WO2020015643A1 - 用于监听pdcch的方法、终端及网络设备 - Google Patents

用于监听pdcch的方法、终端及网络设备 Download PDF

Info

Publication number
WO2020015643A1
WO2020015643A1 PCT/CN2019/096186 CN2019096186W WO2020015643A1 WO 2020015643 A1 WO2020015643 A1 WO 2020015643A1 CN 2019096186 W CN2019096186 W CN 2019096186W WO 2020015643 A1 WO2020015643 A1 WO 2020015643A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
pdcch
blind detection
scheduling
Prior art date
Application number
PCT/CN2019/096186
Other languages
English (en)
French (fr)
Inventor
纪子超
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA3106480A priority Critical patent/CA3106480C/en
Priority to ES19838750T priority patent/ES2953820T3/es
Priority to EP19838750.8A priority patent/EP3813420B1/en
Priority to SG11202100414VA priority patent/SG11202100414VA/en
Priority to AU2019307437A priority patent/AU2019307437B2/en
Priority to RU2021102589A priority patent/RU2754486C1/ru
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2021502990A priority patent/JP7195404B2/ja
Priority to EP23178061.0A priority patent/EP4236566A3/en
Priority to KR1020217004312A priority patent/KR102666321B1/ko
Publication of WO2020015643A1 publication Critical patent/WO2020015643A1/zh
Priority to US17/152,414 priority patent/US11956790B2/en
Priority to AU2022204006A priority patent/AU2022204006B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method, terminal, and network device for monitoring a physical downlink control channel (Physical Downlink Control Channel, PDCCH).
  • PDCCH Physical Downlink Control Channel
  • the 5G (NR) system supports the configuration of multiple control resource sets (CORESET) and multiple search space sets for each carrier (Component Carrier, CC) or cell configured for user equipment (UE).
  • CORESET Control resource sets
  • CC Component Carrier
  • UE user equipment
  • the number of PDCCH candidates is flexibly configured for each search space set.
  • the related protocol specifies the maximum processing capability of the UE for blind detection of a CC or cell PDCCH.
  • the maximum processing capability includes: UE The maximum number of PDCCH candidates for blind detection of the PDCCH, and the maximum number of channel estimates required by the UE for blind detection of the PDCCH, that is, the number of non-overlapping control channel elements (CCEs).
  • CCEs non-overlapping control channel elements
  • the maximum processing capability of the UE for blind detection of the PDCCH of a CC or a cell is not yet clear.
  • Embodiments of the present invention provide a method, a terminal, and a network device for monitoring a PDCCH, so as to limit the maximum processing capability of the blind detection of the PDCCH of a CC or a cell by the UE during the cross-carrier scheduling process in the related technology. , And the problem that the corresponding blind detection behavior cannot be reasonably configured for the UE is caused.
  • an embodiment of the present invention provides a method for monitoring a PDCCH, which is applied to a terminal.
  • the method includes:
  • the N scheduling cells are cells in M cells configured by the network device for the terminal, and the M cells further include: X scheduled cells; and PDCCH blind detection capability information of the N scheduling cells.
  • the PDCCH blind detection capability information of the N scheduling cells is used to indicate that the terminal blinds the PDCCH in each scheduling cell or the N scheduling cells in a unit time Inspection maximum processing capacity;
  • M and N are positive integers greater than or equal to 1
  • an embodiment of the present invention provides a method for monitoring a PDCCH, which is applied to a network device.
  • the method includes:
  • the M cells include: N scheduling cells and X scheduled cells; the cell parameters are related to the PDCCH blind detection capability information of the N scheduling cells;
  • the PDCCH blind detection capability information of the N scheduling cells is used to indicate the maximum processing capability of the terminal for blind detection of the PDCCH in each scheduling cell or the N scheduling cells in a unit time;
  • the cell parameter is used for Instruct the terminal to monitor the PDCCH according to the PDCCH blind detection capability information of the N scheduling cells;
  • the PDCCH is sent through the N scheduling cells.
  • an embodiment of the present invention provides a terminal, including:
  • a monitoring module configured to monitor the PDCCH according to the PDCCH blind detection capability information of the N scheduling cells
  • the N scheduling cells are cells in M cells configured by the network device for the terminal, and the M cells further include: X scheduled cells; and PDCCH blind detection capability information of the N scheduling cells.
  • the PDCCH blind detection capability information of the N scheduling cells is used to indicate that the terminal blinds the PDCCH in each scheduling cell or the N scheduling cells in a unit time Inspection maximum processing capacity;
  • M and N are positive integers greater than or equal to 1
  • an embodiment of the present invention provides a network device, including:
  • a sending module configured to configure cell parameters of M cells for the terminal.
  • the M cells include: N scheduling cells and X scheduled cells; the cell parameters and PDCCH blind detection of the N scheduling cells.
  • the capability information is related; the PDCCH blind detection capability information of the N scheduling cells is used to indicate the maximum processing capability of the terminal for blind detection of the PDCCH in each scheduling cell or the N scheduling cells in a unit time;
  • the cell parameter is used to instruct the terminal to monitor the PDCCH according to the PDCCH blind detection capability information of the N scheduled cells;
  • the sending module is further configured to send a PDCCH through the N scheduling cells.
  • an embodiment of the present invention provides a terminal, including a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the computer program is executed by the processor, Implementing the steps of the method for monitoring a PDCCH according to the first aspect.
  • an embodiment of the present invention provides a network device, including a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the computer program is executed by the processor, Implementing the steps of the method for monitoring a PDCCH according to the second aspect.
  • an embodiment of the present invention provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the method for monitoring a PDCCH are implemented.
  • the network device configures, for the terminal, cell parameters including N scheduled cells and M scheduled cells of the X scheduled cells, so that the terminal can determine the terminal based on the cell parameters.
  • the maximum processing capability for blind detection of the PDCCH in each scheduling cell or N scheduling cells makes full use of the processing capability of the terminal and improves the energy efficiency of the terminal monitoring the PDCCH.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a first schematic flowchart of a method for monitoring a PDCCH according to an embodiment of the present invention
  • FIG. 3 is a second flowchart of a method for monitoring a PDCCH according to an embodiment of the present invention.
  • FIG. 4 is a third flowchart of a method for monitoring a PDCCH according to an embodiment of the present invention.
  • FIG. 5 is a fourth flowchart of a method for monitoring a PDCCH according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method for monitoring a PDCCH according to an embodiment of the present invention.
  • FIG. 7 is a sixth flowchart of a method for monitoring a PDCCH according to an embodiment of the present invention.
  • FIG. 8 is a first schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 9 is a first schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 10 is a second schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 11 is a second schematic structural diagram of a network device according to an embodiment of the present invention.
  • the technical solution provided in this application can be applied to various communication systems, for example, a 5G communication system, a future evolution system, or a variety of communication convergence systems.
  • M2M machine-to-machine
  • eMBB enhanced mobile Internet
  • ultra-high reliability and ultra-low-latency communication ultra Reliable & Low Latency (Communication, uRLLC)
  • Massive Machine Type Communication (mMTC) Massive Machine Type Communication
  • These scenarios include, but are not limited to, scenarios such as communication between a terminal and a terminal, or communication between a network device and a network device, or communication between a network device and a terminal.
  • FIG. 1 shows a schematic diagram of a possible structure of a communication system according to an embodiment of the present invention.
  • the communication system includes at least one network device 100 (only one is shown in FIG. 1) and one or more terminals 200 to which each network device 100 is connected.
  • the network device 100 may be a base station, a core network device, a transmission and reception node (Transmission and Reception Point, TRP), a relay station, or an access point.
  • the network device 100 may be a Global System for Mobile Communication (GSM) or a Code Division Multiple Access (CDMA) network, or a base transceiver station (BTS), or a broadband NB (NodeB) in Wideband Code Division Multiple Access (WCDMA) can also be eNB or eNodeB (evolutional NodeB) in LTE.
  • GSM Global System for Mobile Communication
  • CDMA Code Division Multiple Access
  • BTS base transceiver station
  • NodeB broadband NB
  • WCDMA Wideband Code Division Multiple Access
  • the network device 100 may also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario.
  • the network device 100 may also be a network device in a 5G communication system or a network device in a future evolved network.
  • the wording does not constitute a limitation on this
  • the terminal 200 may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides voice and / or other business data connectivity to the user, a handheld device with a wireless communication function, a computing device, or other processing connected to a wireless modem.
  • a wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or a "cellular" phone) and a computer with a mobile terminal
  • a mobile terminal such as a mobile phone (or a "cellular" phone) and a computer with a mobile terminal
  • it can be a portable, compact, handheld, computer-built or vehicle-mounted mobile device that exchanges language and / or data with the wireless access network, as well as personal communication service (PCS) phones, cordless phones , Session Initiation Protocol (SIP) phones, Wireless Local Loop (WLL) stations, Personal Digital Assistants (PDAs) and other devices.
  • PCS personal communication service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDAs Personal Digital Assistants
  • Wireless terminals can also be mobile devices, user devices ( User (Equipment, UE), UE terminal, access terminal, wireless communication equipment, terminal unit, terminal station, mobile station, mobile station, remote station, remote station, remote terminal Terminal), Subscriber Unit, Subscriber Station, User Agent (User Agent), terminal device, etc.
  • FIG. 1 illustrates that the terminal is a mobile phone.
  • the network device can configure cross-carrier scheduling for the terminal, that is, configure the control channel in other cells with good channel quality (for example, Primary cell) to schedule data from other cells (eg, secondary cells) across carriers.
  • the cell may be called a scheduling cell.
  • the scheduling cell can be a self-scheduling mode, that is, the cell can only schedule itself, or a cross-carrier scheduling mode, that is, the cell can schedule one or more scheduled cells other than itself.
  • the scheduled cell does not have its own PDCCH, and can only be scheduled by one scheduling cell indicated by the cross-carrier scheduling configuration.
  • subcarrier bandwidth (Subcarrier Spacing, SCS) of the scheduling cell and the scheduled cell may be the same or different.
  • the SCS configuration ⁇ supported by the terminal is shown in Table 1 below, and each ⁇ value corresponds to a subcarrier interval.
  • ⁇ ⁇ f 2 ⁇ ⁇ 15 0 15 1 30 2 60 3 120 4 240 ... ...
  • the PDCCH blind detection capability refers to the maximum processing capability of the terminal for blind detection of the PDCCH in a single cell within a unit time (for example, a slot or mini-slot, etc.).
  • the maximum processing capability includes: The maximum number of detected PDCCH candidates (candidates) and the maximum number of channel estimates required by the terminal to perform blind detection, that is, the number of non-overlapping Control Channel Elements (CCEs).
  • each ⁇ value corresponds to a number of CCEs.
  • the words “first” and “second” are used to distinguish the same or similar items having substantially the same functions or functions.
  • the skilled person can understand that the words “first” and “second” do not limit the quantity and execution order.
  • words such as “exemplary” or “such as” are used as examples, illustrations or descriptions. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the present invention should not be construed as more preferred or more advantageous than other embodiments or designs. Rather, the use of the words “exemplary” or “for example” is intended to present the relevant concept in a concrete manner. In the embodiments of the present invention, unless otherwise stated, the meaning of "a plurality" means two or more.
  • FIG. 2 is a schematic flowchart of a method for monitoring a PDCCH according to an embodiment of the present invention. As shown in FIG. 2, the method for monitoring a PDCCH may include:
  • Step 201 The network device configures cell parameters of the M cells for the terminal.
  • the peer terminal receives the cell parameters sent by the network device to the terminal.
  • the foregoing network device may be a network device in the communication system shown in FIG. 1, for example, a base station; and the foregoing first terminal may be a terminal device in the communication system shown in FIG. 1.
  • Step 202 The network device sends the PDCCH to the terminal through the N scheduling cells.
  • Step 203 The terminal monitors the PDCCH according to the PDCCH blind detection capability information of the N scheduled cells.
  • the above M cells include: N scheduled cells and X scheduled cells. Some or all of the N scheduled cells are configured with scheduled cells, and the above X scheduled cells are configured. A scheduled cell corresponding to the part or all of the scheduled cells.
  • M and N are positive integers greater than or equal to 1
  • the scheduled cell in the embodiment of the present invention refers to a cell configured with a cross-carrier scheduling configuration.
  • the foregoing cell parameter is used to instruct the terminal to monitor the PDCCH according to the PDCCH blind detection capability information of the N scheduled cells.
  • the above-mentioned cell parameters are related to the PDCCH blind detection capability information of the N scheduled cells.
  • the above PDCCH blind detection capability information of the N scheduling cells is used to indicate the maximum processing capability of the terminal for blind detection of the PDCCH in each scheduling cell or N scheduling cells in a unit time.
  • the above-mentioned maximum processing capability includes: the maximum number of PDCCH candidates for blind detection of the PDCCH by the terminal (for example, the number of PDCCH candidates in Table 2), and the maximum channel estimation required for the blind detection of the PDCCH by the terminal.
  • Number that is, the number of non-overlapping CCEs (for example, the number of CCEs in Table 3).
  • the terminal when the terminal monitors the PDCCH, the terminal performs blind detection using the PDCCH candidate as a logical unit.
  • the terminal blindly detects these PDCCH candidates. If the blind detection succeeds, it indicates that these PDCCH candidates are valid PDCCHs. If unsuccessful, it means that these PDCCH candidates are invalid (for example, sent to other terminals or a bunch of invalid noise). Therefore, monitoring the PDCCH by the terminal can also be considered as monitoring the PDCCH candidate.
  • the above-mentioned cell parameters include at least one of the following: the number of cells that can be scheduled by each scheduling cell, the subcarrier interval of each cell, the cell identifier of each cell, and the terminal for the terminal.
  • the number of configured cells M include at least one of the following: the number of cells that can be scheduled by each scheduling cell, the subcarrier interval of each cell, the cell identifier of each cell, and the terminal for the terminal.
  • the terminal may indirectly infer the maximum processing capability of the terminal for blind detection support for PDCCH according to the cell parameters, or may directly schedule the N numbers of scheduling based on the maximum processing capability of the terminal for blind detection for PDCCH support.
  • the cell or each scheduling cell is assigned a PDCCH blind detection capability and / or a search space set and / or a PDCCH candidate.
  • the network device sends the PDCCH to the terminal through the N scheduling cells, it is also necessary to determine the PDCCH blind detection capability information of the N scheduling cells above to ensure that the transmitted PDCCH does not exceed the terminal's blind detection of the PDCCH. Maximum processing power supported.
  • a network device configures, for a terminal, cell parameters including N scheduled cells and M scheduled cells of X scheduled cells, so that the terminal can be based on the
  • the cell parameter determines the maximum processing capability of the terminal for blind detection of the PDCCH in each scheduling cell or N scheduling cells (that is, the PDCCH blind detection capability information of the N scheduling cells), which fully utilizes the processing capability of the terminal and improves the terminal.
  • Monitoring PDCCH energy efficiency is the maximum processing capability of the terminal for blind detection of the PDCCH in each scheduling cell or N scheduling cells.
  • FIG. 3 is a schematic flowchart of another method for monitoring a PDCCH according to an embodiment of the present invention.
  • the embodiment of the present invention is mainly directed to a scenario where the subcarrier intervals of the M cells are the same.
  • the method for monitoring a PDCCH may include:
  • Step 301 The network device configures cell parameters of M cells for the terminal.
  • Step 302 The network device sends the PDCCH to the terminal through the N scheduling cells.
  • Step 303 The terminal obtains the first blind candidate detection capability information of the first candidate PDCCH and the second blind candidate detection capability information of the first scheduled cell when the subcarrier intervals of the M cells are the same.
  • the minimum value of the blind detection capability information and the second candidate PDCCH blind detection capability information is used as the PDCCH blind detection capability information of the first scheduling cell.
  • the terminal determines the PDCCH blind detection capability information of each scheduling cell based on step 303 described above.
  • the above-mentioned first candidate PDCCH blind detection capability information is related to at least one of the following: the first value, the first information, and the second information corresponding to the subcarrier interval of the first scheduling cell;
  • the second candidate PDCCH blind detection capability information is related to at least one of the following: the number of cells that can be scheduled by the first scheduling cell and the second information.
  • the first information described above is used to indicate the maximum processing capability of the terminal for blind detection support for the PDCCH, that is, the maximum processing capability of the PDCCH for blind detection support reported by the terminal.
  • the above second information is used to indicate the maximum processing capability of the terminal for blind detection of the PDCCH in a single cell under the configuration of the subcarrier interval corresponding to the first scheduling cell, for example, the number of PDCCH candidates in Table 2, and CCE number.
  • the first scheduling cell is one of the N scheduling cells.
  • the above-mentioned first value is an allocation ratio in which the terminal allocates the PDCCH blind detection capability for the first scheduling cell.
  • the allocation ratio of each scheduling cell may be related to cell parameters, for example, related to the number of cells N of the scheduling cell, related to the cell ID of the scheduling cell, and related to the cell ID of the scheduled cell.
  • the foregoing first value is a ratio between the number of cells that can be scheduled by the first scheduling cell and the number of cells M that the network device configures for the terminal.
  • Step 304 The terminal monitors the PDCCH according to the PDCCH blind detection capability information of the N scheduled cells.
  • the second embodiment does not limit the sequence of the above steps, and the execution order of the above steps should be determined by its function and internal logic, that is, the number of the above steps should not correspond to the embodiment of the present invention.
  • the implementation process constitutes any limitation.
  • the foregoing step 303 may be executed before step 304, or may be executed during the execution of step 304, which is not limited in the present invention.
  • the network device configures and activates 6 cells (ie, cells A, B, C, D, E, and F) for the terminal, where cell A is the primary cell, and cells B, C, D, E, and F are Secondary cell, and cell A cross-carrier scheduling cells B, C, D, cell E and cell F are self-scheduling cells.
  • 6 cells ie, cells A, B, C, D, E, and F
  • cell A is the primary cell
  • cells B, C, D, E, and F are Secondary cell
  • cell A cross-carrier scheduling cells B, C, D, cell E and cell F are self-scheduling cells.
  • the network device configures a cell ID, an index, and a carrier indicator field (CIF) value of the foregoing cell.
  • the indices of cells A, B, C, D, E, and F are 0, 1, 2, 3, 4, and 5, respectively; the corresponding CIFs of cells A, B, C, and D on cell A are 0, 2, and 3, respectively. ,1.
  • the network device is configured with a PDCCH on a BWP of a scheduling cell (ie, cells A, E, and F), including CORESET and an associated search space set.
  • the SWPs of the BWPs of the above six cells are all 15 kHz.
  • the SCS of the BWPs of the above 6 cells are all 15 kHz, based on the above Table 2, it can be known that the maximum number of PDCCH candidates of the terminal in the above 6 cells is 44 in the configuration of the SCS at 15 kHz, based on the above table It can be seen that the maximum number of non-overlapping CCEs of the terminal in the above 6 cells in the configuration of the SCS at 15 kHz is 56.
  • the terminal reports that its maximum CA blind detection processing capability is 4.
  • the determination process of the PDCCH blind detection capability information of the scheduling cells is as follows:
  • the maximum number of non-overlapping CCEs of the terminals in the above 6 cells is 56 under the configuration of SCS of 15 kHz, and the maximum of cells A, E, and F is determined.
  • the number of non-overlapping CCEs is 56 under the configuration of SCS of 15 kHz, and the maximum of cells A, E, and F is determined. The number of non-overlapping CCEs.
  • the PDCCH blind detection capability information of each scheduling cell can also be determined in the manner shown in step 303 above, that is, the network device is on the network side.
  • the content in step 303 may also be executed. For details, refer to the foregoing content (that is, all content related to step 303), and details are not described herein again.
  • the network device configures cell parameters for M terminals including N scheduled cells and X scheduled cells for the terminal. So that the terminal can determine, based on the cell parameter, the terminal determines the maximum processing capability for blind detection of the PDCCH in each scheduling cell (that is, the PDCCH blind detection capability information of each scheduling cell), making full use of the processing capability of the terminal, Improved energy efficiency of the terminal monitoring PDCCH.
  • FIG. 4 shows a schematic flowchart of another method for monitoring a PDCCH according to an embodiment of the present invention.
  • the embodiment of the present invention can be applied to any cross-carrier scheduling scenario (that is, not only applicable to the same subcarrier interval of M cells) Scenario is also applicable to scenarios where the subcarrier intervals of the M cells are not the same).
  • the method for monitoring a PDCCH may include:
  • Step 401 The network device configures cell parameters of M cells for the terminal.
  • the above-mentioned cell parameters further include: first priority information of N scheduling cells and / or second priority information of M cells.
  • Step 402 The network device sends the PDCCH to the terminal through the N scheduling cells.
  • Step 403 According to the first priority information or the second priority information, the terminal sequentially assigns a blind PDCCH detection capability and / or a search space set and / or a PDCCH candidate to each scheduling cell from high to low, and determines N schedules.
