. The propulsion mechanism 60 propells the hull 10C at high speed by injecting water backward from the injection nozzle.
 水中翼機構70は、主船体11Cに設けられている。水中翼機構70は、前部水中翼71と、後部水中翼72と、を備えている。
 前部水中翼71は、主船体11Cの船首部11aの下方に設けられている。前部水中翼71は、ストラット(支持部)73と、翼体74と、を備えている。ストラット73は、下方に延びている。このストラット73の上端は、主船体11Cに固定されている。翼体74は、ストラット73の下部に設けられている。翼体74は、水面Wf下に没して設けられ、推進機構60で発生する推進力による航行時に、主船体11Cを浮上させる揚力を発生する。
The hydrofoil mechanism 70 is provided on the main hull 11C. The hydrofoil mechanism 70 includes a front hydrofoil 71 and a rear hydrofoil 72.
The front hydrofoil 71 is provided below the bow 11a of the main hull 11C. The front hydrofoil 71 includes struts (supporting portions) 73 and a wing 74. The strut 73 extends downward. The upper end of the strut 73 is fixed to the main hull 11C. The wing 74 is provided below the strut 73. The wing 74 is provided so as to be submerged below the water surface Wf, and generates a lift for floating the main hull 11 </ b> C during navigation by the propulsion generated by the propulsion mechanism 60.
 後部水中翼72は、主船体11Cの船尾部11rの下方に設けられている。後部水中翼72は、ストラット(支持部)75と、翼体76と、を備えている。ストラット75は、上端が主船体11Cに固定されて下方に延びている。翼体76は、ストラット75の下部に設けられている。翼体76は、前部水中翼71の翼体74に対し、例えば、船幅方向に2倍以上の長さを有している。翼体76は、水面Wf下に没して設けられ、推進機構60で発生する推進力による航行時に、主船体11Cを浮上させる揚力を発生する。 The rear hydrofoil 72 is provided below the stern 11r of the main hull 11C. The rear hydrofoil 72 includes a strut (support) 75 and a wing body 76. The strut 75 has an upper end fixed to the main hull 11C and extends downward. The wing body 76 is provided below the strut 75. The wing body 76 has, for example, twice or more the length of the wing body 74 of the front hydrofoil 71 in the boat width direction. The wing body 76 is provided so as to be submerged below the water surface Wf, and generates a lift force for floating the main hull 11C during navigation by the propulsion generated by the propulsion mechanism 60.
 図9、図10に示すように、移動機構50C(図10参照)は、各フロート15Cと主船体11Cとを接続している。移動機構50Cは、各フロート15Cを、主船体11Cに対して上下方向に相対移動させる。移動機構50Cは、例えば、油圧シリンダ53を備えている。油圧シリンダ53は、例えば、各フロート15Cにおいて、船首尾方向に間隔をあけた複数個所に設けられている。各油圧シリンダ53の基端部は、船体本体17の船幅方向両側の下面17bに固定されている。油圧シリンダ53の下端は、フロート15Cの上面に連結されている。油圧シリンダ53は、油圧により、下方に向かって伸縮駆動される。 移動 As shown in FIGS. 9 and 10, the moving mechanism 50C (see FIG. 10) connects each float 15C to the main hull 11C. The moving mechanism 50C vertically moves each float 15C relative to the main hull 11C. The moving mechanism 50C includes, for example, a hydraulic cylinder 53. The hydraulic cylinders 53 are provided, for example, at a plurality of locations spaced apart in the bow-stern direction in each float 15C. The base end of each hydraulic cylinder 53 is fixed to lower surfaces 17 b on both sides in the width direction of the hull main body 17. The lower end of the hydraulic cylinder 53 is connected to the upper surface of the float 15C. The hydraulic cylinder 53 is driven to expand and contract downward by hydraulic pressure.
 図8、図9に示すように、油圧シリンダ53は、油圧シリンダ53を最も縮めた状態のときに、船体本体17又はフロート15C内に収容された状態となる。図10に示すように、各油圧シリンダ53が下方に向かって伸びると、フロート15Cが主船体11C(主胴部18)に対して離間するように下方へ相対移動する。各油圧シリンダ53を縮めると、フロート15Cが主船体11C(主胴部18)に対して接近するように上方へ相対移動する。 As shown in FIGS. 8 and 9, the hydraulic cylinder 53 is housed in the hull body 17 or the float 15C when the hydraulic cylinder 53 is in the most contracted state. As shown in FIG. 10, when each hydraulic cylinder 53 extends downward, the float 15C relatively moves downward so as to be separated from the main hull 11C (main body 18). When each hydraulic cylinder 53 is contracted, the float 15C relatively moves upward so as to approach the main hull 11C (main body 18).
