WO2019068981A1 - Contrôle des couplages/découplages d'une machine motrice non-thermique d'un véhicule en fonction d'un couple cible ou de consigne - Google Patents

Contrôle des couplages/découplages d'une machine motrice non-thermique d'un véhicule en fonction d'un couple cible ou de consigne Download PDF

Info

Publication number
WO2019068981A1
WO2019068981A1 PCT/FR2018/052247 FR2018052247W WO2019068981A1 WO 2019068981 A1 WO2019068981 A1 WO 2019068981A1 FR 2018052247 W FR2018052247 W FR 2018052247W WO 2019068981 A1 WO2019068981 A1 WO 2019068981A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
train
threshold
vehicle
supplied
Prior art date
Application number
PCT/FR2018/052247
Other languages
English (en)
Inventor
Yohan MILHAU
Matthieu Plantier
Original Assignee
Psa Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Psa Automobiles Sa filed Critical Psa Automobiles Sa
Publication of WO2019068981A1 publication Critical patent/WO2019068981A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/002Integrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/40Altitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • F16D2500/30421Torque of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to vehicles having a transmission chain comprising at least a first non-thermal driving machine and a second driving machine (thermal or non-thermal) that can be coupled / decoupled in a controlled manner to / from two of their trains.
  • a non-thermal driving machine may for example be an electric machine (or motor), a hydraulic machine, a pneumatic machine (or compressed air), or a flywheel.
  • a thermal driving machine may for example be a heat engine.
  • Certain vehicles possibly of automobile type, comprise a transmission chain comprising a first non-thermal driving machine and adapted to be coupled in a controlled manner to a first train by first coupling means, energy storage means capable of supplying power. in energy this first driving machine, and a second driving machine adapted to be coupled in a controlled manner to a second train by second coupling means.
  • a supervision computer which comprises, or is coupled to, a control device which is responsible for proposing to him to couple / decouple his first driving machine and / or his second driving machine in function. needs, including the current life situation.
  • a control device which is responsible for proposing to him to couple / decouple his first driving machine and / or his second driving machine in function. needs, including the current life situation.
  • any type of coupling / decoupling is concerned here, including that by clutch or clutch.
  • a coupling proposal of the non-thermal prime mover is generally intended to minimize fuel consumption by the second prime mover, for example by recovering electrical energy in a braking phase via the first driving machine, and / or to increase the performance of the vehicle, for example by adding to the torque that is produced by the second torque engine that can produce the first engine during a driving phase.
  • a proposal for coupling / decoupling the first prime mover is usually decided according to vehicle parameters, such as for example the depression of its accelerator pedal, the depression of its brake pedal, its speed in progress, its acceleration in progress, its current longitudinal acceleration, its current inclination, its current weight, the weather, the altitude at which it is located, and a constraint of use of its first prime mover and / or second engine driving.
  • vehicle parameters such as for example the depression of its accelerator pedal, the depression of its brake pedal, its speed in progress, its acceleration in progress, its current longitudinal acceleration, its current inclination, its current weight, the weather, the altitude at which it is located, and a constraint of use of its first prime mover and / or second engine driving.
  • vehicle parameters such as for example the depression of its accelerator pedal, the depression of its brake pedal, its speed in progress, its acceleration in progress, its current longitudinal acceleration, its current inclination, its current weight, the weather, the altitude at which it is located, and a constraint of use of its first prime mover and /
  • the coupling / decoupling proposal is transmitted to the transmission chain supervision computer, so that it decides to follow it or reject it according to its own constraints, possibly temporary.
  • the setpoint of the second train is greater than the overall torque because the setpoint of the first train is negative.
  • the first power unit is decoupled from the first train, the energy recovery is impossible and therefore the recharge can not be performed.
  • the invention is therefore particularly intended to improve the situation, and in particular to take into account all torque demands to make the coupling of the first drive machine robust when it is needed.
  • This control method is characterized in that it comprises a step in which a coupling of the first driving machine is requested when a target torque to be supplied by the first train or a torque setpoint to be supplied by the first train, function a global torque representative of a will of a driver of the vehicle,
  • control method according to the invention may comprise other characteristics that can be taken separately or in combination, and in particular:
  • the coupling request can be made after a confirmation of a crossing of the first torque threshold or the third torque threshold;
  • the coupling request can be made when the target torque to be supplied by the first train or the torque setpoint to be supplied by the first train is greater than the first torque threshold for a duration at least equal to a third chosen time threshold and / or when a value of an integral over time of an absolute value of a difference between the first torque threshold and the target torque to be supplied by the first train or the torque setpoint to by the first train, when the target torque to be supplied by the first train or the torque setpoint to be supplied by the first train is greater than the first torque threshold, becomes greater than a first integration threshold, or becomes less than the third torque threshold for a duration at least equal to a fourth chosen time threshold and / or when a value of an integral over time of an absolute value of a difference between the third torque threshold and the target torque to be supplied by the first train or the torque setpoint to be supplied by the first train, when the target torque to be supplied by the first train or the setpoint of torque to be supplied by the first train is less than the third torque threshold, becomes greater than a second integration threshold
  • a decoupling request can be made after the coupling request after a confirmation of a crossing of the second torque threshold or the fourth torque threshold;
  • the decoupling request can be made either when the target torque to be supplied by the first train or the torque setpoint to be supplied by the first train becomes lower than the second torque threshold for a duration at least equal to a fifth time threshold chosen, either when the target torque to be supplied by the first train or the torque setpoint to be supplied by the first train becomes greater than the fourth torque threshold for a duration at least equal to a sixth chosen time threshold ;
  • each threshold can be chosen as a function of at least one parameter of the vehicle, itself chosen from a running speed of the vehicle, a running slope of a portion of the taxiway on which the vehicle is traveling. , a current vehicle weight, a current transverse acceleration of the vehicle, a running longitudinal acceleration of the vehicle, meteorological information, an altitude at which the vehicle is located, and a current mode of operation of the vehicle.
  • the invention also proposes a control device intended to equip a vehicle comprising a transmission chain comprising a first non-thermal driving machine and adapted to be coupled to a first train by coupling means, means for storing clean energy. supplying energy to at least this first driving machine, and a second driving machine adapted to be coupled to a second train.
  • This control device is characterized in that it comprises means implementing the step of a control method of the type presented above.
  • the invention also proposes a vehicle, possibly of automobile type, and comprising, on the one hand, a transmission chain comprising a first non-thermal and clean driving engine to be coupled to a first train by coupling means, energy storage means adapted to supply energy to at least the first driving machine, and a second driving machine adapted to be coupled to a second train, and secondly , a control device of the type of that presented above.
  • the first prime mover can be selected from an electric motor, a hydraulic machine, a pneumatic machine and a flywheel.
  • the second drive machine can be selected from a heat engine, an electric motor, a hydraulic machine, a pneumatic machine and a flywheel.
  • FIG. 1 diagrammatically and functionally illustrates a vehicle comprising a hybrid transmission chain and a supervision computer equipped with a control device according to the invention
  • FIG. 2 schematically illustrates, within a first diagram (upper part), a first example of curve (d) of temporal evolution of the target torque for the first train of a vehicle in the absence of taking into account a confirmation of crossing of the torque threshold, and within a second diagram (lower part), a first example of curve (c2) of temporal evolution of the request for coupling / decoupling (de) for the first train of a vehicle in the presence of the curve d, and
  • FIG. 3 diagrammatically illustrates, within a third diagram (upper part), a second example of a curve (d ') of temporal evolution of the target torque for the first train of a vehicle, in case of taking into account a confirmation of crossing of the torque threshold, and within a fourth diagram (lower part), a second example of curve (c2 ') of temporal evolution of the coupling / decoupling request (de) for the first train of a vehicle in the presence of the curve of.
  • the object of the invention is notably to propose a control method, and an associated DC control device, for controlling the coupling / decoupling of a first train T1 of a vehicle V of a first non-thermal engine MM1.