  • the PDCCH blind detection capability information of the cell is not limited to the first priority information or the second priority information.
  • Step 404 The terminal monitors the PDCCH according to the PDCCH blind detection capability information of the N scheduled cells.
  • step 403 may be performed before step 404, or may be performed during the execution of step 404, which is not limited in the present invention.
  • the terminal may allocate the blind PDCCH detection capability according to the priority, for example, to meet the processing needs of high-priority cells first, or to allocate the cells required by some cells first.
  • the scheduling cell, the primary cell, etc. or in the order of the cell ID of the scheduling cell (for example, from small to large), the maximum processing power required for the cell is allocated, or Sort the number of cells to allocate the maximum processing power required for each cell, or allocate the maximum processing power required for each cell in the order of the cell ID or CIF value of the scheduled cell (for example, from small to large).
  • the network device configures and activates 6 cells (ie, cells A, B, C, D, E, and F) for the terminal, where cell A is the primary cell, and cells B, C, D, E, and F are The secondary cell, and cell B is a cross-carrier scheduling cell C, D, E, and cell A and cell F are self-scheduling cells.
  • the network device configures a cell ID, an index, and a carrier indicator field (CIF) value of the foregoing cell.
  • the indices of cells A, B, C, D, E, and F are 0, 1, 2, 3, 4, and 5, respectively; the corresponding CIFs of cells B, C, D, and E on cell B are 0, 2, and 3, respectively. ,1.
  • the terminal may allocate the maximum processing capacity required by the cell in the order of the indices (0, 4, 5) of the cells A, B, and F, or the terminal may schedule the number of cells (4, 1) according to the cells B, A, and F. 1)
  • the maximum processing capability required by the cell is allocated in order, or the terminal UE allocates the maximum processing capability required by the cell in the order of the CIF values of the cell.
  • the PDCCH blind detection capability information of each scheduling cell can also be determined in the manner shown in step 403 above, that is, the network device is on the network side.
  • the content in step 403 may also be executed. For details, refer to the foregoing content (that is, all content related to step 403), and details are not described herein again.
  • a network device configures, for a terminal, cell parameters including N scheduled cells and M scheduled cells of X scheduled cells, so that the terminal can be based on the
  • the priority information of the cell parameters determines the maximum processing capability of the blind detection of the PDCCH in each scheduling cell (that is, the blind detection capability information of the PDCCH of each scheduling cell) by satisfying the processing needs of high-priority cells in priority. ), Making full use of the processing capability of the terminal, and improving the energy efficiency of the terminal monitoring the PDCCH.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 5 shows a schematic flowchart of another method for monitoring a PDCCH according to an embodiment of the present invention.
  • the embodiment of the present invention is mainly directed to a scenario in which the subcarrier intervals of M cells are different.
  • the method for monitoring a PDCCH may include:
  • Step 501 The network device configures cell parameters of M cells for the terminal.
  • Step 502 The network device sends the PDCCH to the terminal through the N scheduling cells.
  • Step 503 In the case where the subcarrier intervals of the M cells are different, the terminal performs blind PDCCH detection on a cell group corresponding to each first subcarrier interval in some or all of the first subcarrier intervals in the first subcarrier interval set. Capability information, each PDCCH blind detection capability is allocated to each scheduling cell, and the PDCCH blind detection capability information of each scheduling cell is determined.
  • the above-mentioned first subcarrier interval set includes all subcarrier intervals corresponding to N scheduling cells, or all subcarrier intervals corresponding to M cells.
  • the subcarrier intervals of all cells included in each cell group are the same, and the first subcarrier intervals corresponding to different cell groups are different; the PDCCH blind detection capability information of each cell group is similar to that of the cell group. Parameters.
  • the maximum blind detection capability of the cell group corresponding to the first subcarrier interval ⁇ N is the number of scheduled cells configured by the network
  • N ⁇ is the number of cells in the cell group corresponding to the first subcarrier interval ⁇
  • P is the maximum processing capability of the terminal under a single cell
  • Y is the terminal reporting its maximum CA blind detection processing capability.
  • Step 504 The terminal monitors the PDCCH according to the PDCCH blind detection capability information of the N scheduled cells.
  • the PDCCH blind detection capability information of each scheduling cell can be determined through the following two implementation modes according to different grouping modes.
  • the terminal mainly groups N scheduling cells according to the subcarrier interval of the N scheduling cells, and then determines the PDCCH blind detection capability information of each cell group according to the allocation ratio of each cell group. Based on the PDCCH blind detection capability information of each cell group, the PDCCH blind detection capability is allocated for each cell in the group.
  • the method further includes the following steps:
  • Step 503a In a case where the first subcarrier interval set includes all subcarrier intervals corresponding to N scheduling cells, the terminal acquires the third candidate PDCCH blind detection capability information and the fourth candidate PDCCH blind detection capability of the first cell group. Information, and use the minimum value of the third candidate PDCCH blind detection capability information and the fourth candidate PDCCH blind detection capability information as the PDCCH blind detection capability information of the first cell group.
  • the above-mentioned third candidate PDCCH blind detection capability information is related to at least one of the following: the number of cells that can be scheduled by the first cell group and the third information; and the foregoing fourth candidate PDCCH blind detection capability information. Related to at least one of the following: first information, second value, and third information.
  • the first information is used to indicate the maximum processing capability of the terminal for blind detection support of the PDCCH; the third information is used to indicate that the terminal performs PDCCH on a single cell under the configuration of the subcarrier interval corresponding to the first cell group.
  • the maximum processing capability for blind detection for example, the number of PDCCH candidates in Table 2 and the number of CCEs in Table 3.
  • the above second value is the allocation ratio of the terminal to allocate the PDCCH blind detection capability for the first cell group.
  • a cell group is one of all cell groups.
  • the above-mentioned second value is a ratio between the number of cells that can be scheduled by the first cell group and the sum of the number of cells that can be scheduled by all cell groups, or the ratio between the number of cells of the first cell group and all cell groups. The ratio between the total number of cells.
  • the network device configures and activates 7 cells (ie, cells A, B, C, D, E, F, and G) for the UE through RRC.
  • cells A is the primary cell
  • cells B, C, D, and E , F, and G are secondary cells
  • cell A schedules cell B across carriers
  • cell C schedules cell D across carriers
  • cells E, F, and G are self-scheduling cells.
  • the network device configures a cell ID, an index, and a CIF value of the foregoing cell.
  • the indices of the cells A, B, C, D, E, F, and G are 0, 1, 2, 3, 4, 5, and 6, respectively.
  • the network device is configured with a PDCCH on a BWP of a scheduling cell (ie, cells A, C, E, F, G), including CORESET and an associated search space set.
  • the BCS SCS of cell A is 15kHz
  • the SCS of cell B is 30kHz
  • the SCS of cell C is 120kHz
  • the SCS of cell D is 60kHz
  • the SCS of cell E is 15kHz
  • the SCS of cell F is 60kHz
  • the SCS of cell G 30kHz.
  • the terminal reports that its maximum CA blind detection processing capability is 4.
  • the determination process of the PDCCH blind detection capability information of the scheduling cell is as follows:
  • the terminal groups the scheduling cells according to the SCS of the scheduling cell (that is, the SCS of the cells A, C, E, F, and G).
  • the number of cell group 3 (F) of SCS 60kHz
  • cell group 1 For a group with multiple cells (for example, cell group 1), further allocate or determine the maximum number of PDCCH candidates for the scheduling cell within the group, for example, they can be distributed evenly, or proportionally, or according to the foregoing second embodiment.
  • the solution is allocated, which is not limited in the present invention.
  • the maximum non-overlapping CCE number of each cell is determined.
  • the determination process of the PDCCH blind detection capability information of the scheduling cell is as follows:
  • the terminal groups cells according to the SCS of the scheduling cell (that is, the SCS of cells A, C, E, F, and G).
  • cell group 1 For a group with multiple cells (for example, cell group 1), further allocate or determine the maximum number of PDCCH candidates for the scheduling cell within the group, for example, they can be evenly distributed, or proportionally allocated, or according to the foregoing second embodiment or The solution corresponding to the third embodiment is allocated, which is not limited in the present invention.
  • the maximum non-overlapping CCE number of each cell is determined.
  • the terminal mainly groups M cells according to the subcarrier interval of the M cells, and then assigns each cell group a PDCCH blind detection capability. Then, based on the PDCCH blind detection capability information of each cell group, Each cell is assigned a PDCCH blind detection capability within the group.
  • the method further includes the following steps:
  • Step 503b1 In a case where the first subcarrier interval set includes all subcarrier intervals corresponding to M cells, the terminal acquires the fifth candidate PDCCH blind detection capability information of the second cell group, and blindly detects the fifth candidate PDCCH The minimum value of the capability information and the fourth information corresponding to the second cell group is used as the PDCCH blind detection capability information of the second cell group.
  • the foregoing fifth candidate PDCCH blind detection capability information is related to at least one of the following: the number of cells included in the second cell group, the first information, and the number of cells M configured for the terminal.
  • the first information is used to indicate the maximum processing capability for the terminal to perform blind detection on the PDCCH.
  • the fourth information is used to indicate that the terminal performs blind detection on the PDCCH in a single cell under the configuration of the subcarrier interval corresponding to the second cell group.
  • Maximum processing capacity; the above-mentioned second cell group is one of all the cell groups.
  • the terminal is configured with k scheduling cells, and the number of cells (including itself) that can be scheduled by each cell is g k , 0 ⁇ J ⁇ g K , and all cells are grouped according to the SCS of all configured cells, and determined.
  • the PDCCH blind detection capability information of each group is 0 ⁇ .
  • O ⁇ is the maximum processing capacity allowed by the single cell when the SCS is ⁇
  • O ⁇ min ⁇ P ⁇
  • P ⁇ is the maximum processing capacity allowed by the single cell when the SCS is ⁇ .
  • Q ⁇ is determined according to the maximum processing capability Y and / or the number of cells that are actually configured or activated for blind detection of PDCCH reported by the terminal.
  • the foregoing step 503 specifically includes the following steps:
  • Step 503b2 The terminal allocates the PDCCH blind detection capability to the second scheduling cell according to the PDCCH blind detection capability information of the cell group where each schedulable cell corresponding to the second scheduling cell is located and the third value corresponding to each schedulable cell. PDCCH blind detection capability information of the second scheduling cell.
  • the above-mentioned third value is an allocation ratio of the terminal assigning the PDCCH blind detection capability to the schedulable cell; the second scheduling cell is one of the N scheduling cells.
  • step 503b2 specifically includes the following steps:
  • Step 503b21 The terminal according to the PDCCH blind detection capability information of the cell group where each schedulable cell corresponding to the second scheduling cell, the subcarrier interval corresponding to each schedulable cell, the subcarrier interval corresponding to the second scheduling cell, and the first formula To determine the PDCCH blind detection capability information of the second scheduling cell.
  • the above first formula is: Is the PDCCH blind detection capability information of the cell group where the jth schedulable cell of the second scheduling cell is located, ⁇ j is determined according to the subcarrier interval corresponding to the jth schedulable cell, and ⁇ s is corresponding to the second scheduling cell.
  • the subcarrier spacing is determined.
  • the network device configures and activates 6 cells (ie, cells A, B, C, D, E, and F) for the terminal, where cell A is the primary cell, and cells B, C, D, E, and F are Secondary cell, and cell A cross-carrier scheduling cell B, cell C cross-carrier scheduling cell D, cell E, cell F are self-scheduling cells.
  • 6 cells ie, cells A, B, C, D, E, and F
  • cell A is the primary cell
  • cells B, C, D, E, and F are Secondary cell
  • cell A cross-carrier scheduling cell B, cell C cross-carrier scheduling cell D, cell E, cell F are self-scheduling cells.
  • the network device configures a cell ID, an index, and a CIF value of the foregoing cell.
  • the indices of the cells A, B, C, D, E, and F are 0, 1, 2, 3, 4, and 5, respectively.
  • the network device is configured with a PDCCH on a BWP of a scheduling cell (ie, cells A, D, E, F), including CORESET and an associated search space set.
  • the BCS of cell A is 15 kHz
  • the SCS of cell B is 30 kHz
  • the SCS of cell C is 120 kHz
  • the SCS of cell D is 60 kHz
  • the SCS of cell E is 15 kHz
  • the SCS of cell F is 60 kHz.
  • the terminal reports that its maximum CA blind detection processing capability is 4.
  • the determination process of the PDCCH blind detection capability information of the scheduling cell is as follows:
  • the terminal groups 6 cells according to the SCS of all the cells.
  • cell group 3 (D, F of SCS 60kHz)
  • the maximum number of PDCCH candidates allocated by the terminal to the scheduling cell A is:
  • the maximum PDCCH candidate allocated by the terminal to the scheduling cell C is:
  • the maximum PDCCH candidate for scheduling cell E is:
  • the maximum PDCCH candidate for the scheduling cell F is:
  • the maximum number of non-overlapping CCEs of each scheduling cell can be obtained.
  • the fourth embodiment does not limit the sequence of the above steps.
  • the execution order of the above steps should be determined by its function and internal logic. That is, the number of the above steps should not be the same as the fourth embodiment.
  • the implementation process constitutes any limitation.
  • the foregoing step 502 may be executed before step 503, or may be executed during the execution of step 503, which is not limited in the present invention.
  • the PDCCH blind detection capability information of each scheduling cell can also be determined in the manner shown in step 503 above, that is, the network device is on the network side.
  • the content in step 503 may also be performed. For details, refer to the foregoing content (that is, all content related to step 503), and details are not described herein again.
  • the terminal groups the cells to determine the maximum value of the blind detection of the PDCCH by the terminal in each cell group.
  • Processing capability ie, PDCCH blind detection capability information for each cell group
  • intra-group capability allocation to determine the maximum processing capability for blind detection of PDCCH by each scheduling cell of the terminal in the cell group, making full use of The processing capability of the terminal improves the energy efficiency of the terminal monitoring the PDCCH.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • FIG. 6 is a schematic flowchart of another method for monitoring a PDCCH according to an embodiment of the present invention.
  • the embodiment of the present invention mainly focuses on PDCCH blind detection capability information of N scheduling cells to indicate that a terminal is in N in unit time.
  • the method for monitoring a PDCCH may include:
  • Step 601 The network device configures cell parameters of M cells for the terminal.
  • Step 602 The network device sends the PDCCH to the terminal through the N scheduling cells.
  • Step 603 The terminal obtains the sixth candidate PDCCH blind detection capability information and the seventh candidate PDCCH blind detection capability information of the N first scheduling cells, and blindly compares the sixth candidate PDCCH blind detection capability information and the seventh candidate PDCCH blind detection capability information.
  • the minimum value of the detection capability information is used as the PDCCH blind detection capability information of the N scheduled cells.
  • the foregoing sixth blind candidate PDCCH capability information is related to at least one of the following: first information and second information corresponding to a subcarrier interval of each scheduled cell and / or scheduled cell; and
  • the seventh candidate PDCCH blind detection capability information is related to at least one of the following: the number of cells M configured by the terminal and the second information.
  • the first information is used to indicate the maximum processing capability for the terminal to perform blind detection support on the PDCCH.
  • the second information is used to indicate that the terminal performs a single cell pair configuration in the configuration corresponding to the scheduled cell or the subcarrier interval corresponding to the scheduled cell. Maximum processing capability of PDCCH for blind detection.
  • Step 604 The terminal monitors the PDCCH according to the PDCCH blind detection capability information of the N scheduled cells.
  • the fifth embodiment does not limit the sequence of the above steps.
  • the execution order of the above steps should be determined by its function and internal logic. That is, the number of the above steps should not be the same as that of the fifth embodiment.
  • the implementation process constitutes any limitation.
  • the foregoing step 603 may be performed before step 604, or may be performed during the execution of step 604, which is not limited in the present invention.
  • the embodiments of the present invention can be applied to any cross-carrier scheduling scenario (that is, not only a scenario where the subcarrier intervals of the M cells are the same, but also a scenario where the subcarrier intervals of the M cells are different).
  • the PDCCH blind detection capability information of the N scheduling cells can also be determined in the manner shown in step 603 above, that is, the network device is on the network side.
  • the content in step 603 may also be performed. For details, refer to the foregoing content (that is, all content related to step 603), and details are not described herein again.
  • a network device configures, for a terminal, cell parameters including N scheduled cells and M scheduled cells of X scheduled cells, so that the terminal can be based on the Cell parameters determine the maximum processing capability of the terminal for blind detection of PDCCH in N scheduling cells (that is, the total PDCCH blind detection capability information of N scheduling cells), making full use of the processing capability of the terminal and improving the efficiency of the terminal monitoring PDCCH.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • FIG. 7 is a schematic flowchart of another method for monitoring a PDCCH according to an embodiment of the present invention. As shown in FIG. 7, the method for monitoring a PDCCH includes the following steps:
  • Step 701 The terminal obtains the fifth information.
  • the fifth information is used to instruct the terminal to monitor the number of PDCCHs in all search space sets of the N scheduling cells.
  • the method further includes the following steps:
  • Step 701a The terminal receives the configuration information sent by the network device.
  • the foregoing fifth information is related to the configuration information, that is, the terminal may determine the foregoing fifth information based on the configuration information.
  • the above configuration information includes at least one of the following: time-frequency domain resource information corresponding to each PDCCH blind detection, a search space set associated with each scheduling cell, and fourth information corresponding to each search space set;
  • the fourth information is used to indicate the number of terminals that monitor the PDCCH in the search space set.
  • Step 702 When the terminal determines, according to the fifth information, that the number of terminals monitoring the PDCCH in all search space sets of the N scheduling cells exceeds the maximum processing capability of the terminal for blind detection of the PDCCH, the terminal does not allocate a third scheduling cell. Or a partial search space set of the third scheduling cell, or allocate a partial PDCCH blind detection capability for the partial search space set of the third scheduling cell.
  • the third scheduling cell is one of the N scheduling cells, and the third scheduling cell corresponds to at least one scheduled cell.
  • the scheduling cell in a case where a scheduling cell is configured to cross-carrier schedule other cells (that is, the scheduling cell corresponds to at least one scheduled cell), the scheduling cell may be overbooked, that is, a set of configured search spaces is allowed.
  • the processing capability exceeds the maximum processing capability supported by the terminal for blind detection of the PDCCH.
  • the secondary cell without cross-carrier scheduling is not allowed to be overbooked, that is, the processing capacity of the configured search space set cannot exceed the maximum processing capacity.
  • the terminal when it actually allocates a search space set, it may according to at least one of the following information corresponding to each search space set (for example, the ID of the search space set, the period, the number of PDCCH candidates, the number of symbols, the monitored DCI format, etc.), Sort the search space set, allocate or discard the search space set according to the sort order, and when the required processing capacity exceeds the maximum processing capacity, stop allocating and discard all remaining search space sets.
  • the terminal may according to at least one of the following information corresponding to each search space set (for example, the ID of the search space set, the period, the number of PDCCH candidates, the number of symbols, the monitored DCI format, etc.), Sort the search space set, allocate or discard the search space set according to the sort order, and when the required processing capacity exceeds the maximum processing capacity, stop allocating and discard all remaining search space sets.
  • the terminal may sort the PDCCH candidate according to at least one of the following information (for example, CIF value, aggregation level, cell ID or index, CCE coordinates, etc.) corresponding to each PDCCH candidate, or assign or Drop PDCCH candidate.
  • the following information for example, CIF value, aggregation level, cell ID or index, CCE coordinates, etc.
  • the network device configures and activates 6 cells (ie, cells A, B, C, D, E, and F) for the terminal, where cell A is the primary cell, and cells B, C, D, E, and F are The secondary cell, and cell B cross-carrier scheduling cells C, D, E, and cell A, cell F are self-scheduling cells.
  • 6 cells ie, cells A, B, C, D, E, and F
  • cell A is the primary cell
  • cells B, C, D, E, and F are The secondary cell
  • cell B cross-carrier scheduling cells C, D, E, and cell A, cell F are self-scheduling cells.
  • the network device configures a cell ID, an index, and a CIF value of the foregoing cell.
  • the indices of the cells A, B, C, D, E, and F are 0, 1, 2, 3, 4, and 5, respectively.
  • the corresponding CIFs of B, C, D, and E on B are 0, 2, 3, and 1, respectively.
  • the BCS of all cells is 15kHz.
  • the terminal reports that its maximum CA blind detection processing capability is 4.
  • the network device is configured with PDCCHs on BWPs of A, B, and F (scheduling cells), including CORESET and associated search space sets, and overbooking the number of PDCCH candidates in cell B.
  • PDCCHs on BWPs of A, B, and F cheduling cells