 この実施形態において、油圧シリンダ53が最も縮んだ状態で、フロート15Cの底面15bの下端は、主船体11Cの底面11bの下端と、同等の高さに位置する。また、油圧シリンダ53が最も伸びた状態では、フロート15Cは、主船体11Cの底面11bよりも下方に突出する。
 これらフロート15Cは、翼体76の船幅方向両端部の上方に配置されている。そのため、フロート15Cは、後部水中翼72の翼体76と、船体本体12の船幅方向両端部との間で上下動する。
In this embodiment, the lower end of the bottom surface 15b of the float 15C is located at the same height as the lower end of the bottom surface 11b of the main hull 11C when the hydraulic cylinder 53 is in the most contracted state. When the hydraulic cylinder 53 is in the most extended state, the float 15C projects below the bottom surface 11b of the main hull 11C.
These floats 15C are arranged above both ends of the wing body 76 in the ship width direction. Therefore, the float 15 </ b> C moves up and down between the wing body 76 of the rear hydrofoil 72 and both ends of the hull main body 12 in the boat width direction.
 図9に示すように、このような船舶1Cは、低速での航行時、移動機構50Cの油圧シリンダ53(図10参照)を縮め、各フロート15Cを、主船体11Cの船体本体17の下面17bに接近又は接触する位置に配置する。これにより、通常航行時の船舶1Cは、主胴部18と、その船幅方向両側のフロート15Cとが着水して、安定的に航行することができる。 As shown in FIG. 9, such a ship 1C contracts the hydraulic cylinders 53 (see FIG. 10) of the moving mechanism 50C when traveling at low speed, and separates each float 15C from the lower surface 17b of the hull body 17 of the main hull 11C. Place near or in contact with Thus, the boat 1C during normal navigation can stably navigate with the main body portion 18 and the floats 15C on both sides in the boat width direction landing thereon.
 その一方で、図7、図8に示すように、船舶1Cは、推進機構60で発生する推進力による高速での航行時、水中に没した水中翼機構70の翼体74,76が発生する揚力により、主船体11Cが水面Wf上に浮上する。この状態で、移動機構50Cの油圧シリンダ53は、フロート15Cを主船体11Cに接近させ、フロート15Cを水面Wfよりも上方に位置させる。これにより、船体10Cが水面Wfと干渉することが抑えられ、波の影響を受けることを抑えつつ、高速で快適な航行を行うことができる。 On the other hand, as shown in FIGS. 7 and 8, when the ship 1 </ b> C navigates at high speed by the propulsion generated by the propulsion mechanism 60, the wings 74 and 76 of the hydrofoil mechanism 70 submerged in the water are generated. By the lift, the main hull 11C floats on the water surface Wf. In this state, the hydraulic cylinder 53 of the moving mechanism 50C causes the float 15C to approach the main hull 11C, and positions the float 15C above the water surface Wf. Thereby, the hull 10C is prevented from interfering with the water surface Wf, and high-speed and comfortable navigation can be performed while suppressing the influence of the waves.
 また、図10に示すように、船舶1Cは、水深が浅い場合等に、移動機構50Cの油圧シリンダ53を伸ばし、各フロート15Cを、主船体11Cに対して下方に相対移動させる。すると、船幅方向両側のフロート15Cは、水面Wf下への沈下量が増大する。これにより、フロート15Cで発生する浮力が大きくなる。その結果、主船体11Cが水面Wfに対して上昇し、主船体11Cの喫水が浅くなる。
 この状態で、推進機構60のウォータージェット61が水を吸い上げ不能となる場合は、ウォータージェット61に引込式スラスターを装備してもよい。
Also, as shown in FIG. 10, when the water depth is shallow, the marine vessel 1C extends the hydraulic cylinder 53 of the moving mechanism 50C, and relatively moves each float 15C downward with respect to the main hull 11C. Then, the amount of settlement of the floats 15C on both sides in the ship width direction below the water surface Wf increases. Thereby, the buoyancy generated in the float 15C increases. As a result, the main hull 11C rises with respect to the water surface Wf, and the draft of the main hull 11C becomes shallower.
In this state, if the water jet 61 of the propulsion mechanism 60 cannot suck up water, the water jet 61 may be equipped with a retractable thruster.