  • a transmission chain also comprising a second motor machine MM2 adapted to be coupled / decoupled from a second train T2 of this vehicle V.
  • the vehicle V is automotive type. This is for example a car. But the invention is not limited to this type of vehicle. It concerns in fact any type of vehicle comprising a transmission chain comprising at least a first non-thermal motive machine capable of being coupled, via first coupling means, to a first train, and a second driving machine (thermal or non-thermal). thermal) adapted to be coupled, via second coupling means, to a second train. Therefore, the invention particularly relates to land vehicles.
  • a non-thermal driving machine may for example be an electric machine (or motor), a hydraulic machine, a pneumatic machine (or compressed air), or a flywheel.
  • a thermal driving machine is a heat engine consuming fuel or chemicals. It may in particular be a reactor, a turbojet engine or a chemical engine.
  • the first motor machine MM1 is of the electric type. But the invention is not limited to this type of non-thermal driving machine. Thus, it also relates to hydraulic machines (or motors), machines (or engines) pneumatic (or compressed air), and flywheels.
  • the second motor machine MM2 is a heat engine.
  • the invention is not limited to this type of driving machine. It can indeed be thermal or non-thermal.
  • it also relates to hydraulic machines (or motors), machines (or engines) pneumatic (or compressed air), and flywheels.
  • FIG. 1 shows schematically a vehicle V comprising a transmission chain, a supervision computer CS capable of supervising (or managing) the operation of the transmission chain, and a DC control device according to the invention.
  • the transmission chain comprises a first driving machine MM1 associated with first coupling means MC1 and with first energy storage means MS1, a second driving machine MM2 (here with thermal type) associated (here) with second MC2 and third MC3 coupling means, and first AT1 and second AT2 transmission shafts.
  • the first motor machine MM1 is in particular intended to produce torque to move the vehicle V, on the order of the supervision computer CS and from the energy (here electric) which is stored in the first energy storage means MS1. This production of torque can possibly be done in addition to at least the torque produced by the second motor machine MM2.
  • the first motor machine MM1 is thus coupled to the first energy storage means MS1, possibly via an inverter OD (as illustrated in a non-limiting manner).
  • This first motor machine MM1 is also intended to produce energy (here electric) to recharge the first energy storage means MS1, by order of the supervision computer CS.
  • the first energy storage means MS1 which feed it are arranged to store electrical energy, for example low voltage (typically included between 200 V and 600 V).
  • these first energy storage means MS1 may comprise a multiplicity of rechargeable storage cells and charged with storing electrical energy.
  • These storage cells can be electrochemical. In this case, they may, for example, be of type Ni-MH.
  • the first coupling means MC1 are here responsible for coupling / decoupling the first driving machine MM1 to / from the first transmission shaft AT1, on the order of the supervision computer CS, in order to communicate the torque that it must produce and which is defined by a set torque (or speed) cod, thanks to the energy stored in the first energy storage means MS1, the first transmission shaft AT1.
  • the latter (AT1) is coupled to a first train T1 (here wheels).
  • the first train T1 is located at the rear of the vehicle V, and preferably, and as illustrated, coupled to the first transmission shaft AT1 via a first differential (here rear) D1. But in a variant this first T1 train could be located at the front of the vehicle V.
  • the first coupling means MC1 may, for example, be a jaw mechanism or a clutch or a hydraulic torque converter or a brake. It can take at least two coupling states: a first (coupled) in which it couples the first driving machine MM1 to the first transmission shaft AT1 and a second (decoupled) in which it decouples the first driving machine MM1 of the first AT1 drive shaft. Note that it can also take an intermediate state (for example for a clutch slip).
  • the second engine MM2 (here a heat engine) comprises a crankshaft (not shown) which is fixedly secured to the motor shaft to drive the latter in rotation.
  • This heat engine MM2 is intended to provide torque for a second train T2 (here wheels), via the second MC2 and third MC3 coupling means.
  • the second train T2 is located at the front of the vehicle V, and coupled to a second transmission shaft AT2, preferably, and as illustrated, via a second differential (here before) D2. But in the aforementioned variant this second train T2 could be located at the rear of the vehicle V.
  • the second coupling means MC2 may, for example, be arranged in the form of a clutch. But it could also be a torque converter or a dog or a brake. They are preferably driven by the supervision computer CS.
  • the third coupling means MC3 may, for example, be gear change means. These (MC3) can, for example, be arranged in the form of a gearbox, and are preferably controlled by the supervision computer CS. They comprise a primary (or input) shaft intended to receive torque from the second coupling means MC2, and a secondary (or output) shaft intended to receive this torque via the primary shaft in order to communicate it to the second shaft of AT2 transmission to which it is coupled and which is coupled indirectly to the wheels (here before) of the vehicle V via the second differential D2.
  • the gear change means MC3 could, for example, include at least one epicyclic gear comprising one, two or three synchronizers. It is recalled that the synchronizers make it possible to join two elements together in order to fix a torque and a speed on two of the three shafts of an epicyclic gear train.
  • the transmission chain also comprises a third non-thermal type MM3 motor machine in addition to the first MM1 and second MM2 engines.
  • the invention is not limited to this type of transmission chain. Indeed, the transmission chain may comprise only first and second engines respectively associated with two trains via first and second coupling means.
  • the third motor machine MM3 is considered to be of electrical type, like the first motor machine MM1, and is suitable for being powered by the first storage means. of energy MS1. But she could be of another type. Thus, it could be a machine (or motor) hydraulic, a machine (or a motor) pneumatic (or compressed air), or a flywheel.
  • the third motor machine MM3 is coupled to the second motor machine MM2, for example via a facade belt.
  • This third electric motor machine MM3 is particularly intended to produce torque, from electrical energy which is stored in the first energy storage means MS1, to move the vehicle V, either alone or in addition to the second motor machine MM2 and / or the first motor machine MM1. It is therefore coupled to the first energy storage means MS1, here via the possible inverter OD.
  • This third motor machine MM3 may also be intended to produce energy (here electric) to recharge the first energy storage means MS1, on the order of the supervision computer CS.
  • this third motor machine MM3 could be interposed between the second MC2 and third MC3 coupling means.
  • the transmission chain may also comprise a DM starter which is coupled to the second motor machine MM2, in particular for launching it during a start-up.
  • This DM starter is here also coupled to second energy storage means MS2.
  • the latter (MS2) can, for example, be arranged in the form of a service battery, for example of the very low voltage type (typically between 12 V and 48 V). But as a variant, this DM starter could be coupled to the first energy storage means MS1 (in the absence of second energy storage means MS2).
  • the supervision computer CS is for example capable of operating the vehicle V in at least three different running modes.
  • a first mode called “thermal” only the second motor machine MM2 is used to move the vehicle V.
  • a second mode called “Zero Emission Vehicle” (or ZEV) the first engine MM1 and / or the third machine MM3 is / are used (s) to move the vehicle V.
  • ZEV Zero Emission Vehicle
  • a third mode called “hybrid” the first motor machine MM1 and / or the third motor machine MM3 is / are used (s) in complement of the second motor machine MM2 to move the vehicle V.
  • the invention proposes in particular a control method for controlling the couplings / decoupling of the first train T1 of the vehicle V of the first prime mover MM1.
  • This control method can be implemented by means of the DC control device which comprises at least MC control means for this purpose.
  • the DC control device is part of the supervision computer CS. But this is not obligatory.
  • This DC control device could indeed be a device coupled to the supervision computer CS, directly or indirectly. Therefore, the DC control device can be realized in the form of software modules (or computer or "software”), or a combination of electronic circuits (or “hardware”) and software modules.
  • the control method comprises a step which is implemented at the initiative of the DC control device when the second motor machine MM2 is in operation.
  • the control device DC (and more precisely its control means MC)) requests (s) a coupling of the first prime mover MM1 when a target torque cc1 to be supplied by the first train T1 or a setpoint torque cod to be supplied by the first train T1, either becomes greater than a first positive torque threshold sd and then remains greater than a second threshold of positive pair sc2, chosen and lower than the first torque threshold sd, either becomes lower than a third threshold of negative torque sc3 and chosen and then remains lower than a fourth threshold of negative torque sc4, chosen and greater than the third threshold of torque sc3.
  • the target torque cd that the first train T1 must supply is function a global torque cg which is representative of the will of the driver of the vehicle in terms of torque for all the engines (here MM1 to MM3). This will of the driver is defined by the percentage of depression of the accelerator pedal (or similar control) of the vehicle V.