  • the number of PDCCH candidates of CSS on cell A is 7, and the number of PDCCH candidates of USS is 32; the number of PDCCH candidates of USS1, USS2, USS3, and USS4 on cell B are all 32; the number of PDCCH candidates of USS on cell F is 32.
  • the largest non-overlapping CCE allocation can be determined.
  • the network device may also perform the content in steps 701 and 702 on the network side, and details are not described herein again.
  • the processing capability of the scheduling cell that only schedules itself is restricted, thereby ensuring that the terminal is The maximum processing capability allocated by the N scheduling cells does not exceed the maximum processing capability supported by the terminal.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • an embodiment of the present invention provides a terminal 800.
  • the terminal 800 includes: a monitoring module 801, where:
  • the monitoring module 801 is configured to monitor the PDCCH according to the PDCCH blind detection capability information of the N scheduled cells.
  • the N scheduling cells are cells in M cells configured by the network device for the terminal, and the M cells further include: X scheduled cells; the PDCCH blind detection capability information of the N scheduling cells and the M cells.
  • the above cell parameters include at least one of the following: the number of cells that can be scheduled by each scheduling cell, the subcarrier interval of each cell, the cell identity of each cell, and the number of cells M configured for the terminal.
  • the terminal 800 further includes: an obtaining module 802, where:
  • the obtaining module 802 is configured to obtain the first candidate PDCCH blind detection capability information and the second candidate PDCCH blind detection capability information of the first scheduling cell when the subcarrier intervals of the M cells are the same.
  • the minimum value of the PDCCH blind detection capability information and the second candidate PDCCH blind detection capability information is selected as the PDCCH blind detection capability information of the first scheduling cell.
  • the first candidate PDCCH blind detection capability information is related to at least one of the following: the first value, the first information, and the second information corresponding to the subcarrier interval of the first scheduling cell; and the second candidate PDCCH blind detection capability.
  • the information is related to at least one of the following: the number of cells that can be scheduled by the first scheduling cell and the second information; the first information is used to indicate the maximum processing capability of the terminal for blind detection support of the PDCCH; and the second information is used to indicate the first Under the configuration of the subcarrier interval corresponding to the scheduling cell, the maximum processing capability of the terminal for blind detection of the PDCCH in a single cell; the above-mentioned first value is the allocation ratio of the terminal to allocate the blind scheduling capability of the PDCCH for the first scheduling cell; Is one of the N scheduling cells.
  • the first value is a ratio between the number of cells that can be scheduled by the first scheduling cell and the number of cells M configured for the terminal.
  • the above cell parameters include: first priority information of N scheduling cells and / or second priority information of M cells; as shown in FIG. 8, the terminal 800 further includes: a determining module 803, where:
  • a determining module 803 configured to sequentially assign a PDCCH blind detection capability and / or a search space set and / or a PDCCH candidate to each scheduling cell in order from the first priority information or the second priority information, and determine N PDCCH blind detection capability information for each scheduling cell.
  • the obtaining module 802 is configured to, in a case where the subcarrier intervals of the M cells are different, according to each of the first subcarrier intervals corresponding to some or all of the first subcarrier intervals in the first subcarrier interval set,
  • the PDCCH blind detection capability information of the cell group is assigned to each scheduling cell in each cell group, and the PDCCH blind detection capability information of each scheduling cell in each cell group is determined.
  • the first subcarrier interval set includes all subcarrier intervals corresponding to N scheduling cells, or all subcarrier intervals corresponding to the above M cells; the subcarrier intervals of all cells included in each cell group are the same but different The first subcarriers corresponding to the cell group have different intervals; the PDCCH blind detection capability information of each cell group is related to the cell parameters of the cell group.
  • the obtaining module 802 is further configured to: if the first subcarrier interval set includes all subcarrier intervals corresponding to N scheduling cells, obtain the third candidate PDCCH blind detection capability information of the first cell group and The fourth candidate PDCCH blind detection capability information, and uses the minimum value of the third candidate PDCCH blind detection capability information and the fourth candidate PDCCH blind detection capability information as the PDCCH blind detection capability information of the first cell group.
  • the third candidate PDCCH blind detection capability information is related to at least one of the following: the number of cells that can be scheduled by the first cell group and the third information;
  • the fourth candidate PDCCH blind detection capability information is related to at least one of the following: The first information, the second value, and the third information;
  • the first information is used to indicate the maximum processing capability of the terminal for blind detection support of the PDCCH;
  • the third information is used to indicate the configuration of the subcarrier interval corresponding to the first cell group Below is the maximum processing capability of the terminal for blind detection of PDCCH in a single cell;
  • the second value is the allocation ratio of the terminal to allocate the blind detection capability of PDCCH for the first cell group;
  • the first cell group is one of all cell groups group.
  • the second value is a ratio between the number of cells that can be scheduled by the first cell group and the sum of the number of cells that can be scheduled by all cell groups; or the second value is the number of cells of the first cell group and all cells The ratio between the sum of the number of cells in a group.
  • the foregoing obtaining module 802 is further configured to: if the first subcarrier interval set includes all subcarrier intervals corresponding to M cells, obtain the fifth candidate PDCCH blind detection capability information of the second cell group, The minimum value of the fifth candidate PDCCH blind detection capability information and the fourth information corresponding to the second cell group is used as the PDCCH blind detection capability information of the second cell group.
  • the fifth candidate PDCCH blind detection capability information is related to at least one of the following: the number of cells included in the second cell group, the first information, and the number of cells configured for the terminal M; the first information is used to indicate the terminal pair The maximum processing capability supported by the PDCCH for blind detection; the fourth information is used to indicate the maximum processing capability of the terminal for blind detection of the PDCCH in a single cell under the configuration of the subcarrier interval corresponding to the second cell group; the above-mentioned second cell group One of all the cell groups.
  • the foregoing determining module 803 is specifically configured to: according to the cell group of each of the schedulable cells corresponding to the second scheduling cell The PDCCH blind detection capability information and the third value corresponding to each schedulable cell are used to allocate the PDCCH blind detection capability to the second scheduling cell to determine the PDCCH blind detection capability information of the second scheduling cell; where the third value is The allocation ratio of the PDCCH blind detection capability to the schedulable cell; the second scheduling cell is one of the N scheduling cells.
  • the foregoing determining module 803 is specifically configured to: according to the PDCCH blind detection capability information of the cell group where each schedulable cell corresponding to the second scheduling cell is located, the subcarrier interval corresponding to each schedulable cell, and the second scheduling cell The corresponding subcarrier interval and the first formula determine the PDCCH blind detection capability information of the second scheduling cell.
  • the above first formula is: Above Is the PDCCH blind detection capability information of the cell group where the jth schedulable cell of the second scheduling cell is located, ⁇ j is determined according to the subcarrier interval corresponding to the jth schedulable cell, and the ⁇ s is corresponding The subcarrier spacing is determined.
  • an obtaining module 802 is configured to obtain sixth blind candidate PDCCH blind detection capability information and seventh blind candidate PDCCH blind detection capability information of N first scheduling cells, and combine the sixth blind candidate PDCCH blind detection capability information and The minimum value of the seventh candidate PDCCH blind detection capability information is used as the PDCCH blind detection capability information of N scheduling cells;
  • the above sixth candidate PDCCH blind detection capability information is related to at least one of the following: first information and second information corresponding to a subcarrier interval of each scheduling cell and / or scheduled cell; the seventh seventh candidate PDCCH blind
  • the detection capability information is related to at least one of the following: the number of cells M configured for the terminal and second information; the first information is used to indicate the maximum processing capability of the terminal for blind detection support of the PDCCH; and the second information is used to indicate corresponding scheduling The maximum processing capability of the above-mentioned terminal for blind detection of the PDCCH in a single cell under the configuration of the cell or the subcarrier interval corresponding to the scheduled cell.
  • the terminal 800 further includes: an allocation module 804, where:
  • the obtaining module 802 is further configured to obtain fifth information, where the fifth information is used to indicate the number of terminals that monitor the PDCCH in all search space sets of the N scheduling cells; the allocation module 804 is used to The module acquires the fifth information obtained by 802 to determine that the number of terminals monitoring the PDCCH in all search space sets of the N scheduling cells exceeds the maximum processing capability supported by the terminal for blind detection of the PDCCH, and the portion of the third scheduling cell is not allocated.
  • the search space set, or a partial PDCCH blind detection capability is allocated for a part of the search space set of the third scheduling cell.
  • the third scheduling cell is one of the N scheduling cells, and the third scheduling cell corresponds to at least one scheduled cell.
  • the terminal device provided by the embodiment of the present invention can implement the process shown in any one of the foregoing method embodiments in FIG. 2 to FIG. 7. To avoid repetition, details are not described herein again.
  • the network device configures the terminal with the cell parameters of M cells including N scheduled cells and X scheduled cells. Based on the cell parameters, the terminal determines The maximum processing capability of each scheduling cell or N scheduling cells for blind detection of the PDCCH (that is, the PDCCH blind detection capability information of the N scheduling cells) makes full use of the processing capability of the terminal and improves the energy efficiency of the terminal monitoring the PDCCH.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • FIG. 9 is a schematic diagram of a hardware structure of a network device according to an embodiment of the present invention.
  • the network device 900 includes a sending module 901, where:
  • a sending module 901 is configured to configure cell parameters of M cells for the terminal.
  • the M cells include: N scheduled cells and X scheduled cells; the above-mentioned cell parameters and the PDCCH blind detection capability of the N scheduled cells.
  • the information is relevant; the above-mentioned PDCCH blind detection capability information of the N scheduling cells is used to indicate the maximum processing capability of the terminal for blind detection of the PDCCH in each scheduling cell or N scheduling cells within a unit time; the above-mentioned cell parameters are used for Instruct the terminal to monitor the PDCCH according to the PDCCH blind detection capability information of the N scheduled cells.
  • the sending module 901 is further configured to send a PDCCH through N scheduling cells.
  • the terminal device provided by the embodiment of the present invention can implement the process shown in any one of the foregoing method embodiments in FIG. 2 to FIG. 7. To avoid repetition, details are not described herein again.
  • the network device configures, for the terminal, cell parameters including N scheduled cells and M scheduled cells of the X scheduled cells, so that the terminal can determine based on the cell parameters.
  • the maximum processing capability of the terminal for blind detection of the PDCCH in each scheduling cell or N scheduling cells makes full use of the processing capability of the terminal and improves the efficiency of the terminal monitoring the PDCCH.
  • FIG. 10 is a schematic diagram of a hardware structure of a terminal that implements various embodiments of the present invention.
  • the terminal 100 includes, but is not limited to, a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, The user input unit 107, the interface unit 108, the memory 109, the processor 110, and the power supply 111 and other components.
  • the terminal 100 may include more or fewer components than shown in the figure, or combine some components or different components. Layout.
  • the terminal 100 includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a car terminal, a wearable device, and a pedometer.
  • the processor 110 monitors the PDCCH according to the PDCCH blind detection capability information of the N scheduling cells.
  • the N scheduling cells are cells in the M cells configured by the network device for the terminal.
  • the M cells further include: Scheduling cell; the above-mentioned PDCCH blind detection capability information of the N scheduling cells is related to the cell parameters of the M cells; the above-mentioned PDCCH blind detection capability information of the N scheduling cells is used to instruct the terminal 100 in each scheduling cell in unit time
  • the network device configures the terminal with the cell parameters of M cells including N scheduled cells and X scheduled cells. Based on the cell parameters, the terminal determines The maximum processing capability of each scheduling cell or N scheduling cells for blind detection of the PDCCH (that is, the PDCCH blind detection capability information of the N scheduling cells) makes full use of the processing capability of the terminal and improves the energy efficiency of the terminal monitoring the PDCCH.
  • the radio frequency unit 101 may be used to receive and send signals during the transmission and reception of information or during a call. Specifically, the downlink data from the base station is received and processed by the processor 110; The uplink data is sent to the base station.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 101 can also communicate with a network and other devices through a wireless communication system.
  • the terminal 100 provides users with wireless broadband Internet access through the network module 102, such as helping users to send and receive email, browse web pages, and access streaming media.
  • the audio output unit 103 may convert audio data received by the radio frequency unit 101 or the network module 102 or stored in the memory 109 into audio signals and output them as sound. Moreover, the audio output unit 103 may also provide audio output (for example, call signal reception sound, message reception sound, etc.) related to a specific function performed by the terminal 100.
  • the audio output unit 103 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 104 is used for receiving audio or video signals.
  • the input unit 104 may include a graphics processing unit (GPU) 1041 and a microphone 1042.
  • the graphics processor 1041 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frames may be displayed on the display unit 106.
  • the image frames processed by the graphics processor 1041 may be stored in the memory 109 (or other storage medium) or transmitted via the radio frequency unit 101 or the network module 102.
  • the microphone 1042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be transmitted to a mobile communication base station via the radio frequency unit 101 in the case of a telephone call mode and output.
  • the terminal 100 further includes at least one sensor 105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 1061 and / when the terminal 100 moves to the ear. Or backlight.
  • an accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes).
  • sensor 105 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared The sensors and the like are not repeated here.
  • the display unit 106 is configured to display information input by the user or information provided to the user.
  • the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 107 may be configured to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the terminal 100.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072.
  • Touch panel 1071 also known as touch screen, can collect user's touch operations on or near it (such as the user using a finger, stylus, etc. any suitable object or accessory on touch panel 1071 or near touch panel 1071 operating).
  • the touch panel 1071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal caused by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it
  • the processor 110 receives and executes a command sent by the processor 110.
  • various types such as resistive, capacitive, infrared, and surface acoustic wave can be used to implement the touch panel 1071.
  • the user input unit 107 may also include other input devices 1072.
  • other input devices 1072 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, and details are not described herein again.
  • the touch panel 1071 may be overlaid on the display panel 1061.
  • the touch panel 1071 detects a touch operation on or near the touch panel 1071, the touch panel 1071 transmits the touch operation to the processor 110 to determine the type of the touch event.
  • the type of event provides a corresponding visual output on the display panel 1061.
  • the touch panel 1071 and the display panel 1061 are implemented as two independent components to implement the input and output functions of the terminal 100, in some embodiments, the touch panel 1071 and the display panel 1061 may be integrated.
  • the implementation of the input and output functions of the terminal 100 is not specifically limited here.
  • the interface unit 108 is an interface through which an external device is connected to the terminal 100.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, and audio input / output (I / O) port, video I / O port, headphone port, and more.
  • the interface unit 108 may be used to receive input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more elements within the terminal 100 or may be used to communicate between the terminal 100 and an external device. Transfer data.
  • the memory 109 may be used to store software programs and various data.
  • the memory 109 may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), etc .; the storage data area may store data according to Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 109 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 110 is a control center of the terminal 100, and uses various interfaces and lines to connect various parts of the entire terminal 100. By running or executing software programs and / or modules stored in the memory 109, and calling data stored in the memory 109, , Execute various functions of the terminal 100 and process data, so as to monitor the terminal 100 as a whole.
  • the processor 110 may include one or more processing units; optionally, the processor 110 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the tuning processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 110.
  • the terminal 100 may further include a power source 111 (such as a battery) for supplying power to various components.
  • a power source 111 such as a battery
  • the power source 111 may be logically connected to the processor 110 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 100 includes some functional modules that are not shown, and details are not described herein again.
  • Embodiment 10 is a diagrammatic representation of Embodiment 10:
  • FIG. 11 is a schematic diagram of a hardware structure of a network device according to an embodiment of the present invention.
  • the network device 1100 includes a processor 1101, a transceiver 1102, a memory 1103, a user interface 1104, and a bus interface.
  • the transceiver 1102 is configured to configure cell parameters of M cells for the terminal.
  • the M cells include: N scheduling cells and X scheduled cells; the above-mentioned cell parameters and PDCCH blindness of the N scheduling cells.
  • the detection capability information is relevant; the above-mentioned PDCCH blind detection capability information of the N scheduling cells is used to indicate the maximum processing capability of the terminal for blind detection of the PDCCH in each scheduling cell or N scheduling cells within a unit time; the above-mentioned cell parameters It is used to instruct the terminal to monitor the PDCCH according to the PDCCH blind detection capability information of the N scheduled cells.
  • the transceiver 1102 is further configured to send a PDCCH through the N scheduling cells.
  • the network device configures, for the terminal, cell parameters including N scheduled cells and M scheduled cells of the X scheduled cells, so that the terminal can determine based on the cell parameters.
  • the maximum processing capability of the terminal for blind detection of the PDCCH in each scheduling cell or N scheduling cells makes full use of the processing capability of the terminal and improves the efficiency of the terminal monitoring the PDCCH.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1101 and various circuits of the memory represented by the memory 1103 are linked together. .
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 1102 may be multiple elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over a transmission medium.
  • the user interface 1104 may also be an interface capable of externally connecting internally required equipment.
  • the connected equipment includes, but is not limited to, a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1101 is responsible for managing the bus architecture and general processing, and the memory 1103 may store data used by the processor 1101 when performing operations.
  • the network device 1100 further includes some functional modules that are not shown, and details are not described herein again.
  • Embodiment 11 is a diagrammatic representation of Embodiment 11:
  • an embodiment of the present invention further provides a terminal, including a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • a terminal including a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the computer program is executed by the processor, the first to sixth embodiments are implemented.
  • the process of the method for monitoring the PDCCH can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present invention further provides a network device, including a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • a network device including a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the computer program is executed by the processor, the first to sixth embodiments are implemented.
  • the process of the method for monitoring the PDCCH in the method can achieve the same technical effect. To avoid repetition, details are not described herein again.
  • An embodiment of the present invention further provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, multiple processes of the method for monitoring a PDCCH in the foregoing embodiment are implemented. And can achieve the same technical effect, in order to avoid repetition, will not repeat them here.
  • a computer-readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like.
  • the methods in the above embodiments can be implemented by means of software plus a necessary universal hardware platform, and of course, also by hardware, but in many cases the former is better.
  • Implementation Based on this understanding, the technical solution of the present invention, or the part that contributes to the related technology, can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium (such as ROM / RAM, magnetic disk, and optical disk). ) Includes several instructions for causing a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in the embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)

