WO2020016455A1 - Batteriemodul für ein elektrofahrzeug und halterung für batteriezellen in einem derartigen batteriemodul - Google Patents

Batteriemodul für ein elektrofahrzeug und halterung für batteriezellen in einem derartigen batteriemodul Download PDF

Info

Publication number
WO2020016455A1
WO2020016455A1 PCT/EP2019/069669 EP2019069669W WO2020016455A1 WO 2020016455 A1 WO2020016455 A1 WO 2020016455A1 EP 2019069669 W EP2019069669 W EP 2019069669W WO 2020016455 A1 WO2020016455 A1 WO 2020016455A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical resistance
resistance element
battery
battery cells
battery module
Prior art date
Application number
PCT/EP2019/069669
Other languages
English (en)
French (fr)
Inventor
Martin Zoske
Volodymyr Ilchenko
Uwe Strecker
Nikolaus Gerhardt
Harald Bachmann
Jens WIESKE
Original Assignee
Webasto SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Webasto SE filed Critical Webasto SE
Priority to EP19750067.1A priority Critical patent/EP3824504A1/de
Priority to US17/258,638 priority patent/US11967685B2/en
Priority to CN201980048188.8A priority patent/CN112470328A/zh
Publication of WO2020016455A1 publication Critical patent/WO2020016455A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module for building a traction battery for an electric vehicle, for example a passenger car or truck, and a holder for battery cells in such a battery module.
  • a battery module for building a traction battery for an electric vehicle for example a passenger car or truck
  • a holder for battery cells in such a battery module for example a passenger car or truck
  • an electric vehicle is understood to mean an electrically driven vehicle, in particular a purely electrically driven vehicle or a hybrid vehicle.
  • Vehicles of this type are equipped with an electrical energy store in the form of a battery, for example a traction battery or drive battery, which stores and makes available the electrical energy required for the ferry operation.
  • the batteries are also called
  • Such batteries are usually not constructed as a monoblock but modularly from a large number of battery cells which are electrically connected to one another. For building one
  • Such battery systems can also be a
  • Housing housing housing battery modules, electrical circuits and a
  • a battery cell is understood to be an electrochemical storage cell, preferably a secondary cell.
  • the term "cell" can refer to the physical appearance of the component can be understood as the smallest contactable unit.
  • a battery module is understood to be a structural unit which combines a large number of battery cells.
  • a battery or battery system is accordingly understood to be a structural unit which is constructed from one or more interconnected battery modules. The battery or battery system are preferably intended for use in an electric vehicle, but can also be used in other vehicles or others
  • the power and the removable capacity of a battery are temperature-dependent and can accordingly be operated optimally only in a certain temperature range, for example in a temperature range between 20 ° C. and 60 ° C. If battery cells have a temperature outside the optimum
  • known battery systems are equipped with a temperature control system which is set up to cool the battery cells at temperatures above the optimal temperature range and to heat them at temperatures below the optimal temperature range.
  • a temperature control system is disclosed, for example, in GB 2549512 A.
  • an electrical heating system For heating the battery cells, it is also known to provide an electrical heating system with a temperature control circuit running through the battery and along the battery cells, through which a heatable temperature control medium flows.
  • the temperature control medium is usually preheated outside the battery by means of the electrical heating system and passed through flow channels provided in the battery.
  • the heating of the battery with such a heating system can, however, take place with a time delay and unevenly.
  • By providing the temperature control circuit such a heating system continues to have an impact on the overall weight of the battery system and can pose a safety risk for the battery system due to leaks.
  • a battery module for an electric vehicle which has a plurality of battery cells and at least one electrical one arranged between the battery cells
  • the electrical resistance element has a polymer composition with a positive temperature coefficient.
  • the at least one electrical resistance element serves as an electrical heating element which converts electrical energy into heat for heating the battery cells.
  • the electrical resistance element can preferably be supplied with current.
  • the electrical resistance element can be connected to a current source for heating the battery cells as required and can be set up to convert electrical energy provided by the current source into heat.
  • Temperature control medium circulated through the battery in a temperature control circuit a temperature control circuit can be dispensed with in the battery module proposed here. Accordingly, the battery module can have a compact design and be less susceptible to faults or errors.
  • the use of the electrical resistance element also has the effect that it can be arranged in the battery module in a space-saving manner and with a high degree of design freedom, as a result of which rapid and uniform heating of battery cells can be ensured in comparison with the known heating systems.
  • opposite ends of the electrical resistance element can be provided with electrical connections for the electrically conductive connection of the electrical resistance element to a current source, in particular with its poles. More precisely, the opposite Ends of the electrical resistance element arranged electrical connections are each connected to a different pole of the power source. In this way, the electrical resistance element can be connected in a circuit and convert the current flowing through the circuit into heat.
  • the battery cells of the battery module can serve as a current source for the electrical resistance element.
  • the electrical connections of the electrical resistance element can be electrically conductively connected to the battery cells. In particular, the battery cells can be connected together and thus form a battery, the electrical connections of the electrical
  • Resistance elements can each be electrically conductively connected to one pole of the battery formed by the battery cells.
  • the electrical resistance element comprises a polymer composition with a positive temperature coefficient.
  • the electrical resistance element can consist of the polymer composition.
  • compositions with a positive temperature coefficient are generally also referred to as PTC (positive temperature coefficient) compositions. Such compositions have the property of conducting electrical current better at low temperatures than at high temperatures. In other words, an electrical resistance of The composition increases with increasing temperature.
  • Components made from a PTC composition are also referred to as PTC thermistors.
  • the polymer composition with a positive temperature coefficient is used. This composition corresponds to a PTC substance composition based on polymer and also becomes referred to as PPTC (polymeric positive temperature coefficient composition).
  • Resistor element based on a PPTC composition has a non-linear one
  • a PPTC composition thus has the effect that as the temperature of the material increases, the heat input induced by the current flow is throttled into the electrical resistance element. Since the electrical resistance of this material increases nonlinearly with increasing temperature, an electrical resistance element made of a PPTC composition enables rapid heating to a predetermined nominal temperature and, after the nominal temperature has been reached, the induced heat can be reduced rapidly or abruptly in order to overheat the electrical To prevent resistance elements.
  • the PPTC composition can be selected such that the electrical resistance element is not heated beyond the optimum temperature range of the battery cells during operation, in particular when current is applied.
  • the optimal temperature range can be between 20 ° C and 60 ° C.
  • the PPTC composition of the electrical resistance element can be provided in such a way that the electrical resistance element is transferred in a high-resistance state when the predetermined nominal temperature is reached. This allows the electrical
  • the PPTC composition of the electrical resistance element has at least one polymer.
  • the polymer preferably forms a non-conductive polymer matrix in the PPTC composition, in which electrically conductive particles are embedded or dispersed. In this way, an electrical conductivity of the PPTC composition can be ensured, in particular below the nominal temperature.
  • thermally conductive particles can be embedded or dispersed in the polymer matrix, which improve a thermal conductivity of the polymer composition.
  • the electrical resistance element constructed from it has advantageous mechanical and thermal
  • a PPTC composition has a higher one
  • the PPTC composition can have, for example, at least one polymer from the group comprising: polyethylene, polyethylene oxide, polybutadiene, polyethylene acrylates, ethylene-acrylic acid-ethyl ether copolymers, ethylene-acrylic acid copolymers, polyesters, polyamides, polyethers, polycaprolactam, fluorinated ethylene-propylene Copolymers, chlorinated polyethylene, sulfochlorinated polyethylene, ethyl vinyl acetate copolymers, polypropylene, polystyrene, styrene / acrylonitrile copolymers, polyvinyl chloride, polycarbonates, polyacetals, polyalkylene oxides,
  • Polyphenylene oxide, polysulfones and fluoroplastics For example, two or more polymers from the above group can be included in the PPTC composition.
  • the type of polymer and the composition ratios can be varied.
  • the electrically conductive particles included in the PPTC composition can have at least one type of particles from the group comprising: carbon black, silver powder, gold powder, carbon powder, graphite powder, copper powder, carbon fibers, nickel powder and silver-plated fine particles.
  • the electrically conductive particles included in the PPTC composition can comprise several types of particles from the group mentioned above.
  • the type of electrically conductive particles and / or their particle size can be varied.
  • the electrically conductive particles can have a particle size between 1 pm and 200 pm.
  • the thermally conductive particles included in the PPTC composition can have at least one type of particles from the group comprising: silicon carbide, silicon nitride, beryllium oxide, selenium and aluminum oxide.
  • silicon carbide silicon nitride
  • beryllium oxide silicon nitride
  • selenium aluminum oxide
  • Composition comprised thermally conductive particles include several types of particles from the above group.
  • the type of thermally conductive particles and / or their particle size can be varied.
  • the thermally conductive particles can have a particle size between 1 pm and 200 pm.
  • the use of the PPTC composition for the electrical resistance element provides a high degree of design freedom for the heating element within the battery module. This can be attributed in particular to the fact that a component consisting of the PPTC composition can be produced comparatively easily and in any form. For example, such components can be manufactured inexpensively in large quantities by means of extrusion or an injection molding process, which can be particularly advantageous for use in battery modules for electric vehicles.
  • the high degree of design freedom when using the PPTC composition also enables a design of the electrical resistance elements that is optimized for heat conduction and their targeted arrangement within the battery module. In this way, specific heating of certain sub-areas within the battery module can also be achieved.
  • the electrical resistance element provided in the battery module can be provided in such a way that it rests on at least one battery cell. In other words, the electrical one
  • Resistance element can be in contact with at least one battery cell.
  • the electrical resistance element preferably bears on an outer surface, in particular a lateral surface, of the battery cell.
  • the electrical resistance element can be in contact with several, for example two or four, electrical resistance elements.
  • each of the plurality of resistance elements can be in contact with at least one battery cell.