  • This target torque cd is determined by the supervision computer CS, for example depending on the driving mode and states of depollution.
  • this overall torque cg is determined by the supervision computer CS.
  • the torque cod setpoint to be supplied by the first train T1 is also a function of the overall torque cg. It can, for example, be determined as follows in the step of the control method.
  • the torque estimate ec2 can, for example, be determined from measurements of a sensor and / or values provided by a torque estimator.
  • the current ec2 torque estimate may be different from the setpoint of the pair coc2 which has been determined. This may result, for example, from an error in generating the torque on the second train T2 and / or in the dynamics of the response to the torque set point c 2 and / or the response time and / or the inaccuracy of the supply of energy to the second prime mover MM2 (for example fuel injection) and / or the altitude at which the vehicle V is located and / or a thermal or organic protection mechanism which is being introduced in vehicle V.
  • the second prime mover MM2 for example fuel injection
  • the invention it is possible to implement a new strategy for controlling the coupling to the first train T1 as a function of the state of the target torque cd or of the coding torque setpoint, as well as for the provision of torque for moving the vehicle V for energy recovery for charging the first energy storage means MS1.
  • This reduces the energy losses (here) electrical while maintaining an optimal level of performance.
  • this reduction in energy losses leads to an increase in the overall efficiency of the transmission chain of the vehicle V and thus makes it possible to reduce fuel consumption and exhaust emissions when the second engine MM2 is thermal. .
  • the control process step on (the control means MC) can only make a coupling request after a confirmation of a crossing.
  • the first torque threshold sd higher value, positive bus
  • the third torque threshold sc3 lower value, because negative.
  • confirmation means that a parameter has at least two successive values greater than or less than a torque threshold.
  • the control method step on may, for example, perform a coupling request when the target torque cd or the coded torque setpoint is present.
  • the target torque cd or the cod torque setpoint becomes greater than the first torque threshold sd for a duration which is at least equal to a third chosen time threshold st3 and / or when a value of an integral 11 over the time t becomes greater than a first integration threshold if 1.
  • the integral 11 may, for example, be reset to zero by the control means MC when the target torque cd becomes lower than the first torque threshold sd.
  • the target torque cd or the coding torque reference becomes lower than the third threshold of torque sc3 for a duration which is at least equal to a fourth time threshold st4 (not shown in FIG. 3) chosen and / or when a value of an integral 12 over time t becomes greater than a second integration threshold si2.
  • the integral 12 may, for example, be reset to zero by the control means MC when the target torque cd becomes greater than the third threshold of torque sc3.
  • the MC control means can also perform, for example, a decoupling request after a coupling request after a confirmation of a crossing of the second threshold of sc2 pair or fourth sc4 torque threshold.
  • confirmation means that a parameter has at least two successive values greater than or less than a torque threshold.
  • the control process step on may, for example, perform a decoupling request when the target torque cd or the coded torque setpoint is present.
  • the target torque cd or the cod torque setpoint becomes lower than the second torque threshold sc2 for a duration which is at least equal to a fifth chosen st5 time threshold.
  • the target torque cd or the cod torque setpoint becomes greater than the fourth torque threshold sc4 for a duration which is at least equal to a sixth chosen st6 time threshold.
  • the decoupling could be confirmed by a criterion using integrals 13 and 14, for example similar to those (11 and 12) described above and compared respectively to third si3 and fourth si4 integration thresholds.
  • control means MC may choose each threshold (sd at sc4, st1 to st6, if 1 to si4) as a function of at least one parameter of the vehicle V.
  • each parameter of the vehicle V can be chosen from its current speed, the current slope of the portion of the taxiway on which it is traveling, its current weight, its current transverse acceleration, its current longitudinal acceleration, a weather information, the altitude at which it is located, and a current mode of operation of the vehicle V.
  • the current mode of operation of the vehicle V can, for example, be selected from the selection of a four-wheel drive mode, the selection of a sporty driving mode, and the placement in at least one predefined state of a driver assistance device.
  • vehicle V possibly of type ADAS ("Advanced Driver Assistance System")).
  • the thresholds (sd at sc4, st1 at st6, if 1 at si4) can be chosen constant (and therefore independent of the aforementioned parameter (s)).
  • sd may be equal to +20 Nm
  • sc2 may be equal to +10 Nm
  • sc3 may be equal to -20 Nm
  • sc4 may be equal to -10 Nm
  • st1 may be equal to 3 s
  • st2 may be 3 s
  • st3 may be 2 s
  • st4 may be 2 s
  • st5 may be 3 s
  • st6 may be 3 s
  • if 1 may be 100 Nm s
  • si2 may be equal to 120 N.m. s
  • si3 can be equal to si4 and equal to 0 N.m. s.
  • the thresholds are variable, they may, for example, vary slightly from, or around, the examples of values mentioned above.
  • a first example of temporal evolution (t) of the coupling / decoupling request in the presence of a first example of temporal evolution (t) of the target pair cd and in the absence of taking into account a confirmation of torque threshold crossing is illustrated in the two diagrams of Figure 2.
  • the first diagram, located in the upper part, includes the curve d of time evolution of the target torque cd
  • the second diagram, located in the lower part comprises the curve c2 of time evolution of the coupling / decoupling request for the first train T1 in the presence of the curve d.
  • the control means MC perform a ded decoupling request before the moment t1 the target torque cd is increasing but is lower than the first threshold of torque sd. Therefore, before the time t1 the control means MC perform a ded decoupling request. Then, between times t1 and t2, the target torque cd becomes greater than the first torque threshold sd, increases to a maximum value and then decreases until the second torque threshold sc2. Consequently, between the instants t1 and t2, the control means MC perform a coupling request dec Then, between the instants t2 and t3, the target torque cd decreases from the second torque threshold sc2 to the third torque threshold sc3.
  • the control means MC perform a ded decoupling request. Then, between times t3 and t4, the target torque cd becomes lower than the third threshold of torque sc3, decreases to a minimum value, then increases to the fourth torque threshold sc4. Consequently, between the instants t3 and t4 the control means MC make a coupling request dec. Then, between the instants t4 and t5, the target torque cd varies between the fourth torque threshold sc4 and the first torque threshold sd. Therefore, between times t4 and t5 the control means MC perform a decoupling request dd. Finally, from time t5 the target torque cd becomes greater than the first torque threshold sd. Therefore, from time t5 control means MC make a coupling request dec.
  • a second example of temporal evolution (t) of the coupling / decoupling request in the presence of a second example of temporal evolution (t) of the target torque cd and taking into account a confirmation of crossing of torque threshold is illustrated in the two diagrams of Figure 3.
  • the control means MC perform a decoupling request d1 and from the instant t2 they perform a decoupling request dec, then, between the times t2 and t3, the target pair cd increases until at a maximum value, then decreases until the second pair threshold sc2.
  • the control means MC trigger a first time delay of a duration equal to the first time threshold st1.
  • the target torque cd decreases from the second torque threshold sc2 to the third torque threshold sc3, but the time elapsed between t3 and t4 is less than the first time threshold st1. Therefore, between times t3 and t4 the control means MC maintain the coupling request dec to avoid oscillation. Then, between times t4 and t5, the target torque cd becomes lower than the third torque threshold sc3, decreases to a minimum value, then increases to the fourth torque threshold sc4.
  • the control means MC triggers the calculation of the integral 12, which rapidly becomes greater than the second integration threshold si2 before the expiry of a duration equal to the first time threshold st1, and therefore between times t4 and t5 the control means MC continue to maintain the coupling request dec
  • the control means MC trigger a second time delay of a duration equal to the second time threshold st2.
  • the target torque cd continues to grow without reaching the second torque threshold sc2 and then decreases slowly, and at time t6 the second time delay st2 ends without the target torque cd reaching sd .
  • the control means MC maintain the coupling request dec to avoid oscillation, and at time t6 they make a decoupling request dd. Then, between times t6 and t7, the target torque cd decreases to the third threshold of torque sc3. Consequently, between instants t6 and t7, the control means MC maintain the decoupling request ded, and at the instant t7 they trigger the computation of the integral 12. Then, between the instants t7 and t8, the target pair cd continues to decrease, and at time t8 the integral 12 becomes greater than the second integration threshold si2. Consequently, between the times t7 and t8 the control means MC maintain the decoupling request ded, and from the instant t8 they make a link request dec.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