 したがって、上述した第二実施形態の船舶1Cによれば、移動機構50Cにより、主船体11Cに対してフロート15Cが上下方向に相対移動する。これにより、移動機構50Cによってフロート15Cの水面下への沈下量を変化させると、主船体11Cの喫水が変化する。主船体11Cに対してフロート15Cを下げると、フロート15Cで発生する浮力が増し、主船体11Cの喫水が浅くなる。これにより、水深が浅い水域での航行時や、港湾への入港時、ドッグへの入渠時等に、船舶1Cの一部が水底Wbに干渉することが抑えられる。また、ドッグへの入渠時、主胴部18の底面やウォータージェット61等を水面Wfよりも上方に上げて、メンテナンス作業を容易に行うこともできる。さらに、図10に示すように、フロート15Cを主船体11Cに対して上下動させることで、主船体11Cの乾舷(水面上高さ)を岸壁100に対して調整し、船舶1Cへの乗降を容易に行うこともできる。 Accordingly, according to the boat 1C of the second embodiment described above, the float 15C moves relatively up and down with respect to the main hull 11C by the moving mechanism 50C. Thus, when the amount of submersion of the float 15C below the water surface is changed by the moving mechanism 50C, the draft of the main hull 11C changes. When the float 15C is lowered with respect to the main hull 11C, the buoyancy generated at the float 15C increases, and the draft of the main hull 11C becomes shallower. Thereby, when navigating in a shallow water area, entering a port, entering a dog, or the like, a part of the ship 1C is prevented from interfering with the water bottom Wb. In addition, when docking in the dog, the bottom surface of the main body portion 18, the water jet 61, and the like can be raised above the water surface Wf to facilitate maintenance work. Further, as shown in FIG. 10, by moving the float 15C up and down with respect to the main hull 11C, the freeboard (height above the water surface) of the main hull 11C is adjusted with respect to the quay 100, and getting on and off the boat 1C. Can be easily performed.
 この第二実施形態の水中翼機構70は、主船体11Cに設けられている。これにより、主船体11Cに対してフロート15Cを上下方向に相対移動させると、水中翼機構70は主船体11Cとともに上下動する。
 したがって、主船体11Cに対してフロート15Cを下げ、フロート15Cの水面下への沈下量を大きくしても、水中翼機構70が水底Wbに干渉することが抑えられる。さらに、水中翼機構70をフロート15Cともに主船体11Cに対して上下動させる必要が無い。したがって、水中翼機構70に翼体32の向きや傾斜角度を調整するための油圧系統や電気系統を備える場合であっても、構造が複雑化することが抑えられる。
 このように、船舶1Cでは、水深が浅い場合であっても航行に支障が生じるのを抑え、構造の簡易化を図ることが可能となる。
The hydrofoil mechanism 70 of the second embodiment is provided on the main hull 11C. Thus, when the float 15C is moved vertically relative to the main hull 11C, the hydrofoil mechanism 70 moves up and down together with the main hull 11C.
Therefore, even if the float 15C is lowered with respect to the main hull 11C and the amount of submersion of the float 15C below the water surface is increased, interference of the hydrofoil mechanism 70 with the water bottom Wb is suppressed. Further, it is not necessary to move the hydrofoil mechanism 70 up and down with respect to the main hull 11C together with the float 15C. Therefore, even when the hydrofoil mechanism 70 is provided with a hydraulic system or an electric system for adjusting the direction and the inclination angle of the wing body 32, the structure is prevented from becoming complicated.
As described above, in the ship 1C, even when the water depth is shallow, it is possible to suppress a trouble in navigation and to simplify the structure.
 また、推進機構60で発生する推進力によって航行を行うと、翼体74,76で発生する揚力によって、主船体11Cが浮上し、主船体11Cによる水の抵抗を抑えることができる。
 このような船舶1Cでは、水深が浅い水域で、主船体11Cに対してフロート15Cを下降させることで、主船体11C及び水中翼機構70が水底Wbに干渉することを有効に抑えることができる。
Further, when the ship is navigated by the propulsion generated by the propulsion mechanism 60, the main hull 11C floats by the lift generated by the wings 74 and 76, and the resistance of water by the main hull 11C can be suppressed.
In such a ship 1C, in a shallow water area, by lowering the float 15C with respect to the main hull 11C, it is possible to effectively prevent the main hull 11C and the hydrofoil mechanism 70 from interfering with the water bottom Wb.
 また、船体10Cは、航行時に翼体74,76で発生する揚力によって主船体11Cが浮上しているときに、移動機構50Cは、フロート15Cを水面Wfより上方に位置させる。これにより、航行時における主船体11C及びフロート15Cによる水の抵抗が無くなり、高速で揺れの少ない快適な航行を行うことができる。 移動 Also, when the main hull 11C is floating by the lift generated by the wings 74 and 76 during navigation, the moving mechanism 50C positions the float 15C above the water surface Wf. Thereby, the resistance of water caused by the main hull 11C and the float 15C during navigation is eliminated, and it is possible to perform comfortable navigation at high speed with little shaking.
 さらに、フロート15Cが排水量を有する構成とすることで、主船体11Cの排水量を抑え、主船体11Cの小型化を図ることが可能となる。 Furthermore, since the float 15C is configured to have a drainage amount, the drainage amount of the main hull 11C can be suppressed, and the main hull 11C can be downsized.
 また、フロート15Cを主船体11Cに対して下げることを、予め定められた航行速度以下で行うようにすれば、フロート15Cや、フロート15Cを上下方向に案内するガイド部材等を、例えばFRP等で形成することができる。これにより、船舶1Cの軽量化を図ることが可能となる。 Further, if the lowering of the float 15C with respect to the main hull 11C is performed at a predetermined navigation speed or less, the float 15C and a guide member for guiding the float 15C in the vertical direction can be, for example, FRP or the like. Can be formed. Thereby, it is possible to reduce the weight of the ship 1C.
(その他の変形例)
 この発明は、上述した実施形態に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。
 例えば、上記実施形態およびその変形例では、船幅方向両側にそれぞれフロート15A~15Cを1つずつ備えるようにしたが、これに限らない。船幅方向両側に、複数のフロートを備えてもよい。また、船首尾方向に複数のフロートを備えてもよい。
 更に、第一実施形態及び第二実施形態においては、多胴船として三胴船を例示したが、双胴船や、四胴以上の多胴船であってもよい。
 また、船体10A~10Cの具体的な形状や構成は、適宜変更可能である。
 また、船舶1A~1Cの船種等についても、何ら限定するものではない。
(Other modifications)
The present invention is not limited to the above-described embodiment, and includes various modifications of the above-described embodiment without departing from the spirit of the present invention. That is, the specific shape, configuration, and the like described in the embodiment are merely examples, and can be appropriately changed.
For example, in the above-described embodiment and its modified example, one float 15A to 15C is provided on each of both sides in the boat width direction, but the present invention is not limited to this. A plurality of floats may be provided on both sides in the ship width direction. Further, a plurality of floats may be provided in the bow and stern direction.
Furthermore, in the first embodiment and the second embodiment, a trihull is exemplified as a multihull, but a catamaran or a multihull having four or more hulls may be used.
The specific shapes and configurations of the hulls 10A to 10C can be changed as appropriate.
Further, the types of the ships 1A to 1C are not limited at all.
 上記船舶によれば、水深が浅い場合であっても航行に支障が生じるのを抑え、構造の簡易化を図ることが可能となる。 船舶 According to the above-mentioned ship, even when the water depth is shallow, it is possible to suppress a trouble in navigation and to simplify the structure.
1A、1B、1C 船舶
10A、10B、10C 船体
10b 船底面
11A、11B、11C 主船体
11a 船首部
11b 底面
11f 底面
11r 船尾部
12 船体本体
12b 下面
12s 舷側
12t 上部構造
13 主胴部
13A 船尾部
13C 船首部
13b 船底
13d 船底
14 凹部
15A、15B、15C フロート
15b 底面
15f 底面
17 船体本体
17b 下面
17s 舷側
18 主胴部
18C 船尾部
20 推進機構
21 スクリュー
22 スクリュー軸
30 水中翼機構
31、73、75 ストラット(支持部)
32、74、76 翼体
50A、50B、50C 移動機構
51、52、53 油圧シリンダ
60 推進機構
61 ウォータージェット
70 水中翼機構
71 前部水中翼
72 後部水中翼
100 岸壁
Wb 水底
Wf 水面
DESCRIPTION OF SYMBOLS 1A, 1B, 1C Ship 10A, 10B, 10C Hull 10b Hull bottom 11A, 11B, 11C Main hull 11a Bow 11b Bottom 11f Bottom 11r Stern 12 Hull body 12b Bottom 12s Starboard 12t Upper structure 13 Main body 13A Stern 13C Bow 13b Ship bottom 13d Ship bottom 14 Recess 15A, 15B, 15C Float 15b Bottom surface 15f Bottom surface 17 Hull body 17b Bottom surface 17s Port side 18 Main body 18C Stern 20 Propulsion mechanism 21 Screw 22 Screw shaft 30 Hydrofoil mechanism 31, 73, 75 Strut (Support)
32, 74, 76 Wing bodies 50A, 50B, 50C Moving mechanisms 51, 52, 53 Hydraulic cylinder 60 Propulsion mechanism 61 Water jet 70 Hydraulic wing mechanism 71 Front hydrofoil 72 Rear hydrofoil 100 Quay wall Wb Water bottom Wf Water surface