  • the battery cells can each be in contact with different electrical resistance elements.
  • each of the plurality of resistance elements can be in contact with two or four electrical resistance elements.
  • the battery cells can be provided in the form of round cells, prismatic battery cells, in particular flat cells, and / or so-called pouch cells.
  • the at least one electrical resistance element can have an outer surface, in particular an outer surface, which is complementary to an outer surface, in particular one
  • the battery cells can be provided as round cells and have a cylindrical shape.
  • the electrical resistance element can have an outer surface, in particular a lateral surface, which can be concave at least in sections and in particular complementary to the cylindrical shape of the battery cell.
  • the outer surface, in particular the outer surface, of the electrical resistance element can have several, in particular two or four, concave sections. The concave sections can be in contact with the outer surface of the
  • the plurality of concave sections of the electrical resistance element can in particular have a different orientation or orientation.
  • a surface normal of the outer surface forming the concave sections is different for the different concave sections and in particular points in different directions.
  • the at least one electrical resistance element can have a length which essentially corresponds to a length or height of the battery cells, in particular of the battery cell adjoining them.
  • Resistance elements can be larger or smaller than a length or height of the battery cell.
  • the at least one electrical resistance element can be a
  • the at least one electrical resistance element can be configured to carry or support at least one battery cell within the battery module.
  • the at least one electrical resistance element can be configured to remove the plurality of
  • the at least one electrical resistance element can have several features
  • the receiving compartments or receiving cells can be open.
  • the receiving compartments or receiving cells can have at least one, preferably two opposite openings, via which the battery cells can be inserted and / or removed from the receiving compartments or receiving cells.
  • the receiving compartments are preferably designed such that the battery cells are inserted in the receiving compartments according to their length or height.
  • a cross section of the receiving compartments or receiving cells can be at least partially complementary to a cross section of the
  • an inner surface of the receiving compartments which forms an outer surface of the electrical resistance element, can rest at least in sections on an outer surface, in particular an outer surface, of the battery cells and in particular be complementary to the latter.
  • the at least one electrical resistance element can be provided such that a plurality of receiving compartments or receiving cells are arranged next to one another and / or parallel to one another in a regular pattern.
  • the at least one electrical resistance element can form side walls of the support structure which forms the plurality of receiving compartments or receiving cells.
  • the multiple receiving compartments or receiving cells can form a honeycomb structure.
  • the side walls formed by the at least one electrical resistance element can be arranged in a lattice shape, so that the plurality of receiving compartments or receiving cells are arranged side by side in a first direction are arranged and optionally also arranged next to one another in a second direction that is different, in particular perpendicular, to the first direction.
  • the electrical resistance element can be provided with at least one cooling channel, through which a temperature control medium can flow to cool the battery cells.
  • a compact design of the battery module can be provided, in which, in addition to a heating element for heating the battery cells, a cooling device for cooling the battery cells is also implemented.
  • the electrical resistance element can, at least in sections, form the cooling channels through which a temperature control medium provided by the cooling system can flow.
  • the at least one electrical resistance element can also serve as a support structure for supporting the battery cells within the battery module and / or, in that it can form a cooling channel through which a tempering medium can flow, as a cooling element for cooling the battery cells.
  • the proposed electrical resistance element contributes to the reduction of components of the battery module and provides a compact, weight-reduced and easy to manufacture construction of the battery module.
  • a holder for a plurality of battery cells of a battery module with the features of claim 13.
  • Advantageous further developments of the method result from the subclaims and the present description and the figures.
  • the holder can be used in particular in the battery module described above.
  • the features described above in connection with the battery module therefore also apply accordingly as disclosed for the holder. Accordingly, a holder for a plurality of battery cells of a battery module is provided, which has at least one electrical to be arranged between the battery cells
  • the electrical resistance element for heating the battery cells as required.
  • the electrical resistance element is characterized in that it has a polymer composition with a positive temperature coefficient.
  • the at least one electrical resistance element can be a
  • the at least one electrical resistance element can form a plurality of open receiving compartments or receiving cells which are set up to receive and / or to hold the battery cells in the battery module.
  • FIG. 1 is a cross-sectional view of a battery module of a first embodiment
  • FIG. 2 shows a perspective view of an electrical resistance element of FIG. 1
  • Figure 3 is a cross-sectional view of a battery module of a second embodiment.
  • FIG. 1 shows a cross-sectional view of a battery module 10 for an electric vehicle.
  • the battery module 10 includes a plurality of battery cells 12, which are provided in the form of round cells with a cylindrical shape.
  • the battery cells 12 are arranged next to one another within the battery module 10 and parallel to one another in a longitudinal direction of the battery cells 12. Furthermore, the battery cells 12 are electrically connected to one another and are held in a housing (not shown here) by a holder or support structure (also not shown here).
  • the battery module 10 further comprises a plurality of electrical resistance elements 14 arranged between the battery cells 12, which are set up to heat the battery cells 12 as required.
  • the electrical resistance elements 14 have a polymer composition with a positive temperature coefficient, also referred to below as a PPTC composition.
  • a PPTC composition a polymer composition with a positive temperature coefficient
  • current can be applied to the electrical resistance elements 14 and set up to convert the electrical energy thus provided to the electrical resistance elements 14 into heat.
  • heat is induced therein, which causes an increase in the temperature of the battery cells 12 which are thermally conductive therewith.
  • the electrical resistance elements 14 are connected to a current source, not shown here, and are set up to convert the electrical energy provided by the current source into heat.
  • the electrical resistance elements 14 are connected to a current source, not shown here, and are set up to convert the electrical energy provided by the current source into heat. As shown in Figure 2, the electrical
  • Resistance elements 14 at their opposite ends 16 have electrical connections 18 for the electrically conductive connection of the electrical resistance elements 14 to the current source, in particular the respective poles of the current source.
  • the PPTC composition of the electrical resistance elements 14 has at least one polymer that forms a non-conductive polymer matrix in which electrically conductive particles and thermally conductive particles are dispersed. More specifically, the PPTC composition can have, for example, at least one polymer from the group comprising: polyethylene, polyethylene oxide, polybutadiene, polyethylene acrylates, ethylene-acrylic acid-ethyl ether copolymers, ethylene-acrylic acid copolymers, polyesters, polyamides, polyethers, polycaprolactam, fluorinated ethylene-propylene Copolymers, chlorinated polyethylene, sulfochlorinated polyethylene,
  • Ethyl vinyl acetate copolymers polypropylene, polystyrene, styrene-acrylonitrile copolymers,
  • the electrically conductive particles dispersed in the PPTC composition can have at least one type of particle from the group comprising: carbon black,
  • the thermally conductive particles included in the PPTC composition can have at least one type of particles from the group comprising: silicon carbide, silicon nitride, beryllium oxide, selenium and aluminum oxide.
  • the plurality of electrical resistance elements 14 comprise two types of electrical having a different geometric configuration
  • a first type of electrical resistance elements 14, as shown in FIG. 2, is set up to lie against four battery cells 12 within the battery module 10.
  • a second type of electrical resistance elements 14 is set up to to lie against two battery cells 12 within the battery module 10 and is accordingly arranged in an edge region of the battery module 10 shown in FIG. 1.
  • the electrical resistance elements 14 are provided in such a way that they have an outer surface 20 which is complementary to an outer surface of the battery cells 12 which are respectively in contact with it.
  • the electrical resistance elements 14 of the first type have an outer surface 20 with four concave sections 22 of different orientations or orientations.
  • the electrical resistance elements 14 of the second type have a lateral surface 20 with two concave sections 22 of a different orientation or orientation.
  • the concave sections 22 are complementary to the outer surface of the respective battery cell 12 lying thereon.
  • the electrical resistance elements 14 have a length that essentially corresponds to a length or height of the battery cells 12. In other words, the electrical ones extend
  • Resistance elements 14 along the longitudinal direction of the battery cells 12 over their entire length or height.
  • the electrical resistance elements 14 can have a length that is greater or less than the length or height of the battery cells 12.
  • FIG. 3 shows a second embodiment of a battery module 10 for an electric vehicle.
  • the battery module 10 of the second embodiment comprises an electrical resistance element 14 that forms a holder or support structure for the battery cells 12.
  • the one shown in Figure 3 is electrical
  • Resistance element 14 is configured to carry or support the battery cells 12 within the battery module 10.
  • the electrical resistance element 14 is provided in such a way that it forms a plurality of open receiving compartments 24, in each of which a battery cell 12 is embedded and fixed.
  • the battery cells 12 accommodated in the receiving compartments 24 are thus firmly connected to the holder or support structure formed by the electrical resistance element 14.
  • the receiving compartments 24 are provided such that the battery cells 12 are inserted therein along their length.
  • the electrical resistance element 14 forms side walls 26 of the receiving compartments 24.
  • outer surfaces of the electrical resistance element 14 form inner surfaces of the receiving compartments 24.
  • the side walls 26 are designed such that the inner surface of the
  • Receiving compartments 24 in sections on the lateral surface of the battery cells 12 held therein abuts and is complementary to this.
  • Recesses 28 are also provided between the side walls 26 and the battery cells 12 accommodated in the receiving compartments 24.
  • the side walls 26 are arranged in a lattice shape, so that a regular pattern of receiving compartments 24 arranged next to and above one another is provided.
  • the electrical resistance element 14 can be provided with at least one cooling channel, through which a temperature control medium can flow in order to cool the battery cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Batteriemodul (10) für ein Elektrofahrzeug, umfassend eine Vielzahl von Batteriezellen (12) und wenigstens ein zwischen den Batteriezellen (12) angeordnetes elektrisches Widerstandselement (14) zum bedarfsgerechten Erwärmen der Batteriezellen (12). Das elektrische Widerstandselement (14) weist eine Polymer-Zusammensetzung mit einem positiven Temperaturkoeffizienten auf.