Un procédé contrôle le couplage/découplage d'une première machine motrice (MM1) non-thermique à un premier train (T1) d'un véhicule (V) comprenant également des moyens de stockage d'énergie (MS1) alimentant en énergie cette première machine motrice (MM1) et une seconde machine motrice (MM2) pouvant être couplée à un second train (T2). Ce procédé comprend une étape dans laquelle on demande un couplage de la première machine motrice (MM1) lorsqu'un couple cible ou une consigne de couple à fournir par le premier train (T1), fonction d'un couple global représentatif de la volonté du conducteur, soit devient supérieur(e) à un premier seuil de couple positif puis demeure supérieur(e) à un deuxième seuil de couple positif et inférieur au premier seuil de couple, soit devient inférieur(e) à un troisième seuil de couple négatif puis demeure inférieur(e) à un quatrième seuil de couple négatif et supérieur au troisième seuil de couple.

Description

CONTRÔLE DES COUPLAGES/DÉCOUPLAGES D'UNE MACHINE MOTRICE NON-THERMIQUE D'UN VÉHICULE EN FONCTION D'UN COUPLE CIBLE OU DE CONSIGNE
L'invention concerne les véhicules ayant une chaîne de transmission comportant au moins une première machine motrice non-thermique et une seconde machine motrice (thermique ou non-thermique) pouvant être couplées/découplées de façon pilotée à/de deux de leurs trains.
On entend ici par « machine motrice » une machine agencée de manière à fournir ou récupérer du couple pour déplacer un véhicule, soit seule soit en complément d'au moins une autre machine motrice thermique ou non- thermique. Par conséquent, une machine motrice non-thermique pourra par exemple être une machine (ou un moteur) électrique, une machine hydraulique, une machine pneumatique (ou à air comprimé), ou un volant d'inertie. De son côté une machine motrice thermique pourra par exemple être un moteur thermique.
Certains véhicules, éventuellement de type automobile, comprennent une chaîne de transmission comportant une première machine motrice non- thermique et propre à être couplée de façon pilotée à un premier train par des premiers moyens de couplage, des moyens de stockage d'énergie propres à alimenter en énergie cette première machine motrice, et une seconde machine motrice propre à être couplée de façon pilotée à un second train par des seconds moyens de couplage.
La gestion de cette chaîne de transmission est généralement assurée par un calculateur de supervision qui comprend, ou est couplé à, un dispositif de contrôle qui est chargé de lui proposer de coupler/découpler sa première machine motrice et/ou sa seconde machine motrice en fonction des besoins, et notamment de la situation de vie en cours. On notera que tout type de couplage/découplage est ici concerné, et notamment celui par crabot ou par embrayage.
Lorsque la chaîne de transmission est hybride (et donc que sa seconde machine motrice est thermique) une proposition de couplage de la machine motrice non-thermique est généralement destinée à minimiser la consommation de carburant par la seconde machine motrice, par exemple grâce à une récupération d'énergie électrique dans une phase de freinage via la première machine motrice, et/ou à augmenter les performances du véhicule, par exemple par adjonction au couple qui est produit par la seconde machine motrice du couple que peut produire la première machine motrice lors d'une phase de roulage.
Une proposition de couplage/découplage de la première machine motrice est habituellement décidée en fonction de paramètres du véhicule, comme par exemple l'enfoncement de sa pédale d'accélérateur, l'enfoncement de sa pédale de frein, sa vitesse en cours, son accélération transversale en cours, son accélération longitudinale en cours, son inclinaison en cours, son poids en cours, la météorologie, l'altitude à laquelle il est situé, et une contrainte d'utilisation de sa première machine motrice et/ou de sa seconde machine motrice. A titre d'exemple, lorsque la chaîne de transmission est hybride et que le mode de fonctionnement de type tout électrique (ou ZEV (« Zéro Emission Véhicule »)) est privilégié à basse vitesse, le dispositif effectue une demande de couplage dès que la vitesse du véhicule devient inférieure à un seuil (par exemple égal à 50 km/h).
Une fois la proposition de couplage/découplage déterminée, elle est transmise au calculateur de supervision de la chaîne de transmission, afin qu'il décide de la suivre ou de la rejeter en fonction de ses propres contraintes, éventuellement temporaires.
Comme le sait l'homme de l'art, certaines de ces propositions de couplage/découplage peuvent conduire à un couplage permanent de la première machine motrice pendant une durée relativement longue, alors même que la vitesse du véhicule est stabilisée et donc que cette première machine motrice n'est pas utilisée. Ce type de situation de vie induit des pertes d'énergie par dissipation (typiquement plusieurs kilowatts à vitesse élevée) du fait du couple de perte de la première machine motrice, ce qui peut endommager cette dernière lorsqu'elle présente un régime maximal au-delà duquel un découplage est nécessaire. Par ailleurs, avec les dispositifs de contrôle actuels on peut se retrouver dans une situation où il n'y a pas de demande de couplage de la première machine motrice alors même qu'il y a un besoin réel d'utiliser la première machine motrice. On peut également avoir une situation dans laquelle le couple global, qui est représentatif de la volonté du conducteur du véhicule, est positif et il faut récupérer de l'énergie sur le premier train pour recharger les moyens de stockage d'énergie, ce qui revient à imposer un couple cible négatif sur le premier train. Dans cette situation la consigne du second train est supérieure au couple global du fait que la consigne du premier train est négative. Or, si la première machine motrice est découplée du premier train, la récupération d'énergie est impossible et donc la recharge ne peut pas être effectuée.
L'invention a donc notamment pour but d'améliorer la situation, et en particulier de prendre en compte toute les demandes de couple pour rendre robuste le couplage de la première machine motrice lorsque l'on a besoin d'elle.
Elle propose notamment un procédé de contrôle destiné à contrôler le couplage/découplage d'une première machine motrice non-thermique, via des moyens de couplage, à un premier train d'un véhicule qui comprend également des moyens de stockage d'énergie propres à alimenter en énergie au moins cette première machine motrice et une seconde machine motrice propre à être couplée à un second train.
Ce procédé de contrôle se caractérise par le fait qu'il comprend une étape dans laquelle on demande un couplage de la première machine motrice lorsqu'un couple cible à fournir par le premier train ou une consigne de couple à fournir par le premier train, fonction d'un couple global représentatif d'une volonté d'un conducteur du véhicule,
- soit devient supérieur(e) à un premier seuil de couple positif et choisi puis demeure supérieur(e) à un deuxième seuil de couple positif, choisi et inférieur à ce premier seuil de couple,
- soit devient inférieur(e) à un troisième seuil de couple négatif et choisi puis demeure inférieur(e) à un quatrième seuil de couple négatif, choisi et supérieur à ce troisième seuil de couple. On peut ainsi mettre en œuvre une nouvelle stratégie de contrôle du couplage au premier train en fonction de l'état du couple cible de ce dernier ou de la consigne de couple pour ce dernier, aussi bien pour la fourniture de couple que pour la récupération d'énergie, ce qui permet de réduire les pertes d'énergie tout en gardant un niveau de prestation optimal.
Le procédé de contrôle selon l'invention peut comporter d'autres caractéristiques qui peuvent être prises séparément ou en combinaison, et notamment :
- dans son étape, on peut déterminer une consigne de couple pour le second train en soustrayant le couple cible à fournir par le premier train du couple global. Puis, on peut déterminer une estimée du couple fourni au second train afin de déterminer la consigne de couple à fournir par le premier train en soustrayant cette estimée du couple fourni au second train du couple global ;
- dans son étape, on peut effectuer la demande de couplage après une confirmation d'un franchissement du premier seuil de couple ou du troisième seuil de couple ;
dans son étape, on peut effectuer la demande de couplage lorsque le couple cible à fournir par le premier train ou la consigne de couple à fournir par le premier train soit devient supérieur(e) au premier seuil de couple pendant une durée au moins égale à un troisième seuil temporel choisi et/ou lorsqu'une valeur d'une intégrale sur le temps d'une valeur absolue d'un écart entre le premier seuil de couple et le couple cible à fournir par le premier train ou la consigne de couple à fournir par le premier train, lorsque le couple cible à fournir par le premier train ou la consigne de couple à fournir par le premier train est supérieur(e) au premier seuil de couple, devient supérieure à un premier seuil d'intégration, soit devient inférieure au troisième seuil de couple pendant une durée au moins égale à un quatrième seuil temporel choisi et/ou lorsqu'une valeur d'une intégrale sur le temps d'une valeur absolue d'un écart entre le troisième seuil de couple et le couple cible à fournir par le premier train ou la consigne de couple à fournir par le premier train, lorsque le couple cible à fournir par le premier train ou la consigne de couple à fournir par le premier train est inférieur(e) au troisième seuil de couple, devient supérieure à un second seuil d'intégration ;
- dans son étape, on peut effectuer une demande de découplage après la demande de couplage après une confirmation d'un franchissement du deuxième seuil de couple ou du quatrième seuil de couple ;
dans son étape, on peut effectuer la demande de découplage soit lorsque le couple cible à fournir par le premier train ou la consigne de couple à fournir par le premier train devient inférieur(e) au deuxième seuil de couple pendant une durée au moins égale à un cinquième seuil temporel choisi, soit lorsque le couple cible à fournir par le premier train ou la consigne de couple à fournir par le premier train devient supérieur(e) au quatrième seuil de couple pendant une durée au moins égale à un sixième seuil temporel choisi ;