Abstract

本发明实施例提供一种用于监听PDCCH的方法、终端及网络设备,涉及通信技术领域,用以解决相关技术由于未对跨载波调度过程中,UE对一个CC或小区的PDCCH进行盲检测的最大处理能力进行限定,而导致的无法合理的为UE配置相应的盲检行为的问题。该方法包括:根据N个调度小区的PDCCH盲检能力信息监听PDCCH;N个调度小区为网络设备为终端配置的M个小区中的小区,该M个小区还包括:X个被调度小区;N个调度小区的PDCCH盲检能力信息与M个小区的小区参数有关;N个调度小区的PDCCH盲检能力信息用于指示在单位时间内终端在每个调度小区或N个调度小区下对PDCCH进行盲检的最大处理能力;M、N为大于或等于1的正整数,X为大于或等于0的正整数,M=N+X。

Description

用于监听PDCCH的方法、终端及网络设备
本申请要求于2018年07月20日提交国家知识产权局、申请号为201810805009.8、申请名称为“一种用于监听PDCCH的方法、终端及网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种用于监听物理下行控制信道(Physical Downlink Control Channel,PDCCH)的方法、终端及网络设备。
背景技术
目前,5G(NR)系统支持为用户设备(User Equipment,UE)配置的每个载波(Component Carrier,CC)或小区配置多个控制资源集(Control Resource Set,CORESET)以及多个搜索空间集,并为每个搜索空间集灵活配置PDCCH的候选数目。
相关技术中,对于单载波调度或载波聚合(Carrier Aggregation,CA)下的自调度配置,相关协议规定了UE对一个CC或小区的PDCCH进行盲检测的最大处理能力,该最大处理能力包括:UE对PDCCH进行盲检测的最大PDCCH candidate数目,以及UE对PDCCH进行盲检测所需的最大信道估计数,即不重叠的控制信道元素(Control Channel Element,CCE)的数目。
然而,对于跨载波调度的场景,UE对一个CC或小区的PDCCH进行盲检测的最大处理能力目前尚未明确。
发明内容
本发明实施例提供一种用于监听PDCCH的方法、终端及网络设备,用以解决相关技术由于未对跨载波调度过程中,UE对一个CC或小区的PDCCH进行盲检测的最大处理能力进行限定,而导致的无法合理的为UE配置相应的盲检行为的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本发明实施例提供了一种用于监听PDCCH的方法,应用于终端,该方法包括:
根据N个调度小区的PDCCH盲检能力信息监听PDCCH;
其中,所述N个调度小区为网络设备为所述终端配置的M个小区中的小区,所述M个小区还包括:X个被调度小区;所述N个调度小区的PDCCH盲检能力信息与所述M个小区的小区参数有关;所述N个调度小区的PDCCH盲检能力信息用于指示在单位时间内所述终端在每个调度小区或所述N个调度小区下对PDCCH进行盲检的最大处理能力;
M、N为大于或等于1的正整数,X为大于或等于0的正整数,M=N+X。
第二方面,本发明实施例提供了一种用于监听PDCCH的方法,应用于网络设备,该 方法包括:
为终端配置M个小区的小区参数;其中,所述M个小区包括:N个调度小区以及X个被调度小区;所述小区参数与所述N个调度小区的PDCCH盲检能力信息有关;所述N个调度小区的PDCCH盲检能力信息用于指示在单位时间内所述终端在每个调度小区或所述N个调度小区下对PDCCH进行盲检的最大处理能力;所述小区参数用于指示所述终端根据所述N个调度小区的PDCCH盲检能力信息监听PDCCH;
通过所述N个调度小区发送PDCCH。
第三方面,本发明实施例提供了一种终端,包括:
监听模块,用于根据N个调度小区的PDCCH盲检能力信息监听PDCCH;
其中,所述N个调度小区为网络设备为所述终端配置的M个小区中的小区,所述M个小区还包括:X个被调度小区;所述N个调度小区的PDCCH盲检能力信息与所述M个小区的小区参数有关;所述N个调度小区的PDCCH盲检能力信息用于指示在单位时间内所述终端在每个调度小区或所述N个调度小区下对PDCCH进行盲检的最大处理能力;
M、N为大于或等于1的正整数,X为大于或等于0的正整数,M=N+X。
第四方面,本发明实施例提供了一种网络设备,包括:
发送模块,用于为终端配置M个小区的小区参数;其中,所述M个小区包括:N个调度小区以及X个被调度小区;所述小区参数与所述N个调度小区的PDCCH盲检能力信息有关;所述N个调度小区的PDCCH盲检能力信息用于指示在单位时间内所述终端在每个调度小区或所述N个调度小区下对PDCCH进行盲检的最大处理能力;所述小区参数用于指示所述终端根据所述N个调度小区的PDCCH盲检能力信息监听PDCCH;
所述发送模块,还用于通过所述N个调度小区发送PDCCH。
第五方面,本发明实施例提供了一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的用于监听PDCCH的方法的步骤。
第六方面,本发明实施例提供一种网络设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第二方面所述的用于监听PDCCH的方法的步骤。
第七方面,本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上述用于监听PDCCH的方法的步骤。
在本发明实施例中,网络设备在跨载波调度过程中,通过为终端配置包含N个调度小区以及X个被调度小区的M个小区的小区参数,使得终端可以基于该小区参数,确定出终端在每个调度小区或N个调度小区对PDCCH进行盲检测的最大处理能力(即N个调度小区的PDCCH盲检能力信息),充分利用了终端的处理能力,提高了终端监听PDCCH能效。
附图说明
图1为本发明实施例所涉及的通信系统的一种结构示意图;
图2为本发明实施例提供的一种用于监听PDCCH的方法的流程示意图一;
图3为本发明实施例提供的一种用于监听PDCCH的方法的流程示意图二;
图4为本发明实施例提供的一种用于监听PDCCH的方法的流程示意图三;
图5为本发明实施例提供的一种用于监听PDCCH的方法的流程示意图四;
图6为本发明实施例提供的一种用于监听PDCCH的方法的流程示意图五;
图7为本发明实施例提供的一种用于监听PDCCH的方法的流程示意图六;
图8为本发明实施例提供的一种终端的结构示意图一;
图9为本发明实施例提供的一种网络设备的结构示意图一;
图10为本发明实施例提供的一种终端的结构示意图二;
图11为本发明实施例提供的一种网络设备的结构示意图二。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提供的技术方案可以应用于各种通信系统,例如,5G通信系统,未来演进系统或者多种通信融合系统等等。可以包括多种应用场景,例如,机器对机器(Machine to Machine,M2M)、D2M、宏微通信、增强型移动互联网(enhance Mobile Broadband,eMBB)、超高可靠性与超低时延通信(ultra Reliable&Low Latency Communication,uRLLC)以及海量物联网通信(Massive Machine Type Communication,mMTC)等场景。这些场景包括但不限于:终端与终端之间的通信,或网络设备与网络设备之间的通信,或网络设备与终端间的通信等场景中。本发明实施例可以应用于与5G通信系统中的网络设备与终端之间的通信,或终端与终端之间的通信,或网络设备与网络设备之间的通信。
图1示出了本发明实施例所涉及的通信系统的一种可能的结构示意图。如图1所示,该通信系统包括至少一个网络设备100(图1中仅示出一个)以及每个网络设备100所连接的一个或多个终端200。
其中,上述的网络设备100可以为基站、核心网设备、发射接收节点(Transmission and Reception Point,TRP)、中继站或接入点等。网络设备100可以是全球移动通信系统(Global System for Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)网络中的基站收发信台(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的NB(NodeB),还可以是LTE中的eNB或eNodeB(evolutional NodeB)。网络设备100还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器。网络设备100还可以是5G通信系统中的网络设备或未来演进网络中的网络设备。然用词并不构成对本申请的限制。
终端200可以为无线终端也可以为有线终端,该无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端或者未来演进 的PLMN网络中的终端等。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据,以及个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备,无线终端也可以为移动设备、用户设备(User Equipment,UE)、UE终端、接入终端、无线通信设备、终端单元、终端站、移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远方站、远程终端(Remote Terminal)、订户单元(Subscriber Unit)、订户站(Subscriber Station)、用户代理(User Agent)、终端装置等。作为一种实例,在本发明实施例中,图1以终端是手机为例示出。
下面对本申请中所涉及的部分术语进行解释,以方便读者理解:
1、跨载波调度
在相关技术中,在某些小区的信道质量不够好或者信道阻塞概率较高的情况下,网络设备可以为终端配置跨载波调度,即把控制信道配置在其他信道质量较好的小区(例如,主小区),来跨载波调度其他小区(例如,辅小区)的数据。其中,如果某一小区被配置了控制信道PDCCH,则可以称该小区为调度小区(scheduling cell)。一般的,调度小区可以是自调度模式,即该小区只调度自己,也可以是跨载波调度模式,即该小区可以调度一个或多个自己以外的被调度小区(scheduled cell)。被调度小区没有自己的PDCCH,只能由跨载波调度配置指示的一个调度小区来调度。
需要说明的是,调度小区与被调度小区的子载波带宽(Subcarrier Spacing,SCS)可以相同或不同。
其中,终端支持的SCS配置μ如下表1所示,每一个μ值对应一个子载波间隔。
μ Δf=2 μ·15
0 15
1 30
2 60
3 120
4 240
…… ……
表1
2、PDCCH盲检能力
PDCCH盲检能力是指终端在单位时间(如,一个slot或mini-slot等)内终端在单小区下对PDCCH进行盲检的最大处理能力,该最大处理能力包括:终端在一个单位时间内盲检的最大的PDCCH candidate(候选)数目,以及终端执行盲检所需的最大信道估计数,即不重叠的控制信道元素(Control Channel Element,CCE)的数目。
其中,在不同SCS配置下终端在单小区下在一个slot内盲检的最大PDCCH candidate数目如下表2所示,每一个μ值对应一个PDCCH candidate数目。
Figure PCTCN2019096186-appb-000001
表2
其中,在不同SCS配置下终端在单小区下在一个slot内盲检的最大不重叠的CCE数目
Figure PCTCN2019096186-appb-000002
如下表3所示,每一个μ值对应一个CCE数目。
Figure PCTCN2019096186-appb-000003
表3
3、其他术语
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。如果不加说明,本文中的“多个”是指两个或两个以上。
为了便于清楚描述本发明实施例的技术方案,在本发明的实施例中,采用了“第一”、“第二”等字样对功能或作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。
本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。在本发明实施例中,除非另有说明,“多个”的含义是指两个或者两个以上。
实施例一:
图2示出了本发明实施例提供的一种用于监听PDCCH的方法的流程示意图,如图2所示,该用于监听PDCCH的方法可以包括:
步骤201:网络设备为终端配置M个小区的小区参数。
相应的,对端终端接收网络设备向终端发送的小区参数。其中,上述的网络设备可以为图1所示通信系统中的网络设备,例如,基站;上述的第一终端可以为图1所示的通信系统中的终端设备。
步骤202:网络设备通过N个调度小区向终端发送PDCCH。
步骤203:终端根据N个调度小区的PDCCH盲检能力信息监听PDCCH。
在本发明实施例中,上述的M个小区包括:N个调度小区以及X个被调度小区,上述N个调度小区中的部分或全部调度小区配置有被调度小区,上述的X个被调度小区为该部分或全部调度小区对应的被调度小区。其中,上述的M、N为大于或等于1的正整数, X为大于或等于0的正整数,M=N+X。
需要说明的是,本发明实施例中的被调度小区是指被配置了跨载波调度配置的小区。
在本发明实施例中,上述的小区参数用于指示终端根据N个调度小区的PDCCH盲检能力信息监听PDCCH。上述的小区参数与N个调度小区的PDCCH盲检能力信息有关。上述的N个调度小区的PDCCH盲检能力信息用于指示在单位时间内终端在每个调度小区或N个调度小区下对PDCCH进行盲检的最大处理能力。
在本发明实施例中,上述的最大处理能力包括:终端对PDCCH进行盲检测的最大PDCCH candidate数目(例如,表2中的PDCCH candidate数目),以及终端对PDCCH进行盲检测所需的最大信道估计数,即不重叠的CCE的数目(例如,表3中的CCE数目)。
在本发明实施例中,终端在监听PDCCH时,会以PDCCH candidate为逻辑单位进行盲检测。终端盲检测这些PDCCH candidate,如果盲检测成功,说明这些PDCCH candidate是有效的PDCCH。如果不成功,说明这些PDCCH candidate是无效的(例如,是发给其他终端的,或是一堆无效噪声)。因此,终端监听PDCCH也可认为是监听PDCCH candidate。
可选的,在本发明实施例中,上述的小区参数包括以下至少一项:每个调度小区可调度的小区数量、每个小区的子载波间隔、每个小区的小区标识以及为所述终端配置的小区数量M。
在本发明实施例中,终端可以根据小区参数间接推断出终端对PDCCH进行盲检支持的最大处理能力,也可以直接根据终端上报的对PDCCH进行盲检支持的最大处理能力,来为N个调度小区或每个调度小区分配PDCCH盲检能力和/或搜索空间集和/或PDCCH candidate。
需要说明的是,网络设备通过N个调度小区向终端发送PDCCH时,也需要确定上述的N个调度小区的PDCCH盲检能力信息,以保证所发送的PDCCH,不会超过终端对PDCCH进行盲检支持的最大处理能力。
本发明实施例提供的用于监听PDCCH的方法,网络设备在跨载波调度过程中,通过为终端配置包含N个调度小区以及X个被调度小区的M个小区的小区参数,使得终端可以基于该小区参数,确定出终端在每个调度小区或N个调度小区对PDCCH进行盲检测的最大处理能力(即N个调度小区的PDCCH盲检能力信息),充分利用了终端的处理能力,提高了终端监听PDCCH能效。
实施例二:
图3示出了本发明实施例提供的另一种用于监听PDCCH的方法的流程示意图,如图3所示,本发明实施例主要针对M个小区的子载波间隔相同的场景,在该场景下,该用于监听PDCCH的方法可以包括:
步骤301:网络设备为终端配置M个小区的小区参数。
步骤302:网络设备通过N个调度小区向终端发送PDCCH。
步骤303:终端在M个小区的子载波间隔相同的情况下,获取第一调度小区的第一待选PDCCH盲检能力信息以及第二待选PDCCH盲检能力信息,并将第一待选PDCCH盲检能力信息和第二待选PDCCH盲检能力信息中的最小值,作为第一调度小区的PDCCH盲检能力信息。
在本发明实施例中,终端基于上述的步骤303确定出每个调度小区的PDCCH盲检能力信息。
在本发明实施例中,上述的第一待选PDCCH盲检能力信息与以下至少一项相关:第一值、第一信息以及第一调度小区的子载波间隔对应的第二信息;上述的第二待选PDCCH盲检能力信息与以下至少一项相关:第一调度小区可调度的小区数量以及第二信息。
其中,上述的第一信息用于指示终端对PDCCH进行盲检支持的最大处理能力,即终端上报的对PDCCH进行盲检支持的最大处理能力。上述的第二信息用于指示第一调度小区对应的子载波间隔的配置下终端在单小区下对PDCCH进行盲检的最大处理能力,例如,表2中的PDCCH candidate数目,以及表3中的CCE数目。上述的第一调度小区为上述N个调度小区中的其中一个。上述的第一值为终端为第一调度小区分配PDCCH盲检能力的分配比例。
示例性的,每个调度小区的分配比例可以与小区参数相关,例如,与调度小区的小区数目N相关,与调度小区的小区ID相关,与被调度小区的小区ID相关等。
在一种示例中,上述的第一值为第一调度小区可调度的小区数量与网络设备为终端配置的小区数量M间的比值。
示例性的,假设终端配置了k个调度小区,每个调度小区调度的小区数(包括自己)为g k,则每个调度小区分配的最大处理能力为min{Rk,Sk},其中,Rk根据实际配置或激活的小区数Tk确定(e.g.Rk=P×T k),Sk根据终端上报的对PDCCH进行盲检支持的最大处理能力Y确定(e.g.Sk=floor{P×Y×f k}),P为单小区下UE的最大处理能力,f k为每个调度小区的分配比例。
步骤304:终端根据N个调度小区的PDCCH盲检能力信息监听PDCCH。
需要说明的是,本实施例二并不对上述的各步骤的先后顺序进行限定,上文中个步骤的执行顺序应以其功能和内在逻辑确定,即上述步骤的序号的大小不应对本发明实施例的实施过程构成任何限定。例如,上述的步骤303可以在步骤304之前执行,也可以在步骤304的执行过程中执行,本发明对此不作限定。
需要说明的是,本实施例二中与实施例一相同或相似的描述均可参照实施例一中的描述,本发明对此不再赘述。
举例说明,网络设备通过RRC为终端配置并激活了6个小区(即小区A、B、C、D、E、F),其中小区A是主小区,小区B、C、D、E、F是辅小区,且小区A跨载波调度小区B、C、D,小区E和小区F是自调度小区。
具体的,网络设备配置上述小区的小区ID,Index,载波指示域(carrier indicator field,CIF)值等。小区A、B、C、D、E、F的index分别是0、1、2、3、4、5;小区A、B、C、D在小区A上对应的CIF分别是0、2、3、1。网络设备配置了调度小区(即小区A、E、F)的BWP上的PDCCH,包括CORESET以及关联的搜索空间集。此外,上述的6个小区的BWP的SCS均为15kHz。
具体的,由于上述6个小区的BWP的SCS均为15kHz,因此,基于上述表2可知,终端在SCS为15kHz的配置下终端在上述6个小区下的最大PDCCH candidate数目为44,基于上述表3可知,终端在SCS为15kHz的配置下终端在上述6个小区下 的最大不重叠的CCE数目为56。终端上报其最大的CA盲检测处理能力为4。
具体的,基于上述内容,上述调度小区(即小区A、E、F)的PDCCH盲检能力信息的确定过程如下所示:
1)、确定小区A、E、F的分配比例。
具体的,小区A可调度小区数目g 1=4,小区E可调度小区数目g 2=1,小区F可调度小区数目g 3=1,对应的,小区A的分配比例
Figure PCTCN2019096186-appb-000004
小区E的分配比例
Figure PCTCN2019096186-appb-000005
小区F的分配比例
Figure PCTCN2019096186-appb-000006
2)、根据小区A、E、F的分配比例,确定小区A、E、F的PDCCH盲检能力信息。
具体的,对于小区A,对应的,
Figure PCTCN2019096186-appb-000007
Figure PCTCN2019096186-appb-000008
从而得到小区A的最大PDCCH candidate数目min{R 1,S 1}=117。
对于小区E,对应的,
Figure PCTCN2019096186-appb-000009
从而得到小区E的最大PDCCH candidate数目min{R 2,S 2}=29。
对于小区F,对应的,
Figure PCTCN2019096186-appb-000010
从而得到小区F的最大PDCCH candidate数目min{R 3,S 3}=29。
同理,基于上述的小区A、E、F的分配比例终端在SCS为15kHz的配置下终端在上述6个小区下的最大不重叠的CCE数目为56,确定出小区A、E、F的最大的不重叠的CCE数目。
需要说明的是,网络设备在通过N个调度小区向终端发送PDCCH时,也可以按照上述的步骤303所示的方式来确定出每个调度小区的PDCCH盲检能力信息,即网络设备在网络侧也可以执行上述的步骤303中的内容,具体可参见上述内容(即与步骤303相关的所有内容),这里不再赘述。
本发明实施例提供的用于监听PDCCH的方法,在M个小区的子载波间隔相同的场景下,网络设备通过为终端配置包含N个调度小区以及X个被调度小区的M个小区的小区参数,使得终端可以基于该小区参数,确定出终端在每个调度小区确定出对PDCCH进行盲检测的最大处理能力(即每个调度小区的PDCCH盲检能力信息),充分利用了终端的处理能力,提高了终端监听PDCCH能效。
实施例三:
图4示出了本发明实施例提供的另一种用于监听PDCCH的方法的流程示意图,本发明实施例可以适用于任何跨载波调度场景(即,不仅适用于M个小区的子载波间隔相同的场景,也适用于M个小区的子载波间隔不相同的场景)。如图4所示,该用于监听PDCCH的方法可以包括:
步骤401:网络设备为终端配置M个小区的小区参数。
在本发明实施例中,上述的小区参数还包括:N个调度小区的第一优先级信息和/或M个小区的第二优先级信息。
步骤402:网络设备通过N个调度小区向终端发送PDCCH。
