JPH0745419Y2 - The lower hull of a composite support type super high speed ship - Google Patents

The lower hull of a composite support type super high speed ship

Info

Publication number
JPH0745419Y2
JPH0745419Y2 JP1989077919U JP7791989U JPH0745419Y2 JP H0745419 Y2 JPH0745419 Y2 JP H0745419Y2 JP 1989077919 U JP1989077919 U JP 1989077919U JP 7791989 U JP7791989 U JP 7791989U JP H0745419 Y2 JPH0745419 Y2 JP H0745419Y2
Authority
JP
Japan
Prior art keywords
hull
lower hull
bow
ultra
high speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989077919U
Other languages
Japanese (ja)
Other versions
JPH0316593U (en
Inventor
亮太郎 荻原
哲朗 池渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP1989077919U priority Critical patent/JPH0745419Y2/en
Publication of JPH0316593U publication Critical patent/JPH0316593U/ja
Application granted granted Critical
Publication of JPH0745419Y2 publication Critical patent/JPH0745419Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、概ね40乃至50ノット以上のスピードで航走
する超高速船に係り、詳しくは船を水中翼の揚力と下部
船体(ロワーハルあるいは没水体ともいう)の浮力の両
方で支持する形式の複合支持型超高速船の下部船体の形
状に関する。
[Detailed Description of the Invention] [Industrial field of application] This invention relates to an ultra-high-speed ship that travels at a speed of 40 to 50 knots or more, and more specifically, relates to the lift of a hydrofoil and the lower hull (lower hull or lower hull). Also referred to as submerged body) relates to the shape of the lower hull of a composite-supported ultra-high-speed ship of the type supported by both buoyancy.

〔従来の技術〕[Conventional technology]

近時、陸海空の各種交通手段の高速化へのニーズが高ま
るなか、内海、離島等の旅客船航路もその例に漏れず、
快適性、高速性を重視したサービス向上を目指した大き
な変革期が訪れつつある。最近我が国でも高速時水中翼
で船体の全重量を支えてウォータジェット推進により超
高速で航走する超高速旅客船が登場して、かかる旅客分
野のニーズに応えんとしている。
In recent years, as needs for speeding up various means of transportation by land, sea, and air have increased, passenger ship routes such as inland seas and remote islands have not been overlooked.
A major period of change is approaching with the aim of improving services that emphasize comfort and speed. Recently, even in Japan, an ultra-high-speed passenger ship, which supports the entire weight of the hull at high speeds and travels at ultra-high speeds by water jet propulsion, has appeared to meet the needs of the passenger sector.

また、貨物専用輸送の分野でも、大量の生鮮食料品(野
菜や水産物等)や電子部品等を需要地へ即日(当日)配
送するために上記と同様超高速化のニーズが大きく高ま
って来ている。従来かかる生鮮品等は、鮮度低下防止の
ために大量輸送の場合には主に航空貨物として扱われる
ことが多いが、貨物専用の航空機にしてもその輸送重量
はせいぜい数十トン程度に止まり、近年の大量荷動きの
動向に対応できるものではない。
In the field of freight-only transportation, the need for ultra-high-speed processing is also increasing significantly in order to deliver large amounts of perishable food products (vegetables, seafood, etc.) and electronic components to demand areas on the same day (the same day). There is. Conventionally, such perishable products are often treated as air cargo mainly in the case of mass transportation in order to prevent deterioration of freshness, but even with an airplane dedicated to freight, the transportation weight is at most about tens of tons, It is not able to cope with the recent trend of mass cargo movement.

また一方、近年、電子部品のような精密機器部品は労働
力の安価な東南アジアや台湾といった日本に比較的近い
国で生産され、それを日本に逆輸入して完成品を生産す
る方式が盛んとなってきている。この場合、管理上など
の都合からその在庫量を極力減少させるため、かかる電
子機器部品等をその時の生産に必要なパーツを必要な量
だけタイムリーに入手したいという要望が強く打ち出さ
れている。
On the other hand, in recent years, precision equipment parts such as electronic parts are produced in countries such as Southeast Asia and Taiwan, which have low labor costs, and are relatively close to Japan. It has become to. In this case, in order to reduce the amount of the inventory as much as possible for the convenience of management, there is a strong demand for timely acquisition of the required amount of the parts required for the production of such electronic device parts at that time.

しかしながら、上述のような大量かつ超高速輸送の要求
に対し、従来の高速貨物(コンテナ)船では輸送日数が
かかり過ぎて対応できず、航空機輸送とした場合には重
量の制限があるうえ輸送費も割高となって生産コストに
影響するという不都合を生じている。
However, conventional high-speed freight (container) vessels cannot handle the above-mentioned demands for large-volume and ultra-high-speed transportation because it takes too many days to transport them, and when they are transported by air, there are weight restrictions and transportation costs. However, the cost is high and the production cost is affected.

また、上述した超高速旅客船と同様な形式の超高速貨物
船を採用するにしても、船体重量をすべて水中翼の揚力
で支持するタイプでは、自ずとその載荷重量にも制限が
出てくる。例えばこの船型で載荷重量数百トンの貨物船
を仮に設計した場合には巨大な水中翼が必要となり、実
現不可能と言われている。
Even if an ultra-high-speed cargo ship of the same type as the above-mentioned ultra-high-speed passenger ship is adopted, the type in which the weight of the hull is entirely supported by the lift of the hydrofoil will naturally limit the amount of load. For example, if a freighter with a loading capacity of several hundred tons is designed with this type of ship, huge hydrofoils will be required, and it is said that this is not feasible.

そこで、従来より第10図(a)側面図、同図(b)正面
図に示すように船体を上部船体1と下部船体2とで構成
し、この両船体間の前後にストラット3を固定して設
け、更にこの下部船体2の両側に水中翼4を突設した複
合支持型の船舶が提案されている(例えば、特開昭61-5
4382号公報、実開昭55-102693号公報参照)。ここで、
複合支持型とは、超高速で航走時、船体重量を下部船体
2の浮力と水中翼4の揚力の両方でもって支持する形式
の船型をいう。つまり、この複合支持型超高速船におい
ては、第10図(a),(b)に示すように低速時には上
部船体1の下部が水中に没するd2の吃水で航走(以下、
この航走状態を「艇走」という)し、超高速になると水
中翼4の揚力により浮上し、d1の吃水で航走(この航走
状態を以下「翼走」という)する。
Therefore, conventionally, as shown in FIG. 10 (a) side view and FIG. 10 (b) front view, the hull is composed of an upper hull 1 and a lower hull 2, and struts 3 are fixed between the front and rear of the hull. A multi-support type ship in which hydrofoils 4 are provided on both sides of the lower hull 2 is proposed (for example, Japanese Patent Laid-Open No. 61-5).
4382 gazette, see U.S.A. 55-102693 gazette). here,
The composite support type is a type of ship that supports the weight of the hull by both the buoyancy of the lower hull 2 and the lift of the hydrofoil 4 when traveling at ultra-high speed. That, in this composite support type super high speed craft, FIG. 10 (a), the low speed as shown in (b) run Wataru in Kissui of d 2 where the lower the upper hull 1 is submerged in the water (hereinafter,
This coastal run state) called "boat run", it emerged by lift hydrofoil 4 becomes ultrafast, run Wataru in Kissui of d 1 (the coastal run state hereinafter referred to as "Tsubasahashi") to.

ところで、下部船体2の形状は、一般にはその全体が軸
対称体のものが考えられる(特開昭61-54382号、特開昭
61-46785号、特開昭61-46787号参照)。
By the way, the shape of the lower hull 2 is generally considered to be an axisymmetric body as a whole (Japanese Patent Laid-Open Nos. 61-54382 and 61-54382).
61-46785, JP-A-61-46787).

〔考案が解決しようとする課題〕[Problems to be solved by the device]

しかしながら、下部船体2が軸対称体で構成されている
場合には、本考案が対象とするような超高速で航走する
と、速度の増加に伴って頭部側が下方に沈みこもうとす
る傾向(頭下げ傾向という)が顕著になる。この傾向が
あまり大きくない場合には、水中翼4等の制御機構を用
いて制御(補正)することも不可能ではないが、本質的
には下部船体2の形状を改良して上述のような傾向を解
消あるいは減少させることが好ましい。
However, when the lower hull 2 is formed of an axisymmetric body, the head side tends to sink downward as the speed increases when sailing at an ultra-high speed as intended by the present invention. (The tendency to head down) becomes remarkable. If this tendency is not so great, it is not impossible to control (correct) using a control mechanism such as the hydrofoil 4, but essentially, the shape of the lower hull 2 is improved and the It is preferable to eliminate or reduce the tendency.

即ち、上述のように、下部船体2が基本的に上述のよう
な形状を有している場合には、水中翼4等の制御機構を
用いた制御は、その特性を加味した制御にしなければな
らず、一般に速度とともに変化する上記傾向の特性に対
応した非常に複雑な制御をしなければならないこととな
る。特に、そのときの天候によって著しく変化する波浪
中を翼走するときには、種々異なる波浪の影響等によっ
て上記傾向も変化することになり、この変化に自動的に
対応させようとすると極めて複雑な制御を強いられるこ
ととなる。
That is, as described above, when the lower hull 2 basically has the above-described shape, the control using the control mechanism such as the hydrofoil 4 must be a control in which its characteristics are taken into consideration. However, in general, a very complicated control corresponding to the characteristic of the above tendency that changes with speed must be performed. In particular, when winging in waves that significantly change due to the weather at that time, the above tendency also changes due to the influence of various waves, etc., and it is extremely complicated control to automatically respond to this change. You will be forced.

本考案は、上述のような超高速で翼走するときの下部船
体の上記傾向に鑑み、翼走に伴い下部船体に生ずる船体
抵抗値を所定以下に且つ浮力を所定以上に維持しつつ、
超高速時にも上述のように下部船体の船首が下方に沈む
ような傾向を生じない超高速船の下部船体を提供するこ
とを目的とする。
In view of the above tendency of the lower hull when wing-running at an ultra-high speed as described above, the present invention keeps the hull resistance value generated in the lower hull along with the wing running below a predetermined value and maintains the buoyancy above a predetermined value.
An object of the present invention is to provide a lower hull of an ultra-high-speed ship that does not cause the bow of the lower hull to sink downward as described above even at an extremely high speed.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するため、上部船体と下部船体とからな
る船体を有し、超高速航走中は全体が没水している下部
船体の浮力と水中翼の揚力の両方で、上記上部船体を水
面上に支持する複合支持型の超高速船において、 上記上部船体と下部船体を、離間した部位で、断面翼状
の複数の柱状ストラットで連結し、 且つ、上記全体が没水している下部船体の船首部の底面
側を、船体の中心線(各セクションの中心を結んで形成
される線をいう。本明細書において同じ)に対して、該
船首部の上面側の下方への反りに比べて、大きな上方へ
の反り(反りあるいはその一部が平面状に構成されてい
るものを含む。本明細書において同じ)を有するよう形
成するとともに、下部船体の上面の角部をラウンド状に
形成したことを特徴とする。
In order to achieve the above purpose, the hull consists of an upper hull and a lower hull, and the entire hull is submerged during ultra-high speed navigation.The upper hull is supported by both the buoyancy of the lower hull and the lift of the hydrofoil. In a multi-support type ultra-high-speed ship that supports on the surface of water, the upper hull and the lower hull are connected to each other by a plurality of columnar struts with wing-shaped cross-sections at separate positions, and the entire lower hull is submerged. The bottom surface side of the bow portion of the bow is compared to the downward warp of the top surface side of the bow portion with respect to the center line of the hull (refers to the line formed by connecting the centers of the sections. And a large upward warp (including a warp or a part of which is formed in a planar shape; the same in this specification), and a rounded corner portion of the upper surface of the lower hull. It is characterized by having done.

〔作用〕[Action]

しかして、上述のように構成することにより、超高速航
走時における下部船体の船首部の底面側の圧力分布が、
上述の軸対称体(第10図(a),(b)参照)のものに
比べて、高くなるため、上向きの力が働き、船首部から
生じる下方へのミッドシップまわりのモーメント(頭下
げモーメントともいう)が減少し、下部船体が没水状態
で超高速航行するときにおける船首部が下方に沈みこも
うとする傾向は、著しく減少若しくは無くすことができ
る。尚、このミッドシップまわりのモーメントとは、各
部位に働く圧力にその部位からミッドシップまでの距離
を乗算して得られる値である。
By configuring as described above, the pressure distribution on the bottom side of the bow of the lower hull during ultra-high speed navigation is
Since it is higher than that of the above-mentioned axisymmetric body (see FIGS. 10 (a) and 10 (b)), an upward force acts and the downward moment around the midship generated from the bow (also referred to as the head-down moment) The tendency of the bow to sink downward when the lower hull is submerged in a submerged state can be significantly reduced or eliminated. The moment around the midship is a value obtained by multiplying the pressure acting on each part by the distance from the part to the midship.

〔実施例〕〔Example〕

以下、本考案の実施例を図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本考案にかかる下部船体を具備した複合支持型
超高速船を船底方向から見た斜視図、第2図は同じく上
方から見た斜視図、第3図は同じく下部船体の船首部分
をウォータラインを付して示した部分側面図、第4図は
同じく下部船体の船首部分の部分平面図である。
FIG. 1 is a perspective view of a composite support type ultra high-speed ship equipped with a lower hull according to the present invention as seen from the bottom direction, FIG. 2 is a perspective view of the same from above, and FIG. 3 is a bow portion of the lower hull. FIG. 4 is a partial side view showing a water line, and FIG. 4 is a partial plan view of the bow portion of the lower hull.

第1図において、1は上部船体、2は航走時にも没水す
る下部船体、3は上記上部船体1と下部船体2を連結す
るストラット、4は下部船体2の側部に付設された水中
翼、4Aは水中翼4に付設されたフラップ、5は推進用の
ウォータジェット噴出口を示す。
In FIG. 1, 1 is an upper hull, 2 is a lower hull that is submerged during navigation, 3 is a strut that connects the upper hull 1 and the lower hull 2, and 4 is an underwater attached to a side portion of the lower hull 2. Wings, 4A is a flap attached to the hydrofoil 4, and 5 is a water jet jet for propulsion.

第1図に示すように複合支持型の船型は、主として、上
部船体1と、この船底中央部に前後に配設された断面翼
状のストラット3と、この前後のストラット3の下端部
に連結され上部船体1とほぼ同長の長さを有する下部船
体2と、この下部船体2のストラット位置において両側
に略水平に突設した水中翼4からなる。そして、この水
中翼4には船体の姿勢制御等のための複数のフラップ4A
がそれぞれ付設されている。なお、航走中には後部のス
トラット3の下端付近に設けた吸入口(図示せず)から
水を吸引して船尾端に設けたウォータジェット噴出口5
より高速で噴射して船体が前進推力を得るようになって
いる。
As shown in FIG. 1, the composite-support type hull is mainly connected to an upper hull 1, struts 3 having wing-shaped cross-sections arranged at the center of the bottom of the hull, and lower ends of the struts 3 at the front and rear. It comprises a lower hull 2 having a length substantially the same as that of the upper hull 1, and hydrofoils 4 projecting substantially horizontally on both sides at the strut position of the lower hull 2. The hydrofoil 4 has a plurality of flaps 4A for controlling the attitude of the hull and the like.
Are attached respectively. While the boat is running, water is sucked from a suction port (not shown) provided near the lower end of the rear strut 3 and a water jet jet port 5 provided at the stern end.
It is designed to jet at a higher speed and the hull will obtain forward thrust.

そして、上述のような構成を有する複合支持型超高速船
は、超高速航走する際には、上記上部船体1が、没水し
ている上記下部船体2の浮力と上記水中翼4の揚力によ
って水面上に浮上した状態で、航走(翼走)する。
Then, in the multi-support type ultra-high-speed ship having the above-mentioned configuration, when the super-high speed ship is sailing, the buoyancy of the lower hull 2 and the lift of the hydrofoil 4 in which the upper hull 1 is submerged. It floats above the surface of the water and runs (wings).

本考案の対象である上記下部船体2は、第3図あるいは
第1図,第2図に図示するように、その船首部2Aの底面
2a側を、船体の中心線O(第3図参照)に対して、該船
首部2Aの上面2b側の下方への反りに比べて、大きな上方
への反りを有するよう形成している。即ち、本実施例の
場合には、船首部2Aの上面2bはほぼ水平面状で、底面2a
は大きな曲率で上方へ反り上がるよう構成されている。
従って、下部船体2の船首部2Aにおいては中心線O(第
3図参照)が上方に偏心した状態となっている。
The lower hull 2 which is the subject of the present invention is, as shown in FIG. 3, FIG. 1, or FIG.
The side 2a is formed so as to have a large upward warp with respect to the centerline O (see FIG. 3) of the hull, as compared with the downward warp on the upper surface 2b side of the bow 2A. That is, in the case of this embodiment, the upper surface 2b of the bow 2A is substantially horizontal, and the bottom surface 2a
Is designed to warp upward with a large curvature.
Therefore, in the bow portion 2A of the lower hull 2, the center line O (see FIG. 3) is eccentric upward.

そして、上記底面2aの上方への反り上がりは、本実施例
の場合、概ね前部のストラット3の前縁近傍からはじま
っている。
In the case of the present embodiment, the upward warp of the bottom surface 2a generally begins near the front edge of the front strut 3.

なお、上記実施例では、反り上がりの面が大きな曲率の
線で構成されているが平面で構成されていてもよく、そ
の場合には、他の面との接続部は曲線状(R状)になる
よう加工をしておくことが望ましい。また、本実施例で
は、水平面内での直進性を向上させることを目的とし
て、下部船体2の船尾2B部分は、あたかも魚の尾鰭の如
く垂直平面で構成されるヒレ状に形成されている。ま
た、上記下部船体2の上面は第5図(c)に図示するよ
うに、該上面の角部がラウンド状(角を所謂「ラウンド
加工」した状態をいう)に形成されている。
In the above embodiment, the warped surface is formed by a line having a large curvature, but it may be formed by a flat surface. In that case, the connection portion with another surface is curved (R-shaped). It is desirable to process so that Further, in the present embodiment, the stern 2B portion of the lower hull 2 is formed in a fin-like shape composed of a vertical plane as if it were a fin of a fish, for the purpose of improving straightness in a horizontal plane. Further, as shown in FIG. 5 (c), the upper surface of the lower hull 2 is formed so that the corners of the upper surface are round (the corners are so-called "rounded").

しかして、このように下部船体2の船首部2Aで、その底
面2aを、船体の中心線Oに対して、該船首部2Aの上面2b
側の下方への反りに比べて、大きな上方への反りを有す
るよう形成することにより、超高速航走において、該下
部船体2の船首における底面側の圧力分布が、第6図
(a)〜(d)(あるいは第10図(a),(b))に図
示する軸対称体のものに比べて、高くなり、この結果、
船首部から生じる下方への下部船体2のミッドシップま
わりのモーメント(頭下げモーメントという)が減少す
ることに起因して、この船首部2Aから、下部船体2のミ
ッドシップまわりの上方へのモーメントを生じさせる。
この結果、下部船体が没水状態で超高速航走するときに
おいても、該下部船体の船首が下方に沈みこもうとする
傾向は著しく減少させることができる。
Thus, in this manner, the bottom 2a of the bow 2A of the lower hull 2 with respect to the center line O of the hull is the upper surface 2b of the bow 2A.
The pressure distribution on the bottom side of the bow of the lower hull 2 at the bottom side of the lower hull 2 during ultra-high speed traveling is larger than that of the lower side of the lower hull 2 as shown in FIG. It becomes higher than that of the axisymmetric body shown in (d) (or FIGS. 10 (a) and (b)), and as a result,
Due to a decrease in the downward moment around the midship of the lower hull 2 (referred to as a head-down moment) generated from the bow, an upward moment around the midship of the lower hull 2 is generated from the bow 2A. .
As a result, the tendency of the bow of the lower hull to sink downward can be significantly reduced even when the lower hull travels at an ultrahigh speed in a submerged state.

本考案者は、上記作用効果を確認するため、上記第1図
〜第4図に示す下部船体と同様の船首部を有する下部船
体のモデル(第5図(a)〜(d)参照)と、軸対称体
からなる下部船体のモデル(第6図(a)〜(d)参
照)と、さらに逆に船首部分で船体の中心線に対して上
面側の下方への反りが底面側の上方への反りより大きく
なった下部船体のモデル(第7図(a)〜(d))を用
いて、水槽実験をおこなった。
In order to confirm the above-mentioned effects, the present inventor has confirmed that a lower hull model (see FIGS. 5 (a) to (d)) having a bow portion similar to the lower hull shown in FIGS. , A model of a lower hull consisting of an axisymmetric body (see FIGS. 6 (a) to (d)), and conversely, downward bow of the upper surface side with respect to the center line of the hull at the bow portion is higher than the bottom surface side. An aquarium experiment was conducted using a model of the lower hull that was larger than the warp (Figs. 7 (a) to (d)).

なお、上記モデルでは、参考例として示す第7図(a)
〜(d)に示すモデルのものを除いて、船尾側はヒレ状
に形成されていない。
In the above model, FIG. 7 (a) shown as a reference example.
Except for the model shown in (d), the stern side is not formed like fins.

また、下部船体の全体の容積(体積)が等しくなるよ
う、上記各モデルを形成している。
Further, each of the above models is formed so that the entire volume (volume) of the lower hull becomes equal.

さらに、この実験は、船首の形状と没水深度(第8図に
図示する、下部船体2の中心線Oから水面Lまでの距離
fを下部船体の厚みDで除して無次元化した値)の関係
をも明らかにするため、第9図に図示するように、没水
深度をパラメータとして比較している。
Furthermore, this experiment is a dimensionless value obtained by dividing the distance f from the center line O of the lower hull 2 to the water surface L by the thickness D of the lower hull, as shown in FIG. In order to clarify the relationship of), the submersion depth is compared as a parameter as shown in FIG.

即ち、本考案にかかる船首形状の場合には、縦軸に没水
している下部船体のモーメント係数をとった第9図に図
示するように、下部船体のトリム角を「0」にして航走
させたとき、「頭下げモーメント」の値「CM1」(第9
図参照)は「0」に近い略「0.05×10-3」程度になって
いるのに対して、第6図(a)〜(d)に示す軸対称体
の場合には、「頭下げモーメント」の値「CM2」(第9
図参照)はかなり大きい略「0.2×10-3」程度になって
いる。さらに、逆に第7図(a)〜(d)に示すモデル
の場合には、「頭下げモーメント」の値「CM3」(第9
図参照)はさらに大きい略「0.25×0.30×10-3」程度に
もなっている。このことより、下部船体の船首部分の中
心線を上方に偏心させることが、上記「頭下げモーメン
トを解消すること」に対して非常に有効であることが判
る。
That is, in the case of the bow shape according to the present invention, the trim angle of the lower hull is set to "0" as shown in FIG. 9 in which the moment coefficient of the lower hull submerged on the vertical axis is taken. When run, the value of "head down moment""C M1 " (9th
(Refer to the figure) is about “0.05 × 10 −3 ”, which is close to “0”, whereas in the case of the axisymmetric bodies shown in FIGS. Moment value "C M2 " (9th
(Refer to the figure) is about 0.2 x 10 -3, which is quite large. Further, conversely, in the case of the models shown in FIGS. 7 (a) to 7 (d), the value of "head-down moment""C M3 " (9th
(See the figure) is even larger, about 0.25 × 0.30 × 10 -3 . From this, it is understood that eccentricity of the center line of the bow portion of the lower hull upward is very effective for "eliminating the head-down moment".

そして、下部船体の船首部分の中心線を上方に偏心させ
るポイントを船尾側にさらにずらすことにより、この実
験に用いた下部船体のモデルのものよりさらに上記「頭
下げモーメント」を少なくする(「0」にする)ことが
できることが判明した。
By further shifting the point of eccentricity of the center line of the bow portion of the lower hull upward to the stern side, the above "head-down moment" is further reduced as compared with the model of the lower hull used in this experiment ("0 It turned out that it can be done.

ところで、上記下部船体のミッドシップまわりのモーメ
ント係数 とは、 で表されるものをいう。この式で、 はミッドシップまわりのモーメント、ρは航走する液体
の密度、Lは下部船体の長さ、Vは航走速度である。
By the way, the moment coefficient around the midship of the lower hull Is Is represented by. With this formula, Is the moment around the midship, ρ is the density of the traveling liquid, L is the length of the lower hull, and V is the traveling speed.

尚、上記第9図において、トリム角を上下に各2度傾斜
させた場合の上記モーメント係数についても記載し、上
方に2度傾斜させた場合には船首の下方への「頭下げ」
モーメント(モーメント係数)が「0」に近づきあるい
は「0」より大きくなるものがあるが、このようにトリ
ム角をつけた場合には、トリム角をつけない場合に比べ
て船体抵抗値が増加し有利な解決策とはならない。
In FIG. 9, the moment coefficient when the trim angle is inclined up and down by 2 degrees is also described. When the trim angle is inclined up by 2 degrees, the bow is lowered downward.
Some moments (moment coefficient) approach "0" or become larger than "0". However, when the trim angle is added in this way, the hull resistance value increases compared to when the trim angle is not added. It is not an advantageous solution.

また、没水深度を小さくすると、水面からの影響が大き
くなり、没水深度が大きい場合に比べて、上記「頭下
げ」モーメントが大きくなる傾向がある。従って、ある
程度以上の没水深度が必要であることが判る。
Further, when the submersion depth is made smaller, the influence from the water surface becomes larger, and the above “head-down” moment tends to become larger than when the submersion depth is large. Therefore, it is understood that the submergence depth above a certain level is necessary.

〔考案の効果〕[Effect of device]

以上説明したように、本考案は、複合支持型超高速船に
おいて下部船体の船首形状を上述のように構成したの
で、超高速で航走する場合にも、下部船体が下方に沈む
ような傾向を無くしあるいは大幅に減少させることがで
きる。
As described above, according to the present invention, since the bow shape of the lower hull is configured as described above in the composite support type ultra-high speed ship, the lower hull tends to sink downward even when traveling at ultra high speed. Can be eliminated or significantly reduced.

このため、複合支持型超高速船の航走時の制御が大幅に
軽減される。この結果、制御がシンプルになり、航走安
定性に関する信頼性が向上する。また、同様に制御がシ
ンプルになることにより、価格的に大きなウエイトを有
する制御関係が安価になり、超高速船の実施化を促進さ
せることができる。
As a result, the control of the composite-supported ultra-high-speed ship during sailing is greatly reduced. As a result, the control is simplified and the reliability regarding the traveling stability is improved. Further, similarly, by simplifying the control, the control relationship having a large weight in terms of price becomes cheap, and the implementation of the ultra-high speed ship can be promoted.

従って、本考案は、従来困難とされてきた大型の超高速
船の実現に大いに寄与するものである。
Therefore, the present invention greatly contributes to the realization of a large-scale ultra-high-speed ship, which has been difficult in the past.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案にかかる複合支持型超高速船を船底方向
から見た斜視図、第2図は同じく下部船体部分の上方か
ら見た斜視図、第3図は同じく下部船体の船首部分をウ
ォータラインを付して示した部分側面図、第4図は同じ
く下部船体の船首部分の平面図、第5図(a)は本考案
にかかる下部船体のモデルの形状を示す平面図,第5図
(b)は同モデルの形状をウォータラインとセクション
を示すラインを付して表した側面図、第5図(c)は第
5図(b)に表す各セクションを示すラインにおける断
面の右半分を示す図、第5図(d)は第5図(b)に表
す各ウォータラインにおける断面図、第6図(a)〜
(d),第7図(a)〜(d)は下部船体が軸対称体の
モデルおよび船首部で上面が底面の上方への反りより大
きな反りを有するモデルにおける上記第5図(a)〜
(d)と同様図、第8図は没水深度を説明する下部船体
の厚み(深さ)および該下部船体と水面との関係を示す
図、第9図は本考案にかかる下部船体の性能をそのモー
メント係数で表した他の形状の船首を有する下部船体と
の比較線図、第10図(a)(b)は従来の複合支持型船
の説明図である。 1……上部船体、2……下部船体、2A……船首部、2a…
…船首部の底面、2b……船首部の上面、O……下部船体
の中心線。
FIG. 1 is a perspective view of a composite-supported ultra-high-speed ship according to the present invention as seen from the bottom of the ship, FIG. 2 is a perspective view of the same from above the lower hull, and FIG. 3 is also a bow of the lower hull. FIG. 4 is a plan view showing the shape of a model of the lower hull according to the present invention. FIG. 5 (a) is a plan view showing the shape of the lower hull according to the present invention. FIG. 5B is a side view showing the shape of the model with a water line and a line indicating a section, and FIG. 5C is the right side of the section in the line showing each section shown in FIG. 5B. FIG. 5 (d) is a sectional view taken along each water line shown in FIG. 5 (b), and FIG. 6 (a)-
(D) and FIGS. 7 (a) to 7 (d) show the above-mentioned FIG. 5 (a) to FIG. 5 (a) in a model in which the lower hull has an axisymmetric body and in a model in which the upper surface of the bow has a greater warp than the bottom.
Similar to (d), FIG. 8 is a diagram for explaining the submersion depth, showing the thickness (depth) of the lower hull and the relationship between the lower hull and the water surface, and FIG. 9 is the performance of the lower hull according to the present invention. FIG. 10 (a) and FIG. 10 (b) are explanatory diagrams of a conventional composite-support type ship, in which FIG. 10 is a moment diagram showing a comparison with a lower hull having a bow of another shape. 1 ... Upper hull, 2 ... Lower hull, 2A ... Bow, 2a ...
… Bottom of the bow, 2b …… Top of the bow, O …… Center line of the lower hull.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】上部船体と下部船体とからなる船体を有
し、超高速航走中は全体が没水している下部船体の浮力
と水中翼の揚力の両方で、上記上部船体を水面上に支持
する複合支持型超高速船において、 上記上部船体と下部船体を、離間した部位で、断面翼状
の複数の柱状ストラットで連結し、 且つ、上記全体が没水している下部船体の船首部の底面
側を、船体の中心線に対して、該船首部の上面側の下方
への反りに比べて、大きな上方への反りを有するよう形
成するとともに、下部船体の上面の角部をラウンド状に
形成したことを特徴とする複合支持型超高速船の下部船
体。
1. A hull composed of an upper hull and a lower hull, which is entirely submerged during ultra-high speed traveling. The upper hull is brought above the water surface by both the buoyancy of the lower hull and the lift of the hydrofoil. In a composite support type ultra-high-speed ship that is supported by the above, the upper hull and the lower hull are connected by a plurality of columnar struts with wing-shaped cross-sections at separate locations, and the bow of the lower hull in which the entire body is submerged. The bottom side of the hull is formed to have a large upward warp with respect to the centerline of the hull as compared to the downward warp of the upper side of the bow, and the corners of the upper surface of the lower hull are rounded. The lower hull of a composite support type ultra-high speed ship, characterized in that
JP1989077919U 1989-06-30 1989-06-30 The lower hull of a composite support type super high speed ship Expired - Lifetime JPH0745419Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989077919U JPH0745419Y2 (en) 1989-06-30 1989-06-30 The lower hull of a composite support type super high speed ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989077919U JPH0745419Y2 (en) 1989-06-30 1989-06-30 The lower hull of a composite support type super high speed ship

Publications (2)

Publication Number Publication Date
JPH0316593U JPH0316593U (en) 1991-02-19
JPH0745419Y2 true JPH0745419Y2 (en) 1995-10-18

Family

ID=31620736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989077919U Expired - Lifetime JPH0745419Y2 (en) 1989-06-30 1989-06-30 The lower hull of a composite support type super high speed ship

Country Status (1)

Country Link
JP (1) JPH0745419Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02182594A (en) * 1989-01-10 1990-07-17 Nkk Corp Catamaran

Also Published As

Publication number Publication date
JPH0316593U (en) 1991-02-19

Similar Documents

Publication Publication Date Title
US6167829B1 (en) Low-drag, high-speed ship
US5129343A (en) Monohull fast ship
EP1718518B1 (en) Transonic hull and hydrofield (part iii-a)
AU625860B2 (en) Improved hull construction for a swath vessel
US7207285B2 (en) Variable hybrid catamaran air cushion ship
US9359048B2 (en) Fast ship
CN105836079B (en) Triangular-section power increases latent ballast-free partly latent and transports ship
US8955451B2 (en) Foil structure for providing buoyancy and lift
US5711239A (en) Propeller configuration for sinusoidal waterline ships
US6263819B1 (en) Low drag submerged displacement hull
US5701835A (en) Production vessel with sinusoidal waterline hull
JPH0745419Y2 (en) The lower hull of a composite support type super high speed ship
JPH0714150Y2 (en) The lower hull of a composite support type super high speed ship
US3489117A (en) Trapezoidal chine hull for displacement ships
WO1997024256A1 (en) Sinusoidal waterline hull configuration with skeg
WO1992017366A1 (en) Monohull fast ship
US3870005A (en) Houseboat hull
US9908589B1 (en) Hull shape for improved powering and seakeeping
US3520264A (en) Hydrofoil cargo ship
JP2502918Y2 (en) Ultra-high speed composite support vessel
US3530815A (en) Catamaran-type ships
JPH0739757Y2 (en) Composite support type super high speed ship
JP2502917Y2 (en) Composite support type super high speed ship
JPH0332993A (en) Composite supporting type super-high speed boat
JPS61125981A (en) Type of ship for high speed boat