- dans son étape, chaque seuil peut être choisi en fonction d'au moins un paramètre du véhicule, lui-même choisi parmi une vitesse en cours du véhicule, une pente en cours d'une portion de voie de circulation sur laquelle circule le véhicule, un poids en cours du véhicule, une accélération transversale en cours du véhicule, une accélération longitudinale en cours du véhicule, une information météorologique, une altitude à laquelle est situé le véhicule, et un mode de fonctionnement en cours du véhicule.
L'invention propose également un dispositif de contrôle destiné à équiper un véhicule comprenant une chaîne de transmission comportant une première machine motrice non-thermique et propre à être couplée à un premier train par des moyens de couplage, des moyens de stockage d'énergie propres à alimenter en énergie au moins cette première machine motrice, et une seconde machine motrice propre à être couplée à un second train.
Ce dispositif de contrôle se caractérise par le fait qu'il comprend des moyens mettant en œuvre l'étape d'un procédé de contrôle du type de celui présenté ci-avant.
L'invention propose également un véhicule, éventuellement de type automobile, et comprenant, d'une part, une chaîne de transmission comportant une première machine motrice non-thermique et propre à être couplée à un premier train par des moyens de couplage, des moyens de stockage d'énergie propres à alimenter en énergie au moins la première machine motrice, et une seconde machine motrice propre à être couplée à un second train, et, d'autre part, un dispositif de contrôle du type de celui présenté ci-avant.
Par exemple, la première machine motrice peut être choisie parmi un moteur électrique, une machine hydraulique, une machine pneumatique et un volant d'inertie.
Egalement par exemple, la seconde machine motrice peut être choisie parmi un moteur thermique, un moteur électrique, une machine hydraulique, une machine pneumatique et un volant d'inertie.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés, sur lesquels :
- la figure 1 illustre schématiquement et fonctionnellement un véhicule comprenant une chaîne de transmission hybride et un calculateur de supervision équipé d'un dispositif de contrôle selon l'invention,
- la figure 2 illustre schématiquement, au sein d'un premier diagramme (partie supérieure), un premier exemple de courbe (d ) d'évolution temporelle du couple cible pour le premier train d'un véhicule en l'absence de prise en compte d'une confirmation de franchissement de seuil de couple, et au sein d'un deuxième diagramme (partie inférieure), un premier exemple de courbe (c2) d'évolution temporelle de la demande de couplage/découplage (de) pour le premier train d'un véhicule en présence de la courbe d , et
- la figure 3 illustre schématiquement, au sein d'un troisième diagramme (partie supérieure), un second exemple de courbe (d ') d'évolution temporelle du couple cible pour le premier train d'un véhicule en cas de prise en compte d'une confirmation de franchissement de seuil de couple, et au sein d'un quatrième diagramme (partie inférieure), un second exemple de courbe (c2') d'évolution temporelle de la demande de couplage/découplage (de) pour le premier train d'un véhicule en présence de la courbe d '. L'invention a notamment pour but de proposer un procédé de contrôle, et un dispositif de contrôle DC associé, destinés, à contrôler les couplages/découplages à un premier train T1 d'un véhicule V d'une première machine motrice MM1 non-thermique d'une chaîne de transmission comprenant également une seconde machine motrice MM2 propre à être couplée/découplée à un/d'un second train T2 de ce véhicule V.
Dans ce qui suit, on considère, à titre d'exemple non limitatif, que le véhicule V est de type automobile. Il s'agit par exemple d'une voiture. Mais l'invention n'est pas limitée à ce type de véhicule. Elle concerne en effet tout type de véhicule comprenant une chaîne de transmission comportant au moins une première machine motrice non-thermique propre à être couplée, via des premiers moyens de couplage, à un premier train, et une seconde machine motrice (thermique ou non-thermique) propre à être couplée, via des seconds moyens de couplage, à un second train. Par conséquent, l'invention concerne notamment les véhicules terrestres.
Il est rappelé que l'on entend ici par « machine motrice » une machine agencée de manière à fournir ou récupérer du couple pour déplacer un véhicule, soit seule soit en complément d'au moins une autre machine motrice thermique ou non-thermique. Par conséquent, une machine motrice non-thermique pourra par exemple être une machine (ou un moteur) électrique, une machine hydraulique, une machine pneumatique (ou à air comprimé), ou un volant d'inertie. De son côté une machine motrice thermique est un moteur thermique consommant du carburant ou des produits chimiques. Il pourra notamment s'agir d'un réacteur, d'un turboréacteur ou d'un moteur chimique.
D'autre part, on considère dans ce qui suit, à titre d'exemple non limitatif, que la première machine motrice MM1 est de type électrique. Mais l'invention n'est pas limitée à ce type de machine motrice non-thermique. Ainsi, elle concerne également et notamment les machines (ou moteurs) hydrauliques, les machines (ou moteurs) pneumatiques (ou à air comprimé), et les volants d'inertie.
De plus, on considère dans ce qui suit, à titre d'exemple non limitatif, que la seconde machine motrice MM2 est un moteur thermique. Mais l'invention n'est pas limitée à ce type de machine motrice. Elle peut en effet être thermique ou non-thermique. Ainsi, elle concerne également et notamment les machines (ou moteurs) hydrauliques, les machines (ou moteurs) pneumatiques (ou à air comprimé), et les volants d'inertie.
On a schématiquement représenté sur la figure 1 un véhicule V comprenant une chaîne de transmission, un calculateur de supervision CS propre à superviser (ou gérer) le fonctionnement de la chaîne de transmission, et un dispositif de contrôle DC selon l'invention.
Dans l'exemple illustré non limitativement sur la figure 1 , la chaîne de transmission comprend une première machine motrice MM1 associée à des premiers moyens de couplage MC1 et à des premiers moyens de stockage d'énergie MS1 , une seconde machine motrice MM2 (ici de type thermique) associée (ici) à des seconds MC2 et troisièmes MC3 moyens de couplage, et des premier AT1 et second AT2 arbres de transmission.
La première machine motrice MM1 est notamment destinée à produire du couple pour déplacer le véhicule V, sur ordre du calculateur de supervision CS et à partir de l'énergie (ici électrique) qui est stockée dans les premiers moyens de stockage d'énergie MS1 . Cette production de couple peut se faire éventuellement en complément d'au moins le couple produit par la seconde machine motrice MM2. La première machine motrice MM1 est donc couplée aux premiers moyens de stockage d'énergie MS1 , éventuellement via un onduleur OD (comme illustré non limitativement).
Cette première machine motrice MM1 est également destinée à produire de l'énergie (ici électrique) pour recharger les premiers moyens de stockage d'énergie MS1 , sur ordre du calculateur de supervision CS.
Etant donné que l'on considère ici que la première machine motrice MM1 est de type électrique, les premiers moyens de stockage d'énergie MS1 qui l'alimentent sont agencés pour stocker de l'énergie électrique, par exemple en basse tension (typiquement comprise entre 200 V et 600 V).
Par exemple, ces premiers moyens de stockage d'énergie MS1 peuvent comprendre une multiplicité de cellules de stockage rechargeables et chargées de stocker de l'énergie électrique. Ces cellules de stockage peuvent être électrochimiques. Dans ce cas, elles peuvent, par exemple, être de type Ni-MH.
Les premiers moyens de couplage MC1 sont ici chargés de coupler/ découpler la première machine motrice MM1 au/du premier arbre de transmission AT1 , sur ordre du calculateur de supervision CS, afin de communiquer du couple qu'elle doit produire et qui est défini par une consigne de couple (ou de régime) cod , grâce à l'énergie stockée dans les premiers moyens de stockage d'énergie MS1 , au premier arbre de transmission AT1 . Ce dernier (AT1 ) est couplé à un premier train T1 (ici de roues).
Par exemple, le premier train T1 est situé à l'arrière du véhicule V, et de préférence, et comme illustré, couplé au premier arbre de transmission AT1 via un premier différentiel (ici arrière) D1 . Mais dans une variante ce premier train T1 pourrait être situé à l'avant du véhicule V.
Le premier moyen de couplage MC1 peut, par exemple, être un mécanisme à crabots ou un embrayage ou un convertisseur de couple hydraulique ou encore un frein. Il peut prendre au moins deux états de couplage : un premier (couplé) dans lequel il assure le couplage de la première machine motrice MM1 au premier arbre de transmission AT1 et un second (découplé) dans lequel il découple la première machine motrice MM1 du premier arbre de transmission AT1 . On notera qu'il peut également prendre un état intermédiaire (par exemple pour un glissement d'embrayage).
La seconde machine motrice MM2 (ici un moteur thermique) comprend un vilebrequin (non représenté) qui est solidarisé fixement à l'arbre moteur afin d'entraîner ce dernier en rotation. Ce moteur thermique MM2 est destiné à fournir du couple pour un second train T2 (ici de roues), via les deuxièmes MC2 et troisièmes MC3 moyens de couplage.
Par exemple, le second train T2 est situé à l'avant du véhicule V, et couplé à un second arbre de transmission AT2, de préférence, et comme illustré, via un second différentiel (ici avant) D2. Mais dans la variante précitée ce second train T2 pourrait être situé à l'arrière du véhicule V.