步骤403:终端根据第一优先级信息/或第二优先级信息,从高至低为每个调度小区依次分配PDCCH盲检能力和/或搜索空间集和/或PDCCH candidate,确定出N个调度小区的PDCCH盲检能力信息。
步骤404:终端根据N个调度小区的PDCCH盲检能力信息监听PDCCH。
需要说明的是,本发明实施例并不对上述的各步骤的先后顺序进行限定,上文中个步骤的执行顺序应以其功能和内在逻辑确定,即上述步骤的序号的大小不应对本发明实施例的实施过程构成任何限定。例如,上述的步骤403可以在步骤404之前执行,也可以在步骤404的执行过程中执行,本发明对此不作限定。
需要说明的是,本实施例三中与实施例一和/或实施例二中相同或相似的描述均可参照上述实施例一或二中的描述,本发明对此不再赘述。
示例性的,终端在为每个调度小区分配PDCCH盲检能力时,可以按照优先级分配PDCCH盲检能力,例如,优先满足高优先级的小区的处理需求,或者,优先分配某些小区所需要的最大处理能力(例如,调度小区,主小区等),或者,按照调度小区的小区ID的顺序(例如,从小到大)为小区分配所需要的最大处理能力,或者,按照调度小区可调度的小区数量排序,从而为各小区分配所需要的最大处理能力,或者,按照被调度小区的小区ID或CIF值的顺序(例如,从小到大)为各小区分配所需要的最大处理能力。
举例说明,网络设备通过RRC为终端配置并激活了6个小区(即小区A、B、C、D、E、F),其中小区A是主小区,小区B、C、D、E、F是辅小区,且小区B跨载波调度小区C、D、E,小区A和小区F是自调度小区。具体的,网络设备配置上述小区的小区ID,Index,载波指示域(carrier indicator field,CIF)值等。小区A、B、C、D、E、F的index分别是0、1、2、3、4、5;小区B、C、D、E在小区B上对应的CIF分别是0、2、3、1。
例如,终端可以按照小区A、B、F的index(0、4、5)的顺序分配小区所需要的最大处理能力,或,终端按照小区B、A、F的调度的小区数(4、1、1)的顺序分配小区所需要的最大处理能力,或,终端UE按照小区的CIF的值的顺序分配小区所需要的最大处理能力。
需要说明的是,网络设备在通过N个调度小区向终端发送PDCCH时,也可以按照上述的步骤403所示的方式来确定出每个调度小区的PDCCH盲检能力信息,即网络设备在网络侧也可以执行上述的步骤403中的内容,具体可参见上述内容(即与步骤403相关的所有内容),这里不再赘述。
本发明实施例提供的用于监听PDCCH的方法,网络设备在跨载波调度过程中,通过为终端配置包含N个调度小区以及X个被调度小区的M个小区的小区参数,使得终端可以基于该小区参数的优先级信息,通过优先满足高优先级的小区的处理需求,确定出终端在每个调度小区确定出对PDCCH进行盲检测的最大处理能力(即每个调度小区的PDCCH盲检能力信息),充分利用了终端的处理能力,提高了终端监听PDCCH能效。
实施例四:
图5示出了本发明实施例提供的另一种用于监听PDCCH的方法的流程示意图,如图5所示,本发明实施例主要针对M个小区的子载波间隔不相同的场景,在该场景下,该用于监听PDCCH的方法可以包括:
步骤501:网络设备为终端配置M个小区的小区参数。
步骤502:网络设备通过N个调度小区向终端发送PDCCH。
步骤503:在M个小区的子载波间隔不同的情况下,终端根据第一子载波间隔集中的部分或全部第一子载波间隔中的每个第一子载波间隔对应的小区组的PDCCH盲检能力信息,分别为每个调度小区分配PDCCH盲检能力,确定出每个调度小区的PDCCH盲检能力信息。
在本发明实施例中,上述的第一子载波间隔集包括N个调度小区对应的所有子载波间隔,或者,M个小区对应的所有子载波间隔。
在本发明实施例中,每个小区组中包含的所有小区的子载波间隔相同,不同小区组对应的第一子载波间隔不同;每个小区组的PDCCH盲检能力信息与该小区组的小区参数有关。
例如,当第一子载波间隔集包括N个调度小区对应的所有子载波间隔,第一子载波间隔μ对应的小区组的最大盲检测能力
Figure PCTCN2019096186-appb-000011
N为网络配置的调度小区数,N μ为第一子载波间隔μ对应的小区组的小区数,P为单小区下终端的最大处理能力,Y为终端上报其最大的CA盲检测处理能力。
步骤504:终端根据N个调度小区的PDCCH盲检能力信息监听PDCCH。
本发明实施例可以根据分组方式不同,通过以下两种实现方式来确定每个调度小区的PDCCH盲检能力信息。
在第一种可能的实现方式中:
在本实现方式中,终端主要根据N个调度小区的子载波间隔对N个调度小区进行分组,然后按照每个小区组的分配比例,来确定出每个小区组的PDCCH盲检能力信息,接着,基于每个小区组的PDCCH盲检能力信息,在组内为每个小区分配PDCCH盲检能力。
示例性的,该方法还包括如下步骤:
步骤503a:在第一子载波间隔集包括N个调度小区对应的所有子载波间隔的情况下,终端获取第一小区组的第三待选PDCCH盲检能力信息以及第四待选PDCCH盲检能力信息,并将第三待选PDCCH盲检能力信息和第四待选PDCCH盲检能力信息中的最小值,作为第一小区组的PDCCH盲检能力信息。
在本发明实施例中,上述的第三待选PDCCH盲检能力信息与以下至少一项相关:第一小区组可调度的小区数量以及第三信息;上述的第四待选PDCCH盲检能力信息与以下至少一项相关:第一信息、第二值以及第三信息。
其中,上述的第一信息用于指示终端对PDCCH进行盲检支持的最大处理能力;上述的第三信息用于指示在第一小区组对应的子载波间隔的配置下终端在单小区下对 PDCCH进行盲检的最大处理能力,例如,表2中的PDCCH candidate数目,以及表3中的CCE数目;上述的第二值为终端为第一小区组分配PDCCH盲检能力的分配比例;上述的第一小区组为全部小区组中的其中一组。
在一种示例中,上述的第二值为第一小区组可调度的小区数量与所有小区组可调度的小区数量总和间的比值,也可以是第一小区组的小区数量与所有小区组的小区数量的总和间的比值。
举例说明,网络设备通过RRC为UE配置并激活了7个小区(即小区A、B、C、D、E、F、G),其中,小区A是主小区,小区B、C、D、E、F、G是辅小区,且小区A跨载波调度小区B,小区C跨载波调度小区D,小区E、F、G是自调度小区。
具体的,网络设备配置上述小区的小区ID,Index,CIF值等。小区A、B、C、D、E、F、G的index分别是0、1、2、3、4、5、6。网络设备配置了调度小区(即小区A、C、E、F、G)的BWP上的PDCCH,包括CORESET以及关联的搜索空间集。其中,小区A的BWP的SCS为15kHz,小区B的SCS为30kHz,小区C的SCS为120kHz,小区D的SCS为60kHz,小区E的SCS为15kHz,小区F的SCS为60kHz,小区G的SCS为30kHz。终端上报其最大的CA盲检测处理能力为4。
第一种实现方式:
具体的,基于上述内容,上述调度小区(即小区A、C、E、F、G)的PDCCH盲检能力信息的确定过程如下所示:
1)、终端按照调度小区的SCS(即小区A、C、E、F、G的SCS)对调度小区进行分组。
具体的,SCS=15kHz的小区组1(A、E)的数量为X0=2,SCS=30kHz的小区组2的(G)数量为X1=1,SCS=60kHz的小区组3(F)的数量为X2=1,SCS=120kHz的小区组4(C)的数量为X3=1。
2)、确定每个小区组的分配比例。
SCS=15kHz的小区组1的分配比例为
Figure PCTCN2019096186-appb-000012
SCS=30kHz的小区组2的分配比例为
Figure PCTCN2019096186-appb-000013
SCS=60kHz的小区组3的分配比例为
Figure PCTCN2019096186-appb-000014
SCS=120kHz4的小区组的分配比例为
Figure PCTCN2019096186-appb-000015
3)、根据每个小区组的分配比例,确定每个小区组的PDCCH盲检能力信息。
具体的,对于SCS=15kHz的小区组1,对应的,
Figure PCTCN2019096186-appb-000016
Figure PCTCN2019096186-appb-000017
从而得到SCS=15kHz的小区组1的最大PDCCH candidate数目为min{B 0,D 0}=70。
对于SCS=30kHz的小区组2,对应的,
Figure PCTCN2019096186-appb-000018
D 1=[P 1×X 1]=[36×1]=36,从而得到SCS=30kHz的小区组2的最大PDCCH candidate数目为min{B 1,D 1}=28。
对于SCS=60kHz的小区组3,对应的,
Figure PCTCN2019096186-appb-000019
Figure PCTCN2019096186-appb-000020
从而得到SCS=60kHz的小区组3的最大PDCCH candidate数目为min{B 2,D 2}=17。
对于SCS=120kHz的小区组4,对应的,
Figure PCTCN2019096186-appb-000021
D 3=[P 3×X 3]=[20×1]=20,从而得到SCS=120kHz的小区组4的最大PDCCH candidate数目为min{B 3,D 3}=16。
4)、对于有多个小区的组(例如小区组1),进一步在组内分配或确定调度小区的最大PDCCH candidate数目,例如,可以平均分配,或按比例分配,或按照前述实施例二对应的方案进行分配,本发明对此不做限定。
同理,基于每个小区组的分配比例,确定出每个小区的最大的不重叠的CCE数目。
第二种实现方式:
具体的,基于上述内容,上述调度小区(即小区A、C、E、F、G)的PDCCH盲检能力信息的确定过程如下所示:
1)、终端按照调度小区的SCS(即小区A、C、E、F、G的SCS)对小区进行分组。
具体的,SCS=15kHz的小区组1(A、E)的数量为X0=(2+1)=3,SCS=30kHz的小区组2的(G)数量为X1=1,SCS=60kHz的小区组3(F)的数量为X2=1,SCS=120kHz的小区组4(C)的数量为X3=1+1=2。
2)、确定每个小区组的分配比例。
SCS=15kHz的小区组1的分配比例为
Figure PCTCN2019096186-appb-000022
SCS=30kHz的小区组2的分配比例为
Figure PCTCN2019096186-appb-000023
SCS=60kHz的小区组3的分配比例为
Figure PCTCN2019096186-appb-000024
SCS=120kHz4的小区组的分配比例为
Figure PCTCN2019096186-appb-000025
3)、根据每个小区组的分配比例,确定每个小区组的PDCCH盲检能力信息。
具体的,对于SCS=15kHz的小区组1,对应的,
Figure PCTCN2019096186-appb-000026
Figure PCTCN2019096186-appb-000027
从而得到SCS=15kHz的小区组1的最大PDCCH candidate数目为min{B 0,D 0}=75。
对于SCS=30kHz的小区组2,对应的,
Figure PCTCN2019096186-appb-000028
Figure PCTCN2019096186-appb-000029
从而得到SCS=30kHz的小区组2的最大PDCCH candidate数目为min{B 1,D 1}=20。
对于SCS=60kHz的小区组3,对应的
Figure PCTCN2019096186-appb-000030
Figure PCTCN2019096186-appb-000031
从而得到SCS=60kHz的小区组3的最大PDCCH candidate数目为min{B 2,D 2}=12。
对于SCS=120kHz的小区组4,对应的,
Figure PCTCN2019096186-appb-000032
D 3=P×X 3=20×2=40,从而得到SCS=120kHz的小区组4的最大PDCCH candidate数目为min{B 3,D 3}=22。
4)、对于有多个小区的组(例如小区组1),进一步在组内分配或确定调度小区的最大PDCCH candidate数目,例如,可以平均分配,或按比例分配,或按照前述实施例二或实施例三对应的方案进行分配,本发明对此不做限定。
同理,基于每个小区组的分配比例,确定出每个小区的最大的不重叠的CCE数目。
在第二种可能的实现方式中:
在本实现方式中,终端主要根据M个小区的子载波间隔对M个小区进行分组,然后为每个小区组分配PDCCH盲检能力,接着,基于每个小区组的PDCCH盲检能力信息,在组内为每个小区分配PDCCH盲检能力。
示例性的,该方法还包括如下步骤:
步骤503b1:在第一子载波间隔集包括M个小区对应的所有子载波间隔的情况下,终端获取第二小区组的第五待选PDCCH盲检能力信息,并将第五待选PDCCH盲检能力信息和第二小区组对应的第四信息中的最小值,作为第二小区组的PDCCH盲检能力信息。
在本发明实施例中,上述的第五待选PDCCH盲检能力信息与以下至少一项相关:第二小区组中包含的小区数量、第一信息以及为终端配置的小区数量M。其中,第一信息用于指示终端对PDCCH进行盲检支持的最大处理能力;第四信息用于指示在第二小区组对应的子载波间隔的配置下终端在单小区下对PDCCH进行盲检的最大处理能力;上述的第二小区组为全部小区组中的其中一组。
示例性的,假设终端配置了k个调度小区,每个小区可调度的小区数(包括自己)为g k,0<J<g K,按照配置的所有小区的SCS,把所有小区分组,确定每个组的PDCCH盲检能力信息O μ。其中,O μ是SCS为μ时协议规定的单小区允许的最大处理能力,O μ=min{P μ,Q μ},P μ是SCS为μ时协议规定的单小区允许的最大处理能力,Q μ根据终端上报的对PDCCH进行盲检支持的最大处理能力Y和/或实际配置或激活的小区数确定。
可选的,在本发明实施例中,在第一子载波间隔集包括M个小区对应的所有子载波间隔的情况下,上述的步骤503具体包括如下步骤:
步骤503b2:终端根据第二调度小区对应的每个可调度小区所在小区组的PDCCH盲检能力信息以及每个可调度小区对应的第三值,为第二调度小区分配PDCCH盲检能力,确定出第二调度小区的PDCCH盲检能力信息。
其中,上述的第三值为终端为所述可调度小区分配PDCCH盲检能力的分配比例;第二调度小区为N个调度小区中的其中一个。
进一步可选的,上述的步骤503b2具体包括如下步骤:
步骤503b21:终端根据第二调度小区对应的每个可调度小区所在小区组的PDCCH盲检能力信息、每个可调度小区对应的子载波间隔、第二调度小区对应的子载波间隔以及第一公式,确定出第二调度小区的PDCCH盲检能力信息。
其中,上述的第一公式为:
Figure PCTCN2019096186-appb-000033
Figure PCTCN2019096186-appb-000034
为第二调度小区的第j个可调度小区所在小区组的PDCCH盲检能力信息,μ j是根据第j个可调度小区对应的子载波间隔确定的,μ s是根据第二调度小区对应的子载波间隔确定的。
举例说明,网络设备通过RRC为终端配置并激活了6个小区(即小区A、B、C、D、E、F),其中小区A是主小区,小区B、C、D、E、F是辅小区,且小区A跨载波调度小区B,小区C跨载波调度小区D,小区E、小区F是自调度小区。
具体的,网络设备配置上述小区的小区ID,Index,CIF值等。小区A、B、C、D、E、F的index分别是0、1、2、3、4、5。网络设备配置了调度小区(即小区A、D、E、F)的BWP上的PDCCH,包括CORESET以及关联的搜索空间集。其中,小区A的BWP的SCS为15kHz,小区B的SCS为30kHz,小区C的SCS为120kHz,小区D的SCS为60kHz,小区E的SCS为15kHz,小区F的SCS为60kHz。终端上报其最大的CA盲检测处理能力为4。
具体的,基于上述内容,上述调度小区(即小区A、D、E、F)的PDCCH盲检能力信息的确定过程如下所示:
1)、终端按照所有小区的SCS对6个小区进行分组。
具体的,SCS=15kHz的小区组1(A、E)的数量为X0=2,SCS=30kHz的小区组2的(B)数量为X1=1,SCS=60kHz的小区组3(D、F)的数量为X2=2,SCS=120kHz的小区组4(C)的数量为X3=1。
2)、根据不同SCS,确定P μ:小区组1的P 0=44,小区组2的P 1=36,小区组3的P 2=22,小区组4的P 3=20。
3)、计算每个小区组对应的O μ
具体的,首先,根据Y以及实际配置或激活的小区数T=6,计算Q μ
例如,简单按照等比例缩放:小区组1的
Figure PCTCN2019096186-appb-000035
小区组2的
Figure PCTCN2019096186-appb-000036
小区组3的
Figure PCTCN2019096186-appb-000037
小区组4的
Figure PCTCN2019096186-appb-000038
接着,针对分别针对每个小区组计算O μ=min{P μ,Q μ},得:
小区组1的
Figure PCTCN2019096186-appb-000039
小区组2的Q 1=24,小区组3的
Figure PCTCN2019096186-appb-000040
小区组4的
Figure PCTCN2019096186-appb-000041
4)、基于每个小区组对应的O μ,确定出每个调度小区的PDCCH盲检能力信息。
对于调度小区A,该调度小区A对应的子载波间隔为15kHz,对应μ=0,该调度小区A对应的被调度小区B对应的子载波间隔为30kHz,对应μ=1。
Figure PCTCN2019096186-appb-000042
终端为调度小区A分配的最大PDCCH candidate数目为:
Figure PCTCN2019096186-appb-000043
Figure PCTCN2019096186-appb-000044
对于调度小区C,该调度小区C对应的子载波间隔为120kHz,对应μ=3,该调度小区C对应的被调度小区D对应的子载波间隔为60kHz,对应μ=2。
Figure PCTCN2019096186-appb-000045
终端为调度小区C分配的最大PDCCH candidate为:
Figure PCTCN2019096186-appb-000046
同理,对于调度小区E的最大PDCCH candidate是:
Figure PCTCN2019096186-appb-000047
同理,对于调度小区F的最大PDCCH candidate是:
Figure PCTCN2019096186-appb-000048
同理,可得每个调度小区的最大的不重叠的CCE数目。
需要说明的是,本实施例四并不对上述的各步骤的先后顺序进行限定,上文中个步骤的执行顺序应以其功能和内在逻辑确定,即上述步骤的序号的大小不应对本实施例四的实施过程构成任何限定。例如,上述的步骤502可以在步骤503之前执行,也可以在步骤503的执行过程中执行,本发明对此不作限定。
需要说明的是,本实施例四中与实施例一至三中相同或相似的描述均可参照实施例一至三中的描述,本发明对此不再赘述。
需要说明的是,网络设备在通过N个调度小区向终端发送PDCCH时,也可以按照上述的步骤503所示的方式来确定出每个调度小区的PDCCH盲检能力信息,即网络设备在网络侧也可以执行上述的步骤503中的内容,具体可参见上述内容(即与步骤503相关的所有内容),这里不再赘述。
本发明实施例提供的用于监听PDCCH的方法,在M个小区的子载波间隔不相同的场景下,终端通过对小区进行分组,从而确定出终端在每个小区组对PDCCH进行盲检测的最大处理能力(即每个小区组的PDCCH盲检能力信息),并进一步进行组内能力分配,确定出终端在该小区组内的每个调度小区对PDCCH进行盲检测的最大处理能力,充分利用了终端的处理能力,提高了终端监听PDCCH能效。
实施例五:
图6示出了本发明实施例提供的另一种用于监听PDCCH的方法的流程示意图,本发明实施例主要针对N个调度小区的PDCCH盲检能力信息用于指示在单位时间内终端在N个调度小区下对PDCCH进行盲检的最大处理能力的场景,如图6所示,该用于监听PDCCH的方法可以包括:
步骤601:网络设备为终端配置M个小区的小区参数。
步骤602:网络设备通过N个调度小区向终端发送PDCCH。
步骤603:终端获取N个第一调度小区的第六待选PDCCH盲检能力信息以及第七待选PDCCH盲检能力信息,并将第六待选PDCCH盲检能力信息和第七待选PDCCH盲检能力信息中的最小值,作为N个调度小区的PDCCH盲检能力信息。
在本发明实施例中,上述的第六待选PDCCH盲检能力信息与以下至少一项相关:第一信息以及每个调度小区和/或被调度小区的子载波间隔对应的第二信息;上述的第七待选PDCCH盲检能力信息与以下至少一项相关:终端配置的小区数量M以及第二信息。
其中,上述第一信息用于指示终端对PDCCH进行盲检支持的最大处理能力;上述的第二信息用于指示对应调度小区或被调度小区对应的子载波间隔的配置下终端在单小区下对PDCCH进行盲检的最大处理能力。
步骤604:终端根据N个调度小区的PDCCH盲检能力信息监听PDCCH。
需要说明的是,本实施例五并不对上述的各步骤的先后顺序进行限定,上文中个步骤的执行顺序应以其功能和内在逻辑确定,即上述步骤的序号的大小不应对本实施例五的实施过程构成任何限定。例如,上述的步骤603可以在步骤604之前执行,也可以在步骤604的执行过程中执行,本发明对此不作限定。
需要说明的是,本实施例五中与实施例一至四中相同或相似的描述均可参照实施例一至四中的描述,本发明对此不再赘述。
需要说明的是,本发明实施例可以适用于任何跨载波调度场景(即,不仅适用于M个小区的子载波间隔相同的场景,也适用于M个小区的子载波间隔不相同的场景)。
需要说明的是,网络设备在通过N个调度小区向终端发送PDCCH时,也可以按照上述的步骤603所示的方式来确定出N个调度小区的PDCCH盲检能力信息,即网络设备在网络侧也可以执行上述的步骤603中的内容,具体可参见上述内容(即与步骤603相关的所有内容),这里不再赘述。
本发明实施例提供的用于监听PDCCH的方法,网络设备在跨载波调度过程中,通过为终端配置包含N个调度小区以及X个被调度小区的M个小区的小区参数,使得终端可以基于该小区参数,确定出终端在N个调度小区对PDCCH进行盲检测的最大处理能力(即N个调度小区的总PDCCH盲检能力信息),充分利用了终端的处理能力,提高了终端监听PDCCH能效。