Description

Batteriemodul für ein Elektrofahrzeug und
Halterung für Batteriezellen in einem derartigen Batteriemodul
Technisches Gebiet
Die vorliegende Erfindung betrifft ein Batteriemodul zum Aufbau einer Traktionsbatterie für ein Elektrofahrzeug, beispielsweise Personenkraftfahrzeug oder Lastwagen, sowie eine Halterung für Batteriezellen in einem derartigen Batteriemodul. Stand der Technik
Unter einem Elektrofahrzeug wird vorliegend ein elektrisch angetriebenes Fahrzeug, insbesondere ein rein elektrisch angetriebenes Fahrzeug oder ein Hybridfahrzeug, verstanden. Derartige Fahrzeuge sind mit einem elektrischen Energiespeicher in Form einer Batterie, beispielsweise einer Traktionsbatterie oder Antriebsbatterie, ausgestattet, die die für den Fährbetrieb notwendige elektrische Energie speichert und zur Verfügung stellt. Die Batterien werden auch als
Akkumulatoren bezeichnet. Dabei handelt es sich in der Regel um elektrochemische
Akkumulatoren, insbesondere um Lithium-Ionen-Akkumulatoren.
Derartige Batterien sind üblicherweise nicht als Monoblock sondern modular aus einer Vielzahl von Batteriezellen aufgebaut, die miteinander elektrisch verbunden sind. Für den Aufbau eines
Batteriesystems in einem Elektrofahrzeug ist es entsprechend bekannt, Batteriezellen in
Batteriemodulen anzuordnen und diese zu einer Batterie zusammenzubauen. Dies erhöht die Konfigurierbarkeit von Batteriesystemen und ermöglicht die Verwendung vergleichsweise kostengünstiger Standardbatteriezellen. Derartige Batteriesysteme können ferner ein die
Batteriemodule aufnehmendes Gehäuse, elektrische Verschaltungen sowie ein
Batteriemanagementsystem umfassen.
Als Batteriezelle wird im Sinne der vorliegenden Offenbarung eine elektrochemische Speicherzelle, vorzugsweise eine Sekundärzelle, verstanden. Der Begriff„Zelle“ kann im Hinblick auf das physikalische Erscheinungsbild der Komponente als kleinste kontaktierbare Baueinheit verstanden werden. Demgegenüber wird unter einem Batteriemodul eine Baueinheit verstanden, welche eine Vielzahl von Batteriezellen zusammenfasst. Als Batterie oder Batteriesystem wird entsprechend eine Baueinheit verstanden, die aus einem oder mehreren zusammengeschalteten Batteriemodulen aufgebaut ist. Die Batterie oder das Batteriesystem sind vorzugsweise für den Einsatz in einem Elektrofahrzeug vorgesehen, können aber auch in anderen Fahrzeugen oder andere
Anwendungsbereichen eingesetzt werden.
Die Leistung und die entnehmbare Kapazität einer Batterie, insbesondere eines Lithium-Ionen- Akkumulators, sind temperaturabhängig und können entsprechend nur in einem bestimmten Temperaturbereich optimal betrieben werden, zum Beispiel in einem Temperaturbereich zwischen 20 °C und 60 °C. Weisen Batteriezellen eine Temperatur außerhalb des optimalen
Temperaturbereichs auf, kann dies zu einem Rückgang der Leistungsfähigkeit und sogar zur Schädigung der Batteriezellen führen.
Entsprechend sind bekannte Batteriesysteme mit einem Temperiersystem ausgestattet, das dazu eingerichtet ist, die Batteriezellen bei Temperaturen oberhalb des optimalen Temperaturbereichs zu kühlen und bei Temperaturen unterhalb des optimalen Temperaturbereichs zu erwärmen. Ein derartiges Temperiersystem ist beispielsweise in der GB 2549512 A offenbart.
Zum Erwärmen der Batteriezellen ist es ferner bekannt, ein elektrisches Heizsystem mit einem durch die Batterie und entlang der Batteriezellen verlaufenden Temperierkreislauf vorzusehen, durch das ein aufheizbares Temperierungsmedium strömt. Das Temperierungsmedium wird üblicherweise außerhalb der Batterie mittels des elektrischen Heizsystems vorgeheizt und durch in der Batterie vorgesehene Strömungskanäle geleitet. Die Erwärmung der Batterie mit einem solchen Heizsystem kann jedoch mit einer zeitlichen Verzögerung und ungleichmäßig erfolgen. Durch das Bereitstellen des Temperierkreislaufs hat ein derartiges Heizsystem weiterhin Auswirkungen auf das Gesamtgewicht des Batteriesystems und kann durch Undichtigkeiten ein Sicherheitsrisiko für das Batteriesystem darstellen.
Darstellung der Erfindung
Ausgehend von dem bekannten Stand der Technik ist es eine Aufgabe der vorliegenden Erfindung, ein verbessertes Batteriemodul für ein Elektrofahrzeug sowie eine Halterung für Batteriezellen in einem derartigen Batteriemodul vorzuschlagen, die eine wärmeflussoptimierte Ausgestaltung und eine kompakte Bauweise des Batteriemoduls bereitstellen.
Die Aufgabe wird durch ein Batteriemodul mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen. Entsprechend wird ein Batteriemodul für ein Elektrofahrzeug vorgeschlagen, das eine Vielzahl von Batteriezellen und wenigstens ein zwischen den Batteriezellen angeordnetes elektrisches
Widerstandselement zum bedarfsgerechten Erwärmen der Batteriezellen umfasst. Das
Batteriemodul zeichnet sich dadurch aus, dass das elektrische Widerstandselement eine Polymer- Zusammensetzung mit einem positiven Temperaturkoeffizienten aufweist. In dem vorgeschlagenen Batteriemodul dient das wenigstens eine elektrische Widerstandselement als elektrisches Heizelement, das zum Erwärmen der Batteriezellen elektrische Energie in Wärme umwandelt. Hierzu ist das elektrische Widerstandselement vorzugsweise mit Strom beaufschlagbar. Mit anderen Worten, indem ein Strom durch das elektrische Widerstandselement fließt, wird darin Wärme induziert, die einen Anstieg der Temperatur der damit in wärmeleitender Verbindung stehenden Batteriezellen zur Folge hat. Entsprechend kann das elektrische Widerstandselement zum bedarfsgerechten Erwärmen der Batteriezellen mit einer Stromquelle verbunden und dazu eingerichtet sein, von der Stromquelle bereitgestellte elektrische Energie in Wärme umzuwandeln.
Gegenüber bekannten Heizsystemen zum Erwärmen von Batteriezellen, bei denen ein
Temperierungsmedium in einem Temperierkreislauf durch die Batterie zirkuliert, kann bei dem hier vorgeschlagenen Batteriemodul auf einen Temperierkreislauf verzichtet werden. Entsprechend kann das Batteriemodul eine kompakte Bauweise aufweisen und weniger stör- oder fehleranfällig sein.
Die Verwendung des elektrischen Widerstandselements hat ferner den Effekt, dass dieses platzsparend und mit einer hohen Gestaltungsfreiheit in dem Batteriemodul angeordnet werden kann, wodurch im Vergleich zu den bekannten Heizsystemen ein schnelles und gleichmäßiges Erwärmen von Batteriezellen gewährleistet werden kann.
Um einen Stromfluss durch das elektrische Widerstandselement vorzusehen, können
entgegengesetzte Enden des elektrischen Widerstandselements mit elektrischen Anschlüssen zum elektrisch leitenden Verbinden des elektrischen Widerstandselements mit einer Stromquelle, insbesondere mit deren Polen, versehen sein. Genauer können die an den entgegengesetzten Enden des elektrischen Widerstandselements angeordneten elektrischen Anschlüsse jeweils mit einem anderen Pol der Stromquelle verbunden sein. Auf diese Weise kann das elektrische Widerstandselement in einem Stromkreis angeschlossen sein und den durch den Stromkreis fließenden Strom in Wärme umwandeln. In einer Weiterentwicklung können die Batteriezellen des Batteriemoduls als Stromquelle für das elektrische Widerstandselement dienen. Entsprechend können die elektrischen Anschlüsse des elektrischen Widerstandselements mit den Batteriezellen elektrisch leitend verbunden sein. Im Speziellen können die Batteriezellen zusammengeschaltet sein und so eine Batterie bilden, wobei die elektrischen Anschlüsse des elektrischen
Widerstandselements mit jeweils einem Pol der durch die Batteriezellen gebildeten Batterie elektrisch leitend verbunden sein können.
Wie voranstehend beschrieben umfasst das elektrische Widerstandselement eine Polymer- Zusammensetzung mit einem positiven Temperaturkoeffizienten. Insbesondere kann das elektrische Widerstandselement aus der Polymer-Zusammensetzung bestehen.