Les deuxièmes moyens de couplage MC2 peuvent, par exemple, être agencés sous la forme d'un embrayage. Mais il pourrait également s'agir d'un convertisseur de couple ou d'un crabot ou encore d'un frein. Ils sont de préférence pilotés par le calculateur de supervision CS. Les troisièmes moyens de couplage MC3 peuvent, par exemple, être des moyens de changement de rapport. Ces derniers (MC3) peuvent, par exemple, être agencés sous la forme d'une boîte de vitesses, et sont de préférence pilotés par le calculateur de supervision CS. Ils comprennent un arbre primaire (ou d'entrée) destiné à recevoir du couple des deuxièmes moyens de couplage MC2, et un arbre secondaire (ou de sortie) destiné à recevoir ce couple via l'arbre primaire afin de le communiquer au second arbre de transmission AT2 auquel il est couplé et qui est couplé indirectement à des roues (ici avant) du véhicule V via le second différentiel D2. Mais dans une variante de réalisation les moyens de changement de rapport MC3 pourraient, par exemple, comprendre au moins un train épicycloïdal comprenant un, deux ou trois synchronisateurs. Il est rappelé que les synchronisateurs permettent de solidariser deux éléments entre eux afin de fixer un couple et un régime sur deux des trois arbres d'un train épicycloïdal.
On notera que dans l'exemple illustré non limitativement sur la figure 1 , la chaîne de transmission comprend aussi une troisième machine motrice MM3 de type non-thermique en complément des première MM1 et seconde MM2 machines motrices. Mais l'invention n'est pas limitée à ce type de chaîne de transmission. En effet, la chaîne de transmission peut ne comprendre que des première et seconde machines motrices associées respectivement à deux trains via des premiers et seconds moyens de couplage.
On considère dans ce qui suit, à titre d'exemple non limitatif, que la troisième machine motrice MM3 est de type électrique, comme la première machine motrice MM1 , et qu'elle est propre à être alimentée en énergie par les premiers moyens de stockage d'énergie MS1 . Mais elle pourrait être d'un autre type. Ainsi, il pourrait s'agir d'une machine (ou d'un moteur) hydraulique, d'une machine (ou d'un moteur) pneumatique (ou à air comprimé), ou d'un volant d'inertie.
Dans l'exemple qui est illustré non limitativement sur la figure 1 , la troisième machine motrice MM3 est couplée à la seconde machine motrice MM2, par exemple via une courroie de façade. Cette troisième machine motrice électrique MM3 est notamment destinée à produire du couple, à partir de l'énergie électrique qui est stockée dans les premiers moyens de stockage d'énergie MS1 , pour déplacer le véhicule V, soit seule, soit en complément de la seconde machine motrice MM2 et/ou de la première machine motrice MM1 . Elle est donc couplée aux premiers moyens de stockage d'énergie MS1 , ici via l'éventuel onduleur OD.
Cette troisième machine motrice MM3 peut être également destinée à produire de l'énergie (ici électrique) pour recharger les premiers moyens de stockage d'énergie MS1 , sur ordre du calculateur de supervision CS.
On notera que dans une variante cette troisième machine motrice MM3 pourrait être intercalée entre les deuxièmes MC2 et troisièmes MC3 moyens de couplage.
On notera également, comme illustré non limitativement sur la figure 1 , que la chaîne de transmission peut aussi comprendre un démarreur DM qui est couplé à la seconde machine motrice MM2, notamment pour le lancer lors d'un démarrage. Ce démarreur DM est ici également couplé à des seconds moyens de stockage d'énergie MS2. Ces derniers (MS2) peuvent, par exemple, être agencés sous la forme d'une batterie de servitude, par exemple de type très basse tension (typiquement comprise entre 12 V et 48V). Mais en variante ce démarreur DM pourrait être couplé aux premiers moyens de stockage d'énergie MS1 (en l'absence de seconds moyens de stockage d'énergie MS2).
Comme illustré non limitativement sur la figure 1 , on peut également prévoir un convertisseur CV de type DC/DC entre les premiers moyens de stockage d'énergie MS1 et le démarreur DM, de manière à assurer, en cas de besoin, l'alimentation du démarreur DM et d'un réseau de bord du véhicule V (alimentant électriquement des équipements électriques) grâce à l'énergie électrique stockée dans les premiers moyens de stockage d'énergie MS1 .
Le calculateur de supervision CS est par exemple capable de faire fonctionner le véhicule V dans au moins trois modes de roulage différents. Dans un premier mode dit « thermique » seule la seconde machine motrice MM2 est utilisée pour déplacer le véhicule V. Dans un deuxième mode dit « Zéro Emission Véhicule » (ou ZEV)) la première machine motrice MM1 et/ou la troisième machine motrice MM3 est/sont utilisée(s) pour déplacer le véhicule V. Dans un troisième mode dit « hybride » la première machine motrice MM1 et/ou la troisième machine motrice MM3 est/sont utilisée(s) en complément de la seconde machine motrice MM2 pour déplacer le véhicule V.
Comme indiqué précédemment, l'invention propose notamment un procédé de contrôle destiné à contrôler les couplages/découplages au premier train T1 du véhicule V de la première machine motrice MM1 .
Ce procédé de contrôle peut être mis en œuvre au moyen du dispositif de contrôle DC qui comprend au moins des moyens de contrôle MC à cet effet.
On notera que dans l'exemple non limitatif illustré sur la figure 1 , le dispositif de contrôle DC fait partie du calculateur de supervision CS. Mais cela n'est pas obligatoire. Ce dispositif de contrôle DC pourrait en effet être un équipement couplé au calculateur de supervision CS, directement ou indirectement. Par conséquent, le dispositif de contrôle DC peut être réalisé sous la forme de modules logiciels (ou informatiques ou encore « software »), ou bien d'une combinaison de circuits électroniques (ou « hardware ») et de modules logiciels.
Le procédé de contrôle, selon l'invention, comprend une étape qui est mise en œuvre à l'initiative du dispositif de contrôle DC lorsque la seconde machine motrice MM2 est en fonctionnement.
Dans cette étape, on (le dispositif de contrôle DC (et plus précisément ses moyens de contrôle MC)) demande(nt) un couplage de la première machine motrice MM1 lorsqu'un couple cible cc1 à fournir par le premier train T1 ou une consigne cod de couple à fournir par le premier train T1 , soit devient supérieur(e) à un premier seuil de couple sd positif et choisi puis demeure supérieur(e) à un deuxième seuil de couple sc2 positif, choisi et inférieur au premier seuil de couple sd , soit devient inférieur(e) à un troisième seuil de couple sc3 négatif et choisi puis demeure inférieur(e) à un quatrième seuil de couple sc4 négatif, choisi et supérieur au troisième seuil de couple sc3.
Le couple cible cd que doit fournir le premier train T1 est fonction d'un couple global cg qui est représentatif de la volonté du conducteur du véhicule en matière de couple pour l'ensemble des machines motrices (ici MM1 à MM3). Cette volonté du conducteur est définie par le pourcentage d'enfoncement de la pédale d'accélérateur (ou commande analogue) du véhicule V. Ce couple cible cd est déterminé par le calculateur de supervision CS, par exemple en fonction du mode de conduite et des états de dépollution. De même, ce couple global cg est déterminé par le calculateur de supervision CS.
La consigne cod de couple que doit fournir le premier train T1 est également fonction du couple global cg. Elle peut, par exemple, être déterminée comme suit dans l'étape du procédé de contrôle.
Par exemple, on (les moyens de contrôle MC) peu(ven)t commencer par déterminer une consigne coc2 de couple pour le second train T2 en soustrayant le couple cible cd (que doit fournir le premier train T1 ) du couple global cg (soit coc2 = cg - cod ). Puis, on (les moyens de contrôle MC) peu(ven)t déterminer une estimée ec2 du couple qui est en cours de fourniture au second train T2, afin de déterminer la consigne de couple cod en soustrayant cette estimée de couple ec2 du couple global cg (soit cod = cg - ec2). L'estimée de couple ec2 peut, par exemple, être déterminée à partir de mesures d'un capteur et/ou de valeurs fournies par un estimateur de couple.
On comprendra qu'à un instant donné l'estimée de couple ec2 en cours peut être différente de la consigne de couple coc2 qui a été déterminée. Cela peut résulter, par exemple, d'une erreur de réalisation du couple sur le second train T2 et/ou de la dynamique de la réponse à la consigne de couple coc2 et/ou du temps de réponse et/ou de l'imprécision de la fourniture de l'énergie à la seconde machine motrice MM2 (par exemple de l'injection de carburant) et/ou de l'altitude à laquelle est situé le véhicule V et/ou d'un mécanisme de protection thermique ou organique qui est en cours d'instauration dans le véhicule V.
Grâce à l'invention, on peut mettre en œuvre une nouvelle stratégie de contrôle du couplage au premier train T1 en fonction de l'état du couple cible cd ou de la consigne de couple cod , aussi bien pour la fourniture de couple pour le déplacement du véhicule V que pour la récupération d'énergie pour la recharge des premiers moyens de stockage d'énergie MS1 . Cela permet de réduire les pertes d'énergie (ici) électriques tout en gardant un niveau de prestation optimal. De plus, cette réduction des pertes d'énergie entraine une augmentation du rendement global de la chaîne de transmission du véhicule V et donc permet de réduire la consommation de carburant et les émissions de gaz à l'échappement lorsque la seconde machine motrice MM2 est thermique.
Pour éviter les phénomènes d'oscillation des couplages/ découplages au premier train T1 , dans l'étape du procédé de contrôle on (les moyens de contrôle MC) peu(ven)t effectuer une demande de couplage seulement après une confirmation d'un franchissement du premier seuil de couple sd (par valeur supérieure, car positive) ou du troisième seuil de couple sc3 (par valeur inférieure, car négative). On entend ici par « confirmation » le fait qu'un paramètre ait au moins deux valeurs successives supérieures ou inférieures à un seuil de couple.