实施例六:
图7示出了本发明实施例提供的另一种用于监听PDCCH的方法的流程示意图,如图7所示,该用于监听PDCCH的方法包括如下步骤:
步骤701:终端获取第五信息。
其中,上述的第五信息用于指示所述终端在所述N个调度小区的所有搜索空间集下对PDCCH进行监听的数量。
可选的,在本发明实施例中,该方法还包括如下步骤:
步骤701a:终端接收到网络设备发送的配置信息。
其中,上述的第五信息与该配置信息有关,即终端基于该配置信息可以确定出上述的第五信息。上述的配置信息包括以下至少一项:每个调度小区对应PDCCH盲检的时频域资源信息、每个调度小区关联的搜索空间集以及每个搜索空间集对应的第四信息;其中,上述的第四信息用于指示终端在所述搜索空间集下对PDCCH进行监听的数量。
步骤702:当终端根据第五信息确定终端在N个调度小区的所有搜索空间集下对PDCCH进行监听的数量超过了终端对PDCCH进行盲检支持的最大处理能力,则终端不分配第三调度小区的部分搜索空间集,或者,为第三调度小区的部分搜索空间集分配部分PDCCH盲检能力。
其中,上述的第三调度小区为N个调度小区中的其中一个,且第三调度小区对应 至少一个被调度小区。
在本发明实施例中,在调度小区被配置跨载波调度其他小区的情况(即调度小区对应至少一个被调度小区)下,该调度小区可以被超订(overbooking),即允许配置的搜索空间集的处理能力超过终端对PDCCH进行盲检支持的最大处理能力。在没有配置跨载波调度的辅小区不允许被超订,即配置的搜索空间集的处理能力不能超过最大处理能力。
示例性的,终端实际分配搜索空间集时,可以根据每个搜索空间集对应的以下至少一个信息(例如,搜索空间集的ID,周期,PDCCH candidate数目,符号数,监听的DCI格式等),对搜索空间集进行排序,按照排序顺序分配或丢弃搜索空间集,当需求的处理能力超过最大处理能力时,停止分配并丢弃所有剩余的搜索空间集。
示例性的,对于PDCCH candidate,终端可以每个PDCCH candidate对应的以下至少一个信息(例如,CIF值,聚合等级,小区ID或index,CCE坐标等),对PDCCH candidate进行排序,按照排序顺序分配或丢弃PDCCH candidate。
举例说明,网络设备通过RRC为终端配置并激活了6个小区(即小区A、B、C、D、E、F),其中小区A是主小区,小区B、C、D、E、F是辅小区,且小区B跨载波调度小区C、D、E,小区A、小区F是自调度小区。
具体的,网络设备配置上述小区的小区ID,Index,CIF值等。小区A、B、C、D、E、F的index分别是0、1、2、3、4、5。B、C、D、E在B上对应的CIF分别是0、2、3、1。所有小区的BWP的SCS为15kHz。终端上报其最大的CA盲检测处理能力为4。
具体的,网络设备配置了A、B、F(调度小区)的BWP上的PDCCH,包括CORESET以及关联的搜索空间集,且对小区B的PDCCH candidate数目进行overbooking。其中,小区A上CSS的PDCCH candidate数目为7,USS的PDCCH candidate数目为32;小区B上的USS1、USS2、USS3、USS4的PDCCH candidate数目均为32;小区F上的USS的PDCCH candidate数目为32。
由于终端可以在多个调度小区间动态共享最大的PDCCH candidate数目,因此,基于上述内容,可计算出终端的所有调度小区的所有搜索空间集的PDCCH candidate数目(7+32*6=199),即终端的所有调度小区的处理需求,由于终端支持的最大PDCCH candidate数目(44*4=176)小于199,因此,网络设备可以选择一个仅对自身进行调度的调度小区对其处理能力进行限制,即该小区配置的搜索空间集的处理能力不能超过该小区的最大处理能力。例如,由于网络侧对小区B进行了overbooking,因此,终端可以选择丢弃小区B的部分PDCCH candidate,如,不分配小区B上的USS4,从而保证终端的所有调度小区的需要的最大PDCCH candidate数目(7+32*5=167)小于终端支持的最大PDCCH candidate数目(44*4=176)。
同理,可以确定出最大的不重叠的CCE数目的分配。
需要说明的是,网络设备在网络侧也可以执行上述的步骤701和步骤702中的内容,这里不再赘述。
本发明实施例提供的用于监听PDCCH的方法,在N个调度小区的处理需求大于终端支持的最大处理能力的场景下,通过限制仅对自身进行调度的调度小区的处理能 力,从而确保终端为N个调度小区分配的最大处理能力不超过终端支持的最大处理能力。
实施例七:
图8所示,本发明实施例提供一种终端800,该终端800包括:监听模块801,其中:
监听模块801,用于根据N个调度小区的PDCCH盲检能力信息监听PDCCH。
其中,上述N个调度小区为网络设备为终端配置的M个小区中的小区,该M个小区还包括:X个被调度小区;上述N个调度小区的PDCCH盲检能力信息与上述M个小区的小区参数有关;上述N个调度小区的PDCCH盲检能力信息用于指示在单位时间内终端在每个调度小区或N个调度小区下对PDCCH进行盲检的最大处理能力;M、N为大于或等于1的正整数,X为大于或等于0的正整数,M=N+X。
可选的,上述小区参数包括以下至少一项:每个调度小区可调度的小区数量、每个小区的子载波间隔、每个小区的小区标识以及为上述终端配置的小区数量M。
可选的,如图8所示,该终端800还包括:获取模块802,其中:
获取模块802,用于在M个小区的子载波间隔相同的情况下,获取第一调度小区的第一待选PDCCH盲检能力信息以及第二待选PDCCH盲检能力信息,并将第一待选PDCCH盲检能力信息和第二待选PDCCH盲检能力信息中的最小值,作为第一调度小区的PDCCH盲检能力信息。
其中,上述第一待选PDCCH盲检能力信息与以下至少一项相关:第一值、第一信息以及第一调度小区的子载波间隔对应的第二信息;上述第二待选PDCCH盲检能力信息与以下至少一项相关:第一调度小区可调度的小区数量以及第二信息;上述第一信息用于指示终端对PDCCH进行盲检支持的最大处理能力;上述第二信息用于指示第一调度小区对应的子载波间隔的配置下终端在单小区下对PDCCH进行盲检的最大处理能力;上述第一值为终端为第一调度小区分配PDCCH盲检能力的分配比例;上述第一调度小区为N个调度小区中的其中一个。
可选的,上述第一值为第一调度小区可调度的小区数量与为上述终端配置的小区数量M间的比值。
可选的,上述小区参数包括:N个调度小区的第一优先级信息和/或M个小区的第二优先级信息;如图8所示,该终端800还包括:确定模块803,其中:
确定模块803,用于根据第一优先级信息/或第二优先级信息,从高至低为每个调度小区依次分配PDCCH盲检能力和/或搜索空间集和/或PDCCH candidate,确定出N个调度小区的PDCCH盲检能力信息。
可选的,获取模块802,用于在M个小区的子载波间隔不同的情况下,根据第一子载波间隔集中的部分或全部第一子载波间隔中的每个第一子载波间隔对应的小区组的PDCCH盲检能力信息,分别为每个小区组中的每个调度小区分配PDCCH盲检能力,确定出每个小区组中的每个调度小区的PDCCH盲检能力信息。
其中,上述第一子载波间隔集包括N个调度小区对应的所有子载波间隔,或者,上述M个小区对应的所有子载波间隔;每个小区组中包含的所有小区的子载波间隔相同,不同小区组对应的第一子载波间隔不同;每个小区组的PDCCH盲检能力信息与该小区组的小区参数有关。
可选的,获取模块802,还用于:在第一子载波间隔集包括N个调度小区对应的所有子载波间隔的情况下,获取第一小区组的第三待选PDCCH盲检能力信息以及第四待选PDCCH盲检能力信息,并将第三待选PDCCH盲检能力信息和第四待选PDCCH盲检能力信息中的最小值,作为第一小区组的PDCCH盲检能力信息。
其中,上述第三待选PDCCH盲检能力信息与以下至少一项相关:第一小区组可调度的小区数量以及第三信息;上述第四待选PDCCH盲检能力信息与以下至少一项相关:第一信息、第二值以及第三信息;上述第一信息用于指示终端对PDCCH进行盲检支持的最大处理能力;上述第三信息用于指示在第一小区组对应的子载波间隔的配置下上述终端在单小区下对PDCCH进行盲检的最大处理能力;上述第二值为终端为第一小区组分配PDCCH盲检能力的分配比例;上述第一小区组为全部小区组中的其中一组。
可选的,上述第二值为第一小区组可调度的小区数量与所有小区组可调度的小区数量的总和间的比值;或者,上述第二值为第一小区组的小区数量与所有小区组的小区数量的总和间的比值。
可选的,上述获取模块802,还用于:在第一子载波间隔集包括M个小区对应的所有子载波间隔的情况下,获取第二小区组的第五待选PDCCH盲检能力信息,并将第五待选PDCCH盲检能力信息和第二小区组对应的第四信息中的最小值,作为第二小区组的PDCCH盲检能力信息。
其中,上述第五待选PDCCH盲检能力信息与以下至少一项相关:第二小区组中包含的小区数量、第一信息以及为终端配置的小区数量M;上述第一信息用于指示终端对PDCCH进行盲检支持的最大处理能力;上述第四信息用于指示在第二小区组对应的子载波间隔的配置下终端在单小区下对PDCCH进行盲检的最大处理能力;上述第二小区组为全部小区组中的其中一组。
可选的,在第一子载波间隔集包括M个小区对应的所有子载波间隔的情况下,上述确定模块803,具体用于:根据第二调度小区对应的每个可调度小区所在小区组的PDCCH盲检能力信息以及每个可调度小区对应的第三值,为第二调度小区分配PDCCH盲检能力,确定出第二调度小区的PDCCH盲检能力信息;其中,上述第三值为终端为可调度小区分配PDCCH盲检能力的分配比例;第二调度小区为N个调度小区中的其中一个。
可选的,上述确定模块803,具体用于:根据第二调度小区对应的每个可调度小区所在小区组的PDCCH盲检能力信息、每个可调度小区对应的子载波间隔、第二调度小区对应的子载波间隔以及第一公式,确定出第二调度小区的PDCCH盲检能力信息。
其中,上述第一公式为:
Figure PCTCN2019096186-appb-000049
上述
Figure PCTCN2019096186-appb-000050
为第二调度小区的第j个可调度小区所在小区组的PDCCH盲检能力信息,μ j是根据第j个可调度小区对应的子载波间隔确定的,上述μ s是根据第二调度小区对应的子载波间隔确定的。
可选的,获取模块802,用于获取N个第一调度小区的第六待选PDCCH盲检能力信息以及第七待选PDCCH盲检能力信息,并将第六待选PDCCH盲检能力信息和第 七待选PDCCH盲检能力信息中的最小值,作为N个调度小区的PDCCH盲检能力信息;
其中,上述第六待选PDCCH盲检能力信息与以下至少一项相关:第一信息以及每个调度小区和/或被调度小区的子载波间隔对应的第二信息;上述第七待选PDCCH盲检能力信息与以下至少一项相关:为终端配置的小区数量M以及第二信息;上述第一信息用于指示终端对PDCCH进行盲检支持的最大处理能力;上述第二信息用于指示对应调度小区或被调度小区对应的子载波间隔的配置下上述终端在单小区下对PDCCH进行盲检的最大处理能力。
可选的,如图8所示,该终端800还包括:分配模块804,其中:
获取模块802,还用于获取第五信息;其中,上述第五信息用于指示终端在上述N个调度小区的所有搜索空间集下对PDCCH进行监听的数量;分配模块804,用于当根据获取模块获取802获取的第五信息确定终端在N个调度小区的所有搜索空间集下对PDCCH进行监听的数量超过了终端对PDCCH进行盲检支持的最大处理能力,则不分配第三调度小区的部分搜索空间集,或者,为第三调度小区的部分搜索空间集分配部分PDCCH盲检能力。
其中,上述第三调度小区为N个调度小区中的其中一个,且第三调度小区对应至少一个被调度小区。
本发明实施例提供的终端设备能够实现上述方法实施例中图2至图7任意之一所示的过程,为避免重复,此处不再赘述。
本发明实施例提供的终端,在跨载波调度过程中,网络设备通过为终端配置包含N个调度小区以及X个被调度小区的M个小区的小区参数,终端基于该小区参数,确定出终端在每个调度小区或N个调度小区对PDCCH进行盲检测的最大处理能力(即N个调度小区的PDCCH盲检能力信息),充分利用了终端的处理能力,提高了终端监听PDCCH能效。
实施例八:
图9为实现本发明实施例的一种网络设备的硬件结构示意图,如图9所示,该网络设备900包括:发送模块901,其中:
发送模块901,用于为终端配置M个小区的小区参数;其中,上述的M个小区包括:N个调度小区以及X个被调度小区;上述的小区参数与N个调度小区的PDCCH盲检能力信息有关;上述的N个调度小区的PDCCH盲检能力信息用于指示在单位时间内终端在每个调度小区或N个调度小区下对PDCCH进行盲检的最大处理能力;上述的小区参数用于指示终端根据N个调度小区的PDCCH盲检能力信息监听PDCCH。
所述发送模块901,还用于通过N个调度小区发送PDCCH。
本发明实施例提供的终端设备能够实现上述方法实施例中图2至图7任意之一所示的过程,为避免重复,此处不再赘述。
本发明实施例提供的网络设备,网络设备在跨载波调度过程中,通过为终端配置包含N个调度小区以及X个被调度小区的M个小区的小区参数,使得终端可以基于该小区参数,确定出终端在每个调度小区或N个调度小区对PDCCH进行盲检测的最大处理能力(即N个调度小区的PDCCH盲检能力信息),充分利用了终端的处理能力,提高了终端监听 PDCCH能效。
实施例九:
图10为实现本发明各个实施例的一种终端的硬件结构示意图,该终端100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器110、以及电源111等部件。本领域技术人员可以理解,图10中示出的终端100的结构并不构成对终端的限定,终端100可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终端100包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器110根据N个调度小区的PDCCH盲检能力信息监听PDCCH;其中,上述N个调度小区为网络设备为终端配置的M个小区中的小区,该M个小区还包括:X个被调度小区;上述的N个调度小区的PDCCH盲检能力信息与M个小区的小区参数有关;上述的N个调度小区的PDCCH盲检能力信息用于指示在单位时间内终端100在每个调度小区或N个调度小区下对PDCCH进行盲检的最大处理能力;M、N为大于或等于1的正整数,X为大于或等于0的正整数,M=N+X。
本发明实施例提供的终端,在跨载波调度过程中,网络设备通过为终端配置包含N个调度小区以及X个被调度小区的M个小区的小区参数,终端基于该小区参数,确定出终端在每个调度小区或N个调度小区对PDCCH进行盲检测的最大处理能力(即N个调度小区的PDCCH盲检能力信息),充分利用了终端的处理能力,提高了终端监听PDCCH能效。
应理解的是,本发明实施例中,射频单元101可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器110处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元101还可以通过无线通信系统与网络和其他设备通信。
终端100通过网络模块102为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元103可以将射频单元101或网络模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元103还可以提供与终端100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元103包括扬声器、蜂鸣器以及受话器等。
输入单元104用于接收音频或视频信号。输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或网络模块102进行发送。麦克风1042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元101发送到移动通信基站的格式输出。
终端100还包括至少一种传感器105,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在终端100移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器105还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1061。
用户输入单元107可用于接收输入的数字或字符信息,以及产生与终端100的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元107包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作)。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器110,接收处理器110发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板1071,用户输入单元107还可以包括其他输入设备1072。具体地,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板1071可覆盖在显示面板1061上,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器110以确定触摸事件的类型,随后处理器110根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图10中,触控面板1071与显示面板1061是作为两个独立的部件来实现终端100的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现终端100的输入和输出功能,具体此处不做限定。
接口单元108为外部装置与终端100连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元108可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端100内的一个或多个元件或者可以用于在终端100和外部装置之间传输数据。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器109可以包括高速随机存取 存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器110是终端100的控制中心,利用各种接口和线路连接整个终端100的各个部分,通过运行或执行存储在存储器109内的软件程序和/或模块,以及调用存储在存储器109内的数据,执行终端100的各种功能和处理数据,从而对终端100进行整体监控。处理器110可包括一个或多个处理单元;可选的,处理器110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
终端100还可以包括给各个部件供电的电源111(比如电池),可选的,电源111可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端100包括一些未示出的功能模块,在此不再赘述。
实施例十:
图11为实现本发明实施例的一种网络设备的硬件结构示意图,该网络设备1100包括:处理器1101、收发机1102、存储器1103、用户接口1104和总线接口。
其中,收发机1102,用于为终端配置M个小区的小区参数;其中,上述的M个小区包括:N个调度小区以及X个被调度小区;上述的小区参数与N个调度小区的PDCCH盲检能力信息有关;上述的N个调度小区的PDCCH盲检能力信息用于指示在单位时间内终端在每个调度小区或N个调度小区下对PDCCH进行盲检的最大处理能力;上述的小区参数用于指示终端根据N个调度小区的PDCCH盲检能力信息监听PDCCH。收发机1102,还用于通过所述N个调度小区发送PDCCH。
本发明实施例提供的网络设备,网络设备在跨载波调度过程中,通过为终端配置包含N个调度小区以及X个被调度小区的M个小区的小区参数,使得终端可以基于该小区参数,确定出终端在每个调度小区或N个调度小区对PDCCH进行盲检测的最大处理能力(即N个调度小区的PDCCH盲检能力信息),充分利用了终端的处理能力,提高了终端监听PDCCH能效。
本发明实施例中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1101代表的一个或多个处理器和存储器1103代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1102可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1104还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。处理器1101负责管理总线架构和通常的处理,存储器1103可以存储处理器1101在执行操作时所使用的数据。
另外,网络设备1100还包括一些未示出的功能模块,在此不再赘述。
实施例十一:
可选的,本发明实施例还提供一种终端,包括处理器,存储器,存储在存储器上并可 在处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述实施例一至六中的用于监听PDCCH的方法的过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
可选的,本发明实施例还提供一种网络设备,包括处理器,存储器,存储在存储器上并可在处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述实施例一至六中的用于监听PDCCH的方法的过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例中的用于监听PDCCH的方法的多个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明多个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (31)

