JP2502918Y2 - Ultra-high speed composite support vessel - Google Patents

Ultra-high speed composite support vessel

Info

Publication number
JP2502918Y2
JP2502918Y2 JP1991059428U JP5942891U JP2502918Y2 JP 2502918 Y2 JP2502918 Y2 JP 2502918Y2 JP 1991059428 U JP1991059428 U JP 1991059428U JP 5942891 U JP5942891 U JP 5942891U JP 2502918 Y2 JP2502918 Y2 JP 2502918Y2
Authority
JP
Japan
Prior art keywords
hull
ship
wing
buoyancy
lift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1991059428U
Other languages
Japanese (ja)
Other versions
JPH0512390U (en
Inventor
亮太郎 荻原
Original Assignee
テクノスーパーライナー技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テクノスーパーライナー技術研究組合 filed Critical テクノスーパーライナー技術研究組合
Priority to JP1991059428U priority Critical patent/JP2502918Y2/en
Publication of JPH0512390U publication Critical patent/JPH0512390U/en
Application granted granted Critical
Publication of JP2502918Y2 publication Critical patent/JP2502918Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】この考案は、複合支持型船舶にお
いて上部船体の浮心位置と翼揚力の作用点とを一定の位
置関係に設定してある超高速複合支持型船舶に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-high speed composite support type ship in which the buoyancy position of the upper hull and the point of action of wing lift are set in a fixed positional relationship in the composite support type ship.

【0002】[0002]

【従来の技術】最近我が国でも短距離間の旅客輸送用と
して水中翼の揚力で船体の全重量を支えてウォータジェ
ット推進により超高速で航走する小型旅客船が登場し
て、旅客分野における高速化のニーズに応えている。
2. Description of the Related Art Recently, in Japan, a small passenger ship has appeared, which is capable of supporting the full weight of the hull by the lift of hydrofoils and traveling at super high speed by water jet propulsion for short-distance passenger transportation. Meet the needs of.

【0003】一方、貨物専用輸送の分野では、従来コン
テナ船等による比較的遅い速度での大量輸送を特徴とし
てきたが、最近製品の多品種少量生産化、或いは生産拠
点の海外展開など生産システムの変化に伴って、海上輸
送においても製品(例えば電子部品や生鮮食料品等)を
生産地から比較的近隣の需要地へ迅速に輸送するために
大型かつ超高速化の気運が急速に高まって来ている。
On the other hand, in the field of dedicated freight transportation, the conventional feature of mass transportation at a relatively slow speed is by container ships, but recently, the production system such as small-lot production of a wide variety of products or overseas expansion of production bases has been developed. Due to changes, large-scale and ultra-high speed movements are rapidly increasing in order to quickly transport products (such as electronic components and fresh foods) from their production areas to relatively neighboring demand areas even by sea transportation. ing.

【0004】上述した超高速旅客船と同様な形式で超高
速貨物船の大型化を図った場合、自ずとその載荷重量に
も制限が出てくる。この船型では、例えば載荷重量約1
000tの大型超高速貨物船は巨大な水中翼が必要とな
り、船体抵抗が増大するために経済的には不利といわれ
ている。
When an ultra-high-speed freighter is made large in size in the same manner as the above-mentioned ultra-high-speed passenger ship, the loading capacity of the ultra-high-speed cargo ship is naturally limited. With this boat type, for example, the loading capacity is about 1
It is said to be economically disadvantageous because a large ultra-high-speed cargo ship of 000 tons requires a huge hydrofoil, which increases hull resistance.

【0005】そこで、図4(a) 側面図、同図(b) 正面図
に示すような船体を上部船体1と下部船体2とで構成
し、この両船体間の前後にストラット3を固定して設
け、更にこの下部船体2の両側に水中翼4を突設した複
合支持型の船舶が提案されている。この種船舶に関する
先行技術としては特開昭61−54382号公報(従来
例1)、特開平3−32994号公報(従来例2)等が
ある。
Therefore, a hull as shown in FIG. 4 (a) side view and FIG. 4 (b) front view is constructed by an upper hull 1 and a lower hull 2, and struts 3 are fixed between the front and the rear of the hull. A multi-support type ship in which hydrofoil 4 is projected on both sides of this lower hull 2 is proposed. As prior arts relating to this type of ship, there are JP-A-61-54382 (conventional example 1) and JP-A-3-32994 (conventional example 2).