En présence de cette dernière option, dans l'étape du procédé de contrôle on (les moyens de contrôle MC) peu(ven)t, par exemple, effectuer une demande de couplage lorsque le couple cible cd ou la consigne de couple cod présente l'une des deux évolutions temporelles suivantes. Dans une première évolution temporelle le couple cible cd ou la consigne de couple cod devient supérieur(e) au premier seuil de couple sd pendant une durée qui est au moins égale à un troisième seuil temporel st3 choisi et/ou lorsqu'une valeur d'une intégrale 11 sur le temps t devient supérieure à un premier seuil d'intégration si 1 . Cette intégrale 11 sur le temps t est effectuée sur la valeur absolue de l'écart entre le premier seuil de couple sd et le couple cible cd ou la consigne de couple cod (soit 11 = J]sc1 - cc1 |.dt), lorsque le couple cible cd ou la consigne de couple cod est supérieur(e) au premier seuil de couple sd . L'intégrale 11 peut, par exemple, être réinitialisée à la valeur zéro par les moyens de contrôle MC lorsque le couple cible cd redevient inférieur au premier seuil de couple sd .
Dans une seconde évolution temporelle le couple cible cd ou la consigne de couple cod devient inférieur(e) au troisième seuil de couple sc3 pendant une durée qui est au moins égale à un quatrième seuil temporel st4 (non présenté sur la figure 3) choisi et/ou lorsqu'une valeur d'une intégrale 12 sur le temps t devient supérieure à un second seuil d'intégration si2. Cette intégrale 12 sur le temps t est effectuée sur la valeur absolue de l'écart entre le troisième seuil de couple sc3 et le couple cible cd ou la consigne de couple cod (soit 12 = J]sc1 - cd |.dt), lorsque le couple cible cd ou la consigne de couple cod est inférieur(e) au troisième seuil de couple sc3. L'intégrale 12 peut, par exemple, être réinitialisée à la valeur zéro par les moyens de contrôle MC lorsque le couple cible cd redevient supérieur au troisième seuil de couple sc3.
On notera que dans l'étape du procédé de contrôle on (les moyens de contrôle MC) peu(ven)t aussi, par exemple, effectuer une demande de découplage après une demande de couplage après une confirmation d'un franchissement du deuxième seuil de couple sc2 ou du quatrième seuil de couple sc4. On entend ici par « confirmation » le fait qu'un paramètre ait au moins deux valeurs successives supérieures ou inférieures à un seuil de couple.
En présence de cette dernière option, dans l'étape du procédé de contrôle on (les moyens de contrôle MC) peu(ven)t, par exemple, effectuer une demande de découplage lorsque le couple cible cd ou la consigne de couple cod présente l'une des deux évolutions temporelles suivantes. Dans une première évolution temporelle le couple cible cd ou la consigne de couple cod devient inférieur(e) au deuxième seuil de couple sc2 pendant une durée qui est au moins égale à un cinquième seuil temporel st5 choisi. Dans une seconde évolution temporelle le couple cible cd ou la consigne de couple cod devient supérieur(e) au quatrième seuil de couple sc4 pendant une durée qui est au moins égale à un sixième seuil temporel st6 choisi.
De la même façon on pourrait confirmer le découplage par un critère utilisant des intégrales 13 et 14, par exemple similaires à celles (11 et 12) décrites ci-avant et comparées respectivement à des troisième si3 et quatrième si4 seuils d'intégration.
On notera également que dans l'étape du procédé de contrôle on (les moyens de contrôle MC) peu(ven)t choisir chaque seuil (sd à sc4, st1 à st6, si 1 à si4) en fonction d'au moins un paramètre du véhicule V. Par exemple, chaque paramètre du véhicule V peut être choisi parmi sa vitesse en cours, la pente en cours de la portion de voie de circulation sur laquelle il circule, son poids en cours, son accélération transversale en cours, son accélération longitudinale en cours, une information météorologique, l'altitude à laquelle il est situé, et un mode de fonctionnement en cours du véhicule V. Le mode de fonctionnement en cours du véhicule V peut, par exemple, être choisi parmi la sélection d'un mode de roulage à quatre roues motrices, la sélection d'un mode de conduite sportive, et le placement dans au moins un état prédéfini d'un dispositif d'assistance à un conducteur du véhicule V (éventuellement de type ADAS (« Advanced Driver Assistance System »)).
Les valeurs en cours de tous ces paramètres sont facilement accessibles dans le véhicule V.
Mais les seuils (sd à sc4, st1 à st6, si 1 à si4) peuvent être choisis constants (et donc indépendants de paramètre(s) précité(s)). A titre d'exemple, sd peut être égal à +20 N.m, sc2 peut être égal à +10 N.m, sc3 peut être égal à -20 N.m, sc4 peut être égal à -10 N.m, st1 peut être égal à 3 s, st2 peut être égal à 3 s, st3 peut être égal à 2 s, st4 peut être égal à 2 s, st5 peut être égal à 3 s, st6 peut être égal à 3 s, si 1 peut être égal à 100 N.m. s, si2 peut être égal à 120 N.m. s, et si3 peut être égal à si4 et égal à 0 N.m. s. Lorsque les seuils sont variables, ils peuvent, par exemple, varier légèrement à partir des, ou autour des, exemples de valeurs précités.
Un premier exemple d'évolution temporelle (t) de la demande de couplage/découplage de en présence d'un premier exemple d'évolution temporelle (t) du couple cible cd et en l'absence de prise en compte d'une confirmation de franchissement de seuil de couple est illustré dans les deux diagrammes de la figure 2. Le premier diagramme, situé dans la partie supérieure, comprend la courbe d d'évolution temporelle du couple cible cd , et le deuxième diagramme, situé dans la partie inférieure, comprend la courbe c2 d'évolution temporelle de la demande de couplage/découplage de pour le premier train T1 en présence de la courbe d .
On peut observer sur d qu'avant l'instant t1 le couple cible cd est croissant mais est inférieur au premier seuil de couple sd . Par conséquent, avant l'instant t1 les moyens de contrôle MC effectuent une demande de découplage ded. Puis, entre les instants t1 et t2 le couple cible cd devient supérieur au premier seuil de couple sd , croit jusqu'à une valeur maximale, puis décroît jusqu'au deuxième seuil de couple sc2. Par conséquent, entre les instants t1 et t2 les moyens de contrôle MC effectuent une demande de couplage dec. Ensuite, entre les instants t2 et t3 le couple cible cd décroit du deuxième seuil de couple sc2 au troisième seuil de couple sc3. Par conséquent, entre les instants t2 et t3 les moyens de contrôle MC effectuent une demande de découplage ded. Puis, entre les instants t3 et t4 le couple cible cd devient inférieur au troisième seuil de couple sc3, décroit jusqu'à une valeur minimale, puis croît jusqu'au quatrième seuil de couple sc4. Par conséquent, entre les instants t3 et t4 les moyens de contrôle MC effectuent une demande de couplage dec. Ensuite, entre les instants t4 et t5 le couple cible cd varie entre le quatrième seuil de couple sc4 et le premier seuil de couple sd . Par conséquent, entre les instants t4 et t5 les moyens de contrôle MC effectuent une demande de découplage ded. Enfin, à partir de l'instant t5 le couple cible cd devient supérieur au premier seuil de couple sd . Par conséquent, à partir de l'instant t5 les moyens de contrôle MC effectuent une demande de couplage dec.
Un second exemple d'évolution temporelle (t) de la demande de couplage/découplage de en présence d'un second exemple d'évolution temporelle (t) du couple cible cd et en cas de prise en compte d'une confirmation de franchissement de seuil de couple est illustré dans les deux diagrammes de la figure 3. Le premier diagramme, situé dans la partie supérieure, comprend la courbe d ' d'évolution temporelle du couple cible cd , et le deuxième diagramme, situé dans la partie inférieure, comprend la courbe c2' d'évolution temporelle de la demande de couplage/découplage de pour le premier train T1 en présence de la courbe d '.
On peut observer sur d ' qu'avant l'instant t1 le couple cible cd est croissant mais est inférieur au premier seuil de couple sd , que ce couple cible cd dépasse le premier seuil de couple sd à l'instant t2, ce qui déclenche le calcul de l'intégrale 11 par les moyens de contrôle MC, et qu'à l'instant t2 l'intégrale 11 devient supérieure au premier seuil d'intégration si1 . Par conséquent, avant l'instant t2 les moyens de contrôle MC effectuent une demande de découplage ded et à partir de l'instant t2 ils effectuent une demande de couplage dec. Puis, entre les instants t2 et t3 le couple cible cd croit jusqu'à une valeur maximale, puis décroît jusqu'au deuxième seuil de couple sc2. A l'instant t3 les moyens de contrôle MC déclenchent une première temporisation d'une durée égale au premier seuil temporel st1 . Entre les instants t3 et t4 le couple cible cd décroit du deuxième seuil de couple sc2 au troisième seuil de couple sc3, mais la durée écoulée entre t3 et t4 est inférieure au premier seuil temporel st1 . Par conséquent, entre les instants t3 et t4 les moyens de contrôle MC maintiennent la demande de couplage dec pour éviter une oscillation. Puis, entre les instants t4 et t5 le couple cible cd devient inférieur au troisième seuil de couple sc3, décroit jusqu'à une valeur minimale, puis croît jusqu'au quatrième seuil de couple sc4. Par conséquent, à l'instant t4 les moyens de contrôle MC déclenchent le calcul de l'intégrale 12, laquelle devient rapidement supérieure au second seuil d'intégration si2 avant l'expiration d'une durée égale au premier seuil temporel st1 , et donc entre les instants t4 et t5 les moyens de contrôle MC continuent de maintenir la demande de couplage dec. A l'instant t5 les moyens de contrôle MC déclenchent une seconde temporisation d'une durée égale au second seuil temporel st2. Entre les instants t5 et t6 le couple cible cd continue de croître sans atteindre le deuxième seuil de couple sc2 puis décroît lentement, et à l'instant t6 la seconde temporisation de durée st2 se termine sans que le couple cible cd n'ait atteint sd . Par conséquent, entre les instants t5 et t6 les moyens de contrôle MC maintiennent la demande de couplage dec pour éviter une oscillation, et à l'instant t6 ils effectuent une demande de découplage ded. Ensuite, entre les instants t6 et t7 le couple cible cd décroît jusqu'au troisième seuil de couple sc3. Par conséquent, entre les instants t6 et t7 les moyens de contrôle MC maintiennent la demande de découplage ded, et à l'instant t7 ils déclenchent le calcul de l'intégrale 12. Puis, entre les instants t7 et t8 le couple cible cd continue de décroître, et à l'instant t8 l'intégrale 12 devient supérieure au second seuil d'intégration si2. Par conséquent, entre les instants t7 et t8 les moyens de contrôle MC maintiennent la demande de découplage ded, et à partir de l'instant t8 ils effectuent une demande de couplage dec.

Claims

REVENDICATIONS
1 . Procédé de contrôle du couplage/découplage d'une première machine motrice (MM1 ) non-thermique, via des moyens de couplage (MC1 ), à un premier train (T1 ) d'un véhicule (V) comprenant en outre des moyens de stockage d'énergie (MS1 ) propres à alimenter en énergie au moins ladite première machine motrice (MM1 ) et une seconde machine motrice (MM2) propre à être couplée à un second train (T2), caractérisé en ce qu'il comprend une étape dans laquelle on demande un couplage de ladite première machine motrice (MM1 ) lorsqu'un couple cible à fournir par ledit premier train (T1 ) ou une consigne de couple à fournir par ledit premier train (T1 ), fonction d'un couple global représentatif d'une volonté d'un conducteur dudit véhicule, soit devient supérieur(e) à un premier seuil de couple positif et choisi puis demeure supérieur(e) à un deuxième seuil de couple positif, choisi et inférieur audit premier seuil de couple, soit devient inférieur(e) à un troisième seuil de couple négatif et choisi puis demeure inférieur(e) à un quatrième seuil de couple négatif, choisi et supérieur audit troisième seuil de couple.
2. Procédé selon la revendication 1 , caractérisé en ce que dans ladite étape on détermine une consigne de couple pour ledit second train (T2) en soustrayant ledit couple cible à fournir par ledit premier train (T1 ) dudit couple global, puis on détermine une estimée du couple fourni audit second train (T2) afin de déterminer ladite consigne de couple à fournir par ledit premier train (T1 ) en soustrayant ladite estimée du couple fourni audit second train (T2) dudit couple global.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que dans ladite étape on effectue ladite demande de couplage après une confirmation d'un franchissement dudit premier seuil de couple ou troisième seuil de couple.
4. Procédé selon la revendication 3, caractérisé en ce que dans ladite étape on effectue ladite demande de couplage lorsque ledit couple cible à fournir par ledit premier train (T1 ) ou ladite consigne de couple à fournir par ledit premier train (T1 ) soit devient supérieur(e) audit premier seuil de couple pendant une durée au moins égale à un troisième seuil temporel choisi et/ou lorsqu'une valeur d'une intégrale sur le temps d'une valeur absolue d'un écart entre ledit premier seuil de couple et ledit couple cible à fournir par ledit premier train (T1 ) ou ladite consigne de couple à fournir par ledit premier train (T1 ), lorsque ledit couple cible à fournir par ledit premier train (T1 ) ou ladite consigne de couple à fournir par ledit premier train (T1 ) est supérieur(e) audit premier seuil de couple, devient supérieure à un premier seuil d'intégration, soit devient inférieure audit troisième seuil de couple pendant une durée au moins égale à un quatrième seuil temporel choisi et/ou lorsqu'une valeur d'une intégrale sur le temps d'une valeur absolue d'un écart entre ledit troisième seuil de couple et ledit couple cible à fournir par ledit premier train (T1 ) ou ladite consigne de couple à fournir par ledit premier train (T1 ), lorsque ledit couple cible à fournir par ledit premier train (T1 ) ou ladite consigne de couple à fournir par ledit premier train (T1 ) est inférieur(e) audit troisième seuil de couple, devient supérieure à un second seuil d'intégration.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que dans ladite étape on effectue une demande de découplage après ladite demande de couplage après une confirmation d'un franchissement dudit deuxième seuil de couple ou quatrième seuil de couple.
6. Procédé selon la revendication 5, caractérisé en ce que dans ladite étape on effectue ladite demande de découplage soit lorsque ledit couple cible à fournir par ledit premier train (T1 ) ou ladite consigne de couple à fournir par ledit premier train (T1 ) devient inférieur(e) audit deuxième seuil de couple pendant une durée au moins égale à un cinquième seuil temporel choisi, soit lorsque ledit couple cible à fournir par ledit premier train (T1 ) ou ladite consigne de couple à fournir par ledit premier train (T1 ) devient supérieur(e) audit quatrième seuil de couple pendant une durée au moins égale à un sixième seuil temporel choisi.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que dans ladite étape chaque seuil est choisi en fonction d'au moins un paramètre dudit véhicule (V), lui-même choisi parmi une vitesse en cours dudit véhicule (V), une pente en cours d'une portion de voie de circulation sur laquelle circule ledit véhicule (V), un poids en cours dudit véhicule (V), une accélération transversale en cours dudit véhicule (V), une accélération longitudinale en cours dudit véhicule (V), une information météorologique, une altitude à laquelle est situé ledit véhicule (V), et un mode de fonctionnement en cours dudit véhicule (V).
8. Dispositif de contrôle (DC) pour un véhicule (V) comprenant une chaîne de transmission comportant une première machine motrice (MM1 ) non-thermique et propre à être couplée à un premier train (T1 ) par des moyens de couplage (MC1 ), des moyens de stockage d'énergie (MS1 ) propres à alimenter en énergie au moins ladite première machine motrice (MM1 ), et une seconde machine motrice (MM2) propre à être couplée à un second train (T2), caractérisé en ce qu'il comprend des moyens (MC) mettant en œuvre l'étape d'un procédé de contrôle selon l'une des revendications précédentes.
9. Véhicule (V) comprenant une chaîne de transmission comportant une première machine motrice (MM1 ) non-thermique et propre à être couplée à un premier train (T1 ) par des moyens de couplage (MC1 ), des moyens de stockage d'énergie (MS1 ) propres à alimenter en énergie au moins ladite première machine motrice (MM1 ), et une seconde machine motrice (MM2) propre à être couplée à un second train (T2), caractérisé en ce qu'il comprend en outre un dispositif de contrôle (DC) selon la revendication 8.
10. Véhicule selon la revendication 9, caractérisé en ce qu'il est de type automobile.
PCT/FR2018/052247 2017-10-04 2018-09-13 Contrôle des couplages/découplages d'une machine motrice non-thermique d'un véhicule en fonction d'un couple cible ou de consigne WO2019068981A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1759269A FR3071799B1 (fr) 2017-10-04 2017-10-04 Controle des couplages/decouplages d’une machine motrice non-thermique d’un vehicule en fonction d’un couple cible ou de consigne
FR1759269 2017-10-04

Publications (1)

Publication Number Publication Date
WO2019068981A1 true WO2019068981A1 (fr) 2019-04-11

Family

ID=60515629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/052247 WO2019068981A1 (fr) 2017-10-04 2018-09-13 Contrôle des couplages/découplages d'une machine motrice non-thermique d'un véhicule en fonction d'un couple cible ou de consigne

Country Status (2)

Country Link
FR (1) FR3071799B1 (fr)
WO (1) WO2019068981A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112810599B (zh) * 2020-04-17 2022-04-12 长城汽车股份有限公司 车辆驱动控制方法、系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396377A2 (fr) * 2002-09-04 2004-03-10 Nissan Motor Company, Limited Commande de la force de propulsion d'un véhicule
EP2911904B1 (fr) * 2012-10-26 2017-05-31 Peugeot Citroën Automobiles SA Procede de commande de couplage/decouplage d'une machine de traction d'un vehicule automobile
EP2928716B1 (fr) * 2012-12-06 2017-06-07 Peugeot Citroën Automobiles SA Procédé de commande de couplage/découplage d'une machine de traction d'un véhicule automobile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396377A2 (fr) * 2002-09-04 2004-03-10 Nissan Motor Company, Limited Commande de la force de propulsion d'un véhicule
EP2911904B1 (fr) * 2012-10-26 2017-05-31 Peugeot Citroën Automobiles SA Procede de commande de couplage/decouplage d'une machine de traction d'un vehicule automobile
EP2928716B1 (fr) * 2012-12-06 2017-06-07 Peugeot Citroën Automobiles SA Procédé de commande de couplage/découplage d'une machine de traction d'un véhicule automobile

Also Published As

Publication number Publication date
FR3071799B1 (fr) 2021-08-06
FR3071799A1 (fr) 2019-04-05

Similar Documents

Publication Publication Date Title
EP2244900B1 (fr) Procede de couplage d'une machine electrique de traction sur un vehicule hybride et vehicule hybride pour la mise en oeuvre du procede
FR3101289A1 (fr) Contrôle de l’utilisation d’une batterie de servitude d’un véhicule pour éviter des délestages
FR2994920A1 (fr) Procede pour un vehicule hybride, d'optimisation du roulage avec une energie auxiliaire et d'amorcage du systeme de depollution du moteur thermique
EP3253605B1 (fr) Procédé et dispositif d'aide aux décisions de couplage/découplage d'une machine motrice d'un véhicule hybride en fonction du potentiel de récupération de couple d'une autre machine motrice
FR3071797B1 (fr) Systeme et procede de pilotage du couplage/decouplage d’un dispositif d’entrainement de vehicule, et vehicule automobile les incorporant
EP3589510B1 (fr) Dispositif de contrôle des couplages/découplages d'une machine motrice d'un véhicule lors d'un changement de rapport
WO2019068981A1 (fr) Contrôle des couplages/découplages d'une machine motrice non-thermique d'un véhicule en fonction d'un couple cible ou de consigne
FR2931427A1 (fr) Procede de decouplage d'une machine electrique de traction sur un vehicule hybride et vehicule hybride pour la mise en oeuvre du procede
FR3064575B1 (fr) Dispositif de controle des couplages/decouplages d'une machine motrice non-thermique d'un vehicule en fonction d'un parametre d'etat de moyens de stockage associes
FR3070347A1 (fr) Controle d’instants de declenchement d’une marche rampante par des moteur thermique et machine motrice non-thermique d’un vehicule hybride
EP3638529B1 (fr) Contrôle de la recharge à basse vitesse d'un stockeur d'un véhicule hybride à machine motrice non-thermique liée mécaniquement à un train
FR3104100A1 (fr) Véhicule à contrôle du couple total fourni par le gmp hybride en cas de forte demande, et procédé de contrôle associé
EP3259163A1 (fr) Procédé et dispositif de contrôle de l'utilisation de machines motrices d'un véhicule hybride en complément du moteur thermique, en fonction de leurs rendements
FR3070945B1 (fr) Controle de fourniture d’un couple complementaire par une machine motrice non-thermique d’un vehicule hybride en fonction du potentiel d’acceleration
FR3077258A1 (fr) Systeme et procede de pilotage d’un stockeur d’energie de vehicule hybride, et vehicule automobile les incorporant
WO2021048475A1 (fr) Contrôle du seuil de couple de démarrage thermique d'un groupe motopropulseur hybride d'un véhicule sur un trajet
FR3066168B1 (fr) Dispositif et procede de controle de l'allocation de la puissance de moyens de stockage d'energie d'un vehicule
FR3104104A1 (fr) Véhicule à gmp à contrôle de couplage anticipé, et procédé de contrôle associé
FR3053300B1 (fr) Controle de l'etat de charge d'une batterie de machine motrice electrique d'une chaine de transmission hybride paralelle de vehicule
WO2024200935A1 (fr) Contrôle des décélérations d'un véhicule terrestre à fonction de contrôle de vitesse
FR3145393A1 (fr) Contrôle du déclenchement du couplage entre des machine motrice thermique et boîte de vitesses d’un véhicule par un embrayage
FR3100512A1 (fr) Contrôle du point de fonctionnement d’un groupe motopropulseur hybride d’un véhicule lors d’une recharge d’énergie prioritaire
FR3079802A1 (fr) Systeme de commande pour vehicule hybride
FR3069709A1 (fr) Dispositif et procede de controle d’ecart d’etats de charge individuels entre cellules d’une batterie d’un vehicule
FR3009253A1 (fr) Procede et systeme d'alimentation du reseau de bord pour un groupe motopropulseur de vehicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18783059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18783059

Country of ref document: EP

Kind code of ref document: A1