Claims (4)

  1.  主船体と、
     前記主船体を推進させる推進力を発生する推進機構と、
     前記主船体に固定されて下方に延びる支持部、及び、前記支持部の下部に設けられた翼体を有する水中翼機構と、
     前記主船体及び前記水中翼機構とは独立して設けられたフロートと、
     前記フロートと前記主船体とを接続するとともに、前記主船体に対して前記フロートを上下方向に相対移動させる移動機構と、
    を備える船舶。
    The main hull,
    A propulsion mechanism for generating a propulsion force for propelling the main hull,
    A support portion fixed to the main hull and extending downward, and a hydrofoil mechanism having a wing body provided below the support portion,
    A float provided independently of the main hull and the hydrofoil mechanism,
    A moving mechanism that connects the float and the main hull, and relatively moves the float vertically with respect to the main hull;
    Ship equipped with.
  2.  前記翼体は、水面下に没して設けられ、前記推進機構で発生する推進力による航行時に前記主船体を浮上させる揚力を発生する
     請求項1に記載の船舶。
    The marine vessel according to claim 1, wherein the wing body is provided submerged below the water surface, and generates a lift force for lifting the main hull during navigation by a propulsion force generated by the propulsion mechanism.
  3.  前記翼体が前記主船体を浮上させる前記揚力を発生しているときに、前記移動機構は、前記フロートを水面よりも上方に位置させる
     請求項2に記載の船舶。
    The ship according to claim 2, wherein the moving mechanism positions the float above a surface of the water when the wing body generates the lift for floating the main hull.
  4.  前記フロートは排水量を有する
     請求項1から3の何れか一項に記載の船舶。
    The ship according to any one of claims 1 to 3, wherein the float has a drainage amount.
PCT/JP2018/039400 2018-07-20 2018-10-23 Ship WO2020017069A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217001422A KR102484031B1 (en) 2018-07-20 2018-10-23 Ship
CN201880095645.4A CN112424062B (en) 2018-07-20 2018-10-23 Ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018137047A JP7195795B2 (en) 2018-07-20 2018-07-20 vessel
JP2018-137047 2018-07-20

Publications (1)

Publication Number Publication Date
WO2020017069A1 true WO2020017069A1 (en) 2020-01-23

Family

ID=69164441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039400 WO2020017069A1 (en) 2018-07-20 2018-10-23 Ship

Country Status (4)

Country Link
JP (1) JP7195795B2 (en)
KR (1) KR102484031B1 (en)
CN (1) CN112424062B (en)
WO (1) WO2020017069A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112550583A (en) * 2021-01-26 2021-03-26 烟台智汇港科技创新有限公司 Ship transportation method for improving cargo capacity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002516785A (en) * 1998-05-29 2002-06-11 オデガルド、ルネ、エイチ. High-speed hybrid ship
JP2013533152A (en) * 2010-06-23 2013-08-22 カリブ インベスト,ベスロテン フェンノートシャップ メット ベペルクテ アーンスプラケリジュクヘイド Water motorcycle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1273143A (en) * 1968-03-12 1972-05-03 British Aircraft Corp Ltd Form Hydrofoil craft
JP2704618B2 (en) * 1987-09-18 1998-01-26 株式会社大沢技術設計事務所 Variable draft boat
JPH04133893A (en) * 1990-09-22 1992-05-07 Toshio So Boat having float with expansion arm
DE69202468T2 (en) * 1991-01-18 1996-01-18 Havre Chantiers Multihull displacement watercraft with limited transverse righting moment and reduced driving resistance.
JPH0667292U (en) * 1993-03-09 1994-09-22 住友重機械工業株式会社 Hydrofoil
JP2003026075A (en) * 2001-07-10 2003-01-29 Yukio Fujimoto River-marine ship having variable draft structure
JP4133893B2 (en) 2004-02-03 2008-08-13 Toto株式会社 Massage nozzle and massage device
CN100493936C (en) * 2004-11-08 2009-06-03 陈旃 Deformed ship with shoal landing and high-speed driving function
CN202244010U (en) * 2011-08-19 2012-05-30 上海船舶研究设计院 Ship structure without ballast water
CN107150760B (en) * 2017-06-01 2023-10-10 浙江大学 Supercavitation hydrofoil trimaran
CN107953967B (en) * 2017-12-15 2019-07-23 江苏科技大学 A kind of trimaran structure with hydrofoil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002516785A (en) * 1998-05-29 2002-06-11 オデガルド、ルネ、エイチ. High-speed hybrid ship
JP2013533152A (en) * 2010-06-23 2013-08-22 カリブ インベスト,ベスロテン フェンノートシャップ メット ベペルクテ アーンスプラケリジュクヘイド Water motorcycle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112550583A (en) * 2021-01-26 2021-03-26 烟台智汇港科技创新有限公司 Ship transportation method for improving cargo capacity
CN112550583B (en) * 2021-01-26 2021-11-05 重庆轮兴商贸有限责任公司 Ship transportation method for improving cargo capacity

Also Published As

Publication number Publication date
JP7195795B2 (en) 2022-12-26
CN112424062A (en) 2021-02-26
KR102484031B1 (en) 2023-01-02
JP2020011690A (en) 2020-01-23
KR20210020142A (en) 2021-02-23
CN112424062B (en) 2023-07-14

Similar Documents

Publication Publication Date Title
KR101297062B1 (en) An improved convertible vessel
US11738827B2 (en) Hydrofoil system and marine vessel
US11214345B2 (en) Propulsion assembly and boat combination, boat propulsion method, and boat propulsion assembly
EP0545878B1 (en) Multi-hull vessel
NO316265B1 (en) Planning vessel
US6805068B1 (en) Hydrofoil system for lifting a boat partially out of water an amount sufficient to reduce drag
WO2020017069A1 (en) Ship
KR20160000507U (en) Catamaran
US9809290B2 (en) System and apparatus for outboard watercraft trim control
RU97101168A (en) AIRCRAFT SEA BOAT PARTIALLY DIPPED IN WATER WHILE DRIVING AT SPEED
JPS63232098A (en) Ship with stern screw and method of operating ship
KR100879555B1 (en) Vessel provided with a foil situated below the waterline
JP2023526852A (en) Hull with variable geometry
JP3009546U (en) Stuttering variable ship
JP2018103951A (en) Trimaran and horizontal agitation reduction method for trimaran
GB2454877A (en) A watercraft with buoyant hydrofoil vanes
KR200205368Y1 (en) Small marine hull trim control system
US8201512B2 (en) Watercraft steering system
KR20220103160A (en) Ship
TWI590983B (en) Propeller lifting device for cabling boats
JPS5816930Y2 (en) side wall gas cushion vehicle
JP2023152466A (en) Vessel
EP0421958A2 (en) High-speed hydrohull
JP2502918Y2 (en) Ultra-high speed composite support vessel
JPH0764305B2 (en) Constant depth semi-submersible ship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217001422

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926942

Country of ref document: EP

Kind code of ref document: A1