  1. 一种用于监听下行控制信道PDCCH的方法,其特征在于,应用于终端,该方法包括:
    根据N个调度小区的PDCCH盲检能力信息监听PDCCH;
    其中,所述N个调度小区为网络设备为所述终端配置的M个小区中的小区,所述M个小区还包括:X个被调度小区;所述N个调度小区的PDCCH盲检能力信息与所述M个小区的小区参数有关;所述N个调度小区的PDCCH盲检能力信息用于指示在单位时间内所述终端在每个调度小区或所述N个调度小区下对PDCCH进行盲检的最大处理能力;
    M、N为大于或等于1的正整数,X为大于或等于0的正整数,M=N+X。
  2. 根据权利要求1所述的方法,其特征在于,所述小区参数包括以下至少一项:每个调度小区可调度的小区数量、每个小区的子载波间隔、每个小区的小区标识以及为所述终端配置的小区数量M。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    在所述M个小区的子载波间隔相同的情况下,获取第一调度小区的第一待选PDCCH盲检能力信息以及第二待选PDCCH盲检能力信息,并将所述第一待选PDCCH盲检能力信息和所述第二待选PDCCH盲检能力信息中的最小值,作为所述第一调度小区的PDCCH盲检能力信息;
    其中,所述第一待选PDCCH盲检能力信息与以下至少一项相关:第一值、第一信息以及所述第一调度小区的子载波间隔对应的第二信息;所述第二待选PDCCH盲检能力信息与以下至少一项相关:所述第一调度小区可调度的小区数量以及第二信息;
    所述第一信息用于指示所述终端对PDCCH进行盲检支持的最大处理能力;所述第二信息用于指示所述第一调度小区对应的子载波间隔的配置下所述终端在单小区下对PDCCH进行盲检的最大处理能力;所述第一值为所述终端为所述第一调度小区分配PDCCH盲检能力的分配比例;所述第一调度小区为所述N个调度小区中的其中一个。
  4. 根据权利要求3所述的方法,其特征在于,所述第一值为所述第一调度小区可调度的小区数量与所述为所述终端配置的小区数量M间的比值。
  5. 根据权利要求1所述的方法,其特征在于,所述小区参数包括:所述N个调度小区的第一优先级信息和/或所述M个小区的第二优先级信息;所述方法还包括:
    根据所述第一优先级信息/或所述第二优先级信息,从高至低为每个调度小区依次分配PDCCH盲检能力和/或搜索空间集和/或PDCCH候选,确定出所述N个调度小区的PDCCH盲检能力信息。
  6. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    在所述M个小区的子载波间隔不同的情况下,根据第一子载波间隔集中的部分或全部第一子载波间隔中的每个第一子载波间隔对应的小区组的PDCCH盲检能力信息,分别为每个调度小区分配PDCCH盲检能力,确定出所述每个调度小区的PDCCH盲检能力信息;
    其中,所述第一子载波间隔集包括所述N个调度小区对应的所有子载波间隔,或 者,所述M个小区对应的所有子载波间隔;每个小区组中包含的所有小区的子载波间隔相同,不同小区组对应的第一子载波间隔不同;每个小区组的PDCCH盲检能力信息与所述小区组的小区参数有关。
  7. 根据权利要求6所述的方法,其特征在于,
    在所述第一子载波间隔集包括所述N个调度小区对应的所有子载波间隔的情况下,所述方法还包括:
    获取第一小区组的第三待选PDCCH盲检能力信息以及第四待选PDCCH盲检能力信息,并将所述第三待选PDCCH盲检能力信息和所述第四待选PDCCH盲检能力信息中的最小值,作为所述第一小区组的PDCCH盲检能力信息;
    其中,所述第三待选PDCCH盲检能力信息与以下至少一项相关:所述第一小区组可调度的小区数量以及第三信息;所述第四待选PDCCH盲检能力信息与以下至少一项相关:第一信息、第二值以及所述第三信息;
    所述第一信息用于指示所述终端对PDCCH进行盲检支持的最大处理能力;所述第三信息用于指示在所述第一小区组对应的子载波间隔的配置下所述终端在单小区下对PDCCH进行盲检的最大处理能力;所述第二值为所述终端为所述第一小区组分配PDCCH盲检能力的分配比例;所述第一小区组为全部小区组中的其中一组。
  8. 根据权利要求7所述的方法,其特征在于,所述第二值为所述第一小区组可调度的小区数量与所有小区组可调度的小区数量的总和间的比值;或者,所述第二值为所述第一小区组的小区数量与所有小区组的小区数量的总和间的比值。
  9. 根据权利要求6所述的方法,其特征在于,
    在所述第一子载波间隔集包括所述M个小区对应的所有子载波间隔的情况下,所述方法还包括:
    获取第二小区组的第五待选PDCCH盲检能力信息,并将所述第五待选PDCCH盲检能力信息和所述第二小区组对应的第四信息中的最小值,作为所述第二小区组的PDCCH盲检能力信息;
    其中,所述第五待选PDCCH盲检能力信息与以下至少一项相关:所述第二小区组中包含的小区数量、第一信息以及所述为所述终端配置的小区数量M;
    所述第一信息用于指示所述终端对PDCCH进行盲检支持的最大处理能力;所述第四信息用于指示在所述第二小区组对应的子载波间隔的配置下所述终端在单小区下对PDCCH进行盲检的最大处理能力;所述第二小区组为全部小区组中的其中一组。
  10. 根据权利要求6所述的方法,其特征在于,在所述第一子载波间隔集包括所述M个小区对应的所有子载波间隔的情况下;
    所述根据第一子载波间隔集中的部分或全部第一子载波间隔中的每个第一子载波间隔对应的小区组的PDCCH盲检能力信息,分别为每个调度小区分配PDCCH盲检能力,确定出所述每个调度小区的PDCCH盲检能力信息,包括:
    根据第二调度小区对应的每个可调度小区所在小区组的PDCCH盲检能力信息以及所述每个可调度小区对应的第三值,为所述第二调度小区分配PDCCH盲检能力,确定出所述第二调度小区的PDCCH盲检能力信息;
    其中,所述第三值为所述终端为所述可调度小区分配PDCCH盲检能力的分配比 例;所述第二调度小区为所述N个调度小区中的其中一个。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述第二调度小区对应的每个可调度小区所在小区组的PDCCH盲检能力信息以及所述每个可调度小区对应的第三值,为所述第二调度小区分配PDCCH盲检能力,确定出所述第二调度小区的PDCCH盲检能力信息,包括:
    根据所述第二调度小区对应的每个可调度小区所在小区组的PDCCH盲检能力信息、所述每个可调度小区对应的子载波间隔、所述第二调度小区对应的子载波间隔以及第一公式,确定出所述第二调度小区的PDCCH盲检能力信息;
    其中,所述第一公式为:
    Figure PCTCN2019096186-appb-100001
    所述
    Figure PCTCN2019096186-appb-100002
    为所述第二调度小区的第j个可调度小区所在小区组的PDCCH盲检能力信息,μ j是根据所述第j个可调度小区对应的子载波间隔确定的,所述μ s是根据所述第二调度小区对应的子载波间隔确定的。
  12. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述N个第一调度小区的第六待选PDCCH盲检能力信息以及第七待选PDCCH盲检能力信息,并将所述第六待选PDCCH盲检能力信息和所述第七待选PDCCH盲检能力信息中的最小值,作为所述N个调度小区的PDCCH盲检能力信息;
    其中,所述第六待选PDCCH盲检能力信息与以下至少一项相关:第一信息以及每个调度小区和/或被调度小区的子载波间隔对应的第二信息;所述第七待选PDCCH盲检能力信息与以下至少一项相关:所述终端配置的小区数量M以及所述第二信息;
    所述第一信息用于指示所述终端对PDCCH进行盲检支持的最大处理能力;所述第二信息用于指示对应调度小区或被调度小区对应的子载波间隔的配置下所述终端在单小区下对PDCCH进行盲检的最大处理能力。
  13. 根据权利要求1至12任一项所述的方法,其特征在于,所述方法还包括:
    获取第五信息;其中,所述第五信息用于指示所述终端在所述N个调度小区的所有搜索空间集下对PDCCH进行监听的数量;
    当根据所述第五信息确定所述终端在所述N个调度小区的所有搜索空间集下对PDCCH进行监听的数量超过了所述终端对PDCCH进行盲检支持的最大处理能力,则不分配第三调度小区的部分搜索空间集,或者,为所述第三调度小区的部分搜索空间集分配部分PDCCH盲检能力;
    其中,所述第三调度小区为所述N个调度小区中的其中一个,且所述第三调度小区对应至少一个被调度小区。
  14. 一种用于监听下行控制信道PDCCH的方法,其特征在于,应用于网络设备,该方法包括:
    为终端配置M个小区的小区参数;其中,所述M个小区包括:N个调度小区以及X个被调度小区;所述小区参数与所述N个调度小区的PDCCH盲检能力信息有关;所述N个调度小区的PDCCH盲检能力信息用于指示在单位时间内所述终端在每个调度小区或所述N个调度小区下对PDCCH进行盲检的最大处理能力;所述小区参数用于指示所述终端根据所述N个调度小区的PDCCH盲检能力信息监听PDCCH;
    通过所述N个调度小区发送PDCCH。
  15. 一种终端,其特征在于,包括:
    监听模块,用于根据N个调度小区的PDCCH盲检能力信息监听PDCCH;
    其中,所述N个调度小区为网络设备为所述终端配置的M个小区中的小区,所述M个小区还包括:X个被调度小区;所述N个调度小区的PDCCH盲检能力信息与所述M个小区的小区参数有关;所述N个调度小区的PDCCH盲检能力信息用于指示在单位时间内所述终端在每个调度小区或所述N个调度小区下对PDCCH进行盲检的最大处理能力;
    M、N为大于或等于1的正整数,X为大于或等于0的正整数,M=N+X。
  16. 根据权利要求15所述的终端,其特征在于,所述小区参数包括以下至少一项:每个调度小区可调度的小区数量、每个小区的子载波间隔、每个小区的小区标识以及为所述终端配置的小区数量M。
  17. 根据权利要求16所述的终端,其特征在于,所述终端还包括:
    获取模块,用于在所述M个小区的子载波间隔相同的情况下,获取第一调度小区的第一待选PDCCH盲检能力信息以及第二待选PDCCH盲检能力信息,并将所述第一待选PDCCH盲检能力信息和所述第二待选PDCCH盲检能力信息中的最小值,作为所述第一调度小区的PDCCH盲检能力信息;
    其中,所述第一待选PDCCH盲检能力信息与以下至少一项相关:第一值、第一信息以及所述第一调度小区的子载波间隔对应的第二信息;所述第二待选PDCCH盲检能力信息与以下至少一项相关:所述第一调度小区可调度的小区数量以及第二信息;
    所述第一信息用于指示所述终端对PDCCH进行盲检支持的最大处理能力;所述第二信息用于指示所述第一调度小区对应的子载波间隔的配置下所述终端在单小区下对PDCCH进行盲检的最大处理能力;所述第一值为所述终端为所述第一调度小区分配PDCCH盲检能力的分配比例;所述第一调度小区为所述N个调度小区中的其中一个。
  18. 根据权利要求17所述的终端,其特征在于,所述第一值为所述第一调度小区可调度的小区数量与所述为所述终端配置的小区数量M间的比值。
  19. 根据权利要求15所述的终端,其特征在于,所述小区参数包括:所述N个调度小区的第一优先级信息和/或所述M个小区的第二优先级信息;所述终端还包括:
    确定模块,用于根据所述第一优先级信息/或所述第二优先级信息,从高至低为每个调度小区依次分配PDCCH盲检能力和/或搜索空间集和/或PDCCH候选,确定出所述N个调度小区的PDCCH盲检能力信息。
  20. 根据权利要求16所述的终端,其特征在于,所述终端还包括:
    获取模块,用于在所述M个小区的子载波间隔不同的情况下,根据第一子载波间隔集中的部分或全部第一子载波间隔中的每个第一子载波间隔对应的小区组的PDCCH盲检能力信息,分别为每个调度小区分配PDCCH盲检能力,确定出每个调度小区的PDCCH盲检能力信息;
    其中,所述第一子载波间隔集包括所述N个调度小区对应的所有子载波间隔,或者,所述M个小区对应的所有子载波间隔;每个小区组中包含的所有小区的子载波间 隔相同,不同小区组对应的第一子载波间隔不同;每个小区组的PDCCH盲检能力信息与所述小区组的小区参数有关。
  21. 根据权利要求20所述的终端,其特征在于,
    所述获取模块,还用于:在所述第一子载波间隔集包括所述N个调度小区对应的所有子载波间隔的情况下,获取第一小区组的第三待选PDCCH盲检能力信息以及第四待选PDCCH盲检能力信息,并将所述第三待选PDCCH盲检能力信息和所述第四待选PDCCH盲检能力信息中的最小值,作为所述第一小区组的PDCCH盲检能力信息;
    其中,所述第三待选PDCCH盲检能力信息与以下至少一项相关:所述第一小区组可调度的小区数量以及第三信息;所述第四待选PDCCH盲检能力信息与以下至少一项相关:第一信息、第二值以及所述第三信息;
    所述第一信息用于指示所述终端对PDCCH进行盲检支持的最大处理能力;所述第三信息用于指示在所述第一小区组对应的子载波间隔的配置下所述终端在单小区下对PDCCH进行盲检的最大处理能力;所述第二值为所述终端为所述第一小区组分配PDCCH盲检能力的分配比例;所述第一小区组为全部小区组中的其中一组。
  22. 根据权利要求21所述的终端,其特征在于,所述第二值为所述第一小区组可调度的小区数量与所有小区组可调度的小区数量的总和间的比值;或者,所述第二值为所述第一小区组的小区数量与所有小区组的小区数量的总和间的比值。
  23. 根据权利要求20所述的终端,其特征在于,
    所述获取模块,还用于:在所述第一子载波间隔集包括所述M个小区对应的所有子载波间隔的情况下,获取第二小区组的第五待选PDCCH盲检能力信息,并将所述第五待选PDCCH盲检能力信息和所述第二小区组对应的第四信息中的最小值,作为所述第二小区组的PDCCH盲检能力信息;
    其中,所述第五待选PDCCH盲检能力信息与以下至少一项相关:所述第二小区组中包含的小区数量、第一信息以及所述为所述终端配置的小区数量M;
    所述第一信息用于指示所述终端对PDCCH进行盲检支持的最大处理能力;所述第四信息用于指示在所述第二小区组对应的子载波间隔的配置下所述终端在单小区下对PDCCH进行盲检的最大处理能力;所述第二小区组为全部小区组中的其中一组。
  24. 根据权利要求20所述的终端,其特征在于,在所述第一子载波间隔集包括所述M个小区对应的所有子载波间隔的情况下;
    所述确定模块,具体用于:
    根据第二调度小区对应的每个可调度小区所在小区组的PDCCH盲检能力信息以及所述每个可调度小区对应的第三值,为所述第二调度小区分配PDCCH盲检能力,确定出所述第二调度小区的PDCCH盲检能力信息;
    其中,所述第三值为所述终端为所述可调度小区分配PDCCH盲检能力的分配比例;所述第二调度小区为所述N个调度小区中的其中一个。
  25. 根据权利要求24所述的终端,其特征在于,所述确定模块,具体用于:
    根据所述第二调度小区对应的每个可调度小区所在小区组的PDCCH盲检能力信息、所述每个可调度小区对应的子载波间隔、所述第二调度小区对应的子载波间隔以及第一公式,确定出所述第二调度小区的PDCCH盲检能力信息;
    其中,所述第一公式为:
    Figure PCTCN2019096186-appb-100003
    所述
    Figure PCTCN2019096186-appb-100004
    为所述第二调度小区的第j个可调度小区所在小区组的PDCCH盲检能力信息,μ j是根据所述第j个可调度小区对应的子载波间隔确定的,所述μ s是根据所述第二调度小区对应的子载波间隔确定的。
  26. 根据权利要求15所述的终端,其特征在于,所述终端还包括:
    获取模块,用于获取所述N个第一调度小区的第六待选PDCCH盲检能力信息以及第七待选PDCCH盲检能力信息,并将所述第六待选PDCCH盲检能力信息和所述第七待选PDCCH盲检能力信息中的最小值,作为所述N个调度小区的PDCCH盲检能力信息;
    其中,所述第六待选PDCCH盲检能力信息与以下至少一项相关:第一信息以及每个调度小区和/或被调度小区的子载波间隔对应的第二信息;所述第七待选PDCCH盲检能力信息与以下至少一项相关:所述终端配置的小区数量M以及所述第二信息;
    所述第一信息用于指示所述终端对PDCCH进行盲检支持的最大处理能力;所述第二信息用于指示对应调度小区或被调度小区对应的子载波间隔的配置下所述终端在单小区下对PDCCH进行盲检的最大处理能力。
  27. 根据权利要求15至26任一项所述的终端,其特征在于,所述终端还包括:
    获取模块,用于获取第五信息;其中,所述第五信息用于指示所述终端在所述N个调度小区的所有搜索空间集下对PDCCH进行监听的数量;
    分配模块,用于当根据所述获取模块获取的所述第五信息确定所述终端在所述N个调度小区的所有搜索空间集下对PDCCH进行监听的数量超过了所述终端对PDCCH进行盲检支持的最大处理能力,则不分配第三调度小区的部分搜索空间集,或者,为所述第三调度小区的部分搜索空间集分配部分PDCCH盲检能力;
    其中,所述第三调度小区为所述N个调度小区中的其中一个,且所述第三调度小区对应至少一个被调度小区。
  28. 一种网络设备,其特征在于,包括:
    发送模块,用于为终端配置M个小区的小区参数;其中,所述M个小区包括:N个调度小区以及X个被调度小区;所述小区参数与所述N个调度小区的PDCCH盲检能力信息有关;所述N个调度小区的PDCCH盲检能力信息用于指示在单位时间内所述终端在每个调度小区或所述N个调度小区下对PDCCH进行盲检的最大处理能力;所述小区参数用于指示所述终端根据所述N个调度小区的PDCCH盲检能力信息监听PDCCH;
    所述发送模块,还用于通过所述N个调度小区发送PDCCH。
  29. 一种终端,其特征在于,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至13中任一项所述的用于监听下行控制信道PDCCH的方法的步骤。
  30. 一种网络设备,其特征在于,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求14所述的用于监听下行控制信道PDCCH的方法的步骤。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至13中任一项或者权利要求14所述的用于监听下行控制信道PDCCH的方法的步骤。
PCT/CN2019/096186 2018-07-20 2019-07-16 用于监听pdcch的方法、终端及网络设备 WO2020015643A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
ES19838750T ES2953820T3 (es) 2018-07-20 2019-07-16 Método para monitorizar un PDCCH y terminal y dispositivo de red
EP19838750.8A EP3813420B1 (en) 2018-07-20 2019-07-16 Method for monitoring pdcch, and terminal and network device
SG11202100414VA SG11202100414VA (en) 2018-07-20 2019-07-16 Method of monitoring pdcch, terminal and network device
AU2019307437A AU2019307437B2 (en) 2018-07-20 2019-07-16 Method for monitoring PDCCH, and terminal and network device
RU2021102589A RU2754486C1 (ru) 2018-07-20 2019-07-16 Способ контроля физического канала нисходящей линии, абонентское оборудование и сетевое устройство
CA3106480A CA3106480C (en) 2018-07-20 2019-07-16 Method of monitoring pdcch, terminal and network device
JP2021502990A JP7195404B2 (ja) 2018-07-20 2019-07-16 Pdcch監視方法、端末及びネットワーク機器
EP23178061.0A EP4236566A3 (en) 2018-07-20 2019-07-16 Method for monitoring pdcch, and terminal and network device
KR1020217004312A KR102666321B1 (ko) 2018-07-20 2019-07-16 Pdcch를 모니터링하는 방법, 단말기 및 네트워크 기기
US17/152,414 US11956790B2 (en) 2018-07-20 2021-01-19 Method of monitoring PDCCH, terminal and network device
AU2022204006A AU2022204006B2 (en) 2018-07-20 2022-06-09 Method of Monitoring PDCCH, Terminal and Network Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810805009.8A CN110740479B (zh) 2018-07-20 2018-07-20 一种用于监听pdcch的方法、终端及网络设备
CN201810805009.8 2018-07-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/152,414 Continuation US11956790B2 (en) 2018-07-20 2021-01-19 Method of monitoring PDCCH, terminal and network device

Publications (1)

Publication Number Publication Date
WO2020015643A1 true WO2020015643A1 (zh) 2020-01-23

Family

ID=69164269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096186 WO2020015643A1 (zh) 2018-07-20 2019-07-16 用于监听pdcch的方法、终端及网络设备

Country Status (13)

Country Link
US (1) US11956790B2 (zh)
EP (2) EP4236566A3 (zh)
JP (1) JP7195404B2 (zh)
KR (1) KR102666321B1 (zh)
CN (2) CN110740479B (zh)
AU (2) AU2019307437B2 (zh)
CA (1) CA3106480C (zh)
ES (1) ES2953820T3 (zh)
HU (1) HUE062761T2 (zh)
PT (1) PT3813420T (zh)
RU (1) RU2754486C1 (zh)
SG (1) SG11202100414VA (zh)
WO (1) WO2020015643A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113453349A (zh) * 2020-03-27 2021-09-28 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021190617A1 (en) * 2020-03-27 2021-09-30 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
CN114696950A (zh) * 2020-12-31 2022-07-01 维沃移动通信有限公司 Pdcch盲检的限制方法、终端及网络侧设备
WO2022154567A1 (ko) * 2021-01-15 2022-07-21 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
CN115118381A (zh) * 2021-03-23 2022-09-27 维沃移动通信有限公司 Pdcch盲检测方法、装置及设备
EP4087348A4 (en) * 2020-02-08 2023-07-05 Shanghai Langbo Communication Technology Company Limited METHOD AND APPARATUS FOR USE IN WIRELESS COMMUNICATION NODES
EP4087171A4 (en) * 2020-02-14 2023-07-19 Shanghai Langbo Communication Technology Company Limited METHOD AND DEVICE IN A NODE USED FOR WIRELESS COMMUNICATIONS
EP4135374A4 (en) * 2020-04-09 2023-09-20 Vivo Mobile Communication Co., Ltd. METHOD FOR ALLOCATING MAXIMUM PDCCH PROCESSING CAPACITY, TERMINAL DEVICE AND NETWORK DEVICE
EP4160967A4 (en) * 2020-05-29 2023-11-22 Vivo Mobile Communication Co., Ltd. CONTROL INFORMATION DCI TRANSMISSION METHOD AND ASSOCIATED APPARATUS

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10123969B2 (en) 2015-10-15 2018-11-13 Wisconsin Alumni Research Foundation Osmotic enhancement of drug/therapeutic delivery to the brain following infusion or injection into the cerebrospinal fluid
CN113826346A (zh) * 2019-03-22 2021-12-21 三星电子株式会社 无线通信系统中用于控制信道接收的方法和装置
US11304218B2 (en) * 2019-07-24 2022-04-12 Samsung Electronics Co., Ltd. Control signaling design for improved resource utilization
US11956074B2 (en) * 2020-01-02 2024-04-09 Qualcomm Incorporated Physical downlink control channel (PDCCH) parameters for multiple cell groups
US11800518B2 (en) * 2020-01-22 2023-10-24 Qualcomm Incorporated Techniques for physical downlink control channel (PDCCH) limits for multiple cells scheduling one cell in a wireless communication system
CN113225751B (zh) * 2020-02-06 2023-05-05 维沃移动通信有限公司 搜索空间的监听方法和设备
CN113364566B (zh) * 2020-03-03 2024-04-09 联发科技(新加坡)私人有限公司 用于移动通信中的载波聚合的pdcch监控增强的方法和装置
CN113542174B (zh) * 2020-04-14 2022-05-31 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115226223A (zh) 2020-04-03 2022-10-21 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113973320B (zh) * 2020-07-23 2024-03-26 维沃移动通信有限公司 信息传输方法、装置及通信设备
US20220053522A1 (en) * 2020-08-11 2022-02-17 Samsung Electronics Co., Ltd. Adaptive cross-carrier scheduling and flexible pucch groups
WO2022082799A1 (zh) * 2020-10-23 2022-04-28 华为技术有限公司 跨载波调度方法、终端设备和接入网设备
CN112004268B (zh) * 2020-10-26 2021-01-26 新华三技术有限公司 资源调度方法及装置
WO2022147644A1 (en) * 2021-01-05 2022-07-14 Zte Corporation Systems and methods for blind detection budget for physical downlink control channel
US11751193B2 (en) * 2021-01-14 2023-09-05 Qualcomm Incorporated Scheduling order for a scheduled cell having downlink control information from multiple scheduling cells
CN115334581A (zh) * 2021-05-11 2022-11-11 维沃移动通信有限公司 控制资源分配方法、装置及通信设备
WO2023010340A1 (zh) * 2021-08-04 2023-02-09 富士通株式会社 多小区物理下行控制信道监测能力的分配方法和装置
CN115915099A (zh) * 2021-08-05 2023-04-04 维沃移动通信有限公司 控制资源监控方法、设备及可读存储介质
CN116419411A (zh) * 2021-12-31 2023-07-11 维沃移动通信有限公司 Pdcch的监测方法、装置、终端及可读存储介质
WO2023170977A1 (ja) * 2022-03-11 2023-09-14 株式会社Nttドコモ 端末、基地局及び通信方法
WO2023211210A1 (ko) * 2022-04-27 2023-11-02 엘지전자 주식회사 무선 통신 시스템에서 신호를 모니터링하는 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140119253A1 (en) * 2012-11-01 2014-05-01 Research In Motion Limited Method and system for battery energy savings for carrier aggregation
CN106549733A (zh) * 2016-12-06 2017-03-29 北京锐安科技有限公司 一种增强物理下行控制信道的盲检方法及装置
CN107306174A (zh) * 2016-04-20 2017-10-31 西安中兴新软件有限责任公司 一种用于载波聚合的载波调度的方法、设备和系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448309B1 (ko) 2007-09-28 2014-10-08 엘지전자 주식회사 무선통신 시스템에서 하향링크 제어채널 모니터링 방법
CN102215586B (zh) * 2010-04-02 2014-12-17 电信科学技术研究院 一种物理下行控制信道pdcch盲检的方法及设备
JP5291664B2 (ja) * 2010-04-30 2013-09-18 株式会社エヌ・ティ・ティ・ドコモ データ送信方法、基地局装置及び移動局装置
CN102740473B (zh) * 2011-04-08 2017-12-01 中兴通讯股份有限公司 一种下行控制信息的处理方法和系统
CN104054313B (zh) * 2011-11-23 2017-05-17 Lg电子株式会社 用于监控控制信道的方法和无线装置
US9775144B2 (en) 2012-02-29 2017-09-26 Lg Electronics Inc. Method for terminal receiving downlink signal in wireless communication system and apparatus for same
WO2013147523A1 (ko) * 2012-03-28 2013-10-03 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널을 위한 자원을 할당하는 방법 및 이를 위한 장치
CN103457710B (zh) * 2012-06-01 2017-02-08 华为技术有限公司 一种增强型物理下行控制信道的使能方法、设备及系统
KR20150090054A (ko) 2012-11-27 2015-08-05 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널을 모니터링하는 방법 및 이를 위한 장치
EP2942888B1 (en) * 2013-01-07 2018-08-01 LG Electronics Inc. Method for receiving a downlink signal from a plurality of transmission points by a user equipment and corresponding user equipment
US9756656B2 (en) * 2013-01-09 2017-09-05 Lg Electronics Inc. Method and user equipment for receiving signal and method and base station for transmitting signal
RU2594356C2 (ru) * 2014-10-17 2016-08-20 Нокиа Текнолоджиз Ой Конфигурирование пространства поиска канала управления ретрансляционного узла
CN105991263B (zh) * 2015-01-30 2020-05-12 中兴通讯股份有限公司 下行控制信息dci的配置、下行数据的接收方法及装置
EP3282626B1 (en) * 2015-04-06 2020-03-25 LG Electronics Inc. Method for transmitting and receiving signal based on shared resource in wireless communication system, and apparatus therefor
CN106301674B (zh) * 2015-05-22 2019-11-29 中国移动通信集团公司 一种聚合载波的盲检方法及装置
US11356956B2 (en) * 2015-06-20 2022-06-07 Ofinno, Llc Uplink power control in a wireless device
CN107124383B (zh) * 2016-02-25 2021-01-19 中兴通讯股份有限公司 一种数据传输方法和装置
CN105682243B (zh) 2016-03-25 2017-12-12 宇龙计算机通信科技(深圳)有限公司 一种调度信令的配置方法、接收方法和相关设备
WO2018063340A1 (en) * 2016-09-30 2018-04-05 Maruti Gupta Hyde Mobility enablement in a low-power wakeup radio
US11388586B2 (en) * 2019-05-03 2022-07-12 Qualcomm Incorporated Downlink control channel monitoring capability for ultra-reliable low-latency communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140119253A1 (en) * 2012-11-01 2014-05-01 Research In Motion Limited Method and system for battery energy savings for carrier aggregation
CN107306174A (zh) * 2016-04-20 2017-10-31 西安中兴新软件有限责任公司 一种用于载波聚合的载波调度的方法、设备和系统
CN106549733A (zh) * 2016-12-06 2017-03-29 北京锐安科技有限公司 一种增强物理下行控制信道的盲检方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Remaining Issues on Search Space", 3GPP TSG RAN WGI MEETING #93 R1-1805881, 25 May 2018 (2018-05-25), XP051441101 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4087348A4 (en) * 2020-02-08 2023-07-05 Shanghai Langbo Communication Technology Company Limited METHOD AND APPARATUS FOR USE IN WIRELESS COMMUNICATION NODES
EP4087171A4 (en) * 2020-02-14 2023-07-19 Shanghai Langbo Communication Technology Company Limited METHOD AND DEVICE IN A NODE USED FOR WIRELESS COMMUNICATIONS
CN113453349A (zh) * 2020-03-27 2021-09-28 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021190617A1 (en) * 2020-03-27 2021-09-30 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
CN113453349B (zh) * 2020-03-27 2022-06-21 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
EP4135374A4 (en) * 2020-04-09 2023-09-20 Vivo Mobile Communication Co., Ltd. METHOD FOR ALLOCATING MAXIMUM PDCCH PROCESSING CAPACITY, TERMINAL DEVICE AND NETWORK DEVICE
EP4160967A4 (en) * 2020-05-29 2023-11-22 Vivo Mobile Communication Co., Ltd. CONTROL INFORMATION DCI TRANSMISSION METHOD AND ASSOCIATED APPARATUS
CN114696950A (zh) * 2020-12-31 2022-07-01 维沃移动通信有限公司 Pdcch盲检的限制方法、终端及网络侧设备
WO2022154567A1 (ko) * 2021-01-15 2022-07-21 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
CN115118381A (zh) * 2021-03-23 2022-09-27 维沃移动通信有限公司 Pdcch盲检测方法、装置及设备
CN115118381B (zh) * 2021-03-23 2024-02-20 维沃移动通信有限公司 Pdcch盲检测方法、装置及设备

Also Published As

Publication number Publication date
US11956790B2 (en) 2024-04-09
US20210144746A1 (en) 2021-05-13
KR102666321B1 (ko) 2024-05-14
EP3813420B1 (en) 2023-07-26
AU2022204006A1 (en) 2022-06-30
CN110740479A (zh) 2020-01-31
HUE062761T2 (hu) 2023-12-28
CN110740479B (zh) 2021-06-08
EP4236566A3 (en) 2023-09-13
EP3813420A4 (en) 2021-09-01
SG11202100414VA (en) 2021-02-25
EP4236566A2 (en) 2023-08-30
EP3813420A1 (en) 2021-04-28
CN113316258A (zh) 2021-08-27
JP2021531695A (ja) 2021-11-18
KR20210028721A (ko) 2021-03-12
CN113316258B (zh) 2023-11-07
AU2022204006B2 (en) 2023-03-16
AU2019307437A1 (en) 2021-02-04
RU2754486C1 (ru) 2021-09-02
CA3106480A1 (en) 2020-01-23
PT3813420T (pt) 2023-08-28
AU2019307437B2 (en) 2022-03-17
JP7195404B2 (ja) 2022-12-23
ES2953820T3 (es) 2023-11-16
CA3106480C (en) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2020015643A1 (zh) 用于监听pdcch的方法、终端及网络设备
WO2020063215A1 (zh) Csi报告的上报方法、终端设备及网络设备
WO2021197336A1 (zh) 资源调度方法、装置及ue
WO2020221257A1 (zh) 反馈消息的发送方法及终端设备
US20220022169A1 (en) Method for determining channel resource, channel detection method, and terminal
US20220141690A1 (en) Transmission method and communication device
US20220022184A1 (en) Transport block size determining method and communications device
US20210168834A1 (en) Determining method, terminal, and network device
CN112654084B (zh) 一种搜索空间分配方法、搜索空间配置方法及相关设备
WO2018201938A1 (zh) 资源映射方法、网络设备和终端设备
US11412499B2 (en) Method of allocating channel estimation number for search space and terminal device
US20230037061A1 (en) Resource determining method and device
WO2019214420A1 (zh) 业务调度方法、终端及网络设备
US20220015091A1 (en) Resource configuration method, resource determining method, network side device and terminal
WO2021013006A1 (zh) 参数处理方法、设备及计算机可读存储介质
WO2019242568A1 (zh) 功率分配方法及终端
WO2020011242A1 (zh) Pdsch时域资源分配方法、终端及计算机可读存储介质
WO2020015679A1 (zh) Csi上报方法、终端及网络设备
WO2021164714A1 (zh) Ss的监听方法及设备
WO2020029757A1 (zh) 传输控制信息的方法和装置
WO2020029797A1 (zh) 确定方法、终端及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3106480

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021502990

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019838750

Country of ref document: EP

Effective date: 20210119

ENP Entry into the national phase

Ref document number: 2019307437

Country of ref document: AU

Date of ref document: 20190716

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217004312

Country of ref document: KR

Kind code of ref document: A