Stoffzusammensetzungen mit einem positiven Temperaturkoeffizienten werden im Allgemeinen auch als PTC(engl.: positive temperature coefficientj-Zusammensetzungen bezeichnet. Derartige Zusammensetzungen weisen die Eigenschaft auf, elektrischen Strom bei niedrigen Temperaturen besser zu leiten als bei hohen Temperaturen. Mit anderen Worten, ein elektrischer Widerstand der Zusammensetzung nimmt mit zunehmender Temperatur zu. Aus einer PTC-Zusammensetzung aufgebaute Bauelemente werden entsprechend auch als Kaltleiter bezeichnet. In dem vorgeschlagenen elektrischen Widerstandselement kommt die Polymer-Zusammensetzung mit einem positiven Temperaturkoeffizienten zum Einsatz. Diese Zusammensetzung entspricht einer PTC-Stoffzusammensetzung auf Polymerbasis und wird auch als PPTC(engl.: polymeric positive temperature coefficientj-Zusammensetzung bezeichnet. Ein elektrisches
Widerstandselement auf Basis einer PPTC- Zusammensetzung weist einen nichtlinearen
Widerstandsverlauf auf. Mit anderen Worten, der elektrische Widerstand dieses Materials vergrößert sich mit steigender Temperatur nicht linear.
Indem Strom durch das elektrische Widerstandselement fließt, wird darin Wärme erzeugt, die zu einer Erhöhung der Temperatur und des Widerstands des elektrischen Widerstandselements führt. Mit der Zunahme des elektrischen Widerstands sinkt bei einer gleichbleibenden Spannung gleichzeitig die Stromstärke des durch das elektrische Widerstandselement fließenden Stroms. Da die induzierte Wärme in dem elektrischen Widerstand proportional zum Quadrat der Stromstärke ist, sinkt entsprechend die induzierte Wärme mit zunehmender Temperatur des elektrischen Widerstandselements.
Die Verwendung einer PPTC-Zusammensetzung weist somit den Effekt auf, dass mit steigender Temperatur des Materials ein durch den Stromfluss induzierter Wärmeeintrag in das elektrische Widerstandselement gedrosselt wird. Da sich der elektrische Widerstand dieses Materials mit steigender Temperatur nichtlinear vergrößert, ermöglicht ein aus einer PPTC-Zusammensetzung aufgebautes elektrisches Widerstandselement eine schnelle Erwärmung auf eine vorgegebene Nenntemperatur und nach Erreichen der Nenntemperatur eine wiederum schnelle oder abrupte Drosselung der induzierten Wärme, um einer Überhitzung des elektrischen Widerstandselements vorzubeugen. Beispielsweise kann die PPTC-Zusammensetzung derart gewählt sein, dass das elektrische Widerstandselement im Betrieb, insbesondere bei Beaufschlagung mit einem Strom, nicht über den optimalen Temperaturbereich der Batteriezellen hinaus erwärmt wird. Beispielsweise kann der optimale Temperaturbereich zwischen 20 °C und 60 °C liegen. Die PPTC- Zusammensetzung des elektrischen Widerstandselements kann dabei derart bereitgestellt sein, dass bei Erreichen der vorgegebenen Nenntemperatur das elektrische Widerstandselement in einem hochohmigen Zustand überführt wird. Dadurch kann der über das elektrische
Widerstandselement induzierte Wärmeeintrag stark verringert werden, sodass bei Erreichen der Nenntemperatur das elektrische Widerstandselement durch die Strombeaufschlagung nicht weiter erwärmt wird. Die PPTC-Zusammensetzung des elektrischen Widerstandselements weist mindestens ein Polymer auf. Vorzugsweise bildet das Polymer eine nicht leitende Polymermatrix in der PPTC- Zusammensetzung, in der elektrisch leitende Partikel eingebettet oder dispergiert sind. Auf diese Weise kann eine elektrische Leitfähigkeit der PPTC-Zusammensetzung, insbesondere unterhalb der Nenntemperatur gewährleistet werden. Zusätzlich können in der Polymermatrix thermisch leitende Partikel eingebettet oder dispergiert sein, die eine Wärmeleitfähigkeit der Polymer- Zusammensetzung verbessern.
Indem die PPTC-Zusammensetzung auf einer Polymermatrix basiert, weist das aus dieser aufgebaute elektrische Widerstandselement vorteilhafte mechanische und thermische
Eigenschaften für die Anwendung im Bereich von Elektrofahrzeugen auf. Insbesondere gegenüber PTC-Zusammensetzungen auf Keramikbasis hat eine PPTC-Zusammensetzung eine höhere
Wärmeleitfähigkeit, ein geringeres spezifisches Gewicht und eine höhere Festigkeit gegenüber im Betrieb eines Elektrofahrzeugs auftretenden Schwingungen. Genauer kann die PPTC-Zusammensetzung beispielsweise mindestens ein Polymer aufweisen aus der Gruppe, umfassend: Polyethylen, Polyethylenoxid, Polybutadien, Polyethylenacrylate, Ethylen- Acrylsäureethylesther-Copolymere, Ethylen-Acrylsäure-Copolymere, Polyester, Polyamide, Polyäther, Polycaprolactam, fluorierte Ethylen-Propylen-Copolymere, chloriertes Polyethylen, sulfochloriertes Polyethylen, Ethylvinylacetat-Copolymere, Polypropylen, Polystyrol, Styrol- Acrylnitril-Copolymere, Polyvinylchlorid, Polycarbonate, Polyacetale, Polyalkylenoxide,
Polyphenylenoxid, Polysulfone und Fluorkunststoffe. Beispielsweise können zwei oder mehr Polymere aus der voranstehenden Gruppe in der PPTC-Zusammensetzung umfasst sein. Dabei können der Typ der Polymere und die Zusammensetzungsverhältnisse variiert werden. Die in der PPTC-Zusammensetzung umfassten elektrisch leitenden Partikel können wenigstens einen Typ von Partikeln aufweisen aus der Gruppe, umfassend: Ruß, Silberpulver, Goldpulver, Kohlenstoffpulver, Graphitpulver, Kupferpulver, Kohlenstofffasern, Nickelpulver und versilberte Feinteilchen. Beispielsweise können die in der PPTC-Zusammensetzung umfassten elektrisch leitenden Partikel mehrere Arten von Partikeln aus der voranstehend genannten Gruppe umfassen. Dabei können der Typ der elektrisch leitenden Partikel und/oder deren Partikelgröße variiert werden. Beispielsweise können die elektrisch leitenden Partikel eine Partikelgröße zwischen 1 pm und 200 pm besitzen.
Die in der PPTC-Zusammensetzung umfassten thermisch leitenden Partikel können wenigstens einen Typ von Partikeln aufweisen aus der Gruppe, umfassend: Siliziumcarbid, Siliziumnitrid, Berylliumoxid, Selen und Aluminiumoxid. Beispielsweise können die in der PPTC-
Zusammensetzung umfassten thermisch leitenden Partikel mehrere Arten von Partikeln aus der voranstehend genannten Gruppe umfassen. Dabei können der Typ der thermisch leitenden Partikel und/oder deren Partikelgröße variiert werden. Beispielsweise können die thermisch leitenden Partikel eine Partikelgröße zwischen 1 pm und 200 pm besitzen. Durch die Verwendung der PPTC-Zusammensetzung für das elektrische Widerstandselement wird eine hohe Gestaltungsfreiheit für das Heizelement innerhalb des Batteriemoduls bereitgestellt. Dies kann insbesondere darauf zurückgeführt werden, dass ein aus der PPTC-Zusammensetzung bestehendes Bauteil vergleichsweise einfach und in beliebiger Form hergestellt werden kann. Beispielsweise können derartige Bauteile mittels Extrusion oder eines Spritzgussverfahrens kostengünstig in hohen Stückzahlen gefertigt werden, was insbesondere für die Anwendung in Batteriemodulen für Elektrofahrzeuge von Vorteil sein kann. Die hohe Gestaltungsfreiheit bei der Verwendung der PPTC-Zusammensetzung ermöglicht ferner eine wärmeleitflussoptimierte Ausgestaltung der elektrischen Widerstandselemente und deren gezielte Anordnung innerhalb des Batteriemoduls. Auf diese Weise lässt sich auch eine gezielte Erwärmung bestimmter Teilbereiche innerhalb des Batteriemoduls erzielen. Um eine wärmeflussoptimierte Ausgestaltung des Batteriemoduls zu gewährleisten, kann das in dem Batteriemodul vorgesehene elektrische Widerstandselement derart bereitgestellt sein, dass dieses an wenigstens einer Batteriezelle anliegt. Mit anderen Worten, das elektrische
Widerstandselement kann im Kontakt mit wenigstens einer Batteriezelle stehen. Vorzugsweise liegt das elektrische Widerstandselement an einer Außenfläche, insbesondere einer Mantelfläche, der Batteriezelle an. Beispielsweise kann das elektrische Widerstandselement an mehreren, beispielsweise zwei oder vier, elektrischen Widerstandselementen anliegen.
Wenn das Batteriemodul mehrere elektrische Widerstandselemente umfasst, kann jedes der mehreren Widerstandselemente an wenigstens einer Batteriezelle anliegen. Dabei können die Batteriezellen jeweils mit unterschiedlichen elektrischen Widerstandselementen in Kontakt stehen. Beispielsweise kann jedes der mehreren Widerstandselemente an zwei oder vier elektrischen Widerstandselementen anliegen.
Die Batteriezellen können in Form von Rundzellen, prismatischen Batteriezellen, insbesondere Flachzellen, und/oder sogenannten Pouchzellen bereitgestellt sein. In einer Weiterentwicklung kann das wenigstens eine elektrische Widerstandselement eine Außenfläche, insbesondere eine Mantelfläche, aufweisen, die komplementär zu einer Außenfläche, insbesondere einer
Mantelfläche, der daran anliegenden Batteriezelle ist. Beispielsweise können die Batteriezellen als Rundzellen bereitgestellt sein und eine zylindrische Form aufweisen. Entsprechend kann das elektrische Widerstandselement eine Außenfläche, insbesondere eine Mantelfläche, aufweisen, die zumindest abschnittsweise konkav und insbesondere komplementär zu der zylindrischen Form der Batteriezelle sein kann. Beispielsweise kann die Außenfläche, insbesondere die Mantelfläche, des elektrischen Widerstandselements mehrere, insbesondere zwei oder vier, konkave Abschnitte aufweisen. Die konkaven Abschnitte können dabei in Kontakt mit der Außenfläche der
Batteriezellen stehen. Die mehreren konkaven Abschnitte des elektrischen Widerstandselements können insbesondere eine unterschiedliche Ausrichtung oder Orientierung aufweisen. Mit anderen Worten, eine Flächennormale der die konkaven Abschnitte bildenden Außenfläche ist für die unterschiedlichen konkaven Abschnitte unterschiedlich und zeigt insbesondere in verschiedene Richtungen. Alternativ oder zusätzlich kann das wenigstens eine elektrische Widerstandselement eine Länge aufweisen, die im Wesentlichen einer Länge oder Höhe der Batteriezellen, insbesondere der daran anliegenden Batteriezelle, entspricht. Alternativ kann eine Länge des elektrischen
Widerstandselements größer oder kleiner sein als eine Länge oder Höhe der Batteriezelle. In einer Weiterentwicklung kann das wenigstens eine elektrische Widerstandselement eine
Halterung oder T rägerstruktur für die Batteriezellen bilden oder ausbilden. Mit anderen Worten, das wenigstens eine elektrische Widerstandselement kann dazu eingerichtet sein, wenigstens eine Batteriezelle innerhalb des Batteriemoduls zu tragen oder zu stützen. Insbesondere kann das wenigstens eine elektrische Widerstandselement dazu eingerichtet sein, die Vielzahl von
Batteriezellen innerhalb des Batteriemoduls zu tragen oder zu stützen.
Beispielsweise kann das wenigstens eine elektrische Widerstandselement mehrere
Aufnahmefächer oder Aufnahmezellen für die Batteriezellen ausbilden, in denen die Batteriezellen eingebettet und fest mit der durch das elektrische Widerstandselement gebildeten Halterung oder Trägerstruktur verbunden sein können. Die Aufnahmefächer oder Aufnahmezellen können offen ausgebildet sein. Mit anderen Worten können die Aufnahmefächer oder Aufnahmezellen wenigstens eine, vorzugsweise zwei gegenüberliegende Öffnungen aufweisen, über die die Batteriezellen in die Aufnahmefächer oder Aufnahmezellen ein- und/oder herausführbar sind. Die Aufnahmefächer sind vorzugsweise derart ausgebildet, dass die Batteriezellen ihrer Länge oder Höhe nach in den Aufnahmefächern eingesetzt sind. Ein Querschnitt der Aufnahmefächer oder Aufnahmezellen kann zumindest abschnittsweise komplementär zu einem Querschnitt der
Batteriezellen ausgebildet sein. Entsprechend kann eine Innenfläche der Aufnahmefächer, die eine Außenfläche des elektrischen Widerstandselements bildet, zumindest abschnittsweise an einer Außenfläche, insbesondere einer Mantelfläche, der Batteriezellen anliegen und insbesondere komplementär zu dieser ausgebildet sein. Ferner kann das wenigstens eine elektrische Widerstandselement derart bereitgestellt sein, dass mehrere Aufnahmefächer oder Aufnahmezellen in einem regelmäßigen Muster nebeneinander und/oder parallel zueinander angeordnet sind. Dabei kann das wenigstens eine elektrische Widerstandselement Seitenwände der die mehreren Aufnahmefächer oder Aufnahmezellen ausbildenden Trägerstruktur bilden. Beispielsweise können die mehreren Aufnahmefächer oder Aufnahmezellen eine Wabenstruktur bilden. Alternativ können die durch das wenigstens eine elektrische Widerstandselement gebildeten Seitenwände gitterförmig angeordnet sein, sodass die mehreren Aufnahmefächer oder Aufnahmezellen in einer ersten Richtung nebeneinander angeordnet sind und optional weiterhin in einer zu der ersten Richtung unterschiedlichen, insbesondere senkrechten zweiten Richtung nebeneinander angeordnet sind.
In einer Weiterentwicklung kann das elektrische Widerstandselement mit wenigstens einem Kühlkanal versehen sein, der zur Kühlung der Batteriezellen von einem Temperierungsmedium durchströmbar sein kann. Auf diese Weise kann eine kompakte Bauweise des Batteriemoduls bereitgestellt werden, bei der neben einem Heizelement zum Erwärmen der Batteriezellen, weiterhin eine Kühlvorrichtung zum Kühlen der Batteriezellen verwirklicht ist. Das elektrische Widerstandselement kann dabei zumindest abschnittsweise die Kühlkanäle ausbilden, die von einem durch das Kühlsystem bereitgestellten Temperiermedium durchströmbar sind. Im Ergebnis ermöglicht die hier vorgeschlagene Ausgestaltung des elektrischen
Widerstandselements, dass durch dieses mehrere Funktionen innerhalb des Batteriemoduls verwirklicht sein können. Neben der Funktion als Heizelement für die Batteriezellen kann das wenigstens eine elektrische Widerstandselement weiterhin als Trägerstruktur zum Stützen der Batteriezellen innerhalb des Batteriemoduls und/oder, indem es einen von einem Temperiermedium durchström baren Kühlkanal ausbilden kann, als Kühlelement zum Kühlen der Batteriezellen dienen. Auf diese Weise trägt das vorgeschlagene elektrische Widerstandselement zur Reduzierung von Komponenten des Batteriemoduls bei und stellt eine kompakte, gewichtsreduzierte und einfach zu fertigende Bauweise des Batteriemoduls bereit.
Die oben gestellte Aufgabe wird weiterhin durch eine Halterung für eine Vielzahl von Batteriezellen eines Batteriemoduls mit den Merkmalen des Anspruchs 13 gelöst. Vorteilhafte Weiterbildungen des Verfahrens ergeben sich aus den Unteransprüchen sowie der vorliegenden Beschreibung und den Figuren. Die Halterung kann insbesondere in dem vorangehend beschriebenen Batteriemodul zum Einsatz kommen. Die im Zusammenhang mit dem Batteriemodul vorangehend beschriebenen Merkmale gelten somit auch entsprechend als für die Halterung offenbart. Entsprechend wird eine Halterung für eine Vielzahl von Batteriezellen eines Batteriemoduls bereitgestellt, die wenigstens ein zwischen den Batteriezellen anzuordnendes elektrisches
Widerstandselement zum bedarfsgerechten Erwärmen der Batteriezellen umfasst. Das elektrische Widerstandselement zeichnet sich dadurch aus, dass dieses eine Polymer-Zusammensetzung mit einem positiven Temperaturkoeffizienten aufweist. In einer Weiterentwicklung kann das wenigstens eine elektrische Widerstandselement eine
Trägerstruktur für die Batteriezellen bilden oder ausbilden, die die Batteriezellen innerhalb des Batteriemoduls trägt oder stützt. Alternativ oder zusätzlich kann das wenigstens eine elektrische Widerstandselement mehrere offene Aufnahmefächer oder Aufnahmezellen ausbilden, die zur Aufnahme und/oder zum Halten der Batteriezellen in dem Batteriemodul eingerichtet sind.
Kurze Beschreibung der Figuren
Bevorzugte weitere Ausführungsformen der Erfindung werden durch die nachfolgende
Beschreibung der Figuren näher erläutert. Dabei zeigen schematisch:
Figur 1 eine Querschnittsansicht auf ein Batteriemodul einer ersten Ausführungsform; Figur 2 eine perspektivische Ansicht auf ein elektrisches Widerstandselement des in Figur 1
gezeigten Batteriemoduls; und
Figur 3 eine Querschnittsansicht auf ein Batteriemodul einer zweiten Ausführungsform.
Detaillierte Beschreibung bevorzugter Ausführungsbeispiele
Im Folgenden werden bevorzugte Ausführungsbeispiele anhand der Figuren beschrieben. Dabei werden gleiche, ähnliche oder gleichwirkende Elemente in den unterschiedlichen Figuren mit identischen Bezugszeichen versehen, und auf eine wiederholte Beschreibung dieser Elemente wird teilweise verzichtet, um Redundanzen zu vermeiden.
Figur 1 zeigt eine Querschnittsansicht auf ein Batteriemodul 10 für ein Elektrofahrzeug. Das Batteriemodul 10 umfasst eine Vielzahl von Batteriezellen 12, die in Form von Rundzellen mit einer zylindrischen Form bereitgestellt sind. Die Batteriezellen 12 sind innerhalb des Batteriemoduls 10 nebeneinander und zu einer Längsrichtung der Batteriezellen 12 parallel zueinander angeordnet. Ferner sind die Batteriezellen 12 miteinander elektrisch verschaltet und werden in einem hier nicht gezeigten Gehäuse durch eine hier ebenfalls nicht gezeigte Halterung oder Trägerstruktur gehalten.
Das Batteriemodul 10 umfasst ferner mehrere zwischen den Batteriezellen 12 angeordnete elektrische Widerstandselemente 14, die zum bedarfsgerechten Erwärmen der Batteriezellen 12 eingerichtet sind. Die elektrischen Widerstandselemente 14 weisen eine Polymer- Zusammensetzung mit einem positiven Temperaturkoeffizienten auf, im nachstehenden auch als PPTC- Zusammensetzung bezeichnet. Zum bedarfsgerechten Erwärmen der Batteriezellen 12 sind die elektrischen Widerstandselemente 14 mit Strom beaufschlagbar und dazu eingerichtet, die den elektrischen Widerstandselementen 14 derart bereitgestellte elektrische Energie in Wärme umzuwandeln. Mit anderen Worten, indem ein Strom durch die elektrischen Widerstandselemente 14 fließt, wird darin Wärme induziert, die einen Anstieg der Temperatur der damit in wärmeleitender Verbindung stehenden Batteriezellen 12 bewirkt. Hierzu sind die elektrischen Widerstandselemente 14 mit einer hier nicht gezeigten Stromquelle verbunden und dazu eingerichtet, die von der Stromquelle bereitgestellte elektrische Energie in Wärme umzuwandeln. Wie in Figur 2 gezeigt, umfassen die elektrischen
Widerstandselemente 14 an deren entgegengesetzten Enden 16 elektrische Anschlüsse 18 zum elektrisch leitenden Verbinden der elektrischen Widerstandselemente 14 mit der Stromquelle, insbesondere den jeweiligen Polen der Stromquelle.
Die PPTC-Zusammensetzung der elektrischen Widerstandselemente 14 weist mindestens ein Polymer auf, das eine nicht leitende Polymermatrix bildet, in der elektrisch leitende Partikel und thermisch leitende Partikel dispergiert sind. Genauer kann die PPTC-Zusammensetzung beispielsweise mindestens ein Polymer aufweisen aus der Gruppe, umfassend: Polyethylen, Polyethylenoxid, Polybutadien, Polyethylenacrylate, Ethylen-Acrylsäureethylesther-Copolymere, Ethylen-Acrylsäure-Copolymere, Polyester, Polyamide, Polyäther, Polycaprolactam, fluorierte Ethylen-Propylen-Copolymere, chloriertes Polyethylen, sulfochloriertes Polyethylen,
Ethylvinylacetat-Copolymere, Polypropylen, Polystyrol, Styrol-Acrylnitril-Copolymere,
Polyvinylchlorid, Polycarbonate, Polyacetale, Polyalkylenoxide, Polyphenylenoxid, Polysulfone und Fluorkunststoffe. Die in der PPTC-Zusammensetzung dispergierten elektrisch leitenden Partikel können wenigstens einen Typ von Partikeln aufweisen aus der Gruppe, umfassend: Ruß,
Silberpulver, Goldpulver, Kohlenstoffpulver, Graphitpulver, Kupferpulver, Kohlenstofffasern, Nickelpulver und versilberte Feinteilchen. Ferner können die in der PPTC-Zusammensetzung umfassten thermisch leitenden Partikel wenigstens einen Typ von Partikeln aufweisen aus der Gruppe, umfassend: Siliziumcarbid, Siliziumnitrid, Berylliumoxid, Selen und Aluminiumoxid.
Wie in Figur 1 gezeigt, umfassen die mehreren elektrischen Widerstandselemente 14 zwei eine unterschiedliche geometrische Ausgestaltung aufweisende Typen elektrischer
Widerstandselemente. Ein erster Typ der elektrischen Widerstandselemente 14, wie in Figur 2 gezeigt, ist dazu eingerichtet, innerhalb des Batteriemoduls 10 an vier Batteriezellen 12 anzuliegen. Demgegenüber ist ein zweiter Typ der elektrischen Widerstandselemente 14 dazu eingerichtet, innerhalb des Batteriemoduls 10 an zwei Batteriezellen 12 anzuliegen und ist entsprechend in einem Randbereich des in Figur 1 gezeigten Batteriemoduls 10 angeordnet.
Genauer sind die elektrischen Widerstandselemente 14 derart bereitgestellt, dass diese eine Mantelfläche 20 aufweisen, die komplementär zu einer Mantelfläche der jeweils daran anliegenden Batteriezellen 12 ausgebildet ist. Die elektrischen Widerstandselemente 14 des ersten Typs weisen dabei eine Mantelfläche 20 mit vier konkaven Abschnitten 22 einer unterschiedlichen Ausrichtung oder Orientierung auf. Demgegenüber weisen die elektrischen Widerstandselemente 14 des zweiten Typs eine Mantelfläche 20 mit zwei konkaven Abschnitten 22 einer unterschiedlichen Ausrichtung oder Orientierung auf. Die konkaven Abschnitte 22 sind dabei komplementär zu der Mantelfläche der jeweiligen daran anliegenden Batteriezelle 12 ausgebildet. Weiterhin weisen die elektrischen Widerstandselemente 14 eine Länge auf, die im Wesentlichen einer Länge oder Höhe der Batteriezellen 12 entspricht. Mit anderen Worten erstrecken sich die elektrischen
Widerstandselemente 14 entlang der Längsrichtung der Batteriezellen 12 über deren gesamte Länge oder Höhe. Alternativ können die elektrischen Widerstandselemente 14 eine Länge aufweisen, die größer oder kleiner ist als die Länge oder Höhe der Batteriezellen 12.
Figur 3 zeigt eine zweite Ausführungsform eines Batteriemoduls 10 für ein Elektrofahrzeug.
Gegenüber der in Figur 1 gezeigten Ausgestaltung umfasst das Batteriemodul 10 der zweiten Ausführungsform ein elektrisches Widerstandselement 14, dass eine Halterung oder Trägerstruktur für die Batteriezellen 12 bildet. Mit anderen Worten ist das in Figur 3 gezeigte elektrische
Widerstandselement 14 dazu eingerichtet, die Batteriezellen 12 innerhalb des Batteriemoduls 10 zu tragen oder zu stützen.
Genauer ist das elektrische Widerstandselement 14 derart bereitgestellt, dass dieses mehrere offene Aufnahmefächer 24 ausbildet, in denen jeweils eine Batteriezelle 12 eingebettet und fixiert ist. Die in den Aufnahmefächern 24 aufgenommenen Batteriezellen 12 sind somit mit der durch das elektrische Widerstandselement 14 gebildeten Halterung oder Trägerstruktur fest verbunden. Die Aufnahmefächer 24 sind derart bereitgestellt, dass die Batteriezellen 12 ihrer Länge nach darin eingesetzt sind.
Insbesondere bildet das elektrische Widerstandselement 14 Seitenwände 26 der Aufnahmefächer 24 aus. Dabei bilden Außenflächen des elektrischen Widerstandselements 14 Innenflächen der Aufnahmefächer 24. Die Seitenwände 26 sind derart ausgebildet, dass die Innenfläche der
Aufnahmefächer 24 abschnittsweise an der Mantelfläche der darin gehaltenen Batteriezellen 12 anliegt und komplementär zu dieser ausgebildet ist. Zwischen den Seitenwänden 26 und der in den Aufnahmefächer 24 aufgenommenen Batteriezellen 12 sind ferner Ausnehmungen 28 vorgesehen. In der hier gezeigten Ausführungsform sind die Seitenwände 26 gitterförmig angeordnet, sodass ein regelmäßiges Muster von neben- und übereinander angeordneten Aufnahmefächern 24 bereitgestellt ist.
Ferner kann das elektrische Widerstandselement 14 mit wenigstens einem Kühlkanal versehen sein, der zur Kühlung der Batteriezellen von einem Temperierungsmedium durchströmbar sein kann.
Soweit anwendbar, können alle einzelnen Merkmale, die in den Ausführungsbeispielen dargestellt sind, miteinander kombiniert und/oder ausgetauscht werden, ohne den Bereich der Erfindung zu verlassen.
Bezugszeichenliste
10 Batteriemodul
12 Batteriezelle
14 elektrisches Widerstandselement
16 Endabschnitt des elektrischen Widerstandselements
18 elektrischer Anschluss des elektrischen Widerstandselements
20 Mantelfläche des elektrischen Widerstandselements
22 konkaver Abschnitt der Mantelfläche des elektrischen Widerstandselements 24 Aufnahmefach
26 Seitenwand
28 Ausnehmung