【0006】かかる複合支持船型においては、図4に示
すように低速時には上部船体1の下部が水中に没するd
1 の吃水で航走する艇走状態と、高速になると水中翼4
の揚力により上部船体が水面上に浮上し、d2 の吃水で
航走する翼走状態とがあり、翼走状態では翼揚力と下部
船体の浮力とで船全体の重量を支持している。
In such a composite support hull, the lower part of the upper hull 1 is submerged in water at low speed as shown in FIG.
The boat is in a dashing condition of 1 and the hydrofoil at high speed 4
The upper hull floats on the water surface by the lift, there is a wing run state run Wataru in Kissui of d 2, the blades run state supporting the weight of the entire ship buoyancy wing lift and the lower hull.

【0007】[0007]

【考案が解決しようとする課題】このように複合支持型
船舶では、通常の排水量型船舶とは全く異なった航走状
態を形成するが、上部船体が離水する( テイクオフ(ta
ke off ) )時には未だ船速が低いため所定の翼揚力を
発生させるためには翼迎角を大きくとられねばならな
い。
As described above, the composite support type ship forms a completely different sailing state from the normal displacement type ship, but the upper hull releases water (take off (ta
ke off)) Since the ship speed is still low, the wing attack angle must be large in order to generate the predetermined wing lift.

【0008】しかしながら、上記従来例1の如く船体動
揺時の復原調整を本来の目的とするフィンのような小さ
い水中翼の場合にはその迎角を調整可能に構成できる
が、翼走時に船体重量支持を主目的としているような水
中翼は一般に大きいものとなるから、これ自身を可動に
して迎角を調整できるようにすることは困難である。通
常は従来例2の如く水中翼は下部船体に固定されてい
る。従って、艇走状態から翼走状態に移行する段階で翼
迎角を大きくするためにはバラスト調整によるか、また
はフラップ操作によって船尾トリムとしなければならな
い。しかし、バラスト調整による場合には、かかる複合
支持型船舶がもつ船体を可能な限り軽量化したいという
要請に反し、推進性能面でも悪影響を及ぼす。また、船
体の姿勢制御は水中翼に付設しているフラップで行うこ
とを考慮すると、フラップ操作により船尾トリムの状態
を得ようとすると船体姿勢の制御力の減少につながり制
御上の問題を生起する。さらに、予め翼取付角を大きく
しておくことも考えられるが、翼走の巡航時を考慮する
とそれもできない。
However, in the case of a small hydrofoil such as a fin whose original purpose is to adjust the stability when the ship is swaying as in the prior art example 1, the angle of attack can be adjusted, but the hull weight when the wing is running. Since a hydrofoil whose main purpose is support is generally large, it is difficult to make it movable so that the angle of attack can be adjusted. Usually, as in Conventional Example 2, the hydrofoil is fixed to the lower hull. Therefore, in order to increase the wing attack angle at the stage of transition from the boat running state to the wing running state, the stern trim must be made by ballast adjustment or flap operation. However, the ballast adjustment adversely affects the propulsion performance, contrary to the request to reduce the weight of the hull of such a composite-supported ship as much as possible. In addition, considering that the attitude control of the hull is performed by the flap attached to the hydrofoil, trying to obtain the stern trim state by flap operation reduces the control force of the hull attitude and causes a control problem. . Furthermore, it is possible to increase the wing attachment angle in advance, but this is not possible in consideration of cruising during wing running.

【0009】本考案の目的は、かかる点に鑑み、上部船
体が完全に水面上から浮上する翼走状態では上部船体の
浮力がゼロになることに着目し、上部船体の浮心および
揚力作用点を一定の位置関係にもってくることにより、
船尾トリムが自然に得られ、従って自動的に翼迎角を大
きくできるようにした複合支持型船舶を提供することに
ある。
In view of the above point, the object of the present invention is to focus on the fact that the buoyancy of the upper hull becomes zero when the upper hull completely floats above the water surface and the buoyancy of the upper hull becomes zero. By bringing to a fixed positional relationship,
It is an object of the present invention to provide a composite support type ship in which the stern trim is naturally obtained, and therefore the wing attack angle can be automatically increased.

【0010】[0010]

【課題を解決するための手段】上記目的達成のため、本
考案は、上部船体と下部船体とからなる船体を有し、翼
走時には下部船体の浮力と水中翼の揚力の両方で船体を
支持する複合支持型の船舶において、船全体の重心より
前方に下部船体の浮心位置を、すぐ後方に揚力作用点を
位置させると共に、艇走から翼走状態へ移行するまでの
間の吃水における上部船体の浮心位置が揚力作用点の更
に後方にくるように設定したことを特徴とする超高速複
合支持型船舶である。
To achieve the above object, the present invention has a hull consisting of an upper hull and a lower hull, and supports the hull by both the buoyancy of the lower hull and the lift of a hydrofoil during wing running. In a multi-support type ship, the buoyancy position of the lower hull is located in front of the center of gravity of the entire ship, and the lift action point is located immediately behind it, and the upper part of the water during the transition from boat running to wing running It is an ultra-high speed composite support type ship, characterized in that the buoyancy position of the hull is set further behind the point of lift action.

【0011】[0011]

【作用】上記構成において、艇走時において船速を上昇
させていくと、揚力が増加して吃水は減少し、上部船体
の浮力が減少していく。これに伴い揚力によるモーメン
トが増加する一方、上部船体の浮心位置が充分後方にあ
るため上部船体の浮力によるモーメントの減少がこれを
上まわるようになり、船尾の方が多少下がる船尾トリム
の状態となる。これにより自動的に水中翼の迎角(atta
ck angle) は大きくなり、船速の増加とともに翼揚力
(船速の2乗に比例)を増大させることができる。そし
て、ある所定の船速になった段階で水面上から上部船体
は浮上して、スムーズに翼走状態を形成するようにな
る。
In the above structure, when the boat speed is increased while the boat is running, the lift is increased, the water is reduced, and the buoyancy of the upper hull is decreased. Along with this, the moment due to lift increases, but since the buoyancy position of the upper hull is sufficiently rearward, the decrease in moment due to the buoyancy of the upper hull exceeds this, and the stern slightly lowers the stern trim state. Becomes This automatically causes the attack angle of the hydrofoil (atta
ck angle) becomes larger, and the wing lift (proportional to the square of the ship speed) can be increased as the ship speed increases. Then, at a stage when a certain predetermined ship speed is reached, the upper hull floats above the water surface to smoothly form a wing running state.

【0012】[0012]

【実施例】以下、本考案の実施例を図面を参照しながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本考案にかかる複合支持型船舶の概
略側面図、図2はその横断面図である。
FIG. 1 is a schematic side view of a composite-support type ship according to the present invention, and FIG. 2 is a cross-sectional view thereof.

【0014】これらの図において、1は上部船体、2は
下部船体、3はセンタストラット、4は固定水中翼を示
す。なお、5はサイドストラット、6はウォータジェッ
ト噴出口、7は操縦室等が配置されている上部構造物、
Fは船首部、Aは船尾部を示す。
In these drawings, 1 is an upper hull, 2 is a lower hull, 3 is a center strut, and 4 is a fixed hydrofoil. In addition, 5 is a side strut, 6 is a water jet spout, 7 is an upper structure in which a cockpit and the like are arranged,
F indicates the bow and A indicates the stern.

【0015】図示するように複合支持型の船型は、甲板
上広い積載スペース8を有する上部船体1と、この船底
中央部に前後に垂下された断面翼状のセンタストラット
3と、この前後のセンタストラット3の下端部に上部船
体1とほぼ同長の魚雷状の下部船体2と、この下部船体
2のストラットとほぼ同じ位置において両側に略水平に
突設した固定(それ自身迎角の調整はできない)の水中
翼4から主になる。この水中翼4の先端部付近は、上部
船体1の両船側から垂下したサイドストラット5により
支持されている。なお、水中翼4には船体の姿勢制御等
のための複数のフラップ(図示せず)がそれぞれ付設さ
れている。航走中には後部のセンタストラット3の下方
の下部船体2に設けた吸入口(図示せず)からウォータ
ジェットポンプにより水を吸引して船尾端の噴出口6よ
り高速で噴射して船体が前進推力を得るようになってい
る。
As shown in the figure, the composite support type ship has an upper hull 1 having a wide loading space 8 on a deck, a center strut 3 having a wing-shaped cross section suspended in the center of the bottom of the ship, and front and rear center struts. A torpedo-shaped lower hull 2 having the same length as that of the upper hull 1 at the lower end of 3 and a substantially horizontal projection fixed to both sides at substantially the same position as the struts of the lower hull 2 (the angle of attack itself cannot be adjusted. ) From the hydrofoil 4 of. The vicinity of the tip of the hydrofoil 4 is supported by side struts 5 hanging from both sides of the upper hull 1. The hydrofoil 4 is provided with a plurality of flaps (not shown) for controlling the attitude of the hull. During navigation, water is sucked from a suction port (not shown) provided in the lower hull 2 below the rear center strut 3 by a water jet pump and jetted at high speed from a jet end 6 at the stern end to It is designed to obtain forward thrust.

【0016】かかる複合支持型船舶の前進航走状態に
は、前述した通り艇走状態と翼走状態の2つがある。す
なわち、港湾内や離着岸時等の低速時には水中翼の揚力
が無くなるので、上部船体1が着水して航走する艇走状
態と、高速走行時には水中翼4の揚力と下部船体2の浮
力とで船の全重量を支持して上部船体1を水面WL上に
浮上させて航走する翼走状態である。このように複合支
持型船舶では、通常の排水量型船舶とは全く異なった航
走状態を形成するが、テイクオフ時には未だ船速が低い
ため所定の翼揚力を発生させるためには翼迎角を大きく
とられねばならない。しかし水中翼4は固定であるの
で、結局船尾トリムにしなければ迎角は大きくできな
い。これを例えば翼フラップにより行うことは船体姿勢
の制御力の減少という問題を生起し、一方、バラスト調
整で行おうとすると船体軽量化の要請に反し、推進性能
上好ましくない。
As described above, there are two forward running states of the composite-support type ship, namely, the boat running state and the wing running state. That is, since the lift of the hydrofoil is lost at low speeds such as in a harbor or at the time of taking off and landing, the upper hull 1 is in a boating state in which it is in contact with water, and at high speed, the lift of the hydrofoil 4 and the buoyancy of the lower hull 2 are high. Is a wing running state in which the upper hull 1 is supported on the entire weight of the ship to float above the water surface WL for sailing. In this way, a composite support type ship forms a completely different sailing state from a normal displacement type ship, but since the ship speed is still low at the time of take-off, the wing attack angle is large in order to generate a predetermined wing lift. Must be taken. However, since the hydrofoil 4 is fixed, the angle of attack cannot be increased unless the stern trim is used. Doing this with, for example, wing flaps causes a problem of reducing the controllability of the hull attitude, and on the other hand, attempting to adjust the ballast is unfavorable in terms of propulsion performance, contrary to the requirement for weight reduction of the hull.

【0017】そこで、本考案では、図3(a) に示す如
く、上部船体1の浮心位置BU が揚力作用点(水中翼が
複数ある場合にはそれらの揚力の合力の作用点)Lより
充分後方にくるように構成されている。そのためには上
部船体1の形状や水中翼4の前後方向における設置位置
等を考慮し、浮心位置BU と揚力作用点Lが所定の位置
にくるよう設計する必要がある。図中、BL は下部船体
2の浮心位置又は浮力、Gは船全体の重心位置を示す。
Therefore, in the present invention, as shown in FIG. 3 (a), the buoyancy position B U of the upper hull 1 is at the lift action point (when there are multiple hydrofoils, the point of action of the combined lift force) L It is configured so that it comes farther back. For that purpose, it is necessary to consider the shape of the upper hull 1, the installation position of the hydrofoil 4 in the front-rear direction, and the like so that the buoyancy position B U and the lift action point L are located at predetermined positions. In the figure, BL indicates the buoyancy position or buoyancy of the lower hull 2, and G indicates the center of gravity position of the entire ship.

【0018】このように構成することによって、イーブ
ンキールの艇走状態から船速を上昇させていくと、揚力
が増加して上部船体1が浮上するにつれて吃水も減少し
ていく。すると、図3(b) に示す如く揚力が増加する一
方、上部船体1の浮力が小さくなり、その浮心位置BU
が充分後方にあるために、上部船体1の浮力BU による
モーメント(BU ×GB U )の減少が揚力Lによるモー
メント(L×GL)の増加を上まわって、船尾側へのト
リムモーメント(BL ×GB L )が船首側へのトリムモ
ーメント(BU ×GB U +L×GL)より大きくなる結
果、船体は自然に船尾トリム状態を形成するようにな
る。これによって、自動的に翼の迎角が増大して揚力が
増加し、艇走状態から円滑にテイクオフできるようにな
る。ここに、GB U GB L GLは、それぞれ上部船
体1の浮心位置BU 、下部船体2の浮心位置BL および
揚力作用点Lから船全体の重心位置Gまでの距離を示
す。
With this structure, when the boat speed is increased from the running state of the even keel, the lift is increased and the amount of water diffusing is reduced as the upper hull 1 floats. Then, as shown in FIG. 3 (b), the lift force increases while the buoyancy force of the upper hull 1 decreases and the buoyancy position B U
There To sufficiently behind, reduction in moment by buoyancy B U of the upper hull 1 (B U × GB U) is exceeded the increase in moment (L × GL) by the lift L, the trim moment of the aft side ( B L × GB L) trim moment (B U × GB U + L × GL) from greater results to bow side, the hull will form the stern trim condition naturally. As a result, the angle of attack of the wing is automatically increased and the lift is increased, so that the boat can be smoothly taken off. Here, GB U , GB L , and GL indicate the distances from the center of gravity position B U of the upper hull 1, the center of gravity B L of the lower hull 2 and the lift acting point L to the center of gravity G of the entire ship, respectively.

【0019】[0019]

【考案の効果】以上説明したように、本考案によれば、
複合支持型船舶において上部船体の浮心位置が揚力作用
点の後方に位置するよう構成したので、バラスト調整な
いしフラップ制御等によらずとも艇走からテイクオフに
至る過程において自然に船尾トリムを形成するよう船体
姿勢制御が可能となる。その結果、テイクオフ時には翼
迎角が自動的に大きくなって翼揚力を増大できることか
らスムーズに翼走状態へ移行できようになる。
As described above, according to the present invention,
Since the center of buoyancy of the upper hull is located behind the lift action point in a compound-supported ship, a stern trim is naturally formed during the process from boating to take-off, without ballast adjustment or flap control. It is possible to control the attitude of the ship. As a result, the wing attack angle is automatically increased at the time of take-off, and the wing lift can be increased, so that the wing can smoothly transition to the wing running state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の実施例にかかる複合支持型船舶の側面
図である。
FIG. 1 is a side view of a composite support type ship according to an embodiment of the present invention.

【図2】同横断面図である。FIG. 2 is a transverse sectional view of the same.

【図3】(a) は上部船体の浮心と揚力作用点との位置関
係を示す図、(b) は船尾トリムした状態を示す図であ
る。
FIG. 3 (a) is a diagram showing a positional relationship between the center of buoyancy of the upper hull and a lift action point, and FIG. 3 (b) is a diagram showing a stern trimmed state.

【図4】(a) 、(b) は、複合支持型船舶における航走状
態を示すための側面図と横断面図である。
4 (a) and 4 (b) are a side view and a cross-sectional view showing a sailing state of the composite support type ship.

【符号の説明】[Explanation of symbols]

1…上部船体 2…下部船体 3…センタストラット 4…水中翼 5…サイドストラット BU …(上部船体の)浮心位置又は浮力 BL …(下部船体の)浮心位置又は浮力 L…揚力作用点又は揚力 G…船全体の重心位置1 ... Upper hull 2 ... Lower hull 3 ... Center strut 4 ... Hydrofoil 5 ... Side strut B U ... Floating position or buoyancy of (upper hull) BL ... Floating position or buoyancy of (lower hull) L ... Lifting action Point or lift G ... Center of gravity of the entire ship

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】 上部船体と下部船体とからなる船体を有
し、翼走時には下部船体の浮力と水中翼の揚力の両方で
船体を支持する複合支持型の船舶において、船全体の重
心より前方に下部船体の浮心位置を、すぐ後方に揚力作
用点を位置させると共に、艇走から翼走状態へ移行する
までの間の吃水における上部船体の浮心位置が揚力作用
点の更に後方にくるように設定したことを特徴とする超
高速複合支持型船舶。
1. A composite support type ship having a hull composed of an upper hull and a lower hull, and supporting the hull by both the buoyancy of the lower hull and the lift of a hydrofoil when the wing is running, the weight of the entire ship
The center of buoyancy of the lower hull is located in front of the center of the body, and lift is created just behind it.
Position the point and move from boat running to wing running
Lifting action of the center of buoyancy of the upper hull during stuttering
An ultra-high speed composite support type ship characterized by being set so as to be further behind the point .
JP1991059428U 1991-07-29 1991-07-29 Ultra-high speed composite support vessel Expired - Fee Related JP2502918Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991059428U JP2502918Y2 (en) 1991-07-29 1991-07-29 Ultra-high speed composite support vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991059428U JP2502918Y2 (en) 1991-07-29 1991-07-29 Ultra-high speed composite support vessel

Publications (2)

Publication Number Publication Date
JPH0512390U JPH0512390U (en) 1993-02-19
JP2502918Y2 true JP2502918Y2 (en) 1996-06-26

Family

ID=13112987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991059428U Expired - Fee Related JP2502918Y2 (en) 1991-07-29 1991-07-29 Ultra-high speed composite support vessel

Country Status (1)

Country Link
JP (1) JP2502918Y2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5449790A (en) * 1977-09-22 1979-04-19 Eiji Aida Engine room attached to exterior of bottom of hull for large high speed hydrofoil craft
JPS558924A (en) * 1978-06-29 1980-01-22 Shin Meiwa Ind Co Ltd Boat

Also Published As

Publication number Publication date
JPH0512390U (en) 1993-02-19

Similar Documents

Publication Publication Date Title
US3800724A (en) Winged sailing craft
EP0080308B1 (en) Foil stabilized monohull vessel
US5813358A (en) Surface-piercing surface effect marine craft
EP0545878B1 (en) Multi-hull vessel
JPH11508507A (en) Water surface navigation
US6805068B1 (en) Hydrofoil system for lifting a boat partially out of water an amount sufficient to reduce drag
RU2124451C1 (en) Sea-going vessel
JP3245204B2 (en) Hull structure of a catamaran
JP2502918Y2 (en) Ultra-high speed composite support vessel
JP2502917Y2 (en) Composite support type super high speed ship
JPH085917Y2 (en) Strut structure in multi-support type ships
US20220411020A1 (en) Watercraft
JPH09286390A (en) Method for powering hydrofoil boat take off and arrangement therefor
US4563968A (en) Boat with improved hull
JP2003285790A (en) Hull structure for reducing propulsion resistance
JPH0580992U (en) Composite support ship
JPH0516578U (en) Lower hull shape of compound support type ship
JPH0332993A (en) Composite supporting type super-high speed boat
JP2728625B2 (en) Take-off assist device for high-speed ship
JPH0714150Y2 (en) The lower hull of a composite support type super high speed ship
JPH0739757Y2 (en) Composite support type super high speed ship
JPH0314479Y2 (en)
JPH0745419Y2 (en) The lower hull of a composite support type super high speed ship
JPH085918Y2 (en) Hydrofoil of a composite-supported ship
JPH0520991U (en) Composite supported vessel with two or more hydrofoils

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees