WO2020016491A1 - Procede de pilotage d'un groupe moto-propulseur comprenant un alterno-demarreur - Google Patents

Procede de pilotage d'un groupe moto-propulseur comprenant un alterno-demarreur Download PDF

Info

Publication number
WO2020016491A1
WO2020016491A1 PCT/FR2019/051333 FR2019051333W WO2020016491A1 WO 2020016491 A1 WO2020016491 A1 WO 2020016491A1 FR 2019051333 W FR2019051333 W FR 2019051333W WO 2020016491 A1 WO2020016491 A1 WO 2020016491A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat engine
torque
alternator
starter
mth
Prior art date
Application number
PCT/FR2019/051333
Other languages
English (en)
Inventor
Alexandre BLANCHET
Julien MILLET
Yohan MILHAU
Gaetan Rocq
Philippe Bastiani
Original Assignee
Psa Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Psa Automobiles Sa filed Critical Psa Automobiles Sa
Publication of WO2020016491A1 publication Critical patent/WO2020016491A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0098Details of control systems ensuring comfort, safety or stability not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention is in the field of control of motor vehicle powertrains, for example with hybrid, thermal and electric engines.
  • a heat engine is commonly coupled to an alternator-starter which, when the heat engine is running, acts as an alternator and produces electrical power which is used to recharge a low voltage battery (12 V) and supply the on-board network to direct current also at low voltage (12 V).
  • alternator-starter draws a torque from the heat engine, which must therefore provide both the torque for the mobilization of the vehicle and the torque for the generation of electrical power.
  • the vehicle In rechargeable hybrid vehicles, having a heat engine and one or two electric machines, the vehicle also has a power battery, called traction battery, often lithium, capable of providing electrical power for the mobilization of the vehicle, and also capable, incidentally, of supplying the electrical power necessary to supply the on-board network for extended periods of time.
  • Power is supplied by means of a power converter to convert the power for the on-board network which, as we have said, is a circuit supplied with direct current 12 V.
  • the deactivation of the alternator-starter is necessarily rapid to avoid any overvoltage which could be transmitted to the on-board network, and it cannot be compensated, with sufficient reactivity, by a modification of the dynamics of the thermal engine, who reacts with too long a delay.
  • a method of controlling a motor-propulsion unit of a motor vehicle comprising a heat engine and an alternator. - starter coupled to said heat engine, the control being carried out during an interruption in the production of electric power by the alternator-starter, and comprising a reduction in the torque produced by the heat engine.
  • the method comprises at the time of said interruption a sliding of a controlled clutch of the powertrain coupling the heat engine to a train of drive wheels of the vehicle, then after said decrease in torque closing again from said piloted clutch.
  • the torque produced by the heat engine the torque resulting from the combustion in this heat engine.
  • the torque produced by the heat engine when the alternator-starter produces electrical power is greater than the torque produced by the heat engine during '' an interruption in the production of electrical power by the alternator-starter.
  • the controlled clutch is slid to transmit a torque of value equal to the torque produced by the heat engine before the interruption of production less the torque consumed by the alternator-starter also before the interruption of the production.
  • a time delay of a predetermined duration is used to delay the closing again until after said reduction in torque.
  • a signal indicating that a variation of a predetermined percentage of the torque produced by the heat engine is reached is used to trigger the closure again.
  • the invention also relates to a motor vehicle propulsion unit comprising a heat engine and an alternator-starter coupled to said heat engine, as well as control means for controlling the group during an interruption in the production of electrical power by the alternator-starter by reduction of the torque produced by the heat engine
  • control means proceed at the time of said interruption to a sliding of a controlled clutch of the power train coupling the heat engine to a train of driving wheels, then, after said reduction to again closing said piloted clutch.
  • the alternator-starter being configured to recharge the battery for stop and start function.
  • the piloted clutch is a wet clutch, or a dry clutch
  • the electric traction machine is coupled to the heat engine via the clutch, the drive wheel train being coupled to the clutch controlled by the electric machine;
  • the electric traction machine and the heat engine form a front traction chain, a rear traction chain of the vehicle further comprising a second electric traction machine.
  • the invention also relates to a motor vehicle comprising a powertrain according to the preceding principles. It can be equipped with a charger to recharge the traction battery when stationary.
  • FIG. 1 shows the structure of a vehicle in which the invention is applied
  • FIG. 3 shows the evolution over time of the couples in the traction chain with application of the invention.
  • Figure 1 is shown the structure of a motor vehicle 1 in which are implemented the principles of the invention.
  • the motor vehicle 1 is equipped with a front wheel drive train TRAV and a rear wheel drive train TRAR.
  • the motor vehicle 1 is equipped with an MTH heat engine and it is also equipped with a clutch enabling it to be coupled to a first electric traction machine MEL1.
  • the vehicle also includes a second MEL2 electric traction machine.
  • the first MEL1 electric machine is coupled via a gearbox BV to the front wheel drive train TRAV, and the second is coupled via a RED reducer and a dog clutch CR to the wheel train TRAR rear-wheel drive.
  • the electrical machines MEL1 and MEL2 are powered by a BAT power battery which can be recharged when the vehicle is running (by applying negative electrical torque when the speeds are positive for example) or when it is stopped by a CHA charging system.
  • the heat engine MTH can be coupled to the electric machine MEL1 via a wet multi-plate clutch EMB.
  • the gearbox BV is directly coupled to the differential DIF1 of the front wheel train TRAV and the dog clutch CR is directly coupled to the differential DIF2 of the rear wheel train TRAR.
  • the MTH heat engine is coupled to an alternator-starter 50. This can be used to start the MTH heat engine using electrical energy available in a 12 V B1 battery.
  • the alternator-starter 50 can also be used in generator mode when the MTH heat engine is in operation, to generate electricity which is supplied to the on-board network RB, via a switch S.
  • the on-board network RB can also be supplied with electricity by the traction battery BAT by means of a DCDC power converter.
  • the EMB clutch is a multi-disc wet clutch controlled by the SSC type (synchronous self shifting clutch), a controlled clutch capable of sliding, and it can also be a dry clutch, or a converter. torque for which it is indicated here that the shock absorber is provided with a bridging system called look up, which when closed amounts to providing a function equivalent to that of closed clutch.
  • the EMB clutch can in any event, whatever its technology, slip.
  • the elements of the powertrain group thus described are controlled by an electronic control unit ECU.
  • Figure 2 shows a chronograph of the impact on the driving pleasure of stopping the charging of the battery B1 by the alternator-starter 50 compensated by the torque of the MTH heat engine, the heat engine being directly connected to the wheel (gear engaged and clutch closed).
  • the abscissa shows time and the ordinate shows the torque in N.m, the lower part of the diagram also indicating that the EMB clutch is always closed (position 1).
  • the amplitude of the variation in the CMI engine torque is identical, except for the sign, to the variation in the torque drawn by the CAD starter-alternator.
  • the CMI torque generated by the engine is high, due to the control of the engine to provide a torque for the mobilization of the vehicle and a couple for the generation of electric power .
  • the torque CAD drawn by the alternator-starter 50 approaches 0 N.m because the alternator-starter 50 is no longer used to generate electrical power.
  • the change in the value of the CAD torque is rapid, and generates a rapid increase in the torque at the CV crankshaft as well as in the CME engine torque and in the torque finally obtained CO.
  • a torque ramp is not introduced when controlling the stopping of the alternator-starter, since it must stop quickly to avoid an overvoltage applied to the on-board network.
  • the EMB clutch initially closed in position 1 is tilted to a sliding position G from time t10 (as visible on the curve CE representing the level of torque transmitted) just before the alternator stops.
  • starter 50 at time t1 1, and in any case at the time of the interruption of the production of electric power.
  • the level of torque transmission CE by the clutch EMB is then brought to an intermediate value - slightly below the torque CME, or even to a value equal to the value of the engine torque CMI minus the value of the torque withdrawn by the CAD alternator-starter before the interruption of its production of electric power, in order to generate the slip-, which is reached in a few moments before the instant t1 1.
  • the state of the EMB clutch is shown to have passed from 1 to G between times t10 and t1 1, from the moment when the CE curve stabilizes at a constant value.
  • the torque drawn by the CAD alternator-starter approaches zero from the instant t1 1, as in FIG. 2.
  • a time delay is carried out from this moment to allow the heat engine to decrease the total torque generated CMI. Due to the sliding position of the clutch EMB, the torque obtained CO is constantly almost equal to the torque setpoint CC, since the torque transmitted then is the torque CE, EMB being slippery, and no longer the MTH CME couple.
  • the MTH heat engine is controlled in the same way as in the scenario in Figure 2, and there is no need to perform compensation by the electric machine.
  • the clutch EMB can be shifted back to position 1, that is to say - say to be closed non-slip.
  • a time delay of a predetermined duration is used to delay closing again until the reduction in torque CMI, that is to say the adaptation of the rhythm of the MTH heat engine.
  • a signal indicating that a variation of a predetermined percentage of the torque produced by the heat engine is reached (for example 90% or 95%) is used to trigger the re-closing of the piloted clutch.
  • the level of torque transmitted by the CE clutch returns to a high value (the over-closing value ensuring the locking of the clutch) from time t13, and the torque obtained CO n ' was never disturbed.
  • the driveability is therefore not affected by the discharge of the alternator-starter 50.
  • the powertrain does not include an electric machine.
  • the vehicle is a combustion engine vehicle, the power unit of which comprises a combustion engine, an alternator-starter, and a controlled clutch coupling the combustion engine to a train of drive wheels, by means of a reduction gear. such as a gearbox.
  • a reduction gear such as a gearbox.
  • the alternator-starter recharges a very low voltage battery suitable for being used regularly to restart the internal combustion engine, via the alternator-starter.
  • the battery is recharged by the alternator-starter while the vehicle is running thanks to the torque supplied by the heat engine, and at one point the alternator-starter must no longer be requested, since the battery is recharged.
  • the method described makes it possible to avoid driving pleasure being degraded due to the disturbances that this can produce in the torque transmitted to the wheels by the power train.

Abstract

Procédé de pilotage d'un groupe moto-propulseur de véhicule automobile comprenant un moteur thermique et un alterno-démarreur couplé audit moteur thermique, le pilotage étant effectué lors d'une interruption de la production de puissance électrique par l'alterno- démarreur, et comprenant une diminution du couple produit par le moteur thermique, le procédé de pilotage comprenant au moment de ladite interruption une mise en glissement (t10) d'un embrayage piloté du groupe moto-propulseur couplant le moteur thermique à un train de roues motrices du véhicule, puis après ladite diminution du couple une fermeture à nouveau (t12) dudit embrayage piloté.

Description

PROCEDE DE PILOTAGE D’UN GROUPE MOTO-PROPULSEUR COMPRENANT UN ALTERNO-DEMARREUR
[0001 ] L’invention s’inscrit dans le domaine de la commande des groupes moto- propulseurs de véhicule automobile, par exemple à motorisation hybride, thermique et électrique.
[0002] Un moteur thermique est couramment couplé à un alterno-démarreur qui, quand le moteur thermique tourne, agit comme alternateur et produit de la puissance électrique qui sert à recharger une batterie basse tension (12 V) et alimenter le réseau de bord à courant continu également à basse tension (12 V). En produisant ainsi de la puissance électrique, l’alterno-démarreur prélève un couple sur le moteur thermique, qui doit donc fournir à la fois le couple pour la mobilisation du véhicule et le couple pour la génération de puissance électrique.
[0003] Dans les véhicules à motorisation uniquement thermique, de plus en plus de véhicules thermiques sont équipés d’un système Stop and Start (démarrage-arrêt automatique) qui permet de couper le moteur thermique lors des arrêts (typiquement au feu rouge), et de le redémarrer grâce à l’alterno-démarreur alimenté par une batterie très basse tension ayant un cycle de vie renforcé. Celle-ci est rechargée lors des freinages. Il peut être nécessaire de désactiver la recharge de la batterie par l’alterno-démarreur si la batterie est chargée.
[0004] Dans les véhicule hybrides rechargeables, disposant d’un moteur thermique et d’une ou deux machines électriques, le véhicule embarque aussi une batterie de puissance, dite batterie de traction, souvent au lithium, capable de fournir la puissance électrique pour la mobilisation du véhicule, et capable aussi, accessoirement de fournir la puissance électrique nécessaire pour l’alimentation du réseau de bord pendant des temps prolongés. L’alimentation se fait par l’intermédiaire d’un convertisseur de puissance pour convertir la puissance pour le réseau de bord qui, on l’a dit, est un circuit alimenté en courant continu 12 V.
[0005] Il est donc, dans ces véhicules, possible d’alimenter le réseau de bord de deux manières distinctes : par l’utilisation de l’alterno-démarreur, ou par l’utilisation de la batterie de traction. La transition d’un mode à l’autre n’est pas liée à la demande du conducteur, et en particulier n’est pas liée à sa volonté exprimée en couple de consigne à la roue. [0006] Or lors de la désactivation de l’alterno-démarreur, pour passer à l’alimentation du réseau de bord par la batterie de traction, le couple fourni par le moteur thermique et prélevé par l’alterno-démarreur devient brutalement disponible, ce qui entraîne une perturbation du couple transmis dans la chaîne de traction jusqu’aux roues, subitement majoré. On précise que la désactivation de l’alterno-démarreur est nécessairement rapide pour éviter toute surtension qui pourrait être transmise au réseau de bord, et elle ne peut pas être compensée, avec une réactivité suffisante, par une modification de la dynamique du moteur thermique, qui réagit avec un délai trop important.
[0007] Il résulte de cette situation que l’agrément de conduite est affaibli par l’observation de perturbations du couple à la roue, lors de la désactivation de l’alterno-démarreur (aussi appelée la décharge de l’alterno-démarreur).
[0008] On connaît du document EP2447121 A2 un véhicule à motorisation hybride électrique et thermique comprenant un embrayage piloté capable de glissement.
[0009] Pour résoudre le problème de la perturbation du couple à la roue lors de la désactivation de l’alterno-démarreur, il est proposé un procédé de pilotage d’un groupe moto-propulseur de véhicule automobile comprenant un moteur thermique et un alterno- démarreur couplé audit moteur thermique, le pilotage étant effectué lors d’une interruption de la production de puissance électrique par l’alterno-démarreur, et comprenant une diminution du couple produit par le moteur thermique.
[0010] De manière remarquable, le procédé comprend au moment de ladite interruption une mise en glissement d’un embrayage piloté du groupe moto-propulseur couplant le moteur thermique à un train de roues motrices du véhicule, puis après ladite diminution du couple une fermeture à nouveau dudit embrayage piloté.
[001 1 ] Il résulte de cette manière de faire que les perturbations produites par la décharge de l’alterno-démarreur sont filtrées par le glissement de l’embrayage, et que le surplus de couple libéré n’est pas transmis aux roues. Dès que le couple produit par le moteur thermique a diminué par pilotage, il est possible de refermer l’embrayage.
[0012] On comprendra par « couple produit par le moteur thermique » le couple résultant de la combustion dans ce moteur thermique. Ainsi, le couple produit par le moteur thermique lorsque l’alterno-démarreur produit de la puissance électrique, c’est-à-dire lorsque l’alterno- démarreur est en mode générateur, est supérieur au couple produit par le moteur thermique lors d’une interruption de la production de puissance électrique par l’alterno-démarreur. [0013] Avantageusement, l’embrayage piloté est mis en glissement pour transmettre un couple de valeur égale au couple produit par le moteur thermique avant l’interruption de la production diminué du couple consommé par l’alterno-démarreur également avant l’interruption de la production.
[0014] Selon des variantes :
[0015] - une temporisation d’une durée prédéterminée est utilisée pour retarder la fermeture à nouveau jusqu’à après ladite diminution du couple.
[0016] - un signal indiquant qu’une variation d’un pourcentage prédéterminé du couple produit par le moteur thermique est atteinte est utilisé pour déclencher la fermeture à nouveau.
[0017] L’invention porte aussi sur un groupe moto-propulseur de véhicule automobile comprenant un moteur thermique et un alterno-démarreur couplé audit moteur thermique, ainsi que des moyens de pilotage pour commander le groupe lors d’une interruption de la production de puissance électrique par l’alterno-démarreur par diminution du couple produit par le moteur thermique.
[0018] Il est remarquable, car les moyens de pilotage procèdent au moment de ladite interruption à une mise en glissement d’un embrayage piloté du groupe moto-propulseur couplant le moteur thermique à un train de roues motrices, puis, après ladite diminution à une fermeture à nouveau dudit embrayage piloté.
[0019] Selon des caractéristiques optionnelles :
[0020] - il comprend de plus une batterie de traction et une machine électrique, l’alterno- démarreur étant configuré pour alimenter le réseau de bord en électricité.
[0021 ] - il comprend une batterie pour fonction stop and start, l’alterno-démarreur étant configuré pour recharger la batterie pour fonction stop and start.
[0022] - l’embrayage piloté est un embrayage humide, ou un embrayage sec ;
[0023] - la machine électrique de traction est couplée au moteur thermique par l’intermédiaire de l’embrayage, le train de roues motrices étant couplé à l’embrayage piloté par l’intermédiaire de la machine électrique ; [0024] - la machine électrique de traction et le moteur thermique forment une chaîne de traction avant, une chaîne de traction arrière du véhicule comprenant de plus une deuxième machine électrique de traction.
[0025] L’invention porte aussi sur un véhicule automobile comprenant un groupe moto- propulseur selon les principes précédents. Il peut être équipé d’un chargeur pour recharger, à l’arrêt, la batterie de traction.
[0026] L’invention sera mieux comprise, et d’autres buts, caractéristiques, détails et avantages de celle-ci apparaîtront plus clairement dans la description explicative qui va suivre faite en référence aux dessins annexés donnés uniquement à titre d’exemple illustrant un mode de réalisation de l’invention et dans lesquels :
- La figure 1 montre la structure d’un véhicule dans lequel est appliqué l’invention ;
- la figure 2 montre l’évolution dans le temps des couples dans la chaîne de traction sans application de l’invention ;
- la figure 3 montre l’évolution dans le temps des couples dans la chaîne de traction avec application de l’invention.
[0027] En figure 1 on a représenté la structure d’un véhicule automobile 1 dans lequel sont mis en œuvre les principes de l’invention.
[0028] Le véhicule automobile 1 est équipé d’un train de roues motrices avant TRAV et d’un train de roues motrices arrière TRAR.
[0029] Le véhicule automobile 1 est équipé d’un moteur thermique MTH et il est également équipé d’un embrayage permettant de le coupler à une première machine électrique de traction MEL1 . Le véhicule comprend aussi une deuxième machine électrique de traction MEL2. La première machine électrique MEL1 est couplée par l’intermédiaire d’une boîte de vitesses BV au train de roues motrices avant TRAV, et la deuxième est couplée par l’intermédiaire d’un réducteur RED et d’un crabot CR au train de roues motrices arrière TRAR.
[0030] Les machines électriques MEL1 et MEL2 sont alimentées par une batterie de puissance BAT qui peut être rechargée quand le véhicule est en roulage (par application de couple électrique négatif lorsque les régimes sont positifs par exemple) ou quand il est à l’arrêt par un système de recharge CHA. [0031 ] Le moteur thermique MTH peut être couplé à la machine électrique MEL1 par l’intermédiaire d’un embrayage humide multidisques EMB.
[0032] La boîte de vitesses BV est couplée directement au différentiel DIF1 du train de roues avant TRAV et le crabot CR est couplé directement au différentiel DIF2 du train de roues arrière TRAR.
[0033] Le moteur thermique MTH est couplé à un alterno-démarreur 50. Celui-ci peut être utilisé pour démarrer le moteur thermique MTH à l’aide d’énergie électrique disponible dans une batterie 12 V B1 . L’alterno-démarreur 50 peut également être utilisé en mode générateur quand le moteur thermique MTH est en fonctionnement, pour générer de l’électricité qui est fournie au réseau de bord RB, par l’intermédiaire d’un commutateur S.
[0034] Le réseau de bord RB peut également être alimenté en électricité par la batterie de traction BAT par l’intermédiaire d’un convertisseur de puissance DCDC.
[0035] L'embrayage EMB est un embrayage humide multidisques piloté de type SSC (synchronous self shifting clutch), un embrayage piloté capable de glissement, et il peut également s'agir d'un embrayage sec, ou encore d'un convertisseur de couple pour lequel il est indiqué ici qu'on muni l'amortisseur d'un système de pontage dit look up, qui quand il est fermé revient à fournir une fonction équivalente à celle d'en embrayage fermé.
[0036] L’embrayage EMB peut en tout état de cause, quelle que soit sa technologie, glisser.
[0037] Les éléments du groupe moto-propulseur ainsi décrit sont commandés par une unité de contrôle électronique ECU.
[0038] La figure 2 présente un chronographe de l'impact sur l'agrément de conduite de l’arrêt de la charge de la batterie B1 par l'alterno-démarreur 50 compensée par le couple du moteur thermique MTH, le moteur thermique étant en prise directe à la roue (rapport de vitesse enclenché et embrayage fermé).
[0039] En abscisses on a représenté le temps et en ordonnées on a représenté le couple en N.m, la partie inférieure du schéma indiquant également que l'embrayage EMB est toujours fermé (position 1 ).
[0040] Les couples représentés sont
- la consigne de couple donnée par le pilote CC, qui est constante, - le couple, référencé CAD, prélevé par l'alterno-démarreur 50 sur le couple fourni par le moteur thermique MTH,
- le couple moteur CMI, total généré à l’aide la puissance du moteur thermique, dont le pilotage de la dynamique permet de compenser le prélèvement de couple par l’alterno- démarreur, ou à l’inverse, l’arrêt de ce prélèvement, mais avec une réactivité faible,
- la compensation de couple, référencée CMEL, obtenue par pilotage de la machine électrique de la chaîne de traction avant MEL1 , pour compenser transitoirement l’arrêt du prélèvement de couple par l’alterno-démarreur,
- le couple, référencé CV, fourni à la chaîne de traction (au niveau du vilebrequin) par le moteur thermique MTH,
- le couple moteur CME, couple résultant au vilebrequin toutes pertes et compensations déduites,
- le niveau de transmission de couple CE de l’embrayage EMB, qui est dans ce scénario antérieur à l’invention, constant, égal à une valeur de sur-fermeture assurant le verrouillage de l’embrayage ;
- et le couple finalement obtenu CO, fourni à la roue et qui manifestement est perturbé.
[0041 ] On précise que l’amplitude de la variation du couple moteur CMI est identique, au signe près, à la variation du couple prélevé par l’alterno-démarreur CAD.
[0042] On voit sur la figure qu’initialement, le couple CMI généré par le moteur thermique est élevé, du fait du pilotage du moteur thermique aux fins de fournir un couple pour la mobilisation du véhicule et un couple pour la génération de puissance électrique. A partir d’un instant t1 , le couple CAD prélevé par l’alterno-démarreur 50 se rapproche de 0 N.m car l’alterno-démarreur 50 n’est plus utilisé pour générer de la puissance électrique. La modification de la valeur du couple CAD est rapide, et engendre une augmentation rapide du couple au niveau du vilebrequin CV ainsi que du couple moteur CME et du couple finalement obtenu CO. On n’introduit pas de rampe de couple en pilotant l’arrêt de l’alterno- démarreur, car il est nécessaire que son arrêt soit rapide, pour éviter une surtension appliquée au réseau de bord.
[0043] Une compensation, pilotée via la machine électrique MEL1 et le moteur thermique MTH avec inévitablement du retard apparait quelques instants ensuite sur les courbes CMI du couple généré par le moteur thermique et CMEL du couple fourni par la machine électrique MEL1 . Grâce à ces compensations, le couple finalement obtenu CO oscille autour de la valeur de consigne CC, puis la rejoint, la compensation menée à l’aide de la machine électrique MEL1 étant stoppée, une fois la compensation menée à l’aide du moteur thermique MTH suffisante.
[0044] Au final, on voit que le couple finalement obtenu aux roues CO est perturbé, d’où un inconfort pour le conducteur. Il ressent une perturbation d’accélération du véhicule, car la décharge brutale de l’alterno-démarreur n’est pas parfaitement compensée par la dynamique de couple du moteur thermique, même aidée par le pilotage de la machine électrique, notamment car il est impossible pour le moteur thermique d’avoir une dynamique aussi rapide que celle de la décharge de l’alterno-démarreur.
[0045] Ce problème apparaît sur des architectures hybrides rechargeables car il est possible de solliciter l’alterno-démarreur 50 pour fournir de la tension au réseau de bord à la place du convertisseur de tension DCDC, de manière séquencée. Des coupures de charge par l’alterno-démarreur 50 sont donc observées fréquemment.
[0046] En figure 3 on a représenté un chronogramme similaire mais avec l'application des principes de l'invention. La figure présente la commande de couple fournie par le conducteur CC, constante comme précédemment.
[0047] L'embrayage EMB initialement fermé en position 1 est basculé vers une position glissante G à partir de l'instant t10 (comme visible sur la courbe CE représentant le niveau de couple transmis) juste avant l'arrêt de l'alterno-démarreur 50, à l’instant t1 1 , et en tout cas au moment de l’interruption de la production de la puissance électrique.
[0048] Le niveau de transmission de couple CE par l’embrayage EMB est alors amené vers une valeur intermédiaire - légèrement en dessous du couple CME, ou encore à une valeur égale à la valeur du couple moteur CMI diminuée de la valeur du couple prélevé par l’alterno-démarreur CAD avant l’interruption de sa production de puissance électrique, afin de générer le glissement-, qui est atteinte en quelques instants avant l’instant t1 1 . L’état de l’embrayage EMB est figuré passé de 1 à G entre les instants t10 et t1 1 , à partir de l’instant où la courbe CE se stabilise à une valeur constante.
[0049] Le couple prélevé par l'alterno-démarreur CAD se rapproche de zéro à partir de l'instant t1 1 , comme en figure 2. On mène à partir de ce moment-là une temporisation pour permettre au moteur thermique de diminuer le couple total généré CMI. [0050] Du fait de la mise en position glissante de l'embrayage EMB, le couple obtenu CO est constamment quasiment égal à la consigne de couple CC, puisque le couple transmis alors est le couple CE, EMB étant glissant, et non plus le couple CME du MTH.
[0051 ] Le moteur thermique MTH est piloté de la même manière que dans le scénario de la figure 2, et il n'est pas nécessaire d'effectuer une compensation par la machine électrique.
[0052] Dès que le moteur thermique MTH a pu adapter son rythme à l’extinction de l'alterno-démarreur 50, à partir de l’instant t12, l'embrayage EMB peut être rebasculé en position 1 , c'est-à-dire être fermé non glissant. Une temporisation d’une durée prédéterminée est utilisée pour retarder la fermeture à nouveau jusqu’à la diminution du couple CMI, c’est-à-dire l’adaptation du rythme du moteur thermique MTH. Alternativement, un signal indiquant qu’une variation d’un pourcentage prédéterminé du couple produit par le moteur thermique est atteinte (par exemple 90% ou 95%) est utilisé pour déclencher la fermeture à nouveau de l’embrayage piloté.
[0053] Ainsi, le niveau de couple transmis par l'embrayage CE revient à une valeur élevée (la valeur de sur-fermeture assurant le verrouillage de l’embrayage) à partir de l'instant t13, et le couple obtenu CO n'a été perturbé à aucun moment. L’agrément de conduite n’est donc pas affecté par la décharge de l’alterno-démarreur 50.
[0054] Dans un mode de réalisation alternatif, le groupe moto-propulseur ne comprend pas de machine électrique. Le véhicule est un véhicule à moteur thermique, dont le groupe moto-propulseur comprend un moteur thermique, un alterno-démarreur, et un embrayage piloté couplant le moteur thermique à un train de roues motrices, par l’intermédiaire d’un moyen de démultiplication tel qu’une boîte de vitesses. Il n’y a pas de batterie de traction, et l’alterno-démarreur recharge une batterie très basse tension adaptée à être sollicitée régulièrement pour redémarrer le moteur thermique, via l’alterno-démarreur.
[0055] La batterie est rechargée par l’alterno-démarreur alors que le véhicule roule grâce au couple fourni par le moteur thermique, et à un moment donné l’alterno-démarreur ne doit plus être sollicité, car la batterie est rechargée. Le procédé décrit permet d’éviter que l’agrément de conduite soit dégradé du fait des perturbations que cela peut produire dans le couple transmis aux roues par le groupe moto-propulseur.

Claims

REVENDICATIONS
1. Procédé de pilotage d’un groupe moto-propulseur de véhicule automobile comprenant un moteur thermique (MTH) et un alterno-démarreur (50) couplé audit moteur thermique (MTH), le pilotage étant effectué lors d’une interruption de la production de puissance électrique par l’alterno-démarreur (50), et comprenant une diminution du couple (CMI) produit par le moteur thermique (MTH), caractérisé en ce que le procédé de pilotage comprend au moment de ladite interruption une mise en glissement (t10) d’un embrayage piloté (EMB) du groupe moto-propulseur couplant le moteur thermique (MTH) à un train de roues motrices (TRAV) du véhicule, puis après ladite diminution du couple (CMI) produit par le moteur thermique (MTH) une fermeture à nouveau (t12) dudit embrayage piloté (EMB).
2. Procédé de pilotage selon la revendication 1 , caractérisé en ce que l’embrayage piloté est mis en glissement pour transmettre un couple de valeur égale au couple (CMI) produit par le moteur thermique avant (t10) l’interruption de la production de puissance électrique, diminué du couple consommé (CAD) par l’alterno-démarreur également avant (t10) l’interruption de la production.
3. Procédé de pilotage selon la revendication 1 ou la revendication 2, caractérisé en ce qu’une temporisation d’une durée prédéterminée (t1 1 ) est utilisée pour retarder la fermeture à nouveau (t12) jusqu’à après ladite diminution du couple (CMI).
4. Procédé de pilotage selon la revendication 1 ou la revendication 2, caractérisé en ce qu’un signal indiquant qu’une variation d’un pourcentage prédéterminé du couple (CMI) produit par le moteur thermique est atteinte est utilisé pour déclencher ladite fermeture à nouveau (t12).
5. Groupe moto-propulseur de véhicule automobile comprenant un moteur thermique (MTH) et un alterno-démarreur (50) couplé audit moteur thermique (MTH), ainsi que des moyens de pilotage (ECU) pour commander le groupe lors d’une interruption de la production de puissance électrique par l’alterno-démarreur (50) par diminution du couple (CMI) produit par le moteur thermique (MTH), caractérisé en ce que les moyens de pilotage (ECU) procèdent au moment de ladite interruption à une mise en glissement d’un embrayage piloté (EMB) du groupe moto-propulseur couplant le moteur thermique (MTH) à un train de roues motrices (TRAV), puis, après de ladite diminution à une fermeture à nouveau dudit embrayage piloté (EMB).
6. Groupe moto-propulseur selon la revendication 5, caractérisé en ce qu’il comprend de plus une batterie de traction (BAT) et une machine électrique de traction (MEL1 ), l’alterno- démarreur étant configuré pour alimenter le réseau de bord en électricité.
7. Groupe moto-propulseur selon la revendication 5, caractérisé en ce qu’il comprend une batterie pour fonction démarrage-arrêt automatique, l’alterno-démarreur étant configuré pour recharger la batterie pour fonction démarrage-arrêt automatique.
8. Groupe moto-propulseur selon la revendication 6, caractérisé en ce que la machine électrique de traction (MEL1 ) est couplée au moteur thermique (MTH) par l’intermédiaire de l’embrayage piloté (EMB), le train de roues motrices (TRAV) étant couplé à l’embrayage piloté (EMB) par l’intermédiaire de la machine électrique (MEL1 ).
9. Groupe moto-propulseur selon l’une des revendications 6 ou 8, caractérisé en ce que la machine électrique de traction (MEL1 ) et le moteur thermique (MTH) forment une chaîne de traction avant, une chaîne de traction arrière du véhicule comprenant de plus une deuxième machine électrique de traction (MEL2).
10. Véhicule automobile (1 ) comprenant un groupe moto-propulseur selon l’une des revendications 6, 8 ou 9, équipé d’un chargeur (CHA) pour recharger, à l’arrêt, la batterie de traction (BAT).
PCT/FR2019/051333 2018-07-19 2019-06-05 Procede de pilotage d'un groupe moto-propulseur comprenant un alterno-demarreur WO2020016491A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1856684 2018-07-19
FR1856684A FR3084043B1 (fr) 2018-07-19 2018-07-19 Procede de pilotage d’un groupe moto-propulseur comprenant un alterno-demarreur

Publications (1)

Publication Number Publication Date
WO2020016491A1 true WO2020016491A1 (fr) 2020-01-23

Family

ID=63491775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/051333 WO2020016491A1 (fr) 2018-07-19 2019-06-05 Procede de pilotage d'un groupe moto-propulseur comprenant un alterno-demarreur

Country Status (2)

Country Link
FR (1) FR3084043B1 (fr)
WO (1) WO2020016491A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2797481A1 (fr) * 1999-08-10 2001-02-16 Valeo Procede pour piloter un systeme de transmission de couple dans un vehicule automobile
EP2447121A2 (fr) 2010-11-02 2012-05-02 Jatco Ltd Véhicule hybride et son procédé de contrôle
US20130296114A1 (en) * 2012-05-07 2013-11-07 Ford Global Technologies, Llc Vehicle and method for controlling powertrain components of a vehicle
US20140106928A1 (en) * 2012-10-15 2014-04-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for performing a boost operation of a hybrid vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2797481A1 (fr) * 1999-08-10 2001-02-16 Valeo Procede pour piloter un systeme de transmission de couple dans un vehicule automobile
EP2447121A2 (fr) 2010-11-02 2012-05-02 Jatco Ltd Véhicule hybride et son procédé de contrôle
US20130296114A1 (en) * 2012-05-07 2013-11-07 Ford Global Technologies, Llc Vehicle and method for controlling powertrain components of a vehicle
US20140106928A1 (en) * 2012-10-15 2014-04-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for performing a boost operation of a hybrid vehicle

Also Published As

Publication number Publication date
FR3084043B1 (fr) 2023-03-03
FR3084043A1 (fr) 2020-01-24

Similar Documents

Publication Publication Date Title
US9108633B1 (en) Hybrid powertrain and method of controlling same
US9944275B2 (en) Control device for hybrid vehicle
EP2244900B1 (fr) Procede de couplage d'une machine electrique de traction sur un vehicule hybride et vehicule hybride pour la mise en oeuvre du procede
US20180273019A1 (en) Controlling motor torque to reserve battery energy in a hybrid vehicle
FR2999138A1 (fr) Procede de controle de couples lors du demarrage du moteur thermique d'un vehicule hybride, pour passer d'un mode electrique a un mode hybride
EP3658404B1 (fr) Procede pour vehicule hybride de controle d'un alternateur de recharge d'une batterie d'un reseau de bord
EP2928715B1 (fr) Procede de controle de couples lors du changement de rapport d'une boite de vitesses d'un vehicule hybride
FR2994404A1 (fr) Procede de limitation de couple d'une machine electrique de vehicule hybride, comportant des limites de couple nominal et crete
WO2020016491A1 (fr) Procede de pilotage d'un groupe moto-propulseur comprenant un alterno-demarreur
FR2989141A1 (fr) Procede d'aide a la gestion d'un organe de transmission d'un vehicule automobile hybride muni d'une boite de vitesse manuelle et vehicule automobile hybride associe
CN107585156B (zh) 用于车辆的变速控制装置
WO2011092390A1 (fr) Procede de derivation de puissance electrique pour vehicule hybride
EP3746342B1 (fr) Système et procédé de pilotage de l'énergie fournie au circuit électrique d'un véhicule hybride, et véhicule automobile les incorporant
FR3064575B1 (fr) Dispositif de controle des couplages/decouplages d'une machine motrice non-thermique d'un vehicule en fonction d'un parametre d'etat de moyens de stockage associes
EP4021749B1 (fr) Procédé de protection d'un embrayage d'un véhicule hybride contre une surchauffe par arrêt de charge
WO2015071563A1 (fr) Procede de commande d'un alternateur associe a un moteur thermique de vehicule automobile
WO2019068981A1 (fr) Contrôle des couplages/découplages d'une machine motrice non-thermique d'un véhicule en fonction d'un couple cible ou de consigne
EP4021750A1 (fr) Procede de protection d'un embrayage d'un vehicule hybride contre une surchauffe
EP4153439A1 (fr) Procédé de commande d'un groupe motopropulseur pour véhicule automobile à transmission électrique hybride
FR3007074A1 (fr) Procede d’agrement preventif et systeme de commande d’un groupe motopropulseur hybride
FR2993937A1 (fr) Procede de determination du moyen de demarrage utilise pour demarrer un moteur thermique d'un vehicule automobile hybride
WO2020174131A1 (fr) Pilotage d'un groupe moto-propulseur de vehicule automobile lors d'une deceleration sous controle assiste
FR3077255A1 (fr) Systeme et procede de pilotage d’un stockeur d’energie de vehicule hybride, et vehicule automobile les incorporant
FR3065694A1 (fr) Dispositif de commande pour vehicule
JP2017177970A (ja) ハイブリッド車両システム、ハイブリッド車両システムの制御装置及びハイブリッド車両システムの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19737845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19737845

Country of ref document: EP

Kind code of ref document: A1