Claims

Ansprüche
1. Batteriemodul (10) für ein Elektrofahrzeug, umfassend:
eine Vielzahl von Batteriezellen (12), und
wenigstens ein zwischen den Batteriezellen (12) angeordnetes elektrisches
Widerstandselement (14) zum bedarfsgerechten Erwärmen der Batteriezellen (12), dadurch gekennzeichnet, dass das elektrische Widerstandselement (14) eine Polymer-Zusammensetzung mit einem positiven Temperaturkoeffizienten aufweist.
2. Batteriemodul nach Anspruch 1 , bei dem das elektrische Widerstandselement (14) zum bedarfsgerechten Erwärmen der Batteriezellen (12) mit einer Stromquelle verbunden und dazu eingerichtet ist, elektrische Energie in Wärme umzuwandeln.
3. Batteriemodul nach Anspruch 1 oder 2, bei der entgegengesetzte Enden (16) des
elektrischen Widerstandselements (14) mit elektrischen Anschlüssen (18) zum elektrisch leitenden Verbinden des elektrischen Widerstandselements (14) mit einer Stromquelle, insbesondere den jeweiligen Polen der Stromquelle, versehen sind.
4. Batteriemodul nach einem der Ansprüche 1 bis 3, bei dem die Polymer-Zusammensetzung des elektrischen Widerstandselements (14) aufweist:
- mindestens ein Polymer, insbesondere aus der Gruppe umfassend: Polyethylen, Polyethylenoxid, Polybutadien, Polyethylenacrylate, Ethylen-Acrylsäureethylesther- Copolymere, Ethylen-Acrylsäure-Copolymere, Polyester, Polyamide, Polyäther,
Polycaprolactam, fluorierte Ethylen- Propylen-Copolymere, chloriertes Polyethylen, sulfochloriertes Polyethylen, Ethylvinylacetat-Copolymere, Polypropylen, Polystyrol, Styrol- Acrylnitril-Copolymere, Polyvinylchlorid, Polycarbonate, Polyacetale, Polyalkylenoxide, Polyphenylenoxid, Polysulfone und Fluorkunststoffe; und/oder
- in dem Polymer dispergierte, elektrisch leitende Partikel, insbesondere aus der Gruppe umfassend: Ruß, Silberpulver, Goldpulver, Kohlenstoffpulver, Graphitpulver, Kupferpulver, Kohlenstofffasern, Nickelpulver und versilberte Feinteilchen; und/oder - in dem Polymer dispergierte, thermisch leitende Partikel, insbesondere aus der Gruppe umfassend: Siliziumcarbid, Siliziumnitrid, Berylliumoxid, Selen und Aluminiumoxid.
5. Batteriemodul nach einem der Ansprüche 1 bis 4, bei dem jedes des wenigstens einen elektrischen Widerstandselements (14) an wenigstens einer, insbesondere an zwei oder vier, Batteriezellen (12) anliegt.
6. Batteriemodul nach einem der Ansprüche 1 bis 5, bei dem das elektrische
Widerstandselement (14) eine Außenfläche (20), insbesondere eine Mantelfläche, aufweist, die komplementär zu einer Außenfläche, insbesondere einer Mantelfläche, einer daran anliegenden Batteriezelle (12) ausgebildet ist.
7. Batteriemodul nach einem der Ansprüche 1 bis 6, bei dem die Batteriezellen (12) eine zylindrische Form aufweisen und das elektrische Widerstandselement (14) eine
Außenfläche (20), insbesondere Mantelfläche, mit wenigstens einem, insbesondere zwei oder vier, konkaven Abschnitten (22) aufweist.
8. Batteriemodul nach einem der Ansprüche 1 bis 7, bei dem das elektrische
Widerstandselement (14) eine Länge aufweist, die im Wesentlichen einer Länge oder Höhe der Batteriezellen (12) entspricht.
9. Batteriemodul nach einem der Ansprüche 1 bis 8, bei dem das wenigstens eine elektrische Widerstandselement (14) eine Halterung für die Batteriezellen (12) bildet, die die
Batteriezellen (12) innerhalb des Batteriemoduls (10) trägt.
10. Batteriemodul nach einem der Ansprüche 1 bis 9, bei dem das wenigstens eine elektrische Widerstandselement (14) mehrere offene Aufnahmefächer (24) für die Batteriezellen (12) ausbildet, in denen die Batteriezellen (12) eingebettet sind.
1 1 . Batteriemodul nach Anspruch 10, bei dem das wenigstens eine elektrische
Widerstandselement (14) Seitenwände (26) der Aufnahmefächer (24) bildet, wobei insbesondere eine Innenfläche der Aufnahmefächer (24) zumindest abschnittsweise an einer darin aufgenommenen Batteriezelle (12) anliegt und komplementär zu eine
Außenfläche der Batteriezelle (12) ausgebildet ist.
12. Batteriemodul nach Anspruch 1 bis 1 1 , bei dem das elektrische Widerstandselement (14) mit wenigstens einem Kühlkanal versehen ist, der zur Kühlung der Batteriezellen (12) von einem Temperierungsmedium durchströmbar ist.
13. Halterung für eine Vielzahl von Batteriezellen (12) eines Batteriemoduls (10), umfassend wenigstens ein zwischen den Batteriezellen (12) anzuordnendes elektrisches
Widerstandselement (14) zum bedarfsgerechten Erwärmen der Batteriezellen (12), dadurch gekennzeichnet, dass das elektrische Widerstandselement (14) eine Polymer-Zusammensetzung mit einem positiven Temperaturkoeffizienten aufweist. 14. Halterung nach Anspruch 13, bei dem das wenigstens eine elektrische Widerstandselement
(14) eine Trägerstruktur für die Batteriezellen (12) bildet, die die Batteriezellen (12) innerhalb des Batteriemoduls (10) trägt.
15. Halterung nach Anspruch 13 oder 14, bei dem das wenigstens eine elektrische
Widerstandselement (14) mehrere offene Aufnahmefächer (24) zur Aufnahme der
Batteriezellen (12) ausbildet.
PCT/EP2019/069669 2018-07-20 2019-07-22 Batteriemodul für ein elektrofahrzeug und halterung für batteriezellen in einem derartigen batteriemodul WO2020016455A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19750067.1A EP3824504A1 (de) 2018-07-20 2019-07-22 Batteriemodul für ein elektrofahrzeug und halterung für batteriezellen in einem derartigen batteriemodul
US17/258,638 US11967685B2 (en) 2018-07-20 2019-07-22 Battery module for an electric vehicle, and holder for battery cells in a battery module of said type
CN201980048188.8A CN112470328A (zh) 2018-07-20 2019-07-22 用于电动车的电池模块和用于这种电池模块中的电池单池的支架

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018117563.9 2018-07-20
DE102018117563.9A DE102018117563B4 (de) 2018-07-20 2018-07-20 Batteriemodul für ein Elektrofahrzeug und Halterung für Batteriezellen in einem derartigen Batteriemodul

Publications (1)

Publication Number Publication Date
WO2020016455A1 true WO2020016455A1 (de) 2020-01-23

Family

ID=67551336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/069669 WO2020016455A1 (de) 2018-07-20 2019-07-22 Batteriemodul für ein elektrofahrzeug und halterung für batteriezellen in einem derartigen batteriemodul

Country Status (5)

Country Link
US (1) US11967685B2 (de)
EP (1) EP3824504A1 (de)
CN (1) CN112470328A (de)
DE (1) DE102018117563B4 (de)
WO (1) WO2020016455A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021116442A1 (de) * 2021-06-25 2022-12-29 Bayerische Motoren Werke Aktiengesellschaft Hochvoltspeicher-Modul mit einer Vielzahl von Batteriezellen
CN114122566A (zh) * 2021-11-27 2022-03-01 东莞新能源科技有限公司 电化学装置及包括其的用电设备
WO2024105594A1 (en) 2022-11-16 2024-05-23 3M Innovative Properties Company Custom-shaped component for assembling batteries and methods for making the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040330A (ja) * 2009-08-17 2011-02-24 Sony Chemical & Information Device Corp 温度センサー、バッテリーパック及び温度センサーの製造方法
WO2012101954A1 (ja) * 2011-01-28 2012-08-02 株式会社ニフコ バッテリパック
CN106099253A (zh) * 2016-08-01 2016-11-09 浙江大铭新材料股份有限公司 一种用于锂电池组的节能加热装置
US20170162839A1 (en) * 2015-12-08 2017-06-08 Bosch Battery Systems, Llc Super Cells Formed of Cylindrical Electrochemical Cells
GB2549512A (en) 2016-04-20 2017-10-25 Delta Motorsport Ltd Cell pack thermal management apparatus and method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3537907A (en) * 1968-04-16 1970-11-03 Texas Instruments Inc Battery unit and heat sink therefor
US5140297A (en) * 1981-04-02 1992-08-18 Raychem Corporation PTC conductive polymer compositions
JPH0777161B2 (ja) * 1986-10-24 1995-08-16 日本メクトロン株式会社 Ptc組成物、その製造法およびptc素子
TW298653B (de) * 1995-02-28 1997-02-21 Yunichica Kk
DE10003247B4 (de) * 1999-01-29 2005-02-24 Sanyo Electric Co., Ltd., Moriguchi Stromquelle, versehen mit wiederaufladbaren Batterien
KR100949334B1 (ko) * 2007-11-12 2010-03-26 삼성에스디아이 주식회사 전지 모듈
US20090263708A1 (en) * 2008-04-02 2009-10-22 Josh Bender System and method of integrated thermal management for a multi-cell battery pack
US20100316821A1 (en) * 2009-06-12 2010-12-16 Sunny General International Co., Ltd. Multi-layer films, sheets, and hollow articles with thermal management function for uses as casings of secondary batteries and supercapacitors, and sleeves of secondary battery and supercapacitor packs
CN102362388B (zh) * 2009-11-25 2013-09-25 松下电器产业株式会社 电池模块
US20170338534A1 (en) * 2016-05-21 2017-11-23 Borgwarner Ludwigsburg Gmbh Lithium ion battery
US10116016B2 (en) * 2016-05-23 2018-10-30 Borgwarner Inc. Thermal management system and method of making and using the same
CN108288739B (zh) * 2016-12-09 2020-05-08 航天特种材料及工艺技术研究所 一种用于圆柱形电池的热管理模块及其制备方法和电池组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040330A (ja) * 2009-08-17 2011-02-24 Sony Chemical & Information Device Corp 温度センサー、バッテリーパック及び温度センサーの製造方法
WO2012101954A1 (ja) * 2011-01-28 2012-08-02 株式会社ニフコ バッテリパック
US20170162839A1 (en) * 2015-12-08 2017-06-08 Bosch Battery Systems, Llc Super Cells Formed of Cylindrical Electrochemical Cells
GB2549512A (en) 2016-04-20 2017-10-25 Delta Motorsport Ltd Cell pack thermal management apparatus and method
CN106099253A (zh) * 2016-08-01 2016-11-09 浙江大铭新材料股份有限公司 一种用于锂电池组的节能加热装置

Also Published As

Publication number Publication date
US11967685B2 (en) 2024-04-23
EP3824504A1 (de) 2021-05-26
DE102018117563A1 (de) 2020-01-23
CN112470328A (zh) 2021-03-09
DE102018117563B4 (de) 2022-10-06
US20210273272A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
EP2380223B1 (de) Wiederaufladbare batterie mit einer wärmetransporteinrichtung zum heizen und/oder kühlen der batterie
DE102008034860B4 (de) Batterie mit einem Batteriegehäuse und einer Wärmeleitplatte zum Temperieren der Batterie
EP2153487B1 (de) Elektrochemische energiespeichereinheit mit kühlvorrichtung
WO2020016455A1 (de) Batteriemodul für ein elektrofahrzeug und halterung für batteriezellen in einem derartigen batteriemodul
DE212012000137U1 (de) Batteriesatzanordnung
DE102013213550A1 (de) Batteriezelle mit einem prismatischen oder zylindrischen Gehäuse, Batteriemodul sowie Kraftfahrzeug
DE102009035487A1 (de) Batterie und Verfahren zu deren Herstellung
DE102009028920A1 (de) Wiederaufladbare Batterie mit mehreren Batterieelementen
EP2382678A1 (de) Batteriemodul mit isolierendem schichtelement
DE102008034880A1 (de) Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte zum Temperieren der Batterie
WO2011009619A1 (de) Elektrochemischer energiespeicher und verfahren zum kühlen oder erwärmen eines elektrochemischen energiespeichers
DE102018105044A1 (de) Akkumulator, insbesondere für ein Kraftfahrzeug und Kraftfahrzeug umfassend einen solchen Akkumulator
DE102016214337A1 (de) Festkörperbatterie
WO2015132327A1 (de) Energiespeichereinheit und batteriesystem
DE102012111817A1 (de) Elektrischer Energiespeicher
DE102019212678A1 (de) Verbindungselement zur elektrisch leitenden Verbindung mehrerer elektrischer Energiespeichereinheiten sowie elektrisches Energiespeichersystem
EP2467888A1 (de) Kraftwagen mit einer elektrochemischen zelle
DE102019007812B4 (de) Batteriezelle für einen elektrischen Energiespeicher und elektrischer Energiespeicher
DE102019109812B3 (de) Kühlelement, Vorrichtung und Verfahren zum Kühlen von Batteriezellen, insbesondere für Pouch-Zellen, sowie Batteriepack
WO2019228823A1 (de) Elektrischer energiespeicher
DE102018003704A1 (de) Batteriezelle für eine Batterie eines Kraftfahrzeugs sowie Batterie
DE102018207136A1 (de) Stromkollektor, elektrischer Energiespeicher und Vorrichtung und/oder Fahrzeug
DE102022003922A1 (de) Batteriezellenanordnung für ein Batteriemodul, Batteriemodul sowie Verfahren zum Betreiben eines Batteriemoduls
DE102016221817A1 (de) Batteriemodul mit einer Mehrzahl an Batteriezellen und Batterie
DE102014019417A1 (de) Einzelzelle und Batterie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019750067

Country of ref document: EP

Effective date